T - — - _ _ _y
AD-A129 133 THE POKER (10) PROGRAMMERS GUIDE(U) PURDUE UNIV 11

LAFAYETTE IN DEPT OF COMPUTER SCIENCES L SNYDER DEC 82

CSD-TR-434 NOOO14-80-K-0816

UNCLASSIFIED

F/G 9/2 NL

s s
Jlis 5
£k

22 s nie

=
o)
m°° "Mo

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

-

DTG FILE COPY

ADAL29133

\L.

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) \

REPORT DOCUMENTATION PAGE T DL e o L,

. NUM 2. GOVT ACCESSION NO RECIPIENT'S CATALOG NUMBER
CSD-TR-434 /\ -AIXG | S

‘4. TITLE (and Subtftle) : TYPE OF REPOART & PERIOD COVERED
The Poker (1.0) Programmers Guide Technical-Interim

w

6. PERFORMING ORG. REPORT NUMBER \

F - AUTHON® ¢ CoNTRacT o
Lawrence Snyder N00014-80-K-0816
N00014-81-K-0360

3. PERFORMING ORGANIZATION NAME AND ADORESS
Purdue University
Department of Computer Sciences

. PROGRAM ELEMENT, PROJECT, TA
AREA & WORK UNIT NUMBERS '

West Lafayette, Indiana 47907 Task SRO-100
1. CONYROLLING OF FICE NAME AND ADDRESS 12. REPORT DATE
Office of Naval Research December 1982
Information Systems Program [73 wumeER oF PAGES
Arlington, Virginia 22217 29
IS HONITORING AGENCY NAME & ADORESS(I different from Controliing Ollice) | 18. SECURITY CLASS. (of this report)
Unclassified
8. DECLMSIFICATION7 DOWNGRADING
" SCHEOULE

I16. DISTRIBUTION STATEMENT (of this Report)

Distribution of this report is unlimited

17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, If dilferent trem Report) ELE

JUN 1 01983

A

i —————
18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverss side il necessary and identily by block number)

programming environment, parallel programming, Poker, graph
embedding, XX, reference manual, parallel programming language,
CHiP Computer, Pringle Computer

[76. ABSTRACT (Continue on side If ary and identily by bleck mumber)

The Poker Parallel Programming Environment is a graphics-based

interactive system for writing and running CHiP programs. The

programs can ke emulated or run on the Pringle (when completed).

Poker runs on the VAX 11/780 under UNIX using two displays.

Poker permits the progﬁegmer to encode a parallel algorithm in a
n

jview of the parallel programming activity. — P
DD 58" 1473 coimion o7 1 NOV 68 18 OBSOLETS i 7)

convenient, igh level teractzve environment, but because
approach is somewhat nonstandard, beginﬁyith a discussion of o
S

/M 102.LP 014460 sECUMTY 5‘3..3 ruucﬂnooiu!LF_WﬁM WS PAGE N

LT e R R T T Y —

mamm— e A e e e e A Csemmeemiie e a

The Poker (1.0) Programmers Guide

Lawrence Snyder
ABSTRACT

The Poker Parallel Programming Environment is a graphics-
based interactive system for writing and running CHiP pro-

rams. The programs can be emulated or run on the Pringle
? hen completed). Poker runs on the VAX 11/780 under
UNIX using two displays (see Figure 1). Poker permits the
programmer Lo encode a parallel algorithm in a convenient,
"high level” interactive environment, but because our
approach is somewhat nonstandard, we begin with a discus-
sion of our view of the parallel programming activity. The
sections of this document are:

I. CHiP programming is something else ‘1
II. Poker Programmer's Reference Guide

Comments on this document or the programs to which it
refers are eagerly solicited.

CSD-TR-434
20 December 1982

N il-;;;b.t’on/
uuubi ity Codes
Aeall sud/er

Qi

This work is part of the Blue CHiP Project. It is supported in part by the Office of

Naval Research Contracts N00014-80-K-0816 and N00014-81-K-0360. The latter is
Task SRO-100.

-2-

Acknowledgements

The Poker System is the product of the ideas and effort of many peo-
ple. Janice E. Cuny and Dennis B. Gannon, in addition to contributing to
the definition of the XX programming language, were a continual source
of ideas, judgement and constructive criticism. Christopher A. Kent con-
tributed extensively to the overall design as well as the programming.
Version 1.0 of Poker was written during the summecr of 1982 by a dclight-
ful and commilted group of gentlemen, the "poker players': Sleven S.
Albert, Carl W. Amport, Brian G. Beuning, Alan J. Chester, John P.
Guaragno, Christopher A. I{ent, John Thomas Love, BEugenc J. Shekita, and
Carleton A. Smith. Concurrently, the coordination phase of Pokcr was
written under the direction of Janice E. Cuny by Karen L. Pickering and
Ellen F. Scanlon. J. Timothy Field and Alcjandro A. Kapauan chcerfully
explained the details of the Pringle architecture. -Julie K. Hanover
expertly preparcd the Poker documents under tight time conslraints.
J. Timothy Korb and Robert L. Brown gave helpiul guidance on thic Bil-
Graph, and Bob wrole the interfacing software. Vance Waddle sugiicsted
the name, after Poker's "pecking and poking" trace facilities. The contri-
butions of all of these people are deeply appreciated.

P s e Ko e At M 1 b Bt e i 13 N+

VAX 11/780
POKER
PROGRAMMING
ENVIRONMENT
——
UNIX
PRINGLE |_CONTROLLER Je—
4
PE |M
N 64
. PE [M
SWITCH
pE M} |
y

Figure 1. The Structure of the Poker Programming Environment.

O RO AT - S, e < R T

-4-

I. CHiP Programming is Something Else
The programming environment provided by Poker is somewhat
unconventional due partly to novel properties of the CHiP Computer and
partly to novel properties of the system itself. To increase the accessibil-
ity of subsequent sections, we discuss here the activity of CHiP program-

ming and the role Poker plays.

Programming, of course, is the conversion of an (abstract) algorithm
that is "machine independeni” into a form suitable for execulion on a
particular computer. Thus, to begin programming a CHiP machine, we
need to have a parallel algorithm in mind. The 'algorit.hm is presumed to
have the form of a graph whose vertices are processes and whosc edges

specify the communication paths among the processes.

For example, Figure 2 gives an algorithm that uses a binary tree as
the communication graph. The algorithm finds the maximum of a set of
numbers (stored one per process in & local variable called "val") and then
multiplies each number by the maximum. The maximum is found by
"floating"” the largest valuc in each subtrec to the root of thal sublrce.
Then the global maximum is broadcast. back through the tree where each
process multiplies it times its local "val.” Notice that although there are
fifteen processes in the tree, there are only three types of processes

used.

The conversion of this algorithm to run on a CHiP computer, i.e., the

programming, is straight forward.* It involves

*Assuming (umiliarity with the CHiP Computer. Complete information can bLe
found in "Introduction to the Comfiguruble, Highly Paralicl Computer,” Lawrence
Snyder, Computer, 156(1): 47-56, Junuury 1982.

et

leaf process: ancestor process: root process:

write val to parent; read x from left child; read T from left child;

read max from parent; read y from right child; read ¥ from right child;

val + val - max; write max (z,¥, val) to parent; max + max (z.,¥, val);
read max from parent; write max to left child;
write max to left child; write max to right child;
write max to right child; val ¢ val ' max;

val « val ' max;

Figure 2. An algorithm; each leaf is an instance of the leaf process, the
root is an instance of the root process and all other nodes are
instances of the ancestor process.

(a) e:nbedding the communication graph into the switch lattice,

(b} programming the process types in a sequential programming
language,

(c) assigning one of the process types to each processor,
(d) naming the data path ports, and
(e) compiling, assembling, coordinating, and loading the program.

We consider each of these activities in turn.

e e

. Embedding the communication graph into the switch lattice requires
that we program Lhe switches of the lattice so that the processors have a
topology that matches (or is a super set of) the Lopology of the comnmuni-
cation graph. This embedding operat.ion is done graphically (rathcr Lhan
symbolically) in the Poker System using the Switeh Settings mode. I'ip-
ure 3 illustrates a particular embedding of the fifteen node binary tree
into Lhe latltice. Processor (1,2) is the root of the proc’essor trec, proces-

sor (1,1) is a leal, and processor (1,3) is unused.

O0OO0OO0OO0OO0OO0OO0OO

Figure 3: An embedding of the 15 node binary tree.

Next we program the three process types in the sequential language
XX. Each process is viewed as a procedure with (optional) parameters
and local variables. In addition to the usual declarations we must spccify
the port names, symbolic names used by a process to refer to other
processes with which it communicates. Figure 4 shows Lthe XX code for
the three process Lypes. In the programs the symbol '<-' is used for

input/output; assigning to a porl name, e.g., PARENT <- val, causcs out-

put and assigning from a port name, e.g., max <- PARENT, causes inpul.

Wl Dort 5 5,

g

-7-

code leaf (val); code ancestor (val); code root (val);
ports PARENT; ‘ports PARENT,LCHILD,RCHILD; ports LCHILD, RCHILD;
begin begin begin
int max, PARENT; int x,y, max, val, int x,y, max, val,
PARENT <- val; PARENT, LCHILD, RCHILD; LCHILD, RCHILD;
max <- PARENT; x <- LCHILD; x <- LCHILD;
val:=val ®* max; y <~ RCHILD; y <- RCHILD;
end if x>y then max:=x if x>y then max:=x
else max:=y; else max:=y,;
if val > max then max:=val; if val > max then max:=val;
PARENT <- max; LCHILD <- max;
max <- PARENT;, RCHILD <- max;
LCHILD <- max; val:=val * max;
RCHILD <- max; end.
val:=val * max;
end

Figure 4. Code for the three process types.

The construction of the processor tree in the switch lattice to match

the communications graph gives an implicit association between the

processes of the algorithm and the processors. We make this relationship
explicit by assigning process names to the appropriate processors using

the Code Names mode of the Poker System. Figure 5 gives the result.

[Tiaat § [Trer 3 [T

St

™]
Figure 5. Assignment of process names to processors; note that the
name "ancestor” has been clipped to five characters.

Next, the port names mentioned in eack process must be associated
with a specific data path. Each processor has eight ports corresponding
to the compass points. Only those connected by an active data path to

o

O

-’

-8-

another PE need be named. This activity is performed using the Port

Names mode of Poker. Figure 6 shows the result of naming the ports.

The algorithm is now programmed. Next, each process type men-
tioned in the Code Names specification is compiled into assembly code.
The assembly code is then "coordinated,” i.e., modified so that the CHiP
Compuler can run it synchronously. The coordinated programs are
assembled to produce processor object code. The interconnection struc-
lure is "compiled"” to produce switch object c.ode. The object codes are

loaded into the machine and executed.

T T
reht
oo Jevd
T,
Tehil paren rchi)
-1 eh) remt
renll rehil Tehl Tenl
Y paren paren Y paren
chil rehi
rchil el
T T T
paren paren
pared paren

Figure 6. The specification of the port names; note that the names have
been clipped to the first five characters.

N b

II. Poker Programmer's Reference Guide

This section gives a succinct description of the facilities available to
the programmer with the Poker Programming Environment. The
emphasis is on "what can be done" rather than "how to achieve particular
results.” Although the sections are self-contained, and can be referred to
independently, it is suggested that the reader peruse the sections

sequentially first. The sections are:

The lacilities and the display
Cursor motions
CHiP parameters mode
Switch settings mode
Port names mode
Code names mode
The XX programming language
Command request mode
Trace values mode

. Port values mode
Catastrophic Bugs
Summary of Key Definitions

WProOONOIRWN~

Additional information is available in "Introduction to the Poker Program-
ming Environment,” Lawrence Snyder, Purdue University Technical

Report CSD-TR-433, 1983.

To access the Poker System (from the Research VAX) the user should
include the directory "/usr/lxs/poker/bin" in his search path. This
requires a (one-time) change to the PATH line of your .profile file. The
required modification is to append the text ":/usr/Ixs/poker/bin"” to the
PATH line. |

1. The facilities and the display

The Poker System uses two displays: a BBN BitGraph Display and a
conventional character display (e.g., ADDS Regent 40).* The user should
_ "It is possible, though inconvenient, to use just the BitGraph.

-10-

be logged into both terminals and should have both referring to a com-
mon directory. [To avoid name conflicts, it is advised thai the directory
be clear (initially).]

The command 'poker’ from the BitGraph terminal causes the system
to be cntered. Thereafter, the display will have a form of the type shown
in Figure 1. Below the horizontal line is the "field” in which most activity
takes place. The field changes depending on how the prograrmming
environment is being modified. Above the line is the stalus information.
The "lattice" gives a schematic picture of the processing elements (PEs)
of the machine being programmed. A box circumscribes that portion of
the lattice displayed in the {ield giving the user geometric context. The
chalkboard gives stalus information that is largely self explanatory. The
last line of the chalkboard is where all diagnostics are printed. The com-
mand line is used to give commands (naturally), to present textual
paranielers, and to perform certain kinds of editing. Poker execution
always begins in the CHiP paramelers mode.

Thie Poker system is interactive: wvirtually all key sirokes cause an
immediale action. (Exceptions to this statement are described below.)
All actions, except text insertion and some cursor motions, arc composil
key sirokes formed either by simulteneously striking the control key
and a letter key (c.g., we write ~h to denoie simultaneously striking the
control key and thie letler h (which causes the cursor to backspace)), or
by first striking the escape key (written esc) followed by the simultane-
ous striking of the control key and a letter (e.g., esc-~a is the command

to abourt and return to UNIX). Should esc be inadvertently struck, it can

be cleared by striking esc again.

-11 -

chalk;biard
— N
Sri Ang 6 M1:10 MONE: Seituh Satlting

888888 nas:) 1AST M: % & SAVI® PP Nt
mlnninininis

sice | BEE00050
0000o0oan auxiliary data area
oocoaod diagnostic line
0oooad command line
O00000CO0O0O0O0O0O0O0O0O0O0O
o [(lre{ile{il o [1] o Glre{i}le{l] o [i]
O000DDO0OO0OLJFTOOO0OO0OPOOLALO
o [31 o Gle{i1e{d] o [ite{ile{ite{i]
OPO0OO0NOO0DOLOLLLTONOOOOO
o Lre{ile{ileHi] o &) o Ble{iteHi]
OO0 OO0O0NNODdDOOO

field< oRHEeRH=zgH -z HE* JHE AH=Z HEk* 2 H
O0000000Fg OBV OVAQO
o (L 0 Gleile{il o Bleqile{i]l o [A]
OO0VO0O0LLO0OO00DLOLLOOOOO
ol HgsgHe>sHIs H{eRHz s HzHIIH
CQPO0O0LLO0O0O0RNNOLOONOOQO
o] o Gre{ile{il o fle{ o l]1 o [i
OC00POO0O_YOOOOODBOYAQ
o (reH{ite{il o (i o tleH{ie{i]l O (4]

Figure 1.

2. Cursor Motions

Movement around the lattice and within the PEs is controlled by the
positive numeric keys of the key pad (located on the right side of the
keyboard and illustrated in Figure 2). Two kinds of motions are provided:
gross cursor motions and fine cursor motions. The gross cursor motions,
which are two-key operations composed of an esc followed by a direc-
tional key, usually move to the next PE in the indicated direction. Fine
motions, which are given just by a directional key, vary in meaning with

the mode.

N
e

Figure 2. Meaning of the key pad keys. 1

Fine Moves Directions Gross Moves

4 WEST esc-4 }
7 NORTH-WEST esc-7
8 NORTH esc-8
9 NORTH-EAST esc-9
8 EAST esc-6
3 SOUTH-EAST esc-3
2 SOUTH esc-2
1 SOUTH-WEST esc-1
5 HOME esc-5

Figure 3. Gross and fine cursor motions.

3. CHiP Parameters

Purpose:

Display:

Activity:

Limitations:

To specify the characteristics of the CHiP machine being
programmed.

The current values of the CHiP computer's parameters are
given in the command line; their meaning is described in
Figure 4.

The cursor is moved right and left along the command line
using (gross or flne) east and west cursor motions.
Numbers entered replace the symbol pointed to by the cur-
sor. The new values take effect when the mode is changed
provided they are in range and satisfy the constraints; no
changes take place if any parameter is illegal.

Specification of n =84 is not currently possible due to inade-
quate page table space in the UNIX kernel; p>1 is not fully
implemented.

Parameter Range Constraints Default

n - size, number of PEs on the side 2<ns<64 n=2*% 8
of the lattice

w - internal corridor width, the lsw=4 1
number of switches separating
two adjacent PEs

u - external corridor width, the 1su<4 u<sw 1
number of switches between
the perimeter and the edge PEs

d - degree, number of data 8 fixed 8
paths incident to PEs and

switches

¢ - crossover level, number of 1<c<4 2
distinct data paths through a
switch

p - number of phases, the size of 1<p<186 1

of the switch memory

Change n:

Change w:

Change u:

Change c:

»
i

Figure 4. Description of the CHiP Parameters.

If the value of n is increased, the old lattice becomes the
upper left-hand corner of the new lattice; if n decreases,
the new lattice is the upper left-hand corner of the old lat-
tice.

A change in w causes switch columns (rows) to be added or
removed from the right (bottom) of vertical (horizontal)
switch corridors. Existing switches retain their settings;
new switches are unset.

A change in u causes switches to be added or removed at
the perimeter. Existing switches retain their settings; new
switches are unset.

A change in ¢ permits the number of distinct data paths
through a switch that can be set to be either increased or

decreased.

Change p: If p is increased, phases with consecutive higher numbers
are added; if p is decreased, phases with higher indexes are
removed. Added phases are clear.

Recognized keys:

esc-~a abort, return to UNIX without saving state.

esc-~e exit, return to UNIX and save CHiP parameters, switch set-
lings, port and code names in Lhe current directory.

esc-~1 redraw; the screen is redrawn.

esc-*o oulput screen; the BitGraph's raster inemory is dumped to a
file nammed BGzzzzzzr in the current directory, where zzzzzz is a
random number

<mode> change state toreflect revised parameters, if legal, and
switch to a new inode according as mode is

esc-~p
esc-~d
esc-~w
esc-~r
esc-~v
esc-~1

port names mode

code names mode
switch settings made
command reque:t mode
port values mode

trace values mode

<text> recplaces the symbol al the cursor

—— el

-

!

-15-

4. Switch Settings

Purpose;

Display:

To specify or modify a processor interconnection structure
for the lattice.
The current processor interconnection structure of (a por-

tion of) the lattice for this phase is shown in the fleld; boxes
represent processors, and circles represent switches.

Cursor motion: Gross cursor motions advance the cursor to the next PE

Activity:

in the indicated direction; fine cursor motions advance the
cursor to the next entity (PE or switch) in the indicated
direction. 'Home’, from a switch causes the cursor to
return to Last PE, from a PE causes it to go to the com-
mand line, and from the command line to go to the Last PE.

The cursor is moved around the lattice. If the insert mode
is set, a wire is "pulled along" from the current position to
the cursor’'s new position. If the delete mode is set, wires
followed by the cursor are removed. At a switch all wires
common to the current level are highlighted, (with bold
strokes). If the chase mode is set, the cursor follows the
wire in the direction indicated until it reaches a PE, or ter-
minates, or reaches a switch that fans out, or cycles.

Recognized keys:

esc-~a
esc-~e

esc-~1
esc-~o

<mode>

<text>
~h

“~C

~i

~X

abort, return to UNIX without saving state.

exit, return to UNIX and save the current values of the CHiP
parameters, the switch settings and the code and port names.
redraw; the screen is redrawn.

output screen; the BitGraph's raster memory is dumped to a
file named BGzzzzzz in the current directory, where zzzzrzz

is a random number.

switch to the indicated mode:

esc-~c CHIiP parameters mode
esc-~p port names mode
esc-~d code names mode
esc-~r command request mode
esc-~v port values mode

esc-~t trace values mode

is placed on the command line.

backspace; if the cursor is on the command line.

center the display so that the PE whose index is given on the
command line is as close to the center of the field as possible
consistent with the requirement that the field remain fully
utilized; if the command line is blank, use the Last PE for
centering.

insert mode is set, so subsequent cursor motions cause a line
to be drawn. From the cornmand line, ~i reads in a switch set-
ting file whose name is given on the command line, or, if none
is given, the Switch Set file of the current directory.

delete mode is set, so subsequent cursor motions that follow a
line cause it to be removed. From the command line, ~d
deletes all switch settings.

set chase mode, so that (only) the next cursor motion will

~-16 -

follow the line in the indicated direction until it terminates,
reaches a PE, rcaches a switch that fans out or cycles.
‘e cnd the current mode, i.e., cancel insert, delete or chase.
level change; the level of Lhe switch pointed to by the cursor
is changed to the next lower level. Repeated use of this key
cycles through all assigned levels and one unassigned level.

)
—

~w wriles the currenl state of Lhe switch settings to a file,
SwitchSel, in the current dirccelory.
~p phase change; the phase number, given on the command line,

becomes the new phase. [Not fully implemented.]

? - v O

5. Port Names

Purpose:

Display:

To specify or modify the names assigned to the eight
input/output ports of a PE.

The current port names of (a portion of) the lattice for this
phase are shown in the fleld. The display format shows one
box representing the PEs; the other display format shows
boxes representing the PEs and lines representing the
interconnection structure; a key (~t) toggles between the
two. Names of up to 18 characters, clipped to the first five
characters, are shown in the PE boxes:

home
north port \JF,—"‘—L] northeast port
northwest port—m—7 ___:_'L’/east port
west port 4= =———southeast port
southwest port] 4+ south port

Cursor Motion: Gross cursor motions advance the cursor to the home

Activity:

Buffering:

position of the next PE in the indicated direction; fine cur-
sor motions move the cursor to the first position in the win-
dow for the port name for that direction. 'Home’, from a
port window moves to the home position of this PE, from
the home position in a PE to the command line, and from
the command line to the home position of Last PE.

Port names are entered into the appropriate windows to
name the portis connecting to the incident data paths. Port
names can be any legal identifier of the XX programming
language not containing blanks.

The port names of any PE can be saved in a buffer (using
~b) that is then displayed in the chalkboard. The saved
port names can be deposited into one or more PEs by
specifying recipient PE(s) on the command line followed by
an insertion (~i). Recipient PE(s) are specified either expli-
citly by an index pair (i j), or implicitly by an expression
where each index position is an index, a relation (<, <=, >,
>=) followed by an index, meaning all indices standing in
that relation to the index, or a period (.) meaning all index
values. Thus a command

. <=4
followed by ~i causes the first four columns to receive the
saved port names.

Recognized keys:

esc-~a abort, return to UNIX without saving state.
esc-~e exit, return to UNIX and save the current values of the

e et o e matnn

esc-~1
esc-~0

<mode>

<text>

~h
~b

~i

“~C

~t
4

~w

-18-

CHiP parameters, switch settings, port and code names.
redraw; the screen is redrawn.

output the screen; the BitGraph's raster memory is dumped
to a file named BGzzzzzx in the current directory, where
zxzzzr 1S a random number.

switch to the indicated mode:

esc-~¢ CHiP Parameters mode
esc-~w swilch settings mode
esc-~d code names mode
esc-~r command request mode
esc-~v port values mode

esc-~t trace values mode

if the cursor is in a window, the symbol replaces the

symbol pointed to by the cursor; if the cursor is at the home
position of a PE or on the command line, the symbol appears on
the command line.

backspace.

buffer the port names of the PE containing the cursor.
Modification of the port names of a buffered PE cause it lo

be removed from Lhe buffer.

insert the buffered names into the recipient PE(s). If the
command line is blank, the recipient is the PE containing the
cursor; if the command line is nonblank, the recipients are
given by the command line expression as described in Buffering
above.

delete port names. If the cursor is in a PE, delete all port
names in this PE; if the cursor is on the command line, delete
all port names.

center the display so that the PE whose index is given on the
command line is as close to the center of the field as possible
consistent with the requirement that the field remain fully
utilized; if the command line is blank, use the Last PE for
centering.

toggle the display to be in the "other” format; see Display above.
display the full (unclipped) entry of the window containiug the
cursor; Lhe display is given on the auxiliary data line of the
chalkboard. .

wrile Lthe current values of all port names to the file PortNames
in the currenl dircclory.

phase change; the phase number given on the command line
becomes Lhe new phase. [Not fully implemented. |

© e« A A E—s [U2

-19-

6. Code Names

Purpose: To specifly or modify the names of the XX programs
assigned to the PEs or to specify actual parameters to
these programs.

Display: The current code names and parameter assignments of (a
portion of) the lattice for this phase are given in the fleld.
One display format shows boxes representing the PEs; the
other display format shows boxes representing the PEs and
lines representing the interconnection structure; a key (~t)
toggles between these two. A name of up to 16 characters,
clipped to five characters, is shown for the program name,
and four symbol strings of up to 18 characters, clipped to
ten characters, is shown for the parameters:

hoine
i< code name
-] parameter 1
-l varameter 2
- parameter 3
<] parameter 4 !

Cursor motions: Gross cursor motions advance the cursor to the home
position of the next PE in the indicated direction; fine cur-
sor motions (north and south) move to the first position of
the windows for the code name and the parameters. Home,
from a window moves the cursor to the home position of
the PE, from the home position in a PE to the command
line, and from the command line to the home position of
Last PE.

Activity: Code names and (actual) parameter values are entered into
the appropriate positions. Code names can be any legal
identifier of the XX programming language not containing
blanks, and parameters can be any legal constant of the XX
programming language.

Buffering: The code name and parameters of a PE can be saved in a
buffer (using ~b) that is then displayed in the chalkboard.
The saved values are deposited into one or more PEs by
specifying recipient PEs followed by an insertion (~i). Reci-
pient PEs are specified either explicitly by giving an index
pair (i j), or implicitly by an expression where each index
position is an index, a relation (<, <=, >, >=) followed by an
index, meaning all indices standing in that relationship to
the index, or a period (.) meaning all index values. Thus, a
command

. <=4
followed by ~i causes the first four columns to receive the
saved values.

Recognized keys:

€sc-~a
esc-~e

esc-~i
esc-~0

<mode>

<text>

~h
~b

~1

~C

-y

~w

“p

abort, return to UNIX without saving state.

exit, return to UNIX and save the current values of the CHiP
parameters, switch settings, port and code names.

redraw; Lthe screen is redrawn.

output the screen; the BitGraph's raster memory is dumped to
a file named BGxxzzzz in the current directory, where zzzzzz
is a random number.

switch to the indicated mode:

esc-~¢ CHiP parameters mode
esc-~w switch settings mode
esc-~p port names mode
esc-~r command request mode
esc-~v port values mode
esc-~t trace values mode

if the cursor is in the window, the symbol replaces the

symbol pointed to by the cursor; if the cursor is at the home
position of a PE or the command line, the symbol appears on
the command line.

hackspace.

buffer the code name and parameters of the PE containing the
cursor. Modification to any of the entries of the buffered PE
cause it t_ be removed from the buffer.

insert the buffered names into the recipient PE(s). If the
command line is blank, the recipient is the PE containing the
cursor; if the command line is nonblank the recipient is given
by the command line expression as described in Buffering
above.

delete port names. If the cursor is in a window, declete the
window’s entry; il the cursor is at the home position of a PE,
delete all entries in the PE; if the cursor is on the command
line delete all code names and parameters.

center the display so that the PE whose index is given on the
command linc is as close to the center of the field as possible
consistent with the requirement that the field be fully ulilized;
if the command line is blank use the Last PE for centering.
tcéggle the display to the "other" format as described in Display
above.

display the full (unclipped) entry of the window conlaining the
cursor; the display is given on the auxiliary data line of tihe
chalkboard.

write Lthe current values of all code names and paraincters to
the file CodeNames in the current dircctory.

phase change; the phase number given on the command line
becomes the new phase. [Not fully implemented.]

-21-

7. The XX Programming Language*

Purpose: The XX (dos equis) programming language is a simplified ;i

sequential programming language for defining the codes for
processing elements of the CHiP computer.

Activity: Files are creatcd or modified using a conventional UNIX edi-
tor. The files are named <name>.x where <name> is the
name of a program referred to in the code names entries.
For convenience in referring to Poker state information on i
the BitGraph display, it is recommended that XX program
files be developed on the secondary (character) Poker %
display.]

Programs: XX programs begin with a preamble that gives the program
name, the formal parameters, trace variables and the port
names. The preamble is followed by the program body
block:

<program> := code <id> <parmlist>; <tracelist> <port
list> <body>

<parmlist> ::= (<idlist>) | A

<tracelist> ::= trace <idlist>; | A

<portlist> ::= ports <idlist>; | A

<idlist> ::= <id>, <idlist> | <id>

<body> ::= begin <declarations> <statlist> end.

where the parameters and trace identiflers are limited to a
list of at most four identifiers separated by commas and
the port id list is limited to a list of 8 identifiers separated
by commas. The identifier following code names the pro-
gram and should match the <name> of the file and the
<name> used in the Code names entries. The parameters
are formal parameters that correspond orz-to-one to the
actual parameters stored in the Code Names/Parameters
entries of the PEs; each formal must be declared in the
<declarations> section of the <body>. The trace list
identifiers have their values displayed during tracing and
they must be declared in the <declarations> section of the
<body>. The port list identifiers are the symbolic port
names that are assigned physical positions in the Port
Names entries, and they must be declared in the <declara-
tions> section of the <body>.

Declarations: There are four data dypes: signed integers (32 bits), signed
reals (32 bits), characters (8 bits) and Booleans (1 bit).
Except for statement label identifiers, all identifiers,
including those appearing in the preamble, must be
declared. Simple identifiers are scalar values of the indi-
cated type and identifiers followed by [<unsignint>] are
vectors of length <unsignint> of scalar values of the indi-
cated type:

<declarations> := <decl>; <declarations> | A

*Developed with J. E. Cuny and D. B. Gannon.

Statements:

Assignment.:

Conditional:

While:

Break:

[For:

Compound:

- 22 -

<decl> ::= <type> <varlist>

<type> ::= real | int | bool | char
<varlist> ::= <varid>, <varlist> | <varid>
<varid> ::= <id> | <id> [<unsignint>]
where no <id> appears more than once.
The statements arc:

<statlist> ::= <lIstatement>; <statlist> | <lIstatement>
<lstatement> ::= <id>: <statement> | <statement>
<statement> ::= <assignment> | <conditional> |

<while> | <break> | <for> | <compound> | <io>
where <id> is used for tracing rather than the target of
goto.
The Assignment statement is:
<assignment> ::= <varid> := <expression>
where the coercion to the left-hand side identifier type is
provided as described in Table 1.
In the Condilional statement
<conditional> ::= if <expression> then <lIstatement>

else <lIstalement> | if <expression>
then <lstatement>

the <expression> must evaluate to a Boolean value and an
clse is associated with the immediately preceding then.
In the While statement

<while> ::= while <expression> do <lstatement>

the expression must evaluate to a Boolean value. To assist
in synchronization the compiler recognizes the construc-
tion while true do <lstatement> as a special case and does
not generale the conditional branch code.

The Break stalement
<break> ::= break

has meaning only within the <Istatement> of a While state-
ment, and causes control to skip to the statement following
the immediately surrounding While statement.

In the I'or statement

<lor> ::= for <id> := <expression> to <expression> do
<Istatement>

the two expressions, the lower and upper limits of the
iteration, respectively, are evaluated once prior to begin-
ning lhe loop. If the lower and upper limils are not
integers, they are coerced to integers as described in Table
1.

Notice that the Compound statement
<compound> ::= begin <statlisl> end

is nol a block and may not contain declarations.

- T

Expressions:

Table 1.

The 1/0 statements

£iod> 1= <id> <- <id>

are restricted to simple variables, exactly one of which
must-be a port name. If the port name appears on the
right, the statement reads from the indicated port; if the
port name appears on the left, the statement writes to the
indicated port. Data type consistency is not enforced
across the communication links.

The expressions

<expression> ::= <expression> <binary> <expression> |
<unary> <expression> |
<expression> <relational> <expression> |
<builtin> (<expression>) |
(<expression>) |
<unsignint> | <unsignreal> | <character> |
<boolean>

have procedence and association as in the C programming
language. Expressions of mixed type are coerced to the
higher type, where types are ranked bool < char < int <
real, as described in Table 1. The operators are given in
Table 2.

bool +» char: The Boolean bit becomes the
least significant bit; others are 0.

char » bool: The least significant bit
forms the Boolean.

char + int: The 8 character bits become
least significant bits; others are 0.

int » char: The eight least significant
bits form the character.

int + real: Converted to floating point.
notation.

real +» int: The floating point value is
truncated and converted to integer form.

Semantics of representation conversion; conversions not listed
are performed transitively: typel +» type2 » typed, etc.

ER et

it e i = i ot e e e

e T3 sen

<unary>
+ <real> no op
- <real> negation

~ <char> not

| The type indicates Lhe highest

Lype {or which the operation
is defined; the operation is
defined for all lower types.

-24-

<binary>

<real> + <recal>
<real> - <real>
<real> * <real>
<real> / <real>

<rcal> mod <real>

<real> >= <rcal>
<real> > <real>
<real> =/ <real>
<real> < <real>
<real> <= <real>
<rcal> = <real>
<char> & <char>
<char> | <char>
<char> || <char>

Table 2. XX operators.

Constants:

addition
subtraction
multiplication
division

modulus

greater than or equal
greater than

not equal

less than

less than or equal
equal

and

or

exclusive or

The constants are unsigned integers and reals in stan-

dard formats, quoted (') characters and true and false.

Identifiers: All identifiers begin with a letter and arc followed by
any comnbination of letters and numerals. The max-
imum lenglh of an identifier is 10 symbols.

Veclors:

Vecetors can only be subscripted by character or integer

Llypes and are referenced using | origin.
Buill in functions: The built in functions are not yet implemented.

Comments: Comments begin with the characters /* and end with
the characters */.

-25-

8. Command Request Mode

Purpose:

Display:

Activity:

To cause the prograrn, as specified by the switch set-
tings, port name specifications, code names and param-
eters specifications and the associated XX programs, to
be prepared for execution.

The field is not changed, diagnostics and status infor-
mation are reported in the chalkboard.

Commands are invoked which cause the source form of
the program to be transformed.

Recognized keys:

esc-~a
esc-~e

esc-~1
esc-~o0

<mode>

Ltext>

~C

~v

~a

abort, return to UNIX without saving state.

exit, return to UNIX and save the current values of the

CHiP parameters, switch settings and the port and code names.
redraw; the screen is redrawn.

output the screen; the BitGraph’s raster memory is dumped

to a file named BGzzxzzz in the current directory, where
rzzrzzz is a random number.

switch to the indicated mode:

esc-~¢ CHiP parameters mode
esc-~w switch settings mode
esc-~p port names mode
esc-~d code names mode
esc-~v port values mode
esc-~t trace values mode

is placed on the comn.and line at the position of the cursor.
backspace.

compile the program whose name is given on the command line;
if the command line is blank, compile all programs whose names

are mentioned as Code Names for the current phase. The
program with name <name> is a file in the current directory
with name <name>.x. Errors are reported in a file <name>.2.
coordinate the compiled programs whose names are mentioned
in Code Names. The assembly code for a program <name> is
found in a file in the current directory with name <name>.s.
assemble the coordinated programs, one per PE, whose
coordinated assembly code is given in files with names of the
form PE i, j.s in the current directory. Errors are reported
inPE |, j.2.

compile the object code for the switch settings for this phase
as given by the switch settings specification.

load the object code for the PEs and switches into the Pringle
emulator.

go; begin executing the loaded program; if the command line
contains an integer, execute the program for that many steps;
otherwise execute it for 10K steps or until it halts.

car e

S

-6 -

9. Trace Valucs

Purpose: 'l'o display the current values of the traced variables
(peek), Lo modify those values (poke), and to control
the execution.

Display: The code name and the current values assigned to the
tracce variables of PLs in (a portion of) the lattice tor
this phasc are given in the field. One display format
shows boxes representing Plis; thie other display formatl
shows boxes represenling PEs and lines representing
the interconncelion structure; a key (~U) toggle:
between these two. The code name is clipped to five
charecters (and connot be changed) and values are
shown clipped to Lhie firsl 10 syinbols:

hTTe
i code name
- value of first trace variable
- value of second trace variable
value of third trace variable
value of fourth trace variable

f Cursor motions: Gross cursor rolions advance the cursor to the |
! liome position of the next PE in the indicatled direction; :
fine cursor motions (north and south) inove to the first |
posilion of the windows for the trace values. 'Home’, _ '
from o window moves the cursor to the home position of j

; the PL, froin the home posilion in a PEE moves Lo the ‘,

§ command line, and from the command line to the home
posilion of Last PL.

Actlivity: The execution of a loaded program is contrelled and the
values of Lhe traced variables are displayed. Displayed
values can be chanpged and when execution begins, they

£ will be stored into Lhe memory of the emulator. Execu-

' lion can be effected in single step units, multiple sieps

or until a displayed variable changes value.

Limitalions: This mode cannot be entered unless a program is
loaded.

Recognized keys:

ese-~a aborl, return Lo UNIX without saving state.

coem~e cxil, return to UNIX and save the current values of the CHil?
paramclers, switch setlings, and port and code nvmes.

o=l redraw,; Lhe screen is redrawn,

cse-~o0 oulpul the sereen; the BitGraph's raster memory is dumped
Lo a {ile named BGezzxer in Lhe current directory, where
wwzzae 18 a random number.

<mmode> switch Lo Lhe indicated inode:

<text>

g

-~y
~t

“~C

-27.

esc-~c¢ CHIiP parameters mode; causes the current load
module to be invalidated

esc-~w switch settings mode

esc-~p port names mode

esc-~d code names mode

esc-~v command request mode

esc-~v port values mode

when entered into any of the trace value windows, becomes

the value of the variable when execution resumes; otherwise the
text is given on the command line.

go; the command line is interpreted as the (integer) number of
steps the emulator is to execute; if the command line is blank
10K steps are executed. The new values of the trace variables
are displayed at completion of the execution.

displays in the auxiliary display area the unclipped value

of the window entry.

trip; the execution of the emulator resumes until a value of a
variable currently being displayed changes.

buffers the names of the traced variables and displays them in
the chalkboard.

center the display so that the PE whose index is given on the
command line is as close to the center of the field as possible
consistent with the requirement that the field be fully utilized;
if the command line is blank, the Last PE is used for centering.

-28 -

A. Catastrophic Bugs

Like any new, large software system Poker contains many bugs
and inconsistant features. Most of these are harmless annoyances
that can be easily circumvented. However, a few are serious enough
Lo lead to "mystical” behavior or, worse, to cause 'core dumps’ that
kill the current Poker state. They are documented below.

The cautious user will want, from time to time, to save the
current state of an editing mode using esc-~w. If an error causes a
core dump, it often happens that the BitGraph will not echo text
typed on the UNIX shell. The echo is restored by typing "reset” in the
UNIX shell.

1. Switch Settings - cursor motion off screen.
Cursor motions off the top or right side of the field automati-
cally shift the window. Cursor motions off the bottom or left
side of the field are celastrophic. Use the center command
to manually shift the window.

2. Switch Settings - level anomalies.
Switches that are set by joining (i.e., two paths that rendez-
vous al a swilch) may not join or may join another path.

3. Allmodes - ese-~o0 command.
The soltware Lo dump the screem for the new (3.10) Bit-
Graphs is nol yet available and esc-~o is catasirophic for
these displays. The copy screen command works only for old
(2.0) BitGraphs.

Oooooooooooooood
O000a0000000000o0
O0000000000000og |
O00000000000000o0g |

| 0000000000 0o00Do0 |

i CO00Cxbxexa0000 t

? 00000000 |
noooo00oo000000o0 i
0O0000g0SogQCoono |
00000000 .
O000XX <0000 |
goooo00oo00oooog |

0000000oogpooonn
0O00DAbxe:a0000
0000100000
oooooQQool0oooog
O0ooO0oooooooooon
O0o00o000oooooon
O0D0000000000000
OOoo00000oo0oooog

|

-0 -

B. Summary of Key Definition

KEYS DIFFERING BY MODE

Switch Setting Mode ‘

GLOBAL KEYS ~c center
~d delete "
~e end :
esc-~a abort ~i insert |
esc-~e exit ~1 level L
esc-~] redraw screen ~p phase
esc-~0 copy screen to file ~w write (save)

~Xx chase
esc-~¢ Chip Params mode
esc-~p Port Names mode
esc-~d Code Names mode

esc-~v Port Values mode Port Names & Code Names Modes
esc-~w Switch Setting mode
esc-~r Command Request mode ~b buffer
esc-~t Trace Values mode ~c center
~d delete
<text> insert text ~i insert
~h BACKSPACE ~p phase

~t toggle (suppress/elicit)
~w write (saveg
~y display

Command Request Mode

~a assemble
~c compile

~1 load

~g §go

~r coordinate
~{ connect

Port Values & Trace Values Modes

~c center

~g go

~r Llriggcred k
~L loggle (suppress/elicit)

~y display

