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R Two basic approaches to the problem of estimating bearing in the ocean are

compared. These approaches, both of which utilize signal phase, rather than ampli-

tude, information, are the traditional closed-loop method and a newer open-loop

7 concept. The relative theoretical performance is determined in terms of the stan-

I. dard deviation of fluctuation in the bearing estimate, normalized for universal-

ity. Bias considerations are neglected for simplicity. When the resulting closed-

and open-loop performance curves are compared, it is found that there is little

difference between them at high signal-to-noise ratios.

1

[

i.[
iDO



R2291

7HIGHLIGHTS OF REPORT

w Bearing information imbedded in differential signal phase is identified.

M Basic configurations of closed-loop and open-loop bearing estimators used in

the study are defined.

a The phase detection functions, although different in appearance, prove to be

mathematically identical.

a Phase statistics are derived.

a The location and nature of the error differ significantly between the two

estimators.

• Performance of the two estimators is evaluated and compared.

g The theoretical performance of the two estimators is the same at high

signal-to-noise ratios.

a The decision as to which estimator to choose should be based on considera-

" tions other than theoretical performance.

I
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I RZCOSSIERMTIONS FOR FUTURE STUDY

m This study has made several simplifying assumptions:

* No source motion

* Source exactly on beam main response axis

o Noise in the two half beams statistically independent of each other.

A more realistic comparison would result if these assumptions were to be

relaxed. This is recommended for a future study task or combination of

tasks.

m This study has examined the use of signal phase to estimate bearing. It is

*• recommended that a similar study be initiated to examine the use of signal

amplitude instead: fundamentally, the performance of a bearing interpola-

tion scheme. Other studies of this type have been performed, but not neces-
sarily asking the questions that need to be asked for this application.

i
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1. !ITRODUCTION

This is a technical report prepared under the DLT Anomaly Study" performed by

the author under the technical direction of Peter J. Barnikel, NUSC/NLL, under con-

tract N00140-78-6021-0052.

The question addressed in the present report is the following: Is there a

fundamental difference in theoretical performance between a closed-loop bearing

estimator, typified by the DIFAR-Like Tracker (DLT)1 , on the one hand, and an

open-loop bearing estimator on the other hand, both estimators making use of signal

phase, rather than amplitude, information?

It should be mentioned in passing at this point that studies 2 "4 have been

performed on the subject of bearing estimation (interpolation) using amplitude

information. Despite this, it would be wise to perform such a study in the future,

asking and answering the right questions pertinent to the application at hand. In

particular, performance should be compared with the performance results obtained in

the present report.

This report is quite theoretical, making many simplifying assumptions and

working with normalized quantities to arrive at a performance comparison between

idealized classes of systems. At no time is any information on the absolute per-

formance of any real system derived or provided; that would be beyond the scope of

the present study.

Since the bearing estimators under consideration use phase information, the

second section of this report is devoted to an examination of the information car-

ried in signal phase. The third section shows the basic configurations of the

closed-loop and open-loop bearing estimators under study in this report. The

fourth section analyzes the respective phase detection implementations. The fifth

section presents the phase statistics derived in Appendix A. The sixth section

examines the location and nature of the error in the two estimators. Finally, the

performance of the estimators is evaluated and compared in the seventh section.

1. References are listed in Section 8.

K 1-1
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2.0 V38 IWOATZOS

4 The two bearing estimation concepts being compared in this report both make

use of information contained in the phase of the arriving signal. In this section,

I. the information content of the signal phase is ezemined.

First, the signal is describeds It will be assumed in this report that the

signal waveform is a pure sinusoid and that the signal wavefront is plane. That

- is, the radiating source is assumed to be in the far field and the propagation is

assumed to be ideal, introducing no multipath structure and no fluctuation, either

in amplitude or in phase. In general, relative motion can exist and have an

effectl in the end, however, relative motion will be assumed not to exist.

Second, the receiving array is described: For both bearing estimation con-Y* cepts, an array of hydrophones split into left and right halves is used. The base-

line distance between phase centers of these halves is called the effective dipole

spacing (d).

* IThe signals appearing in the left- and right-half beam outputs can be written

as follows%

SLOt) *Acos [2ffOt + -P,(t)] (2-1)

SR(t) a cos [2nfot 4qurt)] (2-2)
where

A = constant signal amplitude, usually the same in both half beams

(although not a requirement),

fO a source frequency of signal,

OL,R - phase terms in left and right half beams respectively, further

described as follows:

2-1
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LR K -ri(t + -- [sin 6 iOt) - sin 00  +0 (2-3)

where K - acoustic wave number:

K 21T 2yrf 0  (2-4)
Wc

* where

X - acoustic wavelength

c - speed of sound

Continuing,

ri - range to source

i = bearing to source

1 .6 - bearing direction of array main response axis (MRA)

0 0 constant additive phase shift.

Now the information contained in the phase terms given by (2-3) will be dis-

cussed. To start, the constant additive phase shift (),of course, conveys no

information at all.

Next, source motion needs to be discussed. The DLT study1 analyzes a
closed-loop bearing estimator; in that analysis, source motion is taken into

account. One practical effect of substantial source motion is the creation of a

need for automatic frequency tracking (AFT). The range term (ri) provides the

information required for the AFT function: Doppler shift is proportional to the

time derivative of ri(t). The present study is cast into a different frame of

[reference: Two bearing estimators, one closed-loop and the other open-loop, are

being compared. To simplify the comparison, source motion is assumed not to

[exist. Therefore, in this case, the range term (ri) is constant and conveys no

more information than 90 does. Consequently, the AFT function is no longer nec-

essary, hence will receive no further consideration in this report. Furthermore,

the input bearing (0j) is also constant.

*[2-2
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K unm called to the differential pbsseu

K • 'O -OR (2-S)
' * i"d (nine, - ne) (2-.)

rI This last equation requires further examination. For a cloned-lop bearing estima-

tor the bearing error

ee S ei o (2-7)

will be relatively small if the input signal-to-noise ratio (SMR) is not low, par-

ticularly when source motion is absent. For the open-loop bearing estimator, this
i I!statement in not necessarily true (this matter will be disc:used at greater length

Tis & ereion) gacatino smcthe forisomanvlefeilb

Sassumed to be zro for the perfoemance coparison. Thus, agai if the SUR in ra-
sonable, the bearing error will be small. Under this circumtance (2-6) can be

1approxmaedby

Qi ( ( gd cos 6o) ( ei -  0 )  (2-8)

--- This expression can be cast into the form

Swhere K pr a nocton5 phase factors

K pip- ,K d cos eo ( 2-10)

Squation (2-9) shows that the desired bearing estimate can be obtained from a

1measurement of differential signal phase. Putting it another way, information con-

cerning bearing is contained in signal phase. Two different ways of extracting

this bearing information are described in the next section.

The important fact in all this is that the phase estimate provided by the mea-
rement of differential signal phase is the resultant phase of the signal plus

acoomqaying noise. This aspect is treated in detail in subsequent sections of

this repott.

U 2-3
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3.0 BASIC CONFIGURATIOUS

In this section, the basic configurations of the two bearing estimators, whose

performance is being compared in this report, are shown and descri, bd.

Figure 3-1 shows the closed-loop bearing estimator. Because of familiarity,

it is based on the DIFAR-Like Tracker (DLT) analyzed in the DLT study report 1 .

The assumed signal waveform and wavefront are as described in the previous

section: a sinusoidal signal and a plane wave. The split-array beamformer is also

described there.

To minimize the effect of additive noise accompanying the received signal,

bandpass filters are used. It is assumed in this report that the received signal

lies at the center of the band (fo). The quantitative effect of the bandwidth

i 1 Af) is determined analytically in this report.

.4
~ Ii

~ INCOMING
ACOUSTICPLANE WAVE;

ACTUAL BEARING,,c,.,,,,.__ ,,,,,

HALF

SEAMFORMER DEVIAIOASO
FLESINDICATOR LOOP

RIfP

[ BEARING ESTIMATE (90)

Figure 3-1. Closed-Loop Bearing Estimator

3-1
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The phase detection function in the DLT closed-loop bearing estimator is per-

formed by a clipper bearing deviation indicator (BDI). More will be said on this

subject in the next section.

The remainder of the loop contains the necessary equalizer network for loop

stability, and the motor which drives the steering comparator in the beamformer.

The output of the motor is the bearing estimate (e0), which is driven by the sys-

tem in such a direction as to minimize the bearing error. The motor provides a
single integration, resulting in a Type-I loop. This is all a description of a

classical closed-loop feedback system. There is no need to dwell on these matters

in this report; all analytical influences are already worked out in the DLT study

j - report I.

Figure 3-2 shows the basic configuration of the open-loop bearing estimator.

The same assumptions are made covering the incoming signal and beamformer, except

- that the main response axis (MRA) of each beam is now fixed. Probably a set of

preformed beams would be used. Actually, no such system can be truly open-loop; at

least some kind of loose control is required, if only to select the proper beam and

4transfer between beams when required. Because of the fixed beam MRA, the informa-

tion carried in the differential phase is the input bearing rather than bearing

error. For the purposes of this report, bearing rate of the signal source is

v assumed to be zero.

The configuration of Figure 3-2 is based on the use of a commercial spectrum

analyzer: the Hewlett-Packard Model HP 3582A. This piece of equipment, it turns

out, is inherently capable of performing a number of the required functions of the

I: bearing estimator.

Bandpass filtering is used, as it is in the closed-loop configuration, but

this time it is provided by the Fast Fourier Transformation (FT) contained in the

spectrum analyzer. The parameters of a bin are, again, center frequency (f0) and

bandwidth (Ofi). The dependence of this bandwidth on FPT parameters will be dis-

cussed later. The FMT bin output is complex; that is, it appears as a pair of com-

ponents: in-phase (u) and quadrature (v). There are actually two such pairs in

the system, one for the left-hand channel and the other for the right-hand channel.

S.'3-2
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/!! '. INCOMING f I-HS
'" . ACOUSTIC

PLANE WAVE QUADRATURE

BEARING
foA f ESTIMATE

LE~00

AFCROSS- 
TIME

SEAMFORMER SPECTRAL AVERAGE
BINS 

DENSITY 
\iI

RIGHT -- ARGUMENT

HORTON
PHASE

IN-PHASE FACTOR

QUADRATURE

Figure 3-2. Open-Loop Bearing Estimator

The phase-detection function chosen for the open-loop bearing estimator is the

4 argument of the cross-spectral density between the left-half and right-half FFT bin

outputs; this is a function contained within the spectrum analyzer. The definition

of this quantity is given in the next section.

The phase estimates (y) are delivered as a sequence of discrete samples; these

samples are averaged arithmetically in the spectrum analyzer. This time averaging

is discussed in a later section, and compared with that occurring in the closed-

loop bearing estimator.

Finally, the time-averaged phase estimate(y > is divided by the Horton phase

factor to arrive at the bearing estimate:

- (3-1)KpF

3-3
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4.0 PHASE DETECTION

In the previous section, in which the basic configuration of the two bearing

estimators is presented, the respective implementations of the phase-detection

function appear to be markedly different. Nevertheless, in the present section

they are seen to be mathematically identical, with one proviso.

That proviso is that the particular form of the clipper BDI used in the

closed-loop bearing estimator be one that employs flip-flops to achieve a sawtooth

characteristic spanning all four quadrants; that is, +1800. Such a circuit can be

found in a paper by Lindgren et a16 , for example. When this circuit is used, the

resulting output is equal to the differential phase (kp) between the voltages

appearing in the two (left- and right-half) channels, after bandpass filtering. In

equation form, these two channel voltages can be expressed in two ways, as follows:

A cos (21rf 0 t + PL) + nL(t) - CL cos (27f 0 t + 4 L) (4-1)

A cos (2itf0 t + 4R) + nR(t) = CR cos (2lTf 0 t + 1R) (4-2)

where the left sides are in the form of the sum of a sinusoidal signal with con-

.stant amplitude (A) and true phase (D), plus Gaussian noise with mean zero and
4variance (N), statistically independent from channel to channel. The right sides

are in the form of a composite voltage with slowly varying envelope (C) and phase (4).
The output of a +1800 BDI, in these terms, will be

+ 1800 = ()L -4R + 1800) mod 3600 (4-3)

defined over

* -1800 < € _ +1800 (4-4)

The statistical properties of p will be discussed in the following section.

Attention is next turned to the other implementation of the phase-detection

function: the argument of the cross-spectral density. This quantity is estimated

in the following fashion% The complex coefficients in the two (left- and right-

half) FFT bin outputs associated with a particular frequency (f0 ) are multiplied,

" f4-1
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taking the complex conjugate of one of the outputs prior to multiplication. The

* cross-spectral density is a complex number; in polar form, its components are a

magnitude, which is the commonly used output, and an angle, called the argument,

which is used for the present application.

Now the above word procedure will be illustrated mathematically. The FFT bin

*output components are as follows:

u L = Acos$ + n L, uC L o(4-5)

VL = Acos $ + n -C Co (4-7)

UR A 5R fRI CR C 4 R(-)

V R = Acos 4 + n RgC RCos 4. (4-8)

where the u quantities, and the I subscript, refer to the in-phase components;

while the v quantities, and the Q subscript, refer to the quadrature components.

The first operation is the following complex multiplication:

-(u L + iv L) (uR - jv R)

C e C e -

-L R

CLCR e R) (4-9)

- The argument (polar angle) of this complex expression is, as implemented in the

commercial instrumentation,

4+ 18 00 4 (L - (O + 1800) mod 3600 (4-10)

defined over

4-180 0 < 4,~+180 0 (4-11)

which is identical to the ±1800 BDI output, given by (4-3) and (4-4).

4-2
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I Thus, the general model for the phase-detection function can be illustrated a

in Figure 4-1. The input is (*') the differential phase of the signal, while the

output is (U)the differential phase of the signal plus noise.

' + 180o - + 180 -

'DL - 4 R + 1 8 0 ') PHASE -4'4L-4SR+ O)
MOD 3600 DETECTOR L * l )

Figure 4-1. Definition of Phase Quantities

V 4-3
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5.0 PUASE STATISTICS

In the previous section, the outputs of the phase detectors associated with

the closed- and open-loop bearing estimators are shown to be mathematically

identical. In the present section, the statistics of this common output are

* !shown. The history and results of the analysis developing these statistics are

presented here; the details are given in Appendix A.

An earlier analysis appears in the DLT study report1 . There the configura-

tion of the well-known clipper BDI, which operates in the first and fourth quad-

rants of phase--that is, +900--is shown. A rather detailed analysis is performed

in that report to obtain the statistics of the phase estimate provided by this par-

ticular circuit. This analysis is based on the probability density function (pdf)

of the phase of a sine wave plus Gaussian noise, derived by Middleton in 19487.

Later8 , he presented a Fourier series representation of the same pdf. Using this

form, and assuming the additive noise terms in the two input channels to be statis-

tically independent of one another, the analysis in the DLT study derives Fourier

series expressions for the moments of the differential phase estimate as a function

of the input signal-to-noise ratio (SNR) after bandpass filtering.

Now, it was also required in the prosecution of the DLT study to determine the

* - effect on systems performance of employing the other form of clipper BDI, extended

to cover all four quandrants (+1800). This is the form considered in the present

report. The resulting series are presented in the DLT study report, but the deri-

vation, which is parallel to that presented for the conventional (+900) BDI, is not

shown there.

Another feature of the phase statistics derived in the DLT study is their

form. Although the mean and variance of the differential phase estimate (4 ) are

both functions of the true differential phase (*), as well as the input SNR, the

specific statistics chosen in that study are the slope of the mean curve of p ver-
sus 4 evaluated at the origin:

'5-1
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and the standard deviation (square root of the variance) of 4, also evaluated at %

equal to zero.

Thus, in Appendix A of the present report, two additional actions are taken:

a) The derivation of the phase statistics for the extended (+1800) BDI is

shown explicitly. The work is similar to that by others 9- 1 1 . Because of

the mathematical identity of the outputs, these statistics apply also to

the argument of the cross-spectral density.

b) The selected statistics are now the mean and standard deviation of the

phase estimate (4q) versus the actual differential phase (I) for various

values of SNR.

The results of the derivation in Appendix A are as follows (the units of

and i are in radians throughout): The first moment, or mean, of the phase estimate

is given by

(4, 1 )-2 (z) sin m -1,4 -- ( ,) = -- s

The second moment, or mean square, of the phase estimate is given by

: I ThAp ei Att sdfnda

2 1

a2z s (5-3
02z

where a2  M I4iddleton's 8 symbol for input signal-to-noise power ratio (SNR).3 0

In terms of system parameters,

5-
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2 A2(5 -4)

40 1

where

A - amplitude of sinusoidal signal

No - spectral density of noise (assumed flat over the pass band)

fi - effective noise bandwidth of input bandpass filters.

During the course of the study, it was found that it is quite possible to pro-

gram the numerical calculation of (5-1) and (5-2), together with the coefficients

on a programmable hand calculator: specifically the Hewlett-Packard HP-41C calcu-

lator. Three memory modules are required, and the assignment of 150 data registers

is sufficient. The calculation is relatively slow, but definitely feasible. The

details of the program are being submitted to the Government under separate cover.

Figure 5-1 is a plot of the results of the calculation. The units of the plot
are in electrical degrees rather than radians. Shown are the mean and standard

deviation (called "SI QAm in the figure) of the phase estimate ((P) versus the act-

ual differential phase (,P) for several values of SNR in dB.

The features to be noted are as follows: The moments of 41 are expressed in

equations (5-1) and (5-2) in Fourier series form, hence are periodic in 'P. These

two equations are derived in Appendix A based on a sawtooth characteristic spanning

±18001 thus it can be seen that the period of the moments is 3600. The mean, given

by (5-1), appears as a summation of sine functions, hence is an odd function of 'P.

On the other hand, the standard deviation is an even function of'I, for the foll

ing reason: In equation form

W 4(qz) = ;i (NI'z) _2 (*z) (5-

V The first term under the radical is given by (5-2), which appears as a sumation

cosine functions, hence is an even function of *. The second term is the square

an odd function, therefore at. even function. The difference is even, and so is

positive square root of the difference.

I!
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+180A 1

SIAS +10

MEAN

-00"

SIGM A * - S dB

1+0

-180" oo +180"

ACTUAL DIFFERENTIAL PHASE, it

Figure 5-1. Moments of Phase Estimate,qp

*- The mean curve has a central linear portion, whose extent is greater when the

*SNR is higher. The slope of this linear portion, which is important in what fol-

lows, is a function of SNR, becoming smaller as SNR decreases. The bias is the

difference between the mean of tpand the true value'l; this is shown in the fig-

ure. Its value is always zero or negative, because kp is always less than or equal

to T.

The standard deviation curve has a flat central region, whose extent again is

greater when the SNR is higher. The value of the standard deviation in this

region, which is also important in what follows, is a function of SNR, becoming

larger as SNR decreases.

The practical system effects of these attributes of the phase estimation sta-

tistics become more clear in following sections of this report.

S5-4
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6.0 LOCATION AND MATURE OF ERROR

Although the two bearing estimators under study in this paper possess phase

detection implementations with the same statistics (which are presented in the pre-

vious section of this report), there is still a fundamental theoretical difference

between the estimators: the location and nature of the error used as a (negative)

measure of performance.

In the closed-loop bearing estimator, the bearing error, which is the differ-

ence between the output bearing estimate (00) and the input true bearing (ei ) f

can be transformed by the Horton phase factor of the beamformer into a correspond-

ing phase error at the input to the phase-detection function; that is, an error in '.

In this report, this normalization is in fact made, to eliminate the necessity of
specifying operating frequency and aperture size. However, the source of the error
is to be found in the output statistics of the phase detection function; that is,

the statistics of qj.

Now, to determine the degree of error in %P caused by the statistics of Lp

requires a loop analysis; strictly speaking, one that takes into account the non-

linear nature of the phase detection function. Section 4 of the DLT study report1

presents the history and present state of the art of nonlinear loop analysis. As
pointed out there, the use of an analytical technique involving the Focker-Planck

equation leads to a probability density function (pdf), thence to the desired

moments. In a particularly simple loop configuration (simpler than the DLT loop
j under consideration here), the result is the Tikhonov12 distribution:

ea cos
2Tr1(O')(6-1)

where

5 c - the signal-to-noise ratio in the bandwidth of the loop,

1 0 " modified Bessel function of the first kind, zeroth order.

71-I'U 6-
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This Tikhonov distribution has a relatively simple appearance, tempting one to

make use of it, despite its lack of strict applicability to the DLT loop, as an

approximation to account for the large-error domain. In the end, however, the

decision has been made to resort once again to the linearized loop analysis used in

the DLT study. (In making such a decision, it is necessary to be aware at the out-

set that a linearized analysis does not speak to the problems of acquisition and

cycle slipping.)

In the linearized analysis, the slope of the central linear portion of the

mean of LP is regarded as the gain factor of the phase detector. The symbol (KPD)

will be used in this report, although the quantity so defined differs from that

with the same symbol in the DLT study report by a factor of n for the +1800 BDI.

The definition in the present report is

K (6-2)KpD 4- 0

When this is done, the normal action of the closed feedback loop is to yield

the following equation1 :

o = (ojz) / fe
fe (6-3)

44 KPD F 1

. - where

.f = effective noise bandwidth of the closed loop,

- effective noise bandwidth of the input bandpass filters.

The other factors have already been defined in this report.

At this point, it is well to mention that, in the absence of a bearing rate,

the closed-loop bearing estimator produces an unbiased estimate. Put another way,

this Type-I loop (single integration) produces no lag error in the absence of a

4 "bearing rate.

6-2
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Turning to the open-loop bearing estimator, the output bearing estimate (n

is given by

e (-0KPF

where

( =arithmetic average over K samples,

*1 F Horton phase factor, defined earlier.

As before, normalization is applied by removing the Horton phase factor, so

that operating frequency and aperture size need not be specified. The quantity to

be studied becomes simply (4p, Xthe time-averaged phase at the output of the phase

detector. The phase estimate at the output of the phase detector is in general

biased, in the previous section, the mean ( ) is plotted versus the true phase (i

for various values of 514R. It can be seen that there is a difference between k

and *' (that is, a bias) for nonzero %k and finite SNR. The time-averaging process

will reduce the standard deviation of the estimate, but will not affect the bias.

For the purpose of the performance comparison in this report, the question of

- -bias will be ignored. It is assumed that the sound source is on the beam main

- response axis (NRA), so that the actual differential phase (\P) is zero. Figure 5-1

* v shows that this results in the mean phase estimate (40) going to zero, independent
of SNR; hence the bias, which is the difference between k and \', is also zero.

Having assumed away the bias, the expression for error is in terms of the

standard deviation:

* - a- (Ojz)

Equation (6-3) predicts the theoretical performance of the closed-loop bearing

v estimator, while equation (6-5) does the same for the open-loop bearing estimator.
I Now, these two equations are difficult to interpret and compare in their present

forms. Therefore, they will be manipulated further in the next section.

6-3
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CO7.0 KPARTIVE PVOWANICB

In this section, the final performance expression will be developed and the
results of a numerical evaluation of these expressions will be plotted to show the

:1
comparative performance of the closed- and open-loop bearing estimators.

Both preliminary performance equations, (6-3) and (6-5), include the idea of

the reduction of fluctuations by time-averaging over a fixed time interval called

the observation time, which can be called Tobs. The resulting standard deviation

in each case is inversely proportional to the square root of Tobs. For further

universality of the results, it is possible to eliminate the necessity of specify-

ing a value for this observation time by evaluating the product of the standard

deviation and the square root of T obs This idea is not original with this

reportl Fischer13 employed it in an earlier comparative study.

The closed-loop bearing estimator is taken up first. Multiplying (6-3) by the

square root of the observation time yields the following:

(0(1 z ) 2Afe Tob
K _ _ a bs (7-1)

abs KPD

The following rule of thumb is suggested, relating the equivalent observation

time to the effective noise bandwidth of the analog loop:

Tob 2f (7-2)

During the course of this study, the validity of (7-2) has been tested empirically

using real data from the DLT Engineering System Test Model (ESTM).

On the theoretical side, the effective noise bandwidth is computed for the

specific system used for taking the data in question by making use of the

equation
1

0.7
- v (7-3)

e 4T0.3

l iI"7-1
I ILII I....
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where

SK v  the analog loop gain constant, sometimes called the velocity error

constant, in units of reciprocal seconds

T - the (effective) largest open loop time constant, in seconds.

Without specifically reporting the system parameters, the numerical value of the

effective noise bandwidth comes out to be 0.032 Hz in one particular case, result-

ing in an observation time, using (7-2), of 15.6 seconds.

On the empirical side, the computed autocorrelation function of the real DLT

ESTM output data is shown in Figure 7-1. It will be noted that the autocorrelation

function first reaches zero--signaling statistical independence--at a lag of 17

seconds. Equating this time between independent samples to the desired observation

time, the agreement is not bad.

1.00

05-

A A

2.-0.50 -
a

1.01O 10.0 100.0 1000.0

U!

LAG (SECONDS)

: Figure 7-1. Autocorrelation Function of DLT EST14 Data 7
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-~ Substituting (7-2) into (7-1) yields

S% (0Iz) (7-4)
-V----

/bS KPD I

Next, attention is turned to the open-loop bearing estimator. Equation (6-5),

repeated here for convenience,

T F(0 1z) (6-5)

is written in terms of the quantity K, the' number of samples of q4 entering the time

averaging process. There is implicit in (6-5) the assumption of statistically

independent samples. This matter deserves further discussion.

In the first place, the samples in question are taken from an FFT bin, the

input to which is a sequence of input data of time duration Tfft* Now, a process

called "overlapping" is sometimes used, wherein the first, say fifty percent, of

the input sequence associated with one output sample is identical to the last fifty

percent of the input sequence associated with the previous output sample. In such

a case, the output samples would be correlated with each other. Such overlapping

Cis not intended in the open-loop bearing estimator, and is not provided in the

HP-3582A spectrum analyzer.

In the absence of overlapping, the output samples tend to be uncorrelated with

each other to a large degree, particularly if a large number of input samples (for

example, 1024) is used in the input sequence. There may be a small "edge effect"

representing the correlation between input samples at the beginning of one sequence

and input samples at the end of the previous sequence. This effect should be quite

negligible in practice.

Thus the expression for the number K is simply

Tob

K T (7-5)
Tfft

7-3
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Therefore

1 ~I(- uOZ) IT(7-6)
G> os I Vfft

In order to have a common basis for performance comparison, it would be desir-

able to write (7-6) in terms of the input bandwidth, Afi. This bandwidth has

been specified as the effective noise bandwidth of the input bandpass filter, in

this case the FF bin.

Harris14 has published a comprehensive treatment of the quantitative effect

of "window" shape on a number of FFT parameters, including effective noise band-

width. A window is a time-domain weighting function used to improve the qualities

of the spectral estimates. The effective noise bandwidth can be expressed as fol-

lows:

Af = - (7-7)ST fft

where iL- a constant whose numerical value depends on the exact window shape

(tabulated in the fifth column of Table I in Harris 14).

jI Substituting (7-7) into (7-6),

(Tbs 1 Z a) f (7-8)

Rather than letting the estimator comparison become bogged down in FFT details, the

decision is made at this point to assume a Dirichlet window, which is simply con-

stant over the time interval of length Tfft, zero otherwise (in other words, a

rectangular window). For this window,

resulting in

• "(7 - 9 )

* 7-4
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All that remains for a performance comparison is a numerical evaluation of

(7-4) for the closed-loop bearing estimator and (7-9) for the open-loop bearing

estimator. The right-hand sides of the two equations are identical, except for the

phase detector gain factor (KpD). They both require the standard deviation of

the phase estimate given by (5-6) evaluated where the true differential phase 'i

is zero. In addition, the quantity (K PD), given by (6-2), is expressed in series

form and evaluated for use in (7-4). The quantity is also evaluated in the DLT

study reportl, but differs from the corresponding quantity in the present report

by a factor of nr, because of definition.

Figure 7-2 is a plot of the results of the above-described calculation. The

appropriate normalized phase error used as a (negative) measure of performance in

this report is plotted versus signal-to-noise ratio in the half beam and in a 1-Hz

band, this latter for further universality of the results. In decibels, the

abscissa is

10 log A2

2N0

The input bandwidth (Ai appears as a parameter of these curves.

By inspection of Figure 7-2, it can be seen that the performance of the two

bearing estimators is different at low signal-to-noise ratios, because of the pres-

ence of the phase detector gain factor in the closed-loop expression (7-4). This

factor causes the phase error to increase as the signal-to-noise ratio decreases.

Physically, this increase can go on only so far before track is broken and cycle-

- - slipping occurs, a phenomenon not considered explicitly in this report. As men-

tioned earlier, a different and more involved analytical procedure is required to

account for this phenomenon. If such a procedure were to be used, probably the

curves would be more similar to each other in this low SNR region.

The phase error for the open-loop estimator, on the other hand, can be seen to

approach a constant asymptote, whose value depends on the input bandwidth (Afp),

as the SNR decreases. The asymptotic value is that associated with the uniform

phase distribution characteristic of pure Gaussian noise.

7-
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Figure 7-2. Comparative Performance

The important conclusion of the paper is arrived at by an examination of the

performance curves at high signal-to-noise ratios. It can be seen that all curves

approach each other, and the performance, defined as it is in this paper, becomes

independent of input bandwidth, but, more importantly, becomes the same for the

closed-loop and open-loop bearing estimators.

Thus, the decision as to which of the two estimator concepts to use should be

based on practical implementation considerations rather than theoretical perfor-

mance. Operational system studies will, of course, need to address the question of

source motion and statistical estimate bias deliberately excluded from considera-

tion in this report.

7-6
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APPENDIX A

DERIVATION OF PHASE STATISTICS

In this appendix, the statistics of the estimate of differential phase pro-

vided by the phase-detection function of the two bearing estimators of this report

will be derived. In the main text it is shown that the two phase-detection imple-

mentations, while outwardly quite different, provide mathematically identical phase

estimates. Also, it turns out that much of the derivation has already been given

in Section 6.8 of the DLT study report1 . In addition, others9-1i have pub-

lished similar results.

The specific quantities derived here are:

* a) Mean of the differential phase estimate as a function of the true differen-

tial phase, and input signal-to-noise ratio.

b) Standard deviation of the differential phase estimate as a function of the

true differential phase, and input signal-to-noise ratio.

"- c) First derivative (slope) of the phase estimate mean with respect to the

,- true differential phase, evaluated where the latter independent variable is

zero, versus input signal-to-noise ratio. This quantity is called the

phase-detector gain factor in this report (with a caveat about its scale

4 factor).

The derivation starts with the expression for the vth moment of the differ-

ential phase estimate:

-iMIT ,-MA

4'< (>,h")f f, "'*,. - ',,> '>*, I< >z' 'R, I t"1) <d>, d*,,

U(A-I)

I'
...........................
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t Iwhere

= differential phase estimate

L phase of the signal-plus-noise voltage in the (left, right)

channel

CLR - phase of the signal in the absence of noise (true phase) in the

(left, right) channel

p((b4)';z) = conditional probability density function (pdf) of 0, given values

of 4 and z (defined below)

z = input signal-to-noise ratio (not in dB), divided by 2.

At this point it is well to point out that the form of (A-i) with the product

of two pdf factors appearing, implies that the noises in the two (left and right)

channels are statistically independent of each other. This is a common assumption

in studies of this type, although it is recommended that this assumption be relaxed

in any follow-on studies.

There is more to the story than independence, however. The fact that the two

pdf factors appear without subscripts implies that they are functionally identi-

cal. Also the same value of the parameter z appears in both factors, indicating an

identical input signal-to-noise ratio (SNR) existing in both channels. The DLT

study report1 went into the question of unequal SNR values, but the present study

does not.

The next step is to specify the functional form of 4. In the main text, the

following is established for both phase detector implementations:

+ 1800 - (OL - 'R + 1800) mod 360 °  (A-2)

This rather compact algebraic expression describes the periodic sawtooth character-

istic pictured in Figure A-I. This figure resembles Figure 6-4b of the DLT study

report1 , but the vertical axis has a different scale factor.

A-2
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Now, a series for 41 is not enough; one is required for 4)
2 as well. Again,

Jolley furnishes the required series, this time in Formula (517), after some ele-

mentary manipulation:

2 2 4+
- 2 o 4( L - R)(A-4)

Now, (A-3) and (A-4) are written in terms of the difference between OL and

'R separately. It will therefore be convenient to rewrite (A-3) and (A-4) in a

similar fashion, through the use of trigonometric identities:

( m + I
-l ) sL. in m Cos3 R

-cos m sinu(A

-2 1 m L R (

2 T- 2 4 ._ (-l) m +1 cos m os m

a. a aIL MO
OD m +1

+-4 2 sin m'OL sin m R  (A-6)1' 3 1 m2

It is now possible to substitute (A-5) and (A-6) into (A-1), interchanging the

summations and integrations, which is legitimate here:

• " (-l) m + 1
2 - sin mL cos M R

ml +

-2 Is cos MOL sin m*R (A-7)

W 2  CO _ _ _ _ m_+3" " --- ,-,2 Cos M*,. Cos MIO

+ 4 -~~---sin mc, i (A-B)

Is ,,

1. 32 A
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where

sin mO p(~joiz sin 0 d0 (A-9)
-Tr

cos mO , p(401;z) cos m4d0 (A-10)
-IT

The specific expression for (p), the probability density function of the phase

of a sinusoid plus Gaussian noise, is available, having been derived by

tMiddleton7'8. It is not necessary, however, to write the expression explicitly,

since the results of the integrations in (A-9) and (A-10) also have been given by

Middle.ton8

sin m4 - B M(z) sin mO (A-l11)

Cos md B (z) Cos ml? (A-12)

where

m

Bm _ r 2'+I 1 M +1 -a 2 (A-13)
3 ml 2 2 0mJ~

where, in turn,

a2 ainput signal-to-noise ratio (not in dB). This is related to z by
the relationship a2 /.

r( )- gamma function

lFl a confluent hypergeometric function

The functions will be related to other, somewhat simpler, functions later.

Now, (A-11) and (A-12) can be substituted into (A-7) and (A-8):

4,
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CA)1
2 B 22 (z i P LosM

-2 C o m O * sin m% (A-14)

2 12 r - -4 (,m Bm (Z) Cos m~ o
m M2 m L RO M

+4~ ~ 2 si mdL RiM (A-15)

Using the trigonometric identities in reverse,

M -Z 1

- r 2 CO J.)m+1 2
3n-i4L2 B (Z) Cos M4 (A-i7)

where

The following quantities have been calculated numerically in this report:

(,, I z)

72-2

~PD (z)

This last quantity, called the phase detector gain, differs from the quantity

by the same name in the DLT study report by a scale factor of 7r. In the present

report, the specific expression is

~ A-6
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.(0

1

=P Bm 2 (Z) (A-19)

rn-i U

Earlier in this appendix, it was mentioned that alternative forms exist for

the expression (A-13) for the coefficient Bm. The confluent hypergeometric func-

tion can be expressed in terms of the Bessel function, with the following result:

- Z e [ I (z) + I (z) (A-20)

2 22m 2 1 _rn-i m+l2 2

where In ( modified Bessel function of order n.

For numerical calculations, there exist convenient recursive relationships for

calculating all the Bessel functions, hence all the coefficients (B.) in terms of

the following basic functions:

I0 and 1

11/2 and 13/2

The values for (10) and (I,) can be calculated using equations 9.8.1 through

9.8.4 of the National Bureau of Standards handbook16 . There is a sufficient num-
ber of registers in the HP-41C calculator, with three memory modules installed, to

have the necessary coefficients for the NBS equations prestored.

The other, fractional order, modified Bessel functions, (11/2) and (13/2)

are expressible in terms of the simple exponential function, which is provided in

the calculator.

As already mentioned, the details of the program to carry out the recursive

relationships to evaluate the coefficients, and the subsequent summation of the

series, are being provided to the Government under separate cover.

I
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APPENDIX B

DIFFERENTIAL PHASE vs INDIVIDUAL PHASE

Early in this study, it was recognized that it is necessary to have phase sta-

tistics in order to predict system performance. Prior to the theoretical develop-

ment of Appendix A and the subsequent numerical calculation, the idea was conceived

of obtaining phase statistics by a Monte Carlo computer simulation.

Such a simulation was in fact performed, initially by NUSC New London Labora-

tory, and then completed by Sonalysts, Inc17 . The specific task was aimed at

comparing three different averaging techniques:

t-1 Qu

(v)

i. (~) (tan-' )
v

fl. (4) a tan-1 --

v

where the corner brackets signify a simple arithmetic average over a finite number

(K) of independent samples. Several statements can be made about this study of

time-averaging techniques:

a) The full details appear in the Sonalysts report 17.

b) In that report, it is found that Technique III is inadequate. The reason-

ing is given there.

c) For the same amount of averaging (number of independent samples), Tech-

niques I and II are comparable at high signal-to-noise ratios (SNR), but

Technique II is superior at low SNR where the phase distributions approach

the uniform distribution characteristic of Gaussian noise alone.

d) In fact, the selected bearing estimator configurations utilize Technique

II. For the HP3582A spectrum analyzer see Reference 18.

4 B-1
iA

I i
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Now, having performed the Monte Carlo simulation, it seemed that the results

could then be used for the comparative performance predictions for the open- and

closed-loop bearing estimators.

The first fact to be noted is that the Monte Carlo simulation was of the phase

of a sinusoid plus Gaussian noise; in other words, the phase in one channel. The

phase detectors in the bearing estimators provide an estinte of differential phase

between two channels. It is thus necessary, if the Monte Carlo simulation results

are to be used for performance prediction, to relate the statistics of differential

phase to those of individual phase.

The initial (mistaken) theory was as follows: The differential phase estimate

provided by the two phase detectors was assumed to be

= L - (R' (B-l)

a simple subtraction. If (B-l) were true, the mean and variance would be as fol-

lows:

L. = '(L; SNR) - (R; SNR) (B-2)

42 O2 4)L; SNR) +O T IR SNR) (B-3)

If

L - R 24

2 2 (W 2; SNR) (B-4)

and

Tk 2 2To2 (,P/2; SNR) (B-5)

j !.fT  B-2

MW , M_
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Equations (B-4) and (B-5) would provide the required relationship between the

statistics of the differential phase on the one hand and individual phase on the

other, if (B-1) were true. Unfortunately, however, (8-1) is not true.

It has been established in the main text that the correct expression for the

differential phase estimate provided by the phase detectors in the two bearing

estimators is as follows:

+ 1800 L- R + 1800) mod 3600 (B-6)

where the 1800 term centers the domain of definition about zero, and the mod 3600

operation causes the domain to extend over all four quadrants (3600):

-180 0< 4- + 1800

The difference between the correct expression (B-6) and the simpler expression

(B-i) resides in a phenomenon called "phase wraparound".

The correct differential phase statistics are those derived in Appendix A.

The statistics are related to those of individual phase in a simple fashion only

when true phase is near zero and the signal-to-noise ratio is high; these condi-

tions ensuring a low probability of "wraparound".

i
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