
AD-A129 133 THE POKER (0) PR03RAMMER S GUIDE(U) PURDUE UNIV
LAFAYETTE IN DEPT F CDMPU TER SC ENCES LSNYDER DEC 82
CSD-TR-434 N00014 80-K-0816

UNCLASSIFIED FG92 N

EhhEEEEMhEEMhE
,7mmT1

111111 1 4-L0A 11.

IIII1.25 iiI1. ul1

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS- 1963-A

UfCAR i r Dpid~ee
48UIYCLASSIFICATION OP THIS PAGE (hnDt oe*

IRF4 D STUCTIONSREPORT DOCUMENTATION PAGE noE @z~COMPLETIGqRI. IRPORT IUM9E9A GV ACCESSION uo CIPIENT' CATALOG NUMBERICSD-TR-434 A-(.% q 3i
4. TIT69 ted &bfI) SL TYPE OF REPORT 6 PER4OD COVERED

The Poker (1.0) Programmers Guide Technical-Interim

M . Lawence Snyder N00014-80-K-0816

r__4 N00014-BI-K-0360

S. PEMPORNING0 ORGANIZATION NAME A14D ADORE8S A0 REAC2 9 WORK T~ NUMBER

Purdue University AC UNPUMIR

OK? Department of Computer Sciences
West Lafayette, Indiana 47907 Task SRO-100

T9 It. CONTROLLING OFFICE NAME AND ADDRESS 12. REPOJIT DATE

S Office of Naval Research December 1982
Information Systems Program 13. NUMBER OF PAGES
Arlington, Virginia 22217 29

14. MONITORING AGENCY NAME A AOORESS(I dibmt~ ker Ccafta.Ud 9161..) 1. SECURITY CLASS. (1ad Owe poH)
Unclassified

Ifa. DECLASSIFICATION/DOWNGRADING
SCHEDULE

1S. DISTRIBUTION STATEMENT (of this JtePet)

Distribution of this report is unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered in, Block 20. it different ft E LEf

1S. KEy WORDS (Cantinu on "ersee side of "esweeep w Ideatt*' by' black -- bO)

programming environment, parallel programming, Poker, graph
embedding, XX, reference manual, parallel programming language,

>1 CHiP Computer, Pringle Computer

C 26, ABSTRACT (Cantlnu e e.A uid. 11810 e ~dimtb i'Sek Sr
The Poker Parallel Programming Environment is a graphics-based

L.A.j interactive system for writing and running CHiP programs. The
...progrAms can be emulated or run on the Pringle (when completed).
SPoker 'runs on the VAX 11/780 under UNIX using two displays.

Poker permi ,sthe programmer to encode a parallel algorithm in a
C. convenient, ~high levelPinteract've environment, but because cnff)

approach is somewhatnonstandard, Wbegin wth a discussion ofo*
9 view of the parallel programmin activity

W 1473 EaITIo" OP I Nov B 651 OBSOLETe EIIATNONSAi5KIH
IM 0102-0L4-401 Ugalfe

*I

The Poker (1.0) Programmers Guide

Lawrence Snyder

ABSTRACT

The Poker Parallel Programming Environment is a graphics-
based interactive system for writing and running CHiP pro-
grams. The programs can be emulated or run on the Pringle
when completed). Poker runs on the VAX 11/780 under

UNIX using two displays (see Figure 1). Poker permits the
programmer to encode a parallel algorithm in a convenient,
"high level" interactive environment, but because our
approach is somewhat nonstandard, we begin with a discus-
sion of our view of the parallel programming activity. The
sections of this document are:

I. CHiP programming is something else
11. Poker Programmer's Reference Guide

Comments on this document or the programs to which it
refers are eagerly solicited.

CSD-TR-434

20 December 1982

aiabi~i CodBs_

.... Ipe im

This work is part of the Blue CHIP Project. It is supported in part by the Office of
Naval Research Contracts N00014-80-K-0816 and N00014-aloK-0360. The latter is
Task SRO- 100.

83 06 10 027

-2-

Acknowledgements
The Poker System is the product of the ideas and effort of many peo-

ple. Janice E. Cuny and Dennis B. Gannon, in addition to contributing to
the definition of the XX programming language, were a continual source

.of ideas, judgement and constructive criticism. Christopher A. Kent con-
tributed extensively to the overall design as well as the programming.
Version 1.0 of Poker was written during the summer of 1982 by a delight-
ful and committed group of gentlemen, the "poker players": SLeven S.
Albert, Carl W. Amport, Brian G. Beuning, Alan J. Chester, John P.
Guaragno, Christopher A. Kent, John Thomas Love, Eugene J. Shekita, arid
Carleton A. Smith. Concurrently, the coordination phase of Poker was
written under the direction of Janice E. Cuny by Karen L. Pickerinp, and
Ellen F. Scanlon. J. Timothy Field arid Alcjandro A. Kapauan clicerfully
explained the details of the Pringle architecture. Julie K. lfiaiovcr
expertly prepared the Poker documents under tight time consrai,,Ls.
J. Timothy Korb and Robert L. Brown gave helpful guidance on the lJiL-
Graph, and Bob wrote the interfacing software. Vance Waddle sup,,cstcd
the name, after Poker's "peeking and poking" trace facilities. The cuntri-
butions of all of these people are deeply appreciated.

-3-

VAX 11/780

POKLR

PROGRAMMING

ENVIRONMENT

UNIX

PRINGL -CONROLL

Figure 1. The Structure of the Poker Programming Environment.

-4-

I. CHiP Programming is Something Else

The programming environment provided by Poker is somewhat

unconventional due partly to novel properties of the CHiP Computer and

partly to novel properties of the system itself. To increase the accessibil-

ity of subsequent sections, we discuss here the activity of CHiP program-

ming and the role Poker plays.

Programming, of course, is the conversion of an (abstract) algorithm

that is "machine independent" into a form suitable for execution on a

particular computer. Thus, to begin programming a CHiP machine, we

need to have a parallel algorithm in mind. The algorithm is presumed to

have the form of a graph whose vertices are processes and whose edges

specify the communication paths among the processes.

For example, Figure 2 gives an algorithm that uses a binary tree us

the communication graph. The algorithm finds the maximum of a set of

numbers (stored one per process in a local variable called "va") and then

multiplies each number by the maximum. The maximum is found by

"floating" the largest value in each subtrec to the root of that. subtrcc.

Then the global maximum is broadcast back through the tree where each

process multiplies it times its local "val." Notice that although there are

fifteen processes in the tree, there are only three types of processes

used.

The conversion of this algorithm to run on a CHiP computer, i.e., the

programming, is straight forward.* It involves

*Aauming fumiliarity with the CHiP Computer. Complete information can bc
found in "Introduction to the Comfigurublo, Highly Parallel Computer," Lawrence
Snyder, Comp~ar, l5(l): 47-56, Junuary 1982.

$

-5-

loaf process ancestor process: root process:
write val to parent; read z from left child; read z from left child;
read max from parent; read y from right child; read y from right child;
val 4- val - max; write max (X .y. VW) to parent; max - max (z ,y, va);

read max from parent; write max to left child;
write max to left child; write max to right child;
write max to right child; val 4- val • max;
val *- val max;

Figure 2. An algorithm; each leaf is an instance of the leaf process, the
root is an instance of the root process and all other nodes are
instances of the ancestor process.

(a) e:nbedding the communication graph into the switch lattice,
(b) programming the process types in a sequential programming

language,
(c) assigning one of the process types to each processor,
(d) naming the data path ports, and
(e) compiling, assembling, coordinating, and loading the program.

We consider each of these activities in turn.

-6-

Embedding the communication graph into the switch lattice requires

that we program the switches of the lattice so that the processors have a

topology that iiatches (or is a super set of) the topology of the communi-

cation graph. This embedding operation is done graphically (rather than

symbolically) in the Poker System using the Switch Settings mode. lFit-

ure 3 illustrates a particular embedding of the fifteen node binary tree

into the lattice. Processor (1,2) is the root of the processor tree, proces-

sor (1,1) is a leaf, and processor (1,3) is unused.

000000000
0 0 OmoE 0
0 0 00 0
0 0 0

~0 0 0 0 0
0 0 0 04.0
00 0 00
0 o 0 o :o
000000000

Figure 3: An embedding of the 15 node binary tree.

Next we program the three process types in the sequential language

XX Each process is viewed as a procedure with (optional) paramcters

and local variables. In addition to the usual declarations we must specify

the part names, symbolic names used by a proccss to refer to other

processes with which it communicates. Figure 4 shows the XX code for

the three process types.]it the programs Lhe symbol '<-' is used for

input/output; assigning to a porL name, e.g., PARE NT <- val, causes out-

put and assigning from a port name, e.g., max <- PARENT, causes input.

o_____-____-

-7-

code leaf (val); cde ancestor (v.1); cadm root (val);
parts PARENT; parts PARENTLCHILDRCHILD; parts LCHILD. RCHILD;
begin begin bqi
int max. PARENT; int x,y, max, val., int xy, max, val,
PARENT <- val; PARENT, LCHILD, RCHILD; LCHILD, RCHILD;
max <- PARENT; x <- LCHILD; x <- LCHILD;
val:=val * max; y <- RCHILD; y <- RCHILD;
andL If x>y then max:=x if x>y then max:=x

else max:=y; elm max:=y;
if val > max then max:=val; if val > max then max:=val;
PARENT <- max; LCHILD <- max;
max <- PARENT; RCHILD <- max;
LCHILD <- max; val:--val * max;
RCHILD <- max; end.
val:=val * max;

end.

Figure 4. Code for the three process types.

The construction of the processor tree in the switch lattice to match

the communications graph gives an implicit association between the

processes of the algorithm and the processors. We make this relationship

explicit by assigning process names to the appropriate processors using

the Code Names mode of the Poker System. Figure 5 gives the result.

Figure 5. Assignment of process names to processors; note that the

name "ancestor" has been clipped to five characters.

Next, the port names mentioned in each process must be associated

with a specific data path. Each processor has eight ports corresponding

to the compass points. Only those connected by an active data path to

another PE need be named. This activity is performed using the Port

Names mode of Poker. Figure 6 shows the result of naming the ports.

The algorithm is now programmed. Next, each process type men-

tioned in the Code Names specification is compiled into assembly code.

The assembly code is then "coordinated," i.e., modified so that the CHiP

Computer can run it synchronously. The coordinated programs are

assembled to produce processor object code. The interconnecLion struc-

Lure is "compiled" to produce switch object code. The object codes are

loaded into the machine and executed.

Figure G. Thc specifieation of the port names; note that the namcs have
been clipped to the first five characters.

MINI

.- ~-- .- ---p. ,.-J. -- - w ' ---'-- , _ IlB Ir I

H. Poker Programmer's Reference Guide

This section gives a succinct description of the facilities available to

the programmer with the Poker Programming Environment. The

emphasis is on "what can be done" rather than "how to achieve particular

results." Although the sections are self-contained, and can be referred to

independently, it is suggested that the reader peruse the sections

sequentially first. The sections are:

1. The facilities and the display
2. Cursor motions
3. CHIP parameters mode
4. Switch settings mode
5. Port names mode
S. Code names mode
7. The XX programming language
8. Command request mode
9. Trace values mode
10. Port values mode
A. Catastrophic Bugs
B. Summary of Key Definitions

Additional information is available in "Introduction to the Poker Program-

ming Environment," Lawrence Snyder, Purdue University Technical

Report CSD-TR-433, 1983.

To access the Poker System (from the Research VAX) the user should

include the directory "/usr/lxs/poker/bin" in his search path. This

requires a (one-time) change to the PATH line of your .profile file. The

required modification is to append the text ":/usr/Ixs/poker/bin" to the

PATH line.

1. The facilities and the display

The Poker System uses two displays: a BBN BitGraph Display and a

conventional character display (e.g., ADDS Regent 40).0 The user should

ML is po1b., thoaLh Inoonvenient, to um just the BitGraph.

_ _ _ _ _ _ _ _ _ _ _ _ _ ._ _ i m

-10-

be logged into both terminals and should have both referring to a com-

mon directory. [To avoid name conflicts, it is advised that the directory

be clear (initially).]

The command 'poker' from the BitGraph terminal causes the system

to be entered. Thereafter, the display will have a form of the type shown

in Figure 1. Below the horizontal line is the "field" in which most activity

takes place. The field changes depending on how the programming

environment is being modified. Above the line is the status information.

The "lattice" gives a schematic picture of the processing elements (PEs)

of the machine being programmed. A box circumscribes that portion of

the lattice displayed in the fleld giving the user geometric context. The

chalkboard gives status information that is largely self explanatory. The

last line of the chalkboard is where all diagnostics are printed. The coni-

mand line is used to give commands (naturally), to present textual

paranieters, and to perform certain kinds of editing. Poker execution

always begins in the CHiP parameters mode.

The Poker system is interactive: virtually all key strokes cause an

iM7nediaie action. (Exceptions to this statement are described below.)

All actions, except text insertion and some cursor motions, arc composit

key strokes formed either by simultaneously striking the control key

and a letter key (e.g., we write -h to deno.e simultaneously striking the

control key and the letter i (which causes the cursor to backspace)), or

by first striking the escape key (written ese) followed by the simultane-

ous striking of the control key and a letter (e.g., esc--a is the command

to abort and return to UNIX). Should esc be inadvertently struck, it can

be cleared by striking esc again.

-11-

chalkboard

0000 rib I I ,--,. • ...U .t

00000013

latice 000000
000000

lattice
D0 00000000

auxiliary data area

O D-O0 diagnostic line
-IO rnO n) command line

fild

0000000000000000

0)0 0,0

fil 00 0 0 000 0 00 4 -0
o 33 o 0 eJ}e o
00 0 00 0 00 0

f el 000000 000

Figure 1.

2.Cursor Motions

Movement around the lattice and within the PEs is controlled by the

positive numeric keys of the key pad (located on the right side of the

keyboard and illustrated in Figure 2). Two kinds of motions are provided:

gross cursor motions and fine cursor motions. The gross cursor motions,

which are two-key operations composed of an esc followed by a direc-

tional key, usually move to the next PE in the indicated direction. Fine

motions, which are given just by a directional key, vary in meaning with

the mode.

000 0 0 0 00

-12-

Figure 2. Meaning of the key pad keys.

Fine Moves Directions Gross Moves

4 WEST esc-4
7 NORTH-WEST esc-7
a NORTH esc-8
9 NORTH-EAST esc-9
6 EAST esc-6
3 SOUTH-EAST esc-3
2 SOUTH esc-2
1 SOUTH-WEST esc-1
5 HOME esc-5

Figure 3. Gross and fine cursor motions.

6|

-13 -

3CEiP Parameters

Purpose: To specify the characteristics of the CHiP machine being
programmed.

Display: The current values of the CHiP computer's parameters are
given in the command line; their meaning is described in
Figure 4.

Activity: The cursor is moved right and left along the command line
using (gross or fine) east and west cursor motions.
Numbers entered replace the symbol pointed to by the cur-
sor. The new values take effect when the mode is changed
provided they are in range and satisfy the constraints; no
changes take place if any parameter is illegal.

Limitations: Specification of nL=64 is not currently possible due to inade-
quate page table space in the UNIX kernel; p>1 is not fully
implemented.

Parameter Range Constraints Default

n - size, number of PEs on the side 25n:564 n =2k 8
of the lattice

w - internal corridor width, the 1554I
number of switches separating
two adjacent PEs

us - external corridor width, the 1!5u54 is5W I
number of switches between
the perimeter and the edge PEs

d - degree, number of data 8 fixed a
paths incident to PEs and
switches

c - crossover level, number of 1:5c54 2
distinct data paths through a
switch

p - number of phases, the size of 1!5p:516 1
of the switch memory

Figure 4. Description of the CHiP Parameters.

Change nt: If the value of n is increased, the old lattice becomes the
upper left-hand corner of the new lattice; if n decreases,
the new lattice is the upper left-hand corner of the old lat-
tic e.

Change w: A change in w causes switch columns (rows) to be added or
removed from the right (bottom) of vertical (horizontal)
switch corridors. Existing switches retain their settings;
new switches are unset.

Change u: A change in us causes switches to be added or removed at
the perimeter. Existing switches retain their settings; new
switches are unset.

Change c: A change in c permits the number of distinct data paths
through a switch that can be set to be either increased or

-14-

decreased.
Change p: If p is increased, phases with consecutive higher numbers

are added; if p is decreased, phases with higher indexes are
removed. Added phases are clear.

Recognized keys:

esc-^a abort, return to UNIX without saving state.
esc-^e exit, return to UNIX and save CHiP parameters, switch set-

tings, port and code names in the current directory.
esc--1 redraw; the screen is redrawn.
esc-*o output screen; the BitGraph's raster memory is dumped to a

file named BGzxzxx in the current directory, where xxxxxx is a
random number

<mode> change state to reflect revised parameters, if legal, and
switch to a new inode according as mode is

esc-^p port names mode
esc--d code names mode
esc-^w switch settings mode
esc-^r command reque:;t mode
esc-^v port values mode
esc-^L trace values mode

<text> replaces the symbol at the cursor

VA

- 15-

4. Switch Settings
Purpose: To specify or modify a processor interconnection structure

for the lattice.
Display: The current processor interconnection structure of (a por-

tion of) the lattice for this phase is shown in the field; boxes
represent processors, and circles represent switches.

Cursor motion: Gross cursor motions advance the cursor to the next PE
in the indicated direction; fine cursor motions advance the
cursor to the next entity (PE or switch) in the indicated
direction. 'Home', from a switch causes the cursor to
return to Last PE, from a PE causes it to go to the com-
mand line, and from the command line to go to the Last PE.

Activity: The cursor is moved around the lattice. If the insert mode
is set, a wire is "pulled along" from the current position to
the cursor's new position. If the delete mode is set, wires
followed by the cursor are removed. At a switch all wires
common to the current level are highlighted, (with bold
strokes). If the chase mode is set, the cursor follows the
wire in the direction indicated until it reaches a PE, or ter-
minates, or reaches a switch that fans out, or cycles.

Recognized keys:

esc--a abort, return to UNIX without saving state.
esc--e exit, return to UNIX and save the current values of the CHiP

parameters, the switch settings and the code and port names.
esc--l redraw; the screen is redrawn.
esc-^o output screen; the BitGraph's raster memory is dumped to a

file named BGxzzxxx in the current directory, where xxzzz
is a random number.

<mode> switch to the indicated mode:

esc-^c CHiP parameters mode
esc-^p port names mode
esc--d code names mode
esc-^r command request mode
esc-^v port values mode
esc--t trace values mode

<text> is placed on the command line.
h backspace; if the cursor is on the command line.

-c center the display so that the PE whose index is given on the
command line is as close to the center of the field as possible
consistent with the requirement that the field remain fully
utilized; if the command line is blank, use the Last PE for
centering.

-i insert mode is set, so subsequent cursor motions cause a line
to be drawn. From the command line, -i reads in a switch set-
ting file whose name is given on the command line, or, if none
is given, the Switch Set file of the current directory.

^d delete mode is set, so subsequent cursor motions that follow a
line cause it to be removed. From the command line, -d
deletes all switch settings.

^x set chase mode, so that (only) the next cursor motion will

-16-

follow the line in the indicated direction until it terminates,
reaches a PE, reaches a switch that fans out or cycles.

,e end the current mode, i.e., cancel insert, delete or chase.
^I Iciel change; the level of the switch pointed to by the cursor

is changed to the next lower level. Repeated use of this key
cycles through all assigned levels and one unassigned level.

-W writes the. current state of the switch settings to a file,
SwitchSct, in the current directory.

-p phase change; the phase umber, given on the command line,
becomes the new phase. [Not fully impleinented.j

-17-

5. Port Names
Purpose: To specify or modify the names assigned to the eight

input/output ports of a PE.
Display: The current port names of (a portion of) the lattice for this

phase are shown in the field. The display format shows one
box representing the PEs; the other display format shows
boxes representing the PEs and lines representing the
interconnection structure; a key (-t) toggles between the
two. Names of up to 16 characters, clipped to the first five
characters, are shown in the PE boxes:

home

north port northeast port

northwest Port east port
west port-"

wsoutheast port

southwest port south port

Cursor Motion: Gross cursor motions advance the cursor to the home
position of the next PE in the indicated direction; fine cur-
sor motions move the cursor to the first position in the win-
dow for the port name for that direction. 'Home', from a
port window moves to the home position of this PE, from
the home position in a PE to the command line, and from
the command line to the home position of Last PE.

Activity: Port names are entered into the appropriate windows to
name the ports connecting to the incident data paths. Port
names can be any legal identifier of the XX programming
language not containing blanks.

Buffering: The port names of any PE can be saved in a buffer (using
-b) that is then displayed in the chalkboard. The saved
port names can be deposited into one or more PEs by
specifying recipient PE(s) on the command line followed by
an insertion (-i). Recipient PE(s) are specified either expli-
citly by an index pair (i j), or implicitly by an expression
where each index position is an index, a relation (<, <=, >,
>=) followed by an index, meaning all indices standing in
that relation to the index, or a period (.) meaning all index
values. Thus a command

<=4
followed by ^i causes the first four columns to receive the
saved port names.

Recognized keys:

esc-^a abort, return to UNIX without saving state.
esc-^e exit, return to UNIX and save the current values of the

4

- 18 -

CHiP parameters, switch settings, port and code names.
esc--l redraw; the screen is redrawn.
esc-^o output the screen; the BitGraph's raster memory is dumped

to a file named BGxxzxzx in the current directory, where
xzxxx is a random number.

<mode> switch to the indicated mode:

esc--c CHiP Parameters mode
esc--w switch settings mode
esc--d code names mode
esc--r command request mode
esc--v port values mode
esc--t trace values mode

<text> if the cursor is in a window, the symbol replaces the
symbol pointed to by the cursor; if the cursor is at the home
position of a PE or on the command line, the symbol appears on
the command line.

-h backspace.
-b buffer the port names of the PE containing the cursor.Modification of the port names of a buffered PE cause it to

be removed from the buffer.
^i insert the buffered names into the recipient PE(s). If the

command line is blank, the recipient is the PE containing the
cursor; if the command line is nonblank, the recipients are
given by the command line expression as described in Buffering
above.

-d delete port names. If the cursor is in a PE, delete all port
names in this PE; if the cursor is on the command line, delete
all port names.

^C center the display so that the PE whose index is given on the
command line is as close to the center of the field as possible
consistent with the requirement that the field remain fully
utilized; if the command line is blank, use the Last PE for
centering.

^t toggle the display to be in the "other" format; see Display above.
-y display the full (unclipped) entry of the window containing the

cursor; the display is given on the auxiliary data line of the
chalkboard.

^W Ywrite the current values of all port names to the file PoriNar es
in the current dircetory.

-p phase change; the phase number given on the command line
becomes the new phase. [Not fully implemented.]

8. Code Names
Purpose: rIo specify or modify the names of the XX programs

assigned to the PEs or to specify actual parameter. to
these programs.

Display: The current code names and parameter assignments of (a
portion of) the lattice for this phase are given in the field.
One display format shows boxes representing the PEs; the
other display format shows boxes representing the PEs and
lines representing the interconnection structure; a key (-t)
toggles between these two. A name of up to 16 characters,
clipped to five characters, is shown for the program name,
and four symbol strings of up to 16 characters, clipped to
ten characters, is shown for the parameters:

home

i - code name
parameter 1
parameter 2
parameter 3

I *-I -parameter 4

Cursor motions: Gross cursor motions advance the cursor to the home
position of the next PE in the indicated direction; fine cur-
sor motions (north and south) move to the first position of
the windows for the code name and the parameters. Home,
from a window moves the cursor to the home position of
the PE, from the home position in a FE to the command
line, and from the command line to the home position of
Last PE.

Activity: Code names and (actual) parameter values are entered into
the appropriate positions. Code names can be any legal
identifier of the XX programming language not containing
blanks, and parameters can be any legal constant of the XX
programming language.

Buffering: The code name and parameters of a FE can be saved in a
buffer (using -b) that is then displayed in the chalkboard.
The saved values are deposited into one or more PEs by
specifying recipient PEs followed by an insertion (-i). Reci-
pient PEs are specified either explicitly by giving an index
pair (i j), or implicitly by an expression where each index
position is an index, a relation (<, <=, >, >=) followed by an
index, meaning all indices standing in that relationship to
the index, or a period (.) meaning all index values. Thus, a
command

<=4
followed by -i causes the first four columns to receive the
saved values.

-20-1

Recognized keys:

esc--a abort, return to UNIX without saving state.
esc--e exit, return to UNIX and save the current values of the Cl-liP

parameters, switch settings, port and code names.
esc--l redraw; the screen is redrawn.
esc--o output the screen; the BitGraph's raster memory is dumped to

a file named BGzxzzzx in the current directory, where xxxxz
is a random number.

<mode> switch to the indicated mode:

esc-^c CHiP parameters mode
esc-^w switch settings mode
esc--p port names mode
esc--r command request mode
esc--v port values mode
csc-^t trace values mode

<text> if the cursor is in the window, the symbol replaces the
symbol pointed to by the cursor; if the cursor is at the home
position of a PE or the command line, the symbol appears on
the command line.

-h backspace.
-b buffer the code name and parameters of the PE containing the

cursor. Modification to any of the entries of the buffered PE
cause it t, be removed from the buffer.

^i insert the buffered names into the recipient PE(s). If the
command line is blank, the recipient is the PE containing the
cursor; if the command line is nonblank the recipient is given
by the command line expression as described in Buffering
above.

-d delete port names. If the cursor is in a window, delete the
window's entry; if the cursor is at the home position of a PE,
delete all entries in the PE; if the cursor is on the command
line delete all code names and parameters.

^C center the display so that the PE whose index is given on the
command line is as close to the center of the field as possible
consistent with the requirement that the field be fully utilized;
if the command line is blank use the Last PE for centering.

^t toggle the display to the "other" format as described in Display
above.

-y display the full (unclipped) entry of the window conLaining; thc
cursor; the display is given on the auxiliary data line of the
chalkboard.

^W write the current values of all code names and parancters to
the file CodeNames in the current directory.

^P phase change; the phase number given on the command line
becomes the new phase. [Not fully implemented.]

-21 -

7. The XX Programming Language*

Purpose: The XX (dos equis) programming language is a simplified
sequential programming language for defining the codes for
processing elements of the CHiP computer.

Activity: Files are created or modified using a conventional UNIX edi-
tor. The files are named <name>.x where <name> is the
name of a program referred to in the code names entries.
For convenience in referring to Poker state information on
the BitGraph display, it is recommended that XX program
files be developed on the secondary (character) Poker
display.

Programs: XX programs begin with a preamble that gives the program
name, the formal parameters, trace variables and the port
names. The preamble is followed by the program body
block:

<program> ::= code <id> <parmlist>; <tracelist> <port
list> <body>

<parmlist> :: (<idlist>) I A
<tracelist> :: trace <idlist>; I ,
<portlist> ::= ports <idlist>; I x
<idlist> :=<id>, <idlist> I <id>

<body> :: begin <declarations> <statlist> end.

where the parameters and trace identifiers are limited to a
list of at most four identifiers separated by commas and
the port id list is limited to a list of 8 identifiers separated
by commas. The identifier following code names the pro-
gram and should match the <name> of the file and the
<name> used in the Code names entries. The parameters
are formal parameters that correspond one-to-one to the
actual parameters stored in the Code Names/Parameters
entries of the PEs; each formal must be declared in the
<declarations> section of the <body>. The trace list
identifiers have their values displayed during tracing and
they must be declared in the <declarations> section of the
<body>. The port list identifiers are the symbolic port
names that are assigned physical positions in the Port
Names entries, and they must be declared in the <declara-
tions> section of the <body>.

Declarations: There are four data dypes: signed integers (32 bits), signed
reals (32 bits), characters (8 bits) and Booleans (I bit).
Except for statement label identifiers, all identifiers,
including those appearing in the preamble, must be
declared. Simple identifiers are scalar values of the indi-
cated type and identifiers followed by [<unsignint>] are
vectors of length <unsignint> of scalar values of the indi-
cated type:

<declarations> := <decl>; <declarations> JA

*Developed with J. E. Cuny and D. B. Gannon.

'1

.1

-22-

<decl> ::= <type> <varlist>
<type> ::= real I int I boot I char
<varlist> ::= <varid>, <varlist> I <varid>
<varid> ::= <id> I <id> [<unsignint>]

where no <id> appears more than once.
Statements: The statements are:

<statlist> ::= <istatement>; <statlist> I <istatement>
<istatement> ::= <id>: <statement> I <statement>
<statement> ::= <assignment> I <conditional> I

<while> I <break> I <for> I <compound> I <io>

where <id> is used for tracing rather than the target of
goto.

Assignment: The Assignment statement is:
<assignment> ::= <varid> := <expression>

where thc coercion to the left-hand side identifier type is
provided as described in Table 1.

Conditional: In the Conditional statement

<conditional> ::= if <expression> then <Istatement>
else <istatement> I if <expression>
then <istatement>

the <expression> must evaluate to a Boolean value and an
else is associated with the immediately preceding then.

While: In the While statement

<while> ::= while <expression> do <istatement>

the expression must evaluate to a Boolean value. To assist
in synchronization the compiler recognizes the construc-
tion while true do <istatement> as a special case and does
not generate the conditional branch code.

Break: The Break statement
<break> ::= break
has meaning only within the <lstatement> of a While state-
ment, and causes control to skip to the statement following
the immediately surrounding While statement.

For: In the For statement

<for> ::= for <id> := <expression> to <expression> do
<lstatement>

the two expressions, the lower and upper limits of the
iteration, respectively, are evaluated once prior to begin-
ning the loop. If the lower and upper limits are not
integers, they are coerced to integers as described in Table
1.

Compound: Notice that the Compound statement

<compound> ::= begin <statlist> end

is noL a block and may not contain declarations.

-23-

I/0: The I/0 statements

<io> ::= <id> <- <id>

are restricted to simple variables, exactly one of which
must be a port name. If the port name appears on the
right, the statement reads from the indicated port; if the
port name appears on the left, the statement writes to the
indicated port. Data type consistency is not enforced
across the communication links.

Expressions: The expressions
<expression> ::= <expression> <binary> <expression>

<unary> <expression> I
<expression> <relational> <expression> I
<builtin> (<expression>) I
(<expression>) I
<unsignint> I <unsignreal> I <character> i
<boolean>

have procedence and association as in the C programming
language. Expressions of mixed type are coerced to the
higher type, where types are ranked bool < char < int <
real, as described in Table 1. The operators are given in
Table 2.

bool -# char: The Boolean bit becomes the
least significant bit; others are 0.
char -* bool: The least significant bit
forms the Boolean.
char -* int: The 8 character bits become
least significant bits; others are 0.
int 4 char: The eight least significant
bits form the character.
int - real: Converted to floating point
notation.
real + int: The floating point value is
truncated and converted to integer form.

Table 1. Semantics of representation conversion; conversions not listed
are performed transitively: typel type2 4 type3, etc.

• i ii s i,.. . i I A

- 24-

<unary> <binary>
+ <real> no op <real> + <real> addition
- <real> negation <real> - <real> subtraction

<char> not <real> * <real> multiplication
<real> / <real> division

The type indicates the highest <real> mod <real> modulus
Lype for which the operation <real> >= <real> greater than or equal
is defined; the operation is <real> > <real> greater than
dcfined for all lower types. <real> =/ <real> not equal

<real> < <real> less thian
<real> <= <real> less than or equal
<real> = <real> equal
<char> & <char> and
<char> I <char> or
<char> <char> exclusive or

Table 2. XX operators.

Constants: The constants are unsigned integers and reals in stan-
dard formats, quoted (') characters and true and false.

IdenLifiers: All identifiers begin with a letter and are followed by
any combination of letters and numerals. The max-
imuin length of an identifier is 10 symbols.

Vectors: Vcctors can only be subscripted by character or integer
types and are referenced using I origin.

13uil in functions: The built in functions are not yet implemented.
Comments: Comments begin with the characters /* and end with

the characters */.

- 25-

& Command Request Mode

Purpose: To cause the program, as specified by the switch set-
tings, port name specifications, code names and param-
eters specifications and the associated XX programs, to
be prepared for execution.

Display: The field is not changed, diagnostics and status infor-
mation are reported in the chalkboard.

Activity: Commands are invoked which cause the source form of
the program to be transformed.

Recognized keys:

esc--a abort, return to UNIX without saving state.
esc--e exit, return to UNIX and save the current values of the

CHiP parameters, switch settings and the port and code names.
esc--l redraw; the screen is redrawn.
esc--o output the screen; the BitGraph's raster memory is dumped

to a file named BGzzxzz in the current directory, where
zzzzzz is a random number.

<mode> switch to the indicated mode:

esc--c CHiP parameters mode
esc--w switch settings mode
esc--p port names mode
esc--d code names mode
esc--v port values mode
esc--t trace values mode

<text> is placed on the comn.and line at the position of the cursor.
b backspace.
-c compile the program whose name is given on the command line;

if the command line is blank, compile all programs whose names
are mentioned as Code Names for the current phase. The
program with name <name> is a file in the current directory
with name <name>.x. Errors are reported in a file <name>.2.

^V coordinate the compiled programs whose names are mentioned
in Code Names. The assembly code for a program <name> is
found in a file in the current directory with name <name>.s.

-a assemble the coordinated programs, one per PE, whose
coordinated assembly code is given in files with names of the
form PE i, j.s in the current directory. Errors are reported
in PE i, j.2.

_t compile the object code for the switch settings for this phase
as given by the switch settings specification.

^I load the object code for the PEs and switches into the Pringle
emulator.
go; begin executing the loaded program; if the command line
contains an integer, execute the program for that many steps;
otherwise execute it for 10K steps or until it halts.

-2 G-

9. Trace Values

Purpose: To display the current values of the traced variables
(peek), to modify those values (poke), and to control
the execution.

Display: The code narne and the current values assigned to the
trace variables of PEs in (a portion of) the lattice for
this phaso are given in the field. One display format
iows boxes representing PEs; the othecr display format

Shows box cs representing l'Es and lines representing
the interucetccion structure; a key (-t) toggic-,
bol-weenLl tese two. lie code iianic is clipped to five

cI~rL Lis(and ar rtbC changed) and values are
shown clipped to thre first 10 symbols:.

home

i code name
value of first trace variable
value of second trace variable
value of third trace variable
value of fourth trace variable

Cursor motions: Gros:3 cursor motions advance the cursor to the
home position of the next PE in the indicated direction;
fine cursor motions (north and south) move to the first
position of the windows for the trace values. 'Home',
from it window moves the cursor to the home position of
the PE, from the hione position in a PE moves to the
command line, and from the comnmand line to the home
position of Last PE .

Ac Livily: The execution of a loaded programn is controlled and the
'vall,[Cs of the traced variable,, Lire displayed. Displayed
..alucs can be changled and when execution begins, thecy
will be stored into the miemory of the emulator. Execu-
tion can be effected in single step units, multiple steps
or until a displayed variable changes value.

Limitations: Tlhis inode cannot be cntered unless a program is
loaded.

Reccognized keys:

k"s3-il abort, retuirn to U NIX without saving state.
Cjc--e c:diL, n'cturir to UNIX and ;avc the current values of tire Clh

jpCA1 1nieers, switch settrs, and port and code nonies.
-~rcdraw; Lsccreen tshedrstrrawn.r s ume

C"'C-0 output li ,;!cc;th itGrnph'sratrm oyisdipe
to a file tiin(d l 3Gxxx!,vx ini the current directory, where
~xxxxx is a iaiidom number.

<rnodc> switch to thre indicated irrode:

- 27-

esc--c CHiP parameters mode; causes the current load
module to be invalidated

esc--w switch settings mode
esc--p port names mode
esc--d code names mode
esc--v command request mode
esc--v port values mode

<text> when entered into any of the trace value windows, becomes
the value of the variable when execution resumes; otherwise the
text is given on the command line.

-g go; the command line is interpreted as the (integer) number of
steps the emulator is to execute; if the command line is blank
10K steps are executed. The new values of the trace variables
are displayed at completion of the execution.

-y displays in the auxiliary display area the unclipped value
of the window entry.

-t trip; the execution of the emulator resumes until a value of a
variable currently being displayed changes.

-b buffers the names of the traced variables and displays them in
the chalkboard.

-C center the display so that the PE whose index is given on the
command line is as close to the center of the field as possible
consistent with the requirement that the field be fully utilized;
if the command line is blank, the Last PE is used for centering.

- 28 -

A. Catastrophic Bugs
Like any new, large software system Poker contains many bugs

and inconsistant features. Most of these are harmless annoyances
that can be easily circumvented. However, a few are serious enough
to lead to "mystical" behavior or, worse, to cause "core dumps" that
kill the current Poker state. They are documented below.

The cautious user will want, from time to time, to save the
current state of an editing mode using esc--w. If an error causes a
core dump, it often happens that the BitGraph will not echo text
typed on the UNIX shell. The echo is restored by typing "reset" in the
UNIX shell.

1. Switch Settings - cursor motion off screen.
Cursor motions off the top or right side of the field automati-
cally shift the window. Cursor motions off the bottom or left
side of the field are catastrophic. Use the center command
to manually shift the window.

2. Switch Settings - level anomalies.
Switches that are set by joining (i.e., two paths that rendez-
vous at a switch) may riot join or may join another path.

3. All modes - esc-^o command.
The software to dump the screem for the new (3.10) Bit-
Graphs is not yet available and esc-^o is catastrophic for
these displays. The copy screen command works only for old
(2.0) BitGraphs.

'U

flE E 0l 0IElE El E El l
11CEl EL] [hEL C IE 0 I LI

LIE jIDO cCI 0 >GL]ILI
0L DE 00ED 0 LDEDEZ I ELI0
DOIEIDDODDEIO7 LEI
ELIDEOD E> > EE EII

EEOiLD C> GDOODGEELI
mDD 0EllH0 0El 0 01ElEl

B. Summary of Key Deflnition

KEYS DIFFERING BY MODE

Switch Setting Mode

GLOBAL KEYS -c center
-d delete
-e end

esc--a abort ^i insert
esc--e exit ^1 level
esc-^l redraw screen -p phase
esc--o copy screen to file -w write (save)

-x chase
esc-^c Chip Params mode
esc-^p Port Names mode
esc--d Code Names mode
esc-^v Port Values mode Port Names & Code Names Modes
esc-^w Switch Setting mode
esc-^r Command Request mode -b buffer
esc--t Trace Values mode ^c center

-d delete
<text> insert text -i insert
-h BACKSPACE -p phase

-t toggle (suppress/elicit)
-w write (save)

y display

Command Request Mode

-a assemble
-c compile
-l load
^g go
r coordinate

-t connect

Port Values & Trace Values Modes

^c center
^g go
^ r triggered
-t toggle (suppress/elicit)

y display

