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ABSTRACT

This document contains 2formation on the research accomplished under

AFOSR Grant No. AFOSE 82 089 during the time period I February 1982

through 31 January 1983. The work covers several different areas of

optical computing, as well as some work on digital processing of

optically obtained images. The primary emphasis of the work is on the

possible applications of optics to interconnections in integrated

circuit technology. Other areas of effort include the diagonalization

and inversion of circulant matrices using coherent optics, the division

of complex wavefronts using four-wave mixing, and the suppression of

speckle in coherently formed images. Publications during the last year

arising out of work supported by the grant are also detailed.

.
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I. INTRODUCTION

This report covers the work performed on AFOSR grant No. 82-0089

during the time period 1 February 1981 through 31 January 1982. It is

divided into six sections, the first of which is this Introduction.

Immediately following we summarize our current status of the project

aimed at investigating the applications of optics to the interconnection

problem in integrated circuit technology. Section III deals with the

results of our work on the use of coherent optical processing for the

diagonalization and inversion of circulant matrices. Section IV

discusses a new project started this year, namely one concerned with the

possibility of performing complex wavefront division using four-wave

mixing. Section V reports the early results of another new project, one

aimed at suppressing speckle in coherently formed images by means of

digital image processing techniques. Finally, section VI details the

publications and meeting presentations arising out of work supported by

the grant during the past grant year.
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II. OPTICAL INTERCONNECTIONS FOR VLSI

As integrated circuit technology advances, device sizes are being

reduced at the same time that overall chip sizes increase. The increased

complexity of such chips places ever increasing demands on interconnect

technology. The RC time delays and IR voltage drops of conventional

aluminum and polycrystalline silicon interconnections may ultimately

eclipse the gains anticipated in device performance.

This project is concerned with the possibility of using optical

imaging interconnections to overcome some of the problems imposed by

current interconnect technology. The substitution of optical waveguides

for metallic interconnection lines could potentially reduce the effects
of RC time delays and IR voltage drops now experienced. However, our
goal is to evaluate the feasibility of using optical interconnects that

rise above the chip, rather than simply using waveguides to mimick the

quasi-planar topology of conventional interconnections. We envision the

use of holographic optical elements, either transmissive or reflective,

to provide a multitude of non-interfering, efficient parallel communica-

tion channels, either into a chip from the outside world or between two

chips. Eventually the problem of providing interconnects within a single

chip would also be of interest. Since the particular interconnect

pattern achieved is determined by the holographic optical element used,.1 there exists the tantalizing possibility of dynamically changing the
interconnect pattern to meet the current needs of the processor

performing the computations on the chip.

* Of the various problems that could be tackled, that of communicating

by means of optics from the outside world into a chip appears to be the

most amenable to current technological solution. For such problems,

there need be no flow of optical information out of the chip, and hence

Ithe difficult problem of providing on-chip optical sources or modulators

I is avoided. Considerable time was wasted in the early part of this

project in attempting to find ways to integrate small liquid crystal

light modulators on a silicon chip. It was finally concluded that,

while the goal was probably achievable with considerable work, the speed

... .. .. . .................-.......



of the resulting modulators would be so slow that there would be little

interest in the end result.

Providing detectors on the chip poses no fundamental problem. As the

complexity of chips grows, the needs for connections into the chip also

grows. Yet current pin-connecting approaches are generally limited to

providing on the order of 100 connections to the outside world. The

success of optics in meeting these needs will depend critically on the

sise and performance of the detectors that can be realised on the chip,

and on the stringent positioning tolerances between the imaging element

and the chip.

Our work on the imaging interconnect problem has three separate

aspects. One deals with the optical issues associated with the

interconnect devices (holograms), and the second with the on-chip photo-

detectors that provide the means for inputting data. The third consists

of a continuing search for algorithms and specific problems that demand

input of large amounts of data in parallel (while requiring rather

smaller output capability). A fourth aspect, that of finding ways to

place optical sources on chips, is viewed as a longer-range goal and is
under study in the Integrated Circuits Laboratory under separate

support. It should be mentioned that some experts in this field feel

that in the long term a solution to this difficult device problem will

be found, possibly by using a buffer material (such as germanium)

between silicon and gallium arsenide to provide adequate matching of the

lattice dimensions.

It is attractive, for reasons of cost and simplicity, to consider

light-emitting diodes (LED's) as prime candidates for the modulated

sources that will be used for the optical communication channels into

the chip. However, the spectral purity of LED's is far poorer than that

of lasing diodes, and therefore some understanding of the resolution of

holographic optical elements when used with LED sources must be gained.

As a goal towards this end, a system has been under construction which

we hope will provide a test bed for answering questions ofrthis kind.
Also to be gained from these experiments is knowledge about the

F
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scattering of light by the holographic optical elements and by the

silicon chip itself. A number of GaAsP unbonded LED's were obtained from

Hewlett Packard, and mounted in an array format on a DIP package.

Several encapsulating materials are being examined to determine which

will minimize light scattering and bean distortion and provide environ-

mental protection. Hewlett Packard also supplied a number of unb6nded

silicon photodetectora of the type used in electro-optic couplers. These

have also been mounted in DIP packages and will be calibrated and used

to test S/N and response threshold levels. A Fairchild I-scan CCD line

scanner will be used to monitor images in the hologram image plane.

Initially, transmission and reflection type holograms will be prepared

using conventional sources, geometries and films. Later, experiments

will be conducted with image plane holographic geometries and dichro-

mated gelatin recording materials. These systems have promising white-

light reconstruction and high diffraction efficiency characteristics.

Preparations for these experiments have now been largely completed

and the experiments themselves are anticipated to be under way in the

very near future. In the meantime the problem Of integrating

" photodetectors onto the chip will be under study in parallel. Initial

efforts in this regard will be aimed at studying fundamental limits to

the size, speed and sensitivity of these devices. Our approach is to

identify the problems that are anticipated when attempting communication

into a chip, and to gather the information necessary to assess the

seriousness of these problems in a methodical way. We intend to focus

attention on fundamental issues, such as the radiometry of the, problem,

which determines the available light power at the detectors, and the

fundamental limits t0 detector size and sensitivity.

Finally we mention a new concept that has arisen during the past

grant year. Consider a single source of information that must be

supplied to a number of sites on a chip. Further suppose that the

algorithm being realized on the chip requires that bursts of information

be sent to different sites on the chip (i.e. with different interconnect

patterns) as a function of time. Such requirements can be met in the

following way. A single high-speed optical channel is to be fed into

I



the chip, but it should be interconnected to different sets of locations

on the chip as a function of time. We can satisfy such a requirement by

use of an acousto-optic bean deflector, and a two-dimensional array of

holographic optical elements, each providing a different interconnect

4 pattern. The hologram func:tions much as a holographic memory. To

address a particular set of desired points on the chip, the acousto-

o0tic deflector sends the beam to the particular location on the

hologram; the image read out is a series 6f spOts at the desired loca-

tions on the chip, where detectors convert the burst of high-speed

optical modulation into electrical signals. The beam deflector then

sends the light t6 another hologram in the array, which then sends a new

set of light spots to presumably another set of detectors on the chip,

where the new burst of information is converted to electrical signals.

The concept described above appears to be a powerful one, but the

missing link at present is the lack of any well-defined problem or

algorithm that requires this type of communication. Nonetheless, we

feel confident that such algorithms can be found, and we will be

searching for examples during the coming grant year.

*1

III. COHERENT OPTICAL TECHNIQUES FOR DIAGONALIZATION AND INVERSION OF

CICULANT MATRICES.
4

For the past year we have been studying the possible use of coherent

optical systems for diagonalization and inversion of circulant matrices.

Circulant matrices are those for which each successive row is a simple

circular shift of the row above by a single element. For example, in

the matrix A below, the numbers 1,2,3, and 4 stand for four distinct

elements; the organization of those elements in the circulant matrix is

as follows:

7



1 2 3 4

4 1 2 3
A- (1)

*3 4 1 2

2 3 4 1

A remarkable property of circulant matrices is that they are
diagonalized by the discrete Fourier transform (DYT), the resulting
diagonal elements being the complex eigenvalues of the original matrix.
Thus if the DFT matrix V is defined by (again illustrating with a 4x4

example) 1 1 1

1l2

1 v W2  W3

t v- (2)

1 W2  w4  v6

• iw3  wt6  w9

where w - exp(-i2 jr/N), we have

I0 00

A - 1 A V- 0 X2 0 0 (3)
0 0 X3 0 3i
0 0 0 X4J4

where the 'u are the eigenvalues of A.

Before embarking on a nore detailed desoription of the work, it inI *perhaps worthwhile addressing the question why would anyone want to

8
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diagonalize circulant matrices, and why might coherent optics be a

useful approach in some cases. A great many signal processing problems

require the inversion of Toplitz correlation matrices. Toplits matrices

have less structure than circulant matrices; they simply have the

property that each subdiagonal of the matrix has elements that are

identical. Such matrices must be inverted in order to determine the

structure of optimal linear filters, and such inversions must be per-

formed frequently in environments where the statistics are changing with

time or are gradually becoming known as time progresses. Usually the

Toplits matrices of concern are banded matrices; that is only the main

diagonal and a few subdiagonals have significant non-zero value. It can

be shown that a large banded Toplitz matrix can be inverted by first

inverting a large circulant approximation to that matrix, followed by

inversion of a much smaller Toplitz matrix [Ref. 1. Hence the availa-

bility of a fast optical technique for inverting large circulant

matrices, together with a digital processor that inverts a small Toplitz

matrix, allows large Toplitz matrices t. be inverted, hopefully with

greater speed than afforded by an all-digital approach. Once a method

for diagonalizing circulant matrices optically is in hand, then metaods

exist for inverting such matrices, as we describe later.

There is an additional reason for interest in the problem of

inverting circulant matrices optically. In working with matrices,

rather than pictorial data, one is dealing with numbers, and the results

of the processing operation are likewise numbers. It therefore becomes

rather easy to assess the accuracy of the operations one is performing,

and to discover the primary sources of accuracy limitation in the sys-

tem. Thus we regard this project as providing a testbed within which
*the sources of inaccuracy of coherent optical processors can be studied

in a more precise way than has been possible before. Knowing the chief

reasons for inaccuracies allows one to focus attention on these sources

of error and to explore methods for reducing their effects. Thus infor-

mation discovered in this project may have wider application in the

field of coherent optical processing.

With this information as background, we return to a more detailed ''
-.
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discussion of the optical problem. The task of diagonalizing a circulant

matrix using coherent optics can be performed if the normal continuous

two-dimensional Fourier transform so easily performed by such systems

can be changed to a discrete rh ier transform. Much of our work on this

project during the past year has been aimed at conversion to a discrete

Fourier transform. The method used for this conversion is as follows.

The matrix to be diagonalized is entered into the coherent optical

system as an array of transmitting cells in a mask. The matrix is

repeated at least 3 by 3 times in the horizontal and vertical

directions, causing the spectrum to form a series of discrete spots.

Each of these spots represents a different complex eigenvalue of the

original matrix. Measurement of the intensities of these spots by

discrete elements of a detector array is equivalent to measurement of

the squared magnitudes of the eigenvalues of the matrix. If the full

c( 'plex values are desired, then interferometry or heterodyne detection

must be used to extract both amplitude and phase information.

A major component of our effort during the past year has been aimed

at an analysis of this method for performing the discrete Fourier trans-

form. The analysis examined the effects of the repetitions of the

matrix at the input plane, the finite cell sizes used to represent

matrix elements, and the finite sizes of the detector elements used to
measure the eigenvalues. It was discovered that the operation performed

by the two-dimensional system is not quite that indicated in Eq. (3)iabove. The inverse operation associated with the first V matrix is
missing in the optical realization, and as a consequence the locations
of the spots representing the eigenvalues of interest are not quite

those expected at the start. Nonetheless, the desired spots are present

and must simply be detected in the correct region of the output.

Figure 1 below shows the optical setup used for obtaining eigen-

values, a sketch of a typical matrix transparency introduced into the

system (for a 4x4 case), and a sketch of the resulting distribution of

light intensity in the focal plane of the lens. Note that there is are

a large number of light spots in the output. Those representing the

eigenvalues of interest are enclosed in a box.

10__ _ _ _ _



During the past year we have discovered a simple technique for

entering circulant matrices with complex elements into the system.

Matrices representing the biased real part and the biased imaginary

part are interlaced with a diagonal spatial offset of one quarter of a

cell separation distance. The biases do not affect the output provided

the eigenvalues are detected in a subdiagonal that does not contain the

* zero-frequency or "D.C." spot. The spatial offset of the real and

imaginary part matrices results in the complex addition of their

respective eigenvalues with a 90 degree phase shift. As a consequence

the eigenvalues of the complex matrix are detected. The technique is

illustrated in Figure 2.

The chief accuracy limitations we have encountered so far in

measuring eigenvalues by these methods have arisen from inaccuracies of

the optical masks representing the input matrices. These masks have

been written on a DICOMED plotter at the NASA Ames Research Center. It

was necessary for us first to calibrate the gray levels of the plotter.

Following this, we discovered that the spot sizes written by the plotter

are a function of the gray level being written, and further calibration

had to be done. Finally we turned to having the masks fabricated in our

Integrated Circuits Laboratory. Preliminary results with one such mask

show that most of the limitations we were encountering with the

transparencies written with the DICOMED plotter are .o longer present.

In our latest experiment, using only a 3x3 matrix, an accuracy of 1.5%

was obtained in the measured eigenvalues. This accuracy may be a

function of matrix size, a point to be explored in the future. We are

also obtaining some transparencies written with an electron beam litho-

graphy machine, and will be evaluating them for accuracy.

At this point it appears that our major problems in producing masks

that accurately represent the matrices of concern have been overcome,

and that future efforts can be more directly aimed at inaccuracies

arising within the coherent optical processing system itself.

Attention will be turning later this year away from the measurement

7 1
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of eigenvalues towards the inversion of circulant matrices. In order to

invert such matrices, it is necessary to record the complex eigenvalues

in the focal plane holographizally, and to produce a transparency with

complex amplitude transmittance proportional to the reciprocal of the

complex fields associated with the original eigenvalues. A second
discrete Fourier transform will produce an output matrix that is the

inverse of the original matrix. The necessary nonlinearities can be

achieved with photographic film using the techniques that have been
developed in the past for coherent optical inverse filtering. We intend

to do our work with such methods, although our interest will also be

focused on possible techniques for performing the same operations in

real time without the use of photographic film. One such technique is

the subject of study in another project supported by this grant and

described in the section that follows.

A paper describing our past work on this project will be presented

at the forthcoming International Optical Computing Conference.

IV. WAVEFRONT DIVISION BY FOUR-WAVE MIXING

A new project begun during the past year is aimed at using four-wave<I * mixing to divide one complex wavefront by another complex wavefront.

Past work by others has indicated that, under certain conditions, the
strength of the signal generated in a degenerate four-wave mixing

experiment is proportional to the contrast of the fringes between the

object wave and one of the pump waves [Ref. 2]. Workers in holography

have shown that under such conditions holograms can be used to perform a

division between a complex wavefront incident on the hologram during

reconstruction and the complex object wavefront stored in the hologram

[Ref. 3]. The idea carries over directly to four-wave mixing, in which

the wavefront incident in the probe beam will be divided by the wave-

front carried by one of the pump beams. The chief experimental

difficulty is that, with currently available materials (eg. BSO) used

in the way necessary to achieve division, the reflecteA wave of interest

is extremely weak. This problem may be solved with the availability of

12

Ki ! .t

J~l ,'lk ' " -;F . : -; ,, ;-a T-. | , _ * . . .' ./ : . .. ,. t ,



crystals with higher efficiency and even gain, but for the moment the

ideas must be tested with BSO.

A major effort has been mounted during the past year to develop the

instrumentation needed to measure the relevant properties of BSO at the

very low light levels anticipated. This work has involved the inter-

facing of our Reticon array to a microcompter through A/D converters in

such a way that a large number of measurements can be made, the results

digitized, and the measurements averaged to increase the signal to noise

ratio. At this point the interfacing is done, but the Reticon array

electronics are being repaired after a failure. It should not be too

long until we can take the reasurements needed to ascertain the dynamic

range over which wavefront division can be achieved.

In the meantime we have been developing ideas regarding possible

applications of real-time wavefront division to practical problems. One

fairly obvious application is to inverse filtering or image deblurring,

and indeed the method could be used for inversion of circulant matrices,

and discussed in the previous section. We have also developed some

ideas about how to use the method in the testing of integrated circuit

masks for defects, but it is a bit too early to discuss these ideas at

this point.

As part of our effort to become more familiar with the mathematics

of four-wave mixing, we undertook a study of what diffraction efficien-

cies could be achieved when the object beam contains a speckle pattern,

as it would for any diffuse object. Relevant work in holography wai

found (Ref. 4], but it was discovered that an important effect was left

out of that analysis that should have been included. This effect arises

from the random tilts of the wavefront (associated with the speckle

phenomenon) and the resulting random tilts of the fringes of the inter-

ference patterns in the crystal. These tilts affect the diffraction

efficiency that can be achieved. It was necessary to develop further

information on the statistics of wavefront tilt in q speckle pattern.

Such an analysis was carried out, and based on it, a paper was submitted

to the Journal of the Optical Society of America. This paper has now

13
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been accepted and will appear in the July issue. A copy is appended to

this report.

The major emphasis of our work in the immediate future will be aimed

at collecting the necessary experimental data that will tell us informa-

tion concerning the validity of the ideas about wavefront division.

After the limitations of the method are fully understood, attention will

be devoted to studies of potential applications of the method.

V. STUDIES OF SPECKLE SUPPRESSION ALGORITHMS

Another new effort initiated during the past year has been in the

area of speckle suppression in coherently formed images. Speckle arises

whenever an object containing surface roughness on the scale of the

illuminating wavelength is imaged. Speckle occurs in synthetic aperture

radar images, in medical ultrasound images, and milimeter waves images,

for example. Any method that would suppress this disturbing noise

without while preserving resolution for the desired object information

would constitute a major contribution.

Many methods for suppressing speckle have been studied in the past.

The most obvious method is simply to blur the intensity distribution in

the image with some kind of linear filter, in which case not only is

speckle reduced, but also the desired portion of the image is blurred

with a consequent loss of resolution. The key question to be addressed

is whether there exists another approach to speckle suppression that

does better than simple blurring in terms of the tradeoff between

speckle noise and resolution. Unfortunately, many recent studies of

speckle suppression have not compared the results obtained with those

achievable by simple blurring, and therefore it is not fully possible to

judge the merits of these techniques.

In beginning our work in this area, it was first necessary to

develop accurate methods for simulating the speckle phenomenon

14
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digitally. The problem is far more difficult than might be imagined at

first glance. Simple random phase coding of the object, followed by

low-pass filtering in the frequency domain, yields as serious problem

with aliasing. Our approach has been to convolve a randomly phase-coded

object with an accurate representation of the amplitude spread function

of the imaging system, without resorting to discrete Fourier transforms

at all. Excellent results have been obtained for one dimensional

objects, and we are now extending the method to two dimensions.

The speckle suppression methods studied (so far primarily in one

dimension) have been the following:

1. Simple blurring of the intensity image by a rectangular spread

function.

2. Filtering of the image intensity with a linear Wiener filter

designed for multiplicative noise.

3. Logarithmic or homomorphic filtering, in which the logarithm of the

image intensity is smoothed with a rectangular point-spread

function, following which exponentiation of the image is performed.

4. Median filtering, in which the median of the image intensity values
within a moving rectangular window is chosen as the value of the

filtered image at each point. Several iterative passes through such

filter ultimately yield a so-called "root" image [Ref. 5], which

likewise has been studied as a possible restoration of the speckled

image.

5. Maximum entropy processing, an approach not studied before in

speckle suppression, and adapted to this problem by us. More

explanation of the method is presented below.

In all cases we used the mean-squared error between the filtered

image and an "ideal" image as the criterion of goodness. For the

"ideal" image we considered both the intensity distribution in the

I15
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coherently formed image (obtained from a system with the same limiting

pupil) and the intensity distribution of the incoherently formed image

(again through the same system). The results indicated that all

restoration techniques produce images that are closer to the

incoherently formed image than to the speckle-free coherently formed

image.

The maximum entropy approach to speckle suppression is based on the

following ideas. The image intensity has a Fourier transform that is

identically equal to the deterministic autocorrelation function of the

fields incident on the pupil of the imaging system. Thus the problem of

estimating the image intensity in the presence of speckle can be

regarded as a kind of spectral estimation problem, in which we are

trying to estimate the power spectral density of a random process from

one sample function of that process. If we were able to exactly estimate

the power spectral density of the underlying random process, we would be

able to Fourier transform that result and obtain a speckle-free image

with full the resolution of the imaging system.

At low spatial frequenzies (small separations in the pupil auto-

correlation process), a great deal of spatial averaging is performed,

and the spectral density obtained from a single sample function (i.e. a

single speckled image) is very close to the value that would be obtained

from an average over an ensemble of images. However, at high spatial

frequencies relatively little spatial averaging occurs, and the power

spectrum associated with the single speckled image departs significantly

from that associated with an ensemble average. The maximum entropy

approach simply throws away the high spatial frequencies in the spec-

trum, retaining the low spatial frequencies, and attempts to estimate

the high-frequency portion of the spectrum from the low frequency por-

tion using the maximum entropy method. Details about this method will

be presented in a future publication; for the present the above descrip-

tion should suffice.

Our results to date indicate that the best restorations (best

meaning least mean-squared error) are obtained with a linear Wiener
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filter based on the multiplicative model of speckle. Second in perfor-

mance is the maximum entropy method. A very close third is simple

linear averaging with a rectangular window. Rather far behind in

performance are both homomorphic filtering and median filtering.

Criticisms that can be leveled at these results are two-fold.

First, the results to date are one-dimensional, and the ordering of

performance could conceivably be different in two dimensions. Second,

only a limited set of objects have been studied, and the results may be

object-dependent. We believe that neither of the criticisms will turn

out to be valid, but further work is necessary to verify this belief.

The maximum entropy method used is a rather crude one, and we intend
to test other more sophisticated versions of this approach. The project

is ultimately a sufficiently large one that we intend to seek other

support to carry it on. Hopefully by Autumn of this year other support

will be in hand. However, AFOSR will continue to receive credit for
their initial support of the work, without which it could not have

begun.

VI. PAPERS PUBLISHED AND MEETING PRESENTATIONS

We summarize in this section the various publications and presenta-

tions made during the past year reporting on work supported by this

grant.

A. Papers Published

J.V. Goodman and Moon Song, "Performance limitations of an analog method

for solving simultaneous linear equations", APPLIED OPTICS 21, 502-

506 (1982).

N. Tur, K-C Chin, and J. W. Goodman, "When ii speckle noise

multiplicative?", APPLIED OPTICS 21, 1157-1159 (1982).
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Tur provided guidance for graduate students working on various problems
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* using four-wave mixing was performed by F. Ochoa, who was also partially
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FIGURE CAPTIONS

1. (a) Optical setup for obtaining eigenvaluea of circulant matrices.

(b) Sketch of the matrix transparency.

(c) Sketch of the focal plane light distribution.

2. Method for encoding complex matrices.
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APPENDIX I

I Architectural Development of Optical Data Pocessing Systems
J. W. GOODMAN

SU14MARY The architectural development of optical data processing systems is traced, beginning with the
* foundation established by Abbe and ending with a discussion of new trends. Some speculation on the future

of the field is also included.

I INTRODUCTION

The historical development of optical data process-
ing architectures can be represented in the form of SPATC

a tree. Like a tree, the field has roots, a strong ' INTERI AL

trunk, major branches that subdivide into smaller SERIAL

limbs and new growth. In many cases the branches TIME PARALLEL

intertwine. In this paper we describe the major iTGAING)

structures of this tree and speculate about future
growth. The reader may wish to refer to fig. 1.
showing the structure of this tree, as we proceed OtFI. SYSTOLIC

presented is a personal and subjective one, as it _1
must be in any evaluation of past developments and ACOLgTO-
speculation about the future yet to come. W-L/IA

2 THE roOTS AND THE TRUNK .PCOS.

SYNTHETIC 'N

The lover roots of the optical data processing tree APEUTWREAAOA cONNECTI

ore undoubtedly the work of E. Abbe in the late CUTRONA

19th century (1). Abbe recognised that coherent LERMTm OAEC.ALPALERMvO -- 1-,4ZI JUCHI

optical imaging systems accept and reject various PORCELLO ,
grating structures associated with an object. He '.L =AN

thereby introduced the notion that such system act
* as spatial filters, although this term was not

used. The upper roots of the tree are perhaps best ZERNIKI

attributed to T. Zernike, whose invention of the
phase contrast microscope (21 provides the most
remarkable early example of a successful attempt to
manipulate the spatial spectrum of a coherent
object for useful purposes.

The lover trunk of the tree is the work of Marechal
(31, Taujiuchi (41, O'Neill [5), Lohmann (6). and
others, who were among the first to apply coherent
optics to optical data processing problems, includ- ABIE
isg image deblurring and extraction of two dien-
sional signals from noise. The upper trunk of the
tree is the work of Cutrona, Leith, Palermo and
Porcello (71 at the University of Michigan, who Figure I The tree describing architectures for
first emphasised the generality of optical pro- optical data processing.
cesaors and outlined a multitude of methods for
putting such systems to use in the field of radar
signal processing. 3 THE SYNTHETIC APERTURE RADAR BRANCH

in the early 1960's the tree forked into several One of the first and most important branches of the
branches. We will trace the development of these optical data processing tree is devoted entirely to
branches in the following sections. the processing of signals collected by synthetic

aperture radars.

As shown in fig. 2 (a). an aircraft carrying a radar
Invited paper submitted. to The Institution transmitter and receiver flies a straight-line path
of Radio and Electronics Engineers Australia over terrain of interest. Radar pulses e. trans-
on 30 Nsrch 1682. witted normal to the flight path and the returning

Jowud of Elsrvalra ed keioaks Eqlnerng. Amnwll, - IEAw. & IREEAsat.. Vol. 2,No. 3 S .mUi, JNl
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echoes are mixed with a highly stable local
oscillator in the radar receiver. A point
scatterer on the ground returns a series of echoes FILM
as the aircraft flies past. Figure 2 (b) shows a PLANE

typical record of the returned signal from two -- AMOPpoint scatterers at ifrn ranges, as recorded el S  OPTICA
in the aircraft. It is assumed that the radar SYSTEM

transmits short pulses (although the use of longer R]p k FINAL
"chirp" pulses is also permitted). Range inform-

ation, plotted vertically, is obtained by pulse AZIMUTH RANGE
echo timing, while azimuth information, plotted IMAGE IMAGE

horizontally, records the complex amplitudes of the
fields received from scatterers at each range from
the flight path. From this data it is desired to Figure 3 Range and azimuth image locations.
form an image of the terrain reflectivity. Note
that the record from a single scatterer takes the
form of a one-dimensional zone plate, with a focal CONICAL CYLINDRICAL SPHERICALLENS LENS LNSLT

length that depends on the distance of the scatterLESENLNSLT

from the flight path.

I ) FLIGHT

FILM IMAGE

PLANEPLE

AREA Figure 4 An early optical system for processig
THE T ENN A synthetic aperture radar data. Note

the output slit.

(a)
An improved optical system, called the tilted plane
processor, was described in 1972 by Kozma. Leith and
Massey [9). As shown in fig. 5, an anamorphic
telescope system is used, together with a tilted

AZIMUTH input plane and a tilted output plane, to bring the
range and azimuth images planes into coincidence
with a magnification that is no longer range
dependent. The need for the output slit is thus

I I eliminated and significantly better processor
* RANGE performance is obtained.

The tilted plane processor remains today one of the
most sophisticated processors in the entire field of

(b) optical data processing. It has demonstrated a
continuing usefulness, even in the face of improved
capability of digital processing systems.

Figure 2 (a) Synthetic aperture radar data

collection. (b) Record obtained for TILTED TILTED
two scatterers. INPUT PLANE OUTPUT PLANE

When short pulses are used, the image in the range '--""

direction lies at the file on which the data was ANAMORPHIC
recorded. however, due to the dependence of the TELESCOPE
soms-plate focal lengths on range, the azimuth [.
structure of the image lies in a tilted plane (
behind the film. as shown in fig. 3. The purpose AZIMUTH RANE OUTPUT
of the optical processor is to bring the range and IMAGE IMAGE IMAGE
azimuth images into coincidence, as can be accom-
plished by means of an anamorphic optical system.
An early version of such a processor [81 used a Figure 5 The tilted plane processor. Note the
conics lens at the film plane to move the azimuth absence of an output slit.
image to infinity, a cylindrical lens to the right
of the film to move the range image to infinity and
a spherical lens further to the right to bring the 4 TH3 OPTICAL PATTERN RECOGNITION DRANCN
two infinitely distant images back to coincidencei (see fig. 4). However, the image so-formed has a A second major branch of the tree grew out of the

magnification that is range dependent and therefore potential application of coherent optical system to
an output slit was required. As the input data pattern recognition problem. The oaiings of this
film and the output recording film are moved in branch lie in the work of Tender Lugt 110) in1964.
synchronism, an image of the reflectivity of the who originated and demonstrated the first highly
terrain Is recorded. practical method for gemarating complex matched

1 -.:J~m, r r~ . ., .... , . .%: "
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filters for two-dimensional objects. The optical the Fourier transform of the radial structure of the
filtering system is the standard one shown in fig. image is identical with a so-called Hallin transform
6, in which input is introduced by means of film or and the magnitude of the Nellin transform is
a real-time light valve, the first lens Fourier invariant under changes of scale size (magnification
transforms the input fields, the filter placed in of the input). Simultaneously the optical system
the focal plane modifies the Fourier spe.ctrum of Fourier transforms the angular structure of the
the object and the second lens inverse transforms input. With suitable care to take account of edge
the modified spectrum to produce a filtered output effects. rotation of the object is equivalent to
image. Vander Lugt's important contribution was translation in the angular direction. Since matched
the origination of the idea of an interferometric- filters do respond properly to translated versions
ally recorded (or holographic) Fourier-plane of the structures to which they are matched, the
filter, which could control the complex amplitude Nellin matched filter will respond properly to on
transmittance through the focal plane in an input object regardless of its scale size or its
extremely flexible way. In particular, a filter angular rotation. Unfortunately the process of
can be generated that has as its amplitude crans- dtsensitising the system to magnification and rotat-
mittance the complex conjugate of the Fourier ion has introduced a sensitivity that was not
spectrum of an object from which the filter was present originally, namely to the position of the
made. Thus if a certain object o(xy) has as its object in the input field. The Hellin matched
Fourier spectrum the complex function O(fxsfy). a filter will not respond properly to objects that
filter with amplitude transmittance have a different position in the input field than

they had when the "etched filter was constructed.
t(x,y) - 0*(fx,fy) (1) Casasent and Psealtis [121 solved this problem by

entering into the system only the posr apet-r w
can be constructed. Such a filter is said to be of the input pattern, a quantity that is independent
' $matched" to the object o(x,y); it will produce a of the position of that pattern. However, the
bright output spot of light at any position where discarding of all phase information in the amplitude
the particular object O(xy) is present in the spectrum results in a decrease in the ability to
input field. The Vander LugSt filter has played an discriminate between different patterns. As a
important role in the development of optical consequence the problem of simultaneous position-.
matched filtering approaches to pattern size-. and rotation-invariant optical pattern
recognition. recognition has not yet been solved in a fully

satisfactory way.

~--~I- f- f -- 4-- f -4

SOURCE INPUT FILTER OUTPUT

SOURCE INPUT DETECTOR
Figure 6 Standard coherent optical processing SO CEIUTEETR

system. ARRAY

Figure 7 Diffraction pattern sampling system.
While the idea of the interferometrically generated
filter for matched filtering applications has had
an extremely large intellectual impact, it must be The "pattern recognition" branch has a sub-branch
said that after nearly 20 years of research the that is particularly worthy of mention. We refer to
applications of such filters are disappointingly so-called "diffraction pattern sampling" systems
limited. The difficulties lie not with the concept which base pattern recognition decisions on the
of the interferometrically generated filter, but structure of the optically obtained Fourier trans-
with the use of a matched filter. While the form of an input 113). The eysteM is illustrated in
matched filter response is not affected by pure fig. 7. The input is presented to the system as a
translation of the position of the object at the transparency. The coherent optical system Fourier
input (the output spot simply moves with the transforms that input, displaying an intensity
input), such filters are exceedingly sensitive to distribution across the back focal plane that is the
scale size and rotation of the object to be power spectrum of the input. A detector consisting,
recognised. That is, if a matched filter is for example, of combinations of rings and wedges, is
constructed for recognition of an object with one used to extract a reduced amount of data from the
particular scale size and rotational orientation, power spectrum. The powers measured by these
the filter will usually produce very little detector elements are then digitised and digital
response to that same object presented at the input pattern recognition algorithms are applied to
with a different scale size or orientation, classify the input. This system has several prop-

erties that make it potentially very useful. First,
Attempts to overcome this undesired sensitivity the detector in the focal plane performs an all-
have been clever but not very successful. We important reduction of information, presenting the
mention in particular the elegant 1ellis filtering digital system with data of reduced complexity but
approach of Caseent and Psaltis 111). The input still retaining sufficient information for the par-
data is presented to the processor in polar co- ticular task at hand. Second, the system combines
ordinates, rather than rectangular coordinates. In optical and digital competations in an appropriate
addition, the axis corresponding to radial position way, Vith each system doing computations for which
Is intentionally strected by a logarithmic spatial it is particularly well suited. In spite of the
distortion. As a consequence, it can be shov that many nice features to recommnd this approach to

.' , "
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142 ARCHITECTURAL DEVELOPMENT OF OPTICAL DATA PROCESSING SYSTEMS - Goodman

this approach to pattern recognition, it has spatially varying phase modulation. Figure 8 (a)
received less use than it deserves. Perhaps the shows the so-called Raman-Math regime of operation,
increasing emphasis on robotics and computer vision in which the cell thickness and spatial period of
will lead to a renewal of interest in the the acoustic signal are such that the cell acts as a
diffraction-pattern sampling approach. "thin" phase grating, generating a multitude of

diffraction orders, each with a different props-
5 THE ACOUSTO-OPTIC SIGNAL PROCESSIG BRANCH gation angle and a different optical frequency; only

the zero and first order beam are shown. Figure 8
A third major branch of the optical data processing (b) shows the more common Bragg regime, in which the
tree derives its strength from developments in cell acts as a "thick" phase grating, with only one
acousto-optic device technology. The branch begins or two diffraction orders of significant intens-
in the early 1960's with the work Rosenthal (141, ity and requiring illumination of the cell at the
Slobodin (151, and Arm, Lambert and Weissman 1161 Bragg angle in order to produce a strong component
on the use of scousto-optic devices for signal of diffracted light. Early attention to devices
processing. An excellent review of this area is operating in the Rlaman-ath regime soon turned to
found in reference 17 and accompanying papers in devices operating in the Bragg regime, where wider
the same issue. bandwidths can be achieved.

fThis scousto-optic signal processing branch has had
remarkable growth in recent years. This growth has

0 been caused partially by advances in the technology
of acousto-optic cells and partially by development

1' of new architectures in which such cells can be
V" '10 used. The branch can be said to have forked into

two major sub-branches, space-integrating processors
and time-intergrating processors. Each of these
sub-branches has a complicated branching structure
and the growth is so dense that the two are at least

t V M partially intertwined.

V" Most important in the space-integrating lineage is
the Bragg-cell spectrum analyser, shown in fig. q,

(a) which has enjoyed a success in application that is
beginning to rival that of the tilted-plane pro-

!cessor mentioned earlier (although the applications
are quite different). The Fourier transforming

properties of coherent optical systems &reused here
to perform spectrum analysis of temporal signals,
the temporal signals being introduced into the

S98 28 processor as spatial signals travelling through the
input acousto-optic cell. Coherent optical spectrum
analysers with approximately one Ght of bandwidth.1i and time-bindvidth products of approximately 1000
are now in use in a number of laboratories and the

0 number of lover performance systems is even more
plentiful. Integrated optic versions of such
spectrum analysers are also being constructed, based
on surface-acoustic-wave input of RF signals.

BRAGG
(b) CELL

Figure S (a) Acousto-optic cell in the Raman-
Nath regime. (b) Acousto-optic cell

* in the Bragg regime.

Before beginning a discussion of acousto-optic , DETECTOR
signal processing architectures, it is perhaps IDETCT,

worthwhile to present a small amount of background ARRAY
on the acousto-optic devices themselves. Figure 8
illustrates acousto-optic cells in two different
modes of operation. In both cases, an electrical

* signal v(t), Consisting of an amplitude and phase

modulated carrier,

v(t) - A(t)co[2iv ot + ()j, (2)
Figure 9 Bragg spectrumianielIser.

is applied to an acousto-optic transducer,'which
launches an acoustic wave in the transparent medium
of the cell. The presence of the acoustic signal A second architecture in this me space-integrating
the cell, with the result that an optical signal which one or even two Bragg cells may be used to

propagating across the sound beam experiences perform correlation of two signals. A typical

A I
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configuration is shoe in fig. 10. The r.f. signal by the length of the time integration, which in turn
vl(t), having complex envelope is limited by the dynamic range of the detector.

The space-bandwidth product of the processor limits
At) , At) exp[j0J(t)I (3) the range of achievable delays for which the cross-

correlation function can be measured.
where A(t) and 0(t) are the amplitude and phase
modulations of vE(t), is to be correlated with a
second signal v2 x) (complex envelope B(x)) whichis

stored as a fixed reference function on a mnask.
Using the optical system shown in the figure, the
current generated by a point detector located on
the optical axis in the output plane takes the form

i d (t) A(x-Vt) (x) ract(x/W) dx 2 (4)

where V is the velocity of propagation of the
acoustic wave in the input cell, V is the length of
the illuminated region of the acoustic cell and
rect(x) is defined to be unity for -4cx<i and zero Figure 11 Time-integrating correlator.
otherwise. As the name implies, the correlation
integral is performed over space, while different
values of delay are realised in time. An alternate form of the time-integrating correl-

ator, as introduced by Kellman 1201 and Turpin (211
is shown in fig. 12. In this case one of the

INPur STORo signals is introduced as a time modulation of the
REFERENCE intensity of an LED or laser diode source, while the

second signal is introduced via an acousto-optic
OE-ECTOR ell. The spatial filter shown in the focal plane

of the second lens blocks all but the plus first and
zero diffraction orders and shifts the phase of the

zero order by 90 degrees with respect to the first
order."tl

Figure 10 Space-integrating correlator. ORAGG

The sub-branch representing time-integrating
correlators begins in 1972 with the patent of R.N.
Nontgomery (181. A more widely known developmentof
these ideas is found in the work of Sprague and 1"C' ...TIAO
Koliopoulos (191 in 1976. This architecture, which I(t ARIATE
is illustrated in fig. 11. uses integration in time

Yfor performing the correlation integral itself,
while using space to represent various values of
delay. One of the signals to be correlated, vj(t), Figure 12 Tine-integrating correlator with a
is input as a traveling acoustic wave in the first modulated source.
cell, while the second signal is introduced as a
counterpropagating wave in the second cell. The
Bragg effect results in only a xero order and a A close relative of the time-integrating correlator
negative first order being transmitted by the first is the triple product processor of Kelluan 1221.
call, while each of these orders is split into a which allows the more general class of two-
zero order and a negative first order by the dimensional operations
second cell. The sero-order beams are both
blocked. The first-order beams, which are at the gd(xy) a bias terms
sme optical frequency, are both passed and are
allowed to interfere on a time integrating detector IJ V(t) v 2 (t-x/V) v3(t-y/V)dt (6)
array at the output. The spatial distribution of T
time integrated intensity takes the form

to be performed.
9(x) bias terms

The acousto-optic signal processing branch is an
* Re {J A (C-/V)B(tCx/V) dt () extremely healthy and vigorous one, with continued

(' Ic) growth at the tips of the branches. There has
T recently been a tendency for the space-integrating

* where T represents the total integration time and time-integrating branches to grow back together,
(limited in practice by bias build-up). Note that with processors being proposed that use both types
for each different value of x, the integrated of integration simultaneously.
intensity is determined by the value of the cross-
correlation function, evaluated at time delay 2x/V. 6 DICRETE OPTICAL PROCESSORS

The significane of the time-integration architect- A relatively young vigorous branch of the architect-
ur is that the tim-bandwidth product achieved is ural tree represents activities in the development
mo longer constrained by the space-bandwidth of discrete optical processors. Such processors can
product of the processor but rather is determined perform the discrete analogs of any couti-uomo-timse

--M~~~~~~~ M
"
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linear operations. The general type of operation
performed is a mtriz-vector product of the form

MATRIX CCD
y - Ax MASK DETECTOR

where x is a length H input column vector, A is an
NxM matrix and y is a length N output column
vector. It should be emphasised that, while the
systems of concern are discrete (i.e., based on
discrete mathematics), they are none-the-less
analog systems and subject to the usual limitations
on accuracy and dynamic range typical of such LED
systems.

Early versions of optical matrix-vector multipliers DIRECTIONOFREHARGE
were based on the use of coherent light [23-5). OF CHARGE
Incoherent implementations vere also devised TRA fSFER
[26,27).

However, a moat significant advance in this area
came from the work of locker [28], Bromley [291 and
Honaban at at [301, vho devised a method for
matrix-vector multiplication using a single 1(t) ,2
Light-emitting diode (LED) source and a two dimens-
ional charge-coupled-device (CCD) detector array,
as illustrated in fig. 13. This development is i(t I
represented by an entire sub-branch in our tree.
In explaining the basic operation of such a system, t
we assume for the moment that all elements of the
input vector x and the matrix A are non-negative
and real, so that they can be represented by light Figure 13 Serial incoherent matrix-vector
intensities or intensity transmittances. The multiplier.
elements of the input vector x are entered into the
system in time sequence as pulses with intensities
proportional to the desired values. The light from A system of the type described above is capable of
each pulse diverge and falls on the entire matrix multiplying a matrix of approximately 500 x 500
mask, which contains an array of cells with intens- elements times a 500-length vector of non-negative
ity transmittances proportional to the elements of and real elements with clock rates of approximately
the desired matrix. The light transmitted by the lOiz.
mask falls on the two-dimensional CCD detector.
The clocking of the CCD device is such that charges Incoherent systems of this kind are not restricted
accumulated in a given cell are transfered one to performing operations involving only non-negative
column to the right (i.e., out of the paper in the and real quantities. It is possible to code any
figure) along a fixed row before the occurrence of bipolar real quantity and indeed any complex-valued
the next optical pulse and in this way the contri- quantity in terms of two nonnegative and real quan-
butions of all pulses are accumulated, row by row. tities, although in the latter case certain bias
For example, if the first pulse represents the terms must be subtracted from the computed result
vector element x1, and hk,1 represents the element [311. We do not dwell on the details here, it being
of the matrix mask in the kth row and first column, sufficient to say that fully complex operations can
the charge deposited in the kth detector element of be performed at the price of doubling the size of
the first column is proportional to the matrix and the length of the vectors.

Qk(l) - hk-11l. A second sub-branch of the branch of discrete
optical processors is represented by a closely

related but faster incoherent discrete system intro
This charge is clocked one column to the right and duced by Goodman, Dias and Woody [321 in 1978. In
the second pulse, with intensity proportional to this case, as illustrated in fig. 14, the elements
the vector element x2 is emitted. In the second of the input vector are introduced in parallel on a
column and the kth row, the total accumulated array of LED's and the elements of the output vecto
charge becomes are detected in parallel on an array of independent

detector elements. The first box labeled "optics"
(  hk,lXl + hk, 2x2. spreads the light from each LED into a vertical

column, which illuminates a single column of the
matrix mask. The second box labeled "optics" ploc

After M pulses and N charge transfers, the total on each photodetector a light intensity proportio
charge accumulated in the kth element of the last to the sam of the light intensities transmitted by
column of the detector is an entire row of the matrix mask. These two opera

ions result in detected signals proportional to th
desired elements of the output vector y. Vers ions
of this system based on discrete optical component

Qk(M) I hkpXP (i.e., anamorphic systems of lesets) and multi
pO optical waveguides have been built (331. The chie

disadvantages of the system are the relatively she
lengths of the vectors that can be accommodated a

which is precisely the kth element of the desired the absence of any data compression or information
output vector y. In principle, all N elements of reduction in the operations performed. The latter
the output vector are available in parallel but fact results in exceedingly high rates with which
only after N cycles of the clock, data pours out of the system (potentially as high

S -V



as 10 G~a or more for a 100-channel system). eigenvectors of matrices have been proposed [35, 361
and no doubt other clever applications of this type

4 of processor will be found in the future. However,
such processors have not yet been fully analysed

oLC ATU T from the point of view of accuracy and numerical
MASK ASAV stability. The chief d*isadvantage of optical pro-

cessors in these applications is clearly the limited
accaracy associated with any analog approach to

I computation. This disadvantage will undoubtedly

" OTC limit the kinds of matrices that can be successfully
dealt with in this fashion 137).

The last sub-branch from the discrete optical branch
is one we will call "systolic processors". This

Figure 14 Parallel incoherent atrix-vector sub-branch is exceedingly young and immature but
multiplier, also exceedingly interesting as a novel approach to

optical computation. The only published works on
optical systolic processors at the time of this

An exceedingly interesting development, constitut- writing are those of Caulfield. Rhodes, Poster and
in$ an extension of the sub-branch discussed above, Horvitz [381 and Casesent [391.
is the use of the parallel incoherent matrix-vector
multiplier in an iterative mode as a means for
solving simultaneous sets of linear equationsa
(341. In this case we are given a set of simultan-
eous linear equations of the form

where N is a known matrix and c is a known vector y*aM y
and our goal is to determine the elements of the
u nknown vector x. A feedback arrangement as
illustrated in fig. 15 can be shown to result (a)
ideally, after a sufficient number of iterations,
in convergence of the output vector to the desired
solution x. This innovation is significant for
optical data processing for the following reason.
Nearly all previous uses of optical processing have 0 a 2 2
been for performing operations such as convolut-
ions, correlations and Fourier transforms, where
the number of elementary operations required is of &12  a21
order N2 (N being the number of degrees of freedom
of the input) but for which fast algorithms exist a
reducing the required number of operations for a all

digital implementation to order Nlog. The problem
of solving a set of N simultaneous linear equations
for the values of N unknowns is fundamentally an x2 a N1
operation requiring order N3 operations and, in the
general case, no fast algorithms exist. Any appli-
cation of optical processing to the domain requir-
ing N3 operations has potentially great rewards,
for in such cases the "crutch" of fast algorithms
is no longer available to the digital hardware that • y! I Y2 a
competes with the optical processor and the
inherent speed and parallelism of the optical (b)
approach has its greatest 

significance.

DATA Figure 16 (a) Basic building block of a systolic
vECTOR processor. (b) Thosa processors

Ag dinterconnected in a systolic array.

+ The systolic processor architecture is the invent ion
of R. T. Kung and C. U. Leiserson [1,0) and has been
considered primarily as an architecture for VLSI

ARAY" implementation. There are in fact many different
architectures for systqlic processors, depending on

the operation to be performed. Ve consider here
only the simplest of these, nemely one designed to
perform the matrix-vector product discussed

Figure 15 Incoherent matrix-vector multiplier earlier. The basic building block of the systolic
with feedback, processor is illustrated in fig. l6(a). An input x.

representing one element of the input vector,
arrives from the left. Simultaneously a weighting

The area of iterative optical processing remains an coefficient a. representing an element of the matrix

active one, with considerable potential for useful A, arrives from above. The processor, represented
contributions. *Recently optical implementations of by the box, receives the input x from the left and
iterative methods for finding the eigenvalues and passes it unchanged to the right along the upper



Input mfie; simultaneously it accepts the value y (input) and the CCD device (output). with the
coming from the right on the output line and coupling supplied by the strobed LED sources.
transforms it into the new value yrax, which
continues to pass to the left. Another version of an optical systolic processor is

under construction at Stanford Uiversity (411. The
Figure 16(b) shove three basic processors connected processor, which we call a fibro-optie soattering
together in a structure that will multiply a 2x2 proceaor, is illustrated in fig. 18. It consists of
matrix A times a length 2 input vector x, producing two single-mode optical fibres weakly coupled by a
a length 2 output vector y. We can regard this series of fibre-optic couplers. Ideally the
structure as being a pair of coupled delay lines in couplers should be changeable with time but, as
which input and output signals counter-propagate described shortly, useful signal processing opermt-
and with coupling coefficients that depend on the ions can be performed even with fixed couplers. The
elements of the matrix A. The elements of the elements of the input vector are entered as pulses
matrix are displayed above the processors and are of varying intensities on the input fibre, while the
assumed to arrive with a timing represented by output elements accumulate as they propagate along
their vertical distance above the processors. Any the output fibre and emerge in time sequence. If
time interval represented by a dot in this diagram the couplers have fixed coupling coefficients,
contains a coupling coefficient that is immaterial, rather than being time changeable, the structure of
since it will not affect the output signals of the matrix A is effectively constrained to be of
interest. The input data is entered from the left Toeplitx form. i.e., the elements along any one
as a series of values, one every two cycles. The subdiagonal are all identical. Such forms occur
first input vector element, %I, passes through the when the matrix-vector operation represents a
first processor, generating an output propagating convolution or a correlation, rather than a more
to the left on the output line. This value is not general time-variant operation.
of interest and is ignored. The input element then
passes to the second processor, arriving coincident
with the arrival of coupling coefficient all. The
result is an output value alj1x propagating to the Y2 YJ

left on the output line. This value arrives at the
processor on the far left at the end of one cycle OUTPUT
period. Meanwhile, a second input element x2 has X2 XFIBER
been launched on the input line and arrives at the
first processor simultaneously with the arrival of INPUT
the above partial output. The coupling coefficient FIBER
at the first processor is &12, resulting in a
signal at the final output on the left of - 812 0

Yl a 1 1  12x2

In a similar way, the various coupled inputs yield
s second output signal of the form

Y2 " a2lxl + 822x2,

i.e., the second element of the output vector y.
The concept can clearly be extended to larger
matrices and vectors. "21

LEO GRAGG DETE CTOR

AW*AY CELL ASPAY

72 Y1* 1 Figure 18 The fibre optic scattering processor.
- -1

2 • ! a l H OCELAY

0 8120 ED-It is difficult to avoid the feeling that these new• It*f architectures are but the beginning of a branch that

will soon be developing a complicated network of
" * offshoots, moot of which are impossible to fully

visualise or imagine at this particular point
intime.

Figure 17 Optical systolic matrix-vector 7 SOME SPICULATION ABOUT THE FUTURE
mult iplier.

We have surveyed the past and present architectures
of optical data processing systems. Perhaps in

An optical analog version of the systolic matrix- closing we will be permitted to speculate a bit
vector multiplier has been proposed in reference 38 about the future.
and is illustrated in fig. 17, again for the simpleA
case of a 2W2 matrix. The elements of the input A reasonable starting point for this speculation is
vector are entered as propogating pulses of short consideration of the weak and strong points ofK' duration in an acousto-optic cell. The matrix optical processors. A chief weakness of such data
elements are input in proper time sequence as processing system is, in our view. their inherentintensity modulations of LED's in a parallel lack of accuracy, arising from the fact that they

array. The output elements accumulate as moving are purely analog in nature. A further weakness is
charge packets on a clocked CCD device, fed by the limited number of different types of basic
signals from a parallel stray of detectors. The operations such systeme can perform, generally
two delay lines involved are the acousto-optic cell additions, subtractions, end multiplication*. The

Jl,(Eksfsnd Ekaoe, EmngeWng. Ausine - 1E Aust. A IREE Awn,. Vol. 2. No. 3 ~ls
j ________________________7



speed with which computations can be performed in a
highly parallel fashion.

By comparison, digital electronic processors can
achieve accuracies Limited only by the number of
bits retained in the computation. In addition,
their repertoire of types of basic operations is
nearly unlimited.

The speed advantage associated with optics needs CHIP 2
closer examination. The input and output devices 

I

used with such systems are usually electronic in
nature and therefore there is generally an elec- HOLOGRAPHIC
tronic bottleneck, limiting the rate at which data OPTICAL
can enter and exit the system. These electronic ELEMENT
bottlenecks are partially compensated for by the
parallelism with which the analog computations are
performed within the processor. The root of this (a)
inherent parallelism lies in the relative ease with
which optical signals can be used to provide
muLtiplo independent paths between different
computational components of the processor (e.g..
transparencies and lenses). Thus the strength of
optics lies in its ability to provide intosornect- HOLOGRAPHIC
ions of an extremely complex type between different OPTICAL
computational elements, while the strength of ELEMENT
digital electronics lies in the ability of its
computational elements to provide flexible operat-
ions with high accuracy.

The question now quite naturally arises as to
whether it might be possible to combine the good

cessor. We suggest that the answer in the future

will be affirmative. We envision a processor that
is basically an electronic chip or a series of

chips, with digital electronic computational
elements but with interconnections between elements CHIP
and/or between chips provided by optics. While the
idea of using optical waveguides on a chip may have
merit in some situations, it is our view that there (b)

is too Little difference between metallic inter-
connections and waveguides for this change to be of
paramount significance. Rather we would speculate Figure 19 (a) imaging interconnections between
that imaging interconnections are worthy of two chips by means of a holographic
consideration. To illustrate what we mean by this optical element. (b) Imaging inter-
term, consider the geometry shown in fig. 19(a), in connections within a single chip.
which two chips are communicating by means of
imaging interconnections. At various points on the
chip on the left, computations have been completed While the possibility of having sources or modulat-

and are ready for transfer to various points on the ors on the chip may seem remote at this point in
chip on the right. The chip on the left is assumed time, there is a subset of problema for which they

to contain several tiny sources of light or, in the are not needed in integrated form. This subset

case of light supplied from off the chip, several consists of data processing problems requiring

tiny modulators. The chip on the left is assumed enormous amounts of parallel data input to the

to contain several detectors at different locat- processor but comparatively little data flow out.
ions. Each source (or modulator) on the left is An excellent example of this type of processor is
them imaged onto an appropriate set of detectors on the systolic array described in the previous

the right. The imaging element is certainly more section. Let the input and output vectors be of
complicated than a simple lens. It might be a length V, and the matrix be Nx. The elements of
holographic optical element, the input vector can be entered over a serial elec-

tronic communication line and likewise the elements

Of the many problems with the above idea that come of the output vector can leave the chip via a single
to mind, chief among these is perhaps the fact that serial communication line. however, the (2N-1)
we do not know how to integrate optical sources on processors must receive an average of X different

silicon. As indicated, however, it is not actually matrix elements every clock cycle, thus requiring
necessary to have sources on the chip, only either an enormous number of parallel input channels
modulators that can modify externally supplied or a large degree of multiplexing, which will slow
light. Nonetheless, these modulators must be down the speed of operation.- To provide parallel

exceedingly small in shse and capable of high-speed electronic input channels requires that the chip
operation with very small power dissipation. have a very large number of pins. This rather

severe price can be avoided if data is input via a

The ideas presented above can be extended to the corresponding number of imaging optical inter-
case of a single chip.s shown in fig. 19(b). In connections, as shown in fig. 20. It is only

this case the holographic imaging element is necessary to integrate detectors on the chip. The
reflective mnd resides above the chip. need for a large number of bending pads is elimin-

ims - 1E Aut. d IREEAust., Vol. 2.No.i . tebw. 1933
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ated. Wihile parallel electronics are needed to Filtering Systems", Trans. IE. Vol. IT-6.

drive the light sources that are imaged onto the 1960. pp. 386-400.
chips such electronics can be relatively . CroaLJ.Let,..,Prlo,..an
macroscopic in s ize, free from the constraintsS. Ctn. J0LehoENFrlo .. ad

4present in a singLe-chip environment. The prime Vivian, W.S., "On the Appliction of Coherent

computational elements of the architecture remain Optical Processing Techniques to Synthetic-
in the single chip environment, as needed for high Aperture Radar", Proc. IEEE, Vol. 54, 1966,

sedadlwpower dissipation. pp. 1026-32.

9. Rossa. A.. Leith, E.N. and Massey. N.C.,

OPTICAL INPUT FOR "Tilted Plame Optical Processoro, Aplied

MATRIX ELEMENTS Optics, Vol. 11, 1972, pp. 1766-7

10. Van der Lugt, A.B.. "Signal Detection by
complex spatial Filtering" Trans. 1313,
Vol. IT-1O, 1964, pp.

11. Casement D. and Psaltis, D,0 "New Optical
Y, -7 /IVTransforms for Pattern Recogition". Proc.

1133, Vol. 65, 1977, pp. 770-84.

/ 12. Casaeents D. and Psaltia, 0.,. "Position Rotat-
ion and Scale invariant Optical Corre lation",

'L Applied Optics, Vol. 15, 1976, pp. 1795-9.

SYSOLI PRCESOR13. Thompson, 1.J., "Hybrid Processing Systems - An
SYSTLIC ROCESORAssessment". Proc. Ing., Vol. 65. 1977,

pp. 62-76.

Figure 20 Replacement of pins by imaging 14. Rosenthal, A.B.. "Application of Ultrasonic
optical connections. Light Modulat ion to Signal Recording, Display.

Analysis, and Communications". Trans. IRE,
Vol. 113-8, 1961, pp. 1-S.

The above ideas are clearly speculative but they do
provide one possible scenario for future directions 15. Slobodin, L.. "Optical Correlation Technique".,

in optical data processing. Here it is no longer Proc. IEEE, Vol. 51. 1963, pp. 1782.
optics that does the actual computing but the role
of optics as a means for interconnections is no 16. Arm, N., Lambert. L. and Weissman, I.. "Optical

less Important than that of the digital electronic Correlation Technique for Radar Pulse Compress-

processors that perform the numerical computations. ion", Proc. IEEE. Vol. 52, 1964, pp. 842.
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Statitical Properties ot Ray Directions In a Monochromatic
Speckle Pattern

Ellen Ochos
Joseph W. Goodman

Information Systems Laboratoy
Department of Electrical Engineering

Stanford University
Stanford, California 94305

ABSTRACT

~1 The statistical properties of the spatial derivatives of the phase of a mono-
chromatic speckle pattern are studied. Initially, a one~dimeauiomal probability
density function for the derivative of the phase is obtained and compared to the
solution for the analogous problem concerning instantaneous frequency of Bar-
rowband Gaussian noise. Subsequently, a two-dimensional probability density
function is derived which depends on the two first and three second spatial
moments of the illumination intensity distribution of the scattering object. Some
sample intensity distributions are considered for which explicit expressions for the

N probability density function are given.
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APPENDIX II

Statistical Pioperties of Ray Directions In a Monochromatic
. .Speckle Pattern

Men Ochos

Joseph W. Goodman

Information Systems Laboratory
Department of Electrical Engineering

Stanford University
Stanford, California 94305

Introduction

Speckle patterns arise when highly coherent light is transmitted through, or reflecte from,

an object with a surface that is rough on the scale of a wavelength. It has been found fruitful to

treat the fields present in such a pattern as a random process, the randomness being over an

ensemble of macroscopically similar but microscopically different rough surfaces. In this paper we

are concerned with a very specific statistical property of such patterns, namely the statistical dis.

tribution of geometrical ray directions contained in the scattered fields. Equivalently, we are

interested in the joint probability density function of the two components of the gradient of the

jphase distribution in a speckle pattern.

The statistical distribution of ray directions is of interest in a number of practical problems.

For example, when a hologram is formed by interference of a plane reference wave and a wave

generated by a diffuse object, knowledge of the statistical distribution of phase slopes allows

specification of the statistical distribution of local spatial frequencies on the recording medium. If

the hologram is thick, then this information also allows specification of the local tilt of the fringes

within the emulsion, a quantity that influences the average diffraction efficiency that can be

obtained. Finally, the results may be of interest in the field of adaptive optics, since many wave-

front sensors measure the gradient of the phase of the incoming wave.

To our knowledge, the statistics of ray directions in speckle patterns have not been dis-

cussed in the literature before. Neither of the two general surveys of this field discusses the prob-

lem 11, 21. The most closely related works are those of Ebeling 131 * who investigated the

. . . .. " . __ ]-4
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statistical properties of the spatial derivative (along one arbitrary direction) of the amplitude and

intensity in a speckle pattern, and Ohtsubo 141 , who studied the zero-crossing rate of the deriva-

tive of the intensity of a speckle pattern. Also worth mention are the classic works of Longuet-

Higgins 151 , who studied the statistical properties of the derivatives of wavefrouts, with Gaussian

phase deformations but constant intensities. Our problem is signifcantly different in that both

the intensity and the phase are random, and the phase statistics we not Gaussian. Finally, we

should mention that our problem has an exact one-dimensional analog that has been studied by

communication theorists, namely the statistical distnbution of the instantaneous frequency of nat-

rowband Gaussian noise (see. for example, reference 16]). While the methods of solution of the

one- and two-dimensional problems are similar, the two-dimensional solution is more complex,

and the solution in two dimensions cannot be deduced simply from knowledge of the result in one

dimension.

Background

A monochromatic speckle pattern can be described as a sum of contributions from N

independently-phased, coherent radiators. A single component of one polarization component of

the electric field E at time I has the form

N 

(where j .t and Ok are the amplitude and phase of the kth radiator and are functions of x, V,

and z. 0 represents the initial phase and is a random variable uniformly distributed from -w to a.

Separating E into real and imaginary parts, we have

E(z,y,s,I)- r + i (2)

- EI 0h I j(CosA€o(W I + 9i inU&sin(&I+ 0)) + i(cos~sin(Wi+ 0)+ sn1hosdI+ 0))l

- IlIcos(WI+ 0) + isin(WI+ 0))

where 0 is the phase of the resultant wave. Statistical properties of speckle are studied using the

following assumptions:
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(1) I '. I, .are statistically independent of each other and of all other I j. for j y~k.

(2) 0, is uniformly distributed from -z to x.
'4

Under these assumptions, and additionally letting N tend to infinity, it is seen that r and i are

jointly Gaussian random variables. Goodman Ill has derived the statistics of the electric field

amplitude and intensity. Letting <-> represent an ensemble average (ie. the average over many

independent diffusers) we End the covariance matrix is determined to be

<rr> <rij (3)

and thus

p(r~i)- exp(-r ) (4)
W2 202

* Note that v2 can be written as R,(Az=O,A =O) where R1, denotes the correlation of with g.

The transformation

, - /Ycos(W8 + 0) (5)
' i - 4Isin(wt+ #)

is used to find

Probability Density Function of Slop" in One Dimenslon

1Higher-order statistics involve the real and imaginary parts of the electric field at more than

one point. Our ptoblem concerning the slopes of the real and imaginary parts of the electric field

can be treated in the manner of second-order statistics because of the linearity of the derivative

process. Initially, the discussion will be restricted to variation In the x-direction only; later, varl-

.4 ation in the p-direction will be included as well.
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Consider r(z1 ,zt), i(z,,Y,z,t), r(x2 ,V,zt), and i(z 2 .y,z,t). The central limit theorem

tells us they are jointly Gaussian random variables (71. It is also true that r(z,gr,I),

r(zyzf), i(xzl), and - i(z,y,at) are jointly Gaussian 18. p.4761. As a shorthand
033

notation, -Lf (3,YZl) will be written as ,l(z,y,z,t). The general form of the distribution den-

sity function is 18, p. 255)

p (r ,i.,...) - 4w'/'det exp{- 1IM'1i 7)}  (7)

where

[ I1- r i , i 8)

and

<rr> <ri> <rr,> <ri>,

<it> <ii> <ir,> <k,>
M= (9)

<rr> <rsi> <rr,> <ri,>

<ir> <ii> <ir,> <ii,>

I

Following Ebeling 131 we note two relations in order to evaluate elements of M:

R (,(Ax)- <A(x1,,z)A(X2,YZ>< e'> e1" (10)
=0

since <el"> - 0. Note A(z,vz) is the complex amplitude of the electric field given in

Eq. (1). Therefore, equating real and imaginary parts, we find that

R,,(Az) - R,,(z) (11)
R4&z:} -R-f(Az)

(2) From Papoulis 18, p.3171 , with f() representing 0' - we have

SR1 .(.)(AZ) -- (-1)'" d ') R( "(12)

(A...... .................



M is symmetric and the upper 2x2 portion of It is already known, so seven elements remain to be

determined. Note that

81
-r LAo-O b. .(13)

Similarly,

<isia> - .(14)

From Eq. (11), it I. seen that

< r , > m-jX-jR4Az) I*i ~~a(z ..-- sr>(5

and thus

Continuing, since

<ff >= <(fl Y> =2<ff >
we Aind

<ii,> - i< >

18D
- (constat)=O (16)2 as

By the same reasoning, <fi, > -0 as well Finally,

< i. > - -- i (Ax) AmmO Cc (17)

and < ri > is simply -< r, >. Therefore,

020 0 C.

o 02 -C' 0
M- [ (18)

o -C. b, 0

ICa 0 0 b,

From this form, the determinant and inverse of M ame found to be

det*M -(A'.-4) (9

..........................................
4**~ ~-. . . . . . . . - 7.1,'. . . . . . . ,-<..-



and

'1 ba 0 0

Afp_ (20)
o 0C, 02 0

-Ca 0 0 02

where

D - 4etM= 9hA, -c,2 (21)

Performing the matrix-vector multiplications of Eq. (7), we get

p~ri~r,4)- exp(--j b,(T'+ i2) + o(r~t+ i.2) + 2c.(ir.-rQJ)' (22)
p~r''ri4);,-D 2D

The transformation of variables to intensity I and phase is

r - vlcos(wi+)

i = %1Tsin(wt+ ~

r. = -OS j5cs + 4) - %17 4sin(wt-i+ 0) (23)

jain j in(WI+ #)+ V70acos(a*+ )
21

with a resulting probability density function

P(I,4ia,4a - e pP( 2Dj&, + e'(jj + I4.2) -2caI#I) (24)

Since the probability density function of 0, is our goal it is necessary to integrate over 1. and

I,. This is a straightforward process and results in

2a, (o2#, - 2e.#. + &J"' 23

where, to repeat,

02 R,,(Ax-O)

#A'I
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This expression can be compared with the distribution obtained in the analogous problem con-

corning the instantaneous frequency of narrowband Gaussian noise. Blachman's formula 18, p.611

(.2 bY(27)
(02+ 4z2p' I

where 9 is the spectral width and is defined as

-j<rsts> (28)

Therefore. the relationship to our notation is

I. -4w9'(29)

In addition, in Blachman's formulation of the problem, c,=40 because he takeg as his reference

frequency the centroid of the noise spectrumn. Hence, it is seen that the two formulas mre

equivalent.

Probabilty Density Function of Slope. In Two Dimnsions

J ~Our ultimate goal is to solve the two-dimenional problem, lding an expression for

f p%,#l) This will give us the statistical distribution of geometrical ray directions since, If a and

lane the direction cosines with respect to the x- and #-axes, then

2x a (30)

*-2w

hexrapalatiog from the previous section, the desired density function is seen to be obtainable from

p~ri~rsr,,).By eamler reasoning, these six random variables are jointly Gaussian. Hence,

the geseral form of the distribution is

p~~it,41P,*)-Sw
5o e M xpt 181IsMul) (31)

Heme,



'.v...i... . .. ... .. . ..
-8-

lul I r rd(2
and

< -rr> <ri> <rr3 > <Ti,> <rr,> <rTis>

<ir> <a> <iT,> <q,> <ir,> <ip>

<rr> <ri> <rr,> <ri,> <rr,> <r,49 >

A- (33)
' <ir> <V,> <4,> <MI > < ,rl> <44i>

<rwr> <rpi> <rsr,> < ri,> <rr,> <r,4p>

<4,r> <Ti> <i, > <i,> <4,r,> <441>

Because of symmetry, twenty-one elements must be found, of which ten have already bees deter-

mined. The remainder of the elements ae discussed in Appendix A. The relting covanaace

matrix bas the form

* 00 C. 0 co

;0 0 o-C. 0 -to 0
0 -C b, 0 d 0

M M- (34)
M , o o 6 , 04

'o-c, 00 o6804

0 -C, o 0 60 0

es 0 0 4 0 1,

where

d <rar> (35,)A:A' ) I ("5)

The inverse of M is

.- i

- ' . . .. ' 'J ' ' ! "



M-1-

0y 0.,d 0cdb~. 0 (~-~*

o (cd-i-cf) e'b,-,O 0 ec-d 0

edks 0 0 0 2b

whereI D 02b.8i1 o b"-.-00 , ; C,2-9 ,+ 2c, CV (37)

Substituting into Eq. (31), we obtain

p~ss~81iri, S'Dexp(--'IQ.&,-dXrs+Pi) + (ob#-c§'Xr,+ J2)+ (38)

(a%'184)rp*+ 4') + 2(c, d-j, c.Xris-ir.) + 2(cd-&*c*Xri,-ir#) + 2(cce#- 4Xr~r +i i))

Again, a tranaoatioa is needed to get the distribution of 1, 1. ., #,, I, and O, The fell-

tions awe:: -I*dwt*)()

- j*(WI+ 0) + vYl9.CdhwII. (31

42

The tfllwing traasformalio uxpressions reultt

- ~*'+
41
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rw-ir-l~ 8 (40)

+ i. +

The probability density function hence becomes

= j DeP(~iKad~ + ~oc'-+ iD+ (41)

41+

Integration over 1, 0, 1. and 1, is performed in Appendix B. The resulting joint probability den-

~ 1 sity function of the z-derivative of the phase and the 1-derivative of the phase i

(b sd)+ (ueb,c'_)0. + (.'iC. )8 (42)

+ 2(~-~,~,+ 2(c~d-b.c,)## +

* Examples

It is instructive to calculate p('')for some basic intensity distributions at the scatterin

plane. The parameters of the distribution in Eq. (42) depend on spatial corrlation functions. ItI is possible to rewrite them all as depending on the antocomtlaton function of the complex ampli-

tude R AA (A,).This can be seen by lrnt noting that

RW.(A:,A1) - RA(AZ-&V) (43)

By expanding S in term of its real and Imaginary parts, the following relations reslt:

.R,4&A,y) - Re RAA.(Az Ay) (44)

* R4(Az,Ajr) - -~il RAA.(A.Ay).

Hence,

2 --ReRAA(A-0,AO)

' 2 [BA:'aa



- .(Az,A) I A (

2AA,-,Sj6, l-Re RA' AA SAN As (5

The last relaion needed to calculte p(#,#,) is provided by the Va Cittert-Zendike

theorem [R,

C-R.. -- .{1(.,)} AA4  (46)

23 Is' &V
din--Re" k

where FT denotes 2-D Fourier transformation,(*,Y) is the Uumination intensity distribution at
hthe scattering plane, and z is the distance between the scattering plane and t observation plane.

Combining the eults of equtions (4) mad (46), we And

R .( ~s- -- u ,)d,(v

Cobiig hersutso eqa i f (4$sd (46) we4fin

1 a

i - I-JfI(U,V)ddu(

d - 2 uI(u)ddV .10

As a frst example, consider a rectangular spot of dimension LxW. The intensity distribe-

tion is written as

where Is a constant and rect( )s defined to be

U "' II 'iI' -- a" "t ' ' ' '
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rect (f ~ ()

0for If I !-

Taking the Fourier transform. we obtain

RAA.(Az.&y) a. ii- . iL n1cI(

where

zincr!

It is convenient to define a "speckle width*, in each direction, as the distance in which the con.

lation function falls to zero. Let

Ox - speckle width in x-direction As (61)L

5y speckle width in y-direction xx-

Then

R AA(Az,AV) -- inc A-.ic~u(2To-x~y) line MI

The parameters needed for Eq. (42) are determined from this equation to be

u- a
2(SzXit)

0 (53)

-0

Hence. (~
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It L W (and therefore is -y

A graph of this function is shown in Fig. 1. for the following parameters:

L - m.m56

SS. 0005.M

Both #, and Or range from -10,000 to 10,000 radians per meter With the (0,0) point at the center*1 of the graph.
As a second example, a symmetric Gaussian scattering spot is considered. The intensity dis-

tribution,

I(v'v) -M a c ,E/ (57)

* as defined so At L /2 is the I/e point in etch direction. The autocorrelation function is

as ex-x 4 2AZ + Arl ~~I (58)RAA.Axa) 4

Lot the definition of speckle width in this cms be the 1/.e point. Thus

Lff
ad the nonzero pumeters, of p(4 , awe found to be

Tb. resulting distribution density is

2+2
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Conclusion

The joint probability deusity function of the z- and V- componemts of the phase in a mono-

chromatic, fully developed speckle pattern has been found. Equivalently, the statistical distribu-

tion of ray directioa, In such a speckle pattern have been derived. The results show that the

statistics in question depend on only the two It sad three second spatial momenta of the lumi.

nation distribution of the scattering object but not on other details of that distribution. This

problem is the two-dimensional analog of the problem of lAding the statistics of the instantaneous

frequency of narrowband Gaussian random noise. The results should prove useful in studies of

I the average diffraction eiriiency of thick holograms of diffuse objects and may be of interest in

adaptive optics.
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Appendix A

The 6x covariance matrix M (Eq. (33) in the main text) has, on account of symmetry.

twenty-one distinct elements which must be found. Ten of these were discussed in the text,

Furthermore, seven more have exact analogies to cases previously studied. Thus:

<re r.> - - R (A,) ..- I,(61)

and <i, is > #g as' well;

<,4> -0 (6)

<rr,> - <i ,> -o (03)

<r4> (Am) At-* -e (04)

and <rvi> --- <ri,>.



To study the remaining four covariances, it is necessary to Eind a relation similar to Eq.

(12), but where the partial derivatives of the two functions to be cross-correlated wre with respect

to two different variables.

Following the reasoning of Papoulis [8, P.3161, we can evaluate

in two separate steps. First, we observe that

Takin the limit of both sides as t-. we get

R#XXYl2)- Bi-ROSI2902 (87)

Second,

Again taking the limit as t-+O, we find

R1,,,(z1,z29g1,u,2  (69)

If the processes awe jointly spatially stationary, then

R1(AA) R (70)

where

A: - 2  (71)

Returning to the remaining covariance terms, we have

12- R(AAy) - <i> (72)

j,7
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and so

0 (73)

Lastly,

< r, r.(Az&z) As- 1 (74)

and <ii,> <rr,> . The resulting covartance matrix is given in Eq. (34) of the main text.

Appendix B

The probability density function obtained when the transformation to six variables related

to intensity and phase is completed is, as given in Eq. (41) of the main text,

- exp{-j''(b.b8-d2) + (e9b,-)C'Xj+ I#) +

"2"-c2(-'I# 1-- 2) ""+ 2(c. d-b. e)1 , + 2(cd-b,C,)#I+ 2(€,€j--o~d1( + 10.0j

Integration over # yields a factor of 2z. The integration over 1, is of the form

.[ C-(Gss+ 62)" L/'-e~vI'

where

v_____ (ccO-,'d)l
81D 41D (75)

The form of the integration over 1. is then simply

-"-dz with 4 -- " - (76)
- S ~2 DL 4  1cb~ 1

It is useful to note that

(gib.-4')(Cb,-c;) - (c€C.-qdP - 2D (77)

so a can be rewritten as

a 19(2j (78)
_119

9 C2)

07... .. .. .. . .. .. .. .. . .... ...

.. . .. .. .. . . .. . .. . . ...,-.*~



These integration leave

=(491 ex - Ibb-e + (0ab,,')2 + (0'b.-c.1)2 + (79)
4srulD2D

2(gp~gg)ba+ 2(c~d-bc,)*, + (e-) 8 ,)

The last integration takes the form

flI U2 80

Finally, the joint probability density function of the xaderivative of the phase and the y-

derivative of the phase is

D3"2

Ao(v, 4') =-J(b, 5,-2) + (. 0-) ab-) +

2(ed-1jc.)#. + 2(cd-b.%~, + 2cc-xd~~J
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Figure Captions

Fig. I Joint probability density function of the x- and y- derivatives
of the phase for a uniform. square intensity spot in the
scattering plane.
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