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ABSTRACT

Concise, efficient, noniterative direct and inverse geodetic position

computation algorithms for short geodesics on the ellipsoid have been

published by B.R. Bowring (1981). These algorithms are ideal for geodetic

surveying applications, and their sub-millimeter accuracy has been verified

for geodesics up to 150 km long (Vincenty 1982). The intent of this paper is

to present results of an investigation of the behavior of Bowring's algorithms

over longer geodesics and to ascertain their applicability to hydrography and

general navigation.
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The preoccupation of geodesists with direct and inverse position computa-

tion on the terrestrial ellipsoid has a long and distinguished history.

Gauss, Bessel, Helmert, Puissant, Rainsford, McCaw, and Sodano are all

prominent names associated with formulas and algorithms developed for the

solution of what in the German technical literature used to be called "die

geodaetische Hauptaufgabe" (the principal geodetic problem). With the advent

of electronic computers, this work of giants was given a capstone by T.

Vincenty with his optimal adaptation for automatic computation of the globally

accurate Bessel-Helmert-Rainsford iterative algorithms (Vincenty 1975, 1976).

The "direct" problem can be posed as follows: Given the position

(latitude and longitude) of a point on the reference ellipsoid (the

"standpoint"), as well as the orientation (forward azimuth) and length of a

geodesic line emanating from it, compute the position (latitude and longitude)

of the terminal point of that geodesic line (the "forepoint") and its back

azimuth. The "inverse" problem, as can be expected, is the converse of the

direct problem: Given the coordinates of two points on the reference

ellipsoid, compute the length of the geodesic line joining them, as well as

the forward and back azimuths at the respective endpoints, which in this case

are arbitrarily taken to be the standpoint and the forepoint.
I

Vincenty's direct and inverse position computation algorithms are

efficient and accurate to a fraction of a millimeter for short and long geode-

sics alike, ranging in length from a few centimeters to just under half-way
around the world. As such, they are yardsticks against which the performance
of other direct and inverse position computation algorithms are to be

measured. However, they are iterative, which is to say that the number of

steps in a solution can vary depending on the geometry of the individual

problem.

Since convergence is very fast (two or three iterations is the norm), the

iterative nature of Vincenty's algorithms is hardly a consideration in non-

realtime applications run on present-day powerful minicomputers and

mainframes; in fact, it has been shown that Vincenty's algorithms execute

faster than either Sodano's or Andoyer-Lambert's noniterative long-line

counterparts. There are, however, applications for which one would

intuitively prefer the noniterative solutions of the direct and inverse
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position computation problems, solutions which would not have the complexity

of the existing long-line noniterative algorithms, result in even more compact
A4 code, and execute faster than Vincenty's algorithms, and still deliver the

desired accuracy.

One such application is the computation of geodetic survey work on the

ellipsoid (as opposed to plane coordinates) implemented on a portable micro-

computer (e.g., the surveyor's field computer). Here one is typically faced

with very limited memory and the need for compact code, with speed of execu-

tion being an important but secondary consideration. Sub-millimeter

computational accuracy is required in this application; however, the line

length is limited by intervisibility and seldom exceeds 50 km.*1 Another such application Dccurs in hydrographic surveying; i.e., the

realtime computation of the position of a survey vessel with respect to shore

control stations, when one wishes to work with the reference ellipsoid rather

than with a map projection. Here the maximum line length will vary from 50 km

for line-of-sight positioning systems, to 300 km for medium-range systems such

as Raydist or Argo, to 1500 km for a long-range system such as LORAN-C. On

the other hand, the computational accuracy requirement can be proportionately

relaxed by two, three, and four orders of magnitude (compared with the

geodetic surveying case), depending on the scale of the survey and positioning

method used; e.g., 0.1 m for short-range control, large-scale surveys (for

harbor approach charts), 1 m for medium-range control, medium-scale surveys

(for coastal sailing charts), and 10 m for long-range control, small-scale

surveys (for general sailing charts). Since in a realtime application the

respective algorithms must execute within an assigned time slot measured in

milliseconds, speed of execution is the primary consideration in this

instance.

Recently, B. R. Bowring of Surrey, England, developed and published very

elegant noniterative algorithms for the direct and inverse position computa-

tion over "short" geodesic lines up to 150 km (Dowring 1981). These "quasi-

spherical" formulas are remarkably concise and accurate within their intended

range of application; they very likely represent the last word in streamlining

the solution of the "principal geodetic problem." Bowing's algorithm lend
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themselves admirably to the first application outlined above, i.e., computa-

tion of geodetic survey work. They were successfully used by this writer as

the basis of a powerful and efficient geodetic package of programs implemented

on the Hewlett-Packard HP-9815A desktop computer (Taylor 1981).

The purpose of this paper is to present the results of an investigation

as to the extent to which Bowring's algorithms are sufficiently accurate to

support the second application mentioned above, i.e., the realtime positioning

of a surface vessel for hydrographic surveying or precise navigation purposes.

This investigation evaluated the total position error produced by Bowring's

algorithms over a large number of geodesic lines emanating from standpoints

I located at seven representative latitudes (0, 15, 30, 45, 60, 75, and 89

degrees), in nine representative azimuths (0, 30, 45, 60, 90, 120, 135, 150,

and 180 degrees), and of lengths ranging from 50 to 4000 km (preliminary corn-

putations indicated this distance to be the usable limit). In all, 4284 cases

were computed.

As a first step in every case, the coordinates of each forepoint were

computed using the precise Vincenty's direct algorithm. This step was then

repeated using Bowring's direct algorithm, and the distance separating the two

sets of coordinates was taken as the total position error of Bowring's direct

algorithm. Next, Bowring's inverse algorithm was used to recover the length

and forward/back azimuth of the geodesic line between the given standpoint and

computed precise forepoint coordinates. The resulting length and forward

azimuth were then used as arguments in Vincenty's direct algorithm to compute

another set of forepoint coordinates, and the distance separating the two sets

of coordinates was taken as the total position error of Bowring's inverse

algorithm.

The total position errors, obtained in meters, were shown as proportional

errors relative to the length of the geodesic line, in parts per million

(ppm). Inspection of the tabulations confirmed that Bowring's direct and

inverse algorithms are well balanced with respect to accuracy, as the corres-

ponding errors in any given case were always very nearly equal. For each of

the 63 geodesic lines computed at distance increments from 50 to 4000 ka (9

radial lines from each of 7 standpoint latitudes), the tabulations were

searched to determine the distances at which total position erors
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iexceed the thresholds of 0.0001 m, 0.001 m, 0.01 m, 0.1m, 1 a, 10 m, and 100

:m; and in terms of relative error, the thresholds of 0.1 ppm (1:10,000,000),

0.2 ppm (1:5,000,000), 1 ppm (1:1,000,000), 2 ppm (1:500,000), 10 ppm

(1:100,000), and 20 ppm (1:50,000).

As could be expected from the nature of the problem, the worst perfor-

mance for radial lines emanating from each standpoint was along the meridian,

with progressively better performance along geodesics in azimuths away from

the meridian. For each of the seven standpoint latitudes, this worst-case

performance was taken as the upper bound of the total position error to be

expected of Bowring's direct and inverse algorithms over any geodesic line

having an endpoint at that latitude. The resulting information is portrayed

graphically in Figures 1 and 2.

By inspection of the log-linear graph of Figure 1, it is clear that even

in the worst possible case (geodesic line on or near the meridian originating

at or near the latitude of 45 degrees), Bowring's algorithms meet the compu-

tational accuracy requirements of both geodetic survey work and of surface

vessel position fixing consistent with the accuracy of shore-based positioning

systems likely to be used for hydrographic surveying and precise navigation

purposes. The total position error produced by either the direct or the

inverse algorithm is guaranteed to be less than 0.001 m up to 100 km, less

than 0.1 m up to 500 km, and less than 10 m up to 1500 km. One notes that the

error curves are symmetrical about the latitude of 45 degrees, and that

progressively better accuracy performance is obtained along geodesic lines

originating in both lower and higher latitudes, as well as along geodesics in

azimuths away from the meridian.

It is also interesting to note that on the log-log graph of Figure 2, the

relative error in parts per million as a function of line length is linear.

This quite unexpected result clearly suggests an empirical formula for the

global upper bound of the total position error produced by Bowing's

algorithms. By considering the worst-case performance, the following

empirical relationship (Equation (1)) for the maxim. relative error in parts

per million (Mpp m ) as a function of geodesic line length in kilometers (Dkm)

can be derived:

Npp*z 7.17x10-9 DZA8 6  (1)
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An expression for the absolute maximum error can be derived by multiplying

Equation (1) by distance. Taking into account the conversion of distance

units to meters, the following equation results:

MM  = 7.17x10-12 D3k86  (2)

The error curves in Figure 1 depict somewhat more conservative error estimates

than the values given by Equation (2). This is due to upward rounding of the

total position errors on the computer printout from which data shown in Figure

1 were compiled.

Listings of a FORTRAN implementation of Bowring's direct and inverse

algorithms are given in Figures 3 and 4, and those of Vincenty's direct and

inverse algorithms in Figures 5 and 6.
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