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ABSTRACT

Concise, efficient, noniterative direct and inverse geodetic position
computation algorithms for short geodesics on the ellipsoid have been
published by B.R. Bowring (1981). These algorithms are ideal for geodetic
surveying applications, and their sub-millimeter accuracy has been verified
for geodesics up to 150 km long (Vincenty 1982). The intent of this paper is
to present results of an investigation of the behavior of Bowring's algorithms
over longer geodesics and to ascertain their applicability to hydrography and
general navigation.

83 06 09 053 R 2268

O

0= VAU RIS PO I




co et

R PR

!
)
9§

e - g O ¢

P U

T ve —

The preoccupation of geodesists with direct and inverse position computa-
tion on the terrestrial ellipsoid has a 1long and distinguished history.
Gauss, Bessel, Helmert, Puissant, Rainsford, McCaw, and Sodano are all
prominent names associated with formulas and algorithms developed for the
solution of what in the German technical literature used to be called "die
geodaetische Hauptaufgabe" (the principal geodetic problem). With the advent
of electronic computers, this work of giants was given a capstone by T.
Vincenty with his optimal adaptation for automatic computation of the globally
accurate Bessel-Helmert-Rainsford iterative algorithms (Vincenty 1975, 1976).

The "direct"™ problem can be posed as follows: Given the position
(latitude and 1longitude) of a point on the reference ellipsoid (the
"standpoint"), as well as the orientation (forward azimuth) and length of a
geodesic line emanating from it, compute the position (latitude and longitude)
of the terminal point of that geodesic line (the "forepoint") and its back
azimuth. The "inverse" problem, as can be expected, is the converse of the
direct problem: Given the coordinates of two points on the reference
ellipsoid, compute the length of the geodesic line joining them, as well as
the forward and‘back azimuths at the respective endpoints, which in this case
are arbitrarily taken to be the standpoint and the forepoint.

Vincenty's direct and inverse position computation algorithms are
efficient and accurate to a fraction of a millimeter for short and long geode-
sics alike, ranging in length from a few centimeters to just under half-way
around the world. As such, they are yardsticks against which the performance
of other direct and inverse position computation algorithms are to be
measured. However, they are iterative, which is to say that the number of
steps in a solution can vary depending on the geometry of the individual
problem. :

Since convergence is very fast (two or three iterations is the norm), the
iterative nature of Vincenty's algorithms is hardly a consideration in non-
realtime applications run on present-day powerful minicomputers and
mainframes; in fact, it has beea shown that Vincenty's algorithms execute
faster than either Sodano's or Andoyer-Lambert's noniterative long-line
counterparts. There are, however, applications for which one would
intuitively prefer the noniterative solutions of the direct and inverse
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position computation problems, solutions which would not have the complexity
of the existing long-line noniterative algorithms, result in even more compact
code, and execute faster than Vincenty's algorithms, and still deliver the
desired accuracy.

One such application is the computation of geodetic survey work on the
ellipsoid (as opposed to plane coordinates) implemented on a portable micro-
computer (e.g., the surveyor's field computer). Here one is typically faced
with very limited memory and the need for compact code, with speed of execu-
tion being an important but secondary consideration. Syb-millimeter
computational accuracy is required in this application; however, the 1line
length is limited by intervisibility and seldom exceeds 50 km.

Another such application occurs in hydrographic surveying; i.e., the
realtime computation of the position of a survey vessel with respect to shore
control stations, when one wishes to work with the reference ellipsoid rather
than with a map projection. Here the maximum line length will vary from 50 km
for line-of-sight positioning systems, to 300 km for medium-range systems such
as Raydist or Argo, to 1500 km for a long-range system such as LORAN~C. On
the other hand, the computational accuracy requirement can be proportionately
relaxed by two, three, and four orders of magnitude (compared with the
geodetic surveying case), depending on the scale of the survey and positioning
method used; e.g., 0.1 m for short-range control, large-scale surveys (for
harbor approach charts), 1 m for medium-range control, medium-scale surveys
(for coastal sailing charts), and 10 m for long-range control, small-scale
surveys (for general sailing charts). Since in a realtime application the
respective algorithms must execute within an assigned time slot measured in
milliseconds, speed of execution is the primary consideration in this
instance. '

Recently, B. R. Bowring of Surrey, England, developed and published very

elegant noniterative algorithms for the direct and inverse position computa-
tion over "short" geodesic lines up to 150 km (Bowring 1981). These "quasi-
spherical" formulas are remarkably concise and accurate within their intended
range of application; they very likely represent the last word in streamlining
the solution of the "principal geodetic problem." Bowring's algorithms lend




themselves admirably to the first application outlined above, i.e., computa-

tion of geodetic survey work. They were successfully used by this writer as
the basis of a powerful and efficient geodetic package of programs implemented
on the Hewlett-Packard HP-9815A desktop computer (Taylor 1981).

The purpose of this paper is to present the results of an investigation
as to the extent to which Bowring's algorithms are sufficiently accurate to
support the second application mentioned above, i.e., the realtime positioning
of a surface vessel for hydrographic surveying or precise navigation purposes.
This investigation evaluated the total position error produced by Bowring's
algorithms over a large number of geodesic lines emanating from standpoints
located at seven representative latitudes (0, 15, 30, uUs, 60, 75, and 89
degrees), in nine representative azimuths (0, 30, 45, 60, 90, 120, 135, 150,
and 180 degrees), and of lengths ranging from 50 to 4000 km (preliminary com-
putations indicated this distance to be the usable limit). In all, 4284 cases
were computed.

As a first step in every case, the coordinates of each forepoint were
computed using the precise Vincenty's direct algorithm. This step was then
repeated using Bowring's direct algorithm, and the distance separating the two
sets of coordinates was taken as the total position error of Bowring's direct
algorithm. Next, Bowring's inverse algorithm was used to recover the length
and forward/back azimuth of the geodesic line between the given standpoint -and
computed precise forepoint coordinates. The resulting length and forward
azimuth were then used as arguments in Vincenty's direct algorithm to compute
another set of forepoint coordinates, and the distance separating the two sets
of coordinates was taken as the total position error of Bowring's inverse
algorithm. )

The total position errors, obtained in meters, were shown as proportional
errors relative to the length of the geodesic line, in parts per million
{ppm). Inspection of the tabulations confirmed that Bowring's direct and
inverse algorithms are well balanced with respect to accuracy, as the corres-
ponding errors in any given case were always very nearly equal. For each of
the 63 geodesic lines computed at distance increments from 50 to 4000 km (9
radial lines from each of 7 standpoint latitudes), the tabulations were
searched to determine the distances at which total position errors
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exceed the thresholds of 0.0001 m, 0.001 m, 0.01 m, O.1m, 1 m, 10 m, and 100
m; and in terms of relative error, the thresholds of 0.1 ppm (1:10,000,000),
0.2 ppm (1:5,000,000), 1 ppm (1:1,000,000), 2 ppm (1:500,000), 10 ppm
(1:100,000), and 20 ppm (1:50,000).

As could be expected from the nature of the problem, the worst perfor-
mance for radial lines emanating from each standpoint was along the meridian,
with progressively better performénce along geodesics in azimuths away from
the meridian. For each of the seven standpoint latitudes, this worst-case
performance was taken as the upper bound of the total position error to be
expected of Bowring's direct and inverse algorithms over any geodesic 1line
having an endpoint at that latitude. The resulting information is portrayed
graphically in Figures 1 and 2.

By inspection of the log-linear graph of Figure 1, it is clear that even
in the worst possible case (geodesic line on or near the meridian originating
at or near the latitude of 45 degrees), Bowring's algorithms meet the compu-
tational accuracy requirements of both geodetic survey work and of surface
vessel position fixing consistent with the accuracy of shore~based positioning
systems likely to be used for hydrographic surveying and precise navigation
purposes. The total position error produced by either the direct or the
inverse algorithm is guaranteed to be less than 0.001 m up to 100 km, less
than 0.1 m up to 500 km, and less than 10 m up to 1500 km. One notes that the
error curves are symmetrical about the latitude of U5 degrees, and that
progressively better accuracy performance is obtained along geodesic lines
originating in both lower and higher latitudes, as well as along geodesics in
azimuths away from the meridian.

It is also interesting to note that on the log-log graph of Figure 2, the
relative error in parts per million as a function of line length 1is linear.
This quite unexpected result c¢learly suggests an empirical formula for the
global upper bound of the total position error produced by Bowring's
algorithms, By considering the worst-case performance, the following
empirical relationship (Equation (1)) for the maximum relative error in parts
per million (Mppy) as a funotion of geodesic line length in kilometers (Dim)
can be derived:

Mppm= 7.17x10~9 Dy86 (1)
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An expression for the absolute maximum error can be derived by multiplying
Taking into account the conversion of distance

Equation (1) by distance.
units to meters, the following equation results:

Mp = 7.17x10-12 p3,86 (2)

The error curves in Figure 1 depict somewhat more conservative error estimates

than the values given by Equation (2). This is due to upward rounding‘of the

total position errors on the computer printout from which data shown in Figure

1 were compiled.
Listings of a FORTRAN implementation of Bowring's direct and inverse

algorithms are given in Figures 3 and 4, and those of Vincenty's direct and
inverse algorithms in Figures 5 and 6.
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