
SYSTEM FOR SUPPORTING P..U) ADVANCED INFORMATION AND
DECISIONS SSEMS MOUNTAIN VIEW CA D G SHAPIOR ET AL

UNCLASSIFED MAR 93 AFOSR-TR-83-0488 F49620-81-C 0067 F/G 9/ 2 L

11111 1. 2 .2
2.0

1111625 1111_.4 111

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUJREAU OF STANDARDS 1963-A

141CLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (t16*in Dja Frrr,d),

REPORT DOCUMENTATION PAGE REFAD NSTR C TIONS
(I REPORT NUMBER '1 2. GOVT ACCESSION NO. 3. RECIPIENT°S CATALOG NUMBERAFOSR.TR. 8 3 -a 0 4 88
4. TITLE (and Subtitle)S. TYPE OF REPORT & PERIOD COVERED

THE INTELLIGENT PROGRAM EDITOR: A KNOWLEDGE TECHNICAL
B A S E D S Y S T E M F O R S U P P O R T I N G P R O G R A M A N D 6FO R MI N G _0 1 G . _RE P O R T _NU M B E

DOCUMENTATION MAINTENANCE 6 PERFORMING O G. REPORT NUMBER -

7. AUTHOR(,) 8. CONTRACT OR GRANT NUMBER(s)

iiDaniel G. Shapior and Brian P. McCune F49620-81-C-0067 -

A n PERFING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

Advanced Information and Decision Systems AREA & WORK UNIT NUMBERS

201 San Antonio Circle, Suite 286, PE61102F; 2304/A2
Mountain View CA 94040

I I. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Mathematical & Information Sciences Directorate MAR 83
Air Force Office of Scientific Research 13. NUMBER OF PAGES

Bolling AFB DC 20332 7
14 MONITORING AGENCY NAME A AODRESS(il different from Controlflng Office) 15. SECURITY CLASS. (of th,s report)

UNCLASSIFIED -

ISe. DECLASS191CATION DOANGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report) "

Approved for public release; distribution unlimited.

II

17. OISTRIBUrION STATEMENT (of the abstract entered in Block 20, it different trom Report)

I$. SUPPLEMENTARY NOTES W f'%w

.. , GllllELECTIE

JUN 10 18

0... I1. KEY WORDS (Continue on reverse side if necessary and identify by block number)

I 0 ABSTRACT (Continue on reverse side It necessary end identify by block number)

his paper presents work in progress towards a program development and mainten-
C.6i ance aid called the Intelligent Program Editor (IPE), which applies artificial

intelligence techniques to the task of manipulating and analyzing progra'ms.
The IPE is a knowledge based tool: it gains its power by explicitly represent-
ing textual, syntactic, and many of the semantic (meaning related) and pragmatic -

(application oriented) structures in programs. To demonstrate this approach,
the authors implemented a subset of this knowledge base, and a search mechanism
called the Program Reference Language (PRL), which is able to,(CONTINUED)

DD 'A"7 1473 DOITION OF I NOV ,, IS OSOLETE '

8CaUNCLASSIFIED I/SEC A .0O HSPG 11,-D1 r,,,

88-3 0 10-4 31

UNCLjSSIFIED
,SECURITY CLASSIFICATION OF THIS PAGE(Whon Date Entered)

ITEM #20, 'C CNNU locate portions of programs based on a description
provided by a user. This work is an applied research effort. It was moti-
vated by issues discovered during a study of software maintenance problems
in the Air Force, and is intended to be moved into application within seven

years

AacessiOv eT

14Tj5 GRA&I
DTIC TAB
Unannounced Q
just if icat to

Distribution/l /

Availability Codes

Av ail anld/or

Dist Special

UNCLASSIFIED
SECURITY CLASSIFICATIONW OF PAGEW?'n Does Elreitd)

-- \\-

AFMOS.TR- 83- 0488

THE INTELLIGENT PROGRAI EDITOR

A Knowledge Based System for Supporting Program and Documentation Maintenance

Daniel G. Shapiro
Brian P. McCune

Advanced Information G Decision Systems
201 San Antonio Circle, Suite 286

Mountain View, CA 94040

ABSTRACT research into automated programing support sys-
tems. We expect that many such tools will rely on

This paper presents work in progress towards a the application of artificial intelligence tech-
program development and maintenance aid called the niques.
Intelligent Program Editor (IP), which applies
artificial intelligence techniques to the task of To gain better insight into the specific prob-
manipulating and analysing programs. The IPR is a less of software maintenance, AIUDS performed a
knowledge based tool: it gains its power by expli- study which analyzed software maintenance problems
citly representing textual, syntactic, and many of in the Air Force1 . The study concluded that the
the semantic (mening related) and pragmatic process of comprehending the form and function of
(application oriented) structures In programs. To existing software (i.e., what it does and ho it
demonstrate this approach, we implemented a subset does it) is the most crucial step in the saints-
of this knowledge base, and a search mechanism nance process. A number of tools which can affect
called the Program Reference Language (ft), which that problem within the medium term (3 to 7 years)
is able to locate portions of programs based on a were defined.
description provided by a user. This work is an
applied research effort. It was motivated by This "comprehension problem" is revealed in
issues discovered during a study of software many ways. To begin with, most programing instal-
maintenance problems in the Air Force, and is lationa have a high turnover rate of personnel and
intended to be moved into application within 7 have trouble finding qualified replacements. As a
years. result, the maintenance personnel are often unfami-

liar with the program that is being maintained. At
the same time, documentation is often unavailable,
or of poor quality when it is available. This

1. INTRODUCTION increases the difficulty of comprehending a given
program. It is not easy to understand a program by
directly reading the code because of the quantity

The effort and expense involved in software *of detail involved and also because coding stan-
maintenance have been recognized as major limits- dards are poorly enforced and rarely agreed upon.
tions on the capabilities of currant software eye- Finally, the process of isolating bugs, designing
te. The difficulties arise for several reasons: solutions, and determining the ramifications of

first, although hardware costs have decreased, changes is difficult in the presence of an incom-
software expenses have skyrocketed owing to the plote understanding of the program's organisation.
higher cost of professional programers. Second, The relative difficulty of this task is affected b-,
as software projects have become more and more the tools available to the programer.
ambitious, the technical difficulty of making
changes to the resulting programs has increased The software maintenance study identified a
dramatically. As an illustration of this fact, the collection of tools designed to alleviate these
maintenance costs for large systems typically our- problems, all of which rely on a sophisticated
pass the funds required for their initial develop- understanding of the structure of programs. In
ment; as a case in point, the Defense Department effect, they operate by transferring some of the
now spends more than 3 billion dollars per year on exprtise currently in the mind@ of programers
softwar mintenance. these problems are addressed into a machine usable form that can be shared.
in part by the creation of standardized structured Three of the most relevant tool ideas are sutr-
progrmming languages such as Ada, but in our spin- iaed below.
ion they will only be solved by the results of new

The Intelligen rIrzua Eitor (IPS) is a

This research was supported by the Air Force Office knowledte-based tool for supporting the development
of Scientific Research under cotrct 14%20-81-C- end maintenance of software. It embodies a deepOfficeiofntvl Research under contract understanding of the structure of program* and of
0067, the Office of Naval Researvh mden centrct the manipulations which progammern typically apply
u00ercontract s30602-0o-C-0176. to code. It can provide access to a variety of

APP °e0 Po ub elniS

distributio Pu"li rel,

83 06 10 031

intelligent tool#, e.g., the Documentation Aesis- the U.S., the savinge will be measured in the tens
tant described below. of millions of dollars annually.

The 1StgsJg. &ssistant is a system that Figure I contains a block diagram of the IPn.
helps organize, obtain, maintain and access many The system is compoed of three major parts: the
different forms of documentation, ranging from line ExteniJ Program Nodal, which provides knowledge of
by line coments to design principles and applica- program itructures and how to access thn; a Pro-
tion oriented requirements that underly the struc- grmming Contest Model, which lets the system
ture of code as a whole. The Documentation Assis- understand ame of the user's intent as he acceses
taut is intended to provide bnowledge which other or modifies code; and a collection of semantic
systems (such as the IP) can employ, analysis and manipulation tools that provide the

programmer with a more powerful vocabulary for
The Ptiaamiu Nmager assists the programer manipulating programs, above the level of character

by systematically applying administrative and by character, or line by line changes. The IPE
technical policies. It enforces some procedures also contains a user interface and a programing
(e.g.; testing of code before installation), sug- executive which coordinate the facilities of the
gests others (e.g., notifying a user group of a syste and present then to the user. The user
change), and automatically performs some actions on interface will use multiple windows and allow con-
its oa. The Programing Manager is also intended mands to be typed or selected from menus. See
as a form of Documentation Assistant for ezpressing reference 2 for details.
heuristic knowledge about code, for example, that
bugs in nodule A often cause run-tine errors in
module S. UM INTERACE

At the current tine, AIM8 is actively working
on all of the tools described above. The remainder

of this paper focuses on a description of the IP
and of the knowledge it will contain. Ve conclude
with a scenario demonstrating an actual implementa-
tion of a portion of the IP's knowledge base used EDITING

in the context of a program search. EXECUTIVE

2. THE INTEI.LIGUTrr PROGRAN EDITOR

The Intelligent Program Editor (IPn) is a tool
now being developed to support software development
and maintenance in a sophisticated way

2
. The eye-

te gains its power through the use of an explicit V .
model of the programning process, and a database TOOLS CONTEXT
called the Extended Progrm Model (the I1), which
represents the functional structure of code. The
IXn uses this knowledge to support the design and
manipulation of programs as samantic objects; this
should be contrasted with the text string viewpoint
that most editors provide. For example, the IXn
will be able to automatically fill in syntactic
forms, prompt the user during the completion of] E5K0 PROGRAM
programing cliches, and monitor a program for MM
semantic consistency while it is being modified.
Ve expect the IPE to model the type of the user's
programing activity, and to help choose or invoke
appropriate tools. Figure 1: The intelligent Program Editor (IPE)

The payoff of the IPn may be extremely large
in terms of enhanced programer productivity and 2.1 TEE PIOGRIOMMING CONTEXT NIDEL
increased reliability of code. Productivity will
be improved because the system's high level vocabu- The Programming Context Nodal is a knowledge
lary and manipulation methods will allow mainte- base that identifies the sequence of activities
sance requests to be completed faster. Reliability that are typically involved in the process of
will be enhanced because the InV will automatically developing and maintaining code. This information
catch certain kinds of semantic errors that were supports the IPE in a variety of ways, but in par-
formerly passed into delivered code. In addition, ticular it allows the system to guide the program-
the In1 will heve a large impact on the area of Ner through the coding sequence and to remind him
program aomprehensioo; since it mosatains a of actions which he has not performed. For eam-
knowledge base that documenets code from a variety pie, the Programming Context odal lists program
of perspectives, it provides a form for transfer- creation, debugging, modification and exploration
ring expertise that wae formerly lost as program- as major coutexte, and refiaes program creation
mere moved em to different tasks and jobs. If into functional definition, algorithm definition,
these effects cummlatively produce as little as a date structure selection and coding. Since the
one percent effect on the maintenance process in coding process is further defined to include docu-

3

mentation, the i1n ca invoke the Documentation 2.2.2 Semantic Analysis
Assistant tool and prompt the user to provide
specific types of formatted information vhen each The sematic analysis tools within the In1
now module is defined, allow the system to identify sections of code which

violate principles of correct program construction.
The context model else gives the in a way to These principles define "rational form" constraints

invoke its own facilities at appropriate times. which restrict the allowable composition of pro-
For example, if the user is in the process of gras. For example, traditional type checking
defining an algorithm, then the system will operations for strongly typed languages ensure that
automatically search the hPie database of typical aseigment statements are never used between vari-
programming patterns to see if a relevant template ables that are declared to be of incompatible
can be applied. (it should be mentioned that the types. imilarly, it is not reasonable to use a
In3 will not enforce a particular sequence of cod- variable before it is initialized. As a third
ing activities. Our philosophy is to allow the exampls, a rational form constraint insists that
prograemer to freely jump between programing con- all sections of a program can in fact be reached
teats as be desires.) through some sequence of control steps (and yet,

may large programs often contain dead regions
2.2 VANIPILATIOI AND ANALYSIS TOLS which cannot be executed even in principle).

The In's manipulation &ad analysis tools The semantic analysis tools perform theseThe PK' natpuetin an anlyss tols kinds of operatios by examining the represents-
directly employ the knowledge sources in the I k s otions b es. the at hc upa-
These tools are responsible for making additions time which the UN provides. The data which *up-
and deletions to the 3PH's store of information, ports these capabilities are described in Section

and for using its data to run semantic checks on 2.3.

the user's program as it is formed. (The RPM
itself also does lover-level checking automatically
to ensure the internal consistency and well-
formeduess of its multiple knowledge represents- 2.2.3 Style Analysis
tions.) We have defined several tools of this kind
that the 113 should contain. In addition to the
Documentation Assistant discussed previously, the gone progrming styles (pattern@ of program-
IPn will have an advanced program manipulation ming language usage) are bard to comprehend and are
facility, a semantic error detection tool, and a subject to inadvertent or difficult-to-detect
style analysis capability. These are described in errors. Guidelines of good style include advice
the following setine. about making systems modular, adding comments tothe code, clearly describing any assumptions made,

and minimizing the use of "aide-effects", etc.

Current automated style analysis tools are

2.2.1 Advanced Progra manipulation limited to straightforward syntactic analysis of
code. Style analysis in the IP will be similar in

An intelligent editor that has a substantial nature to the semantic analysis discussed above,
amount of knowledge about the semantic structure of except that the rules will be recoemendations
programs and about the semantic. of meaningful rather than requirements. By making the style
operations can supply much better support to the analyzer a tool of the IP, style analysis can be
programmer. For example, it is possible to provide done on an incremental basis, e.g., each tine a
operations that directly transform "while" loops module is completed. The user can use all of the
into "for" loops, or iterations into recursions. facilities of the IPn for altering code or documen-inth"r" lps or syntaipertio intrcsiv. tation to conform to the style analysis guidelines.
Another type of syntactic operation interactively Whe appropriate, the 113 might be able to perform

constructs a subroutine call by prompting the user
for the name and actual parameters of a routine. simple transformations to automatically correct
This process will ensure that the umber and type style violations. In addition, the user would be
of the arguments in the calling statement agree provided with the ability to modify the style
with the declarations in the procedure's Imploen- rules., so that ones which are not essential and
tation. which conflict with the user's preferred style can

be suppressed.
The inX will also provide templates for more

semantic constructs, such as the typical program- In keeping with the philosophy of the IPn,
ming patterns (described later) which are the style rules can be textual (e.g., "loop bodies
building blocks that progrmmers use to implament should be indented"), syntactic (e.g., "don't
larger algorithms or routines. With this informs- assign to loop variables inside a loop"), snematic
time in hand, the system will be able to guide the ("don't use expressions with side effects is
user through the implementation of sophisticated declarations"), or even application oriented in
routines by proptiag for each functional part of a ature.
routine by using a ememosic word or phrase.

4

2.3 U:Z M=u = vMAoou INow. transition from a syntactic to a more intention-
* oriented analysis of code (Figure 3). for the put-

*The Ratended Program Model (07M) is a system posts of thme FE.. we are considering these
for representing and acessing programs in a vewpoints to be abstract data types which facili-

sophisticated way. It accomplishes these task by tate different sort. of retrieval operations.
defining a vocabulary for discussing programs which

* uses terms that are much closer to thes oe which
progrmmrs naturally aploy. The RPM provides
this capability through the use of a knowledge base
that represents the structure of programs from a
variety of views: from low-level textual, or char-
actor by character information, to explicit stae- TEXTUAL DOCUMENTATION
tic structures that document the programer's
intent for a piece of code. This informatio"
corresponds to what we believe the Documentation
Assistant and the other manipulation and analysis INTENTIONAL AMGEGATES
tools discussed earlier need to use. Thus, the 1PM
can form the backbone for a number of systems which
exhibit a deep understanding of the organizational
structure and meaning of code. INTE19TIONAL ANNOTATIONS

The RPM is constructed in terms of two major
subsystem* (sea Figure 2): a database of program
structures (the PIDI) and a search and updating
component called the Program Ref erence Language (or TYPICAL. PROGRAMN PATTERNS
IL), which provides access to the PSDD. In addi-
tion,. the RPM contains a library of "rational form"
constraints that will monitor program composition
for its somantic content. As a whole, the system
can be thought of as a database management system SEMNE PARSE
for maintaining code. It provides a search________________
language for accessing its knowledge. a facility
for performing updates, as well as a set of @oma-

*tic integrity and consistency constraints for SYNTACTIC PARSE
monitoring the validity of the data it contains.

LI'"
TE XT

SERC Figure 3. A Hierarchy of Program Structures
PRITO in the 1PM

The textual representat inn gives the aPn the
view that most text editor. provide. It is a low-

PROGRAM STRUCTURES level approach, concerned with words and delimiters
DATABASEa opposed to the semantics of programs, but it
DATA SSE alows for Important textual search operations..

Similarly. the syntactic viewpoint is provided by
some prototype text and "structure" editors. It
embodies the rules of Brunnr for particular pro-

SEMANTIC INTEGRITY groming languages. The syntactic knowledge base
A CONSISTENCY CONSTRAINTS provides the 3PM with a vocabulary for programing

constructs such as "for" loops, procedures, and the
visible and private designations in Ada programs.

At the next level, we have provided a sag-
natted pars abstraction which defines a vocabulary

figure 2.* The Extended Program Model for a program in terms of its component data and
control flew. So, for example, Iterations are
decomposed into a set of roles which identify the

L13.1 The Programn Structures Database subfumctions of a loop. In the breakdown we are
using, loupe Contain son rotor@, filters, termina-

The WN's knowledge or database of program tors, and auamntationel. Generators are segmeut$
structures (the PON3) is onetructed in terms of a which produce a solvenc* of values. They can be
hierarchy of representations which reflect the further refined into initiolistiona and a body,

5

which is the portie that is executed many tines. detailed structure of the code. This occurs in the
Filters restrict that sequence of values. A termi- process of editing programs which are too large to
ator is like a filter. except that it has the remember explicitly, in the act of understanding
additional potential to stop execution of the loop. code which has rarely bees seen before, or in the
Aa augmentation consumes values and produces process of completing partially implemented
results. There are other vocabulary elements for designs. In the context of program maintenaece,
describing straight line code. the PUL helps to alleviate some of the burden on

the programmer by supplying as intention-oriented
The taxonomy that has been discussed up until vocabulary for referescing code.

this point primarily captures information about the
form of prograsm as opposed to their meaning. The The Program Reference Language Implemeontation
only semantic elements we have introduced describe (PFLI) allows program search based on four of the
:be substructure of built-in entities such as representations described sboves namely the tea-
loops. In the net, more abstract viewpoint. we tual, syntactic, segmented parse and typical pro-
consider progrems to be built of objects with graaing pattern views (Figure 4). These knowledge
stereotyped purposes. These are called typical bases are connected through a "code region"
progrming patterns (TPs). Examples of Typp abstraction that associates program features with

include variable interchanges, list insertions, end physical sections of program text.
hash table abstractions. These abstraction@ ore
the tools employed by every expert programmer.
Rich has defined a library of such TP 4

.PO
M

The remaining knowledge bases, i.e., inten- TEXT TREE
tional annotations, intentional aggregates and tex-
tual documentation, all provide methods for associ-
ating the intentions behind a program with specific
features of code. They often capture pragmatic
knowledge relating to the domain of application of

the program. For example, an intentional annota
ties might identify the author, creation data, and
modification history of a particular file, or CODE REGIONS
record comments about the goals and assumptions of
a specific routine. Intentional aggregates essoci-
ate larger program fragments with key words sup-
plied by the programmer. They can be used to col-
lect the TPPo and other program features that
implement a single purpose. SEGMENTED TYPICAL

The documentation knowledge base allows the PARSE PROGRAMMING
user to associate textual coments with any of the (DATA 9 PATTERNS
program features already described. So, for exam- CONTROL FLOW)
ple, he can document the data flow in a particular
module (saying why am input-output relationship
occurs), justify his use of particular TP~s, or

explain why particular syntactic features are Figure 4. The Program Reference
employed. This knowledge base takes advantage of Language Implementation
the ZMNs partitioning of program knowledge to
classify comments in useful ways. For example, the
textual documentation knowledge base is aimed atcapurig sme f te smanicsImpicily ssoi-The Plq has a flat information structure, It
atud with the textual coments that are normally represents each knowledge base in terms of a com-

atothed directly to code. plex tree or graph structure of frames. lowever,
the knowledge bases have no direct links between
one another, although the system can arbitrarily

convert between viewpoints by using code regions as
3. UM I1 CK LMUACZ an intermediary. These conversions are heuristic

processes st the separate representations typi-
cally do not correspond on a one to one basis.

In order to demonstrate the feasibility of the in the context of our applied work, we have

-PH, ve implemented a portion of the knowledge base also restricted the types of information the PM.l
described above, and built a version of the PN'e contains. The information in its database is

search facility (the PU.) which operates so that either automatically evailable (based on current
data. research prototypes), or can be raonoably obtained

from the user. to situations where the latter is
The PIL is a tool for locating regions of pro- ecosary, we sesume that information may be

grea text based upon a description provided by the provided in an ineomplete form. It is important to
user. As a support systms, it provides rogrammers note that every time a piece of documentation is
with a mechanism for isolating portions of prOgrame added to the @ystems knowledge base, the perfor-
in situations where they are mot familiar with the

6

sate of the PAL will increase. This should have vided by the user. Il many cases, code painting
the effect of encouraging the addition of informa- may not identify the exact section of the program
tio by the progriner, which has always been a which the user desired, but in the contest of an
major problem with the creation of documentation. interactive system vith a screen oriented display.

close will be good enough.

3.1 COD% PAINTING

From a computational point of view, the main

problem involved with this multiple representation 3.2 A SCZunL4O USING TZ P3I.
approach is to define a mchanism that is able to

compare information obtained from the different The following example shows how the pr!! uses

sources of knowledge. The PIL accomplishes this the code painting paradim to answer the question

via the code region abstraction, which functions as "find the initializations of the loop which com-
a common language that each of the representations putes the sun of the test scores", Sives the Ads

can use to "comunicate". program shown in Figure 5. (This is a modified
version of an actual transcript that is presented

Code regions support two different approaches in reference S. A sequential filtering scenario is

to search. in the first method, which we call also provided there.)
sequential filtering, the user makes a gross stab
at selectinS a code region by generating all of the In this example, the user starts by identify-

elements which satisfy a fairly easy condition. Me ing three sete of data, corresponding to the suma-
then sequentially restricts that set by applying tion ThPe, syntactic loops, and segmented parse
more and more conditions. For eample, to find frames involving the test score array.

"the loop which computes the sun of the test
scores", he locates the set of all loops, and then > (index 'summation tpp-database)

restricts it to the ones which involve teat scores -) TPleetl
and sumations.

> (index *loops syntea-database)

In the second approach, the user identifies a -> LOOPsetl:[lengtb 2)
collection of items. possibly from several dif-
ferent knovledge bases, and intersects them > (index *TZST-SCO&ZS oegp-database)
together to find the elements which satisfy all of -> SBGetl:[length 61
the conditions he wants to impose. In this "code
painting" approach, the PIL views each element of The program only contains one T1P, but there

a knowledge base as a specification for a region of are two loops, and several segments which relate to

program tet (meassing a portion of the program the variable TUST-SCOES. It is important to

text); it combines them by essentially overlaying notice that these segments use the data contained

the corresponding regions of code. For example, in the variable TEST-COIU but do not necessarily
the user locates the "loop which computes the sum reference it by that name. For example, the
of the test scores" by figuratively coloring all literal "AU()" in the ARUAYSU! function accesses
loops red and all places that compute the suns of the test score array. This correspondence is

test scores yellow. Any region which comes up available from the data flow analysis within the
orange has ell of the properties that were desired. segmented parse.

The implementation of code painting is described in
reference 5. The user intersects these descriptions by

invoking the code painting paradigm. The code-

(1ode painting is a deliberately coarse affair. painting algorithm returns the largest region of' d pantig L • •Z~orenlyconue ffatr, text which can be described in all three vays.

It is designed to exploit the ktnd of incomplete or

even slightly inaccurate information which the lP

will contain, given that much of the data is pro-

for MAXSIZ in l..lO loop
TOTAL:- ARAYSUM (TU9T-SCOIU, 1IA]I!zg);
put (TOTAL);

end loop;

function AVATISUM (A: in ARUAY; M: in tNTEIGR) return INTlGIR is
begin

SUN: RA=.: 0;
for I in l..M loop

SUM:= SUN * AC();
end loop.

retern sum;
end AUMTUN.

figure 5. The Program Used In the Scenario

7

) (overlay-code-regiona TPPcstl LOOPsetl requests of the kind demonstrated in this paper

SIGetl) (based on a single user query). When these eaten-
-> CODI-IXONI sians are complets, the PI viii define a more for-

**for I in 1..3 loop Sol reference language.
SUN:- SUN + A ;
end loop;** The task of building a prototype for the XIF

involves a nuember of issues including the incremen-
In order to compute this information, the tal modification of knovledge bases, and the

overlay function automatically converts the input recognition of user intentions in code. in order
sets into their corresponding regions of code. In to solve these problems in the context of our

the case of the TPP, the progrsimer had to define applied research, ve expect to rely heavily on

that mapping at some tint. The other translations methods for eliciting information ,ron the user,

are available, but heuristic in nature- and to focus on template-oriented techniques for
manipulating programs.

At this point, the user has identified a loop
which computes the oum of the test scores. In
order to find the initializations of this code, he
view* this region from the segmented parse perspec- 5. ____IC_,

tive, and scans it for emnts of the appropriate
type. The term "initialixation" is a segmented
parse keyword. 1. Dean, Jeffrey S., and Brian P. McCune,

> (Filter (Segs-Withi o ODK-RWIOI) "Advanced Tools for Softvare Maintenance",

(Se-Type "initialization")) AI&M Ti 3006-1, October 1982.

-> SiGset2:(langth 21 2. Shapiro, Daniel G., Brian P. McCune, and

The PLId converts CODE-KNIONI to a set of Gerald A. Wilson, "Design of an Intelligent

segmented parse frames (a heuristic process), and Program Editor", AUDS TI 3023-1, September

the function Se#-Within enumseras t*_the subsegments 1912.
it contains. The system identifies two initialize- Richard C., Autematic Analysis of the
tions as a result. The user prints them by con- Loginal Stricture of Programst .A i-TI-e92,
verting them to the textual viv. Artificial Intelligence Laboratory, MIT, 1978.

(Ihow! SiG ilto) 4. Rich, Charles, "Inspection Methods in Program-
-> for I Ln *:0..30 loop ming', AI-TR-604, Artificial Intelligence

0> COSUM: RAL :, 0;** Laboratory, MIT, 1981.

The answers correspond to the initializatione 5. Shapiro, Daniel G.. and Irian P. McCune.
of the iteration variable "I". and the accumulation "Searching a Knowledge Base of Programs and
variable. "SUN". The MI3. retrieves the second Documentation', AIlDS TN 1014-2. January 1953.
initialisation, even though it is lexically outside
of the smation loop itself. It is identified
from the segmented parse analysis, which associates
a loop and its initialiation@ no matter how far
apart they eight have been in the original codek.'

4. C IRENtT STATUS AND PUTURI VWOR

A1D is now developing a prototype version of
the Intelligent Program Editor, which is intendedto demonstrate the efficacy of our knowledge based
approach to the design of prograin8 support
tools. The prototype will embody a portion of all
of the facilities that have ben described: the
2PM, the PU., a collection of manipulation and
analysis tools and the Program Context Model. The
In is currently targeted for languages such as Ada
and CMS-2. it will run initially on a Symbolics
3600, a fast, personal LISP computer that features
a bigh-resolution bit-ap display.

In terms of specific modifications, we expect
to augomt the iPN's knowledge base to include nore
pragmatic information (*.a., the relation betwea
requirements and progras structures), and we intend
to extend the PI. to the point where it will be
able to automatically plan and carry out search

