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ABSTRACT
Csiszar (1975) has shown that Kullback~Leibler information numbers
possess some geometrical properties much like those in Euclidean geometry.
This paper extends these results by characterizing the shortest line between

two distributions as well as the midpoint of the line. It turns out that the

distributions comprising the line have applications to the problem of testing

separate families of hypotheses.
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SIGNIFICANCE AND EXPLANATION

‘-) The Kullback-~Leibler information number is a well-known measure of
statistical distance between probability distributions. Previous authors have
shown that when endowed with this distance measure, the space of probability
distributions possesses geometriceal properties analogous to Euclidean
geometry. This paper proves a new geometrical property by showing that one
can in fact define the shortest line between two probability distributions as
well as its mid-point.

It turns out that the probability distributions comprising this line have
long ago been used as a tool in the important problem of testing statistical
hypotheses involving nuisance parameters. Apart from pure mathematical
convenience, there has been little justification for its use. The results in

this paper are the first attempt at such explanation.
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A NOTE ON THE GEOMETRY OF
KULLBACK-LEIBLER INFORMATICN NUMBERS

Wei~-Yin Loh

1. Introduction

Csissar (1975) has shown that if we use the Kullback-Leibler information
number as a measure of distance between (probability) &istributions, certain
analogies exist between the properties of dinf.ributlom and Buclidean
geometry. 1In particular, he proved an analogue of Pythagoras®’ theorem. In
this note we extand these geometrical properties by defining the “"shortest
line” between two distributions and the "mid-point” of the line. It turns out
that the distributions comprising such a line are precigely those whose
densities are exponential linsar combinations of the densities of the two
distributions at the end-points.

The idea of taking exponential linear combinations of densities is not
new. PFor example, it appears in Cox (1961), Atkinson (1970) and Brown (1971)
as a mathematically convenient means of embedding two families of
distributions into a larger family. Our results in section 4 show that in
fact there is a deeper mathematical property behind this choice of embedding,
namely that the distributions in the embedding are really those distributions

that are closest (in the Kullback-Leibler sense) to the two original families.

Department of Statistics and Mathematics Research Center, University of
Wisconsin, Madison, WI $5370S.

Spongored by the United States Army under Contract No. DAAG29-80-C=0041. This
material is based upon work supported by the Rational Science Poundation under
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2. Motations and definitions
Recall that if P and G are two distributions on the same measurable

space, the Kullbeck-Leibler information number X(F,G) is defined as

| log(ar/aG)ar, it P << G

R(®,G) =

+ o ¢+ Otherwise
where "F << G" means that P is absolutely continuous with respect to G.
It is well known that K(P,G) is well-defined, nonnegative, and is equal to
gero if and only if PF(B) = G(B) for all measurable sets B.

We need the following definitions in the rest of this paper.

Definition 2.1. A distribution P 4is closer to P and G than O is if

x{P,P) < K(Q,F) and X(P,G) < K(QIG)

with at least one inequality being strict. In symbols we write P ;G Q (or

P <CQ if it is clear from the context what F¥ and G are).

Definition 2.2. P is a mid~point of F and G if K(P,F) = K(P,G) and

there does not exist Q for which Q §G P.

Definition 2.3. P is minimax for F and G if max(KX(P,Fr), K(P,G)) =
nin{na;kx(Q,!). K(Q,G))} where the min is taken over the space of all
dgnttibution-.

Throughout this paper, u denotes a measure that dominates both P
and G; and f(x), g{x) are their respective densities relative to u. ¥For

convenience, we let A denote the set

(2.1) A= {x : £f{x)g(x) > 0} ,
and let Pi(o € X < 1) be the distribution with density (with respect to )
given by
ko (x1t'x) on A
(2.2) py(x) =

0 otherwise ,
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where k, 'f,\slA

(2.3) P= {’x' 0<A< 11V ({reG .

-1 '14‘“ and

(%ote that if 7 and G are mutually absolutely continuous, Py = v,
Py =G and P 1s an exponential family.) Finally we need the function
(2.4) Iny = f, ot M oglestray, 0 <A < .

We will often abbreviate K(P,,*) to K(i,*).




; B
Lk ar ek

A i P B P ——r A g

ARG r30 s o

3. Preliminary lemmas.
We will assume throughout that u is a o-finite measure and F and G

are two (fixed) distributions, not necessarily mutually absolutely continuous.
Lesma 3.1, Suppose that u(A) > Q. Then kx and J(1) are both
differentiable in (0,1) and continuous at A =0, 1 (with J(0) and J(1)
possibly infinite).

Proof. Since k = [, oxp(A loglg/f))f & and J(A) 1is its first
derivative, differentiability in (0,1) follows from a well-known result on
integrals of exponential densities (see ¢.g. Lehmann (1959)). To see that the %
functions are continuous at the end-points, split A into the sets A(f) = é
AN{f> gl and A(g) = AN {f < g}, and use dominated convergence to obtain |
the result for kx. To prove the same for J(\), first observe that

nonnegativity of K(G,F) implies that

0< [, lloglg/e)] g au <= .

Therefore we may take limits as ) + 0 in the inequality

[ (oataren e e < ([, (109(a/2)1 g A} ([, (ogtasen e au}'"
to obtain
(3.1) lim ! tloq(g/f)l g f xdu < f {log(g/f)] e au .
A+0

Fatou's lemma shows that the reverse inequality holds, so in fact exact
equality obtains in (3.1). Now by monotone convergence

X 1 l

lim I lloq(qlt)) - fnllog(qlf)]+f a .

A+0
This proves that J(A) 1is continuous at ) = 0. A similar argument does it
for A = 1,
Lemma 3.2. As functions of A, both K()A,F) and K()\,G) are differentiadble

in (0,7) and continous at A = 0, 1. K(A,F) is non-decreasing and K(1,G)

is non-increasing in (0,1},
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ocof. ‘The first assertion follows from the preceding lemma and the relations

(3.2) X(A,P) = log "x + M:x J(A)
(3.3) . K(},G) = log k, - (1~x)kA J() .
Differentiation yields, for 0 <A < 1,

AN a/@IR(, ) = =(1=1) " a/a K, 6)

(3.4)
- Varxuoq(q(l)/ﬂ!))} >0 .

This proves the second assertion. It is easy to see that strict inequality
holds in (3.4) for some 0 < A < 1 if and only if it holds for all

0 ¢A <1,

Lemma 3.3. Suppose that u(A) > 0. Let O be such that K(Q,F) and
K(Q,G) are both finite and define ‘

r(A) = [ log(p, /£)4Q

(3.5)
s(}) -[ log(px/g)dQ .

Then (i) r(A) and s(\) are finite and continuous in (0,1], and (ii) if h

for some 0 <\ < 1,
(3.6) r(dA) = K(A,PF)
then s()) = X(A,G).

Proof. The finiteness of K{(Q,F) and K{(Q,G) means that Q is absolutely

continuous with respect to l’x for all ) in [0,7). Therefore we may write
r(A) = log K, + A(K(Q,F) - K(Q,G))
s{)) = 1ng kl - (1=A)(X(Q,F) -~ K(Q,G)) .
Assertion (i) now follows from Lemma 3.7. To get (ii) use the fact that
K(A,7) = log k, + A(K(,?) = K(A,G))

anéd X(A,G) = log kl - (1=A)KR(A,P) - K(A,G)) .
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The proof of the next lemma is trivial. A more general version appears

in Ceissar (1975).
Lemma 3.4. Lat P, 0, R be three distinct distributions such that P << R

and ‘(Q,’, < », Then
[ log(dp/aRr)ag = K(P,R)

if and only if
K(Q,R) = K(Q,P) + K(P,R) .

A similar result holds if both "= signs are replaced with ">" signs.
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P 1in (2.3) is in some sense “complete”.

Theores 4.1. Por any Q not belonging to P, there is P in P such that
P k Q.

Proof. The result is easy if P and G are mutually singular since then
K(F,G) = K(G,F) = = lndnnytlk; Papr if R(QG) =® gnd P=¢G
otherwise. 8o suppose u(A) > 0, and without loss of gensrality further

assume that both K(Q,F) and KX(Q,G) are finite. Then Q << ’A for all

0<A< 1. Let r and s be defined as in (3.5). By Lemmas 3.2 and 3.3,

K(\,F) and r(l) are continuous functions of A in [0,1]. We consider
three cases according to vhether these two graphs intersect.

(I)e Suppose rx(\) = K(A,F) for lo-o 0 <A< 1. Then

(4.1) K(Q,1) = AK(Q,G) + (1-A)K(Q,P) - log k, <=
and Lemma 3.4 implies that

) ; R(Q,F) = K(Q,A) + R(A,F) > X(A,P) .
rnrthoi, by.u-a 3.3, s()) = K(A,G). Raversing the roles of r and s,
and ¥ and G, we also get K(Q,G) > K()A,G). Hence PX SGQ.
(IT1). Suppose =r(A) > R(A,F) for all 0 < A < 1. Continuity yields r(1) >
K(1,P) and since K(Q,1) <* by (4.1), we can use Lesma 3.4 to deduce that
R(Q,F) > K(Q,1) + K(1,F) > K(1,P). .Since K(Q,G) = K(Q.,1) + K(1,6) > K(1,6),

it follows that P' §° Q.

N B (III). The case r(l) < K(A,F) for all 0 <A < 1 is similar to (II).
According to Definition 2.2, the above theorem 1,11« that the mid-

point M of F and G belongs to P whenever the former exists. The

. following corollaries give conditions for the existence of N.
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Corollary 4.1. (i) If F and G are mutually absolutely coentinuous, M

exists and equals Px for some unique A in (0,1). (44, If P and G are
mutually singular, M does no.t exist. (ii1) M 1is unique vhenever it exists. .
Proof. Assertion (i) follows from the fact that if P and G are mutually
absolutely continuous and distinct from each other, then K(0,P) = X(1,G) = 0,

and both K(A,F) and K()A,G) are strictly monotone for 0 < A < 1,

Assertion (ii) is immediate from Theorem 4.1 since P = {F,G} if F and G

are mutually singular. To prove assertion (iii), suppose that F and G are

not mutually singular and M exists. If there are A1 d Az in [0,1] such

that P

\ and P

1 A2

are both mid-points of P and G, then
K(A1,r) = K(X1.G) - x(xz,r) - K(Xz,G)

and it follows from (3.4) that g(x)/f(x) is constant a.e. (u) on A. This
implies that PX = Po for all 0 < A < 1 and hence that M is unique.
Corollary 4.2. Suppose F and G are not mutually singular. Then the mia-
point M exists if and only'if
(4.2) J(A) =0 for some 0< A < 1 ,
in which case M = PA'
Proof. According to Theorem 4.1, M exists if and only if
(4.3) K(A,F) = RK(A,G) <» for some 0 < A < 1 .
It 18 clear from (3.2) and (3.3) that this is equivalent to (4.2).

Corollary 4.1 states that mutual singularity of P and G is a
sufficient condition for the non-existence of the mid-point. The following
exﬁnple shows that the condition is not necessary.

Example 4.1. Let F be the unifors aistribution on (0,3) and G be

uniform on (1,2). Then PA =G for all 0< )X < 1 and (4.3) does not hold

for any A. There is thus no mid-point.




The Px (or G) 1in this example is “minimax" according to Definition
2.3. It turns out that minimax distributions exist always. Uniqueneas may be
lost but only in trivial cases. This is made explicit in the next corollary.
Corollary 4.3. (i) A minimax distribution always exists. (ii) If F and
G are not mutually singular, the minimax distribution is unique. (i1i) 1f
P and G are mutually singular, every distribution is minimax. (iv) Every
mid-point is unique minimax.
Proof. §Since every mid-point is minimax by definition, assertion (iv) is
immediate from Corollary 4.1. It remains to prove assertions (i) -~ (iil) only
for the case when the mid-point does not exist. To prove assertion (ii),
suppose that F and G are not mutually singular. It is clear from (4.3)
that the mid=-poi.it does not exist if and only if the graphs of K(A,F) and

K(A,G) fail to intersect in [0,1}. But from (3.4) either

(4.4) (4/QIK(A,P) > 0 and (4/A)IK(A,G) < 0O for all 0 <X ¢ 1
or .
(4.5) (a/A)IK(A,F) = (4/A)IK(A,G) = 0 for all 0 <X <1 .

Therefore either X(0,PF) > X(0,6) or K(1,F) < K(1,G). Assume, without loss
of generality, that K(0,F) > K(0,G). First suppose that (4.4) holds. Then
for all 0 <X € 1

(4.6) max(X(0,F), K(0,G)) < max(K(A,F), K(A,G)) .

If K(G,F) < w», then G << P, Py, = G and (4.6) yields

(4.7) nax(X(0,PF), K(0,G)) < max(K(G,F), K(G,G)) .

Clearly (4.7) is trivially true also if K(G,F) = w. A gimilar argument shows
that

(4.8) max(K(0,P), K(0,G)) < max(X(P,F), K(F,G))

with equality if and only if P, = F. Now (4.6) - (4.8) shows that Py

uniquely minimizes max(X(P,F), X(P,G)) over all P e P. we conclude from
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Theorem 4.1 that P, is unique minimax for PF and G. If instead (4.5)
obtains, then as the proof of Corollary 4.1 shows, ’A - Po for all

0< )< 1. Purther X(O0,F) = X(0,G) = 0. 8ince (4.7) and (4.8) are trivially
satisfied, P, is again unique minimax. This completes the proof of
assertion (i1i). Assertion (iii) follows from observing that if F and G
are mutually singular, then at least one of K(Q,F) and KX(Q,G) is infinite

for any distribution Q. Assertion (i) is a consequence of (ii) - (iv).
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S, _Example. We end this discussion with two examples.

Example 5.1 (Binomial). Let F be !1n(n.p,) (binomial with n trials and

’ success probability p,) and G be Bln(n.pz). Write qq = 1-p;. Then every

member in P 4is binomial and the mid-point M is Bin(n,p) wvhere p =
loglqy/q4)/109(p,q,/P,q4)« This formula applies and yields p between p,
and p, only when neither p; nor ) 2 is 0 or 1. If py=0

and 0 < p, < 1 for example, the formula gives p = 0. The reason for this
strange result is that here there is no wid~point since P = {F}. It can be
shown that if both Py and p, are neither 0 nor 1, then p lies
gtrictly between the two p's. In the spacial case that P ™ ""PZ' then 1
p= ';‘ as expected. The formula for p suggests a new way of "scaling™ the
binomial family.

Example 5.2 (Normal). Let F be N(Oi,a:) {normal with mean 6‘ and 1

variance o-‘;) and G be N(ez,o;). Then the members of P are also normal

distributions. If o " oz,

2
) 01#02, then M is N(01,a) where

1 2
M is N(z (91 + 02), 01)1 and if 91 02:

2

22 2,2 2 2
¢ =00, 1<:»q(¢12/¢11)/(o2 -0

1)'

It can be verified that o always lies between 01 and 02.

Acknowledgement. The author is grateful to E. L. Lehmann for many helpful

comments.
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