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FOREWORD

This renort describes an assurance assessment of a representative con-
temporarv digital 7light control system stressing the use of various
methods in a complementary manner.. The work was performed between

February 1, 1982, and Septemb 1982, under contract number NAS2-
11179, The work was sponsored'ﬁnd directed by the Federal Aviation
Administration Technical Center, with the contract administered through

the National Aeronautics and Space Administration - Ames Research Center
under interagency agreement NAS NMI 1052.51 (Task Order DOT-FAA-77WAI-738).
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1. INTRODUCTION AND SUMMARY

Under the FAA Technical Center's Digital System Program (182-340-100), ]
an integrated assurance assessaent of a contemporary digital flight control '
%; | system was performed. The assurance methods of fault tree anslysis,
? § automated reliability prediction, failure mode and effect analysis, and 1
j fault insertion were applied in a complementary way to address the need for §
. a workable approach to confirming the sirworthiness of a critical digital :

-i . system. The resulting assessment satisfied the requirements of Advisory
‘ Circular 25, 1309-1 (Ref. 1), and is consistent with the wvalidation ;
requirements of RTCA Document DO-178 (Ref. 2).

The digital system used in the analysis was the Redundant Digital
Flight Control System (RDFCS) procured jointly by the FAA and NASA-Ames
Research Center in 1979. The RDFCS facility is located at NASA-Ames as a
central part of the Digital Flight Control Systems Verification Laboratory,
a unique facility for research into the assursnce 1issues of digital
} systems. Volume II of this report describes the RDFCS as it would be in a

preduction configuration, including sensors and servos. The sensors and

. ——e o i

! servos are not production-configuration equipment, and in fact, they are
simulated in the RDFCS. ]
The_assessment consisted of the following major tasks:

o Application of fault tree analysis, starting at the highest
system functional level, proceeding to the hardware circuit card
level, and to the module level for the processors.

o Development of a representative set of failure rates for the
; relevant hardware items.

. : o Application of an automated reliability prediction program,
2 TN CARSRA, to the system failure modes affecting airworthiness.

;‘i ° Application of failure mode and effect analysis to integrated
circuit pin faults of three processor modules.

fat
i

Definition of faults to be inserted in the RDFCS to determine the
! effect of the fault when analysis was not feasible, and of other
3 faults to oonfirm the manual analysis. These faults were
" subsequently inserted and the effects recorded.

i
[+

> |
o2 -

E 4 ) Among the conclusions and cbservations resulting from this study are
1 :
b 4 ; that:




The integrated approach used here is capable, with dil‘gzent
application, of establishing the airworthiness of a Digital
Flight Control System (DFCS) within the context of AC 25.1309-1,
Specifically, this approach addresses those system aspects shown
in Table 1, including freedom from single-point failure modes and
system failure probability.

The integrated assurance approach used in this study should be
considered for use in validating other digital systems, including
DFCS, in compliance with AC 25.1309-1.

The quantitative assessment of system failure probability by two
methods (fault tree analysis and analytical reliability pre-
diction) offers increased assurance that the system meets the
quantitative requirements of AC 25.1309-1., For a flight-critical
system, this requ&;ement is that the system failure probability
not exceed 1 x 10”7 per hour of flight for each critical function
the system performs.

Fault insertion confirms that the fault detection capability and
the fault tolerance capability described in the system documen-
tation are actually implemented in the system. Since the fault
tree analysis is based largely on the system response to faults
as described in the system documentation, the fault insertion
confirms that the fault tree analysis correctly reflects the
behavior of the actual system in the presence of faults.

The fault tree analysis generates software test requirements in
terms of functions which the software must perform, These,
in turn, provide a check of function criticality and of test
requirements generated in accordance with RTCA Document DO-178,

Fault tree analysis proved unwieldy below the circuit card level,
because at lower levels many more functions are being performed
than there are hardware failure modes. Failure mode and effect
analysis was accomplished successfully at the integrated circuit
pin level.

As a training facility and a Reconfigurable Test Bed, the RDFCS
facility has significant and valuable capabilities for
investigating assurance issues of currently definable DFCS
architectures. It also has potential enhanced capability in
certain areas, such as automated insertion of pin-level faults,
for confirmation of anslytically determined failure effects,

The comparison of the time or cost required for the integrated
approach repcrted here with that required for other possible
assurance approaches was not specifically addressed in this
study. FHowever, the time required for the integrated approach is
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expected to compare favorably with that for other approaches,
assuming the same depth of analysis, The cost ashould also
compare favorably, provided a facility suitable for fault
insertion is available,




2. OBJECTIVES AND SCOPE

OBJECTIVES

The primary objective of this contract was to explore and demonstrate
the integrated application of reliability, failure eff‘ects. and system
simulator methods in establishing the airworthiness of a flight-critical
digital flight control aystenm. The emphasis was on the mutual
reinforcement of the methods, with results oriented toward inclusion in an
FAA Data Base.

SCOPE

The scope of the effort was primarily limited to assessment of the
RDFCS in the automatic landing maneuver under Category Illa conditions as
defined in AC 120-28C (Ref. 3). Application of methods below the system
level was on a selective basis and focused within the digital portions of
the system, Installation-dependent effects, such as failure of RDFCS
components induced by failure of components in other systems, were not

considered,
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3. CONTRACT TASK SUMMARY

SYSTEM DESCRIPTION

A baseline configuration of the RDFCS shall be defined, and a
corresponding analytical description shall be prepared as necessary to
perform the integrated assessment. This description may include existing
documentation for the RDFCS, and as necessary, it shall include additional
components (e.g., Secondary flight control) needed to reflect a realistic
DFCS.

FAULT TREE ANALYSIS

A fault tree analysis beginning at the system level is required. The
analysis shall be extended the integrated circuit pin level for at least
three digital modules.

FAILURE RATES

A set of representative failure rates for the components and parts of
the RDFCS shall be developed as necessary to evaluate the fault tree for
failure probability.

FAULT SIMULATION CASES

A number of simulated fault conditions shall be defined for insertion
in the RDFCS simulator. These faults shall be for two purposes: to
confirm the assumptions underlying the fault tree analysis, and to resolve
uncertainty of the effect of the faulﬁ when analysis is not tractable.

FLIGHT CASE TRANSITIONS

A go-around flight case shall be installed on the RDOFCS simulator, and
transition capability shall be installed to transition the airplane from
approach to landing and landing to go-around flight cases.




TR ooy s -~ eoaersg - ¢ Fomtieme o w e w s e oey - ‘——-—M

CARSRA RELIABILITY PROGRAM

The

The CARSRA reliability program shall be applied to the RDFCS.
application shall be made in such a way as to be instructive for future

applications of CARSRA to other system.
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4, RDFCS AND SIMULATOR DESCRIPTIONS

RDFCS

The RDFCS is described in considerable detail in Volume II of this
report. The description presented here summarizes the system architecture.
In most operational modes, the system is fail passive, with a dual channel
configuration. Fbr'automatic landings under Category IIIa conditions, the
system can be brcught inte a dual-dual fail-operational, fail-passive
configuration. The classification dual-dual relates primarily to the four
computer channels in the system, Each of the two flight control computers
(FCC) has two channels which run frame-synchronously, with each channel
driving one coil of a dual-coil servo in each axis. Any indication of
disagreement between the two channels in an FCC causes the servo connected
to that FCC to be disengaged by removing hydraulic pressure. Figure 1

summarizes the dual-dusl configuration.

Monitoring Configuration and Implementations

Extensive monitoring is employed in the RDFCS for fault detection.
Coil current comparators for each servo provide coverage of faults
resulting in erroneous commands to the servo coils, They also provide
coverage for broken wire faults between the FCC and the servo or failures
of the coils themselves. These monitors, which are described in Volume II,
Sections 65.1.1.6.2 through 5.1.1.6.5, are made more effective by the
insertion of opposing 5 ma bias currents. The bias currents permit circuit
integrity to be monitored even when the FCC is not commanding the servo to
a new position, such as when the aircraft is flying through very calm air
at a stable attitude., It may be noted that this type of monitoring is
equally applicable to analog and digital systems.

Response of the autopilot servos to commands from the servo amplifiers
is monitored by modulator piston position signals fed back to the FCC (Vol.
II, Sections 5.1.1.6.3 through 5.1.1.6.5). The feedback signals are
averasged and passed through a high-pass filter to get a modulator rate that
i1s compsred with coil current. This comparison is used to detect jamming
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of the modulator p»iston, runaway conditions, or loss of hydraulic power.
This type of monitoring also can be applied ta either analog or digital
systems.

In the pitch-axis servos, modulator piston position monitoring is
implemented in hardwara. In the other two axes, it is implemented in
software, Together, the coil current monitoring smnd modutator prston
monitoring detect any servo fault which prevents the servo from responding
to commands. They also detect any fault in a computer channel which
prevents that channel from generating a reasonable command for the servos
in each of the three axes. All monitors and feedback sensors are dual to
increase reliability.

Each computer channel has an iteration monitor implemented in hardware
(Vol. II, Figures 5.1.2.1.2 through 5.1.2.1.3). This monitor observes the
state of a discrete software variable which is changed at the end of each
iteration of the foreground software. Since this software executes at a 20
Hz rate, the result is a 10 Hz square wave. Should the processor
short-lcop or hang up, the 10 Hz wave will not be presented and the
iteration monitor will withdraw its input to the engage logic and the FCC
will disengage.

Sensor monitoring is primarily accomplished by comparison and by
validity discretes generated by the sensors (Vol. II, Sec. 5.1.2.4 through
5.1.2.8). There is no one place that sensor monitoring takes place, since
all four computer channels incorporate the monitoring function. This
ensures that the circuitry involved in getting the sensor signals to each
channel is included in the monitoring.

The gyro and accelerometer discretes are generated as described in
Volume II, Sections 5.11 through 5.12. The accelerometers are tested as
described in Section 5.11 each time the system is powered up with the
airplane on the ground.

The ILS receivers are checked using the square wave test of Volume II,
Section 5.1.2.3.1.1.5. This test checks for failure of the localizer and
glideslope beam deviation inputs. During landing, the outputs of both
receivers are compared, with reliance on the self-monitoring to identify
which receiver is bad if the signals disagree. The comparison monitoring
is used to check wire integrity between the receiver and the computer
channels. The other dual sensors are comparison monitored in the same way.

10




Even though each channel monitors sensors individually, any channel
} can initiate the NO DUAL annunciation, which is the primary indication that
the system is not fail-operational. If any channel detects a second
failure of a sensor type, it will cause its FCC to disengage, but the other
FCC will remain engaged.

Although NO DUAL is the primary warning of loss of one sensor, NO
ALIGN will be annunciated if the course signals from the two compass
systems do not agree.

Other monitoring within the FCC involves comparison of active
operating modes. If the two channels within an FCC disagree on which modes
are engaged, and the disagreement lasts for more than 0.1 sec, the FCC will
disengage. If the two FCC's disagree, SPLIT will be displayed on the
' Warning Annunciator Indicators. This monitoring, together with the sensor
data transfers, will detect most faults of the cross-channel data transfer
circuitry.

' SIMULATOR DESCRIPTION

The RDFCS simulator is comprised primarily of the RDFCS pallet, shown
in Figure 2, and a PDP 11/60 computer, The RDFCS pallet includes the
Flight Control Computers (FCC), core memory, Modular Digital Interface
Control Unit (MDICU), Servo Simulator Panel (SSP), Discrete Switch Panel
| (DSP), CAPS Test Adapters (CTA), and Computer Breakout Panels. The
4 functions of these items are described in the remainder of this section.

PDP 11/60 Computer/Airplane Model

The PDP 11/60 computer hosts a discrete-state model of the airplane in
which the RDFCS is installed. This airplane is a representative wide-body
transport, and the model coefficients are changed according to flight case
being simulated. Each flight case, then, is a point simulation of the
airplane in a particular configuration and operating in a specific portion
of the flight envelope. The airplane model executes at a 50 Hz rate,

As part of this study, a go-around case was added to the library of

cases available, These cases are described and discussed in Reference 4.

The go-around case is characterized as follows:

1
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Figure 2, RDFCS Simulator
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Airplane Weight 314,500 1b
Altitude 35 ft
Angle of Attack . 10.91°
Indicated Air speed 168 kts
Flap Deployment * 22°
Center of Gravity 25% of C

Transition capability was added to go from approach conditions to
landing conditions, and from landing to the new go-around ocase. The
transitions involve changing the model coefficients and establishing new
trim values. The transition capability has been installed and checked out
successfully.

Modular Digital Interface Control Unit

The Modular Digital Interface Control Unit (MDICU) receives the output
of the airplane discrete-state model through a communication link with the
PDP 11/60 computer, The MDICU converts the various pieces of information
into the form needed by the FCC's, For example, roll angle and pitch angle
are converted to three-wire AC signals, properly scaled, while localizer
deviation is coded in ARINC serial digital format. The MDICU is described
more fully in Reference 5.

The MDICU incorporates provisions for the signal for the No. 1 sensor
of each type to be ramped up or down. This facility is accessed dy means
of the HP 2645A terminal physically located in the pallet.

Computer Breakout Panels

Each sensor signal going from the MDICU to the FCC's can be
interrupted at the Computer Breakout Panels by removing the appraprutg
Jumper plug. Every FCC back connector pin is routed through one of these
plugs. The lower portion of Figure 3 shows the rows of plugs for comnector
P1 and the "A" half of connector P2, Each FCC has its own breskout panel.

13
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Figure 3. CAPS Test Adapter and Computer Breal:out Panel
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CAPS Test Adapters

Figure 3 also shows the CAPS Test Adapter (CTA) for one of the FCC's.
The upper half of the CTA includes, on the right-hand side, four address
and four data windows. An address can be loaded in each address window,
and the corresponding data window used to display the data on the FCC A-
side processor bus data lines every time the address appears on the address
lines. The CTA also has other capabilities, such as providing a history of
the last 16 bus transfers and changing the contents of a specific memory
location within the FCC, but during the study only the address monitoring
was used. Discrete variables representing sensor voter status were
monitored visually via the data windows. Continuous variables, such as
inputs to the servo amplifiers, were monitored by using the analog output
posts below the appropriate data window to drive a strip-chart recorder.

The lower half of the CTA performs the same functions as the
upper half, but for the B side of the FCC.

Servo Simulator Panel

The servo amplifier outputs from the FCC's are routed to the Servo
Simulator Panel (SSP), shown in Figure 4. The SSP simulates the dynamics
of the autopilot and power servos, and generates the required feedback
signals such as modulator piston position. The SSP has circuits which can
simulate a hardover or slowover command to a servo coil. It can also
simulate a hardover or slowover of a modulator piston, including the
modulator piston position feedback signal and the command to the power
servo. All of these apply to the No. 1 servo of each type.

Discrete Switch Panel

The Discrete Switch Panel (DSP), Figure 5, is located just below the
ssp. This panel provides a centralized location for switches such as
hydrasulic pressure switches and autopilot disconnect switches. The panel
also includes switches that can be used to insert sensor validity faults.
These faults can alsoc be inserted by pulling the appropriate jumper plug on
the FCC Breakout Panel.

15




Figure 4., Servo Simulator Panel
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Figure 5, Discrete Switch Manel
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The pallet also contains core memory for the FCC's. This is used for
both data and program memory to provide flexibility and convenience in
using the pallet to simulate other airplanes or DFCS architectures. As
used in an airplane, the FCC's have the- flight software stored in
programmable read-only memory (PROM) and use random access memory (RAM)
chips for data memory.

Glare-Shield Panel

The pallet also has a glare-shield panel, which is the control panel
for the system as installed in an airplane. It includes the engage (bat
handle) switches, mode select switches, altitude select knob, and other
controls. The pallet also has a single ADI, HSI, radio altitude display,
Mode Indicator, and Warning Annunciator Indicator.
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S. FAULT TREE ANALYSIS

FAULT TREE ROLE IN INTEGRATED ASSURANCE

The integrated assurance assessmert of the RDFCS begins with a fault
tree analysis of the system function. Referring back to Table 1, the fault
tree analysis has several functions, The first function is to assure that
no Ssystem component has any failure mode which can result in systea
failure. Most of the components, such as the sensors and servos, have only
a few fallure modes which can be observed at the interfaces with the rest
of the system. For these components, the fault tree analysis provides
assurance that no failure modes can cause system failure. The assurance is
obtained by reviewing the completed tree and determining that system
failure can only occur as a result of multiple failures.

In general, digital modules (and therefore digital components) can
have a substantial number of different failure modes. In such cases, it
becomes quite laborious to continue the fault tree development to a level
of detail sufficient to confirm that none of those failure modes can cause
system failure, The second function of fault tree analysis is to identify
whicﬁ digital modules are inveolved in performing critical functions. The
task of assuring that no single module level failure can cause system
failure is performed with failure mode and effect analysis (FMEA).

A major benefit of fault tree analysis is that it focuses on the
functions performed by the system elements, including those systeam elements
involved in detecting faults and providing appropriate annunciation to the
flight crew. Consequently, the third function of fault tree analysis is to
confirm the adequacy of monitoring (i.e., fault detection and snnunciation)
in the system.

Fault tree asnalylsis is also used to identify specific software
functions required for system operation, including fault monitoring
implemented in software. The software test requirements for these
functions are then specifically reviewed to confirm that these requirements
are adequate. This fourth function of fault trees is discussed more fully
and illustrated subsequently as the tree for the RDFCS i3 developed.
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The fifth function of fault tree analysis is to provide an alternate
means of computing the probability of system failure. This provides a
check of the probability obtained from the CARSRA program to ensure that
the CARSRA input does not have errors which would produce a false low
probability of system failure.

FAULT TREE DEVELOPMENT

The fault tree analysis is based on the undesired event that the
airplane has an unacceptable deviation from the desired flight profile
during the last 150 feet of descent while executing an automatic landing,
as shown in Figure 6. This portion of flight, which is the only flight
phase during which the RDFCS performs a critical function, is termed the
"crucial flight phase" in this report. Category IIIa conditions gsre
assumed, so that the human pilot cannot complete the landing using visual
cues should the RDFCS fail.

The analysis begins with the RDFCS in the dual-dual configuration. It
should be noted that this configuration is available only after the
Instrument Landing System (ILS) push~button has been used to select the
Approach/Land (A/L) mode (Ref. Vol. II, Section U4.,3.6.1). After this
switch has been momentarily depressed, the A/L mode is transmitted to the
FCC's and latched in. The switch is no longer needed, and therefore does
not enter into the analysis.

The top event of Figure 6 can be caused by any of three conditions, or
subevents. For convenience, these can be referred to as Level-2 events,
with the top event considered to be at level 1. The Level-2 events are
shown as the middle row in Figure 6. The first of these is that the system
design is in some manner deficient for the environmental conditions
encountered, This includes the possibility that the conditions encountered
are outside of the system design requirements; it also includes the
posaibility that the control laws sre deficient for some conditions which
may be expected., This possidility is outside the scope of this project and
is not pursued here. References 6 and 7 address this subject. In parti-
cular, Section 3.3.1.3 of Reference 6 discusses establishing an upper bound
on the prodbability of a deficient controcl law by statistical methods.
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The seccnd of the Level-2 events occurs if the airplane enters the
crucial phase with the RDFCS not fail-operational, and then a component
fajlure occurs which prevents the system from completing the landing.

The third of the Level-2 events is that the crucial phase is entered

with a fail-operatisnal RDFCS, but multiple component failures occur before

the end of the phase, and these failures result in RDFCS system failure.

The second of the Level-2 events, that the crucial phase is injtiated
without fail—operatibnal capability, is expanded into three relevant
functional areas, or Level-3 events: sensing aircraft attitude and
position, computation of required outputs, and servo response to computed
commands. The first of these, the sensing function, is expanded in Figure
7 into the various parameters needed by the FCC's in the automatic landing
control laws., At this and higher levels, the fault tree is functionally
oriented: failures are in terms of loss of function rather than loss of
hardware.

The fault tree stub of Figure 8 extends the sensing function for
normal acceleration to the individual hardware elements used to measure the
acceleration and transmit it to the computers. The failure of the normal
acceleration signal No. 1 to be present in all computer channels can be
caused by loss of the sensor itself, associated wiring, or one of the
circuit cards involved in receiving the signal and transmitting it to all
channels. Volume II, Figure 5.1.1.3.1 shows the functional flow of these
cards. The A24 Autocland Sensor Input and A27 Discrete Input Cards are both
involved: The A2Y4 card handles the analog acceleration signal and the A27
card handles the validity discrete signal. The processor itself is not
involved in the data acquisition process and so 1is not shown. At this
level, the transition has been made from required funcitons to the hardware
which performs those functions.

Failure of the system to provide a NO DUAL annunciation is shown in
Figure 9. This figure is of particular interest because of the explicit
software function identified. A failure rate of zero is assigned to
failure of this function, because it can be explicitly and exhaustively
tested, Once it has been so tested, the probability of both NO DUAL
annunciations failing because of a generic software error is taken to be
Zero. A generic software error is a discrepancy in the software which will
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cause all computer channels which use that software to produce the same,
but wrong, result. Mult.»le computer channels do not provide redundancy
with respect to generic software errors as long as the same software is
used in all channels, as it is in most contemporary systems, including the
RDFCS., Reference 7 may be consulted for a discussion of software errors,
and RTCA Document DO-178 should be consulted for a discussion of software
test requirements.

Fault tree stubs similar to that shown in Figure 8 were developed for
the other sensors of Figure 7. These are very much like the stub shown in
Figure 8 and so are not included in the report.

The second of the Level-3 events of Figure 6 is that thé crucial
flight phase is initiated without fail-operational computing capability and
that an additional component failure causes system failure before the phase
is complete. This is shown in Figure 10 as four Level-U4 events, The first
of these, that channel A of FCC No. 1 fails above alert height, can be
caused by either channel of the FCC failing to produce a required output,
as shown by the eight events at the lowest level (Level-5) in Figure 10.

Figure 11 continues the development of the fault tree for one of the
Level-5 events of Figure 10. This event, failure of the A channel of FCC
No. 1 to produce a rudder command, can be caused by failure of any one of
several cards within the channel. 1In this study, the two cards which make
up the processor were considered in more depth than the others. These two,
the A13 Control Card and the At1d Data Path Card, are shown in Figures 12
and 13, respectively, in terms of the modules described in Section 5.1.1.1,
Volume II. Also shown in each of Figures 12 and 13 is a subevent for
failure of a miscellaneous part, such as the circuit board, the edge
connector, or other part which is not included in one of the modules named
in the other blocks.

Theoretically, the fault tree analysis of the failure of the processor
to compute the rudder command can be continued below the module level to
the individual integrated circuit pins or discrete plece-parts. The
desirability of doing this is questionable, however, because of the nature
of the processor. The processor is not designed to perform a single
specific function, such as computing rudder commands., It is designed to
efficiently perform a number of simple functions, such as addition,
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multiplication, and logic operations, A suitable sequence of such
operations (i.e., the flight software) is used to make the processor
generate the rudder command, the aileron command, and so forth. It is much
easier to relate the modules and integrated circuits (IC) to the simple
functions (add, multiply, etc.) than to the much more complicated functions
of computing the command for a particular servo.

It is also easier, in general, to relate a specific failure mode of an
integrated circuit within the processor to its effect on the processor
operation than to start with the effect and then work in the other
direction to the IC failure modes which would produce the effect. In other
vwords, it is easier to do an FMEA than a fault tree analysis at this level.

Another reason for preferring FMEA to fault trees at this level is
that in the course of performing the fault tree analysis, the analyst must
account for all of the ways the processor can fail; that is, all of the
ways in which the processor output can be wrong.

These ways are the failure modes of the processor. "Each of these
modes must then be traced to all possible combinations of IC pin failures
which could produce the processor failure mode. Because processors have
many different possible outputs, there are a high number of ways that the
output could be wrong. There is no practical way of assuring that all of
these possibilities have actually been covered in the fault tree. The FMEA
requires that all pin-level IC failure modes be considered. These modes
are much better understood, and there are less of them, so that it is much
easier to be certain that they have all been covered. This is not meant to
imply that a complete pin-level FMEA is easy or inexpensive; it is neither.

In light of the foregoing considerations, the fault tree analysis of
the processor was not continued below the level developed in Figures 12 and
13. Instead, the FMEA approach was used as described in Section 6.

To continue with the development of other branches of the fault tree,
Figure 14 develops the event of Figure 11 that the pilot is not warned that
FCC No. 1 A channel is not generating a correct rudder command. This
portion of the fault tree includes several software functions. In a
production program, the test requirements of each of these functions should
be reviewed to confirm that they satisfy the criteria of RTCA Document
DO~178 (Reference 2). In this project, conducted for illustrative
purposes, this review was not made.
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Similar tree stubs to that developed in Figures 11.14 were developed
for the other required outputs from Channel A of FCC No. 1 and the other
three channels (Figure 9). They are not included here because they are
qQuite repetitive of the analysis shown,

The last of the Level-3 events of Figure 6 is that the crucial phase
is initiated without fail-operational servo capability and a debiliteting
failure occurs. This is expanded in Figure 15 into the three aircraft

control axes: roll, pitch, and yaw. Figure 16 shows the fault tree for
failure of the No. 1 yaw autopilot servo, with the servo failure not _‘
annunciated to the crew, ‘

Fault tree stubs for the other 5 servos of Figure 15 were developed to
complete the analysis of the Level-3 events of Figure 6. These are quite
similar to the stub shown for the rudder servo and are not included in the
report. This completes the discussion of the second of the Level-2 events
of Figure 6,

The third of the Level-2 events of Figure 6 is that multiple failures
occur during the crucial flight phase and these occur in a combination
which causes system failure. Figure 17 shows the initial development of
this event to lower levels. Continuing this development produces a major
branch of the fault tree quite similar but simpler to that for the second
of the Level-2 events. It differs primarily in that the NO DUAL
annunciation does not appear, since that particular warning is suppressed
during the crucial phase. Since that major branch is soc similar to that

already discussed, it is not describedd further here.

QUANTITATIVE FAULT TREE ANALYSIS

System failure probability was computed from the fault tree using the
hardware failure rates presented in Section 8. A failure rate of zero was
used for each software function, since there is currently no acceptadble way
of predicting DFCS software failure rates (Reference 2, Section 2.2.1).

Considering hardware failure modes only, the probability of initiating
the crucial phase with less than fail-operational ocapability and a second
failure debilitating the system was calculated to be 2.46 x 10'". This is
based on a flight time of 4.0 hours prior to the crucial phase and a

crucial phase duration of 0.02 hours.
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The probability of the system failing because of multiple failures
during the crucial phase was calculated to be 0.638 x 10'9. This is based
on a crucial phase duration of 0.02 hours.

The system failure probabilities computed are actually upper bounds on
the actual failure probabilities. This 1is because the fault trees are
based on the assumption, for many items, that all failure modes of the item
render the item incapable of performing any of its functions, For example,
certain buffers on the A26 Data Acquisition Card are used for sensor data
which is not required for automatic landing{iand so at least some of the
failures of these buffers would not prevent the' card from correctly
handling required data. However, the failure rates used in the analysis
are for the entire card, including these buffers, so that the failure
probability calculated for the card includes card failure modes which would

not affect automatic landing.

TABLE 2. QUANTITATIVE RESULTS

Fault '
. Tree -CARSRA
Probability Of ' Result ) Result -
Unannunciated Failure 2.46 x 10-14 o "3.36 'x 10-;6
in Cruise and Second -
Failure in Landing
Multiple Failures 0.64 x 1070 0.66 x 1077

In Landing
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6. FAILURE MODE AND EFFECT ANALYSIS

ROLE IN INTEGRATED ASSURANCE

As stated in Section S, fault tree analysis provides assurance that
most system components, such as analog Sensors and servos, have no single
failure mode which produces system failure. This is because such
components have only a few possible failure modes, and it frequently is not
necessary to distinguish in the fault tree among these modes. When it is
necessary to distinguish among modes, 1i: is usually fairly simple to
identify the modes which asre relevant in the branch of the tree being
developed. The analysis can often be extended below the component level to
the failure modes of the individual piece-parts which comprise the
component. Analysis to this very detailed level is sometimes necessary to
ascertain that a component has no failure modes which could remain
undetected until a second failure occurs elsewhere in the system.

Fault tree analysis is cumbersome and inefficient if extended from
system level to the integrated circuit pin level in the processor of a
digital system, however. Basically, this is a result of two basic
characteristios of digital systems:

1. Functions which are described very simply at a higher level
(e.g., sensor monitoring) require a myriad of sequential
operations at the integrated circuit level. These operations are
required to obtain the proper data, route it to the proper
registers within the arithmetic logic unit (ALU) where aritimetic
and logic operations are actually performed, and route the
results too the proper storage register or output port. Many
different integrated oircuits are involved in easch of these
operations.

2. Many interfaces between integrated circuits involve several
pins.,and it is the combination of pin states (eleotrically high
or low) which is significant. That is, each combination of pin
states represents a different data value or instruction, and the
effect of a single pin being in the wrong (faulted) state depends
on the state of the other (non-faulted) pins.
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The net result of these characteristics of digital hardware is that
| there are many more integrated-circuit-level operations performed in

: executing the flight software than there are pin-level failure modes. 1In
‘ extending a fault tree analysis from failure of system-level functions to
failure of integrated circuit pins, all of these detailed operations must
be included and accounted for, an extremely inefficient process. Once the
fault tree had been fully developed, another extremely laborious task would
remain: reviewing the tree to make certain (1) that all of the failure
modes of the integrated circuits had been accounted for, and that no
fajlure mode could remain undetected until a second failure occurred, with
the combined effect of both faults producing a hazardous condition; and (2)
that no failure mode could by itself produce a hazardous condition.

Failure mode and effect analysis provides a means of systematically
examining all of the potential failure modes of the integrated circuits to i
confirm that none of them could cause a hazard directly or remain latent |
and subsequently cause a hazard in conjunction with a second failure.

GENERAL CONSIDERATIONS

In conducting the pfn-level failure mode and effect analysis of a

processor, three factors greatly reduce the effort. ' The first factor is

that propagation of most faults under all conditions does not have to be

-considered. A single effect can usually be found which will totally
31' debilitate the processor. For example, a faulted processor output pin will
result in the processor trying to read about halfi of the data and machine
level instructions from the wrong memory addresses. This will result in
the coil current comparators tripping, sensor comparisons failing, and in
the case of the RDFCS, the {teration monitor will fail. In a system using
check-sums to monitor program memory integrity, these tests will fail.

The second factor which reduces the effort is that many pairs of
faults will have the same effect. There are numerous instances of an
output pin on one IC being connected only to one other pin. If either pin
fails open, the effect will be the aame. Similarly, a ground fault in
either pin will produce the same effect. '




The third factor which reduces the effort is that there are many
instances in which three pins are connected so that one output pin drives
two input pins on different circuits. An open fault at each of the input
pins can be evaluated first. An open fault at the output pin is then
equivalent to both input pins failing open simultaneously, and in most
cases the effect is the "sum" of the effects of the input pins failing
open; that is, both effects occcur. If both input pins are on the ssme
chip, the effect of both being open is more likely to differ from the sum
of the individual effects. See Figure 18,

The effect of any of the three pins failing shorted to ground is the
same in either of the two cases of Figure 18,

Another frequently encountered condition involving three pins is two
outputs connected to a single input (Figure 19)., In such a case, chips A
and B will have three-state outputs, and one or both outputs should be in
the high-impedence state at all times. An open fault on the output pin of
chip A will then only affect chip C when A has its output enabled. Simi-
larly, an open fault on the output pin of chip B will only affect chip C
when B has its output enabled. An open fault on the chip C input pin will
usualy produce the sum of the effects of open faults on the two output
pins. A ground fault on any of the three pins will have the same effect.

Still referring to Figure 13, if a fault should occur which results in
both enadle pins being in the enable state, there is a possidbility of
damage to the A or B chip. If one output is high and the other low, there
could be a low impedence path to ground, through the output pins, which
could burn out the A or B chip. This depends on the technology used in the
individual chips. Frequently, the effect of the original ground fault can
be judged to be a total processor failure whether or not the secondary
damage oocurs.

APPLICATION OF RDFCS

In this study, three modules of the processor (Figure 20) were
considered at pin level (Ref. Vol. II, Section 5.1.1.1):

o The instruction mapper prom, which consists of three prom ohips
in parallel
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feem| -0 - 1 " BOTH "A" AND "B" ENABLED SIMULTANEOUSLY
MAY DAMAGE CHIP.

Figufe 19. Two Output, One Input Condition
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o The microprogram sequencer, which consists of three 2911
sequencer chips in parallel

o The microprocessor module, which consists of 4 chips in parallel.
Each of these chips is a 2901A.

The instruction mapper prom chips are read-only memory chips. The
inputs to the chip are machine-level operation codes and the depth of the
stack maintained in the 290! microprocessors. These are connected to the
address pins of the mapper. The data stored in the prom is the control
store prom address of the first microcode instruction required to execute
the machine level instruction with the processor stack at a particular
depth. The mapper output pins are only active at the beginning of a
microcode sequence, at which time a chip enable signal is sent to the
mapper from the next address control prom.

The microcode address from the mapper prom is routed to the
microprogram sequencer module. This module generates a sequence of
microcode addresses, beginning with the starting address from the mapper
prom. Some microcode routines involve jumps to a new address rather than
sequential progression only. In such cases, the microprogram sequencer
receives the jump address from the control store proms and resumes
sequential generation of addresses.

The microprocessor module is composed of four 2901A microprocessor
chips. Each chip has a word size of 4 bits, so that the four chips in
parallel are used to provide the processor 16-bit word size, This requires
that carry signals be passed between 2901A's during arithmetic operations.
Other interconnections between 2901A's are used for data shift operations.

The 2901A's are controlled primarily by control signals from the
control store proms in conjunction with tpe outputs from various registers.
Section 5.1.1.1 of Volume II should be consulted for further information on
the functions of these r:gisters and other processor modules,

The failure mode and effect analysis, summarized in Table 3, (in
Appendix A) considered three types of pin-level faults: open, grounded,
and shorted to supply voltage. In most cases, the effect of a fault can bde
assessed by using the chip logic diagrams, a description of chip/module
functions and the schematic diagrams (Volume II, Sections 5.1.1.1, -
5.1.1.5). The schematic diagrams are reproduced in Appendix C.




' The effect of certain pin faults cannot be determined by analysais
using just the information mentioned above. In particular, the contents of
specific prom addresses is needed in some cases. In other cases the
machine-level code is needed along with the microcode sequences and
addresses. Alternatively, the faults can be inserted and the effect
observed. This approach was taken in this study and the results are
presented in Section 7. For example, it was known that failure of one of
the processor pins used in data shifts (RO, R3, QO0, Q3 stuck high or low),
there would be an immediate disconnect if certain of the integer words made
up of packed Boolean variables were shifted. It was determinable from the
available information that such shifts might occur, but it was not
determinable that they definitely would occur. Volume II, Tables
i 5.1.4,3.3.3 and 5.1.4.3.3.4 show examples of such packed words. Similarly,
‘ if certain fixed-point numbers were shifted during computation, the

comuands to the servos would be in error and the coil current comparators

would trip. While both 1left and right-shifts are normally wused in

multiplication algoritims, it was not determinable that a stuck shift bit

would definitely cause such a trip. When the faults were actually

inserted, the processor stopped immediately. ("Immediately," as viewed by

the human observers.) In this way, fault insertion confirmed the overall

effect, massive processor failure and disengagement of the servos, but the

exact mechanism by which it occurred was not determined.
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T. FAULT INSERTION

ROLE IN INTEGRATED APPROACH

Fault insertion is used in the integrated assurance approsch for three
purposes as shown in Table 1. These are:

1. Faults are inserted, on a sampling basis, to confira the fault
effects reflected in the fault tree analysis and fault effeats
determined during failure mode and effect analysis. This includes
faults of components (sensors and servos in this study) and faults
of integrated circuits (pin-level faults in the digital proces-
sor),

2. Faults are inserted, also on a sampling baals, to confirm fault
detection and annunciation functions implemented in the systeam.
Many of these are also inserted to confirm effects, so that they
are inserted for two specific purposes.

3. Faults are inserted to determine the effect when the analysis is
intractable or when there is some uncertainty in the analysis
result. '

APPLICATION TO RDFCS

L\

The RDFCS simulator at NASA-Ames was used to insert the faults shown
in Table &% (in Appendix B). The faults were of two general types:
component level faults and integrated circuit pin faults. The component
level faults were inserted using the FCC breakout panels (Figure 21), the
Servo Simulator Panel (Figure 22), and the MDICU., Single-sensor faults are
those numbered 1 through 19 in Table 4.

Faults representing a dead sensor or a broken wire from the sensor to
the FCC were inserted by pulling the appropriste jumper plug at the dreak-
out panel. Faults representing missing sensor validity discretes were also

inserted in this way, although they can also bde inserted via the Discrete
*
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Figure 21, CAPS Test Adapter and Computer Brealkout Panel
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Switch Panel (Figure 23). Sensor hardovers and ramps were inserted using
) the MDICU. Servo faults were inserted using the Servo Simulator Panel.
For monitoring the processor detection of sensor faults, the CAPS test
Adapters (CTA) were used. One of the CTA address windows was set to the
adddress of the Executive Failure (Status) Word (EFW) in each computer
channel. The EFW is a 16-it word with each bit representing a discrete
piece of information and there is one EFW for each sensor type in each
computer channel. The 4 low-order bits (0-3) represent respectively
failure of the My A (EFMA), My B (EFMB), Other A (EFOA), and Other B (EFMB)
sensor signals. The other 12 bits have functions as described in Volume
II, Table 5.1.2.4.2, which are not of concern here. The data window of the
CTA shows the status of the EFW as four hexadecimal characters, with the
| right-most character representing the bits of interest, 0-3.

The effect of a sensor signal being detected bad by the software sen-
sor monitor is that certain bits are changed from 0 to 1. With no failures
detected, EFMA, EFMB, EFOA, and EFOB are all 0, which is represented in
hexadecimal notation as 0., (0000 binary = 0 hexadecimal.) When the number
1 sensor of a triple sensor complement is detected to have failed, bit O
(EFMA) is set to 1 in both channels of FCC No. 1. Bit 1 is also set to 1
so that the comparison monitoring will work properly on the two renaining
sensors., The EFW low order bits will then be 0011, which is 3 in hexa-
decimal. The net effect, then, of the number 1 sensor of a triple sensor
set falling is that the value displayed in the CTA window changes from 0000
to 0003. The left-most three hexadecimal digits each remains at 0 since
each of the corresponding binary bits (4-15) of the EFW remains at 0.

Fault cases 1 through 8 were used to show that the software sensor
monitor subroutine is 1mp1emedted correctly in the RDFCS by subjecting it
to a number of different faults in the same aensor"iype. These cases were

Y T
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also used to show that the results of the sensor monitoring are accounted
for in the implementation of the NO DUAL equation, which is also in soft-
ware, Cases 9 through 16 were then used to show that the voter is involved
for various sensor types. Rigorous validation of the system by testing
would require that faults be inserted for all Sensuor types used in
automatic landing. In this study, performed for illustrative purposes, the
full complement of sensor types was not faulted.




Figure 23, Discrete Switch Panel
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In case 2E, NO DUAL did not annunciate even though the fault was in-
serted with the airplane inbound to the ILS beam intercept point. It is
believed to be the result of the inbound leg being flown at an unrealis-
tically low altitude, so that the airplane did not track the glideslope
beam for 25 seconds before passing through 150 ft altitude. A review of
the NO DUAL annunciation logic (Volume II, Section 5.1.2.3.1.3) shows that
this is the most likely cause, since AP.ONEFAIL was set to true. Low
approaches (1500 ft) were being simulated in the interest of time. Approach
altitude was subsequently raised to 2000 ft.

Faults 17 through 19 were used tc confirm the servo monitoring and the
tie~in of the servo monitor outputs to the NO DUAL and disconnect logic.
The servo monitors, in particular the coil current comparators, are quite
important in ensuring that the airplane does not enter the cruecial phase
with a faulty computer or servo.

Fault cases 43 through 45 were used to confirm that the FCC's will
both disengage upon loss of the second sensor, with the AP,DISC warning
displayed, in accordance with the system description, Volume II, Section
4,3,6.1.

At the integrated circuit pin level, a number of open and ground
faults were inserted to confirm the FMEA results of Section 6. For this
activity, one of the FCC's was removed from the pallet and the card
cbntaining the chip to be faulted w5 extended for access as shown in
Figure 24, Figure 25 shows the prc -ssor Data Path card.

Open pin faults, Cases 20 through 23, were inserted by using multiple
sockets between the chip and the circuit card, with a jumper wire replacing
the normal pin-to-socket connection. Each fault was inserted by physically
pulling the jumper to open the connection. This is a slow procedure, since
the chip must be removed and the jumper wire rigged on the desired pin. The
chip and sockets must then be installed and the processors brought back up.
. This means of inserting open pin faults is only marginally satisfactory.
It would be much easier to do if a stack of 5 or 6 sockets could be used
between the chip and the circuit card. However, the processor will not
come up with more than three sockets stacked. The longer electrical paths
resulting from the use of the extender cad apparently come oclose to
exhausting the available tolerance in the timing of the individual micro-
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Figure 24. FCC With Processor Card Extended
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Figure 25, FCC Processor Data Path Card
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steps, and the extra path length and capacitance caused by more than three
sockets disables the processor.

Grounded pin faults are much easier to insert, since the chip does not
have to be removed to set up each case. The processor does have to be
brought back up each time, but this is a fairly rapid step. Before each
fault was inserted, the data sheets from the chip manufacturer were
reviewed, along with the card schematics, to determine that the fault would
not damage any chips. No chips were damaged by the ground faults. The
ground pin faults are cases 24 through 42 in Table 3.

The chip pin faults all disabled the processor, with the exception of
open pin fault 21. This fault involves a pin of a quad 2-input NOR gate.
The fault had no effect on the processor operation.

FAULT INSERTION RESULTS

The faults inserted in the RDFCS simulator achieved the desired re-
sults in the assurance assessment of this study , and more importantly
confirmed that fault insertion is capable of providing the results required
of it in the integrated assurance approach. Specifically, the faults
inserted confirmed (1) that the NO DUAL warning appears when it should, (2)
that all sensor types faulted and required for automatic landing are
monitored, (3) that the servo monitoring functions correctly, (4) that the
effect of pin-level faults in the processor is in agreement with the
failure mode and effect analysis, and (5) that fault insertion is a
reasonable way of resolving uncertainty of the effect of open and grounded
pin faults in digital hardware. While these results were obtained on a
particular system, the approach is judged to be viable for validating other
digital systems.
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8. FAILURE RATE DEVELOPMENT

The failure rates for servos, sensors, and indicators were taken from
the data base maintained by the Lockheed-Georgia Company Reliability
Engineering Department. They are composite values for representative

components of comparable complexity and construction.

The failure rates for the integrated circuits of the Data Path and
Control Cards were estimated using the formulas and tables of Military
Handbook 217C (Ref. 8). The formulas provide a means of accounting for a

significant number of factors:

1. Device technology
. Device complexity
. Junction temperature 3

2

3

ik, Package technology

5. Applicaiton environment (voltage)
6

. Usage environment |
7. Quality level ;

For example, the equation for the failure rate of a monolithic bipolar

device is:

4 -

1 f = Ko [C1KTKV + (C2 + C3) KE] KL
3

{ where:

; f is the device failure rate

Ko is the quality factor

KT is the temperature adjustment factor for junctions
Kv is the voltage derating stress factor

KE is the applicaiton environment factor

C, and C, are complexity factors based on transistor count

1 2
C3 is a complexity factor based on package technology and number of
pins

KL is a learning factor.

. —




The quality factor, Ko.
accordance with MIL-M-38510 (Ref. 9), Class B requirements. This value was
used for all circuits in this project. It should be noted that the quality
factor is a direct multiplier, so that the predicted rate is proportional

has a value of 1 for devices procured in full

to it. More or less stringent quality factors can therefore greatly
influence the prediction for any individual circuit, circuit board, or an
entire component.

Junction temperatures are used in determing the ad justment factors Lr

The junction temperature is ambient temperature plus the differential
resulting from power dissipation through the case. An ambient of 60°¢c
was used, with the power dissipation taken from the circuit specification.

The voltage derating stress factor is 1 for the bipolar circuits used :

in the CAPS processor. The application environment factor is 3.5 for the ;

_airborne, inhabited, transport environment of the aircraft underdeck !
avionics rack. Failure rates for the circuit cards of the FCC's were

obtained by summing the failure rates for the card and its components.

Table 5 summarizes the failure rate prediction for the A13 control card.

Failure rates for the other cards are shown in Table 6.

Table 7 presents failure rates for the system components other than

the FCC's.
In using these rates in the fault tree and CARSRA analyses, an

) adjustment was frequently required to include only a portion of the rate,
3 since only certain failure modes are of interest. For example, each dual
current comparator has a predicted failure rate of 0.03. Each half of the
comparator is given a rate of .01 for the failure mode of failing to trip

when the threshold difference is exceeded. This is a very conservative
rate for this mode.




TABLE 5, FCC CONTROL CARD FAILURE RATE

ITEM FAILURE RATE®*

Integrated circuits 1.788
Resistors .0018
Capacitors .224
Oscillator .25
Coil .0007

! Circuit Board .023
Edge Connector .16
Control Card 2.45

*#A11 failure rates in failures per million hours.
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TABLE 6, PREDICTED FCC CARD FAILURE RATES

CARD NO. FAILURE RATE*

Al Power Supply Monitor 0.555
A2=-AS5 Prom Card .809 each
A6 Power Supply Monitor 55
A7 - AlQO Prom Card «809 each
All Terminator/Test Access +555 o
Al2 RAM Memory Control 1.18
Al3 CAPS Control 2.45

i Al4 CAPS Data Path 1.98
Al6 Cross-channel Receiver «70
Al7 DITS Transmitter 1.75
Al8 D/A Servo Command 1.75
Al9 Terminator/Time Synch 1.40
A20 Discrete Output 2.79
A21 Data Transmitter/Receiver .70
A22 Serial Digital Input No. | 1.65
A23 Serial Digital Input No. 2 1.80
A24 Autoland Sensor Input 1.80

- A25 Cruise Sensor Input 1.12

'; A26 Data Acquisition 1.20

9 A27 Discrete Input 1.30

. A38 Servo Engage Logic 2.61
A29 Cross Channel XMTR 1.20
A30 - A32 Servo Amplifier . 3.00
A33 Speed Servo Amp 1.70

| A300 Speed Command XMTR 1.70

A400 Power Supply 21,0
A500 Power Supply 21.0

®*All failure rates in failures per million hours.
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TABLE 7. FAILURE RATES FOR MAJOR RDFCS COMPONENTS

COMPONENT UNIT FAILURE RATE*

Pitch Angle Gyro 303
Roll Angle Gyro 303
Yaw Rate Gyro 200
Accelerometer 74

! Radio Altimeter 756
ILS Receiver 252
Air Data System 167
Roll Autopilot Servo 14
Pitch Autopilot Servo 15

} Yaw Autopilot Servo 14

| EH Valve Drive Coil 1.0
LVDT .72
Dual Current Comparator (Hardware) .03
Warning Annunciator (per function) 8.3

*These are NOT actual failure rates for any particular air-

plane or for any single component produced by a particular
manufacturer. They are representative rates determined by

a review of generic component types on a number of airplane
models in a variety of commercial and military applications.

All failure rates per million hours.




9, RELIABILITY PREDICTION USING CARSRA

CARSRA, which stands for Computer-Aided Redundant System Reliability
Analysis (Ref, 10), is an analytical reliability prediction program used in
the integrated assurance approach to obtain the probabilitty of system
failure. In this study, the probability of failure is only considered dur-
ing the crucial flight phase, which has a duration of 0.02 hours.

The use of CARSRA, along with the quantitative assessment produced bdy
evaluating the fault tree analysis, provides two independent computations
of system fajlure probability. This reduces the risk of a false, low
probability of failure being produced by a single method and the error
remaining undetected.

Although CARSRA is identified specifically in the integrated assurance
approach used in this study, some other method (except fault tree analysis)
could be used. If an alternate method is used, it should have sufficient
configuration adaptability to produce the predicted probability of system
failure without requiring simplifying assumptions which would produce a
false, low prediction. Manual analysis is a feasible alternative to CARSRA
for many systems.

CARSRA APPLICATION

Configuration Description

Three levels of organization are implicit in the CARSRA inputs, and
these levels must be adhered to by the user. At the top level is the
system, in this case the RDFCS. System failure probabilities oconatitute
the primary output provided by CARSRA. The intermediate level i3 comprised
of stages. Each stage consists of one or more identical modules, which are
at the lowest level. In the RDFCS, each sensor is a module, and like
sensors form stages. For example, each of the three normal accelerometers
(NA) is a module, and the three NA together comprise a stage.
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Markov Models

Markov models were selected by the CARSRA developers as a major part
of the program's analytical framework. The following discussion of these
models includes some material on applying CARSRA to systems other than the
ROFCS. This material is intended to benefit readers not familar with the
rationale of developing the input parameters for Markov models as used in
CARSRA.

A Markov model is used to describe the number of failed and operating
modules within each stage. The transition rates from state to state are
used to CARSRA in computing state occupancy probabilities. A separate
Markov model 1is used for each stage. State 1 is the no-failure state in
each model, and the two states with the highest numbers correspond to stage
failure. The Model always starts in State 1. For example, a dual stage
(one of two identical modules required for the stage to function) might
have 4 states, as shown in Figure 26. State 1 represents both modules
working, State 2 represents one module failed and one working, and States 3
and 4 represent both modules failed. The highest numbered state, 4 in this
case, represents undetected stage failure, while State 3 represents
detected failure. Note that State 2 does not distinguish which module has
failed.

State transition rates must be supplied to CARSRA by the user. These
are generally functions of the module failure rates, and possibly other
parameters. Returning to the example of the dual stage used previously,
the Markov state diagram would be as in Figure 26. Transition rate f12 is
rate at which transitions occur from State 1 to State 2, That is, if the
system is in State 1, the probability that it will transition to State 2
during a short increment of time dt is f12dt. The other transition rates
are similarly defined.

If there is no monitoring or switching required when the first module
fails, and if there is no possibility of the stage failing undetected, the
transition from State 1 will always be to State 2, and the transition from
State 2 will always be to State 3. Transition rate f12 will be simply 2f
and f23 will be f, where f is the failure rate of a single module. The
other transition rates will be 0. Note that this means that State 8§ will

never be occupied, consistent with undetected stage failure being impos-
sible.
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In many instances encountered in real systems, digital or otherwise, a |
reconfiguration must occur before the redundancy can be availed. In the
example dual case, an output monitor could be used on each module. If the
monitor éan detect 97% of module failures, e.g. no output or unreasonable
output, the monitor provides "coverage", c, of 97%. The transition rate
f‘1 is then 2fc, so that 97% of the transitions from State 1 go to State 2.

Of the remaining 3% of the transitions from State 1, some fraction,
e.g. 2/3, could go to State 3 and the rest to State 4, This would result
in f13 being 2f(1-¢c)(2/3), or 2f(.02), and t‘m being 2f(1-¢) (1/3), or
: 2£(.01),

Note the distinctions between coverage, which relates to module fail-

2

ure detection, and undetected stage failure. Note also that the function
of a particular stage could be such that it cannot fail undetected, even
though individual modules within the stage may fail with coverage less than
1. In other cases, stage failure may be detected only by multiple module

failures being detected.

It should also be noted that the sum of transition rates out of State
1 is 2f. In general, if any state corresponds to N modules working, the
sum of transition rates out of that state will be Nf.

It should be noted also that stages can fail for two reasons, spares
exhaustion or coverage failure. In contemporary aircraft systems having

eritical functions to perform, coverage failures are of as much concern as

2 spares exhaustion.
In the previous dual stage example with 97% coverage of the first
3 module failure, no consideration was included of the failure rate of the

monitor itself. The coverage factor of 97% means that 97% of the module
faults are of such a nature that they can be detected by an unfailed
monitor. The rest are outside of the monitors capability. In cases where
dedicated hardware monitors are used, it is appropriate to consider their
failure rates and failure modes. A two-state monitor 1s the type most
frequently encountered. It provides only a GOOD/BAD signal. Such a
monitor has only two failure states: false indication of BAD when the
module is good, and false indication of GOOD when the module is bad.

The simplest way of treating such monitors in CARSRA is to combine the
monitors with the modules as a single stage. The transition rate from




4
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State 1 to State 2 is then 2fcrlll + mea. where f and c are as before, L is
the reliability of the monitor over the entire flight time, t- is the
monitor failure rate, and a is the fraction of monitor failures resulting
in a good module being declared bad. The other transition rates would be
similarly defined, recognizing the relation between detection of stage
failure and component monitors. Each instance of such a stage must be
evaluated individually in determining the applicable rate formulas.

Frequently, certain terms in a rate equation can be ignored because
they are numerically negligible. For example, if f = 120 x 10'6 and f. =
0.1 x 10'6. the term 2fma can be ignored in the formula

f12 2 2!'crm + mea.

provided ¢ is not absurdly small. If ¢ is 90%, a is 50%, and the flight
time is 10 hours,

f,, = 2120 x 10'6)(.90) exp(-.1 x 1()"6 x 10)

1

+2(.1 x 1078)(.50)

6

6+.1x1o".

z 216 x 10°

Inclusion of the term yields a rate of 216.1; ignoring it yields 216.
The difference is much less than that caused by uncertainty in the module

failure rate, 120 x 10'6.

Dependencies

CARSRA permits the user to describe instances in which failures of a
module in one stage will prevent a module in another stage from being used.
An example of this in the RDFCS {s the portion of each FCC channel which
receives sensor data and makes it available to the other channels. Data
Acquisition Card A26 in FCC No. 1 receives data from the No. 1 unit of each
triple sensor type, and relays it to another card for transmission to the
other three channels and for use by its own channel. (Ref. Vol. 1II,

67

R

S VY i kg -WWW#}— b




Section 5.1.1.3.1.5). There are 5 triple-sensor types involved in the
i autoland mode: pitch, roll, and yaw rate gyros; and lateral and normal
accelerometers. (The A26 card also handles data from other sensors, but 1
only these five will be used for discussion here.) If the A26 card fails
in FCC No. 1, the data will be lost from pitch gyro No. 1, roll gyro No. 1,
yaw rate gyro No. 1, lateral accelerometer No. 1, and normal accelerometer
No. 1, just as {if all 5 of these sensors had failed. The A26 card is
called a dependency module, and its stage a dependency stage. Each of the
affected sensors is called a non-dependency module, and the corresponding )
stage a non-dependency stage.

Coverage for sensor failures is provided by comparison monitoring and
reconfiguration (Vol. II, Sec. 5.1.2.4), Each channel independently per-
J forms the sensor monitoring functions on the data it will use in control

law computations. When a channel detects a failed sensor, it does not
| tranmit the identity of the individual sensor to the other channels. When

a B channel detects a failure, it does transmit a discrete variable,
i AP.ONEFAIL, to the A channel in the same FCC. The A channel will turn on
the NO DUAL annunciation based on its receipt of AP.ONEFAIL from B, or its
own detection of a sensor failure. The NO DUAL indication is provided to
inform the crew that the RDFCS is not fail-operational. The No. 1 FCC
drives the No. 1 Warning Annunciator Indicator (WAI) and the No. 2 FCC
drives the No. 2 WAI, so that warning will be provided if either channel of

either FCC detects the failure,
The sensor monitoring is part of the foreground flight software, Con-

sequently, for a channel to detect a fault, the CAPS processor must func-
tion, as must the CAPS bus and portions of the program and data memory.

[ VRS

v

These are the same hardware elements which perform other functions, such as
control law computations and mode logic computatiton. Most faults in these
circuit will result in a totally debilitated processor, so that the in-
ability to the monitor sensors is inconsequential, Not. also that even if
one channel does lose the ability to monitor sensors, any one of the other
three channels can force the NO DUAL warning.

In 1ight of the foregoing, the only appreciable probability that the
loss of fail-operational sensor capability will not be annunciated results
from loss of both WAI., The multiple-function WAI (Ref. Vol. II, Section




| 5.16.1) has a unit failure rate prediction of 33 per million hours. The
fallure rate of any one of the 8 warning messages is conservatively taken
) to be one-fourth the unit rate, or 8.3 per million. It may be noted from
Vol. II, Table 5,1.4.6 that the FCC activates the NO DUAL message by pro-
viding a ground to the WAI, so that a broken wire or bad connector contact
would prevent annunciation. A rate of 1.3 per million hours is included
for such failures. Also, the Discrete Output (A20) and Servo Engage logic
(A28) cards are involved, with failure rates of 2.79 and 2.61 per million
hours, respectively. Even though only a portion of the failures of these
cards will affect NO DUAL, the full rate is used. Further anslysis could
reduce this rate substantially. The failure rate for NO DUAL is then

, WAI 8.3 x 1075 i
' Wiring 1.3
; A20 Card 2.79
' A28 Card 2.61
15.0 x 10~

The probability of failure in a U4-hour time period is then 60 x 10'6. The

Probability of both NO DUAL warnings being lost is the square of this
number, 3.6 x 1079, 1 may be noted from Vol. II, Sec. S5.1.2.3.1.1.3 that
the test button on the WAL results in the FCC circuitry and the wiring
being tested as well as the WAI itself. Thus latent failures are not a
1 problem, provided the indicators are tested prior to autoland.

The factor 3.6 x 109 is used as the probability that the first
failure of a sensor type will not be covered. This does not constitute
stage failure, either detected or undetected. Undetected stage failure is
assumed to occur on second failure, provided the first failure was un-
detected. This is somewhat a misuse of the term "undetected"™; the stage
failure itself is not necessarily undetected, but the increased likelihood
of its occurrence, following first failure, is not annunciated.

This treatment of sensor failures allows the availability feature of
CARSRA to be used in computing the probability of loss of one sensor prior
to 150 ft., failure of the NO DUAL annunciation, and another failure below
150 ft. The asilability feature is discussed in the next section.
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Availability

CARSRA permits system reliability to be computed for a mission phase
which follows a period of operation with less stringent fajilure criteria,
An obvious example of this is the RDFCS, which is fail-passive in cruise,
but must be fail-operational in autoland below 150 ft. The availability
feature allows the user to specify which modules may be failed at the
beginning of autoland without forcing diversion to an alternate landing
site. Each such availability configuration must provide adequate re-
liability for the landing, although not as much as if everything is work-
ing. The RDFCS requires all of the modules used in autoland to be oper-
ational, so that the availability feature might seem not needed in this
assessment., It is needed, though, to compensate for a capability which
CARSRA lacks.

The reliability of the RDFCS for automatic landing is predicated on
the system being fall-operational as the alert height is passed. There-
fore, the probability of the system having a latent failure at 150 ft. and
a second failure below that point must be quite small.

By setting up the CARSRA input to allow one sensor of each type to
faill during cruise, with the transition rate from State 2 to the undetected
failure state including the coverage factor of 3.6 x 10'9. the undetected
system failure probability computed by CARSRA will give the probability of
an undetected latent failure at 150 ft. and a second failure before touch-
down. (See Figure 27)

What CARSRA will actually compute is:

P(O failures at &% hours) x P(undetected failure
and detected failure between 4 and 4.02 hrs.)

+P(1 undetected failure at 4 hours)

x P (second failure between 4 and 4.02 hrs.)

Since the probability of both an undetected and a detected failure
between U4 and 4,02 hours is very small, the first term is negligible and
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f = MODULE FAILURE RATE
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Figure 27. Markov Model Coding for Sensor Stoges
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the output will be equal to the second term, which is the probability
desired. This approach is used for the undetected (unannunciated) failures
throughout the system. The definition of stages and the transition rates

are shown in Figure 28.

The CARSRA program computed some negative probabilities for the un-
annunciated failures. It is suspected that this may have been caused by
the program being run on a Univac 1100-series computer, which has a 36-bit
word length. The transition rates to the unannunciated failure states are
quite small in some cases (1 x 10'13), and addition and subtraction of
numbers of this magnitude with numbers close to 1.0 could produce some
numerical accuracy problems on a 36-bit machine. At NASA-Ames, the program
is run on a CDC computer, which has a much larger word size, 6U bits, so
that the problem is thought to be unlikely there. Time was not available
during the study to investigate and resolve the problem, but this will be
done when possible.

Because of the numerical problem encountered with the CARSRA output,
the system failure probabilities reported herein were actually manually
calculated. This was done by manually computing the stage occupancy
probabilities, and then combining these probabilities to account for
dependencies between stages, using the same logic that the CARSRA program

uses.

The probability of an undetected failure prior to the crucial phase,
followed by a second failure in the crucial phase, is 3.36 x 10”",

compared to 2.46 x 10'1u from the fault trees. The probability of multiple
failures in the crucial phase, if everything is working just prior to the

phase, is 0.658 x 10'9, compared with 0.638 x 10”2 from the fault trees.
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The conclusions resulting from this study relate to the benefits and
limitations of the integrated assurance approach used and the RDFCS Simula-
tor. Certain of the conclusions lead to recommendations, as discussed sub-

sequently.

The primary conclusion drawn from this study is that the integrated
assurance approach used is workable for a system, such as the RDFCS, which
employs monitoring totally separate from the hardware/software being
monitored. In the RDFCS, this monitoring includes the servo coil current
comparators and the modulator piston follow-up monitoring. It also
includes the warning annunciations which one FCC can generate following a
failure in the other FCC. A single-string, self-monitored system might be
much less amenable to this approach, depending on the monitoring approaches
used. This possibility is outside the scope of this study.

Fault tree analysis is a feasible analytical method for system level
faults. One benefit is that specific software failures are identified as
the analysis progresses. These can be, and should be, used as a check on
the validation test case selection to assure that the software function is
rigorously tested. Fault trees can be extended to the circuit card level
in a well organized computer such as used in the RDFCS. In general, the
analysis is facilitated by a design with clearly partitioned and identifi-
able functions and interface structure which is consistent for all card
inputs and outputs.

Failure mode and effect analysis is more easily accomplished than
fault trees within the processor itseif. This is because of the processor
being involved in a diverse set of functions defined by the (flight
software. Most individual pin-level faults have many effects. (Ususlly,
each fault can be traced to an effect which totally debilitates the
processor. Other effects which would also cause massive processor failure,
or erroneous results only under certain conditions do not have to be
analyzed in detail, provided their effects will not propagate across
channels, In contrast, a fault tree analysis based on loss of required
system functions would result in identification of the same hardware faults
time after time,
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The FMEA and fault insertion sessions should be on an iterative basis.
After beginning the FMEA, a fault insertion session should be used to
confirm the analysis to that point. The results should then be incorpor-
ated in the FMEA and the entire FMEA reviewed in light of those results.
This review may lead to identification of additional fault cases which
should be simulated to resolve uncertainty which may have arisen. This
iterative approach was not feasible in this study because of limitations on
the availability of the simulator, which was being used on other projects.

The RDFCS simulator has substantial capability for research investiga-
tions of digital flight control system validation issues. This capability
would be significantly improved by an automated fault insertion and data
recording capability. Such a capability should be preprogrammable with a
list of faults to be inserted. It should include means of recording the
impact of each fault (e.g., changes in the values of discrete variables)
for many more variables than the 4 accessible through the CTA's. It should
allow variables in channels other than the faulted one to be accessed and
recorded.

CARSRA, in its present form, should be used with caution when small
failure rates are involved and when execution is to be on a computer with a
shorter word length than the 64 bits used in Control Data computers. The
possibility of erroneous system failure probability values being output
exists under such conditions. This needs to be explored further.

Fault tree analysis and CARSRA provide comparable results for rela-
tively straightforward redundancy conditions, such as the probability of
multiple failures during the crucial phase when all components are working
at the beginning of the phase. For more complicated situations, the two
methods do not agree as closely. This is a result of different simplifica-
tions and assumptions being made to structure the problem to the two
methods. For example, the third sensor of a triple sensor set (Figure 1)
has redundant input paths to the computers (the data input sections of the
two computer B channels) but the other sensors have only a single data path
(the A channel input sections). This is treated correctly in the fault
trees, but the redundancy cannot be accounted for in CARSRA. The conserva-
tive assumption is therefore made that loss of either B channel sensor




O -
input capability will cause loss of the third sensor in all triple sensor

y sets, In validation work, any assumptions required can be made conserva-
tively so that the computed failure probability is actually an upper bound
on the true probability.
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PROCESSOR SCHEMATIC DIAGRAMS

APPENDIX C.
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