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HYBRID EXPERIMENTAL-NUMERICAL STRESS ANALYSIS

by

Albert S. Kobayashi
Department of Mechanical Engineering
Seattle, Washington 98195

\QTRACT

> The hybrid experimental-numerical stress analysis technique, which saw
limited applications during the 1950's, has been resurrected with the vastly
improved numerical techniques of the 1970's. By inputing the experimental
results as initial and boundary conditions, modern computer codes can be
executed in its generation and application modes to yield results which are
unobtainable when only one of the two techniques {s used. The hybrid tech-

nique thus exemplifies the complementary role of the experimental and numer-

ical techniques. \

INTRODUCTION

One of the frustrations uf an experimental stress analyst is the lack of
a universal experimental procedure which solves all problems. Referred to as
his second priﬁciplo. Durelli states that "Seldom does one method give a l o
complete solution, with the most efficiency [1]%. Examples of this second
principle is seen in photoelastic coating and brittle coating techniques which
@‘r fonal strain gage testing in locations of high stress concentra-

> I ) by these two techniques. The hybrid experimental-numerical oy
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stress in photoelastic specimens. The first stress invariant obtained through

a finite difference solution to the compatability equation and the maximum
shear stress distribution provided by the isochromatics yielded the two plaair
components of the principal stresses [2,3,4). The shear-difference method
[2,5) and the Filon's method [6,7] used the isochromatic and isoclinic data
to integrate the equilibrium equations along a straight 1ine and a stress tra-
jectory, respectively. These single-purpose numerical techniques thus
provided only the stresses along a specified integration path.

In contrast to the above, the modern super codes based on finite element I
method, boundary element method and finite difference method yield the com-
plete states of stress, strain and displacement for the given constitutive
relations and boundary and initial conditions. The uncertainty or the lack of
knovledgé in these given conditions, however, l1imited the accuracy of the

otherwise voluminuous outputs of these super codes. Inaccurate numerical

modeling procedures generated results with obvious errors and are credited for
the resurgence of three dimensional photoelasticity in the 1970's. The hybrid
experimental-numerical stress analysis technique of today reduces, 1f not
eliminates, the above uncertainties in prescribed input conditions by using
experimentally determined boundary and initial conditions. The output from
the otherwise proven numerical techniques are either the constitutive relation
or the complete states of displacement, strain and stress which cannot be
readily extracted through the use of a sing1o experimental technique in stress
analysis. Thus, the hybrid experimental-numerical technique 3§‘an extremely
offiéiont stress analysis technique which often provides lorgfqnforultion than

needed. The full potential of the hybrid technique, however, i% yet to be

. explofted because of the historic dichotomy between the theoreticians-turned

numerical analysts and - the sxperimentalists.
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In the following, the utility of the hybrid experimental-numerical stress
analysis technique will be demonstrated by some stress analysis problems
favolving two~ and three-dimensional structural components, biomechanics and

fracture mechanics.

ELASTIC ANALYSIS OF STRUCTURAL COMPONENTS

The numerical techniques used in modern hybrid technique for structural
analysis are vastly superior to their predecessors since they provide the
entire states of stress, strain and displacements. As a straight forward
extenston of the classical hybrid technique, Rao i8] used measured tempera-
ture and surface traction data to solve, by the finite difference method, the
Beltrami-Michell stress equations of compatiblity interior to an axisymmetric
solfd. Figure la shows the end retaining ring, which is shrink-fitted to the
two ends of the vector and which is used to contain the end loops of rotor
windings, in a turbo-generator. The distributions of hoop stress, which f{s
generated by shrink fitting and the centrifugal force, obtained by the hybrid
technique, three dimensional frozen stress photoelasticity and a two-dimen-
sional analog are shown in Figure 1b. The utility of this hybrid technique fs
demonstrated by the author's quote of "The time-needed for the analysis s
smaller than that required by the time-consuming and tedious shear-difference
methods® (8].

Figure 2 shows a water turbine wheel and {ts curvilinear finite dfiffer-
ence grid representation which was analyzed by Barishpolsky [9]. Frozen
stress photoelasticity was used to determine the stress tensor on the complex
boundaries. These boundary values were input to the curvilinear finite dif-
ference equations for three-dimensional elasticity where the number of equa-

tions equalled the number of nodes and thus reduced the computational time by

3
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three to six folds over standard finite difference codes. The procedure s -
extended to steady state. three~dimensional problems where msasured. surface
temperature must be input in addition to the measured surface tractions [10].

While the specialized codes used in the above hybrid techniques are com~-
putationally more effictent by design, off-shelf codes in finite slement and
boundary element methods are often used for sheer expediencies. For an
elasto-static problem, the boundary element method is more computationally
efficient and natural where the input data consists of experimentally deter-
mined boundary displacements and tractions. When used together with the
double exposure, laser speckle interferometry, "“the measured surface dis-
placements become the input data needed in the boundary elewment method to cal-
culate the traction vectors at specified points on the boundiry (111" as well
as in the interior of the body. Moslehy and Ranson [11] demonstrated the
utility of this hybrid technique by the excellant agreements in theoretically
and experimentally obtained stresses interior.to a cantilever beam with a
transverse end 1oad. In a similar appiication of the hybrid technique, Balas,
Sladek and Drzik [12] used the double-aperture, laser speckle {interferometry
and demonstrated the advanfago of the hybrid technique by analyzing only the
regfon of interest of a plate-stiffened frame. In this case, the recorded
displacements were input to a simplified boundary, which is represented by the
dashed 1ines, of the frame structure shown in Figure 3. Boundary element
method was used to determine the stress distributions along the three cross
sections shown in Figure 4,

As a variation in the above mentioned hybrid technique, Umeaguiwu, Peters
and Ranson [13] used two-dimensional photoelasticity together with a boundary
element code to optimize the filets in a doubled notch tensfon plate. The
interior principal stresses obtained by the hybrid technique were used ¢to

4
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more evenly distribute the load along the net section and thus resulted in a
better understanding of the filet optimization probiem.

CORNEO-SCLERAL ENVELOPE

The interocular pressure of a human eye is maintained at a nearly comn-

. stant level of 15 - 20 mmHg through a complex phystfological system involving
the mechanical, biochemical and neurological responses of the eye [14]. When
the outflow of the ocular fluid is restricted by pathological conditions, the
ensuing increase in interocular pressure eventually results in glaucoma which
is the direct cause of 13.5 % of the blindness in Unfted States [15]. Tonome-

j try monitors this {interocular pressure by measuring the exterior mechanical

response of the cornea which is indented or flattened by a tonometer plunger.
The tonometer reading is thus affected by the mechanical response of the

pressurized corneo-scleral envelope which is essenttially a pressure vessel

T a o Bierm . d e i e oo

containing the optical and neurological components.

The mechanical properties of the cornea and sclera are difficult to ob-
tain because of the small size, delicacy and natural curvature. The commonly
used ocular rigidity [16), which relates the pressure and volume of the
corneo-scleral envelope, is a global coefficient and {s not suitable for
analyzing the local deformation process under tonometer loading. Simple
tensfon testings of excised strips of the cornea [17] and the sclera [18]

v m eeamEa e o

ytelded erroneous modulus of elasticity and Poisson's ratio by the loosening
?- of the collagen fibrils from the soft mucopolysaccharide at the excised edges.
H In order to overcome the deficiencies of the above giobal and local approach-
es; Woo et al [19,20] developed a hybrid experimental-numerical procedure for
< I determining the local mechanical property of an intact corneo-scleral

onvelope.




Woo's experimental procedure consisted of méasuring the corned &nd ‘sclera

deformations as well as the volume changes of pressurized anterfor segments of
enucleated human eyes. A flying spot scanner was used to measure the relative

motions of two white targets on the cornea or sclera which werd mounted on &

McEwen~-type chamber [21]. Woo's numerical procedure consisted of matching,
through trial and error, the measured and computed deformations and :volou
changes. A pressurized axisymmetric finite element model of the anterfor
segment of the corneo-scleral envelope was used to execute the finite element
code in its application mode for this purpose. The resuitant {sotropic,
trilinear, elastic stress-strain relations obtained for this analog model of
the corneo-scleral envelope §s shown in Figure 5. These trilinear stress
strain relations were incorporated into a finite element of the total eye

which was used to calculate the nonlinear intraocular pressure-volume rela-

tion. The lack of bending rigidity in the cornea under the tonometer probe
was modeled by artificially reducing the bending stiffness of the finite
elements in the compression region. With this modification, excellent
correlations between the calculated and published experimental results were
obtatned [20].

The membrane shell elements, which were later used to construct the
corneo-scleral envelope, shown in Figure 6 [22], removed the above mentioned
artifictal reduction in bending rigidity in the solid elements used by Woo.
Woo's experimental data [19) was re-evaluated by this membrane shell mode!l
which yielded silightly different distribution of elastic moduli along the
cornec-scleral shell. Such differences demonstrates the fnevitable interde-
pendence of the experimental data and numerfcal modeling of the hybrid
experimental-numerical technique where the finite element model is used as &n
analog model of the experiment (23].
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The anterior portion of the membrane finite element mode] was them used
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to model the deformation process under tonometer loading. Figure 7mm
computed and measured [24] relations of probe force versus probe area under
applanation tonometry.

ELASTIC-PLASTIC FRACTURE MECHANICS

Fracture parndtors governing elastic, elastic-plastic and dynamic frac-
ture, with the exception of geometric quantities such as crack opening dis-
placements and crack tip opening angles, cannot be wmeasured directly. In :
practice, even the above geometric parameters are difficult to quantify and ?
are often computed by using analog models of th§ crack. Strain energy release
rate and stress intensity factor in 1inear elastic fracture mechanics, which
is a well established analog model! of the crack, can be computed accurately by
using modern numerical codes. The various fracture packages for these codes
have verified by a recent benchmark problem [25] and thus should provide

/
corr’s‘t numerical solutions to well-defined boundary value problems. Once the

$ iin energy release rate or stress intensity factor is determined, the onset
of brittie fracture can be predicted if the critical values of these quanti-
ties are known: Their elastic-plastic extension, the J~integral, has also
been used with some success in predicting the onset of ductile fracture. Laws
governing other fracture phenomena, such as stable crack growth under large
scale ylelding, are being investigated through empirical correlations of
fractur~ data with computed fracture parameters.

An approach which has been used recently to establish a stable crack
growth criterion is to input actual crack growth data as additional boundary
values to an ohstic-p'listic finite element code. Kanninen et al. [26] used
the finfte element code in its "generation mode™ to study stable crack growth

7




and instability of A533-B steel and.2219-T87 aluminum center-crack ind compact

i iﬁ sﬁocilons. A similar approach was used by Shih et al. [27] who studied stable
? crack growth and instability of A533-B compact specimens. Experimentally
1 determined load-1ine displacement versus crack length relation, as shown {n
j Figure 8, was used to simulate crack extension in the two-dimension finite

element model shown in Figure 9. Two sets of elastic-plastic analyses based

on Jz deformation and Jz flow theories of plasticity were conducted. Figure
j; 10 shows excellent agreements between the measured and computed applied load
i% versus load-line displacement relations obtained by_theSo two nunofica1 analy-

ses. The computed fracture parameters included the crack opening displacement
!: (COD), the crack opening angle (COA), the J-integral and the rate of change of
| J-integral, dJ/da. Since the fracture criterion for stable crack growth must
be independent of specimen geometry and crack extqnsion. these fracture para-
meters were then scrutinized for constancy during crack extension. Typical
3{2 dJ/da and COA variations with crack extensions obtained by Shih et al. are
shown in Figure 11 and 12, respectively. Both Kaninnen and Shih concluded
from their hybrid experfmental-numerical investigations that the COA was an
attractive fracture criterfon for stable crack growth in the presence of large
scale ylelding.

The above studies demonstrate the utility of the hybrid experimental-

gﬁ* | numerical technique in extracting candidate fracture parameters which cannot

", be obtained directly from either the experimental or the numerical analysis

f?; ¢ alone. The hybrid experimental-numerical technique provided computed fracture
;ff § parameters, such as J and dJ/da, under actual test conaitions and not under ‘
assumed test conditions which normally would have been prescribed in pure 3

numerical analysis. The technique also yielded numerically consistent COD and

kbl i

COA which 1n theory are measurable but in practice are difficult to determine.

8




'!b ﬂnﬂc—plnﬂc mm:. olement codes with fncturo m. acluding
GE o apth-ynines ganverts CRT-RINT Lo PRERIDC Y ‘»;«Hh:sa?' g B

tb«omttmd above, annthhmuﬂ; rigorous
lm‘lod on u\c ilutic cw;s Tho uido va}iltim in ‘the 3-1“09!’;1:‘)0} r tgo

-u-mo's 281 hopofu"y um bnn ndma i m‘ &uﬁm un un o‘ma-“
oot e | R T -
phstic ﬂnito oluont eodu of today. . ’

Tho stato of scionco on dynuic fracturo nchmics stud‘lod uith dynulc'
phot«hsticity has boon prmntod by J. v. Da‘l‘ly in Mt 1979 ﬂﬂliu N.
mrny Locturo [29]. Ho noted that the crack tip stato of stms providod by

dynn‘lc photoe‘lasticity and dynaic caust*lc* tochniquos Iwn and uﬂ'l continue
to enhance our undorstanding on the co-phu phonmna of dynum: crack propa-
gation. Dynanic fracturo studies by thoso tochniquos. hwwer. are 1imited to
photoelastic ponnrs and to plane stross prob'lm vhen photoelastic eoatings
or caustics are used. The hybrid oxpoﬂmtal-nunﬂca‘l technique, when used
v1th the gonoration mode of finlto o\mnt or finite d1fforence method vﬂl
cxtract dynaic fracturo parmtnrs in opaque uteriﬂs as nl'l as 1n non-
phm stms problm. Thm dynuic codes uMch. un‘liko the n\'l-studiod
static codu. required verificaton prior to 1ts usod in dynunc fnctun |
nchmics. Fracturo dymnic results generated by various tuo-ﬂmsiona'l
o'luto-dymfc finite diffcrm coﬁu £30.31] and finite o'lcnnt codos
C32.33] Mvo b«n conpcm vfth dynuic c&usﬂc results of fracturing poly-"
-orfc mcim C34.35]. Steilar mlfication mdin have been conducted

with dyu-ic photooluticity (s61.
The n}mm m-mm coco can am u uud to M mmm rmm

o AP

A'mem

L@ ey o u LRI & T O R A 9 LT TR Coemngy 0t shadad b et e AL




deduced from the original experimental results, such as the variatién in fnput
work, which cannot be easily ueasuréc. dufing.the fracture process. Numeri-
cal analysis also provides the transieﬁt energy partition for the input |
boundary and initial conditions. Such energy bartition can then be used tb
check the hypothesis used in deducing the experimentally dotorninoa energy
partition. The legend of Figure 13 shows an internally notched, semicircular
photoelastic specimen which was loaded with end rotation and shear deformation
[371. 'The reported dynamic fracture toughness versus crack vo1oc1ty relation
[29] was used as a dyanmic fracture criterion to execute a dynamic finfite
element code fn its application mode which yielded the crack propagation and
dynamic stress fntensity factor historfes [38] which are in good agreement
with the numerical results. Having verified the numerical modeling of the
photoelastic experiment, the energies during crack propagation were computed
and plotted as shown i{n Figure 14. The internal consistency in the- computed
energy partition ver{fies the basic postulates of negligible viscoelastic
damping and negligfble energy dissipation at the finite specimen boundaries
during the dynamic crack propagation period.

A relatively simple application of the hybrid technique {s the determina-
tion of the dynamic stress intensity factor fn an impacted notch bend speci-
men. Measured time varfations in the striker load were input to the finite
element model of a dynamic finite element code which was then used to compute
the time variations in the dynamic stress intensity factor [40]. The numeri-
cal code was also verified by comparing fhe computed and measured dynamic
strains near the crack tip as shown in Figure 15. Figure 16 shows the vari-
ations in dynamic and the corresponding static stress intensity factors with
time prior to the crack propagation. These results show the inadequacy of the

static stress intensity factor which was computed by using a static formula

10




and the instantaneous striker load. It also indicates the futility in {nter-
preting such impact fracture response without the use of proper dynamic
analysis [41]. As a verification of codes, Figure 17 shows the agroc-;nt
between three independent dynamic fracture analyses of another impacted tﬁroo
point bend specimen [42]. | '

Figure 18 shows a wedge loaded, modified-tapered double cantilever beam
(WL-MTDCB) specimeh which was fabricated from plate glass. The specimen was
25% side—grﬁoved to guide the propagating crack. The flexible, long tapered
beam sections was designed to lessen the friction with the stilicon carbide
loading pin. The specimen was wedge~loaded to fracture in a 500-kg Instron
testing machine and the crack extension history was recorded by a KRAK~-GAGE
and associated instrumentation [43]. Figure 19 shows typical crack length
versus time data which is characterized by the unambiguous initial perfod of
crack acceleration and which has not been observed in dynamic fracture of
metals and photoelastic polymers. The average of the two data sets, which is
represented‘by a solfid curve in Figure 19, was used to drive a dynamic finite
element code 1n 1ts generation mode. The resultant Kdyn as well as the

I

KSt‘t. which was also computed by finite

I
element analysis, are shown in Figure 20. Although it is not obvious from

static stress {intensity factor,

Figure 20, unlike the dynamic fracture of metals and polymers, the crack never
arrested in these and other ceramics WL-MTDCB specimens [40). Thus the K??"
versus a curve in Figure 21 should continue past the nominal static fracture

toughness KIC = 0.73 Mpa m as indicated by the dashed 1ines. Notable {is the

lack of the typical gamma-shaped Kﬂf" versus a commonly observe in metals and
polymers.
CONCLUSION

n




The hybrid experimental-numerical technique yields reliable i{nformation
X which cannot be obtained by the single use of either the experimental or
K numerical technique. The utility of the hybrid experimental-numerical
technique 1in experimental mechanics {s demonstrated by case studies in two-

and three~dimensional stress analysis, bfomechanics and fracture mechanics.
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