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I. ODIJCTION

In studies of free electron lasers (FEL) systems, in which emission gain

is induced through wiggler magnetic field modulation of the electron motion,

detailed knowledge of the electron orbits is necessary in order to evaluate

the critical features of the amplification scheme. These features include

evaluating the frequency range for amplification, gain, rates, saturation

mechanisms, and amplifying efficiencies. However, there exist very few mag-

netic geometries where the electron motion, even in the vacuum fields, can be

obtained analytically wit 2suficient information to assess these critical

features. Only recently has it been realized that in the "on axis" approxi-

mation the helical wiggler orbit problem can be reduced to quadrature, and that

particular discovery has already led to significant progress in FEL amplifica-

tion schemes.'W/For FEL systems with strong magnetic guide fields, little

or no insightful progress has been made except for this helical case. However,

for just this class of magnetic systems, i.e. strong guide fields with a

relatively low amplitude magnetic wiggler superimposed, an asymptotic mathe-

matical formalism does exist where the electron equations of motion in the

vacuum fields can be greatly simplified, and typically reduced to quadrature

in parameter regimes of relevance to applications.

For wiggler fields which are small in amplf t& compared to the basic

and necessarily geometrically simple guide field, asymptotic methods can be

used to simplify the orbits for various ranges of the parameter. 6 k VIA 9

where Q is the relativistic electron gyrofrequency in the guide field, and

k and v,, are the values of the wiggler wavenumber and electron velocity

parallel to this guide field. From the current studies of the exactly soluble

&M
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l"on axis" helical wiggler these same ranges are in fact just the interesting ones.
1'2 '3

For 6 << 1 , the wiggler madifications of the quide field orbits can be handled

in the well known guiding center approximation,4 and for 6 >>1 , standard weak

perturbation methods easily prove to be adequate. For 1i - 61 c I , the so-called

resonant regime, secular perturbation methods have proven successful in simpli-

fying the orbit analysis for particle motion in small amplitude fluctuating rf

fields. This analysis can be straightforwardly applied to the wiggler problem

as long as only widely separated values of ko are present in the system, and as!0
long as these ko's are very slowly varying in space. Furthermore, this same

method can be used when 6 is close to the ratio of two discrete integers. How-

ever, of particular interest to FEL applications and for the sake of simplicity,

we will not here develop a general formalism for an arbitrary wiggler, but will

restrict this study to the orbits of particles near the magnetic axis of a

longitudinal wiggler field in cylindrical geometry:
I I+ ko0 r2^

B BO + coskoZ(l + e"+ ez +Bk r sinkZe r  (1)

The exact description of the particle motion in this multiple mirror geometry

can be greatly simplified because of the existence of the two exact constants

of the motion--energy and angular momentum--but the orbits cannot be reduced

6
to quadrature except in the limit 6 + 0. Therefore, the success of the

asymptotic technique for this case is particularly meaningful. Additionally,

a number of FEL studies in this geometry have proceeded neglecting entirely

the radial magnetic field in Eq. (1), and therefore have used a B field which

is not divergence-free. The consequence of this approximation can now be

determined.

'3 -- '- 3A' R
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II. ASYMPTOTIC TRAJECTORY ANALYSIS

For the specific case of motion in a longitudinal wiggler the relativistic

equations of ,Potfon in the laboratory frame in standard cartesian components

are

dv + M~o v !-1Bv i (6B x + i6By) (2a)

dvt = e LVx6B - v 6B (2b)

I '

where e < 0 is the electron change, m is the relativistic mass (which is a

constant), 6B i are the ith vector components of the wiggler field, Qo = eBo/mc,

and v = vx + ivy. The entire philosophy of the trajectory analysis in all of
x y

the previously discussed ranges of 6 is that the left-hand sides of Eq. (2)

- induce only small changes in the orbits described by the right side of Eq. (2)

in a cyclotron period T = 2f% . With such a philosophy and by Fourier

analyzing the wiggler fields, a straightforward analysis of the motion can

proceed, even in the resonance regime. However, for unification and simplicity

here with field given by (I), Eqs. (2) simply become to order E
2

dv id -

+ ,-2v + 4- - 0 (3a)

and

dvz  €eokodt- -1 sinkoz vw* -v*W , (3b)

withw - x + iy, and n = o[1 + c cOSkoZ(1 + k22/4)1.
Eqs. (3) are not exactly integrable, so a perturbation theory must be

constructed for their solution, however two exact constants of the motion,

energy and angular momentum (in a symmetric multiple mirror system) do exist

and from (3) these correspond respectively to the conditions



d + 2 2=0 (4)

"i ' .. . , 4IviI!v 
a)

obtained by multiplying (3a) by v*, and adding this equation to its complex

conjugate equation and using (3b)

' iand

rtZ- w + i =0 (4b)

F [obtained by multiplying (3a) by w* and subtracting this equation from its

complex conjugate].

In the spirit of usual secular perturbation theory, the solutions of (2)

proceed by assuming that the B corrections induce a slowly varying component

of v, and a slow modulation of the phase and amplitude of the fast component

of v. So writing

v= + 6v

(,6v are the slow and rapidly varying components of v respectively) and

correspondingly

vz = z + 6vz

the slow variation of is determined by

di "[6ezV - Vz(6Bx + t By) (5a)

and dv, given by

(d+ io)6v -i Bzv- vz(6B + 6)J- time average (5b)

and similarly for v , and 6vz, where the bar (-) Indicates averaging over a

cyclotron period, 2/% o. Now, the quantity 6 koi/n o enters in directly

i~~ 'I lml ' I l " '"z '
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in calculating the time averages. When 6 - 1 (called the drift approximate or

gyrokinetic limit) then 68 is essentially constant in a cyclotron period, so!1

here we have

6 << 1

6 + io ei - (6Bx + By (6a)dt" 0 -c -zV -z +

hence

d ev=~~ ~t (I- !- (SBx + iUBy
a~tm x y

6B i6B k 2 2o- + 6W12
V(- + Y) " Vz Z(T )k o coskoz(1 + 0  W " (6b)

We see from (6b) that in this limit i consists of the 'x" and "y" components

of the velocity parallel to 8, plus the usual curvature drift term, the last

term in (6b). The usual grad B drift is neglected in this FEL application

because 1vI vI2  , so it is correspondingly smaller than the curvature drift.

Even so, in this drift limit, the curvature drift is of order c6kwo times

:v so by the assumed orderings of this limit, this is negligibly small.

Note also that the phase of the curvature drift differs from w by a factor

of ±i, hence this drift is in the "0" direction, i.e. perpendicular to the

vector ).

Further discussions of the drift limit are not necessary because of the

vast literature on the subject. However, it is to be noted that an overall

amplitude correction is to be added (in the 6 4c I limit) to previous orbit

analyses7 which entirely neglected 6Br . This correction, easily derivable

from Eq. (2) or (3) corresponds to use of the adiabatic invariant V a eJlvJ /2B,

and corresponds to an amplitude factor multiplying the previously obtained
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solutions7 for w by the factor v'%F--. This geometric factor then properly takes
0 -4

into account that the actual 6B must satisfy V.6B = 0, whereas neglect of 68r

does not satisfy this divergence condition.
1,2

In the more interesting limit for obtaining large orbit excursions,

161 - 1, and the methods of time averaging the exact equations must be care-

fully reconsidered. In particular the 68. terms vary as sink , the argument

of which varies in time roughly as k0vz t + slow modulation. Similarly, from

(5b) we see that 6v varies as exp(-it)* a function with a slow time modulation.

Therefore in time averaging (5a) we now obtain, to lowest order in c,

+ ioV = -+ k-[( + -7 Ju exp(-i,) (7a)

ieS 2-ic s

u exp(1*)[(1 + k -6/-i) + (7b)

and

dvz  ak
'z+ io/% ) exp(i*)u* + c.c.] (7c)
dt 8 0

with the functions 6v = u exp(-i 0t), = koz + 0t, and the approximations

6W = 6v/(-is ) 11 + tic]; << Q0, 6vz  16vl (by energy conservation 6vz - v6v/z),

and it was assumed that kow remains small compared to unity. As v varies slowly

compared to Qo , (7a) can be Iteratively solved to yield (correct to order c)

c 3 i k1w+6_w)21
=-4uexp(-i*) 1 + T + 2 8a)

0

Inserting this into (7b) and neglecting terms that are small multiples of c2,

(7b) becomes

-8 -u 4 expi*)C • (8b)

''I M k
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Defining p =exp(-iEI 3%t/8)u and e~ 00,- 2 /8t we find the simp1b equation set

-4exp(i%) 9a

V 11p ~ -- exp(-iC)[ + 3i+ k2 1;3 62 2 (9b)

and

d=v 01p 0 .(9c0

Equation (9c) is also a direct result of kinetic energy conservation, Eq. (4a).

Using (9a) in the lefthand side of (9b), and neglecting the product of small

terms times E:2 (which then eliminates the k~r2/4 term in B , but is valid if

ko r remains small)

2 A22

- *[k0V + Q (I- C-)IJ--j2p0. (10)

This equation (10) appears to be as complicated as the original starting

equations in (3), but in fact now there is only one time scale; the slow time

scale compared to 2w11/%9 and with the conservation equation (9c), (10) will

be shown to be exactly soluble.

Introducing the new dependent variables s and e, p =1 Os exp(-ie),

Eqs. (8) reduce to

2
is 2 +..2..+..kos4 -C2  (1a)

C2 a constant, with q% k0CI + (0 e /01 , C, the constant defined by

Eq. (9c), and

'itr ;noe effective potential V given by

V + q Oo C -- + u s(tic)
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Choosing the dimensionless variables X = koS, n = q , and c = L2 k2/0o

we have the final equation, soluble by quadratures

3V X -Sk(12a)

2 2 ~ 4 ~6 0 23r
Jn ;)x -- +nc- 16 (12b)

By their definition and the assumptions of this analysis

X = ks << 1 , n -1+6<<1 , and - s 2kn + k s
0 0

therefore the time scale for the X variation is seen to be much longer than Qo' con-

sistent with assumptions. We note that the X4 and X6 terms in the effective potential,

V, come strictly from the change in Vz as Iz12 increases as given by (9c) and is aza

result of the detuning of the linear resonance, k0vz - Q 0. Also note that as

Q < 0 for electrons, the conservation law indicates that as Izf - (6v( increases

Vz decreases, as expected from constancy of y = 1 - v2/c2I The X term in

the potential is definitely a stabilizing term, that is, it sets an upper bound

on the limits of IXI, and these limits are not such as to invalidate the assump-

tion of small X because it clearly dominates the force term when X n and as

n-K~ 1, the small X approximation must still retain the X6 term.

By conservation of the effective energy, E, of Eq. (12): E = i2/2 + V

= constant, Eq. (12) can be reduced to quadratures and by using the independent

variable y = X2 , the integrals are all of the elliptic type. However, this

result is probably no more useful than the observation that by standardizing

the original equation, (3a), and neglecting the k2r 2/4 term in 6Bz , the resulting

equation is of the Mathieu form. So, some general considerations are in order

and will be shown to provide sufficient information for analytically describing

the electron orbits to the degree necessary for most FEL applications.
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III. RESONANT ORBIT DESCRIPTION

The effective potential described by (12b) yields a very useful method

for analytically dealing with the orbits. Recalling the definitions of

variables we have that

k 0 w = X exp{-iSZ( 1  2/8)t+Oi} , (13a)

so that the effective potential diagram describes the modulated Lamor motion

of the electron with X = I1k06WI. Knowing the quantitative features we can

derive all of the remaining orbit characteristics including theguidinq center

position,

-o 4 exp [-i (G+ )] .x X 3 )]
k -4 -x 6C) i( x- (13b)

0 2 -- 2 -
or

ko02 +2 2 2X
2

= _ X]22o E ]-constant+X2 (13c)

0

Equation (13c) is also a consequence of angular momentum conservation, equivalent

to Eq. (4b). Therefore following the X motion using the effective potential method

directly gives a picture of the excursions in Larmor radius, lk o6(t)I = X, and the

difference in X gives the differences in the square of the guiding center position;

ikow(tl)I2 Iko-(t 2)
2 = X2 (t) X2 (t2)

In general the effective potential has the characteristic shape shown in

Fig. 1. The number of minima can either be one or two. These differences arp

important as a minimum in the potential corresponds toa stable electron orbit

with constant radial guiding center and magnitude of the Larmor radius. The

details of this potential and the resulting motion can be investigated in depth

in various limiting cases of the parameter, C, E, and n.

In the experimentally interesting limit where Inl c/2, the equations of

motion can be written in terms of the new variable, y X/InI, and new potential,

.I V 9 as

• ~*
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Y TY 22yE(TI) y /8] (14)

2y

with E(n) 1 { ' > 0 As e (j(kr)2n, the constant c/n 2  (kr)2/rA and is

typically of order unity. From (14) we see that the time scale of these defec-

tions are of the order z2w/ro ° >> 2it/Q by assumption. By simple algebraic

calculations the potential V can be shown to have two minima (as in Fig. 1)

only if -2 < C/n2 <_ 0, or n <0 and 0 5/2 < 2/3. Otherwise V has only

one minimum for y _ 0.

As a particularly simple example let us determine the quantitative features

of a particle with c = 0, Ink>> c/2. For n > 0, only y 0 is a minimum, and

the motion is oscillatory but y remains near y = 0. For n < 0 two minima which

are zeros exist in V, at y = 0, and y = V1. A relative maximum of V occurs

at y= /8/3 with a value of V(y = (16/27)n 2 . As this value is largeat Ym

compared to the energy, given by (13c) as
22

E ___22(I- 2 X2 <C2

32 [In~I -w X]<

by assumption then electrons initially near the minimum at yo = / r will oscillate

but remain near to this value of y0 " For small oscillations near yo the motion

is sinusoidal with the exact frequency being given by wos = /V f = Ti in this

"not too" resonant regime, In! 3-/2, one or two equilibrium positions can exist,

and motion around these stable singular points is very limited. Additionally,

in this not too resonant regime the new non-zero guiding center position is of

the order of the size of the Larmor radius, and is n-dependent (eq. c = 0 gives

the second equilibrium positions as Ik pI =  8T). Hence, small changes in the

resonance, Ik0V/zo/% 1 161 can make substantial relative changes in the equilib-

rium orbit positions.

- "*,, , ; -,
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For smaller values of n, very near resonance such that n 2  E - is

negative the first minimum in V now is not at X = 0 even when 0 0. This means

that even those electrons that initially have small perpendicular velocities and

radial positions near r = 0 can still experience significant radial excursions

and velocity modulations. For example in the simplest limit C = 0, V has an

absolute minimum at X = X 0 , with

9o

X /4 = -5n/9 +(4/9n 2 +(9/64)e 2  (15)

Therefore an electron willmake excursions in X around X0, turning wherever E=V(X).

From (13c),we note that for c= 0, the energy E= ( Q /32)[X 2 - k 1]. So for a

particle with an initial Larmor radius, (X), equal to its initial guiding center

-2 2
displacement, (Ik 0 l), E = 0. For these electrons (c 0, E = (, n2 < r /4) the

turning points, Xt, can be shown to be Xt = 0 and Xt =2(/2-) . Of course for

the particular initial condition of the particle initially being at r = 0 with

exactly zero perpendicular velocity, i.e., add the special condition X = 0 to~1

these initial conditions; the particle just remains at X 0 0. However, this is

an unstable point and very small deviations from the conditions X = Ikol =0

will cause the electron to make significant radial excursions.

In the simplest case of C = 0 we should note that the potential has two

minima if n2 > c2/4 and n < 0 and these minima are at X = 0 and X = Xo . If

E = 0 in this circumstance the particles stability remain at X = 0 and X = Xo.

This demonstrates another parameter range where electrons injected with only

a small perpendicular velocity, but on the r = 0 beam axis will not remain there.

In this case of E = 0, the electron would sweep through r = 0 every Larmor cycle

with its guiding center remaining at the fixed distance Xo  Ikowl, from the axis,

and slowly rotating in angle.

------------
~'1
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In both of these cases with n2 - E2/4 negative or positive, Xo or the

turning point, Xt, defines the amount of excursion possible: Xmax Z Xt = X0

IkoeI, =IkoV / t, and as such measures both the perpendicular "thermal"

spread that a beam can develop; and its typical guiding center displacement.

For example when n << c, Xt = Y/- -, giving a maximum radial displacement of an

electron of order 2/2e/k ; and a perpendicular velocity 6v, = /2-v Z . Both of

these displacements are significant and must be treated carefully and self-

consistently in the modeling of electron beam equilibria and free electron

gain factors.

j

4M
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IV. DISCUSSION

The analysis presented here demonstrates that in the vicinity of resonance,

Ikzvz/ l 1 analytic techniques can be used to obtain the electron orbits

even in a longitudinal wiggler including the radial component of the magnetic

field. It is also possible to allow for adiabatic variation of the guide field

and wiggler wavelength, within this formalism if the quantities vary slowly in

a period of this reduced motion, which is of order 2n/Q E, or 27T/nQ ° whichever0 0

is shortest. This same type of secular analysis has been applied to both the

helical and linear wiggler geometries without the assumption used here, of the

electrons being near the magnetic axis of the guide field. Additionally, a more

general perturbation formalism has been applied to a general wiggler geometry

with simple periodicity in Z assuming only a small wiggler field strength to

guide field strength. The question of stochasticity of the electron motion has

also been addressed.
8

In all, very important questions of the quality of the in situ electron

beam can be answered. Equally significant is that in the vicinity of resonance

Ik,,v,,/0o - N, N integer, where large radiation conversion efficiencies can be

expected, analytic approximations to the electron orbits can be obtained and

these are all important in determining realistic gain factors and saturation

mechanisms and radiation strengths for actual free electron lasers.

MLI: -7
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