
AD-A129 109 ON THE USE OF STAGEWISE REGRESSION IN RANDOM BALANCE
SCREENING EXPERIMENTS(U) DESMATICS INC STATE COLLEGE PA
C AMAURO MAY 83 NR13-8 N00479-C0650

UNCLASS F o 
o so 

EDo 

m

I *hEoh..hEmhhl

I EEEEEEE



II

11 AmQ "28

MICROCOPY RESOLUTION TEST CHART

KMIINAL BUREAU OF STANDARDS-1963-A

111=3 3

lulp u = h 3iI

: , , l . .J , .. -:. -: - 11-1 ,, ,, , ... .,_... _. _ ,



ON THE USE OF STAGEWISE REGRESSION
IN RANDOM BALANCE SCREENING EXPERIMENTS

by

Carl A. Mauro

A,*

* j 1L.

-)MAHEMAICS-:

$*1,0 26 1

state olee PA 16601

806 0 0S4.1 v



DESM TIC , IN . j Stat. Colq., PA. 16601

Applied Research in Statistics - Mathematics - Operaions Reserch

ON THE USE OF STAGEWISE REGRESSION
IN RANDOM4 BALANCE SCREENING EXPERIMENTS

by

Carl A. Mauro

TECHNICAL REPORT NO. 113-8

May 1983

This study was supported by the Office of Naval Research

under Contract No. N00014-79-C-0650, Task No. NR 042-467

Reproduction in whole or in part is permitted

for any purpose of the United States Government D TU C
Approved for public release; distribution unl.ute~ ELECTE

JUN 09 10

S -I



TABLE OF CONTENTS

Page

I. INTRODUCTION ANDCKGRD. . .. .. . ... . . .. . ... 1

II. A SCREENING MODEL . e . . . . . . . . . . . . . ... ... . 3

III. THE STAEWSE REGRESSION METHOD ................ 5

IV. MONTE CARLO RESULTS . . . . . . . . . . . . . . . . . . . . . . 10

V. CONCLUSION e . .#. * . . o . . . .. e. . ... . . . . *. 13

Vie APPENDIX o. . . .... o*..........* .......... o * 14

VII. REFERENCES . . o . . . . . . . o . . . . . . . . . . . . . . . 15

Acoesulon For
XTIS (MAA1
DTIC TAB
Unannon 3
JustIftoatto

Distribution/
Availability Codes

&~vail and/or '

Dist Special

AlA

4".

S 1. -



I. INTRODUCTION AND BACKGROUND

Random Balance (RB) is a design technique that may have much to

offer the researcher planning a factor screening experiment. The RD con-

cept is most useful, however, in the design of supersaturated screening

experiments. An experiment is supersaturated when the number of factors

(i.e., design variables) under investigation exceeds the number of runs

available. As it is, screening experiments are often handicapped by the

scarcity of experimental runs because of time, budget, and/or resource

limitations. -Me-are concerned in this paper with the supersaturated situ-

ation.

/ - / In RB designs, unlike more conventional designs, no mathematical re-

lation or restriction need exist (except that an even number of runs be

used) between the sample size N and the number of factors K under consider-

ation. Because of this flexibility, the RB techniqe permits the researcher

to screen a large (or small) number of possible contributing factors in an

experiment involving a limited (N<K) number of test runs. Another advantage

is that RB designs are easy to prepare for any combination of N and K.

"--- A major concern with RB experimental design is that there are no spec-

ific or unique statistical techniques for analyzing RB designs. (See [5]

and [6] for a more complete discussion.) There is no one particular method,

therefore, that ought to be used to analyze RB screening experiments. Sat-

terthwaite [51 has remarked that practically any technique used to analyze

data without RB properties can be applied to any (suitably small) subset

of factors in an RB design. The simplest approach, then, would be to con-

sider each factor separately and apply some standard test of significance.

Accordingly, Mauro and Smith [4] have considered the use of a standard F-
"--



test applied separately to each factor as the method of analysis for RD

designs.

A more sophisticated means of analysis which is considered by Ans-

combe (11 and Budne [21 is as follows. We first determine the factor,

say xi, most highly correlated with the response variable Y. After a

simple regression equation in x has been fit, the residuals Y- (x1 )

are found. These residuals are now considered as response values and the

process is repeated. We stop when we reach the stage where the regression

on the most correlated variable is not significant. Of course, once a

factor has been adjusted for (i.e., entered), it is not considered as part

of the variable pool in subsequent stages.

The analysis procedure just described has been known under a variety

of descriptive titles. We will refer to it here as "stagewise regression,"

which is the terminology used by Draper and Smith (3]. We should emphasize

that the stagewise regression (SR) solution is not the multiple least

squares solution for the variables involved. This is because at each stage

of the SR procedure the remaining factors are not adjusted for previously

.\entered factors.

The purpose of this technical report is to investigate the use of fA ' " ..

as a method of analysis for RB screening experiments. -Our approach is to

determine the efficiency of the first two stages in order to obtain an in-

dication of what can occur between consecutive stages. In doing so, the

SR method is compared with Zhe individual F-test approach as considered

previously by Mauro and Smith."Finally, two Monte Carlo case studies are

conducted.
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II. A SCREENING MODEL

When evaluating the performance of a screening strategy, one must

consider both how many runs are required and how accurately factors are

identified. Although the factors may range in importance from highly

critical to negligible, we generally classify factors as either "important"

or "unimportant". The factors deemed important are usually investigated

more intensively in subsequent experimentation.

In order to provide a common statistical basis to evaluate and com-

pare screening methods, we must make some assumptions regarding a general

screening model. First of all, we assume that each factor is assigned or

has two levels, high (+1) and low (-1). Using two levels for each factor

is generally sufficient for screening purposes. Second, for detecting

the factors having major effects it is usually reasonable to assume an

additive model. Thus, we assume the model:

K
yi-%O+ E8x..+ei (2.1)

0 j.l 3

where y is the value of the response in the ith run; x j- +1 depending upon

the level of the jth factor in the ith run; 8 is the (linear) effect of the

th factor; and the error terms ci are independent and normally distributed

with zero mean and variance a2

In essence, model (2.1) is a first-order Taylor series approximation

to the actual relationship between the response and the experimental fac-

* Ktors; ordinarily, we would assume model (2.1) over a relatively small re-

gion of the factor space. We will restrict performance assessment to this

model.
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In matrix terms we can write model (2.1) compactly as 0- 1+ X+ C

where 1 is an Nxl vector of +1'., y= (y,) is an Nxl vector of responses,

M (E i) is an Nxl vector of error terms, B=(8 i ) is a Kxl vector of fac-

tor effects, and X- (x ij) is an NxK design matrix.

In an RB design, the design matrix X is stochastic. Specifically, -in

a two-level (±1) RB design each column of the design matrix consists of

N/2 +1's and N/2 -l's where N (an even number) denotes the number of runs.

The +1's and -ls in each column are assigned randomly, making all possible

combinations of N/2 +1'9 and N/2 -I's (there are 4/2 in all) equally likely,

with each column receiving an independent randomization. Factors are there-

fore confounded to a random degree. Noreover, we cannot generally control

the amount of confounding or interdependence between factors.

-

t
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III. THE STAGEWISE REGRESSION METHOD

In this section we attempt to gain some understanding of the be-

havior of SR when used as the method of analysis for RB screening ex-

periments. To obtain an indication of the possible benefits of SR. we

derive an expression for the relative efficiency of the second-stage to

the first-stage estimator of a factor effect. A comparison of the first

two stages should provide some indication of what can happen in SR and

what might be gained (or lost) in general by the stagewise procedure.

To begin, the first-stage estimator of 8 is denoted by and is

given by

13 "- . '  (3.1)

where xj denotes the th column vector of the design matrix. Correspond-

A

ingly, the second-stage estimator of a is denoted by (i 1 ) , for j oi1 $

and is given by

j(i 1 ) ,X. Y(i )/N, (3.2)

where

Y i (3.3)

and i1 denotes the index of the factor showing the largest effect in the

first stage of the procedure. The vector y(i1) is the vector of first-

stage residuals.

Substituting (3.3) into (3.2), we see that
(id r (3.4)
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where r x/N. In RB designs the variable r is the sample cor-

relation coefficient forai and and is a measure of the orthogonality

between the two respective design columns.

The estimator of as defined in (3.1) is precisely the estimator

considered by Mauro and Smith [4] under the individual F-test approach for

analyzing RB experiments. Mauro and Smith have shown that

E(9 i) -0 1 (3.5)

and V( ) - (22 MN -1)+o 2 IN, (3.6)

where T " Bm- Although Bj is an unbiased estimator of $it its variance

can be seriously inflated. The basic idea behind the use of SR is to re-

duce the effect of the inflation by adjusting for those factors which appear

to have large effects.

Regarding the estimator 1(il), we have from (3.4) and (3.5) that

. E[ j (i> ][ r 1j- i i] (3.7)

In the Appendix we show for I #j that E[Oir jil = B /(N-1) , so that

E(%(i)l- ] N-2)/(N-1)]. (3.8)

The estimator Aj(i) is therefore slightly biased for J• We can easily

remove the bias by considering the modified estimator

j*(i ) -Bj(i ) [ (N - 1) /(N - 2) ]. (3.9)

Since *(i 1 ) and 8j are both unbiased estimators of Bi it is mean-
!j

ingful to compare their respective variances. That is, we wish to calculate

the efficiency of j*(i) relative to . Accordingly, we define the

'V -6-



measure

EFF =V [Oj (1 1 ) 1]/V0 1 (3.10)

This ratio measures the amount of Information supplied by relative to

that supplied by

Applying the results given in the Appendix, it is easily shown that

" * the variance of Bj(i 1 ) , conditional on il= i. is given by

The efficiency measure defined in (3.10) requires the unconditional vari-

ance of j(i 1 ), however. In other words, we must evaluate (3.11) over

variation in i1 . Unfortunately, we have found this problem to be intrac-

table. Nevertheless, equation (3.11) is still useful to our analysis of

"4 the first two stages of the SR method.

With some algebraic manipulation we can show that, given i1 = i,

EFF [(N- 1)/(N- 2)][1+01 (3.12)

where - " (3.13)N(N - 1) (N - 3)v(O )

Thus, given I = I and for N large, EFF is approximately

EFF z 1 + (20 2N - 0 2)/(T 2_ 0 j

We see from (3.14) that EFF<I. if and only if,

Ii t/$I I .:(N/2) . (3.15)

That is, ( 1  is a more efficient estimator of 0j than Aj as long as

-7-
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(3.15) holds. If 8j*(il) is to be uniformly more efficient than then

(3.15) must hold for every J; equivalently, we require

(2/N) maxl il1<Ill • (3.16)

The terma 2
2B- g j(3.17)

T2 2 +2

appearing in (3.14) represents the gain (if (3.17) is negative) or loss

(if (3.17) is positive) of efficiency in the second stage given that ii wi.

Most likely the denominator in (3.17) will be dominated by T2- ZB2

When (3.15) holds, the numerator in (3.17) is likely dominated by 8 thus

the gain in efficiency is roughly2" 2
STl (3.18)

It is apparent from (3.18) that unless the contribution of a2 is large

2 1
relative to the total effect (T ), there is little gain in efficiency.

It is interesting to note that the maximum loss of efficiency occurs

when -0, that is, when the factor showing the largest effect in the

first stage actually has no effect whatsoever. In this case, the loss of

efficiency is roughly

2 6 2 /[N(T2_ a2)] (3.19)

In suzmary, our analysis indicates that if the actual effect of the

factor showing the largest effect ( in the first stage) is sufficiently

large, then we can obtain improved estimates of factor effects in the sec-

ond stage. This observation is clear from equations (3.15) and (3.16).

-8-<,::1--
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The extent of the improvement, however, may be slight depending on the

relative contribution of the apparently largest effect to the total ef-

fect.

Our analysis takes on additional meaning considering that the (SR)

first-stage estimation procedure is identical to the separate F-test es-

timation procedure considered by Mauro and Smith (4]. Our discussion,

then, provides some preliminary indication of how these two alternative

analysis techniques would compare. Admittedly, the results derived in

this section do not completely answer the question of which procedure is

preferable, nor do they provide a conclusive overall picture of the multi-

stage SR method. However, the results do indicate in which situations the

difference is likely to be worth considering. To gain further insight into

this problem we conducted two Monte Carlo case studies, the results of

which are presented and discussed in the next section.

*9
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IV. MONTE CARLO RESULTS

In this section we consider two synthesized examples in which all the

true effects are known beforehand. In both examples we assume that K-20

factors are to be screened in an RB screening experiment having N=12 runs.

We simulated each test case 300 times and analyzed the test results of

each simulation with both the SR and the separate F-test (SFT) methods.

The distributions of factor effects used in each case study are given in

Figures 1 and 2.

The absolute effects selected for Case Study I are basically (negli-

gible effects were grouped) the expected order statistics from a sample of

20 deviates from a gamma distribution having mean .50 and standard deviation

1.58 a. The absolute effects selected for Case Study II are basically the

expected order statistics from a sample of 20 exponential random deviates

having mean and standard deviation 1.0 a.

In applying the SFT method we conducted each F-test at the same sig-

nificance level, a . We tested for significance at the following eight

a levels: .05, .40 (.05) . These same a levels were used for determining

the stopping rules in the SR method.
1

The results of Case Study I are summarized in Table 1. We see from

this table that the observed significance levels associated with the SFT

method agree closely with the various a levels employed. The observed sig-

nificance levels associated with the SR method, however, are significantly

larger than the a levels that define the stopping rules. This problem is

lWe stop at the stage where the maximum F-statistic does not exceed the

upper 100(1 -a) percentage point of an F-distribution having 1 and (N- 2)
degrees of freedom.

-10-
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I not unique to the SR method, but is often found with other sequential

variable selection procedures. However, it complicates the application of

the SR method in that it is difficult to control the risk of declaring in-

portant a factor having negligible effect.

It is quite clear from Table 1 that for strategies (i.e., columns)

having comparable empirical Type I error rate, we obtain substantially

greater power with the SR method than with the SFT method, particularly for

101/a-O0.7, 1.2, and 2.3. In detecting the largest effect, 161/o=5.3,

both methods were highly accurate. In fact, from Table 2 we see that this

particular effect was entered at the first stage of the SR method in each

of the 300 simulations. The next largest effect, 10I/O u2.3, was entered

at the second stage in 242 of the 300 simulations.

The results of Case Study II are summarized in Table 3. We note that

the same observations made in Case Study I regarding the observed signifi-

cance levels also apply to Case Study II. We do not, however, always ob-

tain greater power with SR strategies than with SFT strategies having com-

parable empirical Type I error rate. We see instead that the SFT method is

more powerful for detecting the larger effects (101/o >1.5) and the SR

method is more powerful for detecting the moderate to smaller effects. We

can offer two reasons for this based on our analysis made in Section III.

First, we can expect the SR method to be more sensitive to the relatively

small effects than the SFT method (and this is true in general) because the

chance that (3.15) is true is greater for smaller effects. Thus, a gain in

efficiency will, more often than not, be propagated through the stagewise

procedure. Second, for the particular set of effects used in the second

case study, the larger effects are not always entered early in the SR pro-

cedure. This is evident from Table 4. We see from this table that there
-11-
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is a one-in-three chance that the effect shoving the largest effect in the

first stage will actually be less than 1.50 in absolute magnitude. In the

second stage the chance of this occurring is one in two. Thus, for the

larger effects a loss of efficiency is often being propagated. As a con-

sequence, the SFT method shows greater power for detecting the relatively

large effects.

*One final observation may be made. An easy calculation shows that

2 .2.T 35.51 and T 35.77 in Case Studies I and II, respectively. The rela-

tive contribution of the largest absolute effect to the total effect is

therefore (5.3) 2/35.51 - .79 in Case Study I and (3.55) 2/35.77- .35 in Case

Study II. The larger relative contribution of the largest effect in Case

Study I implies there is a greater chance in Case Study I than in Case Study

II of selecting the largest effect in the first stage of the SR method.

Moreover, it indicates that there is greater potential gain in efficiency.

'4
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V. CONCLUSIONS

Although SR is a more sophisticated analysis technique than the SFT

method, there are situations in which the SIT method has greater power for

detecting the larg;.r effects. Computationally, both methods are relatively

quick and easy to apply. The key to SR is early detection of the relatively

large effects. If the most critical factors are not entered early In the

stagewise procedure, the possibility of their nondetection is increased.

It is precisely this type of scenario where SR will be less efficient than

* the SfT analysis method.

The most favorable situation to the SR method is when only a relatively

small number of factors are responsible for all or much of the total effect.

In such cases the difference in effectiveness between the SR and SFT methods

is likely to be large. A drawback to the SR method, as in most sequential

selection procedures, is that it is difficult to control the true signifi-

cance level of the test. For example, in the Monte Carlo case studies pre-

sented in Section IV, the actual value of a was roughly 50% greater than

the "entry a."

1

-13-



VI. APPENDIX

In this section we state three key results that were used to establish

equations (3.8) and (3.11). A proof is provided f or the first result only.

Result #1: For 1 .ESr 1 N11 il jil. 1

S ~Proof. Note that a ri IN E~/11 0 x'x X'x IN+ INX' P 2

Now, E[0 r I -(11N ) EB E[x'x x~x] since E[x!ljx'x 10 . For i J.

E[xj5'x ] x' -0 unless a-i . Thus, E[ir jr I (11N 2 )0 1Erwim1 2 a

(1/m 2 )S(N 2/(N-1))- .' %(N-1) . To obtain the desired result, observe

that for j #ilp E(-6,r jj]E[E(Bjir ji I 1ill -ESi/(N-l) 1 IB1 1(N-1)

Result #2: For i #j, E[A r '(S 2 + a 2(N-1) +(T 2 _ .2_ .. 2), l2 +i jij ij £ j

ca /N(N-l).

^2 2 2 2 22_2 2
Result #3: For i~j, E(B r 1-ar /N(N-1)+8 /(N-1)+(T B -8 )I(N-1) +

i ij i iij

2
68 , where
NJ

0 N (3N -8)IN (N-1) (N- 3)

-14-
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Figure 1: Distribution of Absolute Effects For Case Study I.
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3

2

0.0 1.0 2.0 3.0 4.0

101/0 No.

0.00 3
0.30 2
0.40 2
0.50 1I0.60 1
0.66 1
0.76 1
0.87 1
1.00 1
1.14 1
1.31 1
1.51 1
1.75 1i2.08 1
2.57 1
3.55 1

Figure 2: Distribution of Absolute Effects for Case Study 11.
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Number of Simulations Number of Simulations
1/a No. Entered at First Stage Entered at Second Stage

*0.0 12 0 25

0.1 2 0 5

0.3 2 0 6

0.7 1 0 9*11.2 1 0 13
2.3 1 0 242

5.3 1 300 0

Table 2: Observed Counts for Entering (i.e., shoving largest effect)
at First and Second Stages of SR Method for Case Study I.



SEPARATE 1-TSTS MZTHD

a Level

'N 181/a Mo. .05 .10 .15. .20 .5 .30 .35 .40

0.00 3 .043 .091 .153 .209 .258 .303 .352 .403

0.30 2 .067 .117 .170 .220 .260 .312 .352 .388

0.40 2 .077 .117 .163 .220 .275 .312 .363 .410

0.50 1 .043 .100 .150 .197 .257 .303 .360 .413

0.60 1 .073 .127 .177 .230 .287 .327 .377 .447

0.66 1 .047 .113 .173 .237 .277 .313 .357 .427

0.76 1 .077 .140 .203 .230 .277 .327 .373 .430

0.87 1 .083 .147 .200 .247 .317 .410 .467 .510

1.00 1 .083 .140 .210 .270 .320 .363 .413 .473

1.14 1 .073 .143 .203 .257 .317 .363 .410 .470

1.31 1 .100 .163 .230 .280 .353 .410 .473 .513

1.51 1 .133 .207 .267 .3-33 .397 .443 .507 .540

1.75 1 .103 .193 .253 .303 .360 .413 .480 .510

2.08 1 .210 .313 .373 .443 .517 .593 .647 .690

2.57 1 .330 .477 .557 .613 .663 .713 .750 .780

3.55 1 .530 .663 .743 .810 .847 .893 .907 .933

SR METHOD
a Level

181/0 No. .05 .10 .15 .20 .25 .30 .35 .40

0.00 3 .084 .169 .227 .296 .364 .408 .451 .508

0.30 2 .102 .185 .263 .325 .383 .420 .495 .540

0.40 2 .092 .198 .273 .362 .417 .482 .527 .568
0.50 1 .080 .200 .287 .373 .433 .493 .527 .570

0.60 1 .087 .183 .253 .310 .407 .500 .550 .607

0.66 1 .090 .193 .263 .330 .423 .493 .543 .600

0.76 1 .083 .173 .243 .310 .370 .423 .467 .547

0.87 1 .113 .247 .350 .437 .497 .530 .570 .600

1.00 1 .153 .277 .370 .430 .4683 .527 .577 .633

1.14 1 .110 .233 .330 .410 .480 .507 .553 .597

1.31 1 .133 .287 .343 .407 .490 .527 .557 .607

1.51 1 .120 .243 .303 .393 .453 .487 .557 .617

1.75 1 .173 .313 .403 .473 .547 .573 .613 .653

2.08 1 .233 .357 .417 .510 .353 .593 .630 .677
2.57 1 .280 .420 .503 .563 .630 .683 .737 .780
3.55 1 .520 .667 .747 .790 .810 .827 .850 .873

Table 3: Surmary of Results for Case Study II. Table Entry Represents The

Empirical Probability Estimate (A) That Given Effect Is Declared

Important By Method. Standard Error of Each Estimate Is Given By

. (l-)/300(o.) .
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Number of Simulations Number of Simulations
181/c No. Entered at First Stage Entered at Second Stage

< 0.66 10 52 87

0.76 1 9 6

0.87 1 8 11

1.00 1 9 20

1.14 1 9 10

1.31 1 12 13

1.51 1 13 16

1.75 1 15 19

2.08 1 28 28

2.57 1 46 33

3.55 1 99 57

Table 4: Observed Counts for Entering (i.e., shoving largest effect)
at First and Second Stages of SR Method for Case Study II.
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