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ABSTRACT

\3This paper is divided in two parts. In the first part some abstract

critical point theorems are proved using minimax arguments. The second part

is devoted to applications. We study the existence of periodic solutions of

the Hamiltonian systems. -
aH

(1) 
( , )

p (p,q)

where p,q e Rn  and H e C1(R2n,R). First we consider Hamiltonian function

havina the following form:

(2) H(p,q) j aij(q)PiPj + 1i bi(q)pi + V(q)

where the matrix a j(Q) is positive definite and V(q) grows more rapidly

than Quadratically as 1Q( + +0. We prove that (1) has infinitely many

periodic solutions of any period T > 0 under suitable assumptions on the

Hamiltonion (2). Then we consider asymptotically linear Hamiltonians:

(3) Hz W) H H (-) z + o(izJ) for IzJ + +zzn

where z - (p,q) and H (-) is a symmetric operator in R • We also givezz

an estimate for the periodic solutions of (1) when the Hamiltonian satisfies

(3). Time-dependent Hamiltonians also are considered.
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SIGNIFICANCE AND EXPLANATION

The existence and the number of periodic solutions of Hamiltonian systems

is a problem as old as Hamiltonian mechanics itselfi early mathematical

results were obtained by Liapounov, Poincare, and Birkhoff. Recent remarkable

results of Rabinowitz [R23 gave new interest to this classical field; in fact,

his work has shown that the techniques and methods of critical point theory,

developed in the contest of partial differential equations, may he

successfully applied in this field. One of the main results of Rabinowitz

states that a Hamiltonian system has infinitely many periodic solutions of any

period provided that the Hamiltonian function H(p,q) (p,q e so) is

superauadratic, i.e., it grows more rapidly than quadratically in both of its

variables in a suitable way. Unfortunately Hamiltonians arising from physical

problems have the form

(1) H(p,q) = Yij aij(q)pi + 1i bi(q)pi + V(q)

Such Hamiltonians are not supercuadratic in the variable p.

In this paper we generalize some abstract critical point theorems in

order to include Hamiltonians of the form (1), and we obtain existence of

infinitely many periodic solutions of every period provided that V(q) is

superquadratic (plus technical assumptions). Asymptotically quadratic

Hamiltonians are also considered; these are Hamiltonians such that

(2) H'(z) - H"(-)z + o(Izj) for 1z! + + - ,
wher z p~q @ 2n, and H"(h)Rn  2n

where z = (pq) , + R is a symmetric operator. If

H'(z) = 0 and H is twice differentiable at z = 0, then it is possible to

define an index
-1

O(wH"(0),wH"(-)) where w = (21) times the period of the solution.

Under suitable assumptions on H, we know that the Hamiltonian system has at

least 1/2 IO1(WH"(), H1-))I

nonlinear 2ww-periodic solutions. This result generalizes a result of Amann

and Zehnder (who considered strictly convex Hamiltonians [AZ2]) and a previous

result of the first author of this paper (which applies when 0 < 0 ES21).

Time-dependent Hamiltonian are also studied.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the authors of this report.
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PBRIODIC SOLUTIONS OF HANILTONIAN SYSTEMS OF PRISCRIBBD PERIOD

Vieri Denci*, Alberto Capozzi*, and Donato Fortunato**

0, LTrROOUCTION AND ST&8UTS OF THi NAZin RULTs.

Consider the Hamiltonian system of Zn ordinary differential equations

(0.1) - -aq(tpq) q - Hp(t,p,q) p,q e iP, t e a

where me cI (22"',, denotes dt , L . The system (0.1) can be

represented more concisely as

(0.2) -A - 93(t,z)

where a - (pq) * =%a and 3 is the simplectic matrix in U i.e.

3z

j [id 0-Id

Id being the identity matrix in R
.

There are many types of questions, both local and global, in the study of periodic

solutions of (0.2) (cf. e.g. the review article of Rabinowitz IR31 and its references). We

suppose in the sequel that H(tZ) is T-periodic in t.

Here we are concerned about the existence of T-periodic solutions of (0.2).

Rabinoitz, in a pioneering work JR21, has proved that if H(tp,q) is *superquadratic" in

both the variables p and q, i.e.

there exist r > 0 and U > 2 e.t.
(0.3)

(HZ(t~z) Jz)I2 n ;P H(tz) > 0 for 1:1 > r and t e 10,T]

and it satisfies other assmaptions, then (0.2) has a T-periodic solution. If LH 0

and H(ts) satisfies (0.3), then Rabinowitz ha proved that (0.2) has a nonconstant T-

*Istituto di Hatematica Applicata - Universita' di Sari - Bari, Italy.

'lstituto di Analisi Patmatica - Universite' di Bari - Bari, Italy.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041 and by initero

della Pubblica Istruzione (ITALY).
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periodic solution for every prescribed period T [R41- *Later many other papers appeared

dealing vith (0.2) when E(t,x) io "suporquadratic" (AN, 82, SF2, B3, ClE, 3, as, P11.

Unfortunately the above results on superquadratic Namiltonians do not cover the

classical mechanical problem. in fact, consider a mechanical system with holonomous

constraints imbedded in a conservative field of forces. The Hamiltonian of such a system

has the form

n n
(0.4) H(t,p,q) a Ij a(t.q)pipj + b b1 (toq)pi + V(ttq)

where (a ij(t.q)) is a positive definite matrix for every t and q. The Hamiltonian

(0.4) is quadratic in p, then it does not satisfy (0.2).

if

a jdo not depend on q (~

(0.1) can be reduced to a second order system of n equations of the form

(0.6) 1-- tUu') xe3

which is sore easy to study then (0.1) (cf. discussion in JBF3)). in this case, for

example, It is known that if L - 0 and U grows more than quadratically at infinity, inat
the sense of (0.3), then (0.5) has a non-constant T-periodic solution for each fixed

T > 0 (cf. (R1,8DFI] and references in CR31).

In this paper first we consider Namiltonians with the form (0.4) without the

restriction (0.5) and with seuperquadratic" growth in q. We make the following

assumptions on the Hamiltonian (0.4)s

Assumption* (No):t

(V)There exist constants R >0, a ) 2 S.t.

0 < a V(t,q) 4 (V (q,t),q) for Jqj ;0 R and every t e R

(V2) There exist C1 ,C2 '8-R > 0 s-t.

IV q(q~t)I C C1V(qot) < C21q1a for Iqi > R and every t e i

-2-



L J

(A) There exists a real, continuous function v (q) > 0 s.t.

I aij(qet)pip • v(q)Ipj for every p,q e MP and t e i

(A2 ) There are constants 0 e 10,a-21 and ii > 0 such that

Sij(q't)PiPJ 2 qj p 12  where {1i (q,t)} - aij 1k - q

(A3 ) There exists a constant C3 8.t.

aq (q 't )pl l >C 3 I aij(q
't)pipj for every k- 1,...,ni q t e a

(A4 ) There exists C4 > 0 s.t.

1ia1 (q,t)l 4 C4V(q,t) for IJq large and every t e R

b1 (q,t)
2

Il V(q)V(q,t) - 0 for every I - 1,...,n
lql +"

3b1  2

(B2 )  lim v(q)(q,t) - 0 for every iok - I,....n•

Remark. Assumptions (VI) implies that V grows more then lql* at infinity. It replaces

assumption (0.3) of other papers.

(A1) is a physical assumption which depends on the fact that the "kinetic energy" is

positive. Observe that it in allowed that v(q) + 0 as jqI j .

(A2 ) is a technical assumption which is deeply related to the nature of our results.

Probabty it has some meaning which we have not fully understood.

(V2), (13), (A4 ), (), (92 ) are growth conditions on the coefficients of (0.4). Probably

they can be weakened using a cut-off technique as In [R1, DR or M1. We have the foLlowing

results for Hamiltonians of the form (0.4).

-3-



Theorem 0.1. Suppose that N satisfies the assumptions (S o ) and
23

(8 1 ) the system Is atonomous i.e. - 0.

Then (0.2) has infinitely many nonconstant T-periodio solutions for every prescribed period

T.

(e)

Theorem 0.2. Suppose that R satisfies the assumptions (No ) and

(8 2 ) 8(ts) is T-periodic In t

(H3) H(t'u) is even in a .

Then (0.2) has infinitely many nonconstant T-periodic solutions.

Theorem 0.3. Suppose that H satisfies (H,), (H2 ) and

(34) a - 0 is the minimum point of 5 for every t e a

(as) 9 is twice differentiable for • - 0

(R6 ) there exists a constant Y 6 10,11 such that

j. a 2M. CryiCC I 2  for every t e n and C 0 .n

i1 
3 z j i T

Then (0.2) has at least a nonconstant T-periodic solution.

Remark 0.4. If H does not depend on t and it is twice differentiable for a - 0,

Theorem 0.1 can be deduced from Theorem 0.3. in fact by virtue of the assumptions (ae) 0

H has a minimum in ,2n . It is not restrictive to suppose that the minimum point is

z - 0. Given any period T, there is a period T, - T/kI (k1 e 8) such that (H6 ) is

satisfied. Since a ?,-periodic solution is also a T-periodic solution, we can deduce from

Theorem 0.3 that for any period T > 0 we have a nonconstant T-periodic solution al(t).

Also there exists a number h, such that a, has the minimal period equal to T/hlki. if

we take k2 ) hIk1 we can find, using Theorem 0.3 a (T/k2 ) - periodic solution 92 which

is of course a T-periodic solution and z2 3 t. In this way we can find infinitely many

*Warnings Theorem 0.1 just states the existence of periodic solutions but not of prime

periodic solutions i.e. solution for which T is the minimal period.

-4-



nonconstant T-periodic solutions. we finally observe that, if bi - 0 (1 - t,...,n). and

S3
- 0. variants of Theorem 0.1 can be found in [BC?, G).

Next we consider the came In which 8 in asymptotically quadratic, i.e. there exists

a linear operator R 9(.)1a2n + 2n a.t.

(0.8) UX(Z) - a (W)a + o(z)

where 0(s) + 0 as l * *. Moreover we suppose thatJ•J

(0.9) 8 (W) is twice differentiable for a - 0.

The aim is to give a lower bound for the nusber of 2wo-periodic solutions by the comparison

between the operators IZ (O) and H (-). We define as in (32] an even integer numberxx

OusD (0). OR (-)). which will provide such a bound. Given two Hermitian operators
€2n t2n,

As S *2n+t 2n, we set

N(A) - {number of negative eigenvalues of A)

N(A) - (ntmber of nonpositive eigenvalues of A) ,

and

e(A.,) - ( A) - i(xiE + a)
keg

Observe that O(A,3) is a finite number. In fact for k big enough

N(ikJ + A) - U(ikJ + 8) - n. Let o(A) denote the spectrm of an Heruitian matrix A. If

(0.10) oioJHsz ()} a - !

and

(0.11) o(iWcmjf %(0)) fl Z =

then O(enw a(), oe s(0)) * -4(Waa (0), OR ()).

We prove the following theorems

Theorem O.S. Suppose that U satisfies (0.8), (0.9), (0.10) and

(0.12) R (-) is positive definite

(0.13) V(s) ) 0 for every z e n2n S.t. X(a) - 0,

then (0.1) has at least 1/2Pf(wsff 33t-). OzU(0)) non-constant 2ww-periodic solutions

whenever e(uf as), ouss (0)) > 0.

-5-
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If the assaWtions (0.12) and (0.13) are replaced by the following ones

(0.12a) RUs(O) L positive definite

(0.13a) 3(a) 4 0 for every 6 321n S.t. NE(W) - 0
1

then (0.1) has at leasnt e(wuze(0) , MRe (-)) non-constant 2wu-periodic solutions

whenever e(.fs8(0), Manz(-)) > 0.

Remark 0.6. The first part of Theorem 0.5 is contained in Theorem 5.1 in (B21. So Theorem

0.5 can be considered as a natural complement to the results of [92). Conditions k0.12a)

and (0.13a) are dual to (0.12) and (0.13). However the proof of the second part is much

more technical in nature.

Remark 0.7. The assumption (0.10) is a'non-resonance condition. if (0.10) does not hold

the sme conclusion of theorem (0.5) holds if we replace (0.10) by the following

assumptions

(0.14) Hta) - 1/2 (Ra(z)1) )' c1 1ai - c 2

(0.15) In()I c c3 + cI4zlB

where a ) B ) 0.

From Theorem 0.5 the following corollary easily follows:

Corollary 0.8. If H(W) satisfies (0.8), (0.9), (0.10), (0.12), (0.12a) and

(0.16) HX (z) 0 0 for every z e a 2n- (0)

then the system (0.1) has at least

2 I(WH (-), w Hzz ( O ))I

2ww-periodic solutions.

Aman and Zehnder in EAZ2] have obtained a similar result using, instead of (0.12) and

(0.12), the stronger assumption of uniform convexity of H(x).

This paper is divided in two sections. In the first section we have some abstract

theorems. In the second one we apply these theorems to obtain the results which we have

just stated.



1. sonUAYC CRZIXC*I. IOIM morms36.

1. R ateinents of the Abstract !esult*.

sefore stating the min results of this section we shall introduce smnotations And

definitions. We denote by 3 a real Bilbert space, by (-,-) the scalar product in 3,

by 11the norm in B. By C1I (3.3) we denote the space of Vrechht differentiable maps

from 3 to 3 and, if f C 1 CI(3.3) by f'(u) its derivative at u 6 3. We shall

identify 3 with its dual 3' so that V eC(3.3). For u e and R >0 we set

S(u.R) - IV e XliV - wE '. R). % - 3(0.3), S R 33 * Let G he a compact Lie group and

let r t G + 11M3 be a representation of G on the group of the unitary linear

transformation* on Z. we set G - r(G).

Definition I.*I * A functional f on 8 is called 0-invariant. if fo? - f for every

T e a.

Definition 1.2. A map h from 3 to 3 is called 40-equivariant if ho? - Toh for

every T e G.

Definition 1.3. A subset A C 3 is called 0-invariant if T(A) - A for every T e G.

Sometimes, when no ambiguity is possible, we will write OG-invariantO, and Or-

equivariant" etc. instead of 00-invariantm etc. We set fix 0 - u a 31F(u) - u for

every T eG). if u eN the worbitof u in the sot IT(u) T: e G). In the sequel we

shall consider Q - 32 or G - 81- fz e C1 jai - 1). Moreo ver if L is a linear

operator on 3 we denote by a(L) the spectrun of L.

in the sequel we will be concerned with functional. f e C I(3,R) satisfying the

following assumptionst

(fl) f(U - 1/2 (Lu~u) - CO.u) where

Mi L is a continuous self-adjoint operator on 3

(ii) e c (3,3). *(0) 0 and #1 is a compact operator.

.4

-7-



0f2) (1) t - 0 MA where the Nus are *igonspaces of L (which might be infinite

dimenaional).

(I) 0 is a regular value for L or it is an isolated eigenvalue of finite

multiplicity of L.

(f 3 ) given c e 10, 4-(, every sequence (u, for which (f(ur)' * c and

If'(ur )Iu rI + 0, possesses a bounded subsequence.

We sot

+ M 1' 30
M -hker L

1>0 A XCO

and let P _, P and P0 be the relative orthogonal projections. Then
00

(1.1) 3 a"0 Z 0 0 e"

In the case In which + (reap. X-) is finite-dimensional f is bounded from above (reap.

from below) modulo weakly continuous perturbations. In fact we can write

f(u) - 1/2 (LP+uP~u) - 1/2 CLPu,P~u) - #(u) and if, for example, dim 9" < +- then

#(u) =
1
/2 (LP_u°P u) + flu) has compact derivative. We shall consider the case in which

f can be "strongly indefinite", i.e. e and i" are both infinite-diaensional, as it

occurs in the study of periodic solutions of Hamiltonian systems.

Theorem 1.4. Let f e C (R) be a functional satisfying (f), (f 2 ) and (f 3 ). Moreover

we suppose that a unitary representation of the group SI acts on 3 such that

(fd L and *' are 81-equivariant

(f5) there exist two closed linear subspaces Vw C 3 such that

(i) V and N are S
1 

invariant.

(ii) dia(V nl W) ( 4-, codia(V + W) < +

(iii) Fix(S
1
) C V or Fix(S

1
) C W

(iv) there exists positive constants Co  and p such that

f(u) o Co  for every u e v o s

(v) there exists C. e R such that f(u) C C for every u e w

(vi) f(u) < Co  for u e Fix(S
1
) s.t. fV(u) - 0. Under the above assumptions there

exist at least

-8-



1/2 (dim(V n W) - codim(V + W))

orbits of critical points, with critical values in [C 0 C1 ]

we have another theorem for even functional, i.e. for functionals invariant for a Z2 -

action.

Theorem 1.5. Let f e CI(Z,.) be a functional satisfying (fI)' (f2 ) and (f3 ). Moreover,

we suppose that

(f4
1
) *' Is odd

(fs') there exist two closed linear subepaces VV C I which satisfy (f5 )(ii), (f5 )(iii),

(f5 )(iv), (f5)(v).

Then there exists at least

dim(V n W) - codim(V + w)

pairs of nonzero cr. qcal points with critical values greater or equal than CO .

Remark 1.6. In the Theorems 1.4 and 1.5 the assumptions (f2 ) and (f3 ) replace the well

known conditions (c) of Palais and Smale (P.S.) used in similar theorems. They do not

imply (P.S.), but a weaker condition (i.e. (i) and (ii)) of Lamma 3.4), which has been

introduced by G. Ceraml (of. [Ce]j cf. also [BBP]). The conditions (f.) (reap. (f5')) are

geometrical assumptions, which allow us to give a lower bound to the number of orbits

(rasp. pairs) of critical points of the functional f.

Remark 1.7. Theorem 1.4 generalizes Theorem 4.1 of (82] in two points. The assumptions

f2) and (f3) are easier to verify than (P.S.). This fact allows to treat Hailtonians of

the form (0.4). Moreover in [32] the assumption (fS)(iii) is replaced by the stronger

assumption

Fix SI C W

This generalization permits us to obtain the second part of the Theorem O.S.

Remark 1.8. If in Theorem 1.5 f2) and (f3) are replaced by (P.S.) and V (reap W) is

finite-dimensional, then we get a variant of a theorem of Clark [Cli1 (reap. Ambrosetti -

Rabinowitz EAR]).

in the case in which the functional f does not exibit any symmetry, we have the

following theorems

-9-



Theorem 1.9. Let f e C (3,3) be a functional satisfying (f,) (f2) and (f3). Moreover

suppose that there exists a L-invariant subspace V C 3, an eigenvector * e V of L,

and positive constants R,, R2 # Cal C with 0 < C 0 < C and P(-CR, such that

Mi sup f(Q) - C,, 
i

C1i) inf f CS % nv) C 0

(ii) sup f (3Q) 4- 0

where Q - {a + via e 'VL R ,v e T, T - {telt e [0,R1 .

Under the above assmptions f has at least one critical value c e (C.0 C.

Remark 1.10. Theorem 1.9 generalizes Theorem 0.1 of senci-Rabinowitz (SRI, because (f 1),

CfM) and Mf ) are weaker assumptions than the respective assumptions in (DR). This fact

allows us to obtain the Theorem 0.3, which applies to Hamiltonian of the form (0.4).

Remark 1.11. Using the techniques developed in this paper it in possible to generalize

also Theorem 4.11 of (BRI (cf. (Cal).

Remark 1.12. The assumption (f 2)(1) is not necessary. In fact, if it does not hold, we

can replace the inner product of Z with a new inner product such that Cf 2)(i) is

satisfied.

The new inner product is defined as follows Cu,v) N - CLP~u,v) - (LP u,v) + (P 0 u~v).

We observe that every T e a is a unitary transformation also with respect to the new

inner product. If we define a linear operator L:3 + a as followas

Lu-u. if u e z

Lu -- u if . e 3

Lu-ao if u e z

then we have

(La,v), - (Lu'v)

and

f (u) - 1/ (L u, u) N + lu)

so the function f satisfies (f1). (f2) and (Y4 or (f4 ') in Z equipped with the new

inner product. Since (f3) and (f.5) essentially are topological properties, they are as

well satisfied (of course minor changes are necessary). Then Theorems 1.4 and 1.5 hold

-10-



without assumptions (f 2 )(11). a milar remark can be done about Iteorem 1.9. However, in

the applications which we consider In this paper, assumnption (f )(ii) Is satisfied.

-11-



2. Index and Pseudoindex Theory.

In this section we recall some notion (as the notion of index theory) and some

theorems which are often used in the critical point theory.

First, some notation is necessary. We get

Ns(A) - {u e z I diet (u,A) 4 6)

where diet (u,A) denotes the distance from u to A. For f e C (3,R) and c e a, we

set

Kc - (u e 3 I f'(u) = 0, f(u) - c)

Ac {u e 3 I f(u) ( c.

Definition 2.1. Let E be a Hilbert space on which a representation r:G + r(G) C U(I)

of a compact Lie group G acts. An index theory is a triplet {} , U,i} where

is the family of G-invariant closed subsets of E

R is the met of G-equivariant continuous mappings

i I + V U {) is a mapping, which satisfies the following properties:

(a) i(A) - 0 if and only if A =

(b) if A C B then i(A) C i(B) for all A,D e

(2.1) (c) I(A U B) < I(A) + I(B) for all A,B e

(d) if A e Y in a compact set, then there exists 6 > 0 such that

i(N(A)) - iA)

(e) i(A) ((h(A)) for every A e Y and for every h e N.

Definition 2.2. We say that an index theory satisfies the d-dimen ion property (d e 8)

if

i (n r V) din Vi(Bfl f V) -
d

where V is a finite dimensional, 0-invariant subspace of E such that V Fix(G) - {0)

and fn is a bounded invariant neighborhood of the origin.

The Definition 2.2 makes sense, because, in the examples which we know, if V is as

before, then the dimension of V is a multiple of some integer number d.

In the applications we shall use the following index theories:

-12-



Example 2.3. The Krasnoselski genus can be considered an index theory wLch satisfies the

1-dimension property related to the group Z2 - (0, 1), where the representation is given

by To - identity and T antipodal mapping (cf. e.g. [K], [R3 1, is2).

Example 2.4. If G - S fw e t I lvw - 11, then the homological index defined in (F.R.)

or the geometrical index defined in [BI| satisfy the 2-dimension property for any

representation r : G * U(M).

We refer to [Ba] for an abstract construction of an index theory.

In the following theorem we shall list some property of the index which will be used

in this paper.

Theorem 2.5. Let {.,i} be an index theory which satisfies the dimension property.

Then we have

.1
(i) if (Fix(G)] in infinite dimensional, and A n Fix(G) po j6, then i(A) - +

(ii) if V e I is a finite dimensional space and A C V - Fix(G) then i(A) (
d

(iii) if A nl Fix(G) - and i(A) > 2 then A contains infinitely many distinct

G-orbits

(iv) if h e N is a homeomorphism, then i(h(A)) - i(A)

For the proof of this theorem we refer to 1BI and (B2 ] .

Definition 2.6. Given an index theory {3.,uli} and a group of homeomorphisms N* C 3,

for every As e I we set

ie(A,BN*) - min i(h(A) r) B)hen*

{,e triple {X,*}*) will be called pseudoindex theory (cf. [B21 or EBBF]). When no

ambiguity is possible we shall write i*(
•
,*) instead of i( o o 

•B).

Definition 2.7. Given a 0-invariant functional f e CI (,R) and a group of

O-equiveriant homeomorphism N*, we say that f satisfies the condition (a) in

la,( (- C a < B 4 + -) with respect to 3* if for every c e ]*,0[

M) K is compact

(ii) for every N - Na(K € ) there exists n e r* and a constant C > 0 such that

(a) [C-t, C+9) C )U,0

-13-
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(b) n(Aaft N) CAc

The concept of paeudoindex and the property (B) are related to the critical point theory by

means of the following theorem.

Theorem 2.8. Let f 6 C(IIR) be a @-invariant functional satisfying the condition (B) in

)*,0( with respect to V'. Given Dr 6 I we suppose that

(I) sup f(D) - C < 5

(2.3) (1i) inf f(P) - co  a

If we aot

rk (A ) I i*(A,?,H*) k)

then, for k I ,...., the numbers

ck - inf sup f(u)
Ae k ueA

are well defined, are critical values of f and

CC c . c Co c ..... Ic -

Moreover if c ' c k . ....... . ckcr (k>lk+r i), then i(K.) ) r + 1.

The proof of this theorem follows standard arguments of the critical point theory and

it will not be given here (see e.g. (B.B.F.]).

Remark 2.9. If Theorem 2.8 holds we cannot deduce that f has at least R distinct

orbits of critical points. In fact it might happen that

C1 - ..... = OR - c

and K - (G where 4 Fix(G).c

Then in this case, by Theorem 2.5(i), we have i(K ) - + , but we have only one orbit of

critical points i.e. (Z . However if i(Kc) ; 2 and Kc r Fix(G) = #, by Theorem

2.5(iii) deduce that Kc contains infinitely many distinct orbits. Therefore if the

assumptions of Theorem 2.8 hold, we can deduce that one of the following alternatives

follows

(a) there exists at least one critical point u e Pix(G)

(b) there exist at least R distinct orbits of critical points.

-14-



Wow we shl "Mng the analogous of 2hoorem 2.6 in the case in which the function&l has no

symmstry. in this case we can suppoee that the function is -eqtivrlant vith respect to

the trivial group 6 - (1d). 2hen the property (9) makes sense.

Definition 2.10. Given two nete D and F and a group of homomorphims K we sy that

D and F, I-Intersect if

h(D) n F for every h K

theorem 2.11. Let f 6 C
1
(3,I) be a functional satisfying the property (8) in Ja,B(

with respect to K and let Co, C. e R be two constants such that

(1) sup f(D) C. <

(2.4) (I1) inf f(F) - CO > a

(iii) F and D K-intersect

Then f has at least a critical value a 0 (Co t C* ]. The proof follows standard argunents

and it will not be given here (at. e.g. [3.3.?.]).

= -1S-

m*



3. A Deformation Theorem.

In order to prove Theorems 1.*4 and 1.5 we want to use Theorem 2.8.S The crucial point

is to determine a class of equivariant homeomorphiems V such that

(1) if (f 1 ), (f 2 )1 (f 3 ) and (f4) (Orff 4')) hold, f satisfies the property

(3) with respect to uE

(ii) if (f.) (or Uf5') hold), then

the pseudoindex i(,,) can be estimated by means of dia(V n W) and

codim(V + W).

1n order to define 8* we need the following lea,

Le 3.1. Suppose that L satisfies (f 2 )() and (f 2 (ii). moreover suppose that L is

0-invariant, where G is a unitary representation of a compact Lie group G. Then

(3.1) a3-0 3

where the Bile are 0-invariant and L-invariant finite dimensional subsaces, orthogonal

with each other.

Proof. If u e ~A then LTU - M~u m T)~u - XTu for every T e 9. So every oigenspace

of L is 0-invariant.

Then by Peter-Veyl theorem K~ can be decomposed in finite dimensional 0-invariant

subspaces orthogonal with each other

Of course, the spaces Rile constructed in this way, are L-Invariant because they are

subspaces of an eigenspace of L. 0

Now we define the class N* as follows:

Definition 3.1'. Let U be a class of continuous maps U : 3. +3 such that

(V1 ) U is bounded

(V2 ) U(u) - *a (0 (u)u where a : 3 + R is a 0-invariant functional.

Clearly every V e 0 Is 0-squivariant.

Let 3 be a class of continuous maps b Z 3 s uch that

Cb1 ) b is O-equivariant and bounded



(b2 ) for every R > 0, there oxists a finite set of indexes I(R) C S such that

m y C * 31 •

Finally we define 3* as the class of all maps h such that

(J) h Is an homeomorphism

(33) h-U o +b o  where UeU, bo e

(1q) h"1  U1 b 1  where UI e U, b1 e a

(1%) h(O) 0 .

Obviously Ve  is a nonexpty class of bounded 0-equivariant homsomorphisms. It is not

difficult to prove the following fact.

Proposition 3.2. R* is a group of homeomorphisms.

Proof. By the definition of 3*, it is sufficient to prove that it is closed under

composition. Given

hlh 2 e Pp, we set hi - ui + bi - eai ()L[-I + biC.), (I - 1,2)

Then

hj(h 2 (u)) - V(h 2 (u)) + blh 2 (u))

(3.2) - e 0h 2 (u) + bl(Yu))

= sy)L hh2 (u)] + b1 u)

where y(u) -aI[h 2 (u)] is a 0-invariant functional and b1 (
,) = bI(h 2 ()) e a. Then by

(3.2), we have

hl(h 2 (u)) = Y(u)L[.* 2 ML[u]b2(u)] + b1 u) -

(Y(u)+u 2(ul L(u, + Ylrh(u)L + bllU) -

a (1 (bb2(u) + 2b(u) +

where B(u) - Y(u) + a2(u is a 0-invarlant functional and b2(
" ) -e()L b2(])j ea. 0

-17-
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wrom now on V will denote the class of homeamorphisms just defined and

I*(*,*) - i*(.,., W*).

The rest of this section is devoted to prove the following theorem:

Theorem 3.3. Suppose that f e C I MR) satisfies (fl), (f2 ) and (f3 ) and that it is

6-invariant. Given c > 0 and a neighborhood N of K0, there exists constants

> e > 0 (with F (c) and an operator n : 3 + 3 such that

(a) MA aft-N) C Ac.€

(b) n - U + 8 6

(c) U(u) - u, S(u) - 0 for every u 4 f- (C-c, 04]).

In particular f satisfies the condition (B) in ]0,+-( with respect to U' (cf.

Definition 2.7).

The proof of Theorem 3.3 is based on the following lemmas:

Lema 3.4. If f satisfies (fl) (f2) and (f3 ) then we have:

(i) every bounded sequence fuk) C f -(10,-C) such that f'(u k ) + 0, admits a

convergent subsequence

(ii) for every c > 0, there exist constants e, R, b, M • 0 such that

(a) Cc-c, c+] C 10,4-1

(b) If'(u)I-Iul o i for every u e f-l(c-e,c4c]) n(3-)
R

(iii) for every c > 0, Kc  is compact

(iv) for every c and R > 0 and for every neighborhood N of Kc, there exist

positive constants £,b such that

If'(u)I > b for every u e (A - )- ) (B -IN)

Proof. i) We put

S - L + X~P
0

where A0 o and Po is the orthogonal projector on ker L. Clearly S is a bounded

invertible operator. Now let uk be a bounded sequence such that f'(uk) * 0.

Then we can write

L uk '(uk) vk

with vk .0. Then we have
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or

since P0  and *.are compact operators, there is a subsequence u3 1  such that P'

and *'(u' ) converge. Thus Su'k converge.Sne8i netbeucnegs

(Ii) we argue indirectly and we suppose that there exists c IS bo.+-[ such that for

every a e63 there exists Cn 3 for which

n n n

UIf- ((c-,-c4 III (Z-2).1 ~ ~~Then, for n. + -. we have Ifu)Iu *0

Eu I + +

f(U

and this contradicts (f3 ).

(ill) From (ii) it follows that K, is bounded. Because of the continuity of f

and f',K 0 cIs closed, and by (1) it follows that it is compact.

(iv) It follows from (I) and standard arguments. 0

The conditions (i) and (Ii) of the above lemma can be considered as a weakened version

of the well known condition Wc of Palais and Susie (cf. Remark 1.6).

LamBa 3.5. Let k1 3~ + be a compact operator. For every c > 0 there exists a

compact operator 31 z3. +3 such that:

(a) k1 is locally Lipschitz continuous

Mb 131(u) - k(u)l*(1 + NOt) 1C e for every u e Z.

moreover, if k1 Is a-equivariant, k can be chosen G-equivariant.

Proof. The proof follows the same argument as lea 3.2 in (B2I.

Lome 3.6. Let k i 3Z +3 be a locally Lipechitz continuous, G-equivariant, compact

operator. 11or every R >0 and C ), 0 there exists an operator b 0 such that



(a) Ik(u) - b(u)l < e for every u 6 BR

(b) b is locally Lipschita continuous.

Proof. Since k() is relatively compact, for every e > 0 there exist a finite set of5

points •.. y uch that k(B)C U (yi,). Let n e 3 and met Pn the projector
n 2m

on 0 St. If n is big enough, we have
i--n

ly PyLI C Vi e f1,...,m}

Consider now the operator

n~ P1 ( UlPny I, nn + i• b (a) - -1

i--n b ! i(u)

=i-

where P (u) = dist(k(u),9 - (B(y 1, 2)). It is easy to check that b Is a bounded, Lip.2o

continuous operator and that for every u 6 BRIk(u) - b(u) I < . To prove that b can

be chosen O-equivariant it is sufficient to repeat the arguments of Lemi 3.2 in [32 1- 0

Lema 3.7. Let k + 3. K be as in Lema 3.61 given e > 0 there exists an operator

b 6 3 such that

(a) I *u) - b(u)l.(1+Iul) < E for every u e a.

(b) b in locally Lipechitz continuous.

Proof. Given )- 0, by Lema 3.6 for every n e m there exists a locally Lipechitz

continuous operator bn t Sn+1 * Vn-1 such that

(3.3) Vn+ 1  0 Ri for a finite set 1(n) C 3
ie!(n)

(3.4) Ik(u) - b n(U)l < 2(n1) for every u S Bn+ 1

For every n 6 N we consider a non-increasing map Xn(t) 6 CI(3( 0,1s) much that

1 if t e [O,n]

Xnlt) -

a '10 if t 6 n + 1/2 .- 1.

we set
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bn(u) if u 8 e.

bn(u) -

10 iLf U 0 Se+ 1 •

We define a sequence t cn s + I as followst

Cl(u) - bl(u)

(3.5) c2(u) -Xl(lul) c C(U) + (1-ZlIlU)b2(u)

c n+(u) - Xn(Iul)cC(u) 4 (1-Xn(lul))b n+(u)

We observe that if u e %n 'n(u) - Cn+l(u) - ... . We set for u e E

(3.6) b(u) - list Cn(u)

Clearly b e 3 and satisfies (b). Let us prove (a) if u e e+ 1 'e have

lb(u) - k(u)l - ICn+1(u) - k(u)k -

IX (lul)c n(U (1-X (ul))b n+(u) - k (u) -

(3.7)

- IXn (lul)(c n(u) - k(u)) + (1-Xn(lul))(b n+(u) - k (u))l C

C Xn (lut)c (u) - k(u)t + (1-x n(lul)) lb n+1 (u) - k(u)l

Since If u 0 Be+ 1, bn+.(U) - bn+1 (U), then by (3.4) we have

(3.8) b n+(u) - k(u)l < 2(n+2- if u e B n+1

To prove (a) it io sufficient to prove that, for every n e w, if u eS n
°£

(3.9) Ib(u) - k(u)I < e-

In order to prove (3.9) we argue by inductions

if n - t by (3.5), (3.7) and (3.8) ve get

Ib(u) - k(u)l -Il(u) - k(u)l ,b1 (u) - <(u)l ( •

Now suppose that

-21-
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(3.10) Ib(u) - k(u)l for every u e B

we have to verify (3.10) for u e Be+ 1 - 8n .

We observe that for u e Bn+1 - an' cn(u) - bn(u). Then by (3.4)

(3.11) Ic (u) - k(u)I - Ib (u) - k(u)I - Ib (u) - k(u)l <
fl n n 2(n+1)

Then for u an+ 1 - Dn by (3.7), (3.8) and (3.11) we get

(3.12) Ib(u)-k(u)I 4 X (Iul) +(1-X (lUl)) < -

n 2(n+1) n 2(n+2) 2(n+1) 1+(n+1) 1+IuI

Finally by (3.10) and (3.12) we have that
C

(3.13) Ib(u) - k(u)I < 1+1- for every u e Bn+1 and (3.3) is proved. 0

By Lema 3.5 and 3.7, we get the following lemma:

Loma 3.8. Let k : I + Z be a O-equivariant, compact operator. Given C > 0 there

exists a bounded operator b e a such that

(a) Ik(u) - b(u)l-(1+Iul) < C for every u e Z

(b) b is locally Lipschitz continuous.

Now we can prove the Theorem 3.3.

Proof. Given c e ]u,B[, by Lema 3.4(11), Kc  is compact, hence there exists 6 > 0

such that N D Ma D X, where Na = Na(K c). Moreover, by Lmemm 3.4 (iv) there exist

> 0, and b > 0 such that

(3.14) If'(u)I > b V u e (A - -A -) n (B- -/
C+C c-) n 'R'/8)

We can aessue that R is big enough such that B > N Also we can assume that
8

(3.15) < 6b
CC12

Let y > 0 be such that

(3.16) y < min{i

By Lamena (3.8) there exists a locally Lipschitz continuous operator b e a such that

(3.17) Ik(u) - b(u)I 4 Y for every u e •l+lul

We sot 8 - (Ac+ -C) N -A/, S1  S n B
R S2 - - B. By (3.16) and (3.14) we have

(3.18) Y < < lf'(u)I for every u e S1
lFlul 4 4

and by (1.16) and Lemme 3.4(11) we have
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(3.19) for every u 6 2

Thus, by (3.12), (3.18) and (3.19), 1
(3.20) Ik(u) - b(u)I ( 

1
/41f'(u)l for every u e s

We observe that if u e S

ILu b(u)l - If'(u) - (k(u) - b(u))I )

A If'(u) - Ik(u) - b(u)I

then by the above inequality and (3.20)

(3.21) ILu + b(u)l ) - If'(u)I > 0 for every u e S

Now we set

(3.22) V(U) - 2 Lu+b(u) for every u e S
ILu+b(u)

2

By (3.21) we have

(3.23) IV(u)u -C for every u e S

3If'(u)t

then by Loea 3.4(11), (3.14) and (3.23)

(3.24) IV(u)I < K 1 + K21ul for every u e 8

where K 1 and K2 are positive constants.

Now we observe that if u e S, by virtue of (1.23),

Ik(u) - b(u)l 4 
1/ 4 1f'(u)l -1/41Lu + k(u)U 4

-
14Lu + b(u)I +l/41k(u) - b(u)I

then

Ik(u) - b(u) I IC ILu + b(u) I

From the above inequality, we get

<Vu),f ()> - :
I +b (u )  

2
bV(u),f'(u)> 2 2

2 
Lu+k(u)> -( - 2 <Lu+b(u),Lu+b(u)-b(u)+k(u)>

ILu+b(u)I ELu+b(u)12

(3.25)

- 2 2[ILu+b(u)I
2 

+ Lu+b(u), k(u)-b(u)>]

I Lu+b(u)I

) Lu+b(u)l'lk(u)-b(u)l ) 2 - 1 > I for every u e 8

ILu+b(u)1
2

Now ye consider a Lipschitz continuous, functional 1 2 R t such that
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( 0 if u 0 f'I([c-7,c+]) or u e N
(3.26) *(u) -l -15/

I if ue f1-((c-Cc+C) - N/ 4

where e - e. can assume that # is 0-invariant. We set
2

( -#(u)V(u) if u e s
(3.27) (u ) 0 if U #S

Consider now the following Initial value problem

(3.28) dt u e E
n(o) " u

Since V is loc. Lipschitz continuous, by (3.24) and standard arguments, it follows that

for every u e E, (3.28) has a unique solution n : R + E and if we denote by n(t,u)

the flow relative to problem (3.28), then n(tu) : I + 9 is a bounded homeomorphism.

In order to prove the part (a) of the theorem, we observe that for u e 2,

f(n(t,u)) : R + R is not increasing. In fact we have

T f(n(t,u)) -<f'(n(t'u)), d t u)dtd

(3.29)

- -*'(r(t,u)) < f'(n(t,u)), V(n(t.u)) >

We set Q - (A C ) -M6/4 *

By (3.25), (3.26) and (3.29) we have

( -1 for u Q

dt(3.30) d- f(n)(t,u)) ( 0 for ue• 8 lQ

- for u 0S .

If u e Q and t' e e+  is such that n(t,u) e Q vt ejo,t') then by (3.30)

(3.31) 2 £ > f(1(o,u)) - f(n(t',;)) - - IT' f(n(tu))dt a t'.
0

Moreover If t" > t' Is such that n(t,u) e Qfn S for t a (t-,t-1, then by (3.14).
R

(3.23) and (3.27)
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to
5vn(t',u) - n~t',a)I = I f V ( (t, f)dtI

to
(3.32)

8 t m  8 St"

t I f' (n(tu))l 3b

Finally ws set n(u) - n(Z,u) - n(2c,u) and Y = (A -A.) -M Since Y C Q if
cc N6 .

u e Y by (3.31) there exists t e (0,Z) such that either n(Zu) * ILc. or

nit,u) e N/4 - -" The second of these alternatives is not possible, in fact if

n(iu) e x./4 - A... then there exist t',t" e (oj), with to < t", such that

n(t,u) e Q r' i for t 0 It',t") and f(t*,u) e 3Q. Then by (3.32) we should have

(3.33) 2 b

and this contradicts the fact that t" t ( C. tence n(,u) e A c* Then by (3.30)

n(c,u) e A
c-C

Thus the part (a) of Tfheorem 1.24 is proved.

Zn order to prove 1b), we set

-2#(u)
ILu + b(u)l

so the Equation (3.28) becomes

(334) dt- *(n) (Ln~b(n)](3.34) at

n(o) - u

Following an idea of Hlofer (H) we set:

t-9
(3.35) a(t,s,u) - T *(n(t+s,u))dt

a

Easy computations show that the Cauchy problem (3.34) is equivalent to the following

integral equations

t

n(t,u) - ealto, u) Lfu + fC G (5 u)L((j'l(s,ub(ln(,u)]ds
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In fact n(Ou) - u and

al" d) alt,o,uiLeClt'o'u)L (u) + 00(t,t,ulL[i lnlt'ullblnlt,ul)]

dt dt

+ t d a(t,@,u)Lea(tSu)L [ (n(s, ))b(n(su))]ds
0

- j(nltu))Le1a(t#u)L[u] + (ri(t,u))bln(t,u))

t ,(n(tu) lG~alsu) ((f(,u))b( (s,u))]a

0

- C(t,u))L(e
t
.
°
,
u lL 

+ f t [tsu) [*(n lSu))btn( u l)]ds)

+ T(r(t,u))b(r(t,u))

. *(n(t,u))Ln(t,u) + T(n(t,u))b(n(t,u)) -

- j(n)Ln+bn) •

Observe that, since the operators of a are unitary, T is a-invariant and by (3.34) and

(3.35), n is G-equivariant and a (t,u,') is ;-invariant. Then if we set

O(u) - 0a(tou)L u

t
D(U) - f a ts'u)L (#(n(t,u))bln(t,u) )d@

0

it results that U e 9 and B e 9, moreover n (u) = n(-t,u), then (b) is proved. by

(3.26) and (3.27) it results that r(t,u) - u for every u 0 f ([c-,cec]) and every

t e it. Then from (3.26) and (3.35), it follows that a(t,s,u) = 0 for every

u e f I([c-Z,c+e]) and every t,s e R. Therefore, by the definition of U and 3, (c)

follows.
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4. Pseudoindex Evaluation.

In the previous section we have shown that f satisfies the property (a) with respect

to the class 3'. In this section we shall compute the pseudoindex of some subsets of 2

with respect to the class 3' provided that G satisfies the dimension property.

More precisely, we will be concerned in proving the following theorem:

Theorem 4. 1. Consider two 0-invariant closed linear subspaces V,W C 3 and a bounded

0-invariant neighborhood of the origin 9. Suppose that

i) Fix G CW (or Fix G CV)

(4.1) (ii) dim(V n w) < 4-, codim(V + W) < 4-

fill) the index theory i satisfies the d-dimension property (cf. Definition

2.2).

Then

dim (VOW) - codim(V+W)(4.2) i'(S rt V,W)) d

The proof of Theorem 4.1 is based on two leamas.

Lema 4.2. Let VW,Z C Z be 0-invariant, finite dimensional subspaces (V,W C Z), and

n be a bounded 0-invariant neighborhood of 0. Given a 0-equivariant bounded continuous

map h : z + r, we suppose that

(i) Fix G C w

(ii) the index theory i satisfies the d-dimension property.

(iii) h(3 n v) c z

then
dim(V 0 W) -codimz (V+W)

(4.3) i(h(lD n V) n w) ) d

Proof. We set S - 30. We distinguish two cases

Case I V) Fix a (0)

Case II V n Fix a - (01

In the Case I we have that

V n s r Fix G 6 16

Since h(Fix G) C Fix 0,

h(S n V) n Fix G D h(V ( S n Fix 0) 0 Fix G 0 i.
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Using assumption (M) and the above formula we have

h(S n V) 0 Fix 6 wl V
1 

i.

Then by Theorem 2.5(i), it follows that

i(h(V n s) r N) -W)

Therefore, in the Case I, (4.3) holds.

We now consider the Case 1I. Since W is finite dimensional, h(S f V) r W e is

compact. Then, by (2.1)(d), there exists N - N (h(S n V) n f) such that

(4.4) i(N) - i(h(S () V) ) W).

We set

A1  h(S n V) r) N
(4.5)

A2  h(S r V) - N

Obviously A1 , A2 e 7 and

(4.6) h(S n V) - Al U A2

Since V n Fix(G) - {01, then

dim Vd - i(S rlV) (by the dimension property, cf. Def. 2.2)

4 i(h(Sfl V)) (by (2.1)(e))

(4.7) 4 i(A1 U A2 ) (by 4.8 and (2.1)(b))

4 i(A 1 ) + i(A2) (by (2.1)(c))

By (4.5), (2.1)(b) and (4.4) we have

(4.8) i(A I ) ( i(N) - i(h(s n V) n w)
i

Let W denote the orthogonal complement of W in Z and let PW denote the relative

Iorthogonal projection. P is a G-equivariant map, then, by (2.1)(c)

(4.9) i(A2) C i(Pw A2 )

By the construction of N, (P A ) C V
1 

- (0), then since Fix G C W,
PW2I II

I A ) C I - (0) - W I Fix(G)
PW2

Therefore, by Theorem 2.5 (11)

(4.10) i(P W A 2 CW2 d

By (4.7), (4.8), (4.9) and (4.10), we get

dimV C i(h(S r) V) r) W) + dim W1
.

d d
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By the above formula we haves

(h(srV)nW) dim V -dim WI dim V - co V
d~( ) ) d C

Lem 4.3. Let the hypotheses of Lema 4.2 be satisfied with (i) and (iii) replaced by

I

(i') Pix G C V 0 Z

(iII') (a) h is a bounded homeomorphism

(b) h(fl rZ) C Z

(c) h() - 0.

Then dtm(V nw) - codim (V+W)

(4.11) i(h( n V) ,lu) d

Proof. To shorten the notation, we set 8 - 3a. Since h(S r) V) N W e is compact, by

(2.1)(d) there exists N = N (h(S r V) r) W) such that
£1

(4.12) i(N) - i(h(S n V) n w)

There exist constants £2, 3, > 0 such that

(4.13) N DN 2(h(s nV) n W) Dh( 3(s n v))f r w h(S n v) f w Dh(S nry) r W

where V = N (V) n Z. By the above formula and (2.1)(b) it follows that

i(N) ) i(h(S r) V ) n W) l i(h(S () V) n W)

Then, by (4.12),

(4.14) i(h( nlV ) fl) i(h(S nlV) nw)

We now set

Then Z - V U R and

h(S ) Z) n W - [h(S v ) n w] U (h(S n R) n W1i

By the above formula and (2.1)(c), we have:

i(h(S nZ r)f W) < i(h(S rV) n W) + i(h(S n R) n w)

Comparing this ineqmality with (4.14), we get

(4.15) i(h(8 n V) n W) ) i(h(S n z) n W) - i(h(S n R) n w)

Now we shall give an estimate to the terms on the right hand side of (4.15). Let V

denote the orthogonal complement of V in z and P I the relative projection.

Obviously I Is equivariant. Moreover, by (I'), PI RC Vl 
- Fix(G). Then by (2.1)(e)

PV
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and Theorem 2.5(11), we have

(4.16) i(R) i R(PV R) d

Nov

i(h(S n R) n W) 4 i(h(8( R)) (by (2.1)(b))

- 1(3 r) R) (by Theorem 2.5(iv) and (Lii')(a))

(4.17) 4 i(R) (by (2.1)(b))
±

1C din (by (4.16))
d

By (iil')(b) and (c), h(fl r Z) is a bounded neighborhood of 0 in z. Then the set

-(z + :1z e h(A r Z), z e z, Izi < 1)

is a neighborhood of 0 in E. It Is easy to check that

h (01) r) Z) - 3; r)Z

Then

hS r Z) r) W - h( r) fl () fV . 3 n z n w - 3fl V

So, by the above inequality and the dimension property it follows that

" din V
(4.18) i(h(S r) Z) n W) i(an r W) )

(In the above formula we have to use the inequality because it might happen that

a0n nW nFixG##; cf. Theorem 2.5(11)).

Finally, by (4.15), (4.18) and (4.17) we conclude the proof:

(h(S r) Z) r W) ) dim W dim VI dim V cod 0

d d d d

Proof of Theorem 4.1. We set s - 3fl and

92 -VnV

1= orthogonal complement of Z2  in V
(4.19)

33 - orthogonal complement of 32 in N

34 -orthogonal complement of 1 0 92 * 33 in .

We have, obviously, that V - El S 82 - 2 * 313 3- El • &2 * 33 • . We observe,

also, that the subepaces Elf 221 R31 R.' defined by (4.19) are 0-invariant. Let

h - U + b e NC and Z C 3 be a 0-invariant, finite-dimensional subspace such that

R2 C Z, a4 C Z, b() C z
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Then

(4.20) h(A n Z) c z

Zf we net Z1 21 n Z, Z3  3 Z, we have that

(4.21) h(s n V) AN D h(S n V n Z) n W n Z - h(S n (ZI Z2)) 2 Z3 )

If we sot V - zi  92,  " a2 * Z3 , we have that V and W satisfy the assumption of

Lame 4.2 or Lea 4.3 depending on the fact that Fix 6 C V or Fix G C W. Then by

(4.20), (4.21), Leoma 4.2 and Lema 4.3 we have that

din z - dim
i(h(S r) V) n W) 2 dimlY n 1) - aodim(V41)

d d

By the above formula it easily follows that

i'(S A v~w) • dim (V n W) - codim(V4W+ r
d
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5. Proof of the Abstract Theorems.

Proof of Theorem 1.4. The proof in based on Theorem 2.8. we have to check that all the

assumptions of Theorem 2.8 are fulfilled.

We choose G - S
1 

and 0 - r(G) where r is a unitary representation of S1• By

virtue of Lemma 3.3, f satisfies the condition (B) in ]0,4+[. We set D - V and

F = S r V. Then (2.3)(i) and (ii) follow from (f 5 }(iv) and (v).

By virtue of (fS)(i), (ii), (iii), the assumptions of Theorem 4.1 are satisfied.

Moreover, 0 - r(S ) satisfies the 2-dimension property (cf. example 2.4). Then

-I/2 [dim(v () w) - codim(v + w)]

Therefore c1,...,ck are critical values of f.

By (fs)(vi), it follows that Kck 1 Fix($1) - Ai then the second alternative of

Remark 2.9(b) holds. 0

Proof of Theorem 1.5. We argue in the same way as in the proof of Theorem 1.4 except the

following changes:

G = 52 and 0 - {Id, antipodal map)

The index theory which we use in this case is the genus, (cf. example 2.3). Then 4 - 1.

moreover, since Fix(G) - (01, Kc r Fix(G) - 05 for every c > 0. So the second

alternative of Remark 2.9(b) holds. 0

In order to prove Theorem 1.9, we shall apply Theorem 2.11.

First, we define the class of homeomorphism K as follows: Set

(5.1) K - (h = U + b e N31h(u) - u for every u e f-(]-,0 ] )0 .

In this case e is given by the Definition 3.1' with G - (Id) i.e. no invariancy

property is required for h e a

Now we need a lemma which is a variant of other similar results (cf. e.g. [BR),

(DSP] ).

Lemoa 5.1. Q and S r) V, as defined in Theorem 1.9, K-intersect (cf. definition 2.10).p

Proof. We have to show that

h(Q) fl(S n V) vh e K.

The above formula holds provided that for each h e K the following equations have at least
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one solutions

a e (0,R 1 ] U e vBR2 r) V

(5.2) IPv • h(u + se)l p

P • h(u + se) 0

where PV and PV denote the projections on V and V respectively. Let

h - U + b e X U . e (, , then the second equation in (5.2) can be written

(53) p t(u+se)L (u + .), + P ,(u + me) - 0

Since se 9 V, we have

ea(u+se)L(se) e V

Then (5.3) can be written as follows

(5.4) P 1 e(U+e)L (u)) + P vb(u + me) - 0

Moreover, since u e V we have
a(u+se)L I

* (u) ev

Then (5.4) can be written

(5.5) 0 (u+se)Lu + P vb(u + me) - 0

(5.5) Is equivalent to the following equation

(5.6) u + 0-a(u+se)L (P 1b(u + se)) - 0

Then (5.2) can be written 4s follows

a e (O.R 1], u e B 2 ( V

(5.7) 1P •p h(u + se)l p
-ea( u+e) LPh

u + [P Vb(u + me)] = 0

Dsing a Leray-Schauder degree argument as in [BR) (cf. also [BBF] and [BFI!) it can be

proved that equation (5.7) has at least one solution. 0

Proof of Theorem 1.9. If I is the class of homeomorphisms (5.1), then by virtue of

Theorem 3.3, f satisfies the property (B) in 10,+-[. We now set D = Q and

F - S n V. Then by virtue of Lemma 5.1, 7 and D K-intersect.

Therefore the conclusion follows from Theorem 2.11. 0
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II. APPLICATIONS T0 MMILONIAW SYSTMS.

6. Some astLmatex for the Action Functional.

We Initially introduce some functional spaces we shall need in the following. If

m 11 and t ) I we set

I Lt - Lt(S',IP)•

if a e a we set

We- {u e L
2
(SI

1
2Wn)I ( I + Iji

2
)sIUjkI

2 
< +-

k-i,...,2n

where ujk(" e S, k - 1,...,2n) are the Fourier components of u with respect to the

basis (in L
2
(Sl.l

2
n))

(6.1) *jk - eJtk - coslit)k + Jseh(Jt)lk

where (4 k (k = 1,...,2n) is the standard basis in R2 n . WN equipped with the inner

product

(6.2) (uIv) = (I + Ij1
2
)Suikvjk

j,k

is an Hilbert space. We recall that the embedding We + Lt is compact if t 0/2 - a. So

in particular W 1/2 is compactly embedded in Lt for any t ) 1.

Now consider the Hatmiltonian system (0.2) where W(t,z) is 7-periodic in t. Making

the change of variable t * 2 , (0.2) becomes

(6.3) -Jz - H (wt,z) where (a - T/2w

Obvioufly the 2w-periodic solutions of (6.3) correspond to the 7-periodic solutions of

(0.2).

In order to construct the action functional whose critical points are

the 2w-periodic solutions of (6.3) we introduce the following bilinear form

2n

e(u,v) - I I J ukijk u,v ew 1/2
iez k-1

where ujktvjk are the Pourier-components of uv with respect to the basis (6.1). The
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bilinear form a Ieo) is symitric and ontinuous in W1 2 . Let L V 1/  V 1/ 2 be the

seilf-adjoint, continuous operator defined by

(6.4) (Lulv) 1/ - a(u,v) u.v w1/

Observe that if u,v * C1(81,2n)

2:
(MUv) 1 -/ (-.7,v)dt

w2 0

Suppose now that there are positive constants cl c2,5 such that

(6.5) In3(tz)l ( c1 + c2 1tio for any t and a

Standard argumenta seow that the functional

2w(LsZ)w1/2 0 ldt •w/

(6.6) f(s) - / w f H(ot'u)dt z6

is ?roch6t-differentiable and that its critical points correspond to the 2w-periodic

solutions of (6.3). For simplicity in the sequel we shall take w - I and suppose R(tz)

2w-periodic in t, so (6.6) becomes
1

(6.7) f() - (Lisz) 1/2 - *(z)

2w
where V(s) - J e(teS)dt.

0

Since w 1/ 2 is compactly embedded in Lt for any t ) 1, by (6.5) we have that the

map x + f(ts) Is compact from W1/2 on 4" /2, then 4' is compact.

Now it is easy to verify (of. [D21 eec. 3) that the spectrum of L consists of the

limit points -1,1 and of the sigenvalueg

(1 + j2) '/2 3

and that each eigenvalue XI has multiplicity 2n. Then the functional (6.7) Is 'strongly

indefinite
a 

in the sense used in Section 1, moreover it satisfies the assumptions (fl) and

(f2 ) of I1, because we can suppose N(t,O) - 0.

-35-



Let N denote the eigenspace corresponding to the eigenvalue A We set

= '.N , N, W
0  

ker L

Every z 6 1e/2 can be decomposed as follows

z z+ +Z- +z

so we have

(a) <Lz,z> - <Lz+ ,Z> + <T-z -- >

(6.8) (b) I+I
2 

4 <Lz+,Z + > Iz+l
2

(c) ' I a-
2 

4 -tLz-,z> Iz-1 
2

2

Now our aim is to find conditions on the Hamiltonian H which guarantee that also the

assumption (f3) is satisfied. We consider a sequence (zn} C WI1/2, zn - (pn,%) such that

(6.9) f(zn) + c e ]o,+m(

(6.10) If' (Zn)I Izn I+

Let us initially prove the following lemma.

Lemma 6.1. Let (zn) C V 1/2, n = (pn,qn), be a sequence satisfyi.&I (6.9) and (6.10),

then the following sequences

2w
(6.11) f (H(tznd - (H(tz n)lpn)dt

0

2w
(6.12) f (11(tZn ) - (H q(tez n )Iq n))dt

are bounded.

Proof. Easy computations show that

2w

(a) <f, dl),(PnO) . f ((qnPn) - (Hp(tZnl)lPn))dt
0

21
(6.13) (b) <fl( 1 = f ((qnlPn) - (Hq(t,znllqn))dt

0

2w
(c) lzn  - f ((qnlp,) - H(t,Zn))dt

0
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By (6.9) and (6.10) the sequences

<f' (zn),(pn,0)>, <fl' (n ),'(0,q)>' f(z n )

are bounded. Then also right hand sides of the (6.13)'s are bounded. Subtracting

(6.13)(c) from (6.13)(a) we get that (6.11) is bounded. Subtracting (6.13)(c) from

(6.13)(b) we get that (6.12) is bounded. 0

,le following lemma will be useful if the Hamiltonian H is asymptotically quadratic

(cf. (0.8) and (0.9)) or if it grows more than quadratically in both the variables p

and q but does not satisfy the growth condition (0.3) (e.g. H(z) - IzI
2 

. ln(1 + Izi2)).

Lemma 6.2. Suppose that H satisfies (6.5) and that there are positive contents

c3c4' U with a > s such that

(6.14) I(t,z) -t1/2 (H ztz)lz)l . clzl - c

for any z e 32n and t e 2. Then the functional (6.7) satisfies the assumption (f3) .

Proof. Let (z n be a sequence in W/2 satisfying (6.9) and (6.10). By Lemma 6.1 the

sequence

2W
(6.15) f 0H~t,z n )  (H/ (Ht,zn)I l)nldt

0

is bounded. Then by (6.14), the sequence

(6.16) Iz I is bounded
n a

Using the decomposition

(6.17) 1l/2 w+ 9 w- 9 w
0

we set

(6.18) + - + Z" T a0 with z+ e w+ , z" e W' so e we .

From (6.10) we deduce that for a subsequence, which we continue to call (z , we haven

2w

(6.19) <LzZ+>Z - f (H(tzn)Ilz)dt * 0 as n +.
0

a a

Set y - and Y' = - . By (6.19) and (6.5) we have that
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(6.20) ,1 21  c + wf ( n InW1/2 c5 6  (ztn)Izn)t

2w 2w

C + C6 (J IH.(t,Z,)lYdt),/y (2 It+I ye dt)1 y 4
0 0

2w

c cU lznodtJl/ ' " or ,/2
0 ~~w2

where c51 c,,c7 ,c8  are positive constants. By (6.16) and (6.20) we have that

(6.21) IzI 1/2 is bounded

Analoqously it can be proved that

(6.22) Iz-I Is bounded.

It remains to prove that also It 1. is bounded. Consider #(z) e C1 (2n,R) such thatn w
y2

V ) - cg lZ l a  for jz j )- c (

where c9 ,c10  are suitable positive constants.

Suppose first a < 1, then * is bounded. So by (6.16) and by the mean value

theorem we deduce that

2w 2w 2w 0

el1  f 2 ,(Zn)dt - I (#(..) - Oz 0°))dt + f 2w(z )dt ,
0 0 0 n

2'w 2: 0

(6.23) ,-c 1 2  1 ,rn Zn I.dt + f #(Z 0)dt

-c,12 12w l+ + ~zIdt + f2w (z0 )dt
0 0

where c11,c1 2 are positive constants. By (6.21), (6.22) and (6.23) we hd.-I that Iz0 1

is bounded, then, since ker L is finite-dimensional, also It Iw 1/ is bounded.
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Suppose now a ) 1, then

2T 2x 2w
(6.24) f IIQzat + c1 0 f IznIdt > f (Izn - Is - 0)dt -

0 0n

21

- I (IzI - z+ + Z; )dt.
0

Finally by (6.24), (6.21) and (6.22) we deduce, also in this case, that Iz01 / is

bounded. 
01

Now we consider the case in which H has the form (0.4) with aij, bi and V of

class C
1
.

In the sequel we shall use the following shortened notation:

a(q),A(q),ak (q) (k - 1,....,n) will denote respectively the matrices

(6.25)

(a1 (t,q)}, {(qrad ai (t,q)lq)), -:
1  

(t,q)) (k 1 . n)

Moreover

b(q),B(q),bk (q) (k = 1,...,n) will denote respectively the vectors in le

(6.26)

fb (tq)), ((grad bl(t,q)lq), [ -) (t,q)) (k -

Moreover, if v is a vector in I
n 

or 32n, Iv will denote its norm.

Lena 6.3. Assiue that the Hamiltonian R has the form (0.4) with aijbi

(I,j - 1,...,n) and V of class C 
1. 

Assume moreover that (V1),i&1),(A2)0(B1),(9 2 )

hold. Then, if (zn }  (zn = (pn*qn)) is a sequence in W
1
/2 satisfying (6.9) and (6.10),

the following sequences

21 21
f Vlt,qnl)t f (a(n)PnlPn)dt

0 0

are bounded.
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Proof. Let 5 > 0 be a constant such that

(6.261) a - B - 26 - 2 .

(a - B are the constants of assumptions (V1 ) and (A2)).

By lAm 6.1 we have that the sequences

2w
(6.27) (1 + B + 6) f [(a(qn)pnpn) - V(t,qn)]dt and

0

2w
(6.28) f [(A(qn)PnlPn) + (B(qn)lp n ) + (Vq(tlqn)Iqn ) - H(tzn)ldt

0

are bounded.

Adding (6.27) to (6.28) we obtain that the sequence

2w

f [S(a(q )p I~)+(A(q,)pnIPn) + O(a~q) pf [aln)PnlP n) + lnn) + ) Baqn)PnlPn ) +
0

(6.29) + (Vq(t,qn)q n ) + (-S - 2 - 6)V(t,qn) + (B(qnlPn) - (b(qn)lPn)]4t

is bounded

By (VI), (A2 ), (6.26') and (6.29) there exists MI ) 0 such that

2w
(6.30) M I  f (8(a(qn )Pnlpn ) + 6V(t,qn) + (B(qn)lPn) - (blqn)lPnIdt

for every n e .

Now, by (B1) and 'B2 )

(6.3) ]( )2 + Iblq) 2  6

(v(q) 2 V(t,q) + N for every t e R and q e YP

where M2 is a positive constant. Then, using (6.31), we get
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2w 2W
(6.32) 5 [(n(qn)lp) - (b(qn)lp,)]dt < I [IB(q,)IIpnI + Ib(qn)tjIpn]dt 4

0 0

2w 2(qn)12  j Ib(qn)1 2  % 2
f - + ' V(qn) + n + i- VlPnl2]dt
0 6V(q 4dv(qn 4

4 f [2 V(t,qn) + . ]dt + M3  for every n em
0 

2

where M3  is a positive constant. By (6.30), (6.32) and (AI) we deduce that

N1 ) S2 [8(a(qlPn) + 5Vlt,qn) - Vlt,qn) 2s 6vlqnlIPnI
2
]dt .N 3

0

2w5M ; f 16(&. )p lp ) + 6V(t,qn)]at -2 3  for every n e N

0

From the above inequality, the conclusion follows. 0

La*= 6.4. Let the assumptions of Lena 6.3 hold. Moreover assume that (V2 )' (A3 ) and

(A4 ) hold. Then, if {zn). (z" . (pn,qn))e is a sequence in W 1/2 satisfying (6.9) and

(6.10), the sequence
2w

f IHz(tznldt
0

is bounded.

Proof. Just computing HZ(t'x), we get

(6.33) IR(tinJI • 21a(qn)pnI + Ib(qn)I + I I(ak(qn)Pnlpn)l +
k

+ I l(bk(q)Il) + IVq(t,%)l for every n e a
k

Observe that

(6.34) for every q,p e v? la(q)pl 4 Ia(q)I + (a(q)plp)

By (6.34), (A4 ) and lama 6.3, it follows that

2w 2%
(6.35) for every n e 11J Ia(qn)pndt • 1 la(qn)I + (alq nVlptp)]dt M N4

0 0

-41-



where N4 is a positive constant. By (A1 ), we get that

(6.36) Ia(q) ) v(q) for every q e I6

Then, from (9), the above formula and (A4 ) we get:

2w 2w

wb(qn)ldt f v(qn ) 1/2 " IV(tqn) 
1
/2dt + 45 4

0 0

I1/, q /2f2 N-
S(f v(qn)dt) /2 Ivt,qn)I 1/2d) + 45 

0 0

I(f a(q n)dt) /2. ( IV(t,qnJldt) 1/2 + M 5 5

0 0

2w

4 N6 f IV(tlq n ) Idt + 347 for every n e N
0

Then, by Lema 6.3 and the above inequaltiy, it follows that

2w

(6.37) Vn 6 3 f Ib(%)ldt 4 •
0

NoW, by (A3 ) and Lema 6.3, we have

2w 2w

(6.38) Vn e x I I( k(qn)Pn Ipn)Idt 19 
f 
2 (elqn)PnlPn)dt C Rio

k0 0

Moreover, using (B 2 ) and (6.36), we have

e 1 2w 2w Ib kq) 2 1
/2(%) 

2dt) 2vn •II f (kn)'Pnlldt 4 -V -] -l ) ) (I V] vnllpnl a. 1 /

kO k 0 n 0

2w 2!1

4 (M11 + M12 f V(t,qn)dt) 1/2 ( Cf (
2

aqn)Pn )dt/

0 0

Then, from Lemma 6.3, we get

2w

(6.39) Vn 63 1 f l(bk(qn)lpn)Idt 4 113

k-2
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At last we observe that by iAmma 6.3 and (V2)

2v
(6.40) V e • J Ivlt.%)Idt e K14•

0

So. by (6.33). (6.35), (6.37), (6.36). (6.39) and (6.40), we deduce that the sequence

2W
I II,(t,z n)Idt is bounded. 0
0

Lesa 6.5. Lt the assumption of Lears 6.4 hold, Let ( n } C W1
2  

be a sequence which

satisfies (6.9) and (6.10). Then we can select tram (a n  a subsequence vhich is bounded

in W1/2 .

Proof. Suppose that (z n  C W1/2 satisfies (6.9) and (6.10). Then by Lanma 6.4

(a(t,zn))} is bounded in L
1
. L

1  
is continuously embedded into W-"' 2 . for any

n > 0. Then

(6.41) IH (t'z )I - /n/2 is bounded
z n -2

By (6.10) we have:

(6.42) LZn - Hz(tlzn) + 0 in ie1/2.

So by (6.41) and (6.42) we have

(6.43) La n Is bounded in " 1/2"-/2

by the definition of the spces W
1 

and easy computation, we get

(6.44) for each z e w 1'/ 2 IZlWi/2.V/2 4 const.lLzl.. 1 2.- V/ 2

where z = z - zo = z + + z- (cf. (6.18)). By (6.43) and (6.44) we have that

(6.45) Izn I 1/2 -n/2 is bounded

Then, since n 1 0 is arbitrary, by the Sobolev embedding theoremsm,

(6.46) 1! I is bounded for any t ) 1(6.46) In Lt

The next step is to prove that

(6.47) (z ) is bounded in L

We set

(p 0,q 0) o Ve

By (V1 ) we have
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(6.48) 2 OsIdt < c, 2 V(t,q,)dt + 2 Va e N

0 0

where c0,2 are positive constants.

Then, by (6.48) and Lmma 6.3,

(6.49) ) is bounded in L* and then in L

Nov we have to show that also {pn} is bounded In L
1
.

To this end we initially show that there exists U 1 0 s-t.

2v

(6.50) vn e f v(q.) U .
0

By (6.46) and (6.49) there exists K > 0 s.t.

(6.51) n S U IL • ( .

We now set

v - inf v(q) and n - {t e 0.2w)q(t) r -/} .

Then

vn e x 1 ) I fqnlIp 1%]Idt M /1(21 - meas .
L 10,2w] A~n

From which we get

vn if meas On .

Therefore we have

2w
vn ev f v(%)dt v()dt v 0  Mes n )0 "

0 n
n

Then (6.50) holds with p - V0w.
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Now, by Zonma 6.3 and (Al) there exists c > 0 s.t.

2W 2w 21

(6.52) Vn 63 I € (a()PnIPn)dt ; f v(qn)lPn 12 f 2 0 -n2 d

(652 on e()~ 8 c
0 

;0 f &qn0 0 0

2w 2v 2w

Ipnlj2  2 V(qn)dt - 21P 0 I + vfq ) ldt •

0 0

Now

29
(6.53) f v(qn)lpnIdt 4 v(qn)1 2 " IPnl 2

0 L L

By (A4 ) and (V2 ) we get

(6.54) *h e U Iv(%) 1 2 - c I  2w V(t,%) 2dt + 22 03 0 ITqTI2 dt + 04L" 00

where c 1 ,c2,c3 ,c4  are positive constants.

Moreover, beoause ker L is finite dimensional, from (6.49) and (6.46) we deduce that

(6.55) V L2 s  In bounded.

Then from (6.53), (6.54), (6.55) it follows that

2v
(6.56) Wn e3 f v(q)IPlndt r v(q)l 2,P" 2 4 c6 ,p' 2

0 L L L

Using (6.46) and (6.56) we get

2w
(6.57) Vn e x f v(qn)IPnIdt q c7

0

where c7 is a positive constant. So from (6.52). (6.50) and (6.57) we get

(6.58) Vn eN 0 n 1i c7 O Pn•
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Then

(6.59) is bounded

Finally, because dim ker L < , from (6.49), (6.59) and (6.46) we deduce that

(6.60) for any t ) 1 Iz I is boundedn Lt

Let us now show that t31k i is bounded.
nW,

By (6.19) we have

+ 2

(6.61) Vn e v Is11 4 c8(1 + f IHz(tgzn)Ilz+ldt)n w1/2 0 n n

where c. is a positive constant

By (6.33) and the assumptions (H0)  there exists y > 0 s.t.

Vz e .
2n, vt e a IH,(t,z)l 4 const.(1 + Izl )

Then from (6.61) we get

(6.62) Vn e N Is + 12 4 conat.(1 + Iz _  
* Iz+ I

n W /2 n 21 n W 1/2

Then from (6.60) and (6.62) it follows that

IC +I boun4od
n

Analogously it can be proved that

I- W 1/2 is bounded

Finally, because ker L is finite dimensional, we deduce that also

I2 0 1  is bounded •
n l2

We conclude this section with the following lemma.

Lm 6.6. If (1O) hold, the functional (6.7) satisfies (fl), (f2 ) and (f3 ) in the

space W 1/2.

Proof. (fl)(i) and (ii) follow from the construction of L.

By assumptions (V2 ), (A3 ). (A4 ), (31' (B2) and standard majorization. it follows

that f satisfies (6.5). ?hen (f1)(i) is satisfied. (f3 ) follows from Lema 6.5. 0
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7. Superquadratic HEmiltoniano.

In this section we shall prove Theorems 0.1, 0.2 end 0.3. It will be useful to

introduce the following notation

(7.1) w+ > k - k-

ke~j Mk J ko'j Mj

If j ) 0, then W! W
+  

so that, for every z e V+ ,  
(6.8)(b) holds. The following3 J

lemmas provide estimates which shall be used in the proof of the theorems.

Lemma 7.1. For every c0 > 0, there exist j e 2 and R > 0 such that

f(z) N c 0  for every z 6 V+
, Val - R

where f is the functional defined by (6.7).

Proof. Since H grows polynomially, there are constants rc 1,c 2 > 0 such that

IR(tz)l < c1 + c2 zlr.

Then

(7.2) I$(z)I 4 2we 1 + c 21Vlr 

1 2 Lr

Now, by the Sobolev embedding theorem, there are constant c 3 ,s > 0 such that

(7.3) 1Lr 331/

If z e Wt, j ) 1, we have

tag21, - (1 + k2 ) l/2-sizk2 4 (1 + j
2 )-5 I (1 +k 

2
) 1/2 zk 12

w /2" k>j k>::

(I + j 2)s lzl
2  

j 
2
aUzl

2

Then by the above formula (7.2) and (7.3) we get

M )• c4Jt Pllr + C. for every a e W

where c4  and c5  are suitable positive constants and p - sr > 0.

Then, by (6.8) and the above formula, for z e V., Val = R we have
3

f(s) 1La,z> - #(z) > 2 " -4 1 r -5 R2 - p c2R " a "
2 4 4 c 5 E- 4  i 4 R c

The above formula proves the lema, in fact, it is sufficient to choose R such that
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1 R2  
c + co and j such that

c4J-pRr-2 0

Lema 7.2. Suppose that H satisfies assumptions (H@). Then there exist constants a,

and a2 ) 0 such that

(7.4) H(z,t) P aIq a 
-a 2

and

(7.5) BH(z,t) + (Hz(z,t)Iz) • a1 lql +iilpl2 -a2

where z - (p,q) and u is the constant in (A2 ).

Proof. We prove (7.5).

We shall use the notations introduced in Section 6 (cf. 6.25, 6.26), moreover

clv... will denote positive constants.

By (A1), (A2 ) and (V1) we have

(7.6) OH(z,t) + (Hz(z,t)Iz) - ([Ba(q) + 2a(q) + A(q)]plp) +

+ ((0 + I)b(q) + B(q)lp) + BV(qt) + (Vq(qet)Iq)

•Iip 2 + 2v(q)IpI
2 

_ I($ +t)b(q) + B(q)Ilpl + OV(q,t) -c

Using (81), (82) we have

(7.7) 1(0 + 1)b(q) + B(q)ljpj 4 1(0 + 1)b(q) + B(q)1 
2  1 P2

2v(q) 2

< V(qt) + v(q)Ipl
2 
+ c

Then, by (7.6), (7.7) we have

Bn(zt) + (Hz(zt)lz)) ulpi 2 
+ V(q)tp 2 

+ V(qt) - c3

Then, using again assumption (V ), we get (7.5). Similar arguments can be used to prove

(7.4). C

Lema 7.2'. Let # a Frech~t differentiable functional on an Hilbert space 3, with

#(0) - 0. Suppose that + satisfies the following assumption:

there exist R, N, A 0 0 s.t.

K if 1I .9 R

(7.) e A(x) + <'(x),x> ::
-I if 1I > R•

Then there exist I > 0 s.t.
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#(x) ( 0 for Ixi > .

Proof. Let v 0 e H, I v 01 = 1 and got

g(t) - #(tv0 ) t ) 0 .

We shall initially prove that

(7.9) 9(t) 4 N for any t ) 0 .

We argue by contradiction and suppose that there exists tI > 0 S.t.

g(t1 ) > N .

Then, since g(0) m 0, there exists to < t1  such that

g(t) > N Vt e ]t0 ,tl( and g(t0 ) - N

Obviously there is f e ]tort 1 [ .t.

g8(E) > 0

Then

g(i) +1 g'() >

which means that

wi(tv o ) + <#'( Vo),Jvo> > N

end this contradicts (7.8).

Now consider

> 0 st. M- Xln VR < 0.

Let us now show that

(7.10) there exists t 2 e ERU] s.t. g(t 2) < 0

By (7.8) we have

(7.11) g(t) +-I g'(t) + 4 -1 if t > R

Then, since g(R) C 14 (cf. 7.9). we have:

q(I) 'C 9 g(a) + M C - f ?d -f S~do + M -M lnA/R- ~ds
R R R R

R

From this inequality it is easy to deduce that (7.10) holds.
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Now we prove that

#(x) < 0 for lx > R>

obviously it is sufficient to show that

(7.12) g(t) ( 0 for t > t2

Arguing by contradiction suppose that there exists t4 > t2  s.t. q(t4 ) > 0. Then

obviously there exists t3 e ]t2 ,t4 [ such that

(7.13) g(t3 ) 0 and g(t 3 ) ) 0

Since t3 > R, by (7.8) we get

g' (t )

(7.14) g(t 3) + - t3 ( -1 .

Obviously (7.14) contradicts (7.13). 0

Lem 7.3. Suppose that H satisfies (H0). Then for any j e Z. There exists R > 0

s.t.

f(z) < 0 for Iz1 > R z e w *
k<j k

Proof. The interesting case occurs when j > 0, otherwise it is trivial.

By virtue of Lema 7.21 it is enough to prove that

(7.15) Of(s) + (fl(z),z> -> *. as 1z1 +

In the following cl,...,c 6  will denot positive constants.

Let z- ( P) ev and set
q i

where

z .) e *N, 0 14'- 0.. a m X_ 0 m ... .
P -, -_"--1 1 I

t0 0 N
Q0 q k<-j-1 k

Then, by using Lemma (7.2), it is easy to see that
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(7.16) 6f(,) (f'(s),. ( ( .1)(L'-** a € A;>

2

- 2 2 2

" (q* L qo ) + C -C
I ' 1q1 2 + eI2 )  2

L L L

(I I, ' 1+1 ;12(" t 1 (L3 522 - 2 + -

- Ulp* 2 
2  

1 q*1 2 c3(1;1 2 1 z 
0 1

2
2 + 2

L L L

4 ~z) c4 (11 .0 2 2 2
L

where

h(z*) - (P + 1)<Lz*,*> _ U-p*12 - c 1 1 a2
2L 2 1 L2

The above formula shows that (7.15) is verified once we prove that
* C

(7.17) h(z) - as I 1 +4.

.

In order to prove (7.17) we need to find a more "explicit" form of <Lx*, >,

Sp 1 2' Iq I . We set

L L t xi

It to not difficult to verify that for any I we have

n
pP - k II akkcoaltek - b k sinte k

t= kfI sm ikenftek + b k costek

where e(k - 1,...,n) is the standard basis in IT and a1k,btk are real coefficients.
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By straight computations we obtain

2 2 n 2 2 2
(7.18) <Lz z 

> 
4 (Itl

2  
-

1 
.

1 
2 
)  

2t(alk + b k- a-k -b
2

k)

ii 2 L 1-1 kil2(
L

Moreover

(7.19) lp 122 f 1 4 + a1)+ (bLk b

L i-I k-1

and

(7.20) 1q*1 
2  n - k " + + 2

Then

h(z) ( q(z
e
) where

q(s*) -t I k 12
+  )2(ak -12k" P(s k + a.tk)2 c 5 s ak -a-Xk1

a

2 2 2_a

S(L + ( - ) -b(b b_ - lb + b- Ii aq~~ 2 tic -1k c Ak- k 5~ 5k Ik

Since a * 2 it can be verified that

q(z ) * as 1:Iz2 n a 2 + a2 + 2 + b 22
z  

1 k -1k bik _Xk

L X.1 k-I -i

Then (7.17) easily follows. 0

Proof of Theorem 0.1. We will apply Theorem 1.4.

By Iemma 6.6, (f ) (f2 ) and (f3 ) follow. Since the Hamiltonian R does not depend

on t, also (f4 ) is satisfied. It remains to verify the geometrical assumptions (f5 ).
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We set

c. max(l,-21 - lnf B(z)) + I

XA.2n

The constant 0 is vell defined because by Leans 7.2, R in bounded from below.

By virtue of Lemma 7.1, it Is possible to choose R > 0 and j e X such that

f(a) ) co  for every z 0 0+1 Isl - RJ

Now set

V -W

and, chosen n arbitrarily, set

V - WJ+ n  (W+j W+n )

With such a choice of V and W, the assumptions (f5 )(i), (ii), (III) and (iv) are

trivially satisfied. moreover (fs)(v) is satisfied by virtue of Lema 7.3 and (fs)(vi) is

satisfied by our choice of 0.

Then the conclusion of Theorem 1.5 applies and we get the existence of at least

- (dia(Vr) W) - codim(V + W)) - n2

critical values with critical points zl,....an such that

(7.21) f(zk) ) cO •

It remains to show that the corresponding critical points are not constants.

Suppose that one of them is a constant function L Then we have

f(;) - -22H(z) < c o

This contradicts (7.21).

By the arbitrariness of n the conclusion follows. 0

Proof of Theorem 0.2. It follows LOe same argument of the proof of Theorem 0.1 except that

we use Theorem 1.5 instead of Theorem 1.4. 0

Proof of Theorem 0.3. W0e shall apply Theorem 1.9.

We can assume without loss of generality that

R(t,0) - 0 for every t e it

It Is not difficult to prove that f is twice Frechet differentiable for s 0. Then by
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(14). we haves

(7.22) f(s) - f(0) + <f'(O),Z) +- f"(0)[z,:] + o(121
2
) -

2

SI LZ,Z> f (H (wtO)lz)dt + oIIi2

whereas -w and z e wl2. By (H6), it follows that

2w 2N
Ws f (zz (wt,O)z,x)dt ( Y f 1

2
dt

0 0

Then by the above inequality and (7.22)

(7.23) f() ) - <Lz,z> - Iz + o(IzI
2

2 2 2
L

By the definition of <Lzz>. we have that

<Lz,:)) Izl2 for every z e W
+

L2

Then by the above inequality, (7.23) and (6.8)(b) we get

flz) I1 - y)<z>zg + Y-(zz> - Izl2 + 0( 21 2
2~( 2 ' 2 L2L

2

)1_( - y)Izl
2 + o(Iz12) for every z e V•

So there exist p, c0 > 0 such that

(7.24) f(z) ) C0 for every z 6 W
4

e IzI - p

Now let a e W
+  

be the eigenfunction corresponding to the first positive elgenvalue

A1 of L and let R1,R 2  be two positive constants. We set

T - (as ; a 10,R 1 1}, Q - fu + v I u e li- 0 kor L, Il 4 R2  and v e T}

Observe that Q C W1 . Then by Lemma 7.3

sup f(s) ( I•
ZeQ

moreover, by Lema 7.3, if R1 and R2  are large enough we get that

f(s) C 0 for every a 6 3Q

Thus all the assumptions of Lema 1.9 are satiafled with V - V
4
. Then f has a critical

value C
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(7.25) c c o > 0

The corresponding critical point z e Y /2 cannot be constant because in this case we

would have

2W
c f(i) - (Wt.:) ( 0

0

and this inequality contradicts (7.25). 0

We end this section considering Haailtonians (z) which do not depend on t and

grow more then quadratically in both the variables.

mlore precisely we suppose that there exist positive constants c I , c 2 , c 3 , c 4 , a, 5

with a ) B and B 0 such that

(a) ISz(z)l 4 c, + c21z1 B for every z e 2n
,

(b) (.) ( 0a(z)z) - via) > cIZ 6 - c4  for every a e 12n

observe that this 'superquadraticity' condition (7.26)(b) covers cases which are not

covered by (0.3). Por example the function

R(z) - Izj 2log(1 + I12)

satisfy the (7.26) but not (0.3). For Hamiltonians of this type the following theorem

holds.

Theorem 7.4. if H e C1(D2n,11) satisfies (7.26), then for every T > 0, the Hamiltonian

system (0.2) has infinitely many nonconstant ?-periodic solutions for any period T > 0.

Sketch of the Proof. We apply Theorem 1.4. (f 1 ) and (f2) are verified as in the proof of

Theorem 0.1. (f3 ) follows from Lemma 6.2. (f4 ) follows by the fact that H is time

independent. Since H satisfies (7.12)(a), Lema 7.1 holds, and by (7.26)(b) it is easy

to show that the analogous of Lame 7.3 is true. Then reasoning as in the proof of Theorem

0.1, the conclusion follows. 0
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S. Asymptotically Quadratic Hemiltonians.

Proof of Theorem 0.5. Let Z and L V * V 1/2 be the operator defined as follows

z - - zz(-)s

Lox- -J; - WK (o)z

Then if we set
(L.I) 1/ v" 2 .v",2 VY6V"12

=LX V 1v e~ VV2

(2°z'V) 1/2 'w26z22

it follows that Lo and . are two self-adjoint operators in W 1/2. It is easy to see

that the spectrum of L0  and L. consists of eigenvalues of finite multiplicity having

+1 and -1 as accumulation points.

Let No (reap. 1r) denote the elgenspace of L0  (reap. L.) corresponding to the
U U

sigenvalue p. we set

+ 0 0 + . - -
11>0 N I O 0 1 . N U

where the closures are taken in W1/2. We initially suppose that the Ramiltonian H

satisfies (0.8), (0.9), (0.10), (0.12) and (0.13). We can write the action functional as

follows:

- + * (L033) - 2w

f(z) - + (_ (11(z) f - (a (-)zlz))dt
0 2 s

We shall show that f satisfies the assumptions of Theorem 1.5 with:

2w -

L - L,., #(z) - w f (M(z) ( 3 (-)zlz))dt
0

V -WO and W-V,

It is easy to see that (f), (f2 ), (f 4 ) are satisfied. moreover, by virtue of the
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nonreaonencae assumption (0.10), standard argument show that also (f3) is satisfied (cf. the

proof of Theorem 6.1 an Rmark 4.10 In [2J). Let us now prove that also (fs) is

satisfied.

(fS)(i) is obviously satisfied, moreover, since L - L0  is compact, also (fS)(ii) holds.

Because %X(-) is poeLtive definite, we have

(constant functions) - F1481) C

Then also (fs)(iii) in satisfied. Let z e o then,

f(z) _ f(C) + <f(o),z) + fe(O) 4Z o(1312) + 2f~)2 (zz )-- (LOzIs) a(Ih12

2
-2" 1 as + o"Il 2  

am Izl + 0

where y- tin{u e .(LO ) IV > 0) .

So also assumption (f5 )(iv) holds. moreover, by (0.13), assumption (fs)(vi) holds.

Let us finally verify that Cfs)(V) is satisfied. Let a 8 V - W then

(8.1) f(z) P IX1 2 - 2 (fi(s) - (H ()zlz))dt
0 2 5

where Pl " maX(U e a (L)1 ( 0). if we et

9(s) - Esl() - 8 z (l)z

then, by (0.8),

(8.2) + 0 am ja i 4

with this notation we have

1 1

I (Hi(s) - as()(ss)Is)ds J (g(es)ts).
0 0

so

lt) "-1 (I ()st l ) f f (W(ss)Isds0

From the above formula, we have
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(3.3) Va jk2n l1(.) -2 (-)zlz)l C Is. f Il)ld-2 zz 0

By (6.2), for every C ) 0, there exists N > 0 such that

(8.4) Iq(s)l 'C Vlu for Iul ; K

Let Izi 0 N and met

A1(z) - {t e [0.1]lltzl 4 K)

A2 (z) - (t e [0oljltsl ) N)

Then, by (8.4), we have

I
(8.5) f Ig(sz)lds - f lq(sz) ds + f Ig(sz) lda - c + 2Il

0 AI(Z) A2(z)

where c, - sup(lg(s)lllsI (N N.

Using (8.4) and (8.5),

(8.6) Vs e R2n , I N In(s) - (n l)zlu)l cIsl +- . Iz12

Then, by (8.1) and (8.6), we easily deduce that

Vs 6 VC f(a) 4 P l10 l
2  + W(IZ lL + E I 2 -L i 22

viw 1 2 2) +C2

where 02 is a positive constant depending on e.

So if we choose C sufficiently small, by the above formula f in bounded from above

on 1 - W, i.e. (fs) holds. Thus all the assumptions of Theorem 1.5 are satisfied.

Therefore it follows that f has at least

(8.7) ([dim(V ) - cod( + ;)]

nontrivial periodic solution.

In Lea 6.6 of [321, it has been proved that the number (8.7) is just equal to

(uals(.), CaNs(0)). Then the first part of Theorem 0.S is proved.

In order to prove the second pert we set

!(s) - -f(s) - 2 I((isz) + wH(sfldt
2 0

-58-



The functional f satisfles the assumptions of Theorem I.5 with

L a -L

2w
0

V- and W- %

At this point we argue exactly in the same way as in the proof of the first part of the

theorem in order to verify (fS)• We observe that in this case we have

(constant function) - Fix(S1 ) C WO - V

Then when we verify (f 5 )(iii) the first alternative holds. This is the reason why in [321,

a similar result has not been proved.

Since all the assumptions of Theorem 1.5 are verified it follows that there exist at

least

(6.9) [di(wV n " cod(WO *

nonconstant 2w-periodic solutions.

By Lema 6.6 of (321, the number (8.0) is equal to

1SU~ n (0),wHz (a)) - 0

Remark 6.1. If the nonresonance condition (0.10) in replaced by assumptions (0.14) and

(0.15), by virtue of Lemea 6.2 (f3 ) is satisfied. Then the assertion of Remark 0.7 holds.
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