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1. STATE VARTADLE RECONSTRUCTION USING TIME DELAYS

1.1 INTRODUCTION

One of the problems which occur occasionally in designing a satis-
factory controller for a deterministic control system is the need of the

state variables which are not directly measurable. Luenberger proposed

a scheme which approximateiy reconstructs inaccessible variables, (see

————

‘ref. [1] and [2]).C5§o methods, however, #fe currently available for
exactly reconstructing the missing variables from observable variables.
In this paper a method is presented for exactly reconstructing the
inaccessible variables. It uses measurable variables, their delayed
values and the control variables on the maximum delay interyal. As

can be seen in Examples, the method may give satisfactory results in

certain cases and can be easily implemented using a microprocessor. (€1---——_»

For the sake of simplicity only time invariant linear control
systems are considered. The extension to time varying linear systens
is straight-forward. The use of delayed state variables was first pro-
posed by Gilchrist in ref. {3}, where a similar problem, but from a some-
wvhat different point of view, was investigated. Preliminary results of

the method proposed in the paper were reported in ref. [4].
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1.2 PROBLEM )

Consider the linear time invariant control system
x(t) = Ax(t) + Bu(t) (1)

where X is the n x 1 state vector, u is the r x 1 control vector, A is
an n x n constant matrix, and B is an n x r constant matrix. Suppose
the observable vector, that is, the variables which can actually be

measured, y{t) is given by
y(t) = Hx(t) ' - (2)

where y is an m x 1 vector, and H is a non-zero m x n constant matrix.
‘Let 0 < h1 < hz < ... <hy <= be time delays.
The problem is to reconstruct the state variable vector x(t) from

the measurable vectors y(t - hl)’ y(t - hz), eney V(t - hl) and the

measurable control vector u(s), t -~ hy ¢ s <t




1.3 RESULTS

i
1
i The response x(t) of the system (1) is given by
i t )
x(t) = QAle = (v - hi))x(t - by +J/. At - S)Bu(s)ds
. t—hi

‘ . Ah1 o '
: -As . ‘
= e “x(t - hi) +f e Bu(t + s)ds, i =1,2,...,2. ‘

! fy |
|
3 -- -Ah,
: Multiplying He on both sides,
i
~Ahy ARy o s
He x(t) = Hx(t - hi) + He f e Bu(t + s)ds
-h
i
-‘Ahi o .-A
= y(t - hi) + He e "SBu(t + s)ds. (3)
=h
i

Since y(t - hi)’ i=1,2,...,2, and u(s), t - hﬂ. < s < t,are measurable, }
the right hand side of eq. (3) is known for each i, and so eq. (3) is
simply linear simultaneous algebraic equations for n unknowns

x(t) = (xl(t), xz(t), caes xn(t)). Let

= -

A

c




i -Ah o T
z2(t) 4 y(t - hl) + He 1 f e-AsBu(t + s)ds
-h
1 x
-Ahz °  _a g |
y(t - hz) + He Jp e 5Bu(t: + s)ds 3
~h, l
. |
|
. |
_ |
-Ahz o l
y(t - hz) + He j~ e-AsBu(t + s)ds :
| -h,. -] . l
|
l
Eq. (3) can now be rewritten as
Cx(t) = z(t) . ’ (4)

Obviously C is a known m2 x n constant matrix and z(t) is a known mf x 1

vector for each t. If the rank of the matrix C is n, then x(t) is given by

“x(e) ='(cfe1 e z(e) (5)

Result 1 If rank (C) = n, then x(t) = [crc] tcTz(t).

Note that since C is a constant matrix, if the state x(t) can be recon-
structed at some t, then it can be reconstructed for all t. However, the
rank of the matrix C is dependent on the delays hl' h2’ cee, hl. and so
the question is now whether there exists a set of delays hl’ hz, see, hl

such that the corresponding matrix C has rank n for a given system, that is,

for the given matrices A, B and H. Let Q be the mt x n matrix defined by




The argument used in the proof of the following lemma and also in

the proof the next result 1is similar to that of ref. [5] (pp. 81-82).

Lemma 1 Let I be a non-zero interval. If rank (Q) = n, then the
vector space spanned by the n x 1 row vectors of the matrices He_Ah for

all h in I is Rn, that is, the row vectors contain n independent vectors.

Proof Suppose the contrary. Then there exists a nonzero 1 x n

vector b such that

*geMyp zo

on I. By repeated differentiation with respect to h,

T He M b mae™ b - L aa™ AR L
on I, and so _
rank (Q) = rank [ H < n.
HA
] HAn-ld

This is a contradiction. and hence the lemma is true.




‘Result 2 There exists a set of n delays 0 < h, < h2 ces < hn <a

1

for any given a > 0 such that the rank of the corresponding matrix C

is n if and only if rank (Q) = n.

Proof Consider the necessary condition first. Suppose rank (C) = n, ]
and assur2 rank (Q) < n. Then there exists a non-zero n x 1 vector b

such that

Hb = HAb = ... HA™ 1 b = 0.

This implies

for all h, and hence rank (C) < n. This is a contradiction, and thus
rank {(Q) = n.

Now consider the sufficiency. If there exist n delays

0:h1<h2°°'<hn§a

such that the matrix

s

[ -an, ]
C= He 1

-Ah

He 2

1




. contains n independent row vectors, chen the sufficiency is proved.

Let I be the non-zerc interval [0, a]. Then by Lemma 1, the matrices
He-Ah, hel, contain n independent n x 1 row vectors. This implies that

there exists a set of delays{ hl’ hZ’ LR IN hn} in I such that the matrix

c, |
i
C= _He-Ah]'q-l ! E
|
Be-Ahz ;
. -Ahn
| fe
contains n independent n x 1 row vectors. Thus, if rank (Q) = n then

there exists at least one set of n delays 0 < h, < hz < see <h < a,

1
such that rank (C) = n. This completes the proof.

e e oy =g

Since a is any given positive constant in the above result, the i
n delays {hi} may be chosen arbitrarily small, and, in fact, almost any
n different dela& values may be used. However, as can be seen in
Example 1, this does not necessarily mean that any n different values
can be used. In other words, there are delay values which may
not be used. Furthermore, because of certain technical reasons, not
only the inappropriate delay values but also the delay values near them
should be avoided. It is usually convenient to choose hl = 0,

In almost all of the control systems, certain state variables are

usually directly measurable, that is, some components,say,yl. Yor **%s Yoo

of the observation vector y are the same as the corresponding components




= 0, the first

of the state variable x. In this case, by choosing h

1

matrix element of the matrix C contains at least 2 ‘ndependent row

vectors, and hence at most n - 2 additional independent vectors are
-Ah |
needed for rank (C) = n. This means that, besides the matrix He 1. H
-Ah

in the matrix C, at most n - £ matrices He are required for rank (C) = n. |

The following lemma summarizes the result.

Lemma 2 If rank (Q) = n, and 2 components of the observed vector y
are identical with the corresponding components of the state variable x,

then, in addition to h, = 0, at most n - % additional delays are required %

1

for state reconstruction.

1.4 EXAMPLES ' .‘

Example 1 Consider the linear scalar system
v'+ 2v' + 2y =0

and suppose the only quantity measurable is !
w=vy+v',

We wish to reconstruct the original state variables. Let

= ' -
2 v+v x1 + xz.




y = (1, 1)x.

The matrix Q is given by

Q- H - 1 0

and rank (Q) = 2. Hence the state variable x can be reconstructed. Choose

h, = 0, h2 = h. Then

1
P L cos(h) ~ sin(h) -sin(h)
2 gin(h) cos(h) + sin(h)
and
C= H - 1 1
He AR e"(cos(h) + sin(h)) eMcos(h) |

Now, rank(C)= 2 if sin(h) # 0, that is, h # #nr, 2 = 1,2,°++. Note that,
although almost any value may be chosen for the delay h to reconstruct

. the state variable, there are particular numbers, namely, h = 2w, which

cannot be used. Let h $en, £ =1,2,sv¢, Then




y(t)

z(t) =
o
y(t - h) + He-Ah f e-ASBu(t + s)ds
-h
. ) - 1
y(t)
) h ° s
y(t = h) + e cos(h) e [cos(s) + sin(s)] u(t + s) ds
-h
h ° 5
- e [cos(h) + sin(h)]f e sin(s) u(t+s) ds
b -h -
and x(t) = C-lz(t). Thus

o
xl(t) = ﬁh—)-[y(t - h) + ehcos(h) f-h es[cos(s) + sin(s) Ju(t + s)ds

o
- eh[cos(h) + sin(h) ] e®sin(s)ult + s)ds - cos(h)y(t)]

-h

xz(t) = ;I%?ET'[[cos(h) + sin(h) }Jy(t) - y(t - h)

o
- ehcos(h) es[cos(s) + sin(s)) u(t+s) ds
-h

h o
+ e [cos(h) + sin(h)] f
=h

essin(s)u(c + s)ds ]

..
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The system was simulated on an analeg computer and the reconstruction

w»as carried out on a microprocessor as shown in Fig. 1. The delay value
used was h = 0.05 sec., the accuracy of the A/D and b/A converters was

8 binary hits, the sampling interval was 500u sec., and the microprocessor

u='d was 0S 6302. The result for xl(t) is gziven in Fig. 2.

Example 2 To study the effectiveness of the proposed method in é real
world environment, a d.c. motor speed regulator was investigated. It wﬁs
a Motomatic Control Systems Laboratory experiment kit made by Electrocraft,
and was consisted of an operational amplifier, 2 power amplifier and a d.c.
motor -~ tachometer unit. Only the speed of the motor was measurable through
the tachometer, and the acceleration variable was inaccessible. On the
other hand, the acceleration variable was needed for a satisfactory con-
troller design, and the main problem, therefore, was to reconstruct the
acceleration variable from speed variable and the control variable. In
addition,we were also interested in the effect of measurement noise, the
sensitivity of the proposed method with respect to system parameters and
the real-time implementation. No particular effort was made to clean up
the noisy measurémenc of the speed, and the system was modeled as a second
order linear system. The real system, however, contained considerable nop-
linear friction.

The system diagram is given in Fig. 3. The open-loop transfer function
is approximately G = 90/s(s + 1.31)., The corresponding differential equation

is
v' + 1.31v' = 90u

vhere v is the speed and u is the control function. When only the available

speed variable was used in the controller, that is,

13
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= -
u v:ef v

the system response to a step reference input was as shown in Fig. 4(a).
Although the performance could have been improved somewhat using classical
corpensation newwork, it was not our objective, and che subject was not
pursued any further. Instead, the missing acceleration variable v' was

reconstructed, and a new controller

= v -v = 0.13v'

ref

was implemented. The system response to the same step reference input
for the new controller is given in Fig. 4(b). As can be seen, the
response was quite satisfactory. The small ripples in the response
were caused by the tach;meter noise.

To reconstruct the acceleration variable, write the system equation

in vector form

<
O
o
o
]
H
.
(]
H

v ‘] 0 =-1.31

Y'(ly 0) v

[ ]
<

H=(, 0).

Let h1 = 0 and h2 = h > 0. Then simple calculation gives

16




1 1.31h
1 1.1 1-e

a

r_

Since rank (Q) = 2, the state variables can be reconstructed. Further-
more, rank (C) = 2 for all h > 0. Therefore, for any delay time h > 0,

v'(t) can be reconstructed and is given by

v'(e) = ?—l-%ﬁl——; [v(t) - v(t - h)]
e -
90 (o)
b f (13LE¥8) 0L s
(e’ -1)J-h :

In this particular example, the delay was h = 0.04 sec., the accuracy of
A/D and D/A converters was 10 binary bits, and the sampling interval was

200y sec.

17
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» 1.5 CONCLUSIONS ,

A method is developed for exactly reconstructing inaccessible
voriables in a linear svstem from the measurable variables, their
t'ra del-ved vaiues and the control variables on the maximum delay
dnration. Examplés show that the method maybgive satisfactory results

in certain cases.
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2. DELAYED FEEDBACK CONTROLLER FOR A DC MOTOR CONTROL SYSTEM

2.1 INTRODUCTION

In this scction, a new controller design, which uses only the observed
state variables, is investigaed. It is based on time delayed state
variable feedback can be easily implemented by a microprocessor. The
method has been applied to several laboratory systems and is found to

be almost as effective as an optimal controller.

2.2 PROBLEM STATEMENT
Consider a linear time invariant control system which is given by the
vector differential equation
X(£) = A x(£) + B u(t) , x(0) = x,
y(t) = C x(t)
where x is the n-dimensional state vector, u is the r-dimensional control
vector, and y is the m-dimensional observed vector. A, B and C are constant

matrices with compatible dimensions. Let J(u) be a cost functional defined

by
T
J(u) = f f(x(t),u(t))de .
0
The pfoblem is to find a feedback controller u in the form of
4
u jiO Kj y(t ~ h_j)

which minimizes the cost functional J(u) qver all delayed feedback
controllers. Here, 0-h04 hlc h2 cee <'hN are time delays and Kj,

Jj=0, 1, 2, ...,N, arc sxalar constants.

20




The first question is whether there exists an optimal controller which

] minimizes the cost functional. If such a control exists, then the next

question is how to determine the number of delays N, the delays h, and

Ehe delay coefficients Kj. At present, no answers are available to the

above questions. A preliminary study indicates that the minimum number

of delays N should be at least equal to n - s, where s is the number

of linearly independent variables in y. In the current investigation,

the delayed feedback controller is derived in the following way. First,
the number of delays is chosen to be equal to n-s. Then the delays hj

are chosen to be large enough so that the absolute value of Y(hi) - y(hj)
is substantially larger than the measurement noise during transient.
Then the constants Kj are chosen by numerical iteration. Let K be the
vector (Ko, Kl' cee s KN)’ Once N and hj are determined, u is uniquely ‘
determined by K. Let u = u(K), and K* be the optimal parameter set.

Then, assuming the iteration converges, K* may be determined by the
iteration '

K

{41 = Ki - A-grad J(Ki)'

2.3 EXPERIMENTAL RESULTS

.

In order to study the feasibility of the proposed method, a third order .

d.c. motor driven position control system as shown in Fig.l was investigated.

FRICTICN

(@) MAROWARE CONFiGURATION

u 31800 ]
S?(S+11.4)

(b) BASIC MATHEMATICAL MCODEL

Fig. 1. Third order d.r. rotor pasition contrnl svetgn,




There are basically two reasons for adding the integrator. The first o
is to construct a third order system, and the second is to minimize
the steady state position error due to the nonlinear Coulomb friction
in the system and also to eliminate the staedy state tracking error,
that is, the steady state position error when the reference input is
a ramp function. The control function u is the input voltage to the
integrator, and the output © is the motor shaft position measured by

a potentiometer.

.'To establish a baseline performance criterion and also for the purpose
of comparison, a conventional feedback control using both the position
and velocity variables was investigated first. The velocity was

measured by a tachometer. The system is shown in Fig.2 below.

Oret + 31800 8 B i
s2(S+11.4) 14

KS

TACHOMETER

Tig. 2. Conventional feedback control.

The tachometer feedback gain K was determined experimentally so that
the system settling time for a step reference input was minimized.
It was found that the settling time was minimum when K = 0.77, and

the corresponding response was as shown in Fig.3

22




1.0

8<15/jﬂ"'7
A2 & 1 & & L & 2 b

‘~ o] 1.0 20
t (sec)

Fig. 3. Step input response of conventional

feedback controller (25 mm/sec.). ;

|

The settling time was about 1 sec., and there was a sustained small
oscillation during the transient. Although the system performance
might have been improved by adding compensation network, this possi-~
bility was not pursued any further.

The delayed state variable feedback controller was investigated
next. It was assumend that only the shaft position was measurable,
eliminating the need for measuring the velocity of the shaft of the
motor. The mathematical model of the system is now given by
0''' +11.4 8"" = 31800 u

. y=o.
Because the system dimension is 3, and the observed vector y is of
dimension 1, two time delays h1 and h2 were used in the controller.
The values were chosen to be h1-4.65 msec. and h2-9.30 msec. The
controller is given by

u=g___(t) - ( Kl e(t) + K2 0(t-0.00465) + K3 0(t-0.0093) )

ref

23
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Here, eref is the reference input. The main objective is to force the
output 9(t) to be the same as the reference input eref(t), that is,
a(t) = eref(t). A block diagram of the system is shown in Fig.4 below.

L]

8" +11.48" = 31800u —>

MAIN SYSTEM

us ergf -K,G(?)-K29(1-0.00465) - Kse(t-0.0093) eref

CONTROLLER

Fig. 4. Delayed variable feedback controller.

The cost functional J(u) is given by
2 0 )2 + u(t)z} de
J(u) = o {_(atcf - 6(t) G

whe;e eref is the unit step function and the system is at rest at t=0,
that 1is, 0(0) =6'(0) = 8''(0) = 0. The values Kl’
determined by the iteration method mentioned above, and the values
1=113, K2=-203 and K3=91. The upper limit of the

integral for the cost functional was chosen to be 2 sec. mainly because

K2 and K3 were
were found to be K

the conventional feedback control system reached its final value for
a step function input in about 1 sec., which is much shorter than the

upper limit of 2 sec.

When the optimal delayed state variable feedback controller was
implemented, the step reference input response was as shown in Fig.5.
The settling time was less than 0.4 sec., and the transient response

was very smooth.

24
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Fig.5 Step input Response of Delyaed Feedback System..

2.4 CONCLUSIONS

It was shown experimentally that the delayed state variable feedback
controller is an effective controller. Even though it used only the
position variable, the response was at least five times faster than

the conventional controller. Furthermore, the transient response of

the delayed feedback ¢ontroller was much smoother than the corresponding
response of the conventional controller. The delayed controller, however,
was synthesized more or less experimentally, and further studies are
needed for developing analytic methods for synthesizing delayed

feedback controllers.
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3. MICROPROCESSOR BASED IMPLEMENTATION OF DELAYED FEEDBACK CONTROLLERS

1 INTRODUCTION

i this paper, a microprocessor based digital controller for a basically third order d.c.
>tor driven position control system is presented. The controller uses only the output
)sition informarion, which 1s measured directly using a digital absolute shaft encoder.
ie result is compared with a conventional feedback controller using both the position and
1locity variables. It is shown that the digital controller gives very satisfactory per-

yxrmance.

.2 BASIC SYSTEM

12 system under study 1is basically a third order d.c. motor driven position control
‘stem as shown in Fig. 1. Although the system is modeled as a linear system, there is a
tbstantial nonlinear Coulomb friction. 1In fact, there is a substantial steady state
1sition error when the loop is closed without the integrator.

- [l> {} MOTOR ‘ o

FRICTICN

(0) HARDWARE CONFIGURATION

v 31800 X
S2(S+11.4)

(b) BASIC MATHEMATICAL MOCEL

Fig. 1. Third order d.c. motor position control system
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The function u(t) is the input voltage to the operational amplifier, and the output 8(t) is
the shaft position. The main purpose is to design and implement a controller so that the
output 68(t) is the same as the input reference function eref(t).

The controller invastigated is basically a closed loop, or feedback, digital controller,
which is based on a microprocessor as shown in Fig. 2. It should be noted that, although
it is basically a third order system, only the position variable 6(t) 1is used in the
design, eliminating the need for a tachometer, an additional system hardware.

e
ref INTEGRATOR { > ) DIGITAL |©
- AMPLIFIER MOTOR LOAD ENCODER | |

FRICTION

D/A
CONVERTER

MICROPROCESSOR

Fig. 2. Digital Controller

I
3.3 CONVENSIONAL CONTROLLER :

To establish a baseline performance criterion and also for the purpose of comparisom, a
conventional feedback control using both the position and velocity variables 1s investigated
first. The velocity is measured by a tachometer. The system is shown in Fig. 3.

Oret . + + 31800 8
szts‘.n.«n

KS
TACHOMETER .

¥ig. 3. Conventional feedback control
27




The tachometer feedback gain K 1s determined experimentaily so that the system settling
time for a step reference input is minimized. It is found that the settling time is

minimum when K = 0.77, and the corresponding response is as shown in Fig. 4.

Fig. 4. Step input response of conventional feedback controller

‘he settling time is about 1 sec., and there is a sustained small oscillation during the
:ransient. Although the system performance could be improved by adding compensation net-

'ork, this possibility is not pursued any further.
3.4 DIGITAL CONTROLLER ‘ ‘
'he system given in Fig; 1 ean be represented by the differential equation
0" + 11.46" = 31800u .
et y, - 8, o = 5, vy = 8 and
vy [n
72
RE

‘hen the system equation can now be written as the vector differential equation
-

ys= 0 0 0 y + 0 u
0 0 1 0
LO 0o -11.4 31800

‘o design a digital controller, it is first necessary to discretize the above equation.
2t x(k) = y(kT), and v(k) = u(t), kT < t < (k+1)T, where T is the sampling interval.
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‘hen

x(k+1l) = Ax(k) + Bv(k)

here
[ 1 T }  -11.47 |
A= 1l T - + + e
11,42 1.4 113
1 _ =11.4T
o 1 1.4 ¢ )
o o 11.4T J
e
nd i
r T hr—z— 1 11. 4T R
11.4 11,4
31800 x { 12+1{4- Lo @4 - 1)
11.4 4 11.4
1 11.4T _
. | 31800 x 7 (e 1) 1

‘he task is to find an algorithm for v(k) using xl(k) and ere only so that xl(k) = 9

£ ref
.n steady state. Since it is found that such a feedback controller is not unique, further
restrictions are imposed on the controller v(k). The constraints are that the response
tettling time is minimized and the output 8(t) is smooth during the transient for a step

reference input eref'

3y applying a recently developed method for synthesizing an optimal controller based on
lelayed feedback [1], the digital controller algorithm

v(k) = 0.5 oref - 80.5 x(k) + 150 x(k-4) - 70 x(k-8)

is obtained for the sampling interval of T = 1 msec. The actual implementation of the
:ontroller is shown in Fig. 5.
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o - . Y
—zef § ool ——ti)—i‘-’-—- 8’ '+11.4 ©''=31800 u
[ D/A : - MATY SYSTEM , DIGITAL
CONVERTER I ENCODER
k)=80. 5x (k)-150x (k-4 )+ -

MICROPROCESSOR

. Fig. 5. Microprocessor based digital controller (T = 1 msec.)

averal microprocessors have been used for implementing the digital controller. Im all
ases, a real time clock of 1 msec is used for initiating the interrupt driven control
lgorithm. The accuracy of the shaft encoder and the D/A converter is 12-bit. When an
SL~11 microprocessor is used, 132 16-bit words of memory are required. Other micro-
rocessors investigated are M0S6502 (8-bit) and Motorola XM68000 (16-bit).

he step input response of the digital controller is given in Fig. 6. The particular
icroprocessor used for the experiment is LSI-1l.

Tig. 6. Step input reséouse of the digital controller

Although only the position variable is used in the digital controller, it gives a much’
better system response than the conventional feedback controller. The settling time for

an




a step reference input is now less than 0.36 sec., which is about 3 times faster than the
conventional controller. Furthermore, the transient response of the digital controller
is very smooth.

3.5 CONCLUSIONS |

A microprocessor based digital controller is designed for a third order position control
system, and is implemented in an actual system. Although it uses only the position vari-
able it is shown that the system performance is very satisfactory.

3.6 REFERENCE {

1. Chyung, D.H.,"On a New Closed Loop Controller Design", 1980 Conference on Information
Sciences and Systems, Princeton University, March 1980.




4. DELAYED FEEDBACK CONTROLLER FOR AN A.C. MOTOR CONTROL SYSTEM f

~ The system considered is an a.c. motor driven third order position
control system. A block diagram 1s shown in Fig.l below.

. 1npu£ position :
Integrator Modulator Amplifier A.C. Motor Digital Encoder

Fig.l A.C. motor driven position control system.

The output variable is measured by a digital shaft encoder. Since it
is éhe only sensor employed in the system, only the position variable is
available for feedback, that is, the feedback compensation may not use
velocity and acceleration variables.

The maihematical model of the system, which is determined experimentally,
is given by the following transfer function.
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-

u 119 X
G(s)=

32(8-1.6)

Fig.2 Mathematical model

The problem is to design a feedback compensation H(s), using onlf
the output position variable x, such that the resulting system is stable
and follows the reference input X of* Fig.3 below shows the closed loop

control system.

Xref +

G(s)

H(s)

Fig.3 Closed loop system.
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The major difficulty in designing a satisfactory compensation H(s) is
that the system is a third order system and the acceleration and velocity
variables are not available for feedback. That is, H(s) may not contain s

and 32 terms.

To resolve the difficulty, consider the time delayed feedback compensation,

) -T.s . -T,8

H(s)= K, + K,e "1° + Kje 727 .

The feedback now contains only the output variable x. However, the feedback
loop also contains two time delayed values x(t—Tl) and x(t-Tz). A block

diagram of the system is given in Fig. 4.

xref in 119 x
- 32(5—1.6)
‘ ~T,s -T,s
Kl + K2e 17 + K3e 2

. Fig.4 Delayed feedback system.

In the current system, the time delays Tl and Tz are chosen to be 0.015 sec.
and 0.03 sec., respectively. To satisfy the requirement X=X of in steady state,

the feedback parameters must gsatisfy the condition

‘1 + K2 + K3 - 1.
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?he task is now to find the feedback constants Kl’ KZ and K3. The Bode
plot of the forward loop transfer function G(s) is designated by G in Fig.S5.
For 11-473, Kz-916 and K3-643, the Bode plots of H(s) and GH(s) are shown
as H and GH, respectively, in Fig.5. It can be seen from the plots, GH(s)
has a gain margin of 20db and phase margin of 50 degrees. hence the system

A should give satisfactory performance for the particular compensation H(s).

Fig.6(a) shows the step input response ofthe actual system. In order to

determine how accurate the model is, the model is simulated on a computer,
and the simuiation result for the same step input is shown in FIG. 6(b).
From the curves, it can be seen that the compensation designed above indeed

gives a sat£§factory response and the mathematicl model is also satisfactory.
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Fig. 6

(b) Computer simulation (5 div./sec.) .

Step input response of delayed feedback system.
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5. DISTURBANCE COMPENSATION SCHEME

One of the problems encountered by a position control system on a moving
platform is the error due to the disturbance caused by the movement of the
piatfom.In this sectioni, a compensation method for reducing the effects
of the disturbance in a d.c. motor driven third order position control

system is investigated. Figure 1 below shows the system under study. Tie

DISTURBACE

DISTURBANCE
COMPENSAT ION

- -

sef ERROR INTEGRATCR

[ ]
+
v Y AMPLIFIER [—] MOTOR '—@— LoAD

- VELCCITY . i
: FEEDBACK .

P4g.1 Position Concrol Systeam
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Disturbence
2
#=0.15 b=0.001
po==—==~- atds e o e e e = —— - ————— ———— .3.‘
]
« [
[ ]
]
] 0,0135
! 0.15 0.04 0.00005
: —l0.0113
!
'
- - - - 0 [ ]
2.48 2 & R o -———L————l—-‘ 2 B0 3

Tig.2 Block Disgras

block diagram model of the system is as shown imn Figure>2. As can be>
seen from the block diagram, there is a substantial nonlinear Coulomb
friction between the stator and rotor of the d.c. motor. When a typical
second order position control, that is, without the addicional.integrator

in Figure 1, is employed, there is a large steady state error due to the
nonlinear friction. The additional integrator is therefore inserted in
the system to force the steady state error to be zero. Another reason
for the inclusion of the integrator ic to investigate the effectiveness
of the proposed disturbance compensation scheme in a third order system.

To simulate the disturbance due to the motion of a platorm, the
stator, that is, the outer shell, of the motor is rotated, and the
effects of the stator motion on the position error of the system is
studied. The disturbance motion of the platform, and therefore, the
motion of the motor statér, is denoted by ed, and the system position,
that 1is, the position of the motor rotor is denoted by 6. The system
error is defined by

.. .. ...,. - Y 39 ’ .. . . . eymema oo . . -J
Carve , sk ) ) v J




wvhere eref is the desired position angle. The disturbance stator motion
Od affects the rotor position & in three maior ways. The first is, of

course, the disturbance torque being applied to the rotor shaft through

the frictions between the stator and rotor of the motor. The second is

the additional velocity feedback due to the disturbances. The last is

the electromagnetic interaction between the stator and rotor motions of
the motor.

Since the velocity of the disturbance signal, éd’ is practically the
most convenient variable to measure, the disturbance compensation is
based on the disturbance velocity éd' The actual structure of the com-

pensation scheme is shown by the dotted line in Figure 2. The values of

the constants a and b are determined experimentally and the actual values
used in the current experiment are a = 0.15 and b = 0.001.

The step input response of the system without external disturbances
is as shown in Figure 3. The settling time is about 0.8 sec. in e

direction and 2.6 sec. in the other direction. The difference in settling

time in the positive and negative directions is due to unsymmetrical
nonlinear frictions.

i
HED
Hiih

H.tﬂ
i

H
4
] B
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o
11

i

i

Hg; 3 Step Input Response ( 0.9°/div., 5 div./sec. ).

40

gl Pt S B = Iiiin. . ., - J



To study the effects of the disturbances, three diff erent types of

- disturbance motions are applied to the stator of the motor, and the

rotor position error is observed while keeping the reference input eref
at zero degree. Wheh no disturbance compensation scheme is employed the
resulting system position errors are as shown in Figure 4. The curves (a)
represent the stator position due to disturbances and the curves (b) rep-
resent the actual system position error due to the disturbances. When an
impulse of 18° disturbance is applied to the stator, the resulting maxi-
mum system error is 19°. For a 35° stép disturbance, the maximum error
is 25°, and for a 33° peak-to-peak sinusoidal disturbance, the peak-to-
peak error is 45°. When the disturbance compensation is employed, the
posicion errors due to the same disturbances are as shown in Figure 5.
Now the maximum error due to an 18° impulse disturbance is 6°, the maxi-
oum error due to a 35° ;tep disturbance is 9° and the peak-to-peak value
of the error due to 35° p-p sinusoidal disturbance is 14°. The results
are summerized in Table 1. In general, the disturbance compensation
scheme reduces the effects of external disturbances significantly, in

the present case, by a factor of 3.
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() Disturbance input (ed)

Fig. 4 Position error due to disturbance in the system
without compensation (0.9°/div., 5 div./sec.)
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3

(b) Disturbance input (6

Fig. 5 Position error due to disturbance in the system

with compensation (0.9°/div., 5 div./sec.)

Disturbance Without With
input compensation compensation
18° Impulse 19° 6°
35° Step 25° 9°¢
35; p-p 2Hz. 45° p-p 14° p-p
Table 1. Position error due to external disturbances

42

J




In'cdﬁclusion,_it is shown that a disturbance compensation scheme may
" be employed tc reduce the effects of external disturbances in a position
control system. Since the major portion of the disturbance is transmitted
to the control system through the nonlinear friction, a nonlinear distur-
bance compensation scheme would be more effective. Further research is
currently being carried out to more fully develop the disturbance compen-
sation methods.




6. DISTURBANCE CANCELLING FOR XM-97 TURRET USING TIME DELAYS

In this sec'.ion, a disturbance cancelling controller is studied for the
XM-97 turret control system using time delays. Since the velocity of the
disturbance is available for measurement through a hull gyro, the
controller uses the rate gyro output. The block diagram of the system
with disturbance is given in Fig. 1. Let d(t) be the disturbance hull
velocity. Then the disturbance cancelling scheme is basically that of

£eéding back the cancelling variable z(t) to the input.

. [ 33

L2 EL S ]
= 0.0
| & 005 |
w0 0.0y DELAY 4
* V4 5/i0 E
}
0.04x56 : ]
.
Ont o g5 l«r'#‘__ 28 |oq 0.02 ! D\ ' -] !
Y= lr1e3/v0 = | 1rs/moo| T= | 1+%/conl |36 ] $20s
0.00412s v 1.
14%/i0 . i

L e -

Fig.l Disturbance Caﬁcelling Control

The variable z(t) is given as

2(t) = - 3%5 [0.04256d(t) + 0.04d(t - 0.05) + y(t))

~y(t) + 10y(c) = 0.824(d(t) - d(t - 0.05))
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Note that this scheme once again uses a time delaved variable. When d(t)=
1000 Cos(10t) and a step reference input of one degree is applied to the
system without the disturbance cancelling, the output‘ é(t) is as shown
in Fig. 2(a). The same response, but with the disturbance cancelling,

is given in Fig. 2(a). As can be seen, there is a substantial improve-
ment when disturbance cancelling is employed. The disturbance cancelling
scheme is more effective if an optimal control is employed. To show this,
tﬁé scheme 1s now applied to the optimal XM~97 turret sttem as shown in
Fig. 3. The response to the same disturbance is given in Fig.4. It is
believed that at least a part of the further improvement is due to the
elimination of the original tachometer feedback dynamics as well as the

application of an optimal control.

3]
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L » $3§ + A~ 725 e 0.02 1 . E°
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Fig.3 Disturbance Cancelling Control For
XM-97 Turret Control System. -
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7. MICROPROCESSOR-BASED OPTIMAL DISTURBANCE ACCOMODATING CONTROL FOR
XM-97 TURRET CONTROL SYSTEM

7.1 INTRODUCTION

The design of a microcomputer-based optimal disturbance accomodating
controller for the XM-97 turret control system is carried out. Simulation
studies of the system are made to compare the performance of the system
under different control schemes. Responses of the system subject to firing

burst torque disturbance as well as sinusoidal torque disturbance are given. ,
Significant improvemnets in the behaviour of the system under disturbances

are obtained using the proposed schemes.

The optimal analog control of the system and system disturbance modelling

are briefly dealt with in section 7.2. The discrete version of the controller

and the discrete disturbance-isolated observer are covered in section 7.3. EI
f

Simuylation results are shown in section 7.4.
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7.2 | OPTIMAL CONTROLLER AND SYSTEM-DISTURBANCE MODFT..

The block diagram for the open-loop XM-97 turret with disturbance input w(t)

4s = given in Fig. 1 and the corresponding equations of motion are given by
%(t) = Ax(t) + Bu(t) +Fv_+ Du(t), (1a)
y(t) = Cx(t), (1b)
vhere x(t) = [x,(8) x, (01T, x (©) & (x (&) - x1(®©)], x,(6) & (hv_ - x}(0)]
ere x(t) x,(t) x, s Xy r X ' Xy r 2 ’

:zft) -'[yi(t) Yz(t)]T is the observed vector, w(t) is the disturbance torque,

and A, ﬁ; E, D aiid C are given by

0 1/N 1 .0 3, 0. 0
V'A- é ’B- e ’
‘ 5
0 -1.28 0 -a -2.675x10 -b
L - b 22 L
0 0 0 0 1 0
E= A ’D- é 'c- .
4
1.28N 3 ~10"/3N - 0 1
! | J &

The control objective is to drive x(t) to the zero state in tﬁe presence of
the distrubance torque w(t), and in the same time minimizing a quadratic
performance measure. To achieve the control objective, the control u(t) is

split into three parts as
u(t) = ug (£) + ug (8) +u (2), (2)

where ufb(t) is the feedback component responsible for driving x(t) to the

zero state, uff(t) is the feedforward component responsible for accommodating

the velocity command Ve and uv(t) is the feedforward component responsible

for accommodating the distrubance torque w(t). It can easily be shown that uff(t)

and u'(t) are given by, respectively,
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.“ff(t) - L2 5 Vr d kive o »
. 2.675x10
10* A
u (t) =- 5 w(t) = -k, w(t) . (4)
v 3Nx2.675x10
Substituting Eqs. (2), (3), (%) into Eq. (1) yields
x(t) = Ax(t) + Bug, (t) . (5) -
Consider the performance measure
' - 2 2
3= [ layyxj(e) + rug (t)]de, (6)
o
where q1120 and r>0 are weighting constants.
The optimal control which minimizes J is given by
ufb(t.) - uopt(t)
= kyx, (£) + k,x,(¢) )

r—-

- kllxr(t) - xj(8)] + ky[Nv - x3(0)].

The numerical values of the optimal gains k, and kz for different values of

1
qll together with the values of feedforward gains kr and kw are given in Table 1.
_From Eqs. (2), (3), (4) and (7), the complete control u(t) is given by

u(t) = kyx) (€) + kox, () + kv (t) - k w(t) . (8)
Since the distrubance w(t) is not known, the control u(t) can be implemented as
u(t) = klxl(t) + kzxz(t) + krvr - k'w(t) . )

where ;(t) is an estimate of w(t).

The estimate w(t) of w(t) considered in this report will be generated by a -t

discrete Luenberger observer. For simplicity, the distrubance w(t) will be

30
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approximated by a random step plus ramp function described by

-

) = o(t),  w(0) = w, 10

where og(t) 1s an unknown sequence of' pulses included to take into account
of the random change in values of w(t),

Augmenting Eq. (10) to Eq. (1) ylelds

x(t)

Ag p || x(v) B E 0
—_— =] #l—fuey + |—-]v. +] -] o
#(t) 0to ]| wee 0 0 1
& Ax(t) + Bu(t) + Ev_(t) + Do(e) , . (11a)
= Ax(t) + Bu'(t) + Do(t) (11b)

2(e) = (1,5 01| xe)| & mxce,
. -— (11c)
w(t)

where the various vectors and matrices are as defined, and
A )
! - -
u'(t) klxl(t) + kzxz(t) kww(t) . (114d)
Since the matrix pair [A, H] is completely observable, i.e.,

- 9 = t - - -
rank [HT ! AT BT ! A%T §T)

~ .
1 0' o 0 ' ~
[ ] 1
' - -
wrank | 0 1! 1/N -1.28 AT §T | .3,

1] [ ]
[ ] 6 1

|0 oi o -1 i |

the unknown disturbance w(t) can be estimated by a reduced-order Luenberger

observer. .
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7.3 DISCRETE OPTIMAL CONTROLLER WITH DISTURBANCE-ISOLATED OBSERVER

In thls section, a microcomputer based controller with disturbance

compensation will be designed. In this scheme, the disturbance w(t) will be

estimated as w(k) by a discrete disturbance-isolated observer and the optimal

control input will be realized as (see Eq. (11d);

ut (k) = deyxy () + kgx, (k) = k w(k) 12) :
ITisTFDesign of Piscrete Disturhance-Iselated ObseErver

. The augmented system (11b) can be described as

. ' ' _
x(H1) Agj Dq | | =0 By | P
—— e —— | + Jo— JuQ@) + |-~ [o(z) (13)
w(k+1) 0 ! 1 w(k) 0 T

- Zd;(k) + idu(k) + Bda(:)

uhete; ;
B At -a,,T !
Ad - e 1l alz(l-e 22 )/a22 ;
) e 3227 |
p, = (**-Da”lp - r—a (e™%22%-1 + )/ 2 | ' ;
d 128 Balie P AREAPY - j
-a,.T |
L g(lfe 22 )/azz | )
e |
- (oAT_1ya" 1R o -a, 1t 2 1
Bd e =1)A "B -alzb(e 22'-1 + azt)/a22
-a,.t
i b(l-e “22 )/a22 _
D, = (eA‘-I-At)A.ZD = |a g(e"22‘-1 +a,.t - az t2/2)/ 3
d 1 22 22 322
-8,.T 2 )
gle 22" -1+ azzt)/azz
with u(k) and w(k) assumed to be piece-wise constants i.e., u(t) = u(kt) and )

w(t) = w(ktr), in the interval te(kt,(k+l)t] and t being the sampling interval.

*-1
A II{ or may not exist in general, llowever, the above trelations are notationally !
correct.
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wd-

DO .

Y

For the sampling interval t of 10 msec, the numerical values of A 4’ B d and D d

are given I;y

1 1.6026x1070  -4.3175x10"7 -2.1482x10"2
Ay=| 0 o0.98728 -5.3420x10 2| By - ~2.6580x10°

LO 0 1 0

| -1.4232x107°
D, = | -2.6769x10"% | - (14)

.01

e

'rhe sampled measurements at t = kr are

200 = 200 = [ 1, 0 I[xW] = ¢; x>+ (15)
w(k)

A discrete disturbance-isolated observer which generates w(k)
is given by

(k) = F z(k) + G y(k) + M u'(k), (16a)
w(k) = z(k) + L y(k), (16b)

\.nhere z(k) 1s a scalar and
F=1-1D,, - L

G-FL-!-Azl-LAll’

M=3, -LB

2 )
with the choice of L given by -

-1-1-)'1'

L = 7[B35,1718] + ver, - 1B35,07185 ) ,

wvhere V is chosen such that F is stable.
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7.4 Optimal Disturbance Accommodation Controller f

t

With a choice of T ~-.01 sec and V = [73:106 0],and uéing (14),

the observer (16) 1s given by

6

z(k) = 0.038512 z(k-1) + [-6.7396x10 -41.430]y(k-1)

-4.7839x10% u' (k-1), (17a)

6

wik) = 2000 + [7x10®  -74.5731y0, (17b)

while the microcomputer control is given by

) = kyx (1) + X (0 - Kk w(l)
4 -5

= 2.2361x, (k) + 1.5949%107° X (k) - 2.0098%107> w(k),  (18) (

vhére the first column entry of Table 1 has been used.

55




. 7.5 OPTIMAL DISTURBANCE ACCOMMODATING CONTROLLER WITH DISTURBANCE PREDICTION

.It is suggested that an alternative microcomputer scheme to (18) can

be realized aa

P ' ~ -~ hod
.u(k? - klxl(k) + k,x, (k) - k (k) - kp[(1+9) w(k) - ow(k)]
= 2.2361 x,(K) + 1.5949%10™° x, (k) ~ 2.0098%107> &(k)
1 =0.5051#107% [(140) (1) - ew(K)], (19)
- ﬁﬁétﬁ thé:iust term in the control equation is a prediction scheme. In the

" simylation that follows, 1t 1s found that 8 = 20 yields improvements in

| the sccommodation of the disturbance.

’
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7.6  SIMULATION RESULTS

_Simulation of the performance of the optimal turret control system,
subject to different disturbance torque, under 3 types of controls were

studied. These controls are

A. Without disturbance compensation (kh-O)
"y o
u'(k) klxl(k) + kzxz(k)
B. With disturbance ocmpensation
* - - -
u'(t) klxl(k) + kyxy (k) - k, w(k)
C. With disturbance compensation and prediction

u'(t) = kyx, (k) + kyx, (k). -k w(k) - k, [(1+0) w(k) - ew(k-1)]
. J .
vhere kl’ k2'.kw’ kb and 0 are as defined in the previous section.

The system was subjected to the following external torque w(t) :
&, torque due to firing bursts, and
b. sinosoidal torque at } Hz, 5 Hs and 10 Rz.

Figs. 2(A), 2(B) and 2(C) shows responses of-xl(t) under the controls
A, B and C respectively, when the system is subject to external torque
w(t) due to firing bursts. The external torque w(t) and its discrete
estimates w(k) obtained ftom observer (17) (where control B is used) are
shown in Pig. 3.‘ A typical microcomputer control input is shown in Fig. 4
vhile Fig. 5 shows a typical response of xz(t).

It is seen that an improvement of about 5 : 1 in the reduction of
the maximum smplitude of xl(t) is obtained when control B {s used as
compared with control A. A further improvement of about 10 : 1 is obtained

when control C is used instead of control A.




Fig. 6(A), 6(B) and 6(C) similarly depict the response of xl(t) under
control A, B and C respectively, when the system is subject to a 1 Hz
sinosoidal external disturbance. In Fig. 7 and Fig. 8, the system is

subject to a 5 Hz and 10 Hz sinosoidal external disturbance respectively.

In all cases, it is found that control B and C suppress the tranmission
of the external disturbance w(t) to the output xl(t) by an appreciable
amount. Control C, which has an element of prediction in its algoritim,
exhibits a better distixtbauce suppression characteristic over the straight

disturbance accommodating control B.
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Fig.1 SIMPLIFIED OPEN-LOOP XM-97 HELICOPTER TURRET CONTROL SYSTEM

WITH DISTURBANCE INPUT (TWO-STATE-VARIABLE MODEL)
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8. MICROPROCESSOR-BASED COMPENSATION FOR NONLINEAR FRICTION

One of the problems which occur frequently in a mechanical position
control system is the non-zero steady state error due to nonlinear
frictions such as Coulomb friction and stiction. The steady state error

may be'reduced by increasing the gain or by gearing dowmn the motor output.
1t may also be reduced by using the integral of the error as the control

input. However, these schemes may also introduce instability, excessive

overshoot and long settling time. In this Chapter, we investigate another menthsd“‘

which is based on a microprocessor to reduce the steady state error.

The system investigated was a d.c. motor driven position control

system shown in Fig. 1.

v
REF 4 E .V
, . amp |-{ MOTOR L-/-) Loap B Por Al

VISCOUS FRICTION
COULOMB FRICTION

Fig. 1 DC MOTOR POSITION CONTROL SYSTEM
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In addition to the Coulomb friction, the system contained some striction

~ as well. However, the compensation scheme was mainly for countering the
Coulomb friction. The mathematical model of the system is given in Fig. 2.

i
w)

RE-—’(F *, }-—E 500

65 SGN(V)

Fig. 2 MATHEMATICAL MODEL

When a step input of 1V was applied, the response was as shown in Fig. 3.
As can be seen, the steady state error was approximately 0.2 ~ 0.3V
(20 ~ 302). The variation of the error was due to non-uniform frictioms.

E==

o{volts

T ._.3.
PSS STy - ey i oA WPl FTTOR C iyt g S

Fig. 3 STEP INPUT RESPONSE (25 mm/sec.)




To reduce the error, a microprocessor based compensation scheme was

1 4

implemented as shown in Fig. 4.

E+ Ve
- ) AMP MOTOR |—— ) LOAD POT

CcoMP

: ¢——— TACHOMETER
MICROPROCESSOR E

Fig. 4 SYSTEM WITH FRICTION COMPENSATION

The error and the velocity of the motor were sent to the microprocessor
through A/D converters, and the compensation c?mmand Ecomp was sent to the
system input through a D/A converter. Basically, the compensation signal
was determined by the following equation.

[ I '_ if lvél > 0.1V/sec.

. 0 if | e] < 0.008v

comp =
1.25V if M lVél f O.J.V/Sec., e > o.oeav
-1.25V 1f .lve'l < 0.1V/sec., e < -0.008V

When the éame step input of 1V was applied to the compensated system, the

response was as shown in Fig. 5. The actual steady state error was less
than 0.001V, ‘




. . e . e e P R . ———— e - ——

yecvac?) T

-1

Fig. 5 STEP RESPONSE OF THE COMPENSATED SYSTEM (25 mm/Sec.)
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