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e ABSTRACT

AFPOSR Grant No. AFOSR 820089 during the time period 1 February 1982
through 31 January 1983. The work covers several different areas of

This document contains fg;rrmatian on the research accomplished under

optical computing, as well as some work on digital processing of
optically obtained images. The primary emphasis of the work is om the
possible applications of optics to intercomnections in integrated
circuit technology. Other areas of effort include the diagonaligzation
and inversion of circulent matrices using coherent optics, the division
of complex wavefronts using four-wave mixing, and the suppression of
speckle in coherently formed images. Publications during the last year
arising out of work supported by the grant are also detailed.
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I. INTRODUCTION

Thia report covers the work performed on AFOSR grant No. 82-0089
during the time period 1 Pebruary 1981 through 31 January 1982. It is
divided into six sections, the first of which is this Introduction.
Immediately following we summarize our current status of the project
aimed at inveatigating the applications of optics to the interconnection
problem in integrated circuit technology. Section III deals with the
results of our work on the use of coherent optical processing for the
diagonalization and inversion of circulant matrices. Section IV
discusses a new project started this year, namely one concerned with the
possibility of performing complex wavefront division using four-wave
mixing. Section V reports the early results of another new project, ome
aimed at suppressing speckle in coherently formed images by means of
digital image processing techniques. Finally, section VI details the
publications and meeting presentations arising out of work eupported by

the grant during the past grent year.
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I1. OPTICAL INTERCONNECTIONS FOR VISI

As integrated circuit techrology advances, device sizes are being
reduced at the same time that overall chip sizes increase. The increased
complexity of such chipe places ever increasing demands on interconnect
technology. The RC time delays and IR voltage drops of conventional
aluminum and polycrystalline silicon interconnections may ultimately
eclipse the gains anticipated in device performance.

This project is concerned with the possibility of using optical
imaging interconnections to overcome some of the problems imposed by
current interconnect technology. The substitution of optical waveguides
for metallic intercomnection lines could potentially reduce the effects
of RC time delays and IR voltage drops now experienced. However, our
goal is to evaluate the feesibility of using optical interconnects that
rise above the chip, rather than simply using waveguides to mimick the
quasi-~planar topology of conventional interconnections. We envision the
use of holographic optical elements, either transmissive or reflective,
to provide a multitude of non-interfering, efficient parallel communica-
tion channels, either into a chip from the outside world or between two
chips. Eventually the problem of providing interconnects within a single
chip would also be of interest. Since the particular interconnect
pattern achieved is determined by the holographic optical element used,
there exiats the tantalizing possibility of dynamically changing the
interconnect pattern to meet the current needs of the processor
performing the computations on the chip.

Of the various problems that could be tackled, that of communicating
by means of optics from the outside world into a chip appears to be the
most amenable to current technological solution. For such probleams,
there need be no flow of optical information out of the chip, and hence
the difficult problem of providing on-chip optical sources or modulators
is avoided. Considerable time was wasted in the early part of this
project in attempting to find ways to integrate emall 1iquid crystal
light modulators on a silicon chip. It was finally concluded that,
while the goal was probably achievable with considerable work, the speed




e Ko e s ke o ——

TR ——

L 4]

of the resulting modulators would be s0 slow that there would be little
interest in the end result.

Providing detectors on the chip poases no fundamental problem. As the
complexity of chips grows, the needs for connections into the chip also
grows. Yet current pin-connecting approaches are generally limited to
providing on the order of 100 connectiona to the outside world. The
success of optics in meeting these needs will depend critically on the
size and performance of the detectors that can be realized on the chip,
and on the stringent positioning tolerances between the imaging element
and the chip.

Our work on the imaging interconnect problem has three separate
aspects. One deals with the optical issues associated with the
interconnect devices (holograms), and the second with the on-chip photo~
detectors that provide the means for inputting data. The third consists
of a continuing search for algorithms and specific problems that demand
input of large amounts of data in parallel (while requiring rather
smaller output capability). A fourth aspect, that of finding ways to
place optical sources on chips, is viewed as a longer-range goal and is
under study in the Integrated Circuits Laboratory under separate
support. It should be mentioned that some experts in this field feel
that in the long term a solution to this difficult device problem will
be found, possibly by using a buffer material (such as germanium)
between silicon and gallium arsenide to provide adequate matching of the
lattice dimensions.

It is attractive, for reasons of cost and simplicity, to consider
light-emitting diodes (LED's) as prime candidates for the modulated
sources that will be used for the optical communication channels into
the chip. However, the spectral purity of 1ED's is far poorer than that
of lasing diodes, and therefore some understanding of the resolution of
holographic opticnl elements when used with LED sources must be gained.
As a goal towvards this end, a system has been under construction which

we hope will provide a test bed for answering questions of this kind.
Also to be gained from these experiments is knovledge about the




scattering of light by the holographic optical elements and by the
silicon chip itself. A number of GaAsP unbonded LED's were obtained from
Hewlett Packard, and mounted in an array format on a DIP package.
: Several encapsulating materials are being examined to determine which
RN ' will minimize light scatiering and beam distortion and provide environ-
G mental protection. Hewlett Packard also supplied a number of unbonded
J silicon photodetectors of the type used in electro-optic couplers. These
! have also been mounted in DIP packages and will be calibrated and used

to test S/N and response threshold levels. A Fairchild I-scan CCD line
E scanner will be used to monitor images in the hologram image plane.
Initially, transmission and reflection type holograms will be prepared
using conventional sources, geometries and films. Later, experiments
will be conducted with imege plane holographic geometries and dichro-
mated gelatin recording materials. These systems have promising white-
light reconstruction and high diffraction efficiency characteristics. i

Preparations for these experiments have now been largely completed
and the experiments themselves are anticipated to be under way in the
very near future. In ithe meantime the problem of integrating
photodetectors onto the chip will be under study in parallel. Initial
efforts in this regard will be aimed at studying fundamental limits to
the sige, speed and sensiiivity of these devices. Our approach is to
identify the problems that ere anticipated when attempting communication
into a chip, and to gather the information necessary to assess the
seriousness Of these problems in a methodical way. We intend to focus
attention on fundamental issues, such as the radiometry of the problem,
t ~ which determines the available light power at the detectors, and the

fundamental limits to detector sige and sensitivity.
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Finally ve mention a new concept that has arisen during the past
grant year. Consider a single source of information that must de
supplied to & number of sites on a chip. Further suppose that the
algorithm being realized on the chip requires that bursts of information
be sent to different sites on the chip (i.e. with different interconmnect

' patgorn-) ags a function of time. Such requircnent;s can be met in the
following way. A single high-apeed optical channel is to be fed into
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the chip, but it should be irnterconnected to different sets of locations
on the chip as a function of time. We can satisfy such a requirement by
use of an acousto-optic bean deflector, and a two-dimensional array of
holographic optical elements, each providing a different interconnect
pattern. The hologram funztions much as a holographic memory. To
address a particular set of desired points on the chip, the acousto-
optic deflector sends the beam to the particular location on the
hologram; the image read out is a series 6f'spbts at the desired loca-
tions on the chip, wvhere detectors convert the burst of high-speed
optical modulation into electrical signals. The beam deflector then
sends the light to another hologram in the array, which then sends a new
set of light spots to presurably another set of detectors om the chip,

where the new burst of information 1s converted to electrical signals.

The concept described above appears to be a powerful one, but the
missing link at present is the lack of any well-defined problem or
‘ algorithm that requires this type of communication. Nonetheless, we
“ feel confident that such slgorithms can be found, and we will be
searching for examples during the coming grant year.
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III, COHERENT OPTICAL TECHRIQUES FOR DIAGONALIZATION AND INVERSION OF
CIBCULANT MATRICES.

For the past year we have been studying the possible use of coherent
optical systems for diagonalization and inversion of circulant matrices.
Circulant matrices are those for which each succeassive row is a simple
circular shift of the row avove by a single element. For example, in
the matrix A below, the nunbers 1,2,3, and 4 stand for four distinct

elenents; the ofganization of those elements in the circulant matrix is
as follows:
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A= (1)

'v.. A remarkable property of circulant matrices is that they are
diagonalized by the discrete Pourier transform (DFT), the resulting
diagonal elements being the complex eigenvalues of the original matrix.
Thus if the DFT matrix W is defined by (again illustrating with a 4x4 1

example)
1 1 1 1 ;
1
]
1 w w2 w3 ;
V= ( 2 )
1 wz w4 w6

where w = exp(-i2 5 /N), we have

A0 00

A-T‘AV*? A, 0 0 (3)
0 0 )‘30
0 0 O 14

where the )\ 's a.re the eigenvalues of A.

> R R

Before embarking on a nore detailed description of the work, it is
. porhipl wvorthwhile addressing the question why would anyone want to
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diagonalize circulant matrices, and why might coherent optics be a
useful approach in some cases. A great many signal processing problems
require the inversion of Toplitz correlation matrices. Toplitz matrices
have less structure than circulant matrices; they simply have the
property that each subdiagonal of the matrix has elements that are
identical. Such matrices nust be inverted in order to determine the
atructure of optimal linear filters, amd sguch inversions must be per-
formed frequently in environments where the statistics are changing with
time or are gradually becoming known as time progresses. Usually the
Toplitz matrices of concern are banded matrices; that is only the main
diagonal and a few subdiagonals have aignificant non-zero value. It can
be shown that a large banded Toplitz matrix can be inverted by firat
inverting a large circulant approximation to that matrix, followed by
inversion of a much smaller Toplitz matrix [Ref. 1]. Hence the availa-
bility of a fast optical technique for inverting large circulant
matrices, together with a digital processor that inverts a amall Toplits
matrix, allows large Toplitz matrices tu be inverted, hopefully with
greater apeed than afforded by an all-digital approach. Once a method
for diagonalizing circulant matricea optically is in hand, then metiods

exist for inverting such matrices, as we describe later.

There is an additional reason for interest in the problem of
inverting circulant matrices optically. In working with matrices,
rather than pictorial data, one is dealing with numbers, and the results
of the processing operation are likewise numbers. It therefore becomes
rather easy to assess the accuracy of the operations one is performing,
and to discover the primary sources of accuracy limitation in the sys-
tem. Thue we regard this project as providing a testbed within which
the sources of inaccuracy of coherent optical processors can be studied
in a more precise way than hse been possible before. Knowing the chief
reasons for inaccuracies allows one to focus attention on these sources
of error and to explore methods for reducing their effects. Thus infor-
mation discovered in this project may have wider application in the
field of coherent optical processing.

With this information as background, wve return to a more detailed
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discussion of the Optgéal problem. The task of diagonalizing a circulant
matrix using coherent optics can be performed if the normal continuous
two-dimensional Fourier transform so easily performed by such systems
can ve changed to a discrete Foxrier transform. Much of our work on this
project during the past year has been aimed at conversion to a discrete
Fourier transform. The method used fér this conversion is as follows.
The matrix to be diagonalized is entered into the coherent optical
system as an array of transmitting cells in a mask. The matrix is
repeated at least 3 by 3 times in the horizontal and vertical
directions, causing the spectrum to form a series of discrete spots.
Each of these spots represents a different complex eigenvalue of the
original matrix. Measurement of the intensities of these spots by
discrete elements of a detector array is equivalent t0 measurement of
the squared magnitudes of the eigenvalues of the matrix. If the full
cc uplex values are desired, then interferometry or heterodyne detection
nust be used to extract both amplitude and phase information.

A major component of our effort during the past year has been aimed
at an analysis of this method for performing the discrete Fourier trans-
form. The analysis examined the effects of the repetitions of the
matrix at the input plane, the finite cell sizes used to represent
matrix elements, and the finite sizes of the detector elements used to
measure the eigenvalues. It was discovered that the operation performed
by the two-dimensional system is not quite that indicated in Eq. (3)
above. The inverse operation associated with the first W matrix ia
missing in the optical realization, and as a consequence the locations
of the spots representing the eigenvalues of interest are not quite
those expected at the start. Nonetheless, the desired spots are present

and must simply be detected in the correct region of the output.

Figure 1 below shows the optical setup used for obtaining eigen-
values, a sketch of a typical matrix transparency introduced into the
system (for a 4x4 case), and a sketch of the resulting distribution of
light intensity in the focal plane of the lens. Note that there is are
a large number of light spots in the output. Thoae.repreeenting the
eigenvalues of interest are enclosed in a box.
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During the past year we have discovered a simple technique for
entering circulant matrices with complex elements into the system.
Matrices representing the viased real part and +the biased imaginary
part are interlaced with a diagonal spatial offset of one quarter of a
cell separation distance. The biases do not affect the output provided
the eigenvalues are detected in a subdiagonal that does not contain the
gero-frequency or "D.C." spot. The spatial offset of the real and
imeginary part matrices results in the complex addition of their
respective eigenvalues with a 90 degree phase shift. As a consequence
the eigenvalues of the complex matrix are detected. The techniqus is
illustrated in Figure 2.

The chief accuracy limitations we have encountered so far in
measuring eigenvalues by these methods have arisen from inaccuracies of
the optical maska representing the input matrices. These masks have
been written on a DICOMED plotter at the NASA Ames Research Center. It
was necessary for us first to calibrate the gray levels of the plotter.
Pollowing this, we discovered that the spot sizes written by the plotter
are a function of the gray level being written, and further calibration
had to be done. Finally we turned to having the masks fabricated in our
Integrated Circuits Laboratory, Preliminary results with one such mask
show that most of the limitations we were encountering with the
transparencies written with the DICOMED plotter are no longer present.
In our latest experiment, using only a 3x3 matrix, an accuracy of 1.5%
was obtained in the measured eigenvalues. This accuracy may be a
function of matrix size, a point to be explored in the future. We are
also obtaining some transparencies written with an electron beam litho-

graphy machine, and will be evaluating them for accuracy.

At this point it appears that our major problems in producing masks
that accurately represent the matrices of concern have been overcome,
and that future efforts can be more directly aimed at inaccuracies

arising within the coherent optical processing system itself.

Attention will be turning later this year away from the measurement
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of eigenvalues towards the inversion of circulant matrices. In order to
invert such matrices, it is necessary to record the complex eigenvalues
e in the focal plane holographically, and to produce a transparency with
‘; N complex amplitude transmitiance proportional to the reciprocal of the
3! complex fields associated with the original eigenvalues. A second
' discrete Fourier transforn will produce an output matrix that is the
inverse of the original mairix. The necessary nonlinearities can be
achieved with photographic film using the techniques that have been
developed in the past for coherent optical inverse filtering. We intend
to do our work with such methods, although our interest will also be
focused on possible technigues for performing the same operations in
real time without the use of photographic film. One such technique is
the subject of study in another project supported by this grant and
described in the section thet follows.

| A paper describing our past work on this project will be presented
[ at the forthcoming International Optical Computing Conference.

IV. WAVEFRONT DIVISION BY FOUR-WAVE MIXING

A new project begun durirg t}ie past year is aimed at using four-wave

mixing to divide one complex wavefront by another complex wavefront.
Past work by others has indicated that, under certain conditions, the

strength of the signal generated in a degenerate four-wave mixing

ol i A <

experiment is proportional o the contrast of the fringes between the

‘ object wave and one of the pump waves [Ref. 2]. Workers in holography
* have shown that under such conditions holograms can be used to perform a
division between a complex wavefront incident on the hologram during

reconstruction and the complex object wavefront stored in the hologram

[Ref. 3]. The idea carries over directly to four-wave mixing, in which

the vavefront incident in the probe beam will be divided by the wave-

front carried by one of the pump beams. The chief experimental

difficulty is that, with currently available materials (e.g. BSO) used

. in the way necessary to achieve division, the reflected wave of interest
is exiremely weak. This problem may be solved with the avaiiability of




crystals with higher efficiency and even gain, but for the moment the
ideas muat be tested with BSO.

A major effort has been mounted during the past year to develop the
ingtrumentation needed to messure the relevant properties of BSO at the
very low light levels anticipated. This work has involved the inter-
facing of our Reticon array o a microcompter through A/D converters in
auch & way that a large numter of measurements can be made, the results
digitized, and the measurements averaged to increase the signal to noise
ratio. At this point the interfacing is done, but the Reticon array
electronica are being repaired after a failure. It should not be too
long until we can take the reasurements needed to ascertain the dynamic
range over which wavefront division can be achieved.

In the meantime we have been developing ideas regarding possible
applications of real-time wavefront division to practical problems. One
fairly obvious application is %o inverse filtering or image deblurring,
and indeed the method could ve used for inversion of circulant matrices,

TS ST A i (3 N AT 1o ST A

and discussed in the previous section. We have also developed some
ideas about how to use the rethod in the testing of integrated circuit ’

masks for defects, but it is a bit t00 early to discuss these ideas at
) this point.

As part of our effort to become more familiar with the mathematics
of four-wave mixing, we undertook a study of what diffraction efficien-
cies could be achieved when the object beam contains a speckle pattern,
as it would for any diffuse object. Relevant work in holography waa
found [Ref. 4], but it was discovered that an important effect was left
out of that analysis that should have been included. This effect arises
from the random tilts of the wavefront (associated with the speckle
phenomenon) and the resulting random tilts of the fringes of the inter-
’ ference patterns in the crystal. These tilts affect the diffraction

efficiency that can be achieved. It was necessary to develop further
. information on the statistics of wavefront tilt in g speckle pattern.
Such an analyais was carried out, and based on it, a paper vaé submitted
. to the Journal of the Optical Society of America. This paper has now




been accepted and will appeer in the July issue. A copy is appended to
this report.

The major emphasia of our work in the immediate future will be aimed
at collecting the necessary experimental data that will tell us informa-
tion concerning the validity of the ideas about wavefront division.
After the limitations of the method are fully understood, attention will
be devoted to studies of poiential applications of the method.

V. STUDIES 0P SPECKLE SUPPRESSION ALGORITHMS

Another new effort initiated during the past year has been in the
area of speckle suppressior in coherently formed images. Speckle arises
whenever an object contairing surface roughness on the scale of the
illuminating wavelength is inaged. Speckle occurs in synthetic aperture
radar>1mages, in medical ultraesound images, and milimeter waves images,
for example. Any method that would suppress this disturbing noise
without while preserving resolution for the desired object information

would constitute a major cortribution.

Many methods for suppressing speckle have been studied in the past.
The most obvious method is simply %o blur the intensity distribution in
the image with some kind of linear filter, in which case not only is

speckle reduced, but also the desired portion of the image is blurred

with a consequent loss of resolution. The key question to be addressed
is whether there exists another approach to speckle suppression that
does better than simple dlurring in terms of the tradeoff between
speckle noise and resolution. Unfortunately, many recent studies of
speckle suppression have not compared the results obtained with those
achievadble by simple blurring, and therefore it is not fully possible to
Judge the merits of these technigues.

Ih beginning our work in this area, it was first necessary to
develop accurate methods for simulating the speckle phenonmenon
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digitally. The problem is far more difficult than might be imagined at
firat glance. Simple random phase coding of the object, followed by

low-pass filtering in the frequency domain, yields as serious problenm
with aliasing. Our approach has been to convolve a randomly phase-coded
object with an accurate representation of the amplitude spread function
of the imaging system, without resorting to discrete Fourier transforms
at all. Excellent results have been obtained for one dimensional
objects, and we are now extending the method to two dimensions.

The speckle suppression methods studied (so far primarily in ome
dimension) have been the following:

j 1. Simple blurring of the intensity image by a rectangular spread
; function,

1 2. Filtering of the image intensity with a linear Wiener filter
! designed for multiplicetive noise.

3. logarithmic or homomorphiz filtering, in which the logarithm of the
image intensity is smoothed with a rectangular point-spread
function, following which exponentiation of the image is performed.

4. Median filtering, in which the median of the image intensity values
within a moving rectangular window is chosen as the value of the
filtered image at each point. Several iterative passes through such
filter ultimately yield a so-called "root” image [Ref. 5], which
likewise has been studied as a possible restoration of the speckled
image.

5. Maximum entropy processing, an approach not studied before in
speckle suppression, and adapted to this problem by us. More
explanation of the method is presented below.

In all cases we used the mean-squared error betwveen the filtered
image and an "ideal” image as the criterion of goodness. For the
‘1 "1deq1“ image we considered both the intensity distribution in the

R e TP e )
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coherently formed image (obtained from a system with the same limiting
pupil) and the intensity distribution 61’ the incoherently formed image
(again through the same system). The results indicated that all
reatoration techniques produce images that are closer to the
incoherently formed image than to the speckle-free coherently formed
image.

The maximum entropy approach to speckle suppression is based on the
following ideas. The image intensity has a Fourier transform that is
identically equal to the deterministic autocorrelation function of the
fields incident on the pupil of the imaging system. Thus the problem of
estimating the image intensity in the presence of speckle can be
regarded as a kind of spectral estimation prodlem, in which we are
trying to estimate the power spectral density of a random process from
one sample function of that process. If we were able to exactly estimate
the power spectral density of the underlying random process, we would be
able to Fourier transform that result and obtain a speckle-free image
with full the resolution of the imaging system.

At low spatial frequencies (small separations in the pupil auto-
correlation process), a great deal of spatial dveraging is performed,
and the spectral density obtained from a single sample function (i.e. a
gingle speckled image) is very close to the value that would be obtained
from an average over an ensemble of images. However, at high spatial
frequencies relatively little spatial averaging occurs, and the power
spectrum associated with the single speckled image departs significantly
from that associated with en ensemble average. The maximum entropy
approach simply throws away the high spatial frequencies in the spec-
trum, retaining the low spatial frequencies, and attempts to estimate
the high-frequency portion of the spectrum from the low frequency por-
tion using the maximum entropy method. Details about thia method will
be presented in.a& future publication; for the present the above descrip-
tion should suffice.

Our results to date indicate that the best restorations (best
meaning least m'ean-squared error) are obtained with a linear Wiener
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filter based on the multiplicative model of speckle. Second in perfor-
mance is the maximum entropy method. A very close third is simple
linear averaging with a rectangular window. Rather far behind in
performance are both homomorphic filtering and median filtering.

Criticisme that can be leveled at these results are two-fold.
| First, the results to date are one-dimensional, and the ordering of
_ ‘ performance could conceivably be different in two dimensions. Second,
only a limited set of objects have been studied, and the results may be
object-dependent. We believe that neither of the criticisms will turn
out to be valid, but further work is necessary to verify this belief.

The maximum entropy method used is a rather crude one, and we intend
to test other more sophisticated versions of this approach. The project
is ultimately a sufficiently large one that we intend to seek other

’ support to carry it on. Hopefully by Autumn of this year other support
f will be in hand. However, AFOSR will continue to receive credit for
? their initial support of the work, without which it could not have

begun.

VI. PAPERS PUBLISHED AND MEETING PRESENTATIONS

We summarige in this section the various publications and presenta-
tions made during the past year reporting on work supported by thias
' grant.

A. Papers Published

J.¥W. Goodman and Moon Song, "Performance limitations of an analog method
for solving simultaneous linear equations”, APPLIED OPTICS 21, 502~
506 (1982).

* K. Tur, K-C Chin, and J. W. Goodman, "When is speckle noise
multiplicative?”, APPLIED OPTICS 21, 1157-1159 (1982).
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J.¥. Goodman, Architectural development of optical data processing
systems" (invited), J. E. E. E. AUSTRALIA 2, 139-149 (1 982).

B. Papers Accepted for Publication

o E. Ochoa and J.W. Goodman, "Statistical distribution of Ray-directions
in a fully developed speckle pattern” (accepted for publication in
4 Je Opt. Soc. A.o)

C. Oral Presentations

J.¥. Goodman, "Architectural development of optical data processing
systems”, Conference on lasers and electro-optics, Phoenix, Arizona,
May, 1982 (invited).

| J.¥. Goodman, "Optical data processing, past, present and future”,
; . Conference on Electrooptics, Tokyo, Japan, December 1982 (invited).

Finally, the contributions of various individuals should be _
explicitly mentioned. Prof. L. Hesselink provided advice and encourag- H
ment for various graduate students involved with the grant. Dr. Moshe
Tur provided guidance for graduate students working on various problems

described above. Work on optical interconnections has been performed

1 primarily by Raymond Kostuk. Work on diagonalization and inversion of
' circulant matrices was performed by Q. Cao. Work on wavefront division
using four-wave mixing was performed by E. Ochoa, who was also partially i
’ supported by an IBM doctoral fellowship. Work on speckle suppression was
- performed by Rae-Hong Park.
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PIGURE CAPTIONS

1. (a) Optical setup for obiaining eigenvalues of circulant matrices.
(b) Sketch of the matrix 4ransparency.
(c) Sketch of the focal plane light distribution.

2. Method for encoding complex matrices.
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SUMMARY

foundation established by Abbe and ending with a discussion of new treunds.

of the field is also included.

1 INTRODUCTION

The historical development of optical data process-
ing architectures can be represented in the form of
a tree., Like a tree, the field has roots, a strong
truak, mejor branches that subdivide into smaller
limbs and new growth. In many cases the braaches
intertwine., In this paper we describe the major
structures of this tree and speculate about futyre
growth. The reader may wish to refer to fig. 1,
showing the structure of this tree, as we proceed
through the material that follows. The picture
presented is a personal and subjective one, as it
wust be in sny evaluation of past developments and
speculation about the future yet to come.

2 THE ROOTS AND THE TRUNK

The lower roots of the optical data processiuog tree
are undoubtedly the work of E. Abbe in the late
19ch century (1]. Abbe recognised that coherent
optical iwaging systems accept snd reject various
grating structures associsted with an object. He
thereby introduced the notion that such systems act
as spatial filters, although this term was uot
used. The upper roots of the tree are perhaps best
attcibuted to F. Zernike, vhose invention of the
phase contrast microscope (2] provides the most
ressrkeble early example of a successful attewpt to
manipulate the spatial spectrum of a coherent
object for useful purposes.

The lower trunk of the tree is the work of Marechal
[3), Tsujivchi [4), O'Neill [5), Lohmann (6], and
others, who vere among the first to epply coherent
optics to optical data processing problems, includ-

_ing imsge dedlurring and extraction of two dimen-

sional signals from noise. The upper truak of the
tree is the work of Cutrons, Leith, Palermo and
Porcello [7] at the University of Michigan, vho
first emphasised the generality of optical pro-
cessors and outlined a multitude of methods for
putting such systems to use in the field of radar
signal processing.

In the early 1960's the tree forked into several
branches. We will trace the development of these
drenches in the following sections.

Invited paper submitted.to The Institution
of Radio and Rlectronics Engineers Australia
on 30 March 1982.

Jowmel of Electrical and Electronics Engineering, Ausrralia — IE Aust. & IREE Aust., Vol. 2, No. 3

APPENDIX 1

Architectural Development of Optical Data Processing Systems

J. W. GOODMAN

The architectural development of optical data processing systems is traced, beginning with the

Some speculation on the future
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optical data processing.
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3 THE SYNTHETIC APERTURE RADAR BRANCH

One of the first and wost important branches of the
optical data processing tree is devoted entirely to
the processing of signals collected by synthetic
aperture radars.

As shown in fig. 2 (a), an aircraft carrying a rader
transmitter and receiver flies a straight-line path
over terrain of interest. Radar pulses a: . trens-
mitted normal to the flight path and the returning

)
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echoes are mixed with & highly stable local
oscillator in the radsr receiver. A point
scattecer on the ground returns a series of echoes
as the sircraft flies past. Figure 2 (b) shows a
typical record of the returned signal from two
point scatterers at different ranges, as recorded
in the asivcraft. It is assumed that the radar
transmits short pulses (although the use of longer
“chirp" pulses is also pernitted). Range inform-
ation, plotted vertically, is obtained by pulse
echo timing, while azimuth information, plotted
horizontally, records the complex amplitudes of the
fields received from scatterers at each range from
the flight path. PFrom this data it is desired to
form an image of the terrain reflectivity. Note
that the record from a single scatterer takes the
form of a one~dimensional zone plate, wvith a focal
leagth that depends on the distance of the scatter
from the flight path.

FLIGHT
PATH

7
]

AREA
COVERED BY
THE ANTENNA

(a)

AZIMUTH ————————

RANGE

(L)

(a) Synthetic aperture rasdar date
collection. (b) Record obtained for
two scatterers.

Figure 2

When short pulses are used, the image in the range
direction lies at the film on which the dats was
recorded. However, due to the dependence of the
sone-plate focal leagths on renge, the szimuth
structure of the image lies in a tilted plane
behind the film, as shown in fig. 3. The purpose
of the optical processor is to bring the range and
szimuth images into coincidence, as can be accon-
plished by means of an anamorphic optical system.
An esrly version of such a processor (8] used &
conicsl lens at the film plane to wove the szimuth
isage to infinity, a cylindrical lens to the right
of the film to wove the range imege to infinity and
& spherical lens further to the right to dring the
two infinitely distent images bdack to coincidence
(see fig. 4). Rowever, the image so-formed has a
magnification that is range dependent and therefore
an output elit was required. As the input datas
£ilm and the output recording film are moved in
syachronism, an image of the reflectivity of the
terrain is recorded.

el |anamorPHC
<« OPTICAL
\ SYSTEM
N FINAL
/Av’ IMAGE
AZIMUTH
IMAGE
Figure 3 Rsnge and azimuth image locations.
Y IN RICAI. SPHER!CAL
COeNs  "lew NS sur
-
v
IMAGE
Pt'kxs PLANE
Figure 4 An early optical system for processig i

synthetic aperture radar data. Note
the output slit.

An improved optical system, called the tilted plane
processor, was described in 1972 by Kozma, Leith and
Massey [9]. As shown in fig. 5, an anaworphic
telescope system is used, together with a tilted
input plane and & tilted output plane, to bring the
range and azimuth images planes into coincidence
with a magnification that is no longer range
dependent. The need for the output slit is thus
eliminated and significaently better processor
performance is obtained.

The tilted plane processor remains today one of the
wost sophisticated processors in the entire field of
optical data proceasing. It has demonstrated a
continuing usefulness, even in the face of improved
capability of digital processing systems.

TILTED
INPUT PLANE

TILTED
OUTPUT PLANE

ANAMORPHIC
TELESCOPE
A2IMUTH RANGE ouTeUT
IMAGE IMAGE MAGE
Figure § The tilted plane processor. Note the

absence of an output slie.

4 THE OPTICAL PATTERN RECOGNITION BRANCH

A second major dranch of the tree grew out of the
potential application of coherent optical systems to
pattern recognition problems. The origins of this
branch lie in the work of Vander Lugt [10) inl964,
wvho originated snd demonstrated the first highly
practical method for generating complex matched

Tpuroma) of Floetviast,amd Blasamentont 1+ oo
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filters for two~dimensional objects. The optical
filtering system is the standard one shown in fig.
6, in which input is introduced by weans of filw or
a resl-tims light valve, the first lens Fourier
tcansforms the input fields, the filter placed in
the focal plane modifies the Fourier spectrun of
the object and the second lens inverse transforns
the aodified spectrum to produce a filtered output
imsge. Vander Lugt's important coatribution was
the origination of the idea of an interferowmetric~
ally recorded {(or holographic) Fourier-plane
filter, vhich could control the complex amplitude
transmittance through the focal plane in an
extremely flexible way. 1In particular, a filter
can be generated that has as its amplitude traans-
wittance the complex conjugate of the Fourier
spectrus of an object from which the filter was
mede. Thus if a certain object o(x,y) has as its
Fourier spectrum the complex function o(f,.f,). a
filter with smplitude transmittance

tlx,y) = 0*(£y,fy) ($))

can be constructed. Such a filter is said to de
"matched" to the object o(x,y); it will produce a
bright output spot of light at any position wiere
the particular object 0(x,y) is present in the
input field. The Vander Lugt filter has played an
important role in the development of optical
satched filtering approaches to pattern
recognition.

et ot oo f fr § oo =

SOURCE INPUT FILTER ouTPUT

Figure 6 Standard coherent optical processing

system,

While the ides of the interferometrically generated
filter for matched filtering applications has had
an extremely large intellectuai impact, it must be
said that after nearly 20 yesrs of research the
applications of such filters are disappointingly
limited. The difficulties lie not with the concept
of the interferometrically generated filter, but
vith the use of a matched filter. While the
sstched filter response is not affected by pure
translation of the position of the object at the
input (the output spot simply moves with the
input), such ¥ilters are exceedingly sensitive to
scale size and rotation of the object to be
recognised. That is, if a matched filter is
constructed for recognition of an object with one
particular scale size and rotetional orientation,
the filter will vsvally produce very little
response to that ssme object prasented at the input
with & different scale size or orientation.

Attempts to overcome this undesired sensitivity
have been clever dut not very successful. Ve
mention in particular the elegant Mellin filtering
approach of Casasent and Psaltis [11]. The input
data is presented to the processor in polar co-
ordinates, rather than rectangular coordinates. In
addition, the axis corresponding to radial position
is {atentionslly strected by a logarithmic spatial
distortion. As a coasequence, it can be showa that

AN CHUTL DL VLU critia s a va wis s avniie AL A 5 AVLLISTINT Y TYTL.OT Ty

the Pourier traasform of the radial structure of the
image is identical with a so-called Mellia transform
and the magnitude of the Mellin transform is
invariant under changes of scale size (wagnification
of the input). Simultaneously the optical system
Fourier transforms the angular structure of the
input. With suitable care to take account of edge
effects, rotation of the object is equivalent to
translatioa in the angular direction. Since matched
filters do respond properly to translated versions
of the structures to which they are matched, the
Mellin matched filter will respond properly to an
input object regardless of its scale size or its
angular rotation. Unfortunately the process of
degensitising the system to magnification and rotat-
ion has introduced a seasitivity that was not
present originally, namely to the position of the
object in the input field. The Mellin wmstched
filter will not respond properly to objects that
have & different position in the input field than
they had when the watched filter was constructed.
Casasent and Psaltis [12) solved this problem by
entering into the system only the power spectrum

of the input pattern, a quantity that is independent
of the position of that pattern. However, the
discarding of all phase information in the amplitude
spectrum results in a decrease in the ability to
discriminate between different patterns. As a
consequence the problem of simultaneous position-,
size-, and rotation-invariant optical pattern
recognition has not yet been solved in a fully
satisfactory way.

e f et
SOURCE INPUT DETECTOR
ARRAY
Figure 7 Diffraction pattern sampling system.

The “pattern recognition" branch has a sub-branch
that is particularly worthy of mention. We refer to
so-called "diffraction pattern sampling” systeuws
vhich base pattern recognition decisions on the
structure of the optically obtained Fourier trans-
form of an input {13]. The system is illustrated in
fig. 7. The input is presented to the system as &
transparency. The coherent optical system Fourier
transforms that input, displaying an inteasity
distribution across the back focel plane that is the
pover spectrum of the input. A detector consisting,
for example, of combinations of rings and wedges, is

" used to extract a reduced amount of data from the

power spectrum. The powers measured by these
detector elements are then digitised and digital
pattern vecognition algorithms are applied to
classify the input. This system has several prop-
erties that make it potentially very useful., First,
the detector in the focal plane performs an all-
important reduction of information, presenting the
digital system with data of reduced complexity but
still retaining eufficient i{nformation for the par-
ticular task at hand. Second, the system combines
optical and digital computations in an appropriate
vay, vith each system doing computations for which
it is particularly well suited. 1In spite of the
meny nice features to recommend this approach to
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this approach to pattera recognition, it has
received less use than it deserves. Perhaps the
incressing emphasis on robotics and computer vision
will lead to a renewal of interest in the
diffraction-pattern sampling approach.

5 THE ACOUSTO-OPTIC SIGNAL PROCESSING BRANCH

A third major branch of the optical data processing
tcee derives its strength from developaeats in
acousto-optic device technology. The branch begins
in the early [960's with the work Rosenchal [14],
Slobodin (15], and Arm, Lambert and Weissman [16)
on the use of acousto-optic devices for signal
processing. An excellent review of this area is
found in reference 17 and accompanying papers in
the same issue.

(a) Acousto-optic cell in the Rawan-
Nath regine. (b) Acousto-optic cell
in the Bragg regime.

- Figure 8

Before beginning & discussion of acousto-optic
signal processing architectures, it is perhaps
worthwhile to present a swall amount of background
on the scousto-optic devices themselves. Figure 8
fllusteates scousto-optic cells in two different
modes of operation. 1In both cases, an electrical
signal v(t), consisting of an emplitude sud phase
wodulated carrier,

vit) = A(t)cosl2vv ¢t + (0], (2)

is applied to an acousto-optic traasducer, which
launches an acoustic wave in the transparent medium
of the cell. The presence of the acoustic signal
results in local changes of the refractive index of
the cell, with the result that an optical signal
propagating across the sound beam experiences

spatially varying phase modulation. Figure 8 (a)
shows the so-called Raman-Nath regime of operation,
in which the cell thickness and spatial period of
the acoustic signal are such that the cell acts as a
“thin" phase grating, generating a multitude of
diffraction orders, each with a different propa~
gation angle and a different optical frequency; only
the zero and first order besms are shown. Figure 8
(b) shows the wore common Bragg regiwe, in which the
cell acts as a "thick” phase grating, with only one
or two diffrection orders of significant intens-
ity and requiring illumination of the cell at the
Bragg angle in order to produce a strong component
of diffracted light. Early attention to devices
opersting in the Raman-Nath regime soon turned to
devices operating in the Bragg vegime, where wider
bandwidths can be achieved.

This acousto-optic signal processing branch has had
remarkable growth in recent years. This growth has
been caused partially by advances in the technology
of acousto-optic cells and partially by developnent
of new architectures in which such cells can be
ugsed. The branch can be said to have forked into
two major sub-branches, space-integrating processors
and time-intergrating processors. Each of these
sub-branches has a complicated branching structure
and the growth is so dense that the two are at least
partially intertwined.

Most importent in the space-integrating lineage is
the Bragg-cell spectrum analyser, shown in fig. 9,
which has enjoyed a success in application that is
beginning to rival that of the tilted-plane pro-
cessor mentioned earlier (although the applications
are quite different). The Fourier transforming
properties of coherent optical systems areused here
to perform spectrum analysis of temporal signals,
the temporal signals being introduced into the
processor as spatial signals travelling through the
input acousto-optic cell, Coherent optical spectrum
analysers with approximately one Ghz of bandwidth
and tiwe~bandwidth products of approximately 1000
are now in use in & number of laboratories and the
number of lower perforsance systems is even more
plentiful. Integrated optic versions of such
spectrua analysers are also being constructed, based
on surface-acoustic-wave input of RF signals.

t ARRAY

| |
|
/ | DETECTOR

* INPUT

Pigure 9 Bragg spectrum anaslyser.

A second architecture ia this seme space~integrating
lineage is the space-integrating correlator, in
which one or even two Bragg cells may be uted to
perform correlation of two signale. A typical
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configuration is showm in fig. 10. The r.f. signal

vi(t), having complex envelope
Al(e) = | A(t) | expljo(e)], 3

where A(t) and $(t) are the amplitude and phase
wmodulations of vy(t), is to be correlated with a
second signal vz{x) (complex envelope B(x)) whichis
stored as a fixed reference function on a mask.
Using the optical system shown in the figure, the
curreat genersted by a point detector located oca
the optical axis in the output plane takes the form

-

ige) = | I A"(x=Vt) B(x) rect(x/W) dx | 2 (@)

R -
vhere V is the velocity of propagation of the
scoustic vave in the input cell, W is the length of
the illuminated region of the acoustic cell and
rect(x) is defined to be unity for ~§<x<} and zero
othervise. As the name implies, the correlation
iategrel is performed over space, vhile different
values of delay are reslised in time.

STORED
REFERENCE

DEECTOR

Figure 10 Space-integrating correlator.

The sub-braach representing time-integrating
correlators begins in 1972 with the patent of R.M.
Montgomery {18]. A more widely known developmentof
these ideas is found in the work of Sprague and
Koliopoulos [19] in 1976. Thie architecture, which
is illustrated in fig. 11, uses integration in time
for performing the correlation integral itself,
wvhile using space to represent various values of
delay. Ome of the signsls to be correlated, vy(t),
is input as a traveling acoustic wave in the first
cell, while the second signal is introduced as a
counterpropagating wave in the second cell. The
Bragg effect results in only & zero order and a
negative first order being transmitted by the first
cell, vhile each of these orders is split into a
zero order and a negative first order by the
second cell. The zero~order beams are both
blocked. The first-order beams, vhich are at the
same optical frequency, are both passed and are
allowed to interfere on a time integrating detector
array at the output, The spatial distribution of
time integrated intensity takés the form

Eg(x) = bias terws

+ Re {I A*(e=x/V)B(tex/V) dt}. (s
T .
wvhere T represents the total integration time
(limited in practice by bias build-up). Note that
for each different value of x, the integrated

fatensity is determined by the value of the cross-
correlation function, evaluated at time delay 2x/V.

The significance of the time-integration architect~

ure fs that the time-bandwidth product achieved is
80 longer constrained by the space-bandwidth

e

by the length of the time integration, which in turn
is limited by the dynamic range of the detector.

The space-bandwidth product of the processor limits
the range of achievable delays for vhich the cross- !
correlation function can be measured. i

wl(t)

/

1
—]
-

nit)

Pigure 11 Tiwe~-integrating correlator.

An alternate form of the time-integrating correl-
ator, as introduced by Kellman [20] and Turpin (21]
is shown in fig. 12. 1In this case one of the
signals is introduced as a time modulation of the
intensity of an LED or laser diode source, wvhile the
second signal is imtroduced via an acousto-optic
cell. The spatial filter shown in the focal plane
of the second lens blocks all but the plus first and
zero diffraction orders and shifts the phase of the
zero order by 90 degrees with respect to the first
order,

BRAGG

SOURCE CELL . 1
5
s
vy(t) T0R
DETEC
nit) SPATIAL ARRAY

FILTER -

Time-integrating correlator with a
wodulated source.

Figure 12

A close relative of the time-integrating correlator
is the triple product processor of Kellman {22],
vhich sllows the wore general class of two-
dimensional operations

Eg(x,y) = bias terms

. I vi(t) va(t~x/V) vy(t-y/V)de 6
T
to be performed.

The acousto-optic signal processing branch is an
extrewely healthy and vigorous one, with contianued
growth at the tips of the branches. There has
recently been & tendency for the space-integrating
and tiwe-integrating branches to grow dack together,
with processors being proposed that use doth types
of integration simultanecusly.

6 DISCRETE OPTICAL PROCESSORS

A relatively young vigorous branch of the architect-
ural tree represents activities in the development

of discrete optical processors. Such processors can
perform the discrete analogs of any continuocus-tine
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linear operations. The general type of operation
performed is a wmatrix-vector product of the form

y = A

where x is a length M input column vector, A is an
NxM matrix and y is a length N output column
vector. It should be emphasised that, while the
systems of concern are discrete (i.e., based on
discrete mathematics), they are none-the-less
analog systems and subject to the usual limitations
on accuracy and dynamic range typical of such
systems.

Early versions of optical matrix-vector multipliers
were based on the use of coherent light [23-5).
Incoherent implementations were a2lso devised
(26,27].

Howevar, a most significant advance in this area
came from the work of Bocker {28], Bromley [29) and
Monshan ¢t al [30], vho devised a method for
matrix-vector wmultiplication using a single
light-enitting diode (LED) source and a two dimens-
ional charge-coupled-device (CCD) detector array,
as illustrated in fig. 13. This development is
represented by an entire sub-brauch in our tree.

In explaining the basic operation of such s system,
ve assume for the moment that all elements of the
input vector x and the matrix A are non~negative
and real, so that they can be represented by light
intensities or intensity transmittances. The
elements of the input vector x are entered into the
system in time sequence as pulses with intensities
proportional to the desired values. The light from
each pulse diverges and falls on the entire matrix
wask, vhich contains an array of cells with intens-
ity transmittances proportional to the elements of
the desired matrix. The light transmitted by the
mask falls on the two-dimensional CCD detector.

The clocking of the CCD device is such that charges
accunulated in a given cell are transfered one
column to the right (i.e.,, out of the paper in the
figure) along a fixed row before the occurrence of
the next optical pulse and in this way the contri-~
butions of all pulses are accumulated, row by row.
For example, if the first pulse represeats the
vector element x), and hy,; represents the element
of the smatrix mask in the kth row and first column,
the charge deposited in the kth detector element of
the first column is proportional to

Qk(l) - hk'lxl'

This charge is clocked one column to the right and
the second pulse, with intensity proportional to
the vector element x3 is emitted. In the second
coluan and the kth row, the total accumulated
charge becomes

%D = by, %)+ Bgag%ae

After M pulses and M charge transfers, the total
charge sccumulated in the kech element of che last
column of the detector is :

. |
QM) =1 By px
L

vhich is precisely the kth element of the desired
output wector y. In principle, all N elements of
the output vector are available in parallel but
only after M cycles of the clock.

MATRIX CCcD
MASK OETECTOR

™
N
\Q&\}..
R
NAANRA 'y
NN
l‘.i‘\l
N \‘\l‘
==E=== == DIRECTION
.\.\\~|= OF CHARGE
\=\\=~ =~ TRAMSFER
‘\\§\=t= |
'y ==.|l|.
NN
it) X2
——e——— X1
ift) r] X3
M
t
Figure 13 Serial incoherent matrix-vector
wmultiplier.

A system of the type described above is capable of
wultiplying a matrix of approximstely 500 x 500
elements times a 500-length vector of non-negative
and real elements with clock rates of approximately
10MHZ.

Incoherent systems of this kind are not restricted
to performing operations involving only non-negative
and real quantities. It is possible to code any
bipolar real quantity and indeed any complex-valued
quantity in terms of two nonnegative and real quan-
tities, although in the latter case certsin bias
terms must be subtracted from the computed result
[31]. We do not dwell on the details here, it being
sufficient to say that fully complex operations can
be performed at the price of doudling the size of 1
the matrix and the length of the vectors.

A second sub-branch of the branch of discrete
optical processors is represented by a closely
related but faster incoherent discrete systea intra
duced by Goodman, Dias and Voody [32] in 1978. 1In
this case, as illustrated in fig. 14, the elements
of the input vector sre introduced in parallel on a
array of LED's and the elements of the output vecto€
are detected in parailel on an array of independeat |
detector elements. The first dox labeled “optics”
spreads the light from each LED into a vertical
column, which illuminates & single column of the
matrix mask. The second dox ladeled “optics" plac
on each photodetector a light intensity proportio
to the sum of the light intensities trauswitted dy
an entire row of the mstrix mask. These two opera
ions result in detected signals proportional to th
desired elements of the ocutput wvector y. Versions
of this system based on discrete optical cowponents
(i.e., anamorphic systems of lenses) and multi-mod
optical waveguides have been built (33]. The chief
disadvantages of the system are the relatively sho
lengths of the vectors that can be accommodated o
the absence of eny data compression or inforsmatiom
reduction in the operations performed. The latter
fact results in exceedingly high rates with which
data pours out of the system (potentially as high
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as 10 GHz or more for a 100-channel system).
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Parallel incoherent matrix-vector
multiplier.

Figure 14

An exceedingly interesting development, constitut-
ing an extension of the sub-branch discussed above,
is the use of the parallel incoherent matrix-vector
aultiplier in an iterative wode as a means for
solving simultaneous sets of linear equations

{34). In this case we are given a set of simultan-
eous linear equations of the form

Mx = ¢

where M is a known matrix and ¢ is a known vector
and our goal is to determine the elements of the
unknown vector x. A feedback arrangement as
illustrated in fig. 15 can be shown to result
ideally, after a sufficient number of iterations,
in convergence of the output vector to the desired
solution x. This innovation is significant for
optical data processing for the following reason.
Nearly all previous uses of optical processing have
been for performing operations such as coavolut-~
ions, correlations and Fourier transforms, wvhere
the nuaber of elementary operstions required is of
order N2 (N being the number of degrees of freedom
of the input) but for wvhich fast slgorithms exist
reducing the required number of operations for a
digital isplementation to order NlogN. The problem
of solving a set of N simultaneous linear equations
for the values of N unknowns is fundamentally an
operation requiring order N3 gperations and, in the
general case, no fast slgorithms exist. Any appli-
cation of optical processing to the domain requir-
ing N3 operstions has potentially great rewvards,
for in such cases the "crutch" of fast algorithms
is no longer available to the digital hardware that
competes vith the optical processor and the
inherent epeed and parsllelism of the optical
approach hes its greatest significance.

?
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Pigure 15

Incoherent matrix-vector sultiplier
with feedback.

The ares of iterative opticel processing remaing an
sctive one, with considerable potential for useful
contridutions. “Recently opticel implementations of
iterative methods for finding the eigenvalues and

eigenvectors of matrices have been proposed [35, 36)
and no doubt other clever spplications of this type
of processor will be found in the future. However,
such processors have not yet been fully analysed
from the point of view of accuracy and numerical
stability. The chief disadvantage of optical pro-
cessors in these applications is clearly the limited
accuracy associated with any analog approach to
computation. This disadvantage will undoubtedly
limit the kinds of matrices that caan be successfully
dealt with in this fashion [37).

The last sub-branch from the discrete optical branch
is one we will call “systolic processors”. This
sub~branch is exceedingly young and immature but
also exceedingly interesting as s novel approach to
optical computation. The only published works on
optical systolic processors at the time of this
writing are those of Caulfield, Rhodes, Foster and
Horvitz [38) and Casasent [39].
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Figure 16 (a) Basic building block of a systolic
processor. (b) Thex2 processors

interconnected in a systolic array.

The systolic processor architecture is the invwuntion
of R. T. Kung and C. E. Leiserson [40) and has beex
considered primarily as an architecture for VLSI
implementation. There are in fact many different
architectures for systalic processors, depending on
the operation to de performed. We consider here
only the simplest of these, nemely one designed to
perform the matrix-vector product discussed

earlier. The besic building dlock of the systolic
processor is illustrated in fig. 16(a). An imput x,
representing one element of the input vector,
arrives from the left. Simultaneously a weighting
coefficient a, representing an element of the metrix
A, arrives fron above. The processor, represeated
by the box, receives the input x from the left and
passes it unchanged to the right along the upper




_ .

Ttaput liae; s

ltaneously it sccepts the value y
coming from the right on the output liane and
transforms it into the new value y+ax, vhich
continues to pass to the lefr.

Figure 16(b) shows three basic processors connected
together in a structure that will multiply a 2x2
watrix A times a length 2 input vector x, producing
a length 2 output vector y. We can regard this
structure as being a pair of coupled delay lines in
vhich input and output signals counter-propsgate
and with coupling coefficients that depend on the
elements of the matrix A. The elements of the
matrix are displayed above the processors and are
assumed to arrive vith a timing represeated by
their vertical distance above the processors. Any
time interval represeated by a dot in this diagram
contains 8 coupling coefficient that is immaterial,
since it will not affect the output signals of
interest, The input data is entered from the left
as a series of values, one every two cycles. The
first iaput vector element, x|, passes through the
first processor, generating an output propagating
to the left on the output line. This value is not
of interest and is ignored. The input element them
passes to the second processor, arriving coincident
vith the arrival of coupling coefficient ajj. The
result is an output value 8);x) propagating to the
left on the output line. This value arrives at the
processor on the far left at the end of one cycle
period. Meanwhile, s second input element x, has
been launched on the input line and arrives at the
first processor simultaneously with the arrival of
the above partial output. The coupling coefficient
at the first processor is a);, resulting in a
signal at the final output on the left of

J1 T 81x1 *+ 8),7%g

In a similar way, the various coupled inputs yield
¢ second output signal of the form

y - 221%) + 422%2,

i.e., the second element of the output vector y.
The concept can clearly be extended to larger
matrices and vectors.
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Pigure 17 Optical systolic matrix-vector

multiplier,

An optical analog version of the systolic matrix-
vector muitiplier has been proposed in reference 38
and is illustrated in fig. 17, again for che simple
case of & 2x2 matrix. The elements of the input
vector are entered as propogating pulses of short
duration in an acousto-optic cell., The wmatrix
¢lements are input in proper time sequence as
intensity wodulations of LED's in a parallel

array. The output elements asccumulate as moving
charge packets on a clocked CCD device, fed dy
signale from a parallel array of detectors. The
two delay lines involved are the acousto-optic cell
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(input) and the CCD device (output), with the
coupling supplied by the strobed LED gources.

Another version of an optical systolic processor is
under construction at Stanford Uiversity {41]. The
processor, vhich we call a fibre-optic scattering

processor, is illustrated in fig. 18. It consists of

two single-mode optical fibres weakly coupled by a
series of fibre-optic couplers. Ideally the
couplers should be changeable with time but, as
described shortly, useful signal processing operat-
ions can be performed even with fixed couplers. The
elements of the input vector are entered as pulses
of varying intensities on the input fibre, vhile the
output elements accumulate as they propagate along
the output fibre and emarge in time sequence. If
the couplers have fixed coupling coefficients,
rather than being time changeable, the structure of
the matrix A is effectively constrained to be of
Toeplites form, i.e., the elements along any one
subdiagonal are gll identicsl. Such forms occur
vhen the matrix-vector operation represents a
convolution or a correlation, rather than a more
general time-variant operation.

e

A i 222

Figure 18 The fibre optic scattering processor.

It is difficult to avoid the feeling that these new
architectures are but the beginning of a branch that
will soon be developing a complicated network of
offshoots, most of which are iwpossible to fully
visualise or iwmagine at this particular point
intime.

7 SOME SPECULATION ABOUT THE FUTURE

We have surveyed the past and present architectures
of optical data processing systems. Perheps in
closing ve will be permitted to speculate a bit
about the future.

A reasonable starting point for this speculation is
consideration of the weak and strong points of
optical processors. A chief weakness of such data
processing systems is, in our view, their inherent
lack of accuracy, arising from the fact that they
are purely analog in nature. A further weakness is
the limited number of different types of basic
operations such systems can perform, generally
additions, subtractions, and multiplications. The
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"redesming features of the optical

speed with which computations can be perforud in s
highly parallel tashion.

By comparison, digital electronic processors can
achieve accuracies limited only by the number of
bits retasined in the computation. In addition,
their repertoire of types of basic operations is
nearly uvnlimited,

The speed advantage associated with optics needs
closer examination. The input and output devices
used with such systems are usually electronic in
nature and therefore there is generally an elec-
tronic bottleneck, limiting the rate at which data
can enter and exit the system. These electronic
bottlenecks are partially compensated for by the
parallelism with which the analog computstions are
performed within the processor. The root of this
icherent parallelism lies in the relative ease vith
which optical signals can be used to provide
wultiple independent paths between different
co-putltionll components of the processor (e.g.,
tran.parencus and lenses). Thus the strength of
optics lies in its ability to provide intercomect-
ions of an extremely complex type between different
computationsl elements, while the strength of
digital electronics lies in the ability of its
computational elements to provide flexible operat-
ions with high accuracy.

The question now quite naturally arises as to
whether it might be possible to cowbine the good
features of optics and electronics in a single pro-
cessor. We suggest that the answer in the future
will bdbe affirmative, We envision a processor that
is basically an electronic chip or a series of
chips, with digital electronic computational
elements but with intercoanections between elements
and/or between chips provided by optics. While the
idea of using optical waveguides on a chip may have
merit io some situstions, it is our view that there
is too little difference between metallic inter-
connections and waveguides for this change to be of
paramount significance. Rather we would speculate
that imaging iaterconnections are worthy of
consideration. To illustrate vhat we mean by this
term, consider the geometry shown in fig. 19(a), in
which two chips are communicating by means of
imaging interconnections. At various points on the
chip on the left, computations have been completed
and are ready for transfer to various points on the
chip on the right. The chip on the left is assumed
to contain several tiny sources of light or, in the
case of light supplied from off the chip, several
tiny modulstors. The chip on the left is assumed
to contain seversl detectors at different locat-
ions. Each source (or wmodulator) on the left is
then imaged onto an appropriate set of detectors on
the right. The imaging element is certainly more
complicated then a simple lens. It might be a
holographic optical element.

Of the wmany problems with the above idea that come
to mind, chief among these is perhaps the fact that
we do not know how to integrate optical sources on
silicon. As indicated, however, it is not actually
necessary to have sources on the chip, only
modulators that can modify externally supplied
1ight. Nonetheless, these modulators must be
exceedingly saall in size and capable of high-speed
operation with very small power dissipation.

The ideas presented above can be extended to the
case of a single chip.as shown in fig. 19(d). 1Ia
this case the holographic imaging element is
reflective and resides above the chip.

i ig ~ IE Aust. & IREE Aust., Vol. 2, No. 3

i

HOLOGRAPHIC
OPTICAL
ELEMENT

(a}

HOLOGRAPHIC
OPTICAL
ELEMENT

SOURCE DETECTORS

CHIP

(b)

Figure 19 (a) Imaging intercoanections between
two chips by means of a holographic
optical element. (b) Imaging inter-
connections within a single chip.

While the possibility of having sources or modulat-
ors on the chip may seem remote at this point in
time, there is a subset of problems for which they
are not needed in integrated form. This subset
consists of data processing problems requiring
enormous amounts of parallel data input to the
processor but comparatively lictle data flow out.
An excellent example of this type of processor is
the systolic array described in the previous
section., Let the input and output vectors be of
length N, and the matrix be NxN. The elements of
the input vector can be entered over a serial elec-
tronic communication line and likewise the elements 1
of the output vector can leave the chip via a single
serial communication line. However, the (2N-1)
processors must receive an average of N different
matrix elements every clock cycle, thus requiring
cithcr an enormous number of parallel input chaanels
e large degree of multiplexing, vhich will slow
doun the speed of operation. ' To provide parallel
electronic input channels requires that the chip
have & very lacrge number of pins. This rather
severe price can be avoided if dets {s input via a
corresponding number of iwaging optical iater-
connectiona, as shown in fig. 20. It is only
necessary to integrate detectors on the chip. The
need for s large number of donding pads is elimin-
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Statistical Properties of Ray Directions in a Monochromatic
Speckle Pattern

Elen Ochoa
Joseph W, Goodman

Information Systems Laboratory
Department of Electrical Engineering
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Stanford, Californis 94305

ABSTRACT

The statistical properties of the spatial derivatives of the phase of a mono-
chromatic speckle pattern are studied. Initially, a one-dimensional probability
density function for the derivative of the phase is obtained and compared to the
solution for the analogous problem concerning instantaneous frequency of nar-
rowband Gaussian noise. Subsequently, s two-dimensional probability density
function is derived which depends on the two first and three second spatial
momeats of the illumination intensity distribution of the scattering object. Some
sample intensity distributions are considered for which explicit expressions for the
probability density function are given.
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APPENDIX II
Statistical Properties of Ray Directions in a Monochromatic
Speckle Pattern

Ellen Ochoa
Joseph W. Goodman

Information Systems Laboratory
Department of Electrical Engineering
Stanford University
' Stanford, California 94305

Introduction
Speckle patterns arise when highly coherent light is transmitted through, or reflected from,
an object with a surface that is rough on the scale of » wavelength. It bas been found fruitful to
treat the fields present in such a pattern as s random process, the randomness being over an
ensemble of macroscopically similar but microscopically diﬂer;:nt ﬁugh surfaces. In this paper we
are concerned with a very specific statistical property of such patterns, namely the statistical dis-
tribution of geometrical ray directions countained in the ncatteu.:d fields. Equivalently, we are
interested in the joint probability density function of the two components of the gradient of the
phase distribution in a speckle pattern.
The statistical distribution of ray directions is of interest in a number of practical problems.
For example, when a hologram is formed by interference of a plane reference wave and a wave
generated by a diffuse object, knowledge of the statistical distribution of phase slopes allows
specification of the statistical distribution of local spatial frequencies on the recording medium. If
the hologram is thick, then this information also allows specification of the local tilt of the fringes
within the emulsion, a quantity that influences the average difiraction efficiency that can be
obtained. Finally, the te;ulu may be of interest in the field of adaptive optics, since many wave-

front sensors measure the gradient of the phase of the incoming wave.
To our knowledge, the statistics of ray directions in speckle patterns have not been dis-

cussed in the literature before. Neither of the two general surveys of this Seld discusses the prob-

lem [1,2]. The most closely related works are those of Ebeling [3] , who iavestigated the
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statistical properties of the spatial decivative (along one arbitrary direction) of the amplitude and
intensity in a speckle pattern, and Ohtsubo [4] , who studied the zcro-crossing rate of the deriva~
tive of the intensity of a speckle pattera. Also worth mention are the classic works of Longuet-
Higgins [5] , who studied the ata‘tistical properties of the derivatives of wavefronts with Gaussian
phase deformations but constant intensities. Our prodblem is significaatly diferent in that both
the intensity and the phase are random, and the phase statistics are not Gaussian. Finally, we

sbould mention that our problem bas an exact one-dimensional analog that has been studied by

communication theorists, namely the statistical distribution of the instantaneous frequency of nar--

rowband Gaussiap noise (see, for example, reference [6]). While the methods of solution of the
one- and two-dimensional problems are similar, the two-dimensional solution is more complex,
and the solution in two dimensions cannot be deduced simply from knowledge of the result in one

dimension.

Background

A monochromatic speckle pattern can be described as a sum of contributions from N
independently-phased, coherent radiators. A single component of one polarization component of

the electric field E at time £ has the form

) i
E(z,y,2)=—= gl e ilet+9) 1
(s i=rs B el e e (1
where |4, | and ¢, are the amplitude and phase of the kth radiator and are functions of z, v,
and z. # represents the ipitial pbase and is a random variable uniformly distributed from - to .

Separating E into real and imaginary parts, we have

E(z,y2t)=r + i 2)

= #.ﬁ | 8 | [(cosdscos(wt+ 6)-sind,sin(wi+ €)) + i(cosd,sin{wt + 8)+ sind,cos(wi+ 0))]
=1

== | a][cos(wt+ ¢) + isin(wi+ ¢)]

where ¢ is the phase of the resultant wave. Statistical properties of speckle are studied using the

following assumptions:
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(1) lexl, é» are statistically independent of each other and of all other | o;|,8,, for j¥ék.

(2) ¢» is uniformly distributed from ~x to .

Under these assumptions, and additionally letting N tend to infinity, it is seen that r and § are
jointly Gaussian random variables. Goodman [1] has derived the statistics of the electric field

amplitude and intensity. Letting <-> represent an ensemble average (i.c. the average over many

independent diffusers) we find the covarisace matrix is determined to be

<rr> <>
- o o
<Ir> <>
)]
0
and thus
rei)= Tz (- TR 0

Note that o can be written as R,,(Az=0,Ay==0) where R 14 denotes the correlation of f with 4.
The transformation
r = /Tcos{wi+ ¢) ’ (5)

i = JIsin(wt+ ¢)
is used to find

1 .
)= lr e | (%)
Probability Density Function of Slopes in One Dimension

Higher-osder statistics involve the real and imaginary parts of the electric field st more than
ope point. Our problem concerning the slopes of the real and imaginary parts of the electric field
can be treated in the manner of second-order statistics because of the linearity of the derivative
process. Initially, the discussion will be restricted to variation in the z-direction only; later, vari-

ation in the y-direction will be included as well.
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Consider r(z,,y,z,t), i{z\0.,2.t), r(22.9,2,t), and i(z2p,2,¢). The central limit theorem
tells us they are jointly Gaussian random variables [7]. It is also true that r(z,y-,:,l).
-ag; r(z,y,2,t), i(z,y.2,t), and % i(z,y,2,t) are jointly Gaussian (8, p.475]. As a shorthand
notation, _6_;, (z,v,3,t) will be written as f,(z,y,2,¢ ). The general form of the distribution den-

sity function is I8, p. 255)

plriii) = ks el e} Y
where
[sl=]r & rn ]} (8)
and

<rr> <> <> <>

ir> Lii> Li,> <>
M= . ©)
Krer> Krgi> <r,ry> <r,i,> :

<Kir> <> <ind> <>

Following Ebeling [3] , we note two relations in order to evaluate elements of M
(1)

Reg(Bz) = <A(z,,9,2)A(22.0,2)> <> (10)
f = 0 :
since <e'¥> == 0. Note A(z,p,2) is the complex amplitude of the electric field given in
Eq. (1). Therefore, equating real and imaginary parts, we find that
Rn(A’) - Rli(Az) . (ll)
R,,-(Az) = —R‘,(Az) .

2) From Papoulis [8, p.317] , with (s) representing _0_'_, , we have
- oz

Ry mfB2) = (‘1)""9—:5%31.(43) . (12)
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M is symmetric and the upper 222 portion of it is already known, 8o seven elements remain to be

determined. Note that

& :
<ryry> = -EA_S;R"(A,) l Amo 5= ), .
Similarly,

gy > =,
From Eq. (11), it is seen that

, .4 2 - .
<rpiy> = NG R.(Az) l At ™ oS Ry (A3) I Armo ™= —<iyry>

and thus

<11, > = <i,rg> ‘Fo N
Continuing, since T

<[> =<(ffY>=2<[">
we find ) )

139
<L rrg> = 2 83<">

= -:;--g—;(constnt)=0 .
By the same reasoning, <ii,> == 0 as well. Finally,
<ri,> = --&R,.—(Az) l Armo = €
and <r7,8> is simply ~<ri,>. Therefore,
[# o o c,‘
0 o -, O

M= .
o —C. .. o

e 0 0
L d
From this form, the determinant and inverse of M are found to be

det M = (*,-c2)t

(13)

(14)

(15)

(16)

(17)

(18)

(19)
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M D

e, 0 0 o

where

D= Vit M = 0%, - ¢} . , (21)'

Performing the matrix-vector multiplications of Eq. (7), we get

p(r,i,ris) = 4:’D exp{ [b,(r’-l» )+ oHrl+ i) + 2¢,(ir-ri,)]} (22)

The transformation of variables to intensity / and phase ¢

r = /T cos{wt+ ¢)
i = VIsin(wt+ ¢) ‘
ra = -é‘,-Tcos(wH ¢) - VT ¢, sin(wt+ ¢) (23)
iy = 2_1";7"iﬂ(wt+ 8) + VI ,cos{wt+ ¢)
W=

with a resulting probability density function

PU6Le8,) = — ﬂ,p exp{-o5 101 + a’(-+l¢) - 2¢,14,]} . (249)

Since the probability density function of ¢, is our goal, it is necessary to integrate over /, ¢ and

I,. This is a straightforward process and results in

(0%, - ¢3)
2’ (" 02 - 2¢,6, + ‘l),n

2(6,) = (”)

where, to repeat,
o* = R,,(A2=0)

by o= ‘;‘:;’.'Rn(A’) I Armp (20)
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This expression can be compared with the distribution obtained in the anslogous problem con-

cerning the instantaneous frequency of narrowband Gaussian noise. Blachman's formula [6, p.61)

is
- 1ol
?(¢s) (0,2 + 4233 (27)
where p? is the spectral width and is defined as '
< f 3 .>
pm o
Therefore, the relationship to our notation is
b, = 4xp'* (29)

In addition, in Blachman’s formulation of the problem, c,=0 because he takes as bis reference
frequency the centroid of the moise spectrum. Hence, it is seen that the two formulas are

equivalent.

Probability Density Funection of Slopes In Two Dimenslons

Our ultimate goal is to solve the two-dimensional problem, finding an expression for
#(#..9,). This will give us the statistical distribution of geometrical ray directions since, if a and

P sre the direction cosines with respect to the 2~ and y-axes, then

¢=22o (30)

‘. -2:-’

&ﬁtpolsﬁu from the previous section, the desired density function is seen to be obtainable from
P(r,.75,35,75,%;). By easlier reasoning, these six random variables are jointly Gaussian. Hence,

the general form of the distribution is

P diradury) = s epl-Lislaep) (1)
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l=[r & r i r i] (2)
and

e ]
r<rr> <> <> <Kr,> <> <>
<ir> <Lit> <> Kii,> <> <iy>
K1 r> Krid> <> Lni,> <> <>
M= : (23)
) iy > <> <ipr,> <iyi,> <> <i > :

Knr> <ni> <> <ni,> <npn> <ni>

<ir> <> <in> <LE> <4R> <hL>)

Because of symmetry, twenty-one elements must be found, of which ten have already been deter-
mined. The remainder of the elements are discussed in Appendix A. The resulting covariance

matrix has the form
.
[* 0o 0 ¢ 0 <
0 6 ¢, 0 ¢, O
0 -, 5 0 4 O
M = (34)
e, 0 0 8 0 d

0 -¢ 4 0 § O

e 0 0 ¢ 0}

where

o <ryry> 22

e A’Rn(A:,Ay”:’,:: : (35)

The inverseof M is
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[ b, 8,-d? ) 0 Gé-be, 0 cd-be, ]
‘0 b5,  —(c,d-b,¢,) (] ~{e,d-d,¢,) (]
0 e d-bc,) O*by-c} 0 ceg0’d 0

e, d-bye, (] 0 ?*h-c} (| Cecp—0*d

0 c,d-b,¢) ¢ 0% 0 o*b,~c}? (]

Le,l—b,e, 0 o sey-0*d 0 P .

where

D = VEAH = ®b,b,~0*E-b,c}-b,c2+ 2¢,6,4 .. (37)
Substituting into Eq. (31), we obtain |
P(rirasis,ty ly) = ﬁ exp(-"z%l(b. b~d%)(r*+ %) + ’(a’b,-c,’)(r,’-l- i+ (38)
(Pb=eDNr+ if) + 2(c, d-b, ¢, )(ris—irs) + 2(ced-byc, )riy—ir,) + 2(cs0,-07dNr,ry+ iy )]}

Again, a transformation is needed to get the distribution of /, ¢, I, é,, J;, and ¢, . The rela-

tions are :

r = /T cos(wt+ ¢)
i= VT sin{wt+ ¢)

Ty == '2—’&7.—&‘.'0.(”“"‘ ¢) - ﬂ‘.’h(ld“l‘ ‘)
i, == -2_’\;7-.“(0” ¢#) + VI 4,cos(wi+¢) (%9)
Ty = -2-15-’-@:(03-!- ') - ﬂ‘."n(“"" ¢)

| iy = ;’#.in(m-r #) + VI ¢.cos(wi+¢) .

The lollowing transformation expressions result :

Pt Pt

2, .8 /4 1
r,+l.--‘-;+l¢.

13
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ri, —ir, = I¢, ‘ {40)

ri, - ir, = I¢,
.. Ll
Ts7y + iy = 4 + I¢3¢l

1
=3

The probability density function hence becomes

P(, l’l 'l‘t)’j n‘;) = Hﬂ-’; -1—[(’8' -W + (”‘:"‘;’X‘I;"P I ‘:) + (‘l)

b,-c] (-l-+ 1¢7) + 2(c,d-b c,)1¢, + 2cd-byc, )4, + 2(c,c,-a’d’)(—'-+ 14,4,)]}

Integration over 1, ¢, I, and I, is performed in Appendix B. The resulting joint probability den-

sity function of the z-derivative of the phase and the y-derivative of the phase is

3/2
pbeity) = Zo10,,-8) + (%7083 + (e} (42)
+ 2(%4"5, cs)¢s + 2(‘:"’:‘;)¢: + 2(¢:¢;'°")¢:¢.l4 . A

Examples

It is instructive to calculate p(d,,4,) for some basic intensity distributions at the scattering
plane. The parameters of the distribution in Eq. (42) depend on spatial correlation functions. It
is possible to rewrite them all as depending on the autocorrelation function of the complex ampli-

tude R,,.(Az,Ay). This can be seen by first noting that

AA’
R, .(Az,Ay)= R, .(Az,Ay) : (43)
By expanding E in terms of its real and imaginary parts, the following relations result :

R,,(Az,Ay) = -;—Re R,,.(Az,Ay) (44)

Ru(Az,0y) = -%lm R,.(A,Ay) .

Hence,

G = %Rek uo(Bz=0,Ay=0)
&

8As?

b= e [

R,,.(Az,4y) I A:-o]

L T
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1 -]
&y ™= -;lm [OA M'(A‘ Ay) I At-ﬁ]

8, - -%Re 82’ TR (83,Ay) I Ac-o] (45)

r

1 3
e, - ‘;lm ‘LaA' “.(AS A’) | "d]

2
‘--2Re OASOA RMo(A:nA’)lbcd]

The last relation needed to calculate p(4,,4,) is provided by the Vﬁ Cittert-Zernike

theorem [9],

Ry (835,87) = 2Ty (I(n,0)) s e (40)

28
A3 Az’ s

where FT'; denotes 2-D Fourier transformation, I(u,v) is the illumination intensity distribution at
the scattering plane, and z is the distance between the scattering plane and the observation plane.

Combining the results of equations (45) and (46), we find

= ;;:-7‘”'1(0,0)““

by = o ‘ffu’l(u,v)ludn

€y = X: 3 I f ul(v,v)dudy (47)
by = o ‘ffv’l(u,v)lulv
G = ';:F f I vl(u,v)dudo

d - N ‘ffuvl(u,v)lulv .

As 2 Srst example, consider 3 rectangular spot of dimension LxW . The intensity distriby-

ol

where ¢ is a constant and rect (/) is defined to be

tion is written 2s




1 for 1)<}
rect (f) = " (49)
) for|!|>- .

. ,
e ke .

» Taking the Fourier transform, we obtain

- | R, (03,8y) =4 ;,—,- smc[—-Az mc[—Ay] (50)
where '

sine (1) = 221

It is convenient to define a “speckle width®, in each direction, as the distance in which the corve-

| et ot o

fation function falls to zero. Let

| 5z = speckle width in x-direction = % (51)
Sy = speckle width in y-direction == %-’-'; .

Then
. . }

BB 9) = s m{‘:’]smc[%:- . 62) |

The parameters needed for Eq. (42) are determined from this equation to be

ST S SN P

[ ]
o = Ze=Yow) | |
b= et {
T ™) ;
g =0 (89) :
b - ex®
() 1)
¢ =0
dm=0 .

e

Hence,

o,

K
?(42:9,) = W (6 o b (5:)’ 3(6:)'(")’ 9

]
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It Lw=W (and therefore 52 == §y),
x = I -
] o =X 42 2, X
?(4::9,) TR [é. + ¢; + T 52),1 . (55)

" A graph of this function is shown in Fig. 1. for the following parameters:

A== 5:10°m
gw=]lm
L =~} mm . : (56)
8z == 0005 m
Both ¢, and ¢, range from -10,000 to 10,000 radians per meter with the (0,0) point at the eent;er
of the graph.

As a second example, a symmetric Gaussian scattering spot is considered. The intensity dis-

tribution,
e o .
Ie,p)=a e L6 (57)

is defined 30 that L /2 is the 1/¢ point in each direction. The autocorrelation function is

exp{-t’(A:’+ Ay’)—LL] . (58)

Lt
RM (8z,8y) = ox 4252 )22

Let the definition of speckle width in this case be the 1/¢ point. Thus

6:-8:—%

and the nonzero parameters of p(¢,,9,) are found to be

[
a’-m (59)
l'--;(-:;)—"-" .

The resuiting distribution density is :

(80i8)) = 3625"[“ ol + TffFr ) (00)
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Conclusion

The joint probability demsity function of the z- and y- components of the phase in a.mono-
chromatic, fully developed speckle pattern has been found. Equivalently, the statistical distribue
tion of ray directions in such a speckle pattern have been derived. The results show that the
! statistics ;m question depend on only the two first sad three second spatia]l moments of the illumi-

nation distribution of the scattering object but pot on other details of that distribution. This

problem is the two-dimensional analog of the problem of flading the statistics of the instantaneous
frequency of narrowband Gaussisn random noise. The results should prove useful in studies of |

the average diffraction efliciency of thick holograms of diffuse objects and may be of interest in

adaptive optics.
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Appendix A :

The 6x6 covariance matrix M (Eq. (33) in the main text) has, on account of symmetry,
twenty-one distinct elements which must be found. Ten of these were discussed in the text.

Furthermore, seven more have exact avalogies to cases previously studied. Thus :

» &
<> = -5 Re(84) [apme =4, | (61)
: © and <Gy 6> == b, 29 well;
‘ <ri,> =0 (62)
' <r7y> = Liiy> =0 (63)
‘ ’ s [
p - <riy> m -ER"(A') l prey O . (04)

ad <r,i> = -<ri,>.
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To study the remaining four covariances, it is necessary to find a relation similar to Eq.
(12), but where the partial derivatives of the two functions to be cross-comrelated are with respect

to two different variables.

Following the reasoning of Papoulis [8, p.316], we can evaluate

Rl,g,(’l:‘!-’lvv :) - E {! 3(‘1:”!),’ (32»112)’ (65)
in two separate steps. First, we observe that

{I(‘l» ) l! (z2,¥2+ :)'! (22,92) ] } - Ru(’n’z.huh"' ?‘Rh(’x"z-vx.h) . (65) V
Taking the Limit of both sides as ¢~0, we get
Ry (51520102) = o Rpg{s12002) - (1)
L Oy2
Second,
E{ { J(nt+ (.ﬂﬁ:_)i (z1,1) . (‘z'ﬂz)} - Ry, (21t ¢.3z.ﬂx-ﬂ:-)'8 1,'(31.22.!1-72) ) (68)
Agsin taking the limit as ¢—0, we find
R[,.,(zhzz:ﬂhﬂz) = 3%‘3",(31,33-%.”:) (69)
3
_ - 3%:—:;;““(’1':2'"!'”2, .
If the processes are jointly spatially stationary, then
R, ,(82,8y) = —2—--2-R, (2z.49) . (70)
L T3Az Ay 'O
where
Az == 3, -2, (1)
Ay=n-»n

R'etumin; to the remaining covariance terms, we have

2 R»(Aa.Av) - iy r,> (72)

: .
<'l"> aA: GA’R"(A’.A')

-2
%Az OA

C
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. ! and so
SO . ) <y >=<yr,> =0 . (73)
1 ‘ Lastly,
<rn> =22 p (82,89) [ asmo=d (74)
s’y 0 A z O, A rr » A:-o
and <i,i,> = <r,r,> . The resulting covariance matrix is given in Eq. (34) of the main text.
- Appendix B -
- J
5 The probability density function obtained when the transformation to six variables related
! to intensity and phase is completed is, as given in Eq. (41) of the main text,
}
| I?
| p(l.o. absidy by) = T3 Dexp{ 2ol b-EU + (Ph-H G+ 161+
i { L1
, -c,( + 183) + 2(c,d-bye, )¢, + 2(c,d-b,c,)$, + 2(c,c,-a’d)(—;—;-+ 19,6,)) -
. Integration over ¢ yields a lactor of 2x . The integration over I, is of the form
- - _
i I elod+v )y, J::: et
? -0
? where
3 ‘
3 -
. AP ) N ~ (75)
81D 41D
The form of the integration over J; is then simply
o 2 2
wty [ - [0’6 ~c (c,e,-o’d)
:Le dz \/: with @ 2”[ Tty ) I (6)
3 It is useful to mote that
4 (0*b,~¢)(0?b,-cF) - (cp¢p—0*d) = o’D ()
20 a can be rewritten a3
~;. o PP - | (78)

81(o%,-¢h) °
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These integrations leave

Pl 6s0,) = -;;l\,—-ﬁ-exp{-;!,;l(b.b,-d’) + (68,-¢))8} + (o*b,-cl)p; + (79)
2(c,d-), ¢ )s + 2(‘.“‘.‘,,% + 2(‘:‘)"")‘:‘1“ .

The last integration takes the form

:fh-" df = _r_f%l - 7‘,— . (20)

Finally, tbe joint prebability density function of the z-derivative of the phase and the y-

derivative of the phase is

3/2 :
p 4 (¢:y¢') == %l(b: b"‘d') + (”."clz)¢3 + (’z b:"c:’ )¢: +
2("! d—-b, cx)?"s + 2(03‘-5:%)% + 2(c,c,—a’d)¢,¢,]" *
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Fig. 1 :

Figure Captions

Joint probability density function of the x- and y- derivatives

of the phase for a uniform, square intensity spot in the
scattering plane.
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