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ABSTRACT

A classical result of Gilbarg states that a simple shock wave solution of

Euler's equations is compressive if and only if a coresponding shock layer

solution of the Navier-Stokes equations exists, assuming, among other things,

that the equation of state is convex. An -entropy condition appropriate for

weeding out -unphysical shocks in the nonconvex case has been introduced by

T.--Pr.-Liu. For shocks satisfying his entropy condition, Liu showed that

purely viscous shock layers exist (with zero heat conduction). Dropping the

convexity assumption, but retaining many other reasonable restrictions on the

equation of state, #constructxan example of a (large amplitude) shock which

satisfies Liuls'entropy condition but for which a shock layer does not exist

if heat conduction dominates viscosity. Wealso give64a simple restriction,

weaker than convexity, which does guarantee that shocks which satisfy Liu's

entropy condition always admit shock layers.

AMS (MOS) Subject Classifications: 76NI0, 35Q10, 76L05, 35L65, 35B99

Key Words: shocks, shock layer, traveling waves, conservation laws,

j admissibility, entropy condition, viscosity, heat conduction

Work Unit Number 2 - Physical Mathematics

I I Sponsored by the United States rmy under Contract No. DAG29-80-C-C41.

This material is based upon work supported by the National Science Foundation
under Grant No. MCS-7927062, Mod. 2.

_____-___ ...... . ...... . . ...._Illlll___. .... ............... .......... ..... 7:



SIGNIFICANCE AND EXPLANATION

A traditional method of determining which shocks (which are discontinuous

solutions in gas dynamics or elasticity) are "physical" is to ask whether the

discontinuity can be obtained in the limit of vanishing viscosity and heat

conduction. For a constant profile shock, one then seeks corresponding

constant profile "shock layer" solutions when viscosity and heat conduction

are nonzero. If the equation of state is convex, a simple condition

distinguishes those discontinuities which admit shock layers: The shock must

be compressive, or entropy should increase across the jump. Convexity does

not hold for some materials, however. In the nonconvex case, Liu proposed a

revised "entropy condition" to select physical shocks. For small amplitude

shocks, the present author has shown that a shock layer always exists if Liu's

entropy condition is satisfied. Here we present an example to show that this

is not the case for strong shocks, unless the equation of state satisfies some

extra restrictions. We also supply some extra restrictions which are shown to

be appropriate.

an ud/r

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.



NONEXISTENCE OF A SHOCK LAYER IN GAS DYNAMICS

WITH A NONCONVEX EQUATION OF STATE

Robert L. Pego

I1. Introduction

In 1951, D. Gilbarg [2] showed that for each stationary shock wave

solution of Euler's equations of gas dynamics in one space dimension, there

exists a corresponding smooth solution (called a shock layer or shock profile)

of the Navier-Stokes equations with viscosity and heat conduction, provided

that the thermodynamic equation of state satisfies a short list of

restrictions given by Weyl [11], including a convexity condition. The shock

wave is required to satisfy the Rankine-Hugoniot jump relations, and the

entropy condition, which ensures that entropy increases along particle paths

in Euler's equations. Under Weyl's restrictions, the entropy condition simply

requires shocks to be compressive, i.e., density must increase along particle

paths.

More recently, interest has developed in equations of state which may be

nonconvex ([51,[91,(1I01). T.-P. Liu introduced an entropy condition

appropriate for shocks in this situation. He showed that a shock satisfies

his entropy condition if and only if a purely viscous shock layer exists,

i.e., a shock layer for the equations with zero heat conduction [4].

The purpose of this note is to present an example concerning restrictions

on the equation of state under which Liu's entropy condition does select just

those shocks for which shock layers exist for any positive values of viscosity

and heat conduction. We explicitly construct an equation of state such that

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
,4 This material is based upon work supported by the National Science Foundation

under Grant No. MCS-7927062, Mod. 2.
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for some shock wave which satisfies Liu's entropy condition, no corresponding

shock layer can exist if the heat conduction dominates the viscosity. (A

shock layer does exist if heat conduction is small compared to viscosity.)

The equation of state satisfies all of Woyl's restrictions except the

convexity condition, and satisfies other conditions which have appeared in

recent work on the Riemann problem in gas dynamics ([53, [101). We can give a

simple restriction weaker than convexity (satisfied by van der Waals gases in

regions of hyperbolicity, for example) under which all shocks satisfying Liu's

entropy condition always admit corresponding shock layers. (See Theorem 1.)

An example such as we describe may be of interest in one dimensional

thero(visco)lasticity, where for quite general constituitive relations it is

desirable to determine the smoothing effect of viscous and thermal dissipation

(e.g. see [I]). Nonconvex equations of state also occur for materials

exhibiting phase transitions. In this paper, however, we require that Euler's

equations remain hyperbolic in the region of interest. Effects other than

viscosity and heat conduction must be considered to determine "structure" in

phase transition zones; see [] and [9].

The Navier-Stokes equations in one space dimension, written in Lagrangian

form, are

Tt - Uh 0

(1.1) ut + Ph - (Uh/x)h

t + (pu)h = (uuh/r)h + (Xehl/) h

Here h denotes the Lagrangian mass coordinate, t is time, r is specific

volume, u is velocity, p is pressure, 8 is temperature, & is energy desity per

unit mass, and U and X are the coefficients of viscosity and heat conduction,

respectively. - • + u2/2 , where e is the internal energy density per unit

-2-
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mass. We assume that T and 8 determine the thermodynamic state of the

material, and that e, p, and the entropy S are given by sufficiently smooth

equations of state e - e(T,8), p - p(T,e), S - S(r,O) . These functions are

related through the Gibbs relation

(1.2) 8 dS - de + p dr

The coefficients u and A may also depend smoothly on t and 8. The quantities

Ji, X, T, 8, and p are positive. For convenience, we shall denote the triple

(T, u, &) by U, and the thermodynamic state by Z, specified by the

pair (T,6) (or by (r,p), see assumption (1.10)).

Euler's equations are obtained from (1.1) by setting u - X - 0 . A shock

wave traveling at speed s is a weak solution of these equations of the form

U for h < st

(1.3) U(h,t) - + for h>t

The two end states must satisfy the Rankine-Hugoniot relations

0 - -slT+ -t _) - (u+ - u_)

(1.4) 0 = -s(u+ -u) + (p+ - p)

0 - -s(&+ - ) + (p+u+ - pu)

We call any solution (1.3) satisfying (1.4) a "simple jump solution", or

"jump". It is customary to reserve the term "shock" for jumps which satisfy

the entropy condition.IWhat determines a jump? The speed s may be determined up to sign from

any suitable pair of thermodynamic states Z+ and Z. by the relation

(1.5) 0 - s2 (T+ - T_) + (p+ - p_)

In our analysis it suffices to consider only back-facing shocks, for which

s < 0. (Particle paths in (1.1) are vertical.) Now u - u_ is

-3-
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determined. Imposing the third equation, we recall: The states Z+ and Z_

determine a simple jump solution with a < 0 if and only if the Hfugoniot

function vanishes:

H(Z,Z_) e - e + I/ p+p_(T+ -_) m 0

+ -p

Fixing Z0 , the set of states Z satisfying H(Z,Z0 ) - 0 is typically a curve,

called the Huqoniot curve with center Z0 in the (T,p) plane.

A shock layer for the jump (1.3) is a traveling wave solution U(h-st) of

(1.1) with U(E) + U, as C + * . Plugging in and integrating once, U(E)

must satisfy

0 --s - T ) - (u- %

Iau/T= -s(u- u + (p- p *)

VuE/t + AO/ - -s( - &) + pu- p u

The first equation determines u( ) from T(E), so we obtain

Ae,/T - -s(a - £ + (T - Tk)(p± + su)) B L(T,e)

(T1/6) M .(82(T - T ) + p - p ) M(T,6)

These equations yield an autonomous system of ODEs in the (T,B) plane. It is

clear that Z+ and Z_ are rest points for this system. A shock layer exists

for the jump (1.2) if and only if the system (1.5) admits a trajectory Z(E)

connecting Z_ to Z+, i.e., Z(E) Z* as C +

We remark that equations (1.6) are identical to those used by Gilbarg [2]

for the stationary shock layer in Eulerian form, if we introduce an eulerian

space variable x f fT[(n)dn and recognize that -s is the mass flux

pu - const , where o = 1/T is the density.

In order to motivate Liu's entropy condition for the jump (1.3) and

examine the implications of nonconvexity, we briefly consider the simple

-4-
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example of isothermal gas dynamics in Lagrangian form. The equations are

Tt - U h  0tm 0

ut + P(T)h = (h/T)h

" simple jump with speed a connecting (T_,u_) and (T+,u +) for v - 0 satisfies

0 - s2 (T+ - T-) + p(T+ ) - p(T_)

A shock profile (T,u)(E), with & - h-st, must satisfy (eliminating u)

(1.7) IJT /T M _-(sZ(T - T ) + p('T) - p(r )) M(T)

Assuming that p(T) is decreasing, but possibly nonconvex, any two states

T+, T_ determine a jump with speed s < 0. A shock layer exists for that jump

if and only if: sgn M(T) - sgn (T+ - T ) for T between T+ and T_

This is the "entropy condition" which selects those jumps which admit a shock

layer for these equations. The situation is pictured in Fig. 1, where the

phase portrait of (1.7) is indicated on the T axis of the graph of p(T).

Observe that since p is not convex, rarefaction shocks can exist admitting

shock layers, e.g. T_ - T 2 < T+ t T 3 * Also, a compressive jump need not

admit a shock layer, e.g. T- = '4 > T+ = T

P4 pi
M(T,P) = 0

P(T
TI T2 T3 T4, T

Figure 1. Shock profiles in isothermal gas dynamics

-5-
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For the nonisothermal guler's equations, we now state Liu's strict

entropy condition for a jump (1.3) determined by Z+' Z- with s < 0

the condition is that

sgn M(Z) - sgn(T+ - T_) for all Z - (T,p)

8(3) between Z+ and Z_ on the Hugoniot curve

with center Z+ (or with center Z.).

With s < 0, this condition simply means that the line M(T,p) -

82(T- r ) + p - p, - 0 should lie above (below) the Hugoniot curve between

Z and Z- if T- > T (T_ < T+) The restrictions we shall impose on the

equation of state imply that with some choice of center, the Hugoniot curve is

regular between Z+ and Z., so the condition s(E) is well defined.

The restrictions we place on the equation of state are as follows:

(1.8) e6 (1,G) > 0

This means that heat conduction is a dissipative effect in (1.1) for X > 0.

(1.9) PT (TS) B dp/dT S const < 0

Euler's equations are strictly hyperbolic just when this holds.

(1.10) p(T,e) > 0

Thus the map (T,O) + (T,p(T,e)) is one to one on the domain of states a 8

The image of this map we designate 9 . We assumeP

(1.11) 9 is convex.1 p

These restrictions above are the same as those imposed by Gilbarg [2],

following Weyl [111], except that we omit the convexity assumption

d2p/dT2S const > 0 •

Under these restrictions, the Hugoniot curve is described by the

following. The proof is deferred to 12.

Proposition 1. Fix Z. (T0,P0 ) in Q . Then in the region T ) T0 the set
p

Z C 0 P H(Z,Z 0) - 0 1 consists solely of a monotonically decreasing curve

-6-
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p - h0 (T) passing through ZO .

We now describe our positive results concerning existence and uniqueness

of the shook layer for any given u, X, positive functions of T and 8.

Theorem 1. Assume (1.8)-(l.11). Also assume

(1.12) e (TA) 0 0 in S1

Suppose Z+, Z. in a) satisfy H(Z+,Z-) - 0 and (1.13) below. Then the simple
e

jump solution determined by Z+, Z end a < 0 from (1.5) admits a unique shock

layer if and only if the strict entropy condition s(3) is satisfied.

In the absence of (1.12), oomressive shocks (C- > T+ if s < 0) always

admit a shock layer:

Theorem 2. Assume (1.8)-(1.11). Suppose Z+, Z_ in 5) satisfy H(Z+,Z_) - 0

and (1.13) below, and suppose T_ > T+. Then the conclusion of Theorem 1

holds.

Weak shocks (JU+ - U_1 small) always admit a shock layer, under the most

basic of restrictions:

Theorem 3. Assume only (1.8),(1.9). Fix Z0 in 00" Then if Z+ and Z_ are

sufficiently close to Z and satisfy K(Z+,Z_) - 0 , the simple junp solution

determined by Z+, Z with s C 0 admits a shock layer (unique in a neighborhood

of Z0 ) if and only if the strict entropy condition s(E) is satisfied.

Theorem 3 is proved in [7] as a consequence of a general theorem on

singular viscosity matrices for system of conservation laws. The proof of

Theorems I and 2 is extremely similar to that of Gilbarg [21, and will be

presented briefly in 12. The extra condition imposed is a technical "domain"

condition,

(1.13) The line segment r ,T.x{O lies in 9 ,

neee.d so cert'n constructions are valid. (A similar assumption is made

-1 II -7-
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tacitly by Gilbarg.)

Our main result is a "couterexample":

Theorem 4. There exists an equation of state, defined in a domain OV

satisfying (1.8)-(1.11), and a pair of states Z+, Z which satisfy

H(Z+,Z-) - 0 and (1.13), such that the jump solution determined by Z+, Z_

and s < 0 satisfies the strict entropy condition s(E), but

- if X/p is sufficiently large, no corresponding shock layer exists,

- if X/Iz is sufficiently small, a unique shock layer exists.

From Theorem 2, this shock must be a rarefaction shock, T_ < T+ • We

stress, however, that Liu's result shows that a purely viscous shock layer

(with X - 0) exists, so entropy does increase across this shock, i.e.,

S(Z_) < S(Z+) .

This equation of state must violate (1.12) and the convexity condition.

However, the following conditions can be satisfied:

(1.14) e T(T,P) 0

(1.15) pT (TA) < 0

Condition (1.14) (along with (1.8)-(1.10), basically) was imposed by Liu (5]

to guarantee that the Riemann problem for gas dynamics has a unique solution

globally. Condition (1.15), along with (1.8), implies (1.9) and implies that

constant states for the Navier-Stokes equations are linearly stable (see [6],

[7]).

Finally, we briefly remark that although we have presented this example

in the context of gas dynamics, it is valid in the context of ID thermovisco-

elasticity as well. One may redefine the equation of state outside a compact

4domain so that the restrictions imposed by Dafermos El] are satisfied. The

key step is to appropriately specify the function pe(Te) globally (e.g. see

section 3).

~-8-
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12. Existence and uniqueness of the shock layer

We begin this section by gathering several useful thermodynamic

calculations, then we proceed to prove Theorems 1 and 2. Take T and 9 as

independent variables. Using (1.2), and equating mixed partials of S(T,B),

we obtain the standard identities

(2.1) 0 S9 (x,e) - e0 (r,6)

(2.2) e S (T,0) - e (T,0) + p = Op0 (T,O)

Considering T and p independent, we get

(2.3) 9 Sp (t,p) - e p(T,p) - e9 (T,B) 9p(T,p)

(2.4) S T(t,p) - e T(T,p) + p

and also

(2.5) pT(TS) = -ST(',p) / S p(T,p)

The assumptions (1.8)-(1.10) imply that the derivatives

Se(T,O), ST (t,), Sp (',p) and S (T,p) are all positive.

The following identity helps relate the entropy condition s(E) to the

ODEs (1.6).

Proposition 2. Fix Z+ and Z- with H(Z+,Z_) = 0. Let s < 0 satisfy (1.5).

Now L(T,B) and M(T,O) in (1.6) are determined, and for any Z - (T,6) we have

(2.6) H(Z,Z ) -L(Z) + /JT - T )(-sM)(Z)

It follows that

H(Z,Z) - H(Z,z) - I/iT - T+)(-sM)(Z)
++

Proof. H(Z,Z ) + L(Z)/s - Jl/u2
- u2 ) + (T- T 'IOlip + p - p+ su)

(T - TC )O/v(u + u±) + /I p - 5 SO V T )(-sM)(Z)

(Recall that u - u. -s(T - T ).I*
Proof of Proposition 1. With Z0 fixed, H(Z,Z0 ) is a function of Z - (r,p).

Using (2.2), HT(T,p ) - as (T,p) +'/ p0 - P) > 0 if p < p., and

-9-
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H(R,p) - eP(T,p) +/p - TO) > 0 if T )T o

It in convenient now to calculate

(2.7) ILe(re) - ee(r.e)-IL me) 1 epeVe) + sm(.,e)

(2.8) -se(Tie) - p4(r,e) -sat (r,9) - 82 + p (,e)

To get L , use Proposition 2 and (2.2).

Proof of Theorem 2. Let Z+, Z in e satisfy H(Z+,Z_) 0 0, (1.13), and

T_ > T+, and let a < 0 satisfy (1.5). Suppose first that the entropy

condition a(1) is satisfied. Our proof, like Gilbarg's, is based on an

analysis of the curves (L - 0) and (M - 0) which pass through Z+ and Z_.

Since L and H are positive, e is a given function of T along each of these

curves, e - I(T), 8 - m(T) respectively. We plaim that L(T) and m(T) are

defined for T + r T T and satisfy

i) L(T) < m(T) for T < T < T+

ii) V(T) ( 0 for T + T < T

Indeed, the set (M - 0) in 9 is a straight line segment, by (1.11). Pullingp

back to the (r,8) plane, M(T) is defined as described. Using Proposition 2,

the entropy condition s(E) implies that between Z+ and Z_ on the Hugoniot

curve with center Z+, L(Z > 0 > M(Z). Property i) follows. Property ii)

follows from i) using (2.7), since M 4 0 on the curve (L = 0). The "domain"

condition (.13), with (1.11), now implies X(T) is defined as described.

The existence of the shock layer follows from i), ii) (see Fig. 2).

SThe region R - {(T,B)l T + < T < T_ and I(T) < e < M(T) I is negatively

invariant under the flow induced by (1.6). Also, any trajectory Z(C) which

starts in R must be monotone ( 8 increasing, T decreasing) and tend to Z_ as

t + -M.

Consider a vertical line segment crossing R,

( T - ,L(T) < e < M(U ) , + < T0  < T_

-10-
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z +
T I T

LuO

Figure 2. Phase portrait of 1.6) for a compressive shock

A point on this segment may belong to one of three disjoint classes% the

forward trajectory of (1.6) starting at the point may

a) exit the region R on the curve (L - 0)

b) exit the region R on the curve (K - 0)

c) not exit the region R

In the last case, the trajectory must tend toward Z+ by monotonicity. The

first two classes are open (continuity) and nonempty (endpoints). The third

class is therefore also nonempty by connectedness, so some shock layer exists.

We turn to demonstrate the uniqueness of the shock layer. First we claim

4 that any trajectory of 1.6) joining Z+ and Z_ must lie entirely in the region

R. Indeed, no trajectory can approach Z+ within either of the regions (K < 0

and L < 0) or (M > 0 and L > 0). Also, the region

R, {((,8) 'r + and L > 0 or M > 0 1

is negatively invariant. So our claim holds.

The characteristic equation for 1.6) at the critical point Z+ always has

one positive and one nonpositive root:

-...
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14 KI/P e/Mn

(2.9 ) 0 . I I

. C2 - (MT/P + L0 /),)K + (1'(T) -U,(T+))M L /

The constant term is nonpositive. If it is zero, then KT > 0 * In general,

then, Z+ is a saddle point, and the uniqueness of the trajectory approaching

within R is easily established. In the degenerate case, one may construct a

one dimensional center-stable manifold in a neighborhood of Z+, locally

invariant under (1.6). A trajectory starting in this neighborhood which does

not lie in the given center-stable manifold must eventually (for E large)

leave any sufficiently small neighborhood of Z+ (see Kelley 3]). Therefore,

any two trajectories approaching Z+ within R must lie on the same curve.

We have established the existence and uniqueness of the shock layer when

T > T and the entropy condition s(E) is satisfied. If T > T+ but the

condition s(E) fails to hold, arguments similar to those above show that no

trajectory of (1.6) can connect Z_ to Z . Theorem 2 (and Theorem I for

compressive shocks) follows.

For a rarefaction shock Z+, Z_ with T_ < T+ , s < 0 , satisfying the

entropy condition s(E), the situation is as follows: L(Z) < 0 ( M(Z) for Z

between Z+ and Z_ on the Hugoniot curve with center Z_. Hence M(T) < tT)

for T < T < T+ I f 1/(t) < 0, then the region

R - {(T,e)l T < t < T+ and m(T) < 0 < X(T) }

is negatively invariant and the existence and uniqueness of a trajectory

connecting Z_ to Z+ is established as in the compressive case above. However,

it no longer folows from (2.7) that V(T) < 0 if I(T) > 3(T) * But we may

calculate, using (2.2),

-!L (T,) - e(T,e) + p(r,o) + sm(T,e)
-8 T T

e • (T,O) + p(T,m(r))
T

So the condition eT (,e) P 0 ensures that I'(') < 0 for all T, and

-12-
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Theorem 1 follows.

We conclude this section by remarking that it is easy to use Propositon

2, (2.7) and (2.8) to show that a simple jump solution admits a purely viscous

shock layer (X - 0) if and only if the entropy condition s(g) is satisfied.

This recovers the result of Liu (41, under the assumptions 11.8)-(1.10), which

are rather different than those Liu imposed (see (5]).

I

I

4

-13-
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|3. A shock without a shock layer

In this section we construct explicitly an equation of state satisfying

assumptions (1.8)-(1.10), and (1.14), (1.15), defined in a suitable region of

the (T,e) plane, but violating the restriction e (T,O) ; 0, such that a (large

amplitude) rarefaction shock exists, satisfying the entropy condition s(),

for which no shock layer exists if a/p is sufficiently large. The shock layer

does exist if X/P is small, and we stress that entropy does increase across

this shock, i.e., S(Z_) < S(Z ) with a < 0

Our object is to construct Fig. 3, representing the phase portrait for

(1.6). The idea is that if X/Ia is large, the vector field (TM/U, TL/X) for

(1.6) is nearly horizontal, and a trajectory leaving Z0 must hit the "hump" in

the curve (M - 0). Then it is easy to show that no trajectory connects Z_ to

Z+ . But using (2.6) and (2.7), one may easily check that the entropy

condition s(E) is satisfied for the jump determined by Z.+, Z, and s < 0.

ZO;

*-!

M

IT
Figure 3. A shock without a profile

-14-
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V

our procedure is to specify selected data (in particular the curve

0 - n(T) on which N - 0), using thermodynamic identities to consistently

specify the equation of state. Fix Z0 M (T 0 ,0 ) in the first quadrant. We

shall specify the curve (M - 0) as 0 - a(T), where m(r) satisfies conditions

(ml)-(m3) below (so its graph appears as in Fig. 3). Later, we will specify

p0 W P(or01 e 0 ) and s. Then we will know p along the curve (K - 0):

(3.1) pM(r) R p(T,m(T)) - pO - 2 (T - 1 )

For all (T,e) , we specify that

1
(3.2) 80 (T,O) e (T,O) + p(r,O) -

so that p I/e2 , and (1.10) holds. The equation of state for p is now

determined:

(3.3) p(r,B) - pM(r) + (1/m(r) - 1/)

Our construction will be complete once e0 (.,e) is determined. For then,

since p0 s, and m(r) determine p, e T(T,B) is known from (3.2). Then e

and e8 determine e(r,O), and s(T,e) is determined from the Gibbs relation

(1.2). ((3.2) ensures that the expression obtained for dS can be integrated.)

We must have (e ) - (eT) 6 -2/0 2 , so e0 has the form

ea(T,8) - ee(t oi) - 2(r - T0o)/02

We specify e6 (T 0,B) so that (1.8) holds in the region of interest. It

suffices to define

e(To0) - BOTle-2 + 02)
60 0 0

so that e6 (r,O) > 0 for e > 0, 0 < T < 40r 0 • An explicit formula for

e(T,e) is

. e(T,e) - 80To( - - )0 - f 1/m(T) dTI(3.4) to0

+ ( r - r )(2/e - p0 +/ 2 (r -00 .2 T-T 0 )+e0

We must now show that m(r), p0 and a may be specified so that Pig. 3 is

S-15-
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valid and 1.9) holds, along with 1.11), (1.14), (1.15). ObservO that

-sM(Te) in independent of pO and a:

-sM(T,e) = p(T,e) - p (T) - 1/m(T) - 1/0

Using (2.7), we must have

L(T,8) - e - (-s)M - 2/8 - 1/m(T)
-8ST

Requiring L(T0,805 - 0 , the quantity (1/-s)L(T,e) is independent of p0 and s0

(recall (1/-s)IL. ee ):
T

(3.5) 1L(T,) = SOT (0 - 8-2 )8 + 2(T - T0 - f 1/m(T) dT
-s 0 T0

We will use this formula to manipulate the curve (L - 0) by choice of

M(T) . Set Tk = (k+1)T 0 . We shall show that m(T) can be chosen so that:

i) L(T,m(T)) > 0 for T - TO > 0 small

(3.6) ii) L(T, 0+CI) < 0 for T3 < T < T5  for some eI > 0

while 90 < m(T) e 10+( I  for T4 < T < T5

iii) L(T,m(T)) > 0 for T large

We ask that m(T) be defined and smooth for 1/f0 < T < 40T0 , and satisfy

conditions (ml)-(m3) below:

(ml) m(T 0 ) 0 00 and m'(T 0 0

Since (1/-S)L T(T ,80) - 1/80 > 0 , (3.6i) follows.

(m2) m'(T) < 0 for T < T < T I

M(T) - 80/6 for T < T < T
0 13

m'(T) > 0 for < T < T4  and

max M(T) = 60 +CI , 1  > 0 small, with M(T4 ) " 0  M(T 5)

To verify (3.6ii), we estimate, for T3 < T < T5

1L(T,e0+C cc + 2(T5 - T0 )/e 0 - (T3 - T 1)6/e0

- 1 - 2T0 /e 0 < 0 if C1 is small.



(3) a(T) - B0 for T > T5

To verify (3.6iii), we estimate, for T > T6

1
_-L(T,80 ) > 2(T - T0)/80 - ((T4-T0)6/80 + (T )/00 )

W ((T - T4) - 4T4 - T0))/90 > 0 if r > T20

Now: Since (1/-s)L0(T,e) ) c > 0 for /Ir0 < T < T40 , the set (L - 0)

is a curve 9 - X(T) which is bounded above. We claim that L(t) is defined for

T 4 T • T5  Indeed, L(T,8 ) < 0 for T < r< 5 and since LTe0/6) > 00 5 035T 0
for T < x3 (use (2.7) with M 4 0), we have L(r,e /6) < 0 for T < T3

3 ~03
so X(T) is bounded below. In fact, we have shown that U(T) > M(T)

for 1 <  T < T5 "

We now set

T+ W mint T1 ( t T5 and £(T) -M(r)

- = max( T I T 1 and X(T) M(T)

Then T5 < T+ < T20 ' and since m'(T 0 0 > 1'(0 ), T0 < t < T We set

0+ M m(T+),_ - m(T_), fixing Z+ and Z-, and completing the construction of

Fig. 3.

It remains to choose Po and s so that p(T,e) > 0 and (1.9), (1.14),

(1.15) hold in a suitable domain. But

(3.7) PT(T,S) - pT(TO) - epe(Te)2/e6 (Te)

(One calculates p(r,S(r,8)) and 8 (T,S) - -S /S(T,8) and uses (2.1),(2.2).)

So (1.15) implies (1.9). But from (3.2),

(3.8) p (T,e) - -s2 + (1/m(T))V

So we can ensure that pT (1,8) 4 0 for 0 < T < T40 if we choose 92 sufficiently

large.

As we choose P0 we seek to fix the domain of states SQ in the (T,p)~p

plane so that fl is convex, p > 0 in fl , (1.14) holds, and, pulled back to the
P p(T,e) plane, the domain fl contains (say) the half strip

i8
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((i,0)I 0 < T < T , e > 00 /10 ) which contains all our constructions. It

suffices to choose 0 of the formP

S((,p)I 0 < < 4 and p - p + s 2 ( T- >) -10/0 1p40 0 0 0

with

(3.9) Po W 40 082 + 10/80

To check (1.14), compute

(TrT,p) - e (TIO,) + el(T,e)(-p (T,e)/pe(T,))

Using (3.2) and (3.8) one may verify that e (T,p) ) 0 in Q if 82 is
T p

sufficiently large.

Now the equation of state is completely specified, and (1.8)-(1.15) hold

except for (1.12). We have already noted that the entropy condition s(E)

holds, since I(T) > m(T) for T < T < T•

The penultimate stage of our analysis is to show that for X/11

sufficiently large, there is a trajectory of (1.6) leaving z0 and intersecting

the curve (M - 0) before the "hump". Since m'(T 0) > (T 0), Z0 is a saddle

point for (1.6) (see (2.9)). If K is the positive characteristic value for

(1.6) at Z0, the the characteristic vector (K - TL0/XTLT/A) may be shown to

have positive components. Let Z() be the solution leaving Z0 along this

vector. So long as Z(&) remains above the curve (M = 0), T is increasing on

Z(t) and we may write 6 - z(x) along Z(&). Then

dz - L(T,z(T))
dT XM(T,z(T))

It is clear that z(T) is defined and increasing for T0 < T < T., where

T* M min( T I T > T 0  and L(T, 0 ) - 0 )}I Note that T < *3 We will "channel" the curve z(T) under the curve (L - 0)

by using a thin box with a corner cut out: Define

Rh - (T0 , 3 )x(O0-C 2 ,%+e) (T0 ,T )x(8 0 -e 2 ,80 /i 1 )

Here £2 > 0 is chosen so that Rh is contained in the region (M > 0). Now, the

4 -18-



trajectory Z (CF) Imst enter R* on the cut-out pat of the boundary with

8 800 i.e., it must enter at a point (x,9 41:I for T 0 < 14 or at a

point (T06 for 8 < 8 4 0 40/

Now sup IL/141 is fianite. If X/vi in suff iciently large in R, we may

obtain

dI I( in 1/F/( 3-T0 ), £2 (3 4)

so long as Z(C) is in R*. This implies that the trajectory VCF) must leave R'

on its right boundary, IT 3x vXOOC2 eI) hich is contained in the region

(L <0 and M > 0). Past this point, e decreases and T increases along Z(t),

so since M(T) acheives the value 8 +Ell Z(F) oust intersect the curve (N - 0)
0

at a point ( 19), vhere T 5 > T > T 3 > T_

We may nov easily construct a positively invariant region containing Z_.

and disjoint from Z+, so that no trajectory can connect Z_ to Z+. The region

is bounded on the right by the line T for 8 4 We (N < 0 here), from above

by the curve e - z(T) for T 0 < T (trajectories cannot cross), and by the

curve 0 - rinfl(T),M( )J for T 4 T (the vector fielda either points down, or

to the left at a point where V(T) < 0, as in 12). Our example is complete.
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