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I.  INTRODUCTION 

In this paper we derive formulas for calculating the response of a hollow 
cylinder to internal loads moving with uniform velocity.  This analysis is 
based on the historic Green-Lame theory of wave motion and recent work on 
free vibrations of a hollow cylinder.   Only steady state conditions are 
considered; transients which may arise at the beginning of motion are 
ignored.  Formulas for moving sinusoidal loads are discussed in detail.  The 
response to a moving step function can be obtained by using Cauchy's 
discontinuous factor. 

The transition from traveling to stationary loads is obtained by a 
limiting process.  The biharmonic functions required for the stationary load 
arise from the confluence of the vector and scalar wave functions at zero 
velocity.  This solution is also derived independently from appropriate 
elastic potentials.  This analysis shows that the calculated displacements for 
moving loads approach the calculated values for stationary loads as the 
velocity of travel approaches zero.  Physically, this requirement is 
obvious.  Hence, computations for low velocities will serve as a critical test 
of the analysis and computations. 

The results are required to interpret strain measurements obtained with 
an instrumented gun tube in which arrays of strain gages and pressure gages 
were mounted in close proximity along the length of the tube.  Tube strains 
based on the measured pressures were calculated according to thick walled 
cylinder theory,  using appropriate mechanical properties for the gun steel. 
At low velocities the measured and calculated strains agreed reasonably well, 
but at high projectile velocities the calculated strain distribution profiles 
were significantly different from the measured strain histories. 

This effect is well known in the theory of moving loads.   Prof. Ian 
Sneddon of Glasgow University, a pioneer in the field, suggested this problem 
to the author during a recent visit. 

The analysis is given in considerable detail to facilitate verification 
of formulas required for programming.  Formulation is limited to subsonic 
velocities which occur in practice; analysis of the moving load problem for 
supersonic velocities is quite difficult and will not be considered at the 
present time. 

M.E.   Guvtin^  Elastlolty,  Eno.  of Phys.,   Yolvme VI a/2. Mechanics II, 
Springer Vevlag, New York,  1972.    See pages 212-214. 

2 
A.E.^ Armenakas,   G.  Herrmann and D.C.  Gasis,   Free  Vibrations of Circular 
Cylindrical Shells,   Pergamon   Press,   New York.   1969.   

2  
A.S.  Elder and K.L.   Zimmerman,   "Stresses in a Gun Tube Produced by Internal 
Pressure and Shear," BRL Memorandum Report No.  2495,  June  1976    (AD    A012765). 

L.  Taylor,   Vibrations of Solids and Structures under Moving Loads, 
Noordhoff    International Publishing,   Gronigen, The Netherlands,   1972.    See 
Chapter 17 and    Reference 203. 



II.  FORMUUS FOR WAVE MOTION IN CYLINDRICAL COORDINATES 

In the absence of body forces the equation of motion may be written in the 

form* 

2" 
(X+2y)VV.u - u V X (Vxu) = p -^ (1) 

3t^ 

where X and y are the Lame constants.  The speed of the dilatational wave is 

C^^ = (X+2y)/p (2) 

and the velocity of the shear wave is 

2 
C2 = y/p , (3) 

where p is the density of the elastic material.  The equation of motion 

becomes 

c/ V7.U - cj-  7 x(Vxu)  = ^ (4) 

The  Green-Lame solution  is 

u =  V(J) + Vx^ (5) 

in which the potentials <^  and <^  satisfy the equations 

*the notation 7V«u is to be interpreted as V(V«u). 



and 

3t^ 

In cylindrical coordinates we have 

*    a 2   r 9r ^  2 .„2 ^ . 2 ^^^ 
or r  99     9z 

The vector potential is given in terms of three components 

A A 

^    = ^^^^+  eg^e + %^^   , (9) 

where e , e^, and e are unit vectors in cylindrical coordinates.^ 

o2?       ^       u2, '*'r 2       9, 

+ ^6   ^^^e   -   -|  -^  \  le l^r (10) 

2 
+ e    V^r 

z z 

^ —-—^ .—.— 
P.C.   Chou and N.J.  Pagano,   Elaetiaity:    Tensov,   Dyadia,   and Engineeving 
Appvoachee,   D.   Van Nostvand Company^   Inc., Prlnoeton,   1967^   pages 245-265. 



The following scalar partial differential equations are finally obtained: 

ci'v^   = i?i (11) 

2u2,     '''r ^ 2  3  ,     3^  ,                           ,," , 
^2 "^ - -2 ^ ~2    30 ^e = TT^r                          (12) 

r r          3t 

^^2 ^'^e - -2 - -2 ye '^r = TT'^e                  ^^3) 
r r         3t 

2 

3t ^ 

Four components of the displacement vector are obtained from solutions of 

these equations.  Since only three components are required, we can specify one 

additional condition.  We choose a relation between ^b    and \b„ which will 
^r    ^9 

facilitate separation of variables, following the ideas outlined in Reference 

2. 

III.  SEPARATION OF VARIABLES FOR SINUSOIDAL LOADS MOVING WITH CONSTANT 

VELOCITY 

The scalar potential can be obtained directly by separation of 

variables.  For brevity let 

H = cos(n0)sin[s(z-ct)] (15) 

H = cos(n9)cos[s(z-ct)] (16) 

H^ = sin(n9)sin[s(z-ct)] (17) 



ii 

H^ = sin(n6)cos[s(z-ct)] (18) 

and 

4.^ = H. f(r), i = 1,2,3,4. (19) 

In these equations n is an integer since the stresses must be periodic in a 

complete cylinder. The constant c is the velocity of travel. We assume 

0<e<c<C2-e, (20) 

where 

0  < e < <   1     . (21) 

Let 

2 ?        2 
a^^     =    c^/c^^ (22) 

2 2 
^1       =     1  - a^^ (23) 

Then 

2 

f"    +    7 f   -  (\+ ^i^s^)  f  = 0 (24) 
9 



and 

f = A^I^(8^sr) + A2K^(BjSr) (25) 

The axial component of the vector potential can be treated in a similar 

manner. We let 

'''z = ^S^Cr), i = 1.2,3,4 (26) 

2    2,2 ,^^^ 
^2 =^2/0 (27) 

B2^ = 1 - «2^ (28) 

then 

^z " S^n^^2^''^ ■^^AW'^V ^   ,       (29) 

The radial and tangential components of the vector potential are 

coupled. The following four combinations lead to separable solutions: 

*r = Vr'   *e = -Ve ^30) 

'•'r = Vr'   '^e = -Ve (31) 

"^r = Vr'    I'e = »lS0 (32) 
10 



*r = Vr'   ♦e " Ve (33) 

The combination given in Eq. (32) is discussed in Reference 2; the remaining 

combinations are introduced to satisfy a variety of boundary conditions on the 

inner radius. We note that 

le h  = -"»3 (34) 

le H2 = - nH^ (35) 

le «3 '""1 (36) 

le H^ =nH2 (37) 

On referring to Eqs. (12) and (13) we find 

r^g;: + rg^ - (n^ + 1 + ^^S^T'^)^^  + 2ngg = 0 (38) 

r^g'^ + rg^ - (n^ + 1 + ^^s^r^)g^ -  2ng^ - 0 (39) 

If we let 

gg = - gp (AO) 

11 



we find 

r^g;; + rg^ - [(n + 1)^ + ^^s^r:'^]g^  = 0 (41) 

and 

Sr = Vn+l(^2-) -^ Vn+l(^2^^> ^^2) 

If on the other hand we let 

8e=gr • , ^'^^ 

then 

r^g;: + rg; - [(n - 1)^ + p^^s^r^lg^ = 0 (44) 

and 

^r = Vn-l^V'^) -^ Vn-l^V^) ^^^^ 

In this report the radial and tangential components are based on Eqs. (40), 

(41) and (42). 

As mentioned previously, a complete solution to a specified boundary value 

problem may be obtained if one of the components of the vector potential is 

set equal to zero.  Hence, although unique solutions for the displacements are 

12 

I- 



expected, the choice of potentials leading to a solution is not unique. 

Pao and Mow use vector potentials L, M, and N, which are derived from 

scalar functions a, \J;, and x in their analysis of diffraction waves in an 

elastic solid. The relation between this solution and the solution of Herrmann 

and Gazis may be obtained by equating formulas for the displacements. 

IV.  COMPONENTS OF THE VECTOR DISPLACEMENT 

Each component of the vector displacement consists of one terra from the 

scalar potential and two terras from the vector displacement, according to Eq. 

(5). These terms must have the same trigonometric factor.  In addition, the 

signs of g and g. are chosen so these functions involve Bessel functions of 

order n+1 when §□ = - g  .  The sign of g is chosen so the divergence can be or z 
written in the form 

V»4» = H.h(r), i = 1,2,3,4 (46) 

where 

h(r) =- -|- (r^  )    - - g„ + sg (47) 
r 3r    r    r 6    z 

We consider four cases, as shown in the table below. 

y. Pao and C.  Mow,   Diffraction of Elastic Waves and Dynamic Stress 
Concentrations,   Crane Russdk,   Publishers,   1971.    See pages 217-239. 

13 



TABLE 1.  TRIGONOMETRIC FACTORS FOR SCALAR AND VECTOR POTENTIALS 

Function  f(r)     gj.(r)    g  (r)  8^(0    h(r) 

Case I «1 % % % H4 

II «2 H3    . »I -«4 H3 

II »3 H2 -H4 Hi H2 

IV    H4      Hj       -H3      -H2       Hj 

The displacement components for each case are obtained from the 

potentials. 

Case I 

ru = [rf + srg„ + ng ] H, (48) 
O      Z    1 

rv = [-nf - srg^ "^s'^^  ^3 (^9) 

rw = [srf +j^ rgg - ng^] H2 (50) 

Case II 

ru = [rf + srgg - ng^] H2 (51) 

rv = [nf + srg^ + rg^] H^ (52) 

14 



rw = [- srf +-37rgg - ng^] H^ (53) 

Case III 

ru = [rf + srgg - ng^] H^ (54) 

rv = [nf - srg^ - rg^] H^ (55) 

rw = [srf - -g^ rgg + ng^] H^ (56) 

Case IV 

ru = [rf + srgg + ng^] H^ (57) 

rv = [nf + srg + rg'] H. (58) 

rw = [-srf +1^ rgg + ng^] H3 (59) 

Next, we express the displacement and divergence for Case I in terms of 

Bessel functions of order n and n+1. The following identities are used to 

eliminate derivatives: 

XI^'(X)  = nyx) + XI^^^(X) (60) 

XK^'(X)  = nK^(X)  - XK^+i(X) (61) 

15 



XI'^^^(X)    = -  (n +  l)I^^^(X)    +    XIJX) (62) 

XK'^^(X)     = -   (n +  l)K^^j(X)     -    XK^(X) (63) 

Oa carrying out details  of  the  analysis we  find 

ru =  {A^[nl^(e^sr)    +    3jSrI^_^^(B^sr)] 

+    A  [nK  (g  sr)     -    3, srK  . , (g, sr)] ii       n    1 1       n+1     1 

+    A-nl   (B-sr)     +    A, nK  (g-sr) j    n    2 4     n    2 

-    A srI       (g  sr)     -    A g  srK       (g  sr)}  cos(ne)sin[s(z-ct)]   (64) 5       n+l'"2     ' 6*^2      n+r^2 

rv    =     {-    A.nl   (g.sr)     -    A„nK  (g.sr) 
1    n    1 2    n    1 

+    A^;-    nl^(g2sr)    +    g2srl^^^(g2sr)J 

+    A^[-    nK^(g2sr)     +    g2srK^^j(g^sr)] 

-    A srl       (g  sr)    -    A,srK       (g  sr)}  sin(ne)sin[s(z-ct)]   ,   (65) 5       n+r"2     ' 6      n+r^2 

rw    =     {Ajsrl^(gjsr)    +    A srK  (g.sr) 

16 



A5srl^(32sr) + A^32srK^(32sr)} cos(ne)cos[s(z-ct)]       (66) 

The divergence of the vector potential is 

Sl'^li    =  [(A^ + .^^g^^s^n^^Z^'^^ ■•" ^h  ~  A5e2)sK^(e2sr)]sin(n9)cos[s(z-ct)] 

(67) 

Formulas for the displacement and divergence corresponding to Cases II, III, 

and W can be written down by inspection. 

The divergence of the vector potential enters into calculations of the 

rotation vector.  The analysis prior to Part IX of this report follows 

Reference 2 in using a vector potential with nonsolenoidal divergence, as this 

approach considerably simplifies the analysis.  In Part IX a solenoidal vector 

potential, for which the divergence is zero, is derived by separation of 

variables.  Formulas for the vector displacement and its derivative remain 

unchanged, but a simpler formula for the rotation vector is obtained. The 

usual approach by means of the Newtonian potential is not appropriate since 

the hollow cylinder is a multiply connected region. 

V.  STRAINS, ROTATION VECTOR, AND STRESSES 

The strains are obtained from the displacements by means of the formulas 

9u 
'r  ■ 3r e  = — (68) 

u    8v 
e^  = — + Q    r    r89 

3w 
z    dz 

(69) 

(70) 

17 



9u  ,  9v    V ,-.. > 

Y  = |H + |w (72) 
rz    9z    3r 

^zQ " 3z    r39 ^     ' 

We calculate the strains in terms of Bessel functions for Case I. The 

remaining three cases can be treated in a similar manner. Let 

r^e  = H, y A.R, . 
r     1 ^  1 1 ,i 

(74) 

2 ^ 

re = H, y A.R- ^ z     1 Y  T- 3, i 

2 ^ 
r Y^e = H3 I A^R^^^ 

2 ^ 

(76) 

(77) 

(78) 

r^e^ = H,  I A,R^ , (79) = «4 \    \h,i 

The R^ j functions depend on the radius, and can be expressed in terms of 

Bessel functions of orders n and n+1. 

Rj ^ = I^i^s^^^^ + (n^-n)]l^(e^sr) - 3^srl^^(e^sr) (80) 

18 



1,2 ^"1 [B,^s^r^    +    (n^-n)]K^(B^(sr)    +    3jSrK^^^(e^sr) (81) 

^1.3    =    (n -n)I^(02«r)    +    32srl^^^(32sr) (82) 

R,   ,     =     (n -n)K (e„sr)     -    3-srK _^, (3.sr) 1.4 •n'"2     ' "^2      n+r'^2^ (83) 

^1.5    " -    e2S^2j^(3^^^)    ^    (n+l)srl^^^(32sr) (84) 

2  2 
1.6    =    ^2^  ^ \^h^''^    +    (n+l)srK^^^(32sr) (85) 

R2^1     = -    (n -n)I^(3^sr)    +    3iSrI^^^(3jSr) (86) 

2,2 
(n -n)K^(3jSr) ^l^^Vl^^l^^> (87) 

^2 3    ' ~    ^" -n)I^(32sr)    -    32nsrl^_^^(32sr) (88) 

^2 4    ° "    ^" -n)K^(32sr)    +    32nsrK^^^(32sr) (89) 

^2.5    =-    (n+l)srl^^^(32sr) (90) 

R, 2.6    =-    (n+l)srK^^,(B2sr) (91) 

s.i --y-^\^\^ry (92) 

IS 



2 2 
R. , = - s r K (3,sr) (93) 

^3.3 = ° 
(94) 

^3.4 = ° (95) 

R- . = e„s^r^I (e„sr) 
3,3     /    n 2 

(96) 

R_ , = - 3.s^r\ (3,nsr) (97) 

R, ,  = - 2(n -n)I (3, sr)  - 3, nsri . , (3, sr) 4,1 n  1        1   n+1  1 
(98) 

R. _  = - 2(n -n)K (3,sr) + 3, nsrK .,(3,sr) k ,2. n  1        1   n+1  1 
(99) 

R^ 2 = - [2(n^-n) + 32S^r^]I^(32sr) + 232srl^^^(32sr) (100) 

R^ ^ = -  [2(n^-n) + 32S^r^]K^(B2sr) - 232srl^^j(32sr) (101) 

R^ 5 = - ?>^a^v-lj,^^sr)    +    2(n + l)srl^^^(32sr) (102) 

^4 6' 32S^r^K^(32sr) + 2(n + l)srK^^j(32sr) (103) 

2 2 
R^ , = nsrl (3,sr) + 3,s r I .,(3,sr) 
5,1        n 1        1    n+1  1 

(104) 



R^  -    =    nsrK (3,sr)    -    3,s^r^K _^, (3,sr) (105) 
j ,Z n     1 1 n+1     1 

R^  2    =    nsrl^(e2sr) (106) 

R^ ^    =    nsrK^(e2sr) (107) 

R^ 5    = -    32"srl^(32sr)    +    i^^^    +    l)s^r^I^^^(02sr) (108) 

R^^g    =    32nsrK^(02sr)    +    i^^^    +    l)s^r^K^^^(32sr) (109) 

R,   ,     = -     Znsrl  (3,sr) (110) 

R,   _    = -     2nsrK  (3,sr) (111) 
0,2 n     1 

^6.3    =-    ^^^-'n^^i'^^     -    ^Z^'^^'Vl^^Z^^^ (112) 

R^ ^    = -    nsrl^(32sr)    +    32S^r\^^j(32sr) 113) 

^6.5    =    32nsry32sr)    -    s\\^^(^^sr) (114) 

^6.6    = -    32nsrK^(32sr)     -    s2r\_^^(32sr) (115) 

The dilatation e is the sura of the principle strains 

21 



e = e^ + Sg + e^ (116) 

We write 

2     2 
r e = ): R^ . (117) 

1  ''^ 

where 

R^ ^ = - a^^s^r^l^(3jsr) (118) 

R^ „ = - a,s^r\„(e,sr) (119) 7,2 ^r  ^ n'^^r 

We note that 

a  + 0 as c + 0 

Hence 

e > 0 as c ->• 0 

In general, therefore, the solution in terms of wave functions does not yield 

a valid solution in the limit as the velocity of travel approaches zero.  Pure 

torsion is an exception, as only shear strains are involved and the dilatation 

is zero under both static and dynamic loading conditions. 



The rotations are given by the formulas 

2w  = 1 |H _ |1 (120) 
z    r 36    dr ^       ■^ 

8u    3w 
% = ll - -aF (121) 

z    r 9r     r  96 ^^^^'' 

We set 

2 1° 
2rw^  = H3 I A.Rg^^ (123) 

o 

2 1° 
2r WQ = H^ I A.Rg^^ (124) 

8 

2 1° 
2rw^  = H^ I A.R^Q^^ (125) 

o 

for Case I. 

Rg 3 = nsrl^(e2sr)  + B2s2r2l^^^(32sr) (126) 

^.4 = ^^^\^^2'^^     -    ^2'^'\+l^h''^ (127) 

Rg 5 = 32"srI^(32Si^) + ^^^^^^11+1(^2^^^ (128) 

23 



Rg g = - 62"^rK^(32sr) + s^r\^^j(B2sr) (129) 

Rg 3 = nsrl^(32sr) (130) 

Rg ^ = nsrK^(02sr) (131) 

S.5 = 32nsry32sr) - a/l^^^^d&^^r) (132) 

^9 6 ° ~ ^2'^^^^n^^2^^^     ~    V^^n+1^^2"^ ^^^^^ 

^0,3 = - Sz^'r^yp^sr) (134) 

^10,4 =- 32sVK^(32sr) (135) 

^10.5 = ^2'^rh^(&^sr) (136) 

^0.6 =- 32sVKj32sr) (137) 

The stresses are derived from the strains by means of generalized Hooke's 

law. 

a  = Xe + 2ye (138) r r 

Og = Xe + 2ue0 (139) 

24 



a      =    Xe    +    2iie^ (140) 

^vA   =   ^'Yv.fl (1^1) re "^'re 

For case  I we  write 

r^o       =    H,     I     A. S,   , r 1    ^      1   l,i 

2 r a 

^\    =    «1    ^    \S.i 

2 6 
r  T 

r^T =    H-     y    A, S^  ^ 
rz 2     ^       i   5,1 

2 
r 

8z 4^1  6,1 

Then 

25 

/ 

rz rz \^'*^J 

\z   =   ^'^ez (i«) 

(144) 

e     =    Hi     I    A.S^^^ (145) 

(146) 

re     =    »3     5     ^^4,1 (1^7) 

(148) 

(149) 



S    = XR    + 2yR  , j  =  1,2,3; i =  1,3,5 (150a) 

S    = XR    + 2uR. ., j  =  1,2,3; i - 2,4,6 (150b) 

S. ^  = MR, .,  j  = 4,5,6; i =  1,2,3,4,5,6 (151) 

Stresses and strains for Cases II, III, and IV can be obtained in a similar 

manner.  The R, , functions must be calculated for each case to determine the 

correct algebraic signs in Eqs. (80) - (115) and Eqs. (118) - (119).  A similar 

remark applies to the formulas for the rotations. 

VI.  RESPONSE TO AN INTERNAL TRAVELING PRESSURE PULSE 

First, we consider a sinusoidal pressure pulse traveling with velocity c, 

The boundary conditions are 

a      =    a    cos(ne)sin[s(z-ct)], r = a (152) 

T^Q = 0, r = a (153) 

T^^ = 0, r = a (154) 

T^ = 0, r = b (155) 

T^^ = 0, r = b (156) 

T^2 = °' ^ = ^ (157) 



a 

These boundary conditions lead to a set of six linear equations for the A^ 

coefficients. 

6 0 
I    A.S, .(a) = a 0 (158) ^   1 1,1 o 

6 
I    A^S^^^(a)  = 0 (159) 

\    \\i 
^(a) =0 (160) 

I    AS  .(b)  = 0 (161) 

6 
I    \S^,i(b) = 0 (162) 

6 
I    AS  (b) = 0 (163) 

These equations can be solved for the A. provided c is greater than zero and 

less than the velocity of the shear wave, according to Eq. (20).  It is 

convenient to write the final results in terms of determinants, using Cramer's 

rule and then combining the separate terms.  Let D(s) be the determinant for 

Eqs. (158) - (163): 



D(s)  = 

S^^^Ca)  S^^^ia)       Si^3(a)  S^^^Ca)  S^^gCa)  S^^^Ca) 

S4^l(a)   S^^^ia)       S4^3(a)   S^^^Ca)   S4^5(a)   S^^^Ca) 

S3^l(a)   S5^2(^)   S5^3(a)  85^^(3)  83^5(3)   S5^^(a) 

8^^^(b)   S^^2(b>  S^.3(b)  S^^^Cb)  Si^5(b)  8^^6(b) 

S4,l(b)   S4,2(b)   S4^3(b)   84^4(b)   84^5(b)   S^^^Cb) 

S5^l(b)  S5^2(^>   S3^3(b)  S3^4(b)   S5^5(b)  83^^^) (164) 

The remaining determinates use the appropriate R. • or S. . for the first row; 

the remaining five rows are identical with the corresponding rows of D(s). We 

have, for instance. 

Sr = Si^l(r)  8i^2(^)  Si^3(r)  S^^^Cr)  Si^3(r)  S^^^Cr) (165) 

re h,l^^^       h,2^^^       h,3^^^       hA^'^       ^4.5(^)   S^^g^'^) (166) 

rz Rl^,(r)  R^^^^'^)  h,3^^^       ^1,4^'^)  h,5^^^       ^l.e^^) (167) 

Determinates for the remaining stresses and strains can be written down by 

inspection.  The stresses for Case I are given bj' 

r 0  = H,S /D(s) 
r     1 r (168) 

r Og = H^Sg/D(s) (169) 
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r^a  = H,S /D(s) (170) z     1 z 

r^T^Q  = HgS^g/DCs) (171) 

^^\z = «2\z/°(^> (172) 

'^^'^ez = ^A^ez/^^^^^ (173) 

Formulas for the strains are obtained in a similar manner. 

r^e^  = H^R^/D(s) (174) 

r^eg = HjRg/D(s) (175) 

r^e^ = H^R^/D(s) (176) 

r^Y^Q  = H3R^g/D(s) (177) 

r^Y,^ = H,R^^/D(s) (178) rz     2 rz 

^^^ez = »4l^9z/°(«> (179) 

We can also solve problems specified by the boundary conditions 
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0^    =    0  , r = a (180) 

T  = T cos(ne)sin[s(z-ct)], r = a (181) 

t   = 0 ,   r = a (182) 
rz 

and 

Oj. = 0 ,    r = a (183) 

T^g = 0 ,   r = a (184) 

T   = T cos(n0)sin[s(z-ct)z] (185) 

It is assumed the outside surface is stress-free according to Eqs. (155)- 

(157).  The Rj^^ and S^^ . functions must be derived for each case. 

Formulas for the response to a traveling step function of pressure are 

obtained by writing the stresses and strains in terras of Fourier integrals.  In 

place of Eq. (152) we write 

^ = a^cos(ne) [V2+{ / ^^^^^^^ ds]   ,   r ^ a     . (186) 

Then 

a      =    a    cos(ne)  ,      z>ct (187) 
r     o 

30 , 

^ 



a 
r 

= V2 o    cos(ne)  ,    z = ct (188) 

a      = 0 , z<ct (189) 
r 

The term 

'^^    = V2 (J„ cos(ne) ,     r = a (190) r     ■^  o 

leads to elementary solutions obtained by evaluating the corresponding Fourier 

integral at the origin.  The number of terras depends in part on the multiplicity 

of the zero at the origin of the complex s plane.* 

2 O      / Q\   r Sin[s(z-Ct)]   j /im\ r a  = — cos(n9) J   r,^   \ <ls (191) r    IT     V  '  J      sD(s) 
o 

leads to Fourier integrals involving functions occurring on the right-hand side 

of Eqs. (173) - (184).  We have 

1    /  \  r sin[s(z-ct)] „  ,                           /ioo\ a      = — cos(na)  J  *• ^, > S ds                         (192) r    TV    ^  '  J     sD(s) r 
o 

1       / Q\   r  Sin[s(z-Ct)] o   J f^n■:>\ 0Q = - cos(ne)  /  L^__LISgds (193) 

1    / Q\  r sin[s(z-ct)] „  ,                          /-m/N a  = — cos(ne)  J   \,   s S ds                         (194) z    TT    ^     '     J              sD(s) z 
o 

*Appendix A.     These eiementavy eoLutions can be expressed in terms of zonal 
havmonias. 



\Q 

00 

1  j / QN  r sin[s(z-ct)] „ 
_ sin(ne)  /  sD(s)    \Q  d^ (195) 

1    /■  a\     r SLn[s(z-ct)] „   , T   = — cos(ne)  I   J.. ■—^-^ S  ds rz    IT    ^  ^ J     sD(s)    rz 
o 

^ez 

The corresponding formulas for the strains are 

1    / Q\  r sin[s(z-ct)] „ e  = — cos(n9)  J  ■ '■ . ■.—^-^ R ds r    IT    ^  ^ J     sD(s)    r 
o 

1    /- Q\  r sin[s(z-ct)] _, -Q  = - cos(n9)  /  ^3D(3)    RQ ds 

1    / Q\  r  sin[s(z-ct)] „ e  = - cos(ne) J  ' ^. . ^■' R ds 
Z      TT ■'        SD(S)      Z 

(196) 

00 

1   • / Q\  r cos[s(z-ct)] ^ 
_ sin(n9) /  sD(s)   ^Sz ^" (197) 

(198) 

(199) 

(200) 

O 

00 

2    / ^\  r sin[s(z-ct) „ 
^rz  ■ 7 "=(■"»  /  sD(s)  "rz "i" <2»2> 

O 

The total value of the stresses and strains is obtained by adding solutions to 

the problem defined by Eq. (174). 

Solutions to problems involving other boundary conditions may be obtained 

in a similar manner.  In certain cases the Fourier integrals will be 

divergent.  In these cases the limits of integration should be taken 

between -" and + ", and the Cauchy principal value calculated.  Tlie factor 

1 



2/ ir must be replaced by 1/ ir in these cases. 

VII.  HARJIONIC AND BIHARMONIC FUNCTIONS AS LIMITS OF WAVE FUNCTIONS 

As the velocity of travel approaches zero, the wave functions tend to 

harmonic functions in the limit, as shown below.  However, in general, a static 

problem requires biharmonic functions as well as harmonic functions for a 

complete solution.*  A second limiting process involving an indeterminate 

quotient is required to extract the biharmonic functions from the wave 

functions. 

We recall the basic equations of Part II. 

u = V()) + Vxi() (5) 

LJ 
3t' 

2 „2_,    3d) c,  V ^ = —I (6) 

2 „2 :     d  ^il 
c   V ;(; = -^ (7) 

3t 

We find from Eqs. (19), (29), (30), (31), (32), and (23) that 

d^       _ 2 2 

3t2 
= - c s <j) (204) 

2" 
9 4' _    2 2 
a 2 dZ 

c s i|> (205) 

On letting c •*• 0 we find 

*Probleme involving yu^e  shear,   suah as  torsion of an axisyrmetrie solid,   are 
exoeptions.    A scalar bihavmonio function is required in problems involving a 
change in volume,   since dilatation derived from a scalar harmonic function is 
zero. 
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V^(t> = 0 (206) 

V^ip = 0 (207) 

where 

6 = [A,I (sr) + A-K (sr)]cos(ne)sin(sz) 
In        z n 

(208) 

A A 

ip = e [A^I ,, (sr) + A,K ., (sr)]cos(ne)cos(sz) 
r 5 n+1        o n+i 

(209) 

- eg A_I ..(sr) + A,K .(sr) cos(ne) sin(sz) 

+ e [A-I (sr) + A,K (sr)]sin(n6)sin(sz) 
z 3 n        4 n 

The corresponding displacements are found by setting c = 0, 3, = 1, 62 ~ ^ -^"^ 

Eqs. (64) - (66). We can eliminate two of the A^ coefficients in the result by 

writing 

A^      A-   **      A« (210) 

A3 = A^ + A^ (211) 

S ^3    ^5 (212) 

^10   h   ~   h 
3li 

(213) 



Then 

■* 

ru = [A^nl (sr) + A„nk (sr) + AgSrl ,,(sr) - A _srK .(sr)]cos(n9)cos(sz) 

(214) 

rv = [-A nl (sr) - A nK (sr) - A_srl ,,(sr) 4- A srK  (sr)]sin(ne)sin(sz) 

(215) 

rw = [A - A )srl (sr) - (A + A )srK (sr)]cos(ne)cos(sz) (216) 

We note that the six independent solutions for the displacements for the wave 

equation reduce to four when the velocity of travel becomes zero. Moreover, the 

displacements vanish if 

A.  = 0,    i = 7,8,9,10 (217) 

To obtain additional solutions, let 

A.  =  1/(3^ - &^)     ,  i =  1,2 (218) 

in Eqs. (217), (218), and (219).  We define the functions 

F^ = (nl^(3jsr)  - nl^(32sr)]/(e^ - &^) (219) 

F^ =  [nK^(3jSr)  - nK^(32sr)]/(3^ - 32) (220) 
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F^ =  [3^srl^^^(sr)  - srl^^^(sr)(e2 " sr)]/(0^ - ^2) (221) 

^ = ^h^'^+l^h'"''^     -    srK^^^(02sr)]/(e^ - P^ (222) 

F^ =  [32srl^_^^(32sr) - srl^_^^(e2sr) ]/(6^ - 32) (223) 

\    =  t^2^'^'^n+1^^2^'^) - ''\+l^h''^^^^h  - h^ ^224) 

F, =  [srI (0,sr)  - 3„srl (3„sr)]/(3, - 3J (225) 

F.  =  [srK (3,sr)  -  3^srK (3„sr)]/(B, - 3„) (226) 

On referring to Eqs. (64), (65), and (66) we find 

ru =  [3^(F^ + F^)  + 32(F2 " F^)]cos(ne)sin[s(z-ct)] (227) 

rv =  [- 3^(F^ + F^)  + 32(F2 + F^)]sln(n3)sin[s(z-ct)] (228) 

rw =  [3j(F^ - 32Fg]cos(ne)cos[s(2-ct)] (229) 

Kach of the F. functions has the indeterminate form 0/0 when c = 

0, 3,  =  1» 3«  =  1; this is obviously also true for the displacements.  The 

limits of these indeterminate forms can be found by the ordinary rules of 

calculus. When the velocity c is small we have 
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3j ~ \   ""i     >     1 - ^2 " ^'l   "2^ ^230) 

and 

J- ^ - rfi^ <"u 

oti referring to Eqs. (2), (3), (22), (23), (27), and (28).  The limits of the F^ 

functions can be found by using two terms of Taylor's series: 

l^(3^sr) = I^(sr) + (3^ - l)srr(sr) + 6(3^ - 1)^ (232) 

K^(3jsr)  = K^(sr) + (3^ - l)srr(sr) + 6(3^- 1)^ (233) 

^n+1^^1^^^  =  ^n+l^^''^  "^  ^^1 - ^^^^^n+l^^''^  + ^^^1 " ^^^       ^"4) 

\+l^^l^''^  = '^n+1^^''^ "^ ^^1 " l)srr^^(sr)  + 6(3^ - 1)^       (235) 

Additional formulas are obtained by substituting 3„ for 3 . 

As c approaches zero we find 

lim F^ = nsrr(sr) (236) 

lira F^ = nsrK^(sr) (237) 



^^"^ "3 = - rri; ^^^n+i^^^^ + ''K+i^'^^ (238) 

^^™^   =-   Tir^''\+i^''^   +   ^'^'^;+i(^'^) (239) 

l^"'^    =-    frf^-^nW^^^) (240) 

^^"^^6 =- rTT^-Vi(^'^) (2^1) 

litn F      =    I I 2y    srI  (sr)     +    srl'(sr) (242) 

lira  Fg     =    YTV"    ^''^n(^''^     "^    srK^(sr) (243) 

The derivatives may be eliminated by means of Eqs. (60) - (63).  The 

displacements corresponding to these limits are 

ru = lim [e,(F + F )  + e,(F -f )]cos(ne)sin[s(z-ct)] (244) 
cX) ^  <i   4 

rv  =  lim [- e^(F^ + F^)  + ^2(^2 +f5)]sin(n9)sin[s(z-ct)]        (245) 

rw = lim [3^F^ - e2Fg]cos(ne)cos[s(z-ct)] (246) 
c-K) 

The total displacements due to static loading are obtained by adding these 

displacements to the displacements obtained from the harmonic potentials, Eqs. 

(217) - (219).  We now have a total of six linearly independent solutions for 

the displacements.  The strains can be derived from the displacements and the 

stresses follow immediately frora Eqs. (156) and (151).  Thus, six independent 

3S 



stress formulas are obtained for meeting six boundary conditions of the type 

given by Eqs. (152) - (157) with c = 0. 

VIII.  BIHARMONIC SCALAR AND VECTOR POTENTIALS FOR STATIONARY LOADS 

It is possible to derive the displacements given by Eqs. (250) - (252) from 

vector and scalar potentials according to Eq. (5).  Harmonic scalar and vector 

potentials are given by Eqs. (211) and (212).  We now derive the additional 

biharmonic potentials required for Eqs. (250) - (252). 

For the scalar potential, assume 

9d) 
= r -gj (247) 

Then 

9r 

or 

36        3z 

since ij) is a scalar harmonic function it follows, after some routine analysis, 

that^ 

V^x = - 2 ^ (248) 
3z 

A.E.H.  Love^  A Treatise on the Mathematiaal Theory of Elasticity,  Dover 
Publications,  New York,  1944.    See pages 274-277,  especially Eqs.   (66) and  (67). 
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and 

v'^X = 0 (249) 

Other scalar biharmonic functions are given by References 8, 9, and 10. 

X = r <|) (250) 

X = (r slne)<|) (251) 

X =  (r cos9)(|) (252) 

X =  z* , (253) 

However, the biharmonic functions given by Eqs. (250) - (251) seem to be most 

closely related to scalar potentials for wave motion, as they can also be 

derived from a scalar wave function by a limiting process.  We have, for instance. 

/  2  2 
a,     = /l-c /c (254) 

2;^V./""^" ^Q^^'^Q^^Q^g of Solid Mechanios.  Prentice Hall,  Inc.,  Enqlewood 
CUffs,  NJ,  page 208. ■»  » 

^H.  Neuber,  Theory of Notch Stresses:    Principles for Exact Stress 
Calculatzon,  David Taulor Model Basin^   Wns.h.-yi^+.nv,]   nr^   rm-:-?att— 74 
November 1945.     See pages 25 and 128. 

^OA,S.  Elder,   "Traveling and Stationary Loads on the Half Space," BRL report 
to be published.     See section titled "Biharmonic Functions as Limits of 
Wave Functions. "  . 
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<t.^ = V2 [A^I^(B^sr) + A^K^Ce^sr)] (255a) 

X [sin s(z + ct)  + sin s(z-ct)]cos(n9) 

or 

(j)  =  [A I^(3,sr) + A K^(3,sr)] sin(sz)cos(sct)cos(n0) (255b) 

This scalar potential represents two equal loads traveling with the same speed 

in opposite directions. 

8<|, 
j^    =   V2    [A^e^rrCB^sr)  + A ^^v^ (^ sp] [sin[s(z+ct)]   + sin[s(z-ct)]cos(ne) 

(256a) 

+   1/2    [A^I^(3^sr)  + A2K^(3^sr)] 

X     [(z+ct)cos  s(z+ct) +  (z-ct)cos(sz)-ct)]cos(ne) 

-g^    =     [A^3^rr   (3^sr)  + A^B^rr   (3jSr)]   sin(sz)cos(sct)cos(ne) 

+     [A^I^(3jSr)  + A2K^(3jSr)][z  cos(sz)]   cos(sct)cos(ne) (256b) 

-     [A^I^(3^sr)  + A K^(3,sr)][ct   sin   (sz)]   sin(sct)cos(n9) 

On allowing  c  to  approach  zero,   we  find 

=     [A rl'(sr)    +    A„rK'(sr)]sin(sz)cos(n9) 3s ■■   1    n^   ^ 2    n 
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+ [A.zl (sr) + A„zK (sr)]zcos(sz)cos(n8) In 2n 

We also have 

X = r -g^ [Aj^I^(sr) + A2K^(sr)]sin(sz)cos(n9) (257a) 

or 

X =  [A^srr(sr) + A^srK^Csr) ]sin(sz)cos(ne) (257b) 

which yields two terms in Eq. (256b) except for a factor s.  The remaining two 

terms of (256b) correspond to Eq. (253). 

The biharmonic vector potential can be derived in a similar manner. We 

assume 

Sib 
(^    =    3^ (258) 

where 

A A 

0)    =    e    oj      +    e.co.     +    e    o) (259) rr66zz \     ■> J 

Then 

'^e    =    '^    17    ^9 (260) 



COQ = r    ^% (261) 

3 
0)  = r 3- ij; (262) z       3r  z ' 

We find as before 

2 
3- to  = r —- ip  + |- 1)^ (263) dr r       ^ 2 r    9r r ^       ■' 

3r 

with similar equations for a)„ and o) . The second derivatives are eliminated by 
9     z ■' 

using the three equations which result when the derivatives with respect to time 

are set equal to zero in Eqs. (11), (12), and (13).  On referring to Eq. (8) we 

find 

9        1 ,  a. 2 3  ,     13, 3   ,             ...,^ ^— ti)  =    — \\i      +    —   -— jp       __ — lb - r —r- rb                                  (264) 
3r r    r ^r    r 3r ^r    r  ..2 ^r ^ 2 ^r            ^       ^ 

do 3z 

2 2 

IF'^6 = i'^e - 7 l^^^r - 7 t;2'^9 - '^ TT'^e         (^65) 
Ot) dz 

and 

3 13^,        3^  , ,^^^, 
37 '^2  = - - -T 'i'e - '^ TT I'z (266) 

36 3z 

We finally obtain 

2 
V2 ,^ _ i_ ,^ + I_ |_ ,^ = _ 2 A^ ^^ (267) 

r       r 3z 
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r       r 3z 

and 

V^ u)  = - 2 ^ t (269) z        » 2 z 
oz 

Consequently, 

2' 
V^ iii = - 2 -^ (270) 

3z 

and 

V^ ^ = 0 (271) 

The biharmonic scalar and vector potentials are not independent, but are 

coupled through Navier's equation. 

(X + 2M)V,1) + yVxo) =  0 (272) 

or 

2 
^ [(X + 2y)V(j, + pVxi]  = 0 (273) 
3z 

This equation is satisfied if 



(X +  2\i)   V(|)    +    iiVxi|<    =    0 (274) 

or.   In scalar  form, 

(^-^2.)   |1   +   prf^,^   -   i^e    =   0 (275) 

(X + 2y)     r    If    +    p    1^^^    -    |^t/=    0 (276) 

(X + 2y)    |i    +    n i   1^ ^,    -    -i   1^ ^      =    0 (277) 3z r     dr    6 r     36    r 

We use  Case  I as an example. 

((.    =     [AT  (sr)    +    A„K (sr)]cos(n9)sin(sz) (278) 
in z  n 

I'j.    =     [A5l^^^(sr)    +    A^K^^^(sr)]sin(ne)cos(sz) (279) 

^Q    = -     [A^I^^^(sr)    +    A^K^^j(sr)]cos(ne)cos(sz) (280) 

ij^^    =     [A2l^(sr)    +    A K (sr)]sin(n0)sin(sz) (281) 

Relations among the A^ components are obtained by substituting these scalar 

.components into Eqs. (11) - (14) and carrying out the indicated analysis. 

We finally obtain 
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X = xlfZy f^ll^'^^n^^^^ "•" e^2(^^^l^°^("®)^^'^(^^^ ^^^^^ 

^r = 7 [3jjsrr(sr)  - g^^^^'^n+l^^'^^^^^'^^''^^''^^^^^^ ^^^^^ 

*0 " i f^ll^'^^n+1^^'^^ "^ 0^2^'^^n+l^^'^^^''°^^'^®^''°^^^''^ ^^^^^ 

'•'z " i [-3^jsrr(sr) + e^2Si^K^(sr)]sin(ne)sin(sz) (285) 

where 3,, and 3,2 ^^^   related linearly to the A. coefficients.  The derivatives 

may be eliminated by using standard formulas, so that the final result can be 

expressed in terms of trigonometric factors and Bessel functions of order n and 

n+1. 

Thus, we have a complete solution for static loading in terms of scalar and 

vector potentials.  By contrast. Love's strain function uses a single biharmonic 

scalar potential based on the Galerkin vector.  The displacements in our 

analysis are given in terms of first partial derivatives of the potential 

functions, consistent with the Green-Lame formulation of wave motion, whereas 

love's strain function expresses displacements as second derivatives of a scalar 

potential.  The present analysis illustrates a logical connection between static 

and dynamic problems for the elastic deformation of a hollow cylinder. 

IX.  HELMHOLTZ THEORY 

Helmholtz's theorem concerning resolution of a vector consists of two parts: 

V(}. + Vxx (286) 

X = 0 (287) 
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The vector potential \(; of Eq. (5), as derived in the previous analysis, is 

generally not solenoidal, as required by Eq. (287).  A solenoidal vector is 

obtained by a gauge transformation, as outlined by McQuistan.    In the course 

of McQuistan's analysis a Newtonian potential is used to solve Poisson's partial 

differential equation, and the proof is restricted to simply connected 

regions.  Unfortunately, a hollow cylinder is multiply connected, and this proof 

does not apply. We solve Poisson's equation by separation of variables. We 

have three cases to consider: 

1)  i|; is a harmonic vector potential 

2)  ij; is a biharmonic vector potential 

3) \^  is a vector wave function. 

In each case we assume 

A A 

X = ^ + 7n (288) 

where n is a scalar. Then 

V.x = V.iJ; = V.Vn (289) 

which, in view of Eq. (287), reduces to 

Y2  
R.B.  MaQuistan,  Saalar and Veotor Fields,  A Physiaal Interpretation^  John 
Wiley and Sons,  Ina.,  New York,   1965.     See pages 256-264. 
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v^ n = - V . i (290) 

Since the vector potential \p has been calculated previously, Eq. (290) is 

Poisson's equation for the scalar TI .  In each case we have 

v-i = 7 h^^\^ ^ T h^ "■ h^ (2^^> 

where 

A A 

\J^ = e i|)  + e„i|). +    e    ^ (292) 
^     r r     0 9     z  z 

A      A 

and e , e„, and e are the unit vectors in cylindrical coordinates.  For Case 1 
r'  9'     z 

we have 

^l)^    =  [A^I^^^(sr) + A^K^^^(sr)]sin(n9)cos(sz) (293) 

i>g = -  [A5l^^^(sr) + A^K^^^(sr)]cos(n9)sin(sz) (294) 

ii      =     [A^I (sr) + A.K (sr) ]sin(n9)sin(sz) (295) 
^2     5 n        A n 

After some routine analysis we find 

V • ij) =  [A + Ajsl (sr) + (A,-A,)sK (sr)]sin(n9)cos(sz)        (296) 
e   3  n 'ton 
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* 

We use the semi-inverse method to solve Eq. (290).  This was a lucky guess which 

saved considerable analysis. Assume 

n =  C [A_ + A^)I'(sr)  +  (A, - A,)K'(sr)]sin(ne)cos(sz) (297) 
J   3 n 4   0 n 

where C is an unknown constant. 

Then 

V^n = 2 C s^[(A_ + AJI (sr) + (A, - A,)K (sr)]sin(n9)cos(sz) (298) 
J   D n ^ o    n 

On referring  to  Eqs.   (290)  and   (291)  we  see  that 

C    = -   Vos (299) 

andj consequently^, 

n    = -   Vo    [(A- + A^)I'(sr)    +    (A,  - A,)K (sr)]sin(ne)cos(sz) (300) ^ j j    n 4 o    n 

The biharmonic vector, Case 2, may be treated in a similar manner. We have 

i|;.^ =  [e^srr_|_^(sr)  - 32srr_^^(sr)]sin(ne)cos(sz) (301) 

i|>g = -  [3jsrr_^^(sr)  - B^^rK^+jCsr) ]sin(ne)cos(sz) (302) 
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^^    = [- 3,sr'(sr) + 3„srK'(sr)]sin(n0)sln(sz) (303) z        in        z  n. 

We find 

V'^    = [3 si (sr) + g sK^(sr)]sin(n8)cos(sz) (304) 

Hencej 

V n = -  [e^sl^(sr) + g^s^n^®'^^^^^"^'^®^'^"^^^^^ ^-^^^^ 

On proceding as in the previous case, we find 

n = - -j [3^rr(sr) + 32rK^(sr)]sin(ne)cos(sz) (306) 

This result is well known.  If the right-hand side of Poisson's equation is a 

harmonic function, biharraonlc functions can be used to solve Poisson's 

Equation.  For instance, if 

V^n = <t), (307) 

and 

n = - 2 r -gf (308) 

tben 
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V^n = -^ (309) 
3z^ 

and we can readily prove that n is biharmonic, 

For the wave function, Case 3, we have 

^^    =  [A^I^^^CS^sr) + A^K^^^(02sr)]sin(n6)[cos s(z-ct)] (310) 

^Q    = -     ^^r^^n+l^^l^"^^    "^ A^K^(62sr)]cos(n9)cos[s(z-ct)] (311) 

t|)  =  [A-I (3-sr) + A K (e sr)]sin(n9)sin[s(z-ct)] (312) 
z      j n z       ^ n    1 

where ^  ,   ^a,  and ^    are components of the vector potential. We have shown that 

7 . t = [(A3 + $2^5)81^(023^) + (A^ - 32A^)sK^(e2sr)]sin(n9)cos[s(z-ct)] 

(67) 

Assume 

n = C [(A3 + 32A5)sI^(32sr) + (A^ - g2A^)sK^(g2sr)]sin(ne)cos[s(z-ct)] 

(313) 

where the constant C is unknown. Then 

51 



V^n = - {C ($2 - l)s^ (A3 + B2A5)sI^(32sr) + (A^ - & ^A^)Kj^ ^sr) ]}       (314) 

X {sin(n9)cos[s(z-ct)z]} 

But 

02^ =  1 - $2^  so that (315) 

0   0 
C = -  1/s 02 

and 

n  = - -^  [(A- + e„A^)I (3oSr) + (A. - BoA,)K (B.sr) ]sin(ne )cos] [s(z-ct)] 
sa 2 (316) 

This result is not valid for a = 0, corresponding to zero velocity of travel. 

Next we recompute the vector displacement by substituting x from Eq. (288) 

into Eq. (286). We find 

u =  Vcf. + Vxi|; + V.Vn (317) 

The third term on the right-hand side of this equation is zero, so we recover 

Eq. (5) in the formula for the vector displacement. 

u =  V(j) + Vx\|) (5) 

Formulas for the stresses and strain, which involve partial derivatives 

of u, remain unchanged. 



The vector potential is given by 

u) = V2VXU (318) 

or 

0) = 1/2 V X V(j) + 1/2 V X V X ij; (319) 

But 

7 X V4. = 0 (320) 

and 

V X V X ;|; = V (V.^p)  - 7^ X (321) 

Hence. 

1  2" 
0) = - - 7 ip (322) 

An analogous formula is found for the dilatation 

e = 7.U (323) 
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e  =  V.V(j) +  V'Vxij; (324) 

But 

Vxip = 0 (325) 

So that 

= V^<}) (326) 

The results obtained by using x ^-^  place of \\i  conform to all requirements 
of Helraholtz theory provided the z axis is excluded from the region under 

consideration and the Bessel functions are defined to be single valued.  The 

scalar potential x)  is determined so that Eq. (287) is satisfied and x ^^ 

solenoidal.  The potential x is a single valued function of 6 since 
sin(n e)and cos(n 6) are periodic, and are obviously single valued functions 
of z  and t if s is real and positive. 

If s is complex, the complex s plane must be cut along the negative real 
axis to make the modified Bessel functions of the second kind single valued. 
This cut makes the logarithms occurring in the definition of these functions 
single valued. In analysis of equilibrium problems, the final equilibrium 
solution does not involve logarithms of s and becomes single valued; this is 
also true of dynamic problems involving Bessel functions of the second kind. 
The proof requires additional analysis which is given in Appendix A. 

X.  DISCUSSION AND CONCLUSIONS 

In this paper we have formulated the equations governing elastic strains 
in a hollow cylinder due to stationary loads and loads moving with constant 
subsonic velocity.  In addition, scalar and vector potentials are derived for 
stationary loads, showing the connection between static loading and the Green- 
lame formulation of wave motion.  Six linearly independent solutions are 
obtained for the moving solutions, corresponding to the six boundary 
conditions on the cylindrical surfaces.  However, when the velocity of travel 
is set equal to zero, two solutions are lost by confluence of the solutions, 
and only four linearly independent solutions remain.  Two additional solutions 
are obtained by a limiting method, so a total of six linearly independent 
solutions is available.  Biharmonic scalar and vector potentials are also 
derived from which these two additional solutions can be calculated. 

The distribution of characteristic roots is not yet determined.  We 
speculate the roots in the first quadrant of the complex s plane lie between 
the imaginary axis* and a smooth curve passing through the complex eigenvalues 

*Free vibrations of a hollow cylinder lead to real values of w the circular 
frequency, and real eigenvalues when the eigenvalues are expressed in Bessel 
functions of the first kind, provided to is not too large.  Pure Imaginary 
eigenvalues arise when modified Bessel functions are used. 



for static loading. To verify this, the characteristic roots for a traveling 
load on a solid rod will be calculated first, as the calculations should be 
relatively simple, before investigating the eigenvalues for a hollow cylinder. 

The planned programming will follow the general pattern developed for 
static loading of a hollow cylinder, but simplified and streamlined to 
expedite the calculations.  Each type of loading will be considered 
separately. 

Torsional loading will be considered first due to the simplicity of the 
analysis. Axisymmetric loading will be considered next, as an extension of 
our thick-walled cylinder analysis. 

The analysis in Parts I -VIII is based on the work of Herrmann and his 

associates, in which the vector potential ij; is not required to be 

solenoidal.  In order to conform to the classical Helmholtz theory, a new 

vector solenoidal potential x is derived.  The previously derived formulas for 
the displacements, strains, and stresses are not changed.  The formula for the 
vector rotation is simplified and becomes the vector counterpart of the 
scalar formula for the dilatation. 
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APPENDIX A 

QUASI-STATIC SOLUTIONS OF THE WAVE EQUATIONS 

Stresses given in Part V of this report have the generic form 

a = G(6, r, z) + F(9, r, z) (Al) 

where G( 9, r, z) is the limiting form of the stress at a great distance from 

the discontinuity in loading and F( 9, r, z) is a Fourier integral giving the 

local effects of this discontinuity.  Both solutions can be obtained from 

scalar and vector wave functions.  However, G( 6, r, z) is of a simpler type, 

and can be obtained from a scalar harmonic function in the independent 

variables 9, r, (z-ct)/3, and a vector harmonic function in the 

variables 9, r, (z-ct)/g_.  These solutions can be expanded in power series 

in the variable (z-ct); logarithmic solutions may also occur.  Exponentially 

decaying terms do not occur, so the stresses given by G( 9, r, z) persist at 

considerable distances. 

The scalar wave function is a solution of 

^        3t 

where c^ is the dilatational wave speed.  If (|)[9, r, (z-ct)/3.] is a scalar 

wave function, then ij)[9, r, z/B ] is a scalar harmonic function. We have in 

expanded form 

2iii^lil^i_l%^i^   ^    l± (A2b) 
1   :; 2 ^ r 3r     2  .,2 ^ „ 2 ^    .2 ^'^^^^ dr r  39     3z       3t 

We note that 

^ - 0^ 4 (*3) 3t 3 z 
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so that 

c 2r 9il + 1 it + 1_ .iii ]  +  r^ 2  2   3^ _ 
1 ^ ^ 2    r  3r     2  ^^2 ^  ^  ^'^l '^ ^   2    " ^^^^ 

or r  do dz 

But 

2       2 2   2 
3,   =  (c^ -c )/c^   We define 

S  = z/01 (A5) 

Then 

3r^    '^ '^     r^ 39^    3^^ 

Analysis of the vector potential yields similar results.  If \j;[e, r, (z- 

ct)/ g ] is a solution of the vector wave equation 

2* 

c  V 4; = —^ (A7) 
3t^ 

then i|;[9, r, z/^A   is a solution of the vector harmonic equation 

V^t = 0 (A8) 

2       2  2    2 
where C2 is the velocity of the shear wave and 3   = (c„ -c )/c, 
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We assume that 

0 < c < c^ (A9) 

in the preceding analysis. 

The finite series for G( 9, r, z-ct) can be derived from harmonic scalar 

potentials in the variables 6, r, z/3, and the vector harmonic potentials in 

the variables in the 9, r, z/3 .  It is sufficient to consider scalar and 

vector harmonic functions in the variables 9, r, z, as the required potentials 

in terras of 9, r,(z-ct) can be obtained by appropriate changes in the 

independent variable z. 

We consider the scalar form of Laplace's equation in detail. We have 

9!l + lii + i_ii_ + i!l = 
3^2    r  3r     2 -.2  '   2 or r  39     3z 

= 0 (AlO) 

We .issume 

(j)  = F sin(n9) (AH) 

then 

3 F ^  1  3F    n F  ^  3^F    ^ 
~T + 7 3? " "T" + —0 = 0 (A12) 
3r^    ""     '*''    3r^F    32^^ 

The function 

^o " (A^ + A^ log r)(l + g^z) (A13) 
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is an obvious solution when n = 0. For n > 0 we have solutions of the type 

= (A^r " + A^r")(1+3^2) (A14) 

The general, separable solutions involve Bessel and trigonometric functions. 

We require nonseparable solutions in ascending powers of z.  Both positive and 

negative powers of r are required in order to satisfy boundary conditions at 

the inner and outer cylindrical surfaces.  The required harmonic function can 

be obtained by expressing spherical harmonics in terms of cylindrical 

coordinates and rearranging terms in ascending powers of z, References  Al 

and  A2.* 

These potentials can be obtained in an elementary manner by assuming 

Fj^ =  G^ + z'^G-  + z^G, + ... (A14a) 

or 

F, ^,  =  zG,  + z"^G„ + z^G^... (A14b) 
k+1      13       5 

where 

E.W.  Hobson,   The Tlieory of Spheviaal and Ellipsoidal Havmonias, 
Univevsity      Pvese,   Cambvidge,   1931.    See Chapter IV. 

A2 
J.  Bougall,   "An Analytical Theory of the Equilibrium of an Isotropia 
Elastic Rod of Circular Cross Section," Transactions of the Royal Society 
of Edinburg,  1913,   Vol.  XLIX,  Part TV (No.   17),  pages 895-978. 

*Ths fourth degree harmonic    A given on page 348,   Reference  12,   occurs  in the 
torsion problem,    details will  be described in a forthcoming BRL report, 
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k      -k 
G.  = Ar  + Br  , i = 0, 1 (A15) 

The remaining G. functions, which are also functions of r alone, can be 

obtained recursively from the formula 

TT-   "■   7   T-    -    hh     = (i+2)(i+l) G^^2 (A16) 
3r r 

wViich is obtained by substituting the preceding expressions for Fi^ into Eq, 

(AlO), carrying out the indicated operations, and equating the successive 

powers of z to zero. 

As an example, set 

n = 0, k = 4, A = 3,B = 3 (A17) 

We find 

4    2 2    4      -4-6  2      -8  4 
Fj^ = 3r -24r z + 8z  + 3r -24r  z  + 8r  z (A18) 

The potential given by the first line can be used in the analysis of torslonal 

loads and differs only by a constant from the potential (j), given in Reference 

12, page 348. 

Next, we consider the contribution of the Fourier integral to the total 

solution. We have either 

" N (r,s) . r /    M n /n     \      • / o\  r  0 sinls(z-ct)l . /.,« X F^(9, r, z)  = sin(n9)  J —       !^-i i^ ds (A19a) 
t>                   _^   ^vs; s 
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or 

~ N (r,s) .    .   . 
-n    fa                     \                            /■    a\         r              O Sins S(z-Ct)  , / » , ni. \ F (6, r, z)  = cos(ne)  J —-, v   ^^   ds (A19b) 
c                        u^,s; s 

for stresses which are odd in z.  The cosine replaces the sine under the 

integral sign if the stress is even in z.  For values of z which are not too 

small, we calculate F or F by the theory of residues, which is validated in 

cases of interest by Jordan's lemma.  If z>ct we use a contour in the upper 

half plane, indented at the origin of the complex s plane.  If z<ct we use the 

corresponding contour in the lower half plane.  The complex variable theory 

follows suggestions in a landmark paper by Dougall (A2).  Dougall uses an 

entirely different set of potentials to calculate the displacements and 

strain; however, his remarks on the nature and distribution of the 

characteristic roots are still valid. 

It is obvious the characteristic functions for the solid rod do not have 

a branch point at the origin of the complex s plane, since only ordinary or 

modified Bessel functions of the first kind are involved.  These functions are 

analytic in the entire complex plane with the exception of essential 

singularities of exponential type at infinity.  A detailed analysis is 

required for the hollow cylinder, since functions of the first and second kind 

are both required in order to satisfy boundary conditions at the inner and 

outer cylindrical surfaces.  Bessel functions of the second kind have a 

logarithmic singularity at the origin, plus a finite Laurent series in the 

case of functions of integral orders greater than zero.  We must show the 

characteristic functions do not have a branch point at the origin; multiple 

poles will, in general, occur due to the reciprocal powers in the Laurent 

series. 

To this end, we write D(s) in extended form. We have from Eq. (164) 
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Si^^(a) S^^^(a) Si^3(a) S^^^Ca) S^^^Ca) Sj^^(a) 

S^^j(a) S^^2(^> ^^.3^^) S^.4(^) ^^,5^^) h ,6^^^ 

D(s) =  S5^j(a) S5^2(^) ^5,3^^^ ^5,4'^^^ ^5 5^^^ ^5 6^^^ 

S^^^Cb) S^^^W S^^3(b) S^^^Cb) Si^5(b) S^^^(b) 

S^^^Cb) S^^2(b) S^,3(b) S^.4(b> S4^5(b) S^^6(^> 

S5^j(b) S5^2(^) ^5,3^^^ ^,4^^) ^5,5^^^ ^S.e^**^    ^^^^^ 

To eliminate the apparent branch point from the determinant D(s) we manipulate 

the columns in pairs.  Columns 1, 3, and 5 are derived from the even-numbered 

equations in the sequence of Eqs. (80-115).  These columns therefore contain 

only modified Bessel functions of the first kind, and are analytic functions 

of s.  Columns 2, 4, and 6 are derived from odd-numbered equations of the 

above sequence, and contain only modified Bessel functions of the second 

kind.  The logarithmic term of the modified Bessel functions contain the 

logarithm of s, which can be eliminated algebraically.^-^The logarithms of a 

and b which also occur can not be eliminated. For convenience suppose n is 

even. The variable r in the following equation can represent either a or b. 

K (sr)  = L (s)I (sr) + Ln(r)I (sr) + L (sr) + P (sr)     (20) 
n        n   n n        n        n 

where Lj^(sr) is a Laurent series having a pole of order n at the origin In the 

complex s plane and P^(sr) is a power series in ascending powers of (sr), with 

zero and positive powers only.  Similarly, 

M. Ahvamoioitz and S.A. Stegun, Editors. Handbook of Mafkematiaal Functions, 
w-lth Formulas, Graphs, and Mathematical Tables. U.S. Department ofCommeroe, 
Applied Mathematie Series No.  55,   1964.    See Eq.   (9.6.11),   page 375. 

69 



K ,,(sr)  = - L (s)I (sr)  - Ln(r)I (sr)  - L  (sr)  - P .,(sr) 
n+1 n   n n n+1 n+i 

(A21) 

Now multiply columns 1, 3, and 5 by L (s) and subtract the results from 

columns 2, 4, and 6,respectively.  We find the logarithm of s is eliminated. 

If n is an odd integer we add instead of subtracting.  In either case, we find 

U(s) is an analytic function of s except for poles.  A multiple pole generally 

occurs at the origin. 

It is believed the characteristic roots are simple except at the 

origin. Asymptotic methods may be used for characteristic roots of large 

modulus.  The smallest nonzero root can be examined by expanding D(s) in a 

Laurent series.  Extensive calculations have shown the characteristic 

equations arising from axisymmetric loading are simple for a large range of 

wall ratios (A4).  Moreover, a double zero leads to functions of the type 

R(r) X [s(z-ct) sin s(z-ct) + cos s(z-ct)], which do not satisfy the wave 

equations.  Classical methods of determining the multiplicity of 

characteristic roots are forbiddingly difficult when applied to the 

determinant D(s); hence, detailed analysis will be reserved for specific types 

of loading under consideration. 

^^A.S.  Elder and K.L.   Zimmevman,   "Stresses in a Gun Tube Pvoduaed by Internal 
Pressure and Shear," BRL Memorandum Report No.  2495,  June 1975 (AD A012765). 

70 



DISTRIBUTION  LIST 

No.   of 
Copies 

12 

Organization 

Administrator 
Defense  Technical   Info  Center 
ATTN:   DTIC-DDA 
Cameron   Station 
Alexandria,   VA    22314 

Director 
Defense Advanced Research 

Projects Agency 
1400 Wilson Boulevard 
Arlington, VA 22209 

Director 
Defense Nuclear Agency 
Arlington, VA  22209 

Commander 
US Army BMD Advanced 

Technology Center 
ATTN:  BMDATC-M 
P.O. Box 1500 
Huntsville, AL  35804 

Commander 
US Army Materiel Development 

and Readiness Command 
ATTN:  DRCDMD-ST 
5001 Elsenhower Avenue 
Alexandria, VA 22333 

Commander 
US Army Armament Research 

and Development Command 
ATTN:  DRDAR-TSS 
Dover, NJ  07801 

Commander 
US Army Armament Research 

and Development Command 
ATTN:  DRDAR-TDC 
Dover, NJ  07801 

Commander 
US Army Armament Research 

and Development Command 
ATTN:  L. Goldsmith 
Dover, NJ  07801 

No. of 
Copies Organization 

Commander 
US Army Armament Research 

and Development Command 
ATTN:  DRDAR-LCR-R, T. Moore 

DRDAR-LCR, W. Williver 
DRDAR-LCS-D, K. Reuben 
DRDAR-LCA, S. Bernstein 
DRDAR-LCN, G. Demi track 
DRDAR-LCA, B. Knutulski 

Dover, NJ  07801 

Commander 
US Army Armament Research 

and Development Command 
ATTN:  DRDAR-SC, B. Shulman 

Mr. Webster 
Dover, NJ 07801 

Commander 
US Army Armament Research 

and Development Command 
ATTN:  DRDAR-SE 
Dover, NJ  07801 

Commander 
US  Army Armament   Research 

and  Development   Command 
ATTN:     DRDAR-FU 
Dover,   NJ     07801 

Commander 
US Army Armament Research 

and Development Command 
ATTN:  DRDAR-DP 
Dover, NJ  07801 

Commander 
US Army Armament flateriel 

Readiness Command 
ATTN:  DRSAR-LEP-L 
Rock Island, IL 61299 

Commandant 
US Army Infantry School 
ATTN:  ATSH-CD-CSO-OR 
Fort Benning, GA  31905 

71 



DISTRIBUTION LIST 

No. of 
Copies 

1 

Organization 

Director 
US Army ARRADCOM 
Benet Weapons Laboratory 
ATTN:  DRDAR-LCB-TL 
Watervliet, NY  12189 

Director 
US Army ARRADCOM 
Benet Weapons laboratory 
ATTN:  DRDAR-LCB, T. Simkins 

T. Davidson 
Watervliet, NY  12189 

Commander 
US Army Aviation Research 

and Development Command 
ATTN:  DRDAV-E 
4300 Goodfellow Blvd. 
St. liDuis, MO 63120 

Director 
US Army Research and 

Technology Laboratories 
(AVRADCOM) 
Ames Research Center 
Moffett Field, CA 94035 

Director 
US Array Air Mobility Research 

and Development Laboratory 
Ames Research Center 
Moffett Field, CA 94035 

Commander 
US Army Communications 

Research & Dev Command 
ATTN: DRSEL-ATDD 
Fort Monmouth, NJ  07703 

Commander 
US Army Electronics Research 

and Development Command 
Technical Support Activity 
ATTN:  DELSD-L 
Fort Monmouth, NJ  07703 

No. of 
Copies 

1 

Organization 

Commander 
US Army Harry Diamond Labs 
2800 Powder Mill Road 
Adelphi, MD  20783 

Commander 
US  Army Missile   Command 
ATTN:     DRSMI-R 
Redstone Arsenal, AL 35898 

Project Manager 
Nuclear Munitions 
ATTN:  DRCPM-NUC 
Dover, NJ 07801 

Commander 
US Army Missile Command 
ATTN:  DRSMI-YDL 
Redstone Arsenal, AL 35898 

Commander 
US Army Mobility Equipment 

Research & Dev Command 
Fort Belvolr, VA 22060 

Commander 
US Army Tank Automotive 

Command 

ATTN:  DRSTA-TSL 
Warren, MI 48090 

Project Manager 
Division Air Defense Gun 
ATTN:  DRCPM-ADG 
Dover, NJ 07801 

Project Manager 
Cannon Artillery Weapons 

System 
ATTN:  DRCPM-CAWS 
Dover, NJ 07801 

72 



No.   of 
Copies 

1 

Organization 

DISTRIBUTION  LIST 

No.   of 
Copies 

Product Manager for 30imn Ammo 
ATTN:  DRCPM-AAH-30min 
Dover, NJ 07801 

Product Manager 
M110E2 Weapon System, DARCM 
ATTN:  DRCPM-M110E2 
Rock Island, IL 61299 

Commander 
US Army Research Office 
P.O. Box 12211 
ATTN:  Technical Director 

Engineering Division 
Metallurgy & Materials 

Division 
Research Triangle Park 
NC  27709 

Commander 
US Army Research Office 
ATTN:  Dr. J. Chandra 

Dr. F. Schmiedeshoff 
Research Triangle Park 
NC  27709 

Director 
US Army Mechanics and 

Materials Research Center 
ATTN:  Director (3 cys) 

DRXMR-ATL 
Watertown, MA 02172 

Director 
US Army TRADOC Systems 

Analysis Activity 
ATTN:  ATAA-SL 
White Sands Missile Range 
NM 88002 

Commander 
Naval  Air  Systems   Command 
Washington,  DC    20360 

Organization 

Commander 
Naval Sea Systems Command 
Washington, DC  20362 

Commander 
David W. Taylor Naval Ship 

Research & Development Center 
Bethesda, MD  20084 

Commander 
Naval Air Development Center, 

Johnsvllie 
Warminster, PA 18974 

Commander 
Naval Missile Center 
Point Mugu, CA  93041 

Commander 
Naval Surface Weapons Center 
Dahlgren, VA 22448 

Commander 
Naval Surface Weapons Center 
Silver Spring, MD 20910 

Commander 
Naval Weapons Center 
China Lake, CA 93555 

Commander 
Naval Research Laboratory 
Washington, DC 20375 

Superintendent 
Naval Postgraduate School 
ATTN:  Dir of Lib 
Monterey, CA 93940 

Commander 
Naval Ordnance Station 
Indian Head, MD 20640 

AFRPL 
ATTN:  W. Andrepont 

T. Park 
Edwards AFB, CA 93523 

73 



DISTRIBUTION LIST 

No. of 
Copies Organization 

AFATL 
Eglin AFB, FL 32542 

AFWL/SUL 
Kirtland AFB, NM 87117 

Director 
Lawrence Livermore Lab 
P.O. Box 808 
Livermore, CA 94550 

Director 
Los Alamos Scientific Lab 
P.O. Box 1663 
Los Alamos, NM 87545 

No. of 
Copies Organization 

1   S&D Dynamics, Inc. 
ATTN:  Dr. M. Soifer 
755 New York Avenue 
Huntington, NY  11743 

1   Southwest Research Institute 
ATTN:  P. Cox 
8500 Culebra Road 
San Antonio, TX 78228 

1   Stanford University 
Stanford Linear Accelerator 

Center 

ALAC, P.O. Box 4349 
Stanford 
CA 94305 

Headquarters 
National Aeronautics and 

Space Administration 
Washington, DC  20546 

Director 
National Aeronautics and 

Space Administration 
Langley Research Center 
Hampton, VA 23365 

Director 
National Aeronautics and 

Space Administration 
Manned Spacecraft Center 
ATTN:  Library 
Houston, TX 77058 

BIM Applied Mechanics 
Consultants 

ATTN:  Dr. A. Bores! 
3310 Willett Drive 
Laramie, WY 82070 

CALSPAN Corp. 
ATTN:  E. Fisher 
P.O. Box 400 
Buffalo, NY  14225 

State University of New York 
Department of Mathematics 
ATTN:  Dr. Ram Shrivastav 
Stony Brook, NY  11790 

University of Delaware 
Department of Mathematics 
Department of Mechanical Engr 
Newark, DE  19711 

Princeton University 
Department of Civil 

Engineering 
ATTN:  Dr. A.C. Eringen 
Princeton, NJ 08540 

University of Kentucky 
Department of Computer 

Science 
ATTN:  Prof H.C. Thacher, Jr. 
915 Patterson Office Tower 
Lexington, KY 40506 

74 



No. of 
Copies Organization 

DISTRIBUTION LIST 

No. of 
Copies 

University of Wisconsin- 
Madison 

Mathematics Research Center 
ATTN:  Dr. John Nohel 

Dr. Richard Meyer 
610 Walnut Street 
Madison, WI 53706 

Virginia Commonwealth Univ. 
Department of Math. Sciences 

901 W. Franklin St. 
Richmond, VA 23284 

University of Colorado 
Dept. of Aerospace Eng, Sciences 
ATTN:  Prof. G. Inger 
Boulder, CO 80304 

Organization 

Aberdeen Proving Ground 

Dir, USAMSAA 
ATTN:  DRXSY-D 

DRXSY-MP, H. Cohen 
Dir, USAMTD 

ATTN:  H. King 
P. Paules 

Cdr, USATECOM 
ATTN:  DRSTE-TO-F 

Dir, USACSL, 
Bldg. E3516, EA 
ATTN:  DRDAR-CL 

DRDAR-CLB 
DRDAR-CLB-PA 
DRDAR-CLD 
DRDAR-CLN 
DRDAR-CLY 
DRDAR-CLJ-L 

75 



USER EVALUATION OF REPORT 

Please take a few minutes to answer the questions below; tear out 
this sheet, fold as indicated, staple or tape closed, and place 
in the mail.  Your comments will provide us with information for 
improving future reports. 

1. BRL Report Number^  

2. Does this report satisfy a need?  (Comment on purpose, related 
project, or other area of interest for which report will be used.) 

3.  How, specifically, is the report being used?  (Information 
source, design data or procedure, management procedure, source of 
ideas, etc.) 

4.  Has the information in this report led to any quantitative 
savings as far as man-hours/contract dollars saved, operating costs 
avoided, efficiencies achieved, etc.? If so, please elaborate. 

5. General Comments (Indicate what you think should be changed to 
make this report and future reports of this type more responsive 
to your needs, more usable, improve readability, etc.) 

6.  If you would like to be contacted by the personnel who prepared 
this report to raise specific questions or discuss the topic, 
please fill in the following information. 

Name:      __^  

Telephone Number:  

Organization Address: 


