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\ ABSTRACT

\,

\
j)This paper is divided in two parts. In the first part some abstract

critical point theorems are proved using minimax arguments. The second part

is devoted to applications. We study the existence of periodic solutions of

the Hamiltonian systems. (’

L] aH

p=- 3q {(p,q)
n

* a“

= 3p (p.q)

where p,q € R® and He C‘(Rzn,k). First we consider Hamiltonian function
havina the following form:
(2) Hp,a) = L, agytalpipy + I, byladpy + V(@) _
where the matrix aij(q) is positive definite and V(q) grows more rapidly i
than quadratically as |ag| + +®., We prove that (1) has infinitely many
periodic selutions of any period T > 0 under suitable assumptions on the
Hamiltonian (2). Then we consider asymptotically linear Hamiltonians:
(3) H (z) =H (») z + of(lz|) for |z| + 4=

z 2z n
where 2z = (p,q) and sz(ﬂ) is a symmetric operator in R . We also give
an estimste for the periodic solutions of (1) when the Hamiltonian satisfies

(3). Time-dependent Hamiltonians also are considered.
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SIGNIFICANCE AND EXPLANATION

The existence and the number of periodic solutions of Hamiltonian systems
is a problem as old as Hamiltonian mechanics itself; early mathematical
results were obtained by Liapounov, Poincare, and Rirkhoff. Recent remarkable
results of Rabinowitz [R2] gave new interest to this classical field; in fact,
his work has shown that the techniques and methods of critical point theory,
developed in the contest of partial differential equations, may he
successfully applied in this field. One of the main results of Rabinowitz
states that a Hamiltonian system has infinitely many periodic solutions of any
period provided that the Hamiltonian function H(p,q) (p,q € ) is
superaquadratic, i.e., it grows more rapidly than gquadratically in both of its
varjiables in a suitable way. Unfortunately Hamiltonians arising from physical
problems have the form

(1 Hp,a) = Ly ayy(@py + 1, by(@py + V(@) .
Such Hamjiltonians are not superquadratic in the variable p.

In this paper we generalize some abstract critical point theorems in
order to include Hamiltonians of the form (1), and we obtain existence of
infinitely many periodic solutions of every period provided that V(q) is
superquadratic (plus technical assumptions). Asymptotically quadratic
Hamiltonians are also considered; these are Hamiltonians such that
(2) H'(z) = H"(®)z + o(]|z]) for 1zl » + = ,
where z = (p,q) € Rzn, and H"(w):Rzn » R2n is a symmetric operator. If
H'(z) =0 and H 1is twice differentiable at z = 0, then it is possible to
define an index

O(wH"(0) ,wH" (*)) where w = (21:)-1 times the period of the solution.
Under suitable assumptions on H, we know that the Hamiltonian system has at
least
Y, |0(wH"(0), wH"(=))]
nonlinear 27w-periodic solutions. This result generalizes a result of Amann
and Zehnder (who considered strictly convex Hamiltonians [AZ2)) and a previous
result of the first author of this paper (which applies when 0O < 0 (R2]).

Time-dependent Hamiltonian are also studied.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the authors of this report.
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PERIODIC SOLUTIONS OF HAMILTONIAN SYSTEMS OF PRESCRIBED PERIOD

Vieri Benci®, Alberto Capozzi®, and Donato Fortunato®*

0. __INTRODUCTION AND STATEMENTS OF THE MAIN RESULTS.

Consider the Hamiltonian system of 2n ordinary differential equations

(0.1) p= -Hq(t,p,q) :1 - ﬂp(t,p,q) rgew, tenr,
122" o, . 4 . .. EL]
where H € C (lz B, denotes ac ’ Hq 3q np - P ° The system (0.1) can be
represented more concisely as
(0.2) ~J% = B (t,2) ,
9H 2n
where z = (p,q), H, = 3z and J 1is the simplectic matrix in R, i.e.

0 -Ia
J =
14 0

There are many types of questions, both local and global, in the study of periodic

Ia being the identity matrix in R'.

solutions of (0.2) (cf. e.g. the review article of Rabinowitz [R3] and its references). We
suppose in the sequel that H(t,z) is T-periodic in t.

Here we are concerned about the existence of T-periodic solutions of (0.2).

Rabinowitz, in a pioneering work [R2], has proved that if H(t,p,q) 1is “superquadratic® in

both the varisbles p and g, i.e.

there exist r > 0 and u > 2 a.t.
(0.3)
(B‘(t,l)lz).zn > u H(t,z) >0 for lz| >r and t € [0,T]

and it satisfies other assumptions, then (0.2) has a T-periodic solution. 1If :—t- 20

and H(t,z) satisfies (0.3), then Rabinowitz has proved that (0.2) has a nonconstant T-

*Istityto 4i Matematica Applicata -~ Universita' 4i Bari - Bari, Italy.
*#Istituto di Analisi Matematica ~ Universita' 41 Bari - Bari, Italy.

Sponsored by the United States Army under Contract No. DAAG29-80-C~0041 and by Ministero
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periodic solution for every prescribed period T [R4]. Later many other papers appeared

dealing with (0.2) when H(t,z) is "superquadratic®™ [AN, B2, BF2, BR, ClE, E, BB, PT].

Unfortunately the above results on superquadratic Hamiltonians do not cover the
classical mechanical problems. In fact, consider a mechanical system with holonomous
constraints imbedded in a conservative field of forces. The Ramiltonian of such a system

has the form

n n

(0.4) H(t,p,q) = Z au(t.q)pipj + 2 b, (t,q)pg + V(t,q) ,
irj" i=1
where (.“(t,q)} is a positive definite matrix for every t and q. The Hamiltonian

(0.4) is quadratic in p, then it does not satisfy (0.3).
If

a do not depend on q (1,3 = 1,e0e,n)
(5) 1

b‘ =0 (L = 1,.00,n)

(0.1) can be reduced to a second order system of n equations of the form
U

{0.6) = -2= U~ U(ex) xen
which is more easy to study then (0.1) (cf. discussion in [BF3)). In this case, for
example, it is known that if :—: = 0 and U grows more than quadratically at infinity, in

the sense of (0.3), then (0.5) has a non-constant T-periodic solution for each fixed
T>0 (cf. [R1,Bri] and references in [R3]).

In this paper first we consider Hamiltonians with the form (0.4) without the
restriction (0.5) and with "superquadratic” growth in gq. We make the following
assumptions on the Hamiltonian (0.4):

Assumptions (Ho):
(V4) There exist constants R > 0, a>2 s.t.
0 <a Vvit,q) € (vq(q,t).q) for Igl » R and every t € R .

(V,) There exist C,,C,,8,R > 0 s.t.

Wlast) | € Cqviq,t) < Colql® tor Iq! >R and every teRm.
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(A,) There exists a real, continuous function v (q) > 0 s.t.
] 8g4lastipgpy 2 \)(q)lpl2 for every p,qe X' and tewr.
13}
(A;) There are constants B € ]0,a-2{ and u > 0 such that !
2
1): Miyla PRy > ulpl? vhere (m (q,t)} = {Ba,, + I, T“ii q}
3
“3) There exists a constant C, s.t.
331
| i —i (q,t)p,pal > e, 1§ a; (q,t)pyp; for every k = 1,...,n; g & P,een.
13 aqk i¥) 3 13 3 3
(Ag) There exists C, > 0 s.t.
lau(q,t)l < Cviq,t) for |q| 1large and every t € R .
bi(QIt,z
(B,) 1lim e = ) for every i = 1,.,.,n
1 Iqlom vi{q)¥(q,t) ! ‘
3b
i 2
I3 (a.tiql
(B,) 1lim = 0 for every i,k = 1,...,n .
2 . v
Iq |+ vi{givi{q,t)

Remark. Assumptions (v,) implies that V grows more than lqlc at infinity. It replaces
assumption (0.3) of other papers.

(Ay) is a physical agsumption which depends on the fact that the “"kinetic energy" ia
positive. Observe that it is allowed that v(q) + 0 as |q| » =..

(Az) is a technical assumption which is deeply related to the nature of our results.
Probably it has some meaning which we have not fully understood.

(V3), (Ag), (MY, (!,). (B,) are growth conditions on the coefficients of (0.4). Probably
they can be weakened using a cut-off technique as in [R1, BR or R4]. We have the folilowing

results for Hamiltonians of the form (0.4).




Theorem 0.1. Suppose that H satisfies the assumptions (lo) and i
(Ry) the system is atonomous i.e. %E =0, . ;
Then (0.2) has infinitely many nonconstant T-periodic solutions for every prescribed period
T.

(*)

Theorem 0,2. Suppose that H satisfies the assumptions (!o) and

(lz) a(t,z) 1is T-periodic in ¢t

(H3) H(t,z) is even in = .
Then (0.2) has infinitely many nonconstant T-periodic solutions.

Theorem 0.3. Suppose that H satisfiea (B”), (Hy) and

(Bg) z =0 4is the minimum point of H for every t € R
(Bg) B is twice differentiable for z = 0
(Rg) there exists a constant Y € 10,1{ such that

2
3 8,0 ‘1‘3‘%""2 for every t € R and { # ¥" .

i;j bziazj

Then (0.2) has at least a nonconstant T~periodic solution.

Remark 0.4. If H does not depend on t and it is twice differentiable for g = 0,
Theorem 0.1 can be deduced from Theorem 0.3. In fact by virtue of the assumptions (uo),
H has a minimum in 12“. It is not restrictive to suppose that the minimum point is

2 = 0. Given any period T, there is a pericd T, = T/k1 (kq € W) such that ("6) is

satisfied. 8ince a Ty-periodic solution is also a T-periodic solution, we can deduce from

Theorem 0.3 that for any period T > 0 we have a nonconstant T-periodic solution z4(t).

Also there exists a number h1 such that Z4 has the minimal period equal to T/h1k1' ¢4
we take k, > h,k, we can f£ind, using Theorem 0.3 a (T/kz) - periodic solution g5 which

is of course a T-periodic solution and e, # 2. In this way we can find infinitely wmany

*Warning: Theorem 0.1 just states the existence of periodic solutions but not of prime
periodic solutions i.e. solution for which T 1is the minimal period.
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Theorem 0.5. Suppose that H satisfies (0.8), (0.9), (0,10) and
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nonconstant T-periodic solutions. We finally observe that, if bl =0 (i= %...,n), and

%5 = 0, variants of Theorea 0.t can be found in [BCP, G}.

Next we consider the case in which H is asymptotically quadratic, i.e. there exists
2
a linear operator !l“("):lzn + 2" st

(0.8) H(Z) = B"(-)z + olz) ,
where 9-%-:-)'-0 0 as

(0.9) B (2)

jzl + ». Moreover we suppose that

is twice differentiable for =z = 0.

The aim is to give a lower bound for the number of 2sw~periodic solutions by the comparison
between the operators Hu(o) and Hu('.')- We define as in [B2) an even integer number
e(uln(O), ull“(-)). which will provide such a bound. Given two Hermitian operators
A8 3 ¢2n - tzn, we set

¥(A) = {number of negative eigenvalues of A}

N(A) = {number of nonpositive eigenvalues of A} ,
and

O(A,B) = | R(KI + a) - N(ixT + B) .

Observe that O(A,B) is a finite number. 1In fact for k big enough

N(ikJ + A) = N(ikJ + B) = n, Let 0O(A) denote the spectrum of an Hermitian matrix A. 1f

(0.10) o(m.m"(a)) ng=¢ ,
and
(0.11) a(lm.nl"(ﬂ)) n g=¢,

then G(ﬂl.l(-), ul',(O)) - -O(Nl!z'(O), um“(-)) .

We prove the following theorem:

(0.12) Il"(.) is positive definite
(0.13) H(s) > 0 for every z € ¥" g, R(2) =0,
then (0.1) has at least %0(uA__t~1, wH__(0)) non-constant 2vu-periodic solutions

wvhenever etuu“(-), un"(o)) > 0.

-5~
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If the assumpiions (0.12) and (0.13) are replaced by the following ones
(0.12a) H,z(0) 1is positive definite
(0.13a) H(z) < 0 for every z € ¥" s.t. H_(3) =0,
then (0.1) has at least %e(unu(o), ull"(-)) non-congtant 2vw-periodic solutions

whenever e(unn(O), un"(-)) > 0.

- Remark 0.6. The first part of Theoream 0.5 is contained in Theorem 5.1 in (B2]. 8o Theorem

0.5 can be considered as a natural complement to the regults of [B2). Conditions :0.12a)
and (0.13a) are dual to (0.12) and (0.13). However the proof of the second part is much
more technical in nature.

Remark 0.7. The assumption (0.10) is a non-resonance condition. If (0.10) does not hold

the same conclusion of theorem (0.5) holds if we replace (0.10) by the following

assumptions

(0.14) Btz) -, (nz(z)lz) > c‘|:|° -cy
8

(0.15) |ﬂ'(l)| < cy + c‘|z|

where a > 8 > 0,

From Theorem 0.5 the following corollary easily follows:
Corollary 0.8. If H{z) satisties (0.8), (0.9), (0.10), (0.12), (0.12a) and
(0.16) H (2) # 0 for every z € 7. {0} ,
then the system (0.1) has at least

3 lo@n__(=), un__(0))]

2vw-periodic solutions.

Amman and Zehnder in [AZ2] have obtained a similar result using, instead of (0.12) and
(0.12a), the stronger assumption of uniform convexity of H(z).

This paper is divided in two sections. In the first section we have some abstract

theorems. In the second one we apply these theorems to obtain the results which we have

just stated.
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D

1. SOME ABSTRACT CRITICAL POINTS THEOREMS.

1. Statements of the Abstract Results.

Before stating the ﬁtn results of this section we shall introduce some notations and
definitions. We denote by B a real Hilbert space, by (<,°) the scalar product in E,
by 1} the norm in E. By c'(l,l) we denote the space of Frechét differentiable maps
from T to R and, if ft € c'(l,l) by £'(u) its derivative at u e E, We shall

fdentify E with its dual E' so that f' @€ C'(E,E). For u€E and R> 0 we set

B(u,R) = {v e Elly -~ ul < R}, By = B(0,R), 8, = "R' Let G be a compact Lie group and

let r : G » U(E) be a representation of G on the group of the unitary linear
transformations on E. We set G = r(G).
Definition 1.1. A functional f on E is called @ invariant if for = £ for every

T EeaG.

Definition 1.2. Amap h from E to E is called @-equivariant if hoT = Toh for
evexy T € G.

Definition 1.3. A subset A C E is called G-invariant if T(A) = A for every T € @.

Sometimes, when no ambiguity is possible, we will write "G-invariant®, and “G-
equivariant” etc. instead of "@-invariant”™ etc. We get Fix G = {u € E|?(u) = u for
every TEGl. If u€E the "orbit" of u is the set {T(u) : T € G}. In the sequel we
shall consider G =8, or G = s! - [z el 12| = 1). Moreover if L is a linear
operator on E we denote by o(L) the spectrum of L.

In the sequel we will be concerned with functionals ¢ € c'(l,l) satisfying the
following assumptions:

(£4) £(u) = % (Zu,u) - ¢(u), where
(1) L 1is a continuous self-adjoint operator on E

(1) v e c'(t,l), Y(0) = 0 and $' 1is a compact operator.

at-
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's are eigenspaces of L (which might be infinite

() (1) B = ® M, where the N,
dimensional).

(i1) 0 4is a regular value for L or it is an isolated eigenvalue of finite
multiplicity of L.
(£3) given c € ]0, +=(, every sequence {ur}, for which {f(u!)} +c and
It'(ur)lolurl + 0, possesses a bounded gsubsequence.
Ve set

n’-onl,z'-on EC = ker L

A>0 Aco*
and let P, P_ and Py be the relative orthogonal projections. Then
(1.1) e~ oezfer .
In the case in which &' (resp. £) is finite-dimensional £ 1is bounded from above (resp.
from below) modulo weakly continuous perturbations. 1In fact we can write
£(u) = ¥ (LP,u,P,u) - Vo (LP_u,P_u) - ¥(u) and if, for example, dim K~ < += then
#(u) = ‘/2 (LP_u,P_u) + y(u) has compact derivative. We shall consider the case in which
£ can be "strongly indefinite®, i.e. ' and ¥ are both infinite-dimensional, as it
occurs in the study of periodic solutions of Hamiltonian systems.

Theorem 1.4. let f € c'(!,l) be a functional satisfying (f,), (fz) and (f3). Moreover

we suppose that a unitary representation of the group s' acts on E such that
(£, U and ¥' arxe s'~equivariant
(fs) there exist two closed linear subspaces V,W C E such that
(1) Vv and w are s' invariant.
(1) Aim(V N W) < 4@, codim(V + W) < 4=
(111) mix(shh cv or rixtsh cw
(iv) there exists positive constants C, and »p such that
f{u) > C, for every uevn sp
(v) there exists C, € R such that f(u) < C_, for every u e w
(vi) f£(u) < C, tor ue !1x(81) s.t. f£'(u) = 0. Under the above assumptions there

exist at least

sy

)




Vo (aim(V N W) = codim(V + W))

orbits of critical points, with critical values in [co,c.].
We have another theorem for even functional, i.e. for functionals invariant for a Z,-
action.

Theorem 1.5. let f € C‘(l.lo be a functional satisfying (t,), (fz) and (fz). Moreover,
we suppose that

(£4°) ¥' 18 o0dd

(£5') there exist two closed linear subspaces V,W C E which satisfy (£5)(11), (€5)(1ii),

(£g) (iv), (£5) (V).
Then there exists at least
Aim(V N W) ~ codim(V + W)

pairs of nonzero cr. -ical points with critical values greater or equal than C,.

Remark 1.6, In the Theorems 1.4 and 1.5 the assumptions (f,) and (f3) replace the well
xnown conditions {c) of Palais and Smale (P.S.) used in similar theorems. They do not
imply (P.S.), but a weaker condition (i.e. (i) and (ii)) of Lemma 3.4), which has been
introduced by G. Cerami (cf. [Ce]; cf. also (BBF]). The conditions (fg) (resp. (fg')) are
geometrical assumptions, which allow us to give a lower bound to the number of orbits
(resp. pairs) of critical points of the functional f.

Remark 1.7. Theorem 1.4 generalizes Theorem 4.1 of [B2] in two points. The assumptions
(f,) and (f,) are easier to verify than (P.S.). This fact allows to treat Hamiltonians of
the form (0.4). Moreover in [B2] the assumption (fg)(iii) is replaced by the stronger
assumption

rixs'cw.

This generalization permits us to obtain the second part of the Theorem 0.5.

Remark 1.8. If in Theorem 1.5 (£f2) and (£3) are replaced by (P.S.) and V (resp W) is
finite-dimensional, then we get a variant of a theorem of Clark [Cl?1] (resp. Ambrosetti -
Rabinowitz (AR]).

In the case in which the functional £ does not exibit any symmetry, we have the

following theorem:

-9«
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Theorem 1.9, Let f € C'(l,l) be a functional satisfying (f,) (f;) and (23). Moreover
suppose that there exists a L-invariant subspace V CE, an eigenvector e €V of 1L,

and positive constants Ry Ry, C

o C. with o<c°<c_ and # < Ry such that

(1) sup £(Q) = C_
(1i) inf ¢ (Sp NV) = C° !
(11) sup £ (3Q) < ©
where Q-{n#vlnevlﬁ By ¢ veTl, T= {telt e [o,n,]}. b

2
Under the above assumptions f has at least one critical value c € [co, c_].

Remark 1.10. Theorem 1.9 generalizes Theorem 0.1 of Benci-Rabinowitz [BR], because (f1), [

(£2) and (£3) are weaker assumptions than the respective assumptions in [BR]. This fact

allows us to obtain the Theorem 0.3, which applies to Hamiltonian of the form (0.4).

Remark 1.11. Using the techniques developed in this paper it is possible to generalize

T oot 12

also Theorem 4.11 of (BR] (cf. [Ca)).

e

Remark 1.12. The assumption (f,)(1) is not necessary. In fact, if it does not hold, we
can replace the inner product of E with a new inner product such that (f,) (i) is
satisfied.
The new inner product is defined as follows (u,v)“ - (LP*u,v) - (LP u,v) + (Pou,v)-
We observe that every T € G is a unitary transformation also with respect to the new
inner product. 1If we define a linear operator ;.:x + E asg follows:
;.u «u if uerxt
Tu=-u if ue E
Lu=0 if uesz°
then we have
(La,v)g = (La,")
and
£ =Y (L wu) + vlw) .
8o the function f satisfies (f,), (f,) and (f,) or (£,') in E equipped with the new
inner product. Since (!3) and (fs) essentially are topological properties, they are as

well satisfied (of course ainor changes are necessary). Then Theorems 1.4 and 1.5 hold

-10=
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A similar remark can be done about Theorem 1.9. However, in

without assumptions (f,)(ii).

the applications which we consider in this paper, assumption (f,)(ii) is satisfied.
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2. 1Index and Pseudoindex Theory.

In this section we recall some notion (as the notion of index theory) and some
theorems which are often used in the critical point theory.
rirst, some notation is necessary. We get
Ny (A) = {uer | aist (u,A) < &}
where dist (u,A) denotes the distance from u to A. For f € c‘(!,l) and c € R, we

set

k., ={ueE| £'(u) =0, f(u) = c}
A ={ueE | fu) <c} .
Definition 2.1. Let E be a Hilbert space on which a representation r:G + r(G) C U(E)
of a compact Lie group G acts. An index theory is a triplet {2 , 3,1} where
X is the family of G-invariant closed subsets of E
H is the set of G-equivariant continuous mappings
i z + RU {+=} 1is a mapping, which satisfies the following properties:
(a) 4(A) = 0 if and only if A =
(b) i4f ACB then 4(A) € i(B) for all A,Be ]
(2.1) (c) (AU B) ¢ 1(A) + (B} for all A,B e ]
(d) 1t a e X is a compact set, then there exists § > 0 such that
1(!5(A)) = i(A)
(e) 4(A) < 1(h(a)) for every A € X and for every h € H.
Definition 2.2. We say that an index theory satisfies the d-dimension property (4 € w)
it
i nv - S0
where V 4is a finite dimensional, G-invariant subspace of E such that V N PFix(€) = {0}
and §} is a bounded invariant neighborhood of the origin.
The Definition 2.2 makes sense, because, in the examples which we know, if V is as
before, then the dimension of V 1is a multiple of some integer number d.

In the applications we shall use the following index theories:

12~
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Example 2.3. The Krasnoselski genus can be considered an index theory which satisfies the
1-dimension property related to the group z2 = {0,1), where the representation is given
by T, = identity and T, = antipodal mapping (cf. e.g. (K), [llal. [le).
Example 2.4. If G = 81 = {wedé¢ | |wl = 1), then the homological index defined in (F.R.]
or the geometrical index defined in [By] satisfy the 2-dimension property for any
representation r : G + U(E).

We refer to [Ba] for an abstract construction of an index theory.

In the following theorem we shall list some property of the index which will be used
in this paper.
Theorem 2.5. Let {X,l.i} be an index theory which satisfies the dimension property.
Then we have

(1) if [!'i.x(c)]'L is infinite dimensional, and AN Pix(G) ¥ g, then 4{(A) = +=»

din V
qa

(114) 1if AN Fix(G) = ¢ and 1i(A) > 2 then A contains infinitely many distinct

(11) it v e I is a finite dimensional space and A C V - Fix(G) then i(A) <

G~orbits
(iv) 1if h e B is a homeomorphism, then i(h(A)) = {(A) .
For the proof of this theorem we refer to [B,] and [le.

Definition 2.6. Given an index theory (;.l,i} and a group of homeomorphisms H* C H,

for every A,B € Z we set
i*(A,B,H*) = min i(h(A) N B) .
hem*

“he triple {],m*,i*} will be called pseudoindex theory (ct. [B,) or [BBF]). When no
ambiguity is possible we shall write 1%(-,s) instead of i%*(+,s,H*),
Definition 2.7. Given a G~invariant functional f e c'(t,l) and a group of
@~equivariant homeomorphism N®*, we say that f satisfies the condition (B) in
la,B( (= <€ a ¢ B € + =) with respect to H* if for every c € la,B(

(1) K. is compact

(1) for every N = “G(Kc) there exists n @ H* and a constant € > 0 guch that

(a) [c-€, c+e} C )a,B!
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(b) n(Am - N) cnc_e .

The concept of pseudoindex and the property (B) are related to the critical point theory by
means of the following theorea.
Theorem 2.8. lLet f @ C‘(l,lu be a G~invariant functional satisfying the condition (B) in
Ja,8{ with respect to HN*. Given D,F € Z , we suppose that

(1) sup £(D) = C_ <8
(2.3) (11) inf £(F) = c > a

(1i4) di*(D,Fr,m*) = Kk .
If we set
r,={ae T 1 io(a,r,u%) > k)

then, for k= 1,...,k, the numbers

= inf sup f£(u)

c
k
Ae!'k uéA

are well defined, are critical values of f and
Co < c1 € ceess € c; < C. .

Moreover if C = Cp = soeiene = O (K21sktr<k), then i(K.) > r + 1.

The proof of this theorem follows standard arguments of the critical point theory and
it will not be given here (see e.g. [B.B.F.]).
Remark 2.9. If Theorem 2.8 holds we cannot deduce that f has at least k distinct
orbits of critical points. 1In fact it might happen that

Cy ™ casse =mcg=c

and K = {u} where 1 € Fix(6).
Then in this case, by Theorem 2.5(i), we have 1(Kc) = +», but we have only one orbit of
critical points i.e. {u}. However if i(K,) > 2 and K, N Fix(G) = ¢, by Theorem
2.5(111) deduce that K, contains infinitely many distinct orbits. Therefore if the
assumptions of Theorem 2.8 hold, we can deduce that one of the following alternatives
follows

(a) there exists at least one critical point u € Pix(G)

(b) there exist at least k distinct orbits of critical points.

-14-




Now we shall enunce the analogous of Theorem 2.8 in the case in which the functional has no
symmetry. In this case we can suppose that the function is G-equivariant with respect to
the trivial group & = {1d}. Then the property (B) makes senss.
Definition 2.10. Given two sets D and F and & group of homomorphisms K we say that
D and P, FK-intersect if
n(p)NnPyY ¢ for every h €K .

Theorem 2.11. let f € c'(l,l) be a functional satisfying the property (B) in Ja,B(
with respect to K and let co' C,€R Dbe two congtants such that

{1) sup £(D) =C_ <8
(2.4) (1i) inf £(P) = C, > o

(441) P and D K-intersect .

Then f has at least a critical value ¢ e [co, c.]. The proof follows standard arguments

and it will not be given here (cf. e.g. {B.B.F.])e
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3. A Deformation Theoream.

In order to prove Theorems 1.4 and 1.5 we want to use Theorem 2.8. The crucial point
is to determine a class of equivariant homeomorphisms BE* such that
(1) 4f (£4), (£3), (fy) and (f,) (or{f,')) hold, £ satisfies the property
(B) with respect to B*
(11) if (£g) (or (fg') hold), then
the pseudoindex i(*,*,N*) can be estimated by means of dim(V N W) and
codim(V + W).
In order to define BE* we need the following lemma:
Lemma 3.1. Suppose that L satisfies (f,)(i) and (f,)(ii). Moreover suppose that L 1is
G-invariant, where G is a unitary representation of a compact Lie group G. Then
(3.1) E= o_"i;
jesz
where the ‘j" are G-invariant and L-invariant finite dimenaional subspaces, orthogonal
with each other.
Proof. If ue ", then LTu = TLu = TAu = ATu for every T € G. 80 every eigenspace
of L is @-invarlant.

Then by Peter-Weyl theorem M can be decomposed in finite dimensional G-invariant

A
subspaces orthogonal with each other

=0E, .
" 35
Of course, the spaces Ij'l constructed in this way, are L-invariant because they are
subspaces of an eigenspace of L. a

Now we define the class H* as follows:

Definition 3.1'. Let U be a class of continuous maps U : E+ E such that

(V4) U 1is bounded

(V) U(u) = (W

{ul] where a : E+ R is a Ginvariant functional.
Clearly every U € U is @-equivariant.
let B be a class of continuous maps b : E + E such that

(by) b is Q@-equivariant and bounded

-16-
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(bz) for every R > 0, there exists a finite set of indexes I(R) C & such that
b(BR) C j‘:(n) ‘j .

Pinally we define N* as the class of all meps h such that

(#]) h is an homeomorphism

(Q) h-U°+b° where U, e, boel

(8) h"' = U, +b, where U; €T, b, eB

(E) h(0) = 0.

Obviocusly B* is a nonempty class of bounded G-equivariant homeomorphisms. It is not

aifficult to prove the following fact.

Proposition 3.2. H* is a group of homeomorphisms.

Proof. By the definition of ®*, it is sufficient to prove that it is closed under

composition. Given

nyhy @B, weset by =0 +b =1L en ), e,
Then
hylhy(u)) = Ug(hy(n)) + bylhylu)) =
a,(hz(u))L
(3.2) -e (hy(w] + by(hy(w)) =
:
=" ) + By w

where vY(u) = a'lhz(u)) is a G-invariant functional and 31(-) - b1(h2(')) € B. Then by

(3.2), we have

a (u)L -
hythyun) = & Ve 2 ruren,(w)] ¢ B (w =

i (v(u)mz(u)):. Y(u)L

-e ful + e (by(w)] + ;1(11) -

| : A Byw + By,

) Y()L

where B(u) = y(u) + cz(u) is a G~invariant functional and §2(') - [bzt-)l es. O 4

ES ¥k 23




Prom nowv on E* will denote the class of homeomorphisms just defined and

10(e,0) = {o(e,c, BY).
The rest of this section is devoted to prove the following theorem:

Theorem 3.3. Suppose that f € c'(x.n) satisfies (f,), (fz) and “3) and that it is

@-invariant. Given c > 0 and a neighborhood N of Koe there exists constants
€>€e>0 (with € < c) and an operator n : E + E guch that

(a) n(Am-N)C Ae

(b) n=pD+BeER

(¢) U(u) = u, B(u) = 0 for every u ¢ f-i(tc-;, c-';]).

Pty

In particular f satisfies the condition (B) in )0,+»( with respect to H* (cf.
Definition 2.7). !

The proof of Theorem 3.3 is based on the following lemmas:

Lesma 3.4. If f satisfies (f,) (fz) and (13) then we have:
-1
(1) every bounded sequence {"k} C £ (]0,e[) such that f'(uk) + 0, admits a
convergent subseguence

(1i) for every c > 0, there exist constants E, i, b, u > 0 such that

(a) le-€, c+e) C ]0,+=

(b) Nf'(u)telul > y for every u € t-‘([c-;,c#;:-]) N(E-B_)
R

(iii) for every ¢ > 0, K. 1is compact

C

(iv) for every ¢ and R > 0 and for every neighborhood N of Koo there exist

positive constants €,b such that
I£'(ul > b for every ue€ (A _ - A _)ﬁ(BR-N) .

cte c-€

Proof. (i) We put
S=1L + AP

)
where )\ # 0 and P, is the orthogonal projector on ker L. Clearly S is a bounded
invertible operator. Now let u be a bounded sequence such that f'(uk) + 0.
Then we can write

- ! -
L o L (uk) .

with vk + 0. Then we have
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suk-xro\&-v(uk)-vk

suk-nouk*t'(nk)*vk-
Since P, and ¢' are compact operators, there is a subsequence “'k such that Pu'k

and ¢'(u' k) converge. Thus Su'k converges. Since 8 is invertible u’y, converges.
(11) We argue indirectly and we suppose that there exists ¢ € ]Jo,+»{ such that for

every n € W there exists u, e B for which

1£°(u Yetu d < 1
n n n

-1 1 .1
u € (le=, =) N (KB ).

Then, for n + + ®, we have
lt'(un)l-l unl +»0

Iul + 4=
n

f(un) +c

and this contradicts (f,).

(ii1) Prom (11) it follows that K, is bounded. Because of the continuity of f
and f',K, 1is closed, and by (i) it follows that it is compact.

(iv) It follows from (1) and standard arguments. a

The conditions (i) and (ii) of the above lemma can be considered as a weakened version
of the well known condition (c) of Palais and Smale (cf. Remark 1.6).
Lesma 3.5. let k : E+ E be a compact operator. PFor every € > 0 there exists a
compact operator ;t 1 E+ B such that:

(a) l.: is locally Lipschitz continuous

(b) Ix(u) ~ ;(u)l’(\ +lul) < ¢ for every u € E.

Moreover, if k is @-equivariant, k can be chosen G-equivariant.
Proof. The proof follows the same argument as lemma 3.2 in (le.
Lemma 3.6. Let k : E+ E be a locally Lipschitz continuous, G-equivariant, compact

operator. For every R > 0 and € > 0 there exists an operator b € B such that




(a) Ik(uw) - b(u)l < e for every u € B,
(b) b is locally Lipschitz continuous.
Proof. 8Since k(nR) is relatively compact, for every € > 0 there exist a finite set of

- s
€
polnt: Yqeoeeo¥y such that k(!‘)c L) B(y1'3)° let n €N and set P, the projector

i=1
on @ Ey. If n is big enough, we have
jm—n
€
ly1 - Pn’l' < 3 vie{1,...,8} o

Consider now the operator

[ ]
% - : 121 V3 (PaYy
b:B » @ E,., b (u) = ]
R ]
j=-n
)} ug )
i=1
where "1(“) = dist(k(u),E - (B(yl. %))- It is easy to check that b is a bounded, Lip.

continuous operator and that for every u € BR,I;(u) - ;(u)l <E. To prove that ; can
be chosen G-equivariant it is sufficient to repeat the arguments of Lesma 3.2 in (!21. »
Lemma 3.7. Let ;t t E+ E be as in Lemma 3.6; given € > 0 there exists an operator
b e B8 such that

(a) I;(u) = b(u)le(1+lul) < e for every u € E,

(b) Db is locally Lipschitz continuous.
Proof. Given € > 0, by Lemma 3.6 for every n € § there exists a locally Lipschits
continuous operator ;n t B + Vv such that

n+1 n+1

(3.3) Vaer = © E; for a finite set I(n) C %

ier(n)

(3.4) Ix{u) - ;n(“)' < for every u € B

—
2(n+1) nel *

For every n @€ N we consider a non-increasing map xn(t) e c‘(lu[o,11) such that
1 if t e [0,n)
X,(t) =
0 if te(n+lh,m.

we set

-20-
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bn(“) it uvueB,,,

b (u) =

0 if ugn,,,.

We define a sequence of operators LR B+ E as follows:

cy{u) = by(u)

T g [t P =¥ Ty g i e

(3.5) cylu) = X,(lul) c,(u) + (1-11(lul))b2(u)

0680000000008 0000000000000s00s0sRs

yep gy e

cn-ﬂ(“) - Xn(lul)cn(u) + (1-Xn(lul))bn*1(\l) .

We obgerve that if u € Bpe °n(“) = cm‘(u) = ... « We set for ueEsx

(3.6) b(u) = lim c (u) .
n*>s
Clearly b e B and satisfies (b). Let us prove (a) If u e Boyq Ve have

Ib{u) - k(u)l = lcn”(n) - k(u)t =

- Ixn(lul)cn(u) + (1-xn(lul))bn+'(\l) -k (u)l =

- lxn(lul)(cn(u) = k(u)) + (1-Xn(|ul))(bn+1(u) -k (u)l <

< Xn(lul)lcn(u) = k(u)t + (1-ln(lul)) lb‘"‘(u) = k(u)l .

Since if u e B .., bn+ (u) = bn,”(n), then by (3.4) we have

1

s €
(3.8) lbnﬂ(u) - k(u)t < 2(ne2) if ueB, -

To prove (a) it is sufficient to prove that, for every ne N, if ue B,

(3.9) tb({u) ~ k(u)l <

£ _
1+lul

In order to prove (3.9) we arque by induction:

if n=1 by (3.5), (3.7) and (3.8) we get

- - ~ & €
Ib(u) = k{u)l = fc,(u) - k(u)l = #b (u) = k(ull < 2 < = ror .

Now suppose that




£

(3.10) Ib(u) - k(u)l < Jetal

for evexry u € B, .
We have to verify (3.10) for u ¢ Bot+y = Bpe

We observe that for u € Boet = Bpe Cpfu) = bn(u). Then by (3.4)

- - - - €
(3.11) Icn(u) - k(u)l = lbn(u) - k{u)l = lhn(u) = k(u)l < 2(nt1)
Then for u €@ ’nﬂ - Bn by (3.7), (3.8) and (3.11) we get

- € .__E€E € € €
(3.12) Ib{u)=k(u)l < xn(lul)z(n”)+(1-xn(lul),2(’"2) < Z(nt 1) < 1+t ) < il °

PFinally by (3.10) and (3.12) we have that

(3.13) Ib(u) - k(u)l < for every u e B ., and (3.3) is proved. o

—£ _
1+1ul
By Lemma 3.5 and 3.7, we get the following lemma:
Lemsa 3.8. Let k : E+ E be a G-equivariant, compact operator. Given € > 0 there
exists a bounded operator b € B such that

(a) Ik(u) - b(u)le(1+tul) <€ for every ueEg

(b) Db is locally Lipschitz continuous.
Now we can prove the Theorem 3.3.
Proof. Given c € ]a,Bl, by Lemma 3.4(1ii), K, is compact, hence there exists & > 0
such that N D "6 o] Kc, where H& - “G(Kc)° Moreover, by Lemma 3.4 (iv) there exist
€>0, and b> 0 such that

(3.14) 1£'(u)l > b Vue (a — -Ac_;) n (B‘; -M ) .

c+e s§/8
We can assume that ; is big enough such that B_ > "6' Also we can assume that
R
Py ) -}
(3.15) € < 12 °

Let Y > 0 be such that

b
(3.16) vy <mn{$, 2} .
By Lemma (3.8) there exists a locally Lipschitz continuous operator b @ B such that
- X _
(3.17) Ix({u) = b(u)l < Teial for every u eE .
We set S = (Acé —Ac_z) N "6/8' Sy = SNBg S, =S ~ By, By (3.16) and (3.14) we have
Y b 1f'(u)l
(3.18) 1+ ol < ry < ry for every u € s, ,

and by (1.16) and Lemma 3.4(ii) we have
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Y 1£°(u)l
(3.19) 1+ ul < ~

Thus, by (3.12), (3.18) and (3.19),

for every u € 8, .

(3.20) Ix(u) - blu)l < Y 1e'(u)l for every ues . ;
We observe that if u e s :
ILa + b(u)l = 1£'(u) = (k(u) ~ b(u))) > G

> 1£(uw)t = Ik(w) = b(u)l , !

then by the above inequality and (3.20)

(3.21) ILu + b(u)tl > % I1£f'(u)l > 0 for every ues.
Now we set |
(3.22) Vi{u) = 2 Lutbig) for avery u e s . :
ILutb(u)l
By (3.21) we have
8 1
(3.23) Iv(u)l <€ 3T (o)1 for every ues,

then by Lemma 3.4(14i), (3.14) and (3.23)

(3.24) fv(a)l < x1 + Kzlnl for every u € s ,
where K, and K, are positive constants.

Now we cbserve that if u € 8, by virtue of (1.23),
k() = blw <Y e (wt =Yz + x(u)t <
< Ygtru + blu)t + Y ik(u) = b(w)l ,
then
IX(w) = blu)l € 3 IZu + b(wl .

From the above inequality, we get

Wlu) £ (> = 2B )y & 2 <Lutb(u) ,Lutb(u)-b(u)+k(u)> =
ILu+b(u)l ILu+b(u)l

{3.25)

L 1zuebtn? + cLuenta), k(w-bu)>] > ’
tLusb(u)t v

»>2 -2 1Latb(u}isix(u)-b(u)l > 2 - % >1 for every u € 8.,

I Lutb(u)r?

Now we consider & Lipschitz continuous, functional ¢ : E + R such that ﬁ




3
!
{
;
1
4
3
H
H
i
3
‘
1

0 if u¢ !-'([c-Z,c+E]) or ue "6/8

(3.26) $(u) = -1
_ t if uef ({c-c,cte]) - HG/‘
where € = % « We can assume that ¢ 1is G-invariant. We set
-¢(u)V(u) if ues
(3.27) Hu) =

0 if ue¢s.

Consider now the following initial value problem

L\ T Y)

(3.28) de uer .

n(o) = u

Since V is loc. Lipschitz continuous, by (3.24) and standard argquments, it follows that

for every u € E, (3.28) has a unique solution n : R+ E and if we denote by nlt,u)
the flow relative to problem (3.28), then n(?,u) : E+ E is a bounded homeomorphism.
In order to prove the part (a) of the theorem, we observe that for u € E,
f(n(t,u)) : R+ R is not increaging. 1In fact we have
L einie,w) = <t (nlt,u)), S nee,u> =
at dat

(3.29)
= =¢'(n(t,0)) < £'(n(t,u)), V(n(t,u)) > .

We set Q = (A

c*C-AC'C) Bk

/4 °
By (3.25), (3.26) and (3.29) we have
< ~1 for ueyQ
(3.30) L oetnteu{ <o for uesng
=0 for ugs.
If ueQ and t' e ®" is such that n{t,u) € 0 ¥t €[(0,t'] then by (3.30)

(3.31) 2 €5 fin(o,a) - fn(e',w) = - [ S fineunae > e
o

Moreover if t* > t' 1is such that nit,u) € QN B_ for t & [t',t"], then by (3.14),
R
(3.23) and (3.27)
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t.
In(e",w) -~ n(e', @ =1 [ ¥ (n(t,u))det <
t'
(3.32)
" 1
8 8 8t?
<3 f at < & (Eeet') < .

e g (n(t, )N

Pinally we set n{u) = n(c,u) = n(2c,u) and Y = (Ac,t-he_c) Mg . Since Y C Q if
U€Y by (3.31) there exists te (O,E) such that either n{t,u) € Ac-c or

nit,u) e “6/4 - Ac-c' The second of these alternatives is not possible, in fact if
n(t,u) @ My .~ A__  then there exist t',t" € (o,f), with t' <t such that

/4
ni(t,u) €Q NB_ for t € [t',t") and n(t",u) € Q. Then by (3.32) we should have
R
-y 2 -
(3.33) 5 s >e

and this contradicts the fact that t* < t < €. Hence n(t,u) @ Ac—e' Then by (3.30)
n(e,u) € Ac-c'
Thus the part (a) of Theorem 1.24 is proved.

In order to prove (b), we sst

T = _._;Z!.L'!.L_;
fLu + biu)t
so the BEquation (3.28) becomes

2 o T {Laebin))

(3.34) at
n(o) = u .
Pollowing an idea of Hofer [H] we set:
t-s _
(3.35) aft,s,u) = [  §(n(t+s,udiat .
o

Easy computations show that the Cauchy problem (3.34) is equivalent to the following

integral equation:

aft,o,u)L

nit,u) = e a“(tot,u)n

t —
fal + | {¢(n(a,u)b(n(s,u))]ds .

[}
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In fact n(0,u) = u and

md: L . Edu(t.o.u)ua(t""“"‘[ul + .a(t,t.u)L[;(n(t'“))b(n(t'“)”

t

+ ! E% a(tl-o“)n.u(t'.'“)L 0
[+]

{¢(n(s,u))b(n(s,w))]das

a({t,0,u)L

= $(n(t,u))Le (u) + $(n(t,u))b(nit,u))

a({t,s,u)

t —
+ ] ¢(n(t,u))Le (¢({n(s,u))b(n(s,u)))ds
o

- $(n(t,u))L{e [#(n(s,u))b{n(s,u))]ds}

a(t,o,u)L + ft .a(t,l,u)
o
+ 9 (n(t,u))bn(t,u))
= $(n(t,u))La(t,u) + $(n(t,w))b(n(t,u)) =
= $(n)(Ln+bn) .
Obsexrve that, since the operators of G are unitary, ; is G-invariant and by (3.34) and
(3.35), n is G-equivariant and a (t,u,*) is @Ginvariant. Then if we set

G(t.o.u)l‘.

U(u) = e [u)

alt,8, W)L T (e, u))bin(t,u))]de

t
B(u) = f e

o

-1 -

it results that U e U and B € B, moreover n (u) = n(-t,u), then (b) is proved. By

(3.26) and (3.27) it results that n(t,u) = u for every u £ f-‘([c-;,c+;]) and every

t €R. Then from (3.26) and (3.35), it follows that a(t,s,u) = 0 for every

ue f-'([c-z,c+zl) and every t,s € R, Therefore, by the definition of U and B, (c)

follows.
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4. Pseudoindex Evaluation.

In the previous section we have shown that f satisfies the property (B) with respect
to the class ®W*. In this section we shall compute the pseudoindex of some gubsets of &
with respect to the class B* provided that G satisfies the dimension property.

More precisely, we will be concerned in proving the following theorem:

Theorem 4.1. Consider two G-invariant closed linear subspaces V,W C E and a bounded

G-invariant neighborhood of the origin fR. Suppose that
(1) Pixe@ CW (or Fix € CV)
(4.1) (11) dim(v N W) < 4+, codim(V + W) < 4=
(111) the index theory i satisfies the 4-dimension property (cf. Definition
2.2).

Then

dim (VOW) - codim(V+W)
d ’

(4.2) i*(s N v,w) >
The proof of Theorem 4.1 is based on two lemmas.
Lemma 4.2. Let V,W,Z CE be G-invariant, finite dimensional subspaces (v,w C 2), and
1 be a bounded G-invariant neighborhood of 0. Given a G-equivariant bounded continuous
map h : E+ E, we suppose that
(1) PixgCwW

(i1) the index theory 1 satisfies the d-dimension property.

(1i1) nAQ NV) C 2z
then

Aim(vNw) "codiuz (V+W)
(4.3) i(th(da N v)N W) > a .

Proof. We set S = 3. We distinguish two cases
case 1 VN Pix 63(0)
case II vn Fix ¢ = {0} .
In the Case I we have that
VNSNPixGCo¥ .

Since h(Frix @) C Fix @,

(S NV) NPFPix G DR(VNS8SNPIx Q) "Pix G g .
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Using assumption (i) and the above formula we have
(SN V)N PMxECN Wy gd.
Then by Theorem 2.5(1i), it follows that
MV NS NW = 40 ,

Therefore, in the Case I, (4.3) holds.

We now consider the Case II. Since W is finite dimensional, h(sN V) N w e Z

compact. Then, by (2.1)(4d), there exists N = Ne(h(s N V)N W) such that
(4.4) i(N) = f(his N V)N W) .
We set
Ay =hisNV) NN
(4.5) —_——
Az-h(sﬁv)-ﬂ .
Obviously A', A2 e X and
(4.6) h(S NV) = Ay UA, .

Since V N PFix(G) = {0}, then

215—! = {(s NV) (by the dimension property, cf. Def. 2.2)
€ {(h(s N W)) {by (2.1)(e)}))
(4.7 < i(Aq U Ay (by 4.8 and (2.1)(b))

< i(ay) ¢+ 1(A2) (by (2.1)(¢)) .
By (4.5), (2.1)(b) and (4.4) we have
(4.8) i(ag) € 4(NW) = i(h(SN V)N W) .
1
Let W denote the orthogonal complement of W in 2 and let P: denote the
orthogonal projection. P; is a G-~equivariant map, then, by (2.1)(c)
1
.9 .
(4.9) i(ay) < 1(1’w Az)
1
By the construction of N, (Pw Az) C wl - {0}, then since FPix G C w,
(Pl A C wl - {0} -wl - Pix(G) .
w2
Therefore, by Theorem 2.5 (ii)
1
1 dim w
.10
(4 ) 1(?w Az) < a .
By (4.7), (4.8), (4.9) and (4.10), we get

)
a1:v < ih(sS NV) "W +——‘“:“ .
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By the above formula we have:
. a
Lemma 4.3. Let the hypotheses of Lenma 4.2 be satisfied with (i) and (iii) replaced by
(1') PixGC Ve zl
(i11') (a) h is a bounded homeomorphism
(b) h(@ NZ) C2Z
(c) h{0) =0 .

Then
aAim(VNw) =~ codinz(w-w)

a .

(4.11) 1(h(d@ N V) " W) >
Proof. To shorten the notation, we get 8 = 3} Since h(sNV) Nw e Z is compact, by
(2.1)(4) there exists N = Nc‘(h(s A V) N W) such that
(4.12) i(N) = i(h{s NV) Nw) .
There exist constants €yr €30 € > 0 such that
(4.13) N Dnez(h(s nv)yn w Dh(uca(s NVv))N w D h(s nve) NW Oh(SNV)NW
where ve - NC(V) N Z. By the above formula and (2.1)(b) it follows that
i(N) > i(h(s ﬁve) NwW) > i(h(s NV) Nw) .
Then, by (4.12),
(4.14) i(h(s ﬁvs) NW = i(h(s NV) NwW) .,
We now set
R=32-V_.
Then 2Z = ve U R and
h(8N 2Z)N W= [h(s8N V)N WU [h(sN RN W .

By the above formula and (2.1)(c), we have:

1(h(s nz) N W) < Lt{h(sN Ve) N W +1(h(8N R)N W) .
Comparing this inequality with (4.14), we get
(4.15) (B NV)N W > 4(h(8N2Z)NW - i(h(S NR) NW) .
Now we shall give an estimate to the terms on the right hand side of (4.15). Let vl

denots the orthogonal complement of V in Z and Pt, the relative projection.

is equivariant. Moreover, by (1'), Pl RC vl - Pix(@). Then by (2.1)(e)

Obviously P'l v

v
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and Theorem 2.5(ii), we have

(4.16) 1(R) < ur“, R) < ﬂ:—é

Now i
i(h(8 NR) N W) < i(h(8 N R)) (by (2.1)(b))
= 1(8 N R) (by Theorem 2.5(iv) and (iii')(a)) 4

(4.17) < {(R) {by (2.1)(b)) |
l b
< %—l (by (4.16))

By (114')(D) and (c), hi(fi N 2) is a bounded neighborhcod of 0 in Z. Then the set
6-(:*;Izeh(ﬂ N z), ;ezl, |;| < 1}
is a neighborhood of 0 in E. It is easy to check that
hIR N Z) =~ NZ .

Then

hM8 NZ)N W=h(AAN Z)N Wa3RN 2N wedQNyw.

o ——

80, by the above inequality and the dimension property it follows that
dim W
e
(In the above formula we have to use the inequality because it might happen that

(4.18) i(hisN Z) N W) = 4(3Q N w) >

EpE gy

M N NPix 6 ¥ ¢y cf. Theorem 2.5(ii)).

rinally, by (4.15), (4.18) and (4.17) we conclude the proof:

amw _amv _ amw %%
a a a a

Proof of Theorem 4.1. We gset S = 30 and

i(h(s N2)NwW >

E,=Vnw

B, = orthogonal complement of B, in V
(4.19)

Ey = orthogonal complement of E_ in W
E, = orthogonal coaplement of !' [ ] :2 [ ] By in E .
We have, obviously, that Vv = E, ® 82, W= K, ® 33, E=E @ '2 ® Ey 0 E,. We observe,
also, that the subspaces E,, E,, E;, E,, defined by (4.19) are G-invariant. Laet
h=yU+be@H* and Z C E be a @invariant, finite-dimensional subapace such that

E,C 2, B CZ B C3z.
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Then

(4.20) nManNnzycz.
If we set zZ, =8, NZ 2, =K, N 2z, we have that

(4.21) h(8NV) NWDh(B8NVNZ)NWNZ=h(8N (2y0E,)) N (E, 02,)

If we set ; =Z,0E, ; = By, ® Z,, we have that 3 and ; satisfy the assumption of
Lesma 4.2 or Lemma 4.3 depending on the fact that PFPix @CV or Pix G C W. Then by
(4.20), (4.21), Lesma 4.2 and Leroma 4.3 we have that

dim E_ - dim E P
m(snv,n,,,___z_r_s_mu_.mem,

By the above formula it easily follows that

dim (V N W) - codim(V+w) o
5 .

i*(s NV, W) >




5. Proof of the Abstract Theorems.

Proof of Theorem 1.4. The proof is based on Theorem 2.8. We have to check that all the

assumptions of Theorem 2.8 are fulfilled.

! and G = r(G) where r is a unitary representation of s'. By

We choose G = §
virtue of Lemma 3.3, f satisfies the condition (B) in ]0,+»[, We set D = w and
F= spn V. Then (2.3)(1) and (ii) follow from (fs)(lv) and (v).

By virtue of (fg)(4), (1i), (iii), the assumptions of Theorem 4.1 are satisfied.
Moreover, G = r(s‘) satisfies the 2-dimension property (cf. example 2.4). Then

k=% (aim(V " W) ~ codim(Vv + W] .
Therefore cy,...,C, are critical values of f.
By (fg)(vi), it follows that xck N Pix(s8') = 61 then the second alternative of

Remark 2.9(b) holds. n]

Proof of Theorem 1.5. We arque in the same way as in the proof of Theorem 1.4 except the

following changes:
G=3%, and G = {14, antipodal map} .

The index theory which we use in this case is the genus, {(cf. example 2.3). Then 4 = V.

Moreover, since Fix(@) = {0}, K. N Pix(G) = g for every ¢ > 0. So the second
alternative of Remark 2.9(b) holds. a

In order to prove Theorem 1.9, we shall apply Theorem 2.11.

First, we define the class of homeomorphism K as follows: Set
(5.1) K=(h=0+bemIh(u) ~u for every uet (1-=,0])} .
In this case N is given by the Definition 3.1’ with G = {1d} {.e. no invariancy
property is required for h e l..

Now we need a lemma which is a variant of other similar results (cf. e.g. [BR],
(BBP]).
Lemma 5.1. Q and so N v, as defined in Theorem 1.9, K-intersect (cf. definition 2.10).

Proof. We have to show that

h(Q)ﬁ(spﬁv)fﬁ vVh eK .

The above formula holds provided that for each h € K the following equations have at least
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one solution:
1
se [0,R)]y ue B“zn v
(5.2) IPV° h{(u + se)l = p

P, ®° h(u + ge) =0
vl

where P, and P VL denote the projections on V and Vl respectively. Let

h=U+beK, U= .c(')L[.]' then the second equation in (5.2) can be written

(5.3) Pv.L('“(“"‘)L(“ +8e)] +P blu+se) =0.
v

Since se € V, we have

ea(“"‘"'(.o) ev.

Then (5.3) can be written as follows

(5.4) P WOy 4 p (blu + se) =0 .
v v

Moreover, since u € Vl, we have

R T

Then (5.4) can be written

a(utse)l
)

(5.5) u+ P lb(u + ge) =0,

v

(5.5) is equivalent to the following equation

(5.6) u + @ lutsell blu + se)] =0 .

v

Then (5.2) can be written as follows
s € (0,R4], u e By, " vt
(5.7) IPv ® hiu + se)l = p

u 4 o Blutsell blu + se)) =0 .

Using a Leray-Schauder degree argument asvin [BR] (cf. also [BBF] and [BF1!) it can be
proved that equation (5.7) has at least one solution. a
Proof of Theorem 1.9. If K is the class of homeomorphisms (5.1), then by virtue of
Theorem 3.3, f satisfies the property (B) in }0,+=]. We now set D = Q and

F= sp N V. Then by virtue of Lemma 5.1, F ind D K-intersect.

Therefore the conclusion follows from Theorem 2.11. =}
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II. APPLICATIONS TO HAMILTONIAN SYSTEMS.
6. Some Estimates for the Action Functional.

We initially introduce some functional spaces we shall need in the following. If

MEeEN and t > 1 we set

Lt = 15!, ™ .

If s € R we set

W (uers', ¥ | (1 + 131212y, 12 < +m)
jes
k=1,.0.,2n

vhere “jk(j €% k= 1,...,2n) are the Fourier components of u with respect to the

basis (in L2(31"2n”

(6.1) vjk e .k coa(jt)0k+alen(jt)0k

where {Ok} (k = 1,...,2n) 1is the standard basis in ®". w8 equipped with the inner

product

2
(6.2) talv) g = jik (1 + 1315 %ay,vy,

is an Hilbert space. We recall that the embedding W® + 1t is compact if % > '/2 - 8. So

t

1
in particular W 2 1is compactly embedded in L for any t » 1.

Now consider the Hamiltonian system (0,2) where H(t,z) is T-periodic in t. Making

the change of variable ¢t » 3';5', {0.2) becomes
(6.3) gz = Wi (ut,z) where = T/27 .

Obviously the 2x-periodic solutions of (6.3) correspond to the T-periodic solutions of

(0.2).

In order to construct the action functional whose critical points are

the 2v-periodic solutions of (6.3) we introduce the following bilinear form

2n 1
‘(ulv) - 2 2 j “jkvjk uvew /2
jex x=1

where “jk'vjk are the Fourier-components of u,v with respect to the basis (6.1). The
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1 1 1
bilinear form a(+,*) is symmetric and continuous in W 2. Lat Lew”2 + w2 be the

self-adjoint, continuous operator defined by

1
{6.4) (Lulv) 1/2 = al{u,v) uvew 2,
U}

Observe that if u,v e c'(s', ") i

22
- - at .
(Lulv)' % £ (=Ju,v)

Suppose now that there are positive constants c¢4,c,.8 such that
(6.5) I8 (t,2)| € ¢y ¢ cylz]|® for any t and = .

Standard arquments s%0w that the functional

3 i 1 F
(6.6) f(g) =~ (Leilz) ¢, - w f H(wt,z)dt cew” ,
2 v /2 0

is Prechét~differentiable and that its critical points correspond to the 2v~periodic
solutions of (6.3). Por simplicity in the sequel we shall take «w = t and suppose H(t,z)
2n-periodic in t, so (6.6) becomes

1
(6.7) f(z) =3 (x.zl:)wy2 ¥(z)

an
wheres ¥(z) = [ (e, s)at.
0

since w72 is compactly embedded in Lt for any t > 1, by (6.5) we have that the
map z » H (t,z) is compact from v'/l on u"/2, then V' 1is compact.
Now it is easy to verify (cf. [BF2) sec. 3) that the spectrum of L consists of the
limit points =1,1 and of the eigenvalues
Xj - (—‘-—372—)—172 jesx,

and that each eigenvalue ), has multiplicity 2n. Then the functional (6.7) is "strongly

b}
indefinite” in the sense used in Section 1, moreover it satisfies the assumptions (f,) and

(fy) of §1, becauss we can suppose H(t,0) = 0,
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Let M denote the eigenspace corresponding to the eigenvalue A

3

+

0

We set

® M, ,
jo Yy

ENE W o= W =ker L .

b b |

1
Every z € W 22 can be decomposed as follows

zZ = z+ + 2"+ zo .
So we have
()  <wz,z> = azt,z™> + az”,z7>
(6.8) ) 2azh? <t <t
(c) % 12712 < -<Lz",eT> < 12 0% .

Now our aim is to find conditions on the Hamiltonian H which guarantee that algo the

1
assumption (f3) is satisfied. We consider a sequence {zn} cw”2 sz = (pn,qn) such that

(6.9) t(z ) +ce 10, +ef

(6.10) 1£'(z )t « Iz 1 +0 .
n n
Let us initially prove the following lemma.

1
Lemma 6.1. Let (zn} cw’, z, = (p,.q,), be a sequence satisfyi.g (6.9) and (6.10),

then the following sequences

2n

(6.11) { (H(t,z,) - (B(t,z )|p,i)at
2%

(6.12) g (R(t,z,) - (By(t,z)lq,))at

are bounded.

Proof. Easy computations show that
an
(a) <£'(z.).(p,,0)> = g (aylpy) - (B (t,2) Ip))at
2 S
(6.13) (b) <f'(z.),(0,q)> = { ((a,lpy) = (Hytt,z ) 1q,))ae

2%

te) flz) = g (aylp,) - H(t,z )8 .
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By (6.9) and (6.10) the sequences
<f'(zn),(pn,0)>, <f'(zn),(0,qn)>, t(zn)
are bounded. Then also right hand sides of the (6.13)‘s are bounded. Subtracting
(6.13)(c) from (6.13)(a) we get that (6.11) is bounded. Subtracting (6.13)(c) from
(6.13)(b) we get that (6.12) is bounded. u]
The following lemma will be useful if the Hamiltonian H is asymptotically quadratic

(cf. (0.8) and (0.9)) or if it grows more than gquadratically in both the variables p

and g but does not satisfy the growth condition (0.3) (e.g. H(z) = |:I2 e 1In(1 + |z|2)).

Lesma 6.2. Supp that H satisfies (6.5) and that there are positive contants

€3¢Cqr @ with a > e such that
(6.14) In(e,2) - % Bt l2)] > l21” - ¢
for any z € " and t € R. Then the functional (6.7) satisfies the assumption (f4).
1
Proof. Let {zn} be a sequence in w’ satisfying (6.9) and (6.10). By Lemma 6.1 the
sequence
2n
(6.15) £ (H(e,z) =% (H (t,2)) ]z ))at
is bounded. Then by (6.14), the sequence
(6.16) 1z 1 is bounded .
n_a

L

Using the decomposition

1 -
(6.17) W2 =yt ow ow
we set
(6.18) =2t 4+ 20 with 2t ew*, " ew, 20 e wl .

Prom (6.10) we deduce that for a subsequence, which we continue to call (zn}, we have

2w
(6.19) Lz ,zl> - L (A (t,z )]g])at + 0 as n+=.

Set Y = % ana y' = - 2 - . By (6.19) and (6.5) we have that
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2x
+ 2 + !
(6.20) unl",/z < e+, {) (Hy(t,2,) |2p)ae < ‘

2n 2 . J
<cg+ g (g IHz(t,zn)let)1/Y . (g |z:l' a)V/Y" < :

2n
a, /Y +
<c+c(f Izldt) sz 1y
? 80 n nw/z

where CgiCgrCq,Cg are positive constants. By (6.16) and (6.20) we have that

(6.21) 1zt ,  1s bounded . i
n W /2
Analogously it can be proved that ‘
6.22 iz 8 is bounded.
( ) z , Y, s bounde
It remains to prove that also Izgl 1/2 is bounded. Consider ¢(z) € c1(.2n,n) such that
w
a
$(z) = c9|z| for |z| » C49

where CqsCqg are suitable positive constants.
Suppose first a < 1, then ¢' is bounded. So by (6.16) and by the mean value

theorem we deduce that

2= 2% 2n

0 0
c4y ? g #(z )at = g (#(z) - #lz )t + g ¢z )ae >
2% 0 2% 0
(6.23) > -, { lz -z ldt + / #(z )de =
0 o
2% 2%

+ - 0
= -cy, { Iz, +z lat + g oz )at

where c,,,c4, are positive constants. By (6.21), (6.22) and (6.23) we have that lz:l a
L

is bounded, then, since ker L is finite-dimensional, also lz:I 1/2 is bounded.
w
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Suppose now a > 1, then

2% a Fid 2% 0 0
(6.24) [ 1z itat+c o[ oz lae > [ el - |z -z Dat ~
9 0 0
> 0 +
- { izl = 1z + z Dat .

Finally by (6.24), (6.21) and (6.22) we deduce, also in this case, that Iz:l" 1/2 is
bounded. a

Now we consider the case in which H has the form (0.4) with agq b and V of
class c'.

In the sequel we shall use the following shortened notation:

a(q).A(q),lk(q) (k = 1,...,n) will denote respectively the matrices

(6.25)
244
{a, (t,q)}, {lgraa a  (t,@)iq)), | (t,@} (x=1,..0,m .
13 13 3<!k
Moreover
b(q),B(q).bk(q) (k = 1,...,n) will denote respectively the vectors in | &
(6.26)

(b te,)}, {(graa b (t,q)la)}, {;Zi t)} (k= 1,...,m .
Moreover, if v is a vector in ® or IZ“, |v] will Qenote its norm.
Lemma 6.3. Assume that the Hamiltonian H has the form (0.4) with ‘13"’1
(1,9 = 1,...,n) and V of class C'. Assume moreover that (Vq), (Rg),(Ry),(By),(B,)
hold. Then, if (zn) (2, = (p,,q,)) is a sequence in H1/2 satisfying (6.9) and (6.10),
the following sequences

2x 2%

£ V(t,q,)dt £ (alq,)p, lp,)at

are bounded,
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Proof. let & > 0 be a constant such that
(6.26') a=-8~-28=2,

{a - 8 are the constants of assumptions (V,) and (A,)).

By Lemma 6.1 we have that the sequences

2%
(6.27) (ML+B+8) [ [(atq,)p,lp,) - V(t,q,)]at and
()

2%
(6.280) £ [(May)p,lp,) + (Blay)Ip,) + (Vo(t,qy)la,) = Hit,z ))ae

are bounded.
Adding (6.27) to (6.28) we obtain that the sequence

2%
£ [8atq )p Ip ) + (Alqy)p,lp,) + Blatq )p lp ) +

(6.29) + (Vgltiqdla,) + (=B = 2 - 8§)V(t,q ) + (Bla,)lpy) = (blg,)lp )]t
is bounded .

By (V1), (Az), {(6.26"') and (6.29) there exists My 2 0 such that

2n

(6.30) M, > g (Statq )p lp ) + 6V(t,q ) + (Blg,)ip,) - (blq,)ip,)la

for every n e N .

Now, by (B4) and {(B,)

B(q) 12 + Ibt@)]?

Sv(q)
where M, is a positive constant. Then, using (6.31), we get

§

(6.31) € ZVit,q) +M, for every t €R and g€ |
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2n 2n
(6.32) ] Us(gy)ip,) - (blaydlpdiae < [ (sl lipyl + Iblg ) lip,lldt <
0 0

Iblq )l2
GV(qn)

2
27 [B(q }i
n + lp l2 . % vig)) +

[ 2
§v(q) n + 3 Vig)le,l Jar <

™ s 8 2
<J [-2- Vit,q,) + 5 Vg )ip | Jat + My for every nenm
0

where M; is a positive constant. By (6.30), (6.32) and (A,) we deduce that

2%
8 8 2
My > g [8(atg dp Ip)) + 8V(t,q)) = 5 Vit,q) - 3 viq)lp |"1at - u,

2
L {, [% (a(an)pnlpn) + -g-v(t,qn)]dt ~ M, for every nem.

Prom the above inequality, the conclusion follows. w}
Lemma 6.4. Let the assumptions of Lemma 6.3 hold. Moreover assume that (Vy), (A3) and
1

{Ag4) hold. Then, it {:n}. (e, = (p,,q,)), 18 a sequence in W 72 satisfying (6.9) and
(6.10), the sequence

2%

{ I, (t,z,) 1At
is bounded.
Proof. Just computing H_(t,z}, we get

(6.33) Ing(t,z )] < 2lalqy)p,} + Ibtq )l + E la®ta)p,lpy)! +

k
+ E 1B (q,) lp ) + qu(t,qn)l for every nem .

Observe that
(6.34) for every q,p € R' latq)pl < ta(q)? + (a(q)plp) .
By (6.34), (A,) and Lemma 6.3, it follows that

ra 2

(6.35) for every n e n { Jatg,)p,lat < g [talq,)V + (alq,)p,lp,) )AL < M,
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A

where M, is a positive constant. By (A ), we get that
(6.36) talg)l » v(q) for every q e B .
Then, from (B,), the above formula and (A,) we get:

2% rid 1/ 1
{) Iblg,)lat < g viq ) 2 . |v(t,q)] 7 ar + Mg <

2w 1/ 2% 1
<t vtaary 2 e ([ Ivie,q,)) 248 + Mg <
0

pad 1/ 2% 1/
< (f ratgtae) 2. ([ [v(t,q,)ldt) 72 4 Mg <
] ]
2n
<M. g IV(t,qn)Idt + My for every n e W .

Then, by Lemma 6.3 and the above inequaltiy, it follows that

2%
(6.37) vnew | |Iblg)lae < Mg .
0

Now, by (A3) and Lemma 6.3, we have

2% 2%
(6.38) vnew )Z‘ (!) l(ak(qn)pnlpnﬂdt <My ({ (alq,)p,lp,)at

Moreover, using (B;) and (6.36), we have

2% 2x |b (qn)l 2%

wmen] [ [1Xag)lplat <) (] —hH—
i n n X0 v(qn)

2% 2v

1 1
< Mgy + Mg, {’ v(t,q)ae) 72 - (.{ (alg,)p,Ipy)at;

Then, from lLemma 6.3, we get

2%
(6.39) vnew [ [ 1kq,)ip,)lae < myy .
x 0
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At last we observe that by Lemma 6.3 and (V,)

2w
(6.40) inew | Ivteig et < My, .
0

So, by (6.33), (6.35), (6.37), (6.38), (6.39) and (6.40), we deduce that the sequence
aj

| legtt,z )14t is bounded. O

0

Lemma 6.5. Let the assumption of Lemma 6.4 hold, lLet [:n} C ll1/3 be a sequence which
satisfies (6.9) and (6.10). Then we can select from (:n} a subsequence which is bounded
in H1/2.

Proof. Suppose that (z ) C w"2 satisfies (6.9) and (6.10). Then by Lemma 6.4
! -1/2 -n/2' for any

(Bz(t,zn)} is bounded in L'. L' is continuously embedded into W

n > 0. ‘Then

(6.41) lﬂz(t,zn)l'_ 1/2_“/2 is bounded .
By (6.10) we have:
-1/
(6.42) Lz, - Hz(t,zn) +0 in W 72,
So by (6.41) and (6.42) we have
-V -
(6.43) Lz, is bounded in W f2-"/2 .

By the definition of the spces H‘ and easy computation, we get

1/ ~
. 2 .
(6.44) for each z eWw lzl"<|/2_“/2 < const Il.zlw_ Y -n/2
where T=z - zo =zt + 2" (cf. (6.18)). By (6.43) and (6.44) we have that
.45 iz .
(6.45) z“'w 1/2 -n/2 is bounded
Then, since n > 0 is arbitrary, by the Sobolev embedding theoresms,
(6.46) 1z} is bounded for any t > 1 .
n Lt
The next step is to prove that
(6.47) (20} 1s bounded in 1'.
We set
(p2,qd) = 2d vmen.

By (V,) we have
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o 2%
(6.48) [ g%t < e/ vit,qdrat + ¢, vneun
0 0

where c,,c, are positive constants.
Then, by (6.48) and Lemma 6.3,

(6.49) {a¥} 1s bounded 1n L” and then tn L',

Now we have to show that also {pﬁ} is bounded in L.
To this end we initially show that there exists u > 0 s.t.

2%
(6.50) vnew [ wq) >u.
0

By (6.46) and (6.49) there exists M > 0 s.t.

(6.51) Vnen Ith 1 <M.
L

We now set

= inf v(g) and a - {t e [0.2*)||qn(t)| < M/v} .

v
o fq)<w/x

Then
vmnen M>Igl >/ lq lat > Wx(2% - meas 9 ) .
LA A n
n
From which we get
men uasﬂnaw.
Therefore we have

rid
vnen [ U(qn)dt > ‘[l v(qn)dt > vy °© meas Qn > Vo .

n

Then (6.50) holds with y = von.
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Now, by Lemma 6.3 and (A,) there exists ¢ > 0 s.t.

2% 2% 2 2w 0 ~ .2
(6.52) wvnew c»>/ (ala,)p,lpy)at > I viq )p, | = [ viq )lp, + p,l%at >
0 0 0

2% o, 27 ~ 2 ~ .2
= 19013 { viq )at - 2ip | g viq )lp lat + { viq,)lp,|"a

) 0.2 2» 2 -
Ip,! £ vig )8t - 2lp,| g vig )lp lat .

Now
2‘ -~ ~
(6.53) ‘{ vigq ) Ip lat < na(q")lL2 . Ipn|L2 .
By (A4) and (V,) we get
2 2x 2 2w 2
(6.54) Wmen w(q“)l[‘2 < e, £ Vit,q )%t + ) < ey g lg,1%%at + c,

where ©4:C3sC3,C,4 are positive constants.
Moreover, because Xker 1. is finite dimensional, from (6.49) and (6.46) we deduce that
{6,55) anlnz' is bounded.
Then from (6.53), (6.54), (6.55) it follows that
2%

(6.56) vnen 6[ vig ) Ip, lat < |v(q)|L2|pn|L2 < <:6|p“|h2 .

Using (6.46) and (6.56) we get

2

(6.57) Vnemn 6[ vig )lp lat < c,

where c, is a positive constant. 8o from (6.52), (6.50) and (6.57) we get

(6.58) vnew o> ul;:::l2 - eylpdl .

45~
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Then
(6.59) 2] is boundea .

Pinally, because Jdim ker L ¢ +», from (6.49), (6.59) and (6.46) we deduce that

(6.60) for any t > 1 1z 1 is bounded .
n Lt
Lat us now show that 1tz | 4, is bounded. ’ i
L 2 ;
By (6.19) we have ‘5
+ 2 2% .
(6.61) Vhen unlw,/z <cglt + g (B (e, 20) |12 lat)

where Cg is a positive constant .

By (6.33) and the assumptions (ﬂo) there exists Y > 0 s.t.

veew", wvteRr IHy(t,z)| < const.(1 + 121N .
Then from (6.61) we get

(6.62) vnew 1212, < const.(1 4 121"
LY /2 n

+
ezl 4,).
LzY nw/z

Then from (6.60) and (6.62) it follows that

e oo A

lz:l is bounded .
Analogously it can be proved that
1z .
znlw 1/2 is bounded
Finally, because ker L is finite dimensional, we deduce that also
1:%1 4, is boundea .
ny 2
We conclude this section with the following lemma.
Lemma 6.6. If (H,) hold, the functional (6.7) satisfies (£4), (fy) and (f3) in the
1
space W A,
Proof . (f,)(l) and (ii) follow from the construction of L.
By assumptions (Vz), (A,), (A‘), (n,), (nz) and standard majorigations, it follows

that f satiefies (6.5). Then (f,)(ii) is satisfied. (f3) follows from Lemma 6.5. a
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7. Superquadratic Hamiltonians.

In this section we shall prove Theorems 0.1, 0.2 and 0.3. It will be useful to

introduce the following notation

(7.1 w=Te n W. = ® M, .

3 A 3 A

i "k k<3 3

If § >0, then "3 W' 8o that, for every z @ '3' (6.8)(b) holds. The following
lemmas provide estimates which shall be used in the proof of the theorems.
Lemma 7.1. For every c, > 0, there exist j €% and R > 0 such that

£(z) > c; for every z € '3' izl = R
where f 1is the functional defined by (6.7).
Proof. Since H grows polynomially, there are constaants L,CqeCy > 0 such that

(e, 2)| < cy + czlzlt .

Then

(7.2) fv(z)} € 2lc1 + czlzlrr .
L

Now, by the Sobolev embedding theorem, there are constant ¢3,8 > 0 such that

(7.3) 1z} <c lzb .
& 3 '95--
it ze "3' 3 » 1, we have
Yy = - 1
izl21/ =L )2 12 14957 T (1 4xd) 24502 -
2~8
W x>3 k>3

= 1+ 3971?57 0m? .

Then by the above formula (7.2) and (7.3) we get
{otz)l < c4j.°lzlr +cg for every x @ w;
where cq4 and cg are suitable positive constants and p = sr > 0.
Then, by (6.8) and the above formula, for z @ wg, 1z = R we have
1 r2 r-2,.2

1 -p T 1 -
f(g) = 3 Lz.2> - viz) > 1 - PpF . cg = [: -cd PRT)R? - cg

The above formula proves the lemma, in fact, it is sufficient to choose R such that

Y k2




% R2 > cg + Sq and Jj such that

- x=2 _ 1
c4j R < i [m]
lemma 7.2. Suppose that H satisfies assumptions (Bo). Then there exist constants

and a, > 0 such that

(7.4) H(z,t) > a,lqla - a,
and
(7.5) BH(z,t) + (B (z,t)]2) > A,Iql" +ulpl? - a,

where z = (p,q) and y 1is the constant in (Az).
Proof. We prove (7.5).
We shall use the notations introduced in Section 6 (cf. 6.25, 6.26), moreover
Cqrove will denote positive constants.
By (R4), (A} and (V,) we have
(7.6) BH(z,t) + (H (z,t)|z) = ((Ba(q) + 2a(q) + A(q)lplp) +
+ ({8 + 1)b(q) + B(q)|p) + BV(q,t) + (Vq(q,t)lq) >
> ulpl? + 2v@1p1? = 118 +1)b(@ + Bl@ 1Bl + BY(q,t) - ¢ -

Using (B,), (Bz) we have

2
(7.7) 1(8 + Db(q) + B(q) llpl < — 1’2\(:‘(!;)+ 2l , Y—.‘(,'n Ipl2 <

< %V(Q.t) +vilpl? « cy .

Then, by (7.6), (7.7) we have

BH(z,t) + (Hy(z,0)]2) > ulpl? + viaripl? + % V(g,t) = cy .

2,

Then, using again assumption (v‘), we get (7.5). Similar arguments can be used to prove

(7.4). 0
lewma 7.2'. Let § a Frechbt differentiable functional on an Hilbert space E, with
$(0) = 0. Buppose that ¢ satisfies the following assumption:
there exist R, M, 2 > 0 s.t.
M if Ixt < R
(7.8) Ap(x) + <¢'(x),x> €
-1 4if Ix} >R .

Then there exist K > 0 s.t.
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¢(x) <0 for Ixl > R.

Proof. Let v, € H, Ivol = 1 and set

git) = xo(tvo) t>0.
We shall initially prove that
(7.9) g{(t) < M for any t » 0 .
We argue by contradiction and suppose that there exists t, > 0 s.t.

gity) > M .
Then, since g(0) = 0, there ;xiutl ty < ty; such that
g(t) > M wt e ]to,t,( and q(to) =M,

Obviously there is £ € Jt,,t.[ s.t.

g'(§) » 0 .

Then
- t -
g(t) + x g'(t) > M
which means that
Ao(tvo) + <Q'(cv°),tvo> > M
and this contradicts (7.8).
Now consider
>0 s.¢. Mm=-2lnf/rRco .,
Let us now show that
(7.10) there exists t, € [R,R] s.t. glty) <0 .
By (7.8) we have
(7.11) g(t)+-;-g'(t)+<-1 if t>R.

Then, since g(R) ¢ M (cf. 7.9), we have:

R R R R
gB) <[ g'(s) +m< - %a.-!ﬂ:—iaz+n-n-un§/n-11:—'lu
R R R R

<o f e

From this inequality it is easy to deduce that (7.10) holds.




Now we prove that

#(x) <0 for Ixt >R .
Obviously it is sufficient to show that

(7.12) g(t) <0 for t>¢t, .

Arguing by contradiction suppose that thare exists ty > t, s.t.
obviously there exists t, € ]tz,t‘[ such that

(7.13) q(ea) =0 and g'(t,) >0 .

Since t3 > R, by (7.8) we get

g'(t.)

gleg) + === ¢, < -1 .

(7.14)

Obviocusly (7.14) contradicts (7.13). O

Lemma 7.3. Suppose that H satisfies (Hy). Then for any j € Z. There exists

s.t,

f(z) <0 for Mzl >R zew;-onx .
K<) "k

Proof. The interesting case cccurs when Jj > 0, otherwise it is trivial.
By virtue of Lemma 7.2' it is enough to prove that

(7.15) Bf(z) + <f'(2),2> —> ~» as Izl + » ,

In the following CqreeesCq will denot positive constants.

Let z = (z) ew; and set

*
z32z +2q4%tz

where
*

z'_(p']eﬂx ."X ..”.HX ’HX..."HX
a -3 -3+1 -1 1 3

a

pO - P -
zo-(qo)eurn, z-(;)ew_j,1- e M

Then, by using Lemma (7.2), it is easy to see that

q(t4) > 0. Then




(7.16} 8f(x) + <£'(g),2> ¢ (% + ')(‘Ll"l.) 4+ CLg,2>) -

. 2 2 2
-u(lpl z+lpl2‘»lp‘,l 2)-
L L L

. .
- e, (1g 1%, ¢ 1at®, + 1g91%) * €, <
L L L

8 . 1+44 .°2
<(2*\)(<u,:)>-2*’lll)°

e

L ] L ]
-utpt?, - o tq1%, - cam?, v 1zt v oy
L L L L

O ~ 2 2
< hisz) c‘(lzl + "O'Lﬁ) +cy

where

L} »
nz*) = &+ naste™ - wpr? - caght®, .
2 2 1 2
L L
The above formula shows that (7.15) is verified once we prove that

L ]
(7.17) he')» = ag Nz1 _ » 4=,
L2

* »
In order to prove (7.17) we need to find a more “explicit" form of <Lz ,z >,

] .l y
P 2¢ gl 2° Ve set

L L
1 P
* 3
e = [ (2, +2_) g, =( Jem .
=+t totey Ty
It is not difficult to verify that for any £ we have
n
pt - k§1 azkcolleok - bzkllnltok
= +
9, f czkstnltck b‘kcooluk
k=1
where ok(k = 1,...,M) 48 the standard basis in ¥ ana .lk'bzk are real coefficients.

-$9=

Ll s




By straight computations we obtain

n
(18 ast,2™> < f taeg? e %)) - § 1 2e(a), + b3, -aZ, -2,
=1 .2 2 get ket
- MOreover
(7.19) 1012 - [ ta, +8_ 0%+ @, -b,3
N 1k " Poax
and
(7.20) 1g1?, - f (a,, a2+, +b )2
2 by Ly (e T e ik ¥ Pork
Then

hiz") < q(z.) where

n
') = g 3 2 _ .2, 2 _ _ a
qlz) 1 G+ M2t -a ) -uls, +a ) cglag, = a_,.I
=1 k=1
8 2 2 2 a
MR LR R I R X e L I N T

Since a > 2 it can be verified that

q(z')*-ﬂ' as Iz.l2 = g ) a2 + a
12 gmq ger ¥R Totk T TRk T Ttk

Then (7.17) easily follows. a

Pxoof of Theorem 0.1. We will apply Theorem 1.4.

By Lemma 6.6, (f1). (fz) and (13) follow. Since the Hamiltonian H does not depend

on t, also (t‘) is satisfied. It remains to verify the geometrical assumptions (fg).
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co = max{1,-2% + inf R{z)} + 1 .

e

The constant €9 is well defined because by Lesma 7.2, H is bounded from below.
By virtue of Lemma 7.1, it is possible to choose R > 0 and j € & such that
t(s) > cp for every z @ '3' igl = R .,
Now set
v-u;

and, chosen n arbitrarily, set

)l

- +
w-uj*n (',’n .

With such a choice of V and@ W, the assumptions (ts)(l). (14), (i41) and (4iv) are
trivially satisfied. Moreover (fg)(v) is satisfied by virtue of Lemma 7.3 and (fg)(vi) is
satisfied by our choice of ¢,.

Then the conclusion of Theorem 1.5 applies and we get the existence of at least

% (Aim(V N W) = codim(V + W)) = n

critical values with critical points LRTREE L such that
(7.21) f(zk) > ¢y -
It remains to show that the corresponding critical points are not coanstants.

Suppose that one of them is a constant function £. Then we have

£(Z) = -2%H(2) < ¢y .

This contradicts (7.21).

By the arbitrariness of n the conclusion follows. a

Proof of Theorem 0.2. It follows ine same argument of the proof of Theorem 0.1 except that

we use Theorem 1.5 instead of Theorem 1.4. O

Proof of Theorem 0.3. We shall apply Theorem 1.9.

We can assume without loss of generality that
H{t,0) = 0 for every t € R .,

It is not difficult to prove that f is twice Prechet differentiable for =z = 0. Then by
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(n‘), we have:

(7.22) £(2) = £(0) + <7 (0),2> + 3 £(0) [z,2] + o(tm?) =
1 w el 2
=5 <Lz,2> - 3{, (H_ (wt,0)zle)at + o(t=l®)

1
whers o = % . and z ew’2. By (Hg), it follows that

x ™
w [ (M _(ut,0)z,2)at ¢ ¥ [ 1z)%ae .
0 xz 0

Then by the above inequality and (7.22)

T T

2 2
By the definition of <Lz,z>, we have that

(7.23) £(z) » + g, - L lzl22 +ol1zl?) .
L

Lz,z> » 1202, for every z ew' .

2
L
Then by the above inequality, (7.23) and (6.8)(b) we get
£(z) > 1 (1 - Ytz o> + L <rz,o> - L1a? + ot ?) >
2 2 2 L2
> % (1 - Y)Izl2 + o(lzlz) for every z € W,
: So there exist p, ¢, > 0 such that

(7.24) f(z) > <, for every = € w*, iz =p .

Now let e € W' be the eigenfunction corresponding to the first positive eigenvalue
A‘ of L and let Ry/Ry be two positive constants. We set
'r-{n;-e[o,n‘l}, @=f{u+v])uew okerL, lul <R, and verTl.
Observe that Q C w;. Then by Lemma 7.3
sup f£{z) < +=» ,
z€Q
Moreover, by Lesma 7.3, if R, and R, are large enough we get that

£f(z) < 0 for every s € 3Q .

o i

Thus all the assumptions of Lesma 1.9 are satisfied with V = w'. Then f has a critical

value ¢
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(7.25) c» o >0,

- 1
The corresponding critical point z e w ;] cannot be constant because in this case we
would have

2y
c=f£(2) = - [ Hlwe,z) <0
0

and this inequality contradicts (7.25). [u}
We end this section considering Hamiltonians H(z) which do not depand on t and
grow more then quadratically in both the variables.
More precisely we auppose that there exist positive constants Cqs €34 C3s C40 & [
with a > 8 and 8 5> 0 such that
(a) 1B (2)} < ¢y + ¢:2|z|B for every z e &7,
(7.26) (b} -;— (g,(z) |z} - H(2) > v:.alzlu -c, for every z € wr
Observe that this "superquadraticity" condition (7.26)(b) covers cases which are not
covered by (0.3). Por example the function
H(z) = I:lzlog(l + |z|2)
satisfy the (7.26) but not (0.3). For Hamiltonians of this type the following theorem

holds.

Theorem 7.4. If H e C'(R°",R) satisfies (7.26), then for every T > 0, the Ramiltonian

system (0.2) has infinitely many nonconstant T-periodic solutions for any period T > 0.
Sketch of the Proof. We apply Theorem 1.4. (f,) and (fz) are verified ag in the proof of
Theorem 0.1. (f,) follows from Lemma 6.2. (£,} follows by the fact that H is time
independent. 8ince H satisfies (7.12)(a), Lemma 7.7 holda, and by (7.26)(b) it is easy
to show that the analogous of Lemma 7.3 is true. Then reasoning as in the proof of Theorem

0.1, the conclusion follows. Q
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8. Asymptotically Quadratic Hamiltonians.

1 -1
Proof of Theorem 0.5. Let I, and L_: W 2 + w2 be the operator defined as follows
Lz = -Jz - uﬂu(')z
Lyz = -Jg - ull!“(o)z .
Then if we set
(L zlv) @ _z,v> wew”
zjv) - .1 Z,V
LA R R

L - <L, >
( oz,v)w 1/2 - 1/2 oz,v '1/2

w
1
it follows that L; and L, are two self-adjoint operators in W 7. It is easy to see
that the spectrum of L, and L consists of eigenvalues of finite multiplicity having
+1 and -1 as accumulation points.
Let M:: (resp. H:) denote the eigenspace of L, (resp. L)) corresponding to the

eigenvalue u. We set

W= o W, W= o o, W= e M, W= @ u:
u>o H u<o u>0 v u<o
1
vhere the closures are taken in W 72 « We initially suppose that the Hamiltonian H
satisfies (0.8), (0.9), (0.10), (0.12) and (0.13). We can write the action functional as
follows:

2
1 1
f(z) = + 5 (Lzl2) - w!]’ (B(z) - 5 (B _(=)zle))dt .

We shall show that f satisfies the assumptions of Theorem 1.5 with:

2%
L=1, ¥z = ",{ (A(z) - 3 (@ (malenee ,

V=ws and w=w_.

It is easy to see that (!,). (12). (!‘) are satisfied. Moreover, by virtue of the
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nonresonance assusption (0.10), standard arqument show that also (£3) is satisfied (cf. the

proof of Theorem 6.1 an Remark 4.10 in [(B2]). Uet us now prove that also (!5) is

satistied.
(15)(1) is cbviocusly satisfied, moxreover, since L, - Ly is compact, also (ts)(u) holds.

Because H“(-) is positive definite, we have
{constant functions} = rix(s') c ll: .

Then also (ts)(u:l) is satisfied. lLet =z € w; then,
£(z) = £(0) + <£'(0),2> + ﬂ%‘ﬂ (z2] + otbmt?) = 3 (Lyrlm) + otxs?)

u
> —% 1212 + o(azt?

where vy = min{y € o(Lo)lu >0} .

) as 1zl »+ 0

8o also assumption (fg)(iv) holds. Moreover, by (0.13), assumption (fg)(vi) holds.

Let us finally verify that (ts)(v) is satisfied. Let =z @€ W: =4 then
2%

fx) < bt - w [ (me) - 3 (m_(=)zle)at
0

(8.1)

where u_ = max{y e e(L)lu < 0}. If we set

1
gle) = H(z) - H_(=)z

then, by (0.8),

(8.2) 3:—'-)-+0 as x| *» =,

with this notation we have

1 1
[ (Bgtex) - 8 (=)(az)|2)ds = [ (glsx)|z)as .
°

1
B(x) -% (__(%)zfz) = lo (gissz)|x)as .

From the above formula, we have




T

1

(8.3) ve € ®° |n(2) - 3 (B, _(=)zln)] € l2l [ Igten)lds .
£ 1 0

By (8.2), for every € > 0, there exists M > 0 such that
(8.4) lgtz)] € elz] for lz) > M.

Let |z| » M and set

Ay(z) = {t e [0,1]{|ez| < M} 15

Ay(z) = {t e [0,1]]ltz] > M}

Then, by (8.4), we have ‘
1 c E
(8.5) [ lg(sz)|ds = f lg(sz) (s + f {g(sz) lds < c,+3 1zl H
0 A‘(z) Az(l)

where c, = sup{ig(z)i|{lzl < M}.

Using (8.4) and (8.5),

(8.6) vz e lzn, Izl > m |H(2) -';- (Hu(-)zlz)l < c,lzl +% l:l2 .
Then, by (8.1) and (8.6), we easily deduce that
- 2 € 2
Vz ew f(z) < u1lzl + u“'ln‘l + 3 lzlnz) + cy

wvhere c, is a positive constant depending on €.

So if we choose € sufficiently small, by the above formula £ is bounded from above
on w: =W, i.e. (fg) holds. Thus all the assumptions of Theorem 1.5 are satisfied.
Therefore it follows that f has at least
(8.7) 3 (atmw? 0 W) - coatw?t + W)

* 2 0 - 0 -
nontrivial periodic solution.
In Lemma 6.6 of [B2], it has besen proved that the number (8.7) is just equal to
% (ullu(-), muu(O)). Then the first part of Theorem 0.5 is proved.

In order to prove the second part we set

T(2) = «£(2z) =

N

h L]
| (3zlz) + wn(z)lat .
)
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The functional f satisfies the assumptions of Theorem 1.5 with
L= -L.
> 1
V() =w [ (-R(e) + 3 (R (0)ele))at
0
- +
V=W, and Ww=w_ .
At this point we argue exactly in the same way as in the proof of the first part of the
theorem in order to verify (fg). We observe that in this case we have
{constant function) = Fix(s') c w; =V .
Then when we verify (fg)(iii) the first alternative holds. This is the reason why in [s2],
a similar result has not been proved.
8ince all the assumptions of Theorem 1.5 are verified it follows that there exist at
least
8 1 - + (" + +
(8.8) 2 [aim(Wy N W) - cod(Wy + W )]
nonconstant 2¥w-periodic solutions.
By Lemma 6.6 of (B2], the number (8.8) is equal to
1
2 S(un“(O),w!l“(-)) . (m]

Rewark 8.1. If the nonresonance condition (0.10) is replaced by assumptions (0.14) and

{(0.15), by virtue of Lewma 6.2 (fa) is satisfied. Then the assertion of Remark 0.7 holds.
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