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Abstract of “Neural Plasticity: Single Neuron Models for
ni-crinigntion and Generalization and an Experimentsl Ensemble
Approach”™ by Paul Wesley Muaro, Ph.D., Brown University, June, 1983.

. A cpecia} form for modification of neuronal response properties
! is described in which the change in the synaptic state vector is
AR psrallel to the vector of afferent activity. This process is termed
A parallel modification and its theoretical and experimental

. i implications are examined.

. A theoretical framework has been devised to describe the

. } complementary functions of generalization and discrimination by
K single neurons. This constitutes a basis for three models each
describing processes for the development of maximum selectivity
(discrimination) and minimum selectivity (generalization) by neurons. ;
Strengthening and weakening of synapses is expressed as s product of ;
the presynaptic activity and a nonlinear modulatory function of two
postsynaptic variables -- namely a measure of the spatially
: integrated activity of the cell and a temporal integration (time-
e average) of that activity. Some theorems are given for low-
dimensional systems and computer simulation results from more complex
systems are discussed.

: o
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Model neurons that achieve high selectivity mimic the
development of cat visual cortex neurons in a wide variety of rearing
conditions. A role for low-selectivity neurons is proposed im which
they provide inhibitory input to neurons of the opposite type,
thereby suppressing the common component of a pattern class and
enhancing their selective properties. Such contrast-enhancing
circuits are analyzed and supported by computer simulation. To enable
maximum selectivity, the net inhibition to a cell wust become strong
enough to offset vhatever excitation is produced by the non-
preferred patterns,

Ramifications of parallel models for certain experimentsl
paradigms are analyzed. A methodology is outlined for testing
synaptic modification hypotheses in the laboratory. A plastic
projection from one neuronal population to snother will attain stable
equilibrium under periodic electrical stimulation of constant
intensity. The perturbative effect of shifting this intensity level
can yield important information regarding the form of the
modification equation. The pathway from entorhinal cortex to dentate
gyrus in the rat is an ideal candidate for such experiments.
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Intxoduction

That synaptic modificatjon is & primcipal component of neural
plasticity has come to be a widely held opinion among
neuroscientists. Theoreticians have launched several attempts, with
varying degrees of success, to deduce explicit (synaptic) principles
underlying learning by examining the selforganizational consequences
of various microscopic hypotheses for comparison with anatomical,
physiological, and behavioral data. Such efforts have been directed
toward several brain structures and pathways including sensory
cortex, motor cortex, the hippocampal and reticular formstions, the
cerebellum, and various thalamic nuclei. It is not known whether the
diverse set of subsystems that make up the CNS employ general
learning mechanisms that are few in number or several specialized
ones. Two plasticity phenomena motivate the ideas in the present

thesis:

= the development of stimulus selectivity in visual cortex
neurons

- potentiation and depotentiation of the bilateral pathway from
entorhinal cortex to dentate gyrus

It is generally agreed that the instantaneous spiking frequency

of an axon reflects a spatiotemporal integration of synaptic

excitation and inhibition over the corresponding neurom, but the
informational content of a neuron's response with respect to the

stimulating activity pattern is sn open issue. The very existence of
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behavioral phenomena implies that large neural networks evolve fo
give appropriate ensemble responses to their stimuli, hcﬁ
constituent nﬁuton must therefure develop response attributes which
are, in some sense, unapingful. After defining the model neurcn and
its stimulus environment as mathematical structures, Part I presents
a mathematical framework describing two complemeatary forms of
abstraction by individual neurons: generalization, a process of
finding similarities between stimuli, and differentiation, a
separation process. An analogous dichotomy in cognitive theory has
been extensively studied by Tversky and Gati (1978, 1982). They
develop a “contrast model™ of similarity and difference perception

and apply it to psychological data.

Part 1I extends a theory for selectivity development in visual
cortex proposed by Biememstock et al (1982) which describes a process
by which cells become maxiwally selective over their input |
envitonmenfs. Development of orientation specificity and ocular
dominance has been subject to extensive study using many paradigms
that manipulate the visual environmment in various ways. Some of
these investigations are described and it is shown that the theory
accounts for the corresponding results. It is them shown that a
pﬁnple change in the evolution equation describes cells which seek
minimum, rather than maximum, selectivity. These cells tune to
common festures rather than distinctive features. Thus s general
system is developed to account for bofh types of selectivity

development.
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In Part III an alternative model is introduced to describe the
same set of visual cortex data. It also includes an implementation
of the maximhm-minimum selectivity framework, Here, two antagonistic
mechanisms are postulated: one weakening a cell's input synapses and
the other strengthening them. These mechanisms are coupled by a
variable which evolves according to the same equation as the
synapses. This theory rests on a more basic set of hypotheses which
lead to a mathematical formulation quite similar to the previous
model's starting hypothesis, but with some differences. First, the
new hypotheses make certain assumptions about the biochemical
mechanisms responsible for synaptic modification and second, there is
a testable difference between the two models which is discussed in

Part 1IV.

Part IV describes a population stimulus-record method for
electrophysiological testing of synaptic modification models. The
pre- and postsynaptic activities of certain synapses cam te
controlled to a degree and their efficacies roughly measured in_sone
systems. Such measurements can give important information regarding
the dependence of the change in synaptic strength on the pre- and
postsynaptic variables. Since this method is applicable to neuron
populations it may prove a useful tool for experimental design and
data interpretation. The predicted results of the model in Part I

are discussed as well as those of some other models. This approach

wvas inspired by the hippocampal potentiation studies of Levy and

P/ SR



”‘? Steward (1979), so it is no accident that the anatomy and physiology

“t in that system is ideal for this experimental framework. Am outline

of the biology of the entorhinal cortex to dentate gyrus projection

i ; is therefore included at the end of Part 1V.
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Background

The ability of organisms to process information constitutes a
common basis for all behavioral phenomena. Over the past century,
many empirically based theories of behavior have evolved, reshaping
philosophical and clinical approaches to mental function. A nearly
simultaneous accumulation of discoveries in the fields of
neuroanatomy and neurophysiology has established a detailed piccure
of the nervous system as an enormously complex network of highly
specialized cells, A full appreciation of neural function must begin

with an understanding of the sub-microscopic chemical and physical

membrane mechanisms of the neuron and eventually account for
psychological data. Theoreticians are attempting to close the gap
between neurobiology and psychology by developing mathematical

theories of learning by neurons and neural networks.

The technique of stimulus-response (SR) is perhaps the most
valuable protocol in all of experimental science. Response
characteristics may provide the common language needed to relate
electrophysiological and psychological data. We will assume that
the action taken by a neural network is dependent solely upon the
stimulus applied to the network and quantities internal to the
network., These internal quantities constitute the atate of the
network. If the state can be modified by the application of

stimuli, it is called plastic. Nommodifiable states are termed
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ponplastic. Learning processes are intrinsically plastic since

they involve adjusting response properties in a network. This

approach to the study of learning is taken by Thorndike (1932) who

begins the introduction to his book Ihe Fundamentals of Learning

o with this sentence: 'We are concerned in this volume with the

fundamental facts of learning whereby a situation which first evokes

response A later evokes response B, different from A'.

Note that nothing has been said regarding the complexity of the
network. A neural network may be anything from an entire nervous
| system down to a single neuron or even part of a single neuron
(Poggio and Koch, 1981). If the network's internal quantities and
the transfer (input-output) function are known, then the state of the

network has been specified such that the response to any stimulus can

PO

be calculated. Alternatively, if a sufficient (complete) set of
responses to hypothetical stimuli and the transfer function are

known, then the internal quantities can be deduced, again specifying

the network state. Each complete set of neural stimuli is a

X Max‘(ﬂ‘i»m' ikl

coordinate system for the network state space. A natural or
preferred coordinate system is given by the internal quantities. A

nonplastic network is fully described by its state and transfer

o A e e ewer

function. However, these values only partially specify plastic

¢ systems.

We are interested in the dypnamics of the neural state. While

the state and transfer function represent informsation stored
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order of 10“) sites along its membrane. These sites are called
synapses, a term coined by Sherrington (1906) to indicate a junction
between neurons. The neuron membrane maintains a “resting”
electrical potential of asbout -60 mV (interior with respect to
exterior). Each synapse transduces the incident signal to a slight
disturbance in the resting potential across the membrane. If the
soma membrane is sufficiently depolarized (driven gbove about -45
mV), a pulse is transmitted by the cell along its axon. The pulse
frequency increases with membrane polarization to a maximum, while :
the amplitude remains constant. The frequency-coded signal is sent .
to many other neurons along the generally intricate srborizatiom of
the axon. This signal then either inhibits or excites other cells at

synaptic sites by hyperpolarizing or depolarizing other membranes.

Thus each peuron operates as a stimulus-response mechsnism
generating a single-valued response to a multidimensionsl stimulus.
Aggregations of nerve cells are known to cooperate functionally,
receiving inputs from and projecting to common populations. So the
nervous system can be sequentially broken down into subsystems of an ﬁ

arbitrary level down to the single-neuron system. The state of

any of these subsystems can be characterized either by its SR
properties or its electrophysiological properties (internal

quantities and transfer function).

Deterministic treatments of neural function in the experimental

framework of stimulus-response methodology are well suited

RRRE e - = g e pem iy 10 LR Syt gD 0 i o 2D S




{"knowledge™), the storage process (“learning™) is expressed by a

modification rule or plasticity function for the change in the
neural state. This rule, together with the stimulus set delivered

to the network thus determine the trajectory of the system through

the state space.

let us now consider thz components of neural networks. Neuromns
are the basic units of neural function. As components of complex
networks, these units are responsible for an extraordinary range of
information processing tasks including perception., cognitionm, and
action. Not all neurons are identical, there exist several
anatomically defined categories of these cells as well as
corresponding physiological and biochemical properties, but they
have many features in common. All neurons contain the structures
inherent to biological cells, however they are not self-
replicating. Furthermore, each neuron transmits a time-varying
electrical signal and receives several simultaneous electrochemical

stimuli which also vary in time.

Nerve cells are irregularly shaped. Extending from the cell
body (soma) are several processes - long, narrow extentions of the
cell. These are of two types: dendrites, which generally conduct
signals inwardly gtoward the cell body, and axons, which txansmit
frequency-coded signals to other cells. A typical neuron includes a
soma, several dendrites, and a single axon which may have several

branches. It receives signals from other cells at many (up to the
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to synaptically based theoretical approaches. The SR technique has
been used by both physiologists and psychologists for many decades.
The pioneering works of Sherrington (1906) and Skinner (1938)
together with their bibliographical references establish,

respectively, the foundations of stimulus-response methodology in
electrical and behavioral contexts. Both experimental approaches
survive today, ﬁxenplified by electrophysiological data from
orientation-specific cells in visual cortex (e.g., Hubel & Wiesel,
1962, 1977; Rauschecker & Singer, 1981) and the response time data of

subjects learning prototypes (e.g.., Posner & Keele, 1968, 1970).

Several mathematical models have been developed to account for
these and other data. Examples of such theories for physiological
data are Marr (1969), von der Malsburg (1973) and Nass & Cooper
(1975): cognitively based models include Anderson (1972, 1973) and
McClelland & Rumelhart (1981). Such models are usually based on the
notion of “synaptic weights™, As is described above, a neuron's
instantaneous activity level is determined by a spatiotemporal
susmation of the influences of the activities of many other neurons.
The influence of one neuron upon snother is quantified as a synaptic
“weight™ or “efficacy”. These synaptic weights along with other
variables generslly determine the transfer function of a neuron or a

neuron network,

For example, a linear function might be used to express the

output y of a neurom to its iaputs x; (1). The coefficients '
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are the synaptic weights, representing the net influence of one cell
upon another. This can easily be extended to a network comsisting of
s population.{xj} projecting to a population {y;} (2). A simple
nonlinear example is the threshold function givenr by (3), each

neuron y; having an activity threshold o;.

y = 2;“1*1 (1)
yi - Zjuijxj (2)
vy < K(E}aijxj - 6, (3)

' 2
where K(x) E{: :zg

Such matrix or associative approaches began to receive attention
in the 1940's (McCulloch and Pitts, 1943; Culbertson, 1948). This
sort of mathematical formulation makes clear the close relationship
between the transfer function and the quantification of the neural
state. Modification rules (differential equations for the change in
a or @) are formulated or hypothesized in models for learning. An
early hypothesis which has been a guiding principle for many

theories is Hebb's (1949) “neurophysiological postulate™:

“When an axon of cell A is near enough to excite a
cell B and repeatedly or persistently takes part in firing
it, some growth process or metabolic change takes place in
one or both cells such that A's efficiency, as one of the
cells firing B, is increased.” [p. 621

Nl 2
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This states for neural functionm what Thorndike's (1913) Law of

Use states for learning behavior:

“The Law of Use is: When a modifiable connection is
made betveen a8 situation and a response, that connection's
strength is, other things being equal, increased.” [p. 2] 1

A “Ultimately degrees of strength of a connectiom in
behavior will be defined as degrees of some anatomical or
physiological fact whereby synapses between neurones differ
i in intimacy.” [p. 3]

Most synaptically based learning schemes extend this assumption

[
- . Sy
i = e g T A0

to account for decrease in syntaptic efficacy as well. Inhibitory

synapses must be separately considered as in Stent (1973) and Levy

1 % and Desmond (1982). An extensive examination of learning rules and

their application is provided by Kohomen (1977).

' 1

The degree to which memory is distributed is an issue addressed

by many models. Lashley (1929) sought to locate the site of

learning in rat cortex by performing an extensive series of cortical
lesions and measuring the ability to learn maze patterns as a
function of the extent and location of each lesion. His results
indicate that this ability is not localized to any particular locus

in cortex:

“The same retardation in lesrning is produced by equal
smounts of destruction in any of the cyto-architectural
fields. Hence the capacity to learn the maze is dependent
upon the smount of functional cortical tissue and not upon
its anatomical specialization.” [p. 175]
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Lashley's data are susmarized in Figure 1.

The notion of distributed memory is attractive to manmy
theoreticians. A bologram model was put forward by Longuet-Higgins
(1968) since holography is a non-local storage technique -- partial

destruction of a hologram reduces overall resolution of the stored

image without affecting any particular region.

The opposing viewpoint is held by many researchers who point to
observations (e.g. Hubel and Wiesel, 1963) of feature sensitive
neurons in cortex. Several classes of selective neurons have been
defined according to their modality and degree of specificity (Figure
2). The level of neuronal specificity at the most “gnostic™ stage is
thought to indicate the extent to which memory and cognition are
localized. Barlow (1972) postulates the “cardinal cell” as a
compromise between Sherrington's (1940) “pontifical cell™ concept and

complete distribution of memory traces.

Recent experimental data demonstrate even higher specificity
than the well-documented hypercomplex neurons im visual cortex.
Bruce et al (1981) find polymodal neurous in the extrastriate ares
they call the superior temporal polysensory area (S8TP). Gross et
al (1972) report neurons in macaque inferotemporal cortex selective

to visual inputs resembling a wonkey's hand.
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classes are labelled on the right with corresponding receptive
fields on the left. (From von Fieandt & Moustgaard (1977))
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Figure l. lashlay's szperiment. Lashley's data shows s roughly
continuous dependence of problem solving capability om the

difficulty of the problem and on the degree of injury to the
brain. (From Lashley (1929))
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Finally, experiments by Yeo st al (1982) and Clark et al
(1982) identify specific cerebellar nuclei that abolish classically

conditioned responses in rabbits. These may be the loci sought by

Lashley. It seems clear that the brain is specialized into
functional regions, however the internal operation of these areas
may be distributed to some extent., Also, the neural loci of

individual memory traces may be distributed over several

functionally distinct areas.




L. Ihe Iheoretical Framework: Definitions and Concepts

A. The Model Neuron and Parallel Modification

It is assumed that each neuron generates a dynamic frequency-
coded scalar response to a8 time-varying vector stimulus and that the
response properties evolve with experience (learning). Each of N

afferent signals d; are transduced to membrane depolarizations and

ultimately induce a potential (x) at the soma. Spatiotemporal
integration is idealized here to be an instantaneous linear sum x of

the N inputs d; weighted by the corresponding N synaptic efficacies

d R e et o m— .

N
x= zgqidi (%)

For now, the integrated activity level x may be considered to
correspond to an arbitrary physiological measure of the cell's
excitation level such as the net postsynaptic potential or the

% resulting firing frequency. Although it is somewhat important for
the signals to be summed linearly, the neuron's output frequency may
be described by certain (nondecreasing, positive, bounded, and

continuous) nonlinesr iunctions of x. Thus the response of the model

AN, AT
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neuron is purely a function of its synaptic weights.

The state of the neuron is specified by the synaptic vector

m; together vith an internal quantity q which, although it plays no

role in the transfer function (4), modulates the modification or i
| ; plasticity process (5). Such systems are (N+1)-dimensional: N

synapses plus the internal quantity.

By (6) = 6(x(t) ,q(£))d, (0) (5a)

q(t) = v(x(t),q(t)) (5b)

Since (5b) is an autonomous equation, q reflects a temporal

integration of x over some recent interval, the scope of which is

; determined by the relative magnitudes of ¢ and ¥ Thus the synaptic
vector m is modified parallel or antiparallel to the presented
stimulus vector d, the strength of the modification being a fuaction

of x and q. Of all possible input stimuli of a given magnitude,

E the response to the one in the direction of d is moat greatly
affected by the change m. Parallel modification thus has the

: following behavioral implication: learning induced hy & particmlar

: atimulus more greatly influences future zesponses fo that atimulua
: than to others of the same magnitude. The intuitive plausibility of
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this statement, though it may not rigorously hold, supports the
formulation (5). One must be aware that “magnitude” is a nebulous

term in this context.

Certain functions ¢ and ¥ that yield otherwise desirable
attributes for describing certain types of neural plasticity, may
cause some or all of the state components (mi.q) to grow without
bound. There are several standard approaches to problems of
divergence, For example the sum of the synaptic weights Cz:mi) may
be normalized to or restricted to be less than a particular value.
Another approach is to introduce an exponential decay term (6). While
it is not included in the bulk of this thesis, Appendix A illustrates

the utility of this term to a specific application.

m(t) = ¢d - e(m) (6)

B. The Stimulus Environment

Like the term “neuron”, the “stimulus environment™ is a tangible
to the experimentalist and an abstract mathematical entity to the
theoretician., All possible neurally encoded stimuli d can be
represented by points in a hypervolume U (universe) in N-space
bounded along each coordinate by a minimum firing frequency (zero)

and a maximum, determined by the absolute refractory period of the

e p— o S ——
Cp%y
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afferent., A world which presented input stimuli from a uniformly
random distribution over fhe entire hypervolume would be completely
chaotic - a maximum entropy environment containing no information
(snow on telévision and radio static are electronic examples of high
entropy environments). The complexity of an environment's information
content is reflected by the topological structure of the input
environment. An environment may be any probability distribution over

the entire stimulus space, continuous or discrete.

Sensory experience of all modalities presents the healthy
organism with a highly structured set of stimuli. In the course of
processing information, the network codes, recodes, integrates, and
finally generates a response t; these stimuli and it must learn to
respond appropriately. The precise nature of the coding will not be
addressed here. The stimulus sets used in computer simulation were,
in general, “fuzzy (having a small random component) subspaces of U
that share certain topological properties with the physiexi iiimuli

used in the laboratory.

The order of presentation of patterns from the environment is
given by a stochastic process, which may be either discrete or
continuous. In the present thesis, a stationary jump process of
independent presentations is assumed for most of the analysis and
computer simulation. The trajectory profile imposed by the process
is illustrated by averaging the system (5) over the stimulus

environment E to generate a deterministic process (7) yielding




|
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solutions for (m;(t).q(t)) from various initial states

(ni(to)lq(to))o

iy (e)>p = <olx(t),q(e)id (£)>,
= [ #(x(t),a(t))a, (r) P(4E) (¢)

<Ay = <¥lx()1a(0D), = [ ¥(x(t) 1q(t)) P4E)

Corrupt Environments

Generally a stimulus space is neither entirely noisy nor is it
devoid of noise -- it contains information corrupted by random or
uncorrelated interference. The separation of a signal from static
can be a tedious task, but in general a repeated signal reinforces
itself while noise interferes with itself destructively. Thus,
systems such as those discussed in this thesis are resistant to noise
given sufficient exposure to the stimulus environment. Interestingly,
noise can enhance the development of neural networks (Anderson et

al, 1977). This is discussed in Part Ila.

In the following sections, stimuli will be generated as the sum
of patterned and chaotic components. The pattern space E can
therefore be considered a k-dimensional manifold (k<N) in the N-
dimensional space U. The enviromment or stimulus space D is the

sum space of the pattern space and a more homogeneous process. One




can imagine the stimulus space as an N-dimensional “fuzz™ encasing

the pattern subspace (Figure 3).

: selectivi

A neural response function, c¢(m,E), can be calculated over the

pattern set E for a given synaptic state m. Bienenstock (1980) gives

e . m——— gt

8 precise definition of selectivity for a genmeral stimulus density in

terms of such a density function. For the purpose of this

presentation, this is paraphrased (8).

[E c(m,E) P(dE)

C max
max

1 -

Sel(m,E) (8)

max

where Crax © m:x(c(m,E))

Note that Sel (m,E)€ [0,1] with O indicating a uniform response

across E and 1 indicating that the entire set of evocative stimuli is

of measure zero with respect to E.




Eigure 3. 4 two dimensional “fuzzy’ stimulus space. The union of

the ahaded teglons is a stimulus space consisting of a pattern

space {d!,d?} and a random vector uniformly distributed on a
small circular area.
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A pattern set E is called gixrcular if it describes a circle of
uniform density embedded in a sphere about the origin. That is the

elements d(w) of E wmust satisfy ‘d(v‘ = constant, p(w) = %ud

d(w;) « d(wy) = f(wy-w;) where v is a parameter of the period

T and p(w) is a density function. A gircular lattice pattern set

is an analogous structure with finitely many elements equally spaced
on a circle. The response characteristics of a synaptic state with
respect to such one-parameter entities can be represented by a simple

function of one variable or index from which the selectivity is

easily evaluated (Figure 4).

Circular environments are idealizations of test-pattern sets
used by physiologists to investigate orientation specificity
development in visual cortex. The neural representations of
oriented contrast bars of constant width certainly comstitute a
closed one-parameter (i.e., oriemtation) curve, if not a circle, in
the axon frequency space of the optic nerve. Indeed, data from such
experiments is plotted on a so-called grientation tuning curve much
like the response curves in Figure 4. Thus, response data and
selectivity measurements over them represent a point at which theory

and experiment meet.

General and arbitrary circular eanvironments of high dimension

for computer simulation are not straightforwardly generated. This




flw)

Figure 4. Selectivity. The fraction of the rectangle that is ﬂ

not shaded gives the selectivity of the response curve.
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motivates retinal arxay pattern mapping (illustrated in Figure 5),

8 straightforward technique for simulating retinal coding of any
spatiotemporal visual stimuli. An array is assembled of N units of
uniform tize'and shape constituting the model retina, on which
geometric stimuli are projected. The i-th component of the pattern
vector is a measure of the “excitation density” of the i-th retinal
unit, Retinal mapping distorts geometrical relationships between the
visual stimuli, but fortunately the topology is conserved. Thus,
applying uniform brightness patterns of constant width and intemsity
to such an array results in a pseudocircular pattern set for fimite

Circular and pseudocircular environments are adequate for
simulating one- parameter patterns coded by ome retina. They suffice
as well for cells receiving perfectly correlated patterns from
several retinase. However more general treatments of multiocular
coding of circular visual enviromments require that the destination.
(neural) map be a K-parameter product space. Binocular experimental
paradigms invoking differ~nt stimulus sequences to the two eyes,
such as strabismus or binocular disparity, can be simulated using
toroidal or pseudotoroidal emvironments, sets of patterns

characterized by two independent periodic parameters.

s e £ Semein A s AMM AR Lt a1




3
Figure 5, Retinal arxay pattern genexation. The intersections of
oriented bars with the cells in a simple geometric array was
used to generate pattern vectors for computer simulation. The
; technique is inspired by the principle of the retina, but it is
' not intended to be a precise retinal model since the inputs are

used for a model neuron in cortex.
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C. Neuronal Abstraction

Each of the models presented in this thesis describes neurons of

two kinds, which differ in the nature of the information they

abstract from their stimulus environments. Neurons which seek to
minimize their selectivity functions will be called gimilarity
cells or S-cells, since they seek the pattern component most
common to their environmental stimuli. The other kind of neuron,
seeking maximum selectivity, will be labelled a difference cell or
D-cell. These two functions should be considered elementary
abstraction processes into which more complex functions can be

analyzed.
Sel ivity Maximi .

Consider an environment of two stimuli represented by vectors
dl and d2. The selectivity S(m,d1,d2) for the linear

transfer function (4) is given by (9).

n~dl + mvdz

S(m,al,e%) = 1 -

< (9)
2max(m-d")
i

Lines of constant selectivity can be plotted (Figure 6) in the
plane spanned by two patterns. Maximally selective (8=1) states are

orthogonal to one vector and not to the other. Minimally selective
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Eigure 6. Cucves of copatant n.l.nmm (a) The two patterns
n;e of equal length. (b) d' has a greater magnitude than
daé,
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(S=0) states are orthogonal to the difference vector d2 - 4l,

For arbitrary S, m must satisfy (10).

(s - 1al + ad)om = o _
vhere -.d"z ..dj (10
The goal of each model is to drive the states of S-cells to an
§=0 point and D-cells to an S=1 point. Constraints on the synspses
(such as the sign of m) may prevent a cell from realizing optimal

{ selectivity. In such cases, the neuronal state will be driven to

the constraint boundary.

g Evidence for the development of neuronal abstraction properties in
' visual cortex

Single unit recording techniques were employed by Hubel and
Wiesel (1959) to reveal the highly specific respomse properties of
neurons in cat striate cortex. They found that these cells are
sensitive to the orientation of contrast edges and bars in their
visual fields. These neurons were shown (Wiesel and Hubel, 1963) to

'develop their selectivity attributes over the first ten weeks after
birth -- the so-called critical period. The development can be
influenced by manipulating the kitten's visual environment during the
critical period. Results of various laboratory paradigms for such

manipulations are now described.

| L

T Y T "
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Normal Rearing (NR): Kittens reared in normal visual
environments develop (for the most part) neurons which are highly
sensitive to orientation (Hubel end Wiesel, 1959, 1962). Layer IV
cellsl develop to be responsive to inputs from one eye. Other

cells exhibit binocular responses which may favor one eye or the
other. The preferences for ocularity and orientation vary

topographically across cortex.

Mopocular Deprivation (MD): Neurons in the visual cortex of a

kitten, deprived of visual stimulus to one eye during the entire
critical period by means of eyelid suturing, become generally

nonresponsive to inputs presented to the deprived eye (Blakemore,

1976).

Reverse Suture (RS): The effects of the MD paradigm can be
reversed during the critical period by opening the closed eye and

closing the open one (Movshon, 1976).

Dark Rearing (DR): One would probably intuit, based on the NR
and MD results, that binocular deprivation would cause complete non-
responsiveness in visual cortex nmeurons. Moreover, while the ocular
dominance statistics indicate a shift toward monocularity (Blakemore

and Van Sluyters, 1975) many cells are binocularly responsive

1 Nearly all layer IV neurons receive direct thalamic input
(Hornung and Garey, 1981).
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(Leventhal and Rirsch, 1980) and very few cells are non-responsive

(Buisseret and Imbert, 1976).

Artificial Stxabismus (AS): By cutting one of the extraocular
muscles in newborn kittens, Hubel and Wiesel (1965) eliminated the
normally high correlation between inputs from the two eyes. They

found most cells developed momocularly.

Each of these experiments support the conjecture that some
neurons seek maximum selectivity over their stimulus environments.
( The search for cells of low selectivity is less intense and hence
the data less abundant. Nonetheless, cells in visual cortex have

been classified as “circularly symmetric™ (Hubel and Wiesel, 1977).

Other authors (e.g., Kelly and van Essen, 1974) report difficulty in
finding a cell's optimal stimulus. Barlow (1972) points out that

many neurons display invariance in their response as a stimulus

changes.
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11. Geperalization and Differeptiatiop by Single Neurons:

A. The Fixed Point Model

In this section a version of the model put forward by
Bienenstock et al (1982) for development of orientation specificity
in visual cortex is described and then extended to include
selectivity-minimizing neurons as well. Bienenstock's (1980) doctoral
! thesis includes formal theorems and detailed proofs in support of
' that theory. The extended model presented in this section will be
. called the fixed point (FP) model to distinguish it from the
alternative formulations discussed in subsequent sections, The FP
model (and those that follow as well) uses parallel modification

and hence can be expressed in terms of (4) and (5).

lectivi e

The function ¢ for the maximum-selectivity (D-cell) process must

be continuous, bounded, and satisfy (11)

ssn(¢b(x.q)) = sgn(x) sgn(x - qP)
11
vhere p>1 an

The rate of change of q(t) is given by (12). This is chosen so that

q is a running time average over the activity x(t) (13).
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wD(x.q) = B(x - q) B>0 (12)
t
q(t) = exp[—S(:-:o)]q(to) + BI exp[-B(t' - to)]x(t') dt' (13)
’ 4
0

The (1+1) - Dimensiopal System

Consider a simple system of a single synapse m receiving a
steady, noiseless signal d=1, The concept of selectivity is
meaningless with respect to a one-element pattern environment, but
aspects of the system dynamics are easily analyzed in this two-
dimensional state space. The system is a completely deterministic
pair of coupled autonomous equatio:s for m and g (14).

m(t) = ¢, (m(t),q(t))

q(t) = B(m(t) - q(t)) (14)

w(0)>0 ; q(0;>0
The critical points of the system lie at the intersection of the
nullclines =0 and =0 (Figure 7), which partition the state space
into regions characterized by the signs of the state velocity

(sgn m, sgn §), the quadrant of (m,q).

The asymptotic behavior of (14) is never divergent (Theorem 1).
Depenaing on the value of B, the trajectory (m(t),q(t)) either

converges to (1,1) or to a finite limit cycle (Figures 8a and 8b).

‘e
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Figure Z. Critical points for the EP D-gcell. The quadrant (sgn i,

sgn 4) is shown for each region R; - R,.
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(b)

Figure 8. Computer generated Lxajectories. The nullclines from

Figure 7 are again shown along with sample trajectories for two
values of g. (a) B = 0.7 gives limit cycle behavior -- two
trajectories are shown: one spirals in from the outside and the

! other from the inside. (b) B = 1.3 gives convergence to the
‘ point (1,1).




Iheorem 1 As t+w, the system (14) drives the state to eitﬁer the

origin, the point (1,1), or to a closed path about that point.

Progof Since (14) is an autonomous system, (®,§) is purely a
function of (m,q) and therefore no trajectories cross at any point
with the possible exception of a critical point ((m,q) = (0,0)).
Trajectories may only intersect at a critical point in the limit as

tdeo ,

Along the coordinate axes, (14) simplifies to (15) and (16)

o(m=0) = 0

§(m=0) = -gq s
j m(q=0) = ¢(m(t),0) > 0 (16)

a(q-O) = Am

Therefore if m(0)>0 and q(0)>0 then m(t)>0 and q(t)>0 for all
t>0 (see figure 8). Now consider the four regions defined by the

nullclines:

= (41,¢1)

D
L4
|

Ry : (sgn m, sgn
('10+1)

De
S
L}

Ry : (sgn @, sgn
(’1.‘1)
(*1.'1)

Ry : (sgn @, sgn q)

¥ -]
~
]

R, : (sgn @, sgn q
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In R} ¢>0, but a trajectary may not cross from Rj to R4.

Since ¢ is bounded, a state in R; either asymptotically approaches
(1,1) or is driven to Ry. A trajectory in Ry must cross into
Ry. In Ry, each state is driven toward the q-axis and toward
R,. However since the q-axis is a trajectory to (0,0), a state in

Ry must either emter R, or go asymptotically to (0,0).

A linear approximation (17) shows that if ¢m(0.0) > 0, the
origin is a saddle point, and hence, unstable. In this case, only

the trajectory exactly along the q axis is not pushed into R).

(w0, q+0) = ¢ m
17

§ = B(m-q)

The stability of the critical point at the origin depends on the
derivative of ¢ and the magnitude of B, We will use a sufficiently

well behaved and a sufficiently high value of 8 to assure convergence

to (1,1).

Ihe (2+]) dipensional D-cell

Now consider a cell with 2 synapses in an environment consisting

of exactly two independent patterns {dl,d2). This is the
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P N

simplest environment in which selectivity can be measured. The

. e

corresponding stochastic system of coupled ODE's (18) possesses 4

equilibrium points at which (m:,q) = 0 for both stimulus vectors.

By (€) = dp(mediadg,
iy (t) = ¢ (m-d,a)d, (18)
4() = B((m-d)-q)

for the random stimulus gf{dl,dz} .

Since the input stimuli are independent, this condition is
; prerequisite to the more general deterministic criteriom @, ,q>p=0.
Two of the equilibrium points have zero (minimum) selectivity. The
other two each have selectivities of 0.5, the maximum for this

environment. One of these is preferential to dl, the other to

az, a projection of the system to the m)-m; plane (Figure 9)
illustrates the situation. The point m = (1,1) is a saddle point and

m=(0,0) is an unstable node. Only the points of maximum selectivity

4
:
i
{

are stable. A detailed analysis of a very similar system is dome by

Bienenstock (1980).

Higher Dj ionaliti

The (N+1) dimensional generalization (19) admits 2N

equilibrium points in an environment of N independent stimuli

{ai),




Figure 9. Projection of the (2+]1) D-cell into the m-plane. The
figure shows an idealized two-dimensional system in which q is
the expected value of med evaluated over the entire environment,
The parabolas are nullclines corresponding to each of the
patterns: m*dl = q2 and m.d2 = q2,
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ﬁi(t) = ¢D(m'£:q)_§1
4(t) = B((m - d)-q)

19

for the random stimulus d C{di}

Of these, N are maximally selective, with selectivity (N-1)/N, two
(the origin and (my,...m;,q) = (l.s...01,1)) exhibit zero

selectivity, and the remaining 2N-N-2 display intermediate levels

of selectivity. Each of the maximally selective points is “tuned” to
a different one of the N patterns. It is conjectured on the strength
of numerical simulations (Figure 10a) that only these points display
asymptotic stability. This has been proven for a similar system in

an orthogonal emvironment (Cooper et al, 1982).

Dependent Stimuli

Environments containing more than N stimuli also drive the model
neuron (19) to high selectivity (Figure 10b). The maximum
selectivity attainable is a function of the enviromment. Im
particular this is sensitive to the extent of separation between

vectors in the pattern set (Bienenstock, 1980).

One can generally consider ¢ as a function that “reinforces”
patterns giving a high response (x>q) and “suppresses” patterns that

evoke low (x<q) activity (Figure 11).
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(b)

Eigure 10, Tuning curves. Computer simulation shows that the
system of differential equations given by (19) drive the model

neuron to maximum selectivity. (a) Independent stimuli: all but
one of the patterns give a null response in the final state.
(b) Dependent stimuli: some patterns give intermediate

responses.,
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Eigure 1l. Ihe D-cell in N dimensions. The function #,(x.q) is
shown (right) plotted against x for two values of q. The effect
of OD-modulated parallel modification is illustrated on the
left.




~ . s I
- d— . mw _—- A& - e

- ——— e g

L T STV

32

The visual system is perhaps the best understood of msmmalian
sensory systems, This model is in good agreement with the bulk of
data for binocular selectivity development in visual cortex. Below,
the experimental paradigms described in Part lc are discussed in
terms of the model. Both analysis and computer simulation support

the agreement between theory and experiment.

Normal Rearing (NR): The NR stimuli are represented as 2N-

dimensional vectors in which the N left-eye components are highly

correlated with the N components from the right eye. The
environment is essentially circular since the patterns are periodic
over a single parameter. Results from computer simulation are shown

in Figure l2a.

Binocular Deprivation (BD): Patternless inputs ( pure” noise)

drive the state of a model neuron through a random walk. Thus, the
state wanders aimlessly from its initial condition. Figure 12b

illustrates a typical result from computer simulation.

Monocular Deprivation (MD) and Reverse Suture (RS):
Deprivation of patterned input to a single eye by way of eyelad
suture results in a large shift in ocular dominance favoring the

functional eye., The theoretical explanation for the MD and RS
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Figure 12. Computer simulation of four laboratory paradigms.
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phenomena is subtler than for NR and BD and is discussed below. The
MD environment is represented by a 2N-dimensional vector generated by
concatenating N noise components to an N-dimensional pattern (or
pattern-plus-noise) vector. Note that computer simulation (Figures

12¢ and 12d) supports the success of the model in accounting for the

experimental results.

Artificial Strabismus (AS): The AS environment is toroidal (or
pseudo-toroidal), being periodic over two independent parameters,
namely the left-eye orientation and the right-eye orientation. Thus

the AS inputs are 2N-dimensional concatenations of independently

selected patterns, Computer simulation suggests that only monocular
states are stable, Figure 12¢ (MD) reflects a typical AS
simulation. Occasional trials show binocular selective states (the
preferred orientations of the two eyes appear to be uncorrelated)

that survive for some time but eventually become monocular. Figure H

13 shows the final state plotted over a toroidal environment.

Detailed examination of theoretical behavior in an MD
environment highlights a subtle relationship between orientation
selectivity and ocular dominance. Here it is explained why on the
one hand deprivation drives synapses to zero efficacy in an MD
environment, and on the other hand deprived synapses fluctuate

randomly in a BD situation. It is shown that the efficacy of




Eigure 13. Iuning of a D-cell in a torcidal envircpment. The
neuron tunes along only one parameter. This environment is
ici stra

e
analogous to an artificial bismus paradigm.




. 34
deprived synapses decreases exponentially if the neuron is highly
selective over the environment of the opposite eye. Hence it is

i‘ predicted that in an MD enviroament, selectivity development in the
? open eye must precede loss of responsiveness in the closed eye
; (Figure 14).
; Consider a neural state (mf.m;.q)- where m: and m: are
i; i synaptic vectors corresponding to left-eye and right-eye inputs
i; respectively, which is driven by patterned input to the left eye
-ﬁ , (dg(t) = d(w(t)) periodic over w) and pure noise to the right eye
(d (t) = n(t) uniformly distributed about 0). In general, the
state m: fluctuates randomly and m: is driven to a high-
selectivity equilibrium state (m:.m:.q) where (20) is satisfied.
(é(mk-d,q*) d(w)) =0 (20)
The expectation values of =, and m, over the entire

. environment D(w,n) can be calculated:

i .

] (B>, o = £(mp-dle) + m¥n,q*)d(w)d, o

} = 0 + <4)(mf.d(w),q%) [mrn)d(w), (21
=0

3 (hr)w.n = (o(my-d(w) + “:'“'q*)d(w)>m,n

‘1 = (o) (mf-d(w) ,q%) (mtn]nd, (22)

o, (m3.d(w) ,q*)) ((m;.n)n)n

- am—
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Eigure 14. Mopocular deprivation sequence. Computer simulation

illustrates the model's prediction that the neuron must first
become highly selective to patterns from the open eye before
that eye dominates the neuron,
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The expectation value <(m «n)n>, is parallel to m,. For
an N-cube with each component n; varying between -a and +a:
. Z 1 +a ~+a
4 e r e e
<(mr- “)“i>n = (Za)Nf f myn,n, dn, .« -dny
3 -a -a
Consider a constituent integral over n,:
2am™n,n 1f 1¢k and jfk
I+ m.n.n, dn = 13
J31 7k 0 if i=k or j=k but not both
23r
32 my 1f { = J = )k
Hence:
1 2
N-123r a r
((mro nny - . (2a) F}@m =3 (23)

A similar calculation is done for n distributed on an N-sphere:

mr . 2
ooy + e 20

By spherical symmetry:

2 1 1 1 v
nmt)n = -ﬁ'(nm)n N V(N,a) I nen d'n

Since V(N,x) = VM, av = Nva““ldx

N+2
< 2 o1 [a v N+1 i - 1 VNa . _23
nmx)n V(N,a) 0 N A aN N+2 N2
N
2
(men)n - 2 g
r n N+2 T

(24)

(25)
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Thus by (22) one sees that <ﬁr>u.n is parallel to m, and

that if <¢1>u is negative, then m, decays exponentially. Since
41 is negative when m,.d,(w) is near zero, which is true over
most of the environment when my is a highly selective state, such a

state should satisfy <¢1§w<0. Low selectivity states are thus
unstable in two senses: (1) m, is unstable with respect to d, and

(2) <¢; > may be positive thereby driving m, to higher magmitude.

Selectivity Minimizati

The functions ¢ and ¢ satisfying (26) drive the model neuron (5)

to minimum selectivity.

sgn(¢s) = - sgn(x) sgn(x - qP)

(26)
¥g = B(x=q) 3 8>0 Aﬁ

where 0 <p <1

Note Vo= wD and that (11), (12) and (26) can be reformulated into a

single model (27).

sen(¢™ (x,0)) = o agn(x) sgn(x - qP)

(27)
WFP(x.q) g B(x-q) H B>0

For a>0 and p>l, the cell seeks maximum selectivity; for @<0 and
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0<p<l, the cell seeks minimum selectivity; otherwise, the system

diverges.

Again consider a one-synapse cell driven by a steady, clean
signal. As in the case of the D-cell, the S-cell equation (26)
reduces to a deterministic, autonomous system (28). All trajectories

converge to (1,1) unless (0,0) is the initial point.

m(t) = ¢g (m(t) ,q(t))
. (28) '
q(t) = B8 (m(t),q(t)) '

The origin is unstable for all QS and there are no limit cycles

(Theorem 2).

Theorem 2, With the exception of (m(0).q(0)) = (0,0), all

trajectories driven by (28) go to (m(t),q(t))+(1,1) as t+e,

Proof, As in theorem 1, consider four regions (Figure 15).

(+1, +1)

b
[

(-1. *l) H nz
(sgn m, sgn §) = .
(-1. -l) : R3

(+1, -1) : R4

The point is monotonically driven to satisfy the simultaneous
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Eigure 15. (1tl1) - dimensional representation of an S-cell. The
regions R, - R, are shown for an S-cell. In each region the
quadrant (sgn fh, sgn §) is illustrated.
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conditions m=0, a=0 and it is alvays driven gway from the axes m=0

and q=0. (QED)

B. l n. . ]. - )

A two syunapse cell in a two-pattern (independent) enviromment is
driven to (m;,my,q) = (1,1,1), a zero selectivity state, with
the exception (in a noiseless environment) of the initial point
(®(0),m,(0),q(0)) = (0,0,q9). The other state of zero-
selectivity, namely the origin, is always unstable. The highly
stable asymptotic behavior of the (l+1)-dimensional system is

maintained in (2+1) dimensions (Figure 16).

Due to the parallel aspect of the modification, patterns driving
the cell below qP are “encouraged™ and patterns yielding x > P
are “discouraged” (Figure 17). This, comwbined with the influence of
qs causes the responses to the various stimuli to converge toward a
common value. This can be achieved for sets of independent patterns
(Figure 18a). For dependent pattern sets it may be possible, but not
in general (Figure 18b). Thus, gualitatively, in the sense of Gati
and Tversky (1982), the synapse vector seeks the pattern component

most common in its environment.




* SELECTIVITY MINIMIZATION

¢ (x,q)

—_ X
8a) ~Blay) \

o ® e @ )
ORIENTATION

INTEGRATED POSTSYNAPTIC ACTIVITY

Figure 17. Ihe S-cell in N dimensions. The function ¢.(x.q) is
shown (right) plotted against x for two values of §. The effect
of Os-uodulated parallel modification is illustrated on the
left,
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Figure 16. Projection of the {2+1) S-cell into the m-plane. As in
Figure 9, q is idealized to be the expected value of med over
the orthogonal environment ((1,0) , (0,1)). Imn this figure
p = 0.5 and both nullclines (parabolas) are attxactors.
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Figure 18. Selectivity minimization. (a) An environment of 7
independent patterns. (b) 50 patterns in 7 dimensions.
(c) Noncircular 50 pattern environment in 7 dimensions.




B. Ao (N+1) - parallel Megdel.

In this section, an (N+1)-parallel model is presented (29).

Again ¢(x,q) is bounded and continuous. The function 6(q) gives the

value of x for which the signs of ¢ and ¥ change.

sgn(¢) = a sgn(x) sgn(x - 6(q))
. (29)
| vV = aB ¢(x,9) x

i a=%£1 ; B >0

It need not be specified as a power function as was done in the FP
model, however it is subject to certain restrictions. The a
parsmeter determines whether the cell generalizes (2=-1) or seeks
maximum selectivity (a=+1). Not only is this model parallel in the
sense of (5) (mld), but the change in the neuronal state (m,q) is
parallel to the (N+1) - activity vector (ad.8x). Thus the system
can be expressed more concisely in terms of an "(N+1) formalism™
(30). The model is given in a general form in that e(q) is not
specified, so that overall properties of the system (30) can be

examined. A more specific example is presented in Part 1V,

ﬁi od,
(é) - Q(X.q) (BX) (30)

where sgn(¢(x,q)) = sgn(x) sgn(x - 8(q))
a= ] H >0
6(q) nondecreasing & continuous
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{1+1) - Dimepnsions

The one synapse - one pattern situation is examined first.
Synapse m receives a noncorrupted steady signal dzl, and so x:=m

giving (31).

m a
)= #(mq)
| q Bm (31)
% . = {+1 : D-cell
-1 : S=cell

The trajectories in the m-q plane are seen to be parabolas (32)

since (31) gives the path derivative %% = afm (Figure 19).
of
T = 9 *yn = m) (32)

For the S-cell, the conditions on 6(q) are that it be
continuous, nondecreasing and positive on some domain [qa.qb].
If q,>0, then 8(q,)=0 and #(x,q,)>0 for all x. Remember that
x€[0,%). If qy is finite themn 6(qy) is not and ¥(x, q>qp)<0

for all x.

The D-cell needs additional restrictions on 6&(q) for global
stability of (31). If q(t=0) is very large, the synapses will “die”
- i.e., (m,q) converges to a point on the q-axis. This is not a
serious problem. If necessary, restrictions can be put on the

initial state., Possible divergence of the system is more

problematic. If ©(q) does not increase sufficiently fast as q gets
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large, some trajectories (m(t),q(t)) will grow without bound.
Therefore, we impose (33) on 6(q). Note that there are many

functions which can be used for both cell types.

1/2
lim -5%) - 0 (33)

g
Unlike the FP model, this system does not have a finite number
of isolated equilibrium points. Instead, the equilibrium points
define a locus consisting of the q-axis (m=0) and the curve m=g(q).
All points satisfying m=0(q) are the attractors with the possible
exception of (O-qa). Points on the q-axis can be either stable
(attractors) or unstable equilibria. For aq>aq, they are stable,

otherwise they “repel” states.

Stabili in noi .

Isolated attractors are generally stable in environments
corrupted by a not-too-large noise level. However, continuous
equilibrium loci are subject to noi e-driven “creep” effects.

Chaotic perturbations may preferentially drive the neuronal state
along the equilibrium surface. Consider a one-synapse cell

receiving a signal d(t) = 1+ e(t) where €(t) is a stochastic variable
uniform on [-a,a] where a<<l. The stability of the system (34) can
be analyzed by expanding about an equilibrium point (mo.qo)

vhere mg = 8(q).




Figure 19. Parabolic trajectories. The (1+1) neuron follows a

parabolic path in the m-q plane for any initial point. The
function g(q) determines at what point _along the trajectory the
path direction changes. Here 8(q) = q?. (a) D-cell.

(b) S-cell.
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o + ac
= ¢(mime(t),q) (34)
Bm + Bme

LDe

The effect of noise on the stability of q-axis equilibrium
points is not relevant to this thesis. The expected value of (m, {)
is calculated over € in (35). For either value of a the expecied
perturbation direction is along & trajectory and hence the neuronal

state tends to return to (mo, qqg) -

n 1 [ta a(l+e)
iy ¢ (my,q0) mye de
1] 2
q Bl ™ Bmy (1+€)
€
a 1 [ .
- Qm ny Ta f+ e (l+e) de (35)
Bmo -a
2 a ;
a i
3% .
"o
(2+1) - Dimensions
i The selectivity properties of this (N+l)-parallel model for a

two-synapse cell in a two-pattern environment {d1,d?} resemble
those of the FP model. However, we again have a locus of comnected,
rather than isolated, equilibrium points. These points lie along

four curves intersecting at the point (ml,mz,q) = (0,0sq,).

The four curves correspond to the following intersections of

surfaces (Figure 20):




.

Eigure 20, (2+1) - space. The four equilibrium curves and the
four regions defined by the surfaces m'd = 8(q) and m-d = 0 for

d€ {d1,d2} are shown for e(q) = q2

environment.

in an orthogonal
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: Cy ¢ m.d! = m-d2 = 0 (the q-axis)
' C; : medl = 8(q) ; m-d? = 0
(maximum selectivity)
C, s ndl =0 ;med? = 8(q)

Ciq: ned! = me«d2 = o(q) (minimum selectivity)

The surfaces partition the space into four regions, according to
the sign of ¢ resulting from each of the two patterns. For

! m*dl > 8(q) and m+d? > 8(q)» q increases until the one or both
patterns cannot stimulate the neuron above 6(q). Neuronal states in
the opposite region (m°d < 8(q) for both patterns) are likewise
forced out of that region. Therefore the state generally finds
itself in a region “between” the surfaces m+dl = 8(q) and
m+d? = 0(q) or, in the case of the D-cell, possibly on

the q-axis (if q(t=0) is "too large™).

Once the trajectory is between the two surfaces, that is for 7
medl < 6(q) < med] where i # j» its behavior depends on a. For
as+l, the trajectory converges to some point on Cj and hence the

neuron becomes maximally selective whereas for a=-1 the trajectory

goes to a minimally selective point on 012.

ligher Di ionaliti

A linearly independent environment of N patterns admits 2N

equilibrium curves in the (N+1) - state space of the neuron. These

curves lie at the intersections of the surfaces m*di = 6(q) and
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medl = 0 for i =l4...sN. Of these, two (one trivial and one non-
trivial) represent states of minimum selectivity and N represent

states of maximum selectivity -- one per pattern.

The ‘behavior of the model in more complex environments is
difficult to analyze. Numerical techniques suggest that for
circular environments, D-cells seek maximum selectivity and S-cells

seek minimum selectivity. Toroidal environments have also been

gimulated for which the pattern depends on two stochastic parameters

Computer results indicate that a D-cell tunes with

w and wy.

respect to one parameter only (see Figure 13) and that S-cells seek a

uniform response across the entire environment.
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1II. Consatruction of an (N+l)-parallel Model using
: istic Mechani

A function satisfying the conditions on ¢ in (30) can be
constructed (36) as a q-coupled difference of two non-negative
monotone increasing saturating functions satisfying certain criteria

(Figure 21).

o(x,q) = o0,(x) - qol(x) (36)

The subtractive nature of ¢ suggests an antagonism between two
synaptic modification mechanisms - one potentiating ‘strengthening),
and the other depotentiating. It is seen that as q varies, 0y and

qo0;, intersect at different values x=(q) .

There are two conditions that both 0; and 0, must satisfy to
let ®(x,q) fulfill the conditions of the (N+1) parallel model:
First, 6,(0) = 0,(0) = 0 and second, the sign of the Wronskian

sgn(W(0,(x),0,(x))) = a for x>0 (Theorem 3).

Theorem 3. If sgn(W(o;(x), 09(x))) = a for x>0 and

01(0) =0,(0) = 0, then sgn(¢(x,q)) = a sgn(x) sgn(x-e(q)).

BPxoof. The proof is as follows: First, since ¢(0,q) = 0 for
all q» 9,(0) = 9,(0) = 0 must be satisfied. The other zero of

#(x,q) is at x= 6(q)s or q =071(x) = 0,(x)/0)(x). The slope of
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Figure 21. #(x.q) as the difference of fwo saturating functions.
The modification threshold 6 depends on the coupling q.
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¢ with respect to x is evaluated (37) at this point and shown to be

of the same sign as the Wronskian H(al.oz).

' 0 (x) )
oz(x) - ;I?;T' Gl(x)

; Ox(x-e(q))

--%;3- [clui - °i°2]

% (37
. ol(x) cz(x)

0, o] (x) 63(x)

‘ 1
! = ;I?;T W(Ol(x);cz(X))

B Therefore if sgn(W(o;,0,)) is positive or negative definite for

x>0, so is ¢,(x=0(q)) and ¢ = g,~qo; has at most two zeros: x=0

S

and x9(q). D-cells and S-cells can be characterized by
sgn(¢, (x=0(q))) as well as by a since a = sgn (0,(x=0(q))). hence

a=sgn(Wloj40,)).

q a8 3 Lime average

4 As in (13), the quantity q(t) is a kind of time average of the

3 the post-synaptic activity. Equation (38) can be solved for q(t)

using an integrating factor to give the solution (39).




q(t) = B(az(x) - qol(x)) x (38)

. a(t) = aqg expl-Bf§ x(t"o, (x(t™) dt" )

(39)
t '

' ; ‘ + BI exp[-Bf; x(t")ol(x(t"))) oz(x(t')) x(t') dt’
. 0

Note that the first term vanishes as t*=. Again, q(t) is seen
to be an exponentially damped average of some measure of the cell's

activity (in this case x0,(x)).

Some allowed functions g(x)

For simplicity's sake, only functions o; and 05, which are

identical in form while having different horizontal and vertical

scales, are considered (40).

z X

where o(0) = 0
L 1 1
; o) = 3 (x=n, gives 5-max of ¢ g

limo(x) =1 (v is nax(ci))
Xt

o'(x) > O for all x




Since the product Up¥, can be factored from the Wronskian, W is
independent of ¥; and ¥y, Thus, consider the determinant
w(a(i—).065-)). The following Theorem (4) establishes a sufficient

n
1 2
condition on o so that ®(x,q) will have at most one zero for x>0.

Theorem 4. If 0(x) satisfies x(0')2 - x006" - 0o' > 0, then
for a given value of q, there will exist either ome or zero values

x>0 for which ¢(x,q) = 0, depending on the value of q.

Proof. W(o(f—).o(%—)) is evaluated and expressed so that its
1 2
sign depends upon a difference of two terms, separated according to

n (41).

X x - Lot yeXy - LorvEyeE
W(o(nl).v(nz)) o' (5 Yo ) n.° (nl)o(nz)

My My M 1
o' (X) o'E)

n n
- o y&) 2 -
1 2 "2°(Eé) "lo(ﬁi)

Hence, the condition (42) is sufficient to our purpose and we

see that sgn (9,(0(q).q)) depends on the sgn (ny-n;).

(41)
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for all x>0 , n>0

The derivative with respect ton is evaluated and the substitutijon

x completes the proof (43).

8 E';
¢ 9@ nedied) - o' @ n-2a’ () + o))
L (noXy)?
i " " (43)
f
- =80(s)a"(s) + s(a’ (s)) - 0'(s)a(s)
!
; (no(s))?
| => x(0')% - x00" - g'c > 0 1is sufficient! QED
Under this formulation the feature abstracting quality (S or D)

of a neuron depends on which of two saturating functions increases

more rapidly rather than on the sign of a variable in the model’

differential equation., A mechanistic interpretation poses two

biochemical processes as antagonists modulating synaptic plasticity,
The S/D-

N
BT ST S

' each increasing with the activity of the postsynaptic cell.

nature of the cell then depends on certain details of the functional

relationships relating each process to the cell's activity.

[ ]
Among functions satisfying the condition (43) are those

sigmoidal functions belonging to the class (44).

TR Bt
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o(x) = p2>1 (44)

xp +1

The parameter p determines the “sigmoidocity™ of the curve. Near
x=0, the function behaves like the power function xP. This
suggests that one or both of the functions o; may be linked to the
firing rate of the cell, which is seen (Chapman, 1966) to be an

increasing bounded function of the summed potential with a threshold.

This system is no longer precisely of the form (30). While the
properties of the D-cell model are maintained..the S-cell version of
this variation is somewhat different. Here, (g%) and (S? are always
the same sign: that is, there is no a. Thus, the system is written

in a more appropriate form (45), where ¢ satisfies (43). For a D-

cell, 1,5, whereas the opposite holds for an S-cell.

li‘1 x x di
i/ " °<;2> - qo(;l) x (45)
Examination of the N=1 case
For N=1, the system is always bounded. As in (30), the synaptic

weights may vanish altogether if the initial value of q is too

large. Sample trajectories are shown (Figure 22) to converge to

points on either the nullcline or on the q-axis above the nullcline




T

z (a) 2 > 7,

///‘
—

m
(b) 2 < m,

Figure 22. Ixajectories of the ayatem (45). The function
0(x) = x/(x+1) was used here. No*e that for the two cases, the
trajectories lie along the same parabolas. (a) N, >Ny : D~
cell. (b) Ny <My : S-cell.
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locus which depends on n; and n,. Note that, in contrast to

Figure 19, the trajectories for the two cell types are the same in

both cases and the nullcline is not.

The surfaces oz(m'di) - qol(m-di) =0 for 1 = 1,2 are
sheets defined by a q-translation of the nullcline above. The
pairwise intersections of these nullclines and the planes mwdl = 0
with each other consitute the locus of points in equilibrium with the

environment {d!,d2}. Whether the function x = G'I(q) =

0,(x)/01(x) is monotome increasing or monotone decreasing is seen

to determine the feature abstracting properties of the neuron.

Figure 23 illustrates the (2+1) dimensional case. For &(q)
between m*d! and m*d? the neuronal state is driven toward
waximum selectivity for ny>n; and toward minimum selectivity for
Na<n;. For ny fixed, as njincreases from less than n,; to
greater than n,, the surfaces “pass through™ one another, thereby
reversing the directions of the trajectories im the m-projection. At

ny=ny the surfaces coincide and the neuron seeks neither maximum

nor minimum selectivity.




(a) n2 > M1

Zmie e ramtn i a1 e

WZB.L W- (a) Ny >Ny (b) “2‘“1-
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In higher dimensional sysiems, computer simulation indicates
that for n,>n;, the model neuron always seeks maximum selectivity
and for n,<n;, it seeks minimum selectivity. Simulation of
binocular stimulus environments to D-cells give results comsistent

with the experimental data reviewed in Part Ic.
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1vV. An Ensemble Method for Electyophysiological Iesting of Synaptic
lificati l

gt A. Asymptotic Stability anJd Investigation of Equilibrium States

f Both experimental and theoretical considerations allow

3 l elimination of several hypothetical excitatory synaptic modification
rule formulations. In particular a good formulation should (1)
allow for both strengthening and weakening of a synapse, (2) not
allow synaptic strength to grow without bound, and (3) not allow the

sign of a synaptic strength to change (a synapse must be always

excitatory or always inhibitory).

Properties (2) and (3) are particularly relevant to the present
note. Experiments show that, with repetition, conditioning
stimulation that initially produces increased synaptic strength is
eventually ineffective for producing change., That is, the continued
stimulation drives the synapse to an equilibrium state (the approach
to equilibrium may be asymptotic). Likewise experimental ccnditions
which initially depress synaptic function are eventually ineffective
and, particularly from a theoretical viewpoint, provide no reason to
posit synaptic influence reversing modes from excitatory to
inhibitory or vice-versa. Of course formulations that predict

asymptotic neural states that change due to shifts in environmental

n)
- — M—Mw-&.‘:‘.‘q‘ P

statistics are desirable.




Based on these considerations, we now restrict our concern to
formulations that yield this asymptotic stability. In fact this
criterion is the basis for the proposed experiments and yields a
method that is insensitive to many of the problems of other classes
of laboratory paradigms. By performing all experiments after amn
initial asymptote has been reached, actual values of postsynaptic

excitation and presynaptic frequency can be ignored.

Experimental data (see section IVe) have revealed that the
strength m of a synapse can be increased or decreased depending, at
least in part, on the presynaptic activity x and the postsynaptic
activity y. As a plastic synapse adjusts to a constant activity
pattern (xo.yo), in its pre- and postsynaptic elements, its

efficacy levels off (m+0, where the dot indicates derivative with

respect to time). This equilibrium state can be perturbed, shifting

m to either positive or negative values, by altering the constant
activity pattern by an amount (dx,dy) to (xl.yl). The dependence

of the sign of m on the signs of dx and dy reveals primary

54

information regarding the form of synaptic modification rule (46) and

secondary clues to plasticity mechanisms.

o @Ky Y e e e) (46)
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The condition m = 0 thus implies that some quantities varying
with x and/or y have achieved a static equilibrium which can be
disrupted by perturbing the ac%ivity pattern (x,y). Thus by
appropriately adjusting (x,y), one ought to be able to induce

potentiation (m > 0) or depression (m < 0).

By investigating the dependence of the sign of m on the various
manipulations (dx,dy), one can determine the approximate form of the
modification function (46) in the neighborhood of (xg.yy). Let a
given experiment be characterized by (sgn dx, sgn dy) where each
component is a member of the set (+, 0 ,*t) and let each possible
result be written as (sgn dx, sgn dy; sgn dm). Eor example, the
paradigm X} > xy and y; = yp is expressed as (*,0) and if the

result is m < 0, then we would write (4,0 ; -).

There are nine possible experiments of this type. The (0,0)
experiment is assumed to have a null result, so considering 3
possible results for each of the remaining eight paradigms gives
38 or 6561 combinations of possible outcomes. Certain (seemingly
inconsistent) combinations imply very complex modification
functions., We will confine our analysis to predictions of some

simpler theories.

Consider a set of (bi)linear approximations (47) to m in the

neighborhood of an equilibrium state in which a constant activity

pattern (x,,y;) has driven the synaptic efficacy to a value a.

55
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m = K(a)(xo.yo.m*) (x ~ bx) (47a)
a o= x(b)(xo.yo,m"‘) (v - b) (47b)
8 = K0y - G -b) 470

The equilibria in these hypothetical systems result from a

balance in (a) presynaptic, (b) postsynaptic, or (c) both pre- and

postsynaptic (independently) terms. In each formula, K is positive

(or negative) semi-definite and considered constant in these
approximations. The zeros, or balance points, b, and by vary
according to their own rules following a fime course assumed to be
fast enough that we can reach equilibrium in the laboratory and

slow enough, that we can measure the immediate change in m

resulting from the perturbation.

These formulae represent classes of theories for various neural
systems including probability learning (47a) (e.g. Levy & Desmond,
1982), development of specificity in visual cortex (47b) (Bienenstock
et al, 1982), and associative memory (47c) (Kohonen, 1977; Sejnowski,

1977a,b). The predictions of the paradigm for each of these models

are given in Table 1.
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B. Extension to Population Studies

The above analysis for individual synapses can be extended to
population stimulus-response paradigms. Instead of measuring the
effect of a single afferent upon a neuron, consider the macroscopic
effects of a stimulus pattern over an axon bundle on the target
population. Just as the response of a single cell to a test pulse
in an afferent axon is a measure of synaptic efficacy, the net
response potential of a population to a test pulse pattern is
similarly & measure of the pet efficacy of the synapse ensemble

corresponding to the afferent bundle.

As all neurons in the postsynaptic population approach an
equilibrium steady state in response to a constant stimulus pattern,
so must the synapse ensemble efficacy (SEE). The relationship
between the SEE and the individual synaptic strengths is closely
related to the concepts of microstate and macrostate introduced
by Amari (1974) in his method of statistical neurodynamics. It will
be noted that Amari is concerned with activity levels rather than
synaptic states, hence one should be aware that the test stimulus
evokes an activity level that reflects the synaptic state (either of
a single synapse or a synapse ensemble). The SEE concept can be

generalized to a vector or matrix quantity? describing the pattern

2 The terms “vector” and “matrix” are meant in the multi-
dimensional sense. Tecnsorial mappings between coordinate

systems do not hold in general.
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of ensemble efficacies of several bundles to a population or to

! several populations.

Consider the special case in which several bundles
(SO'SI""SN) project to a common population R, one projection,
Sgs being much denser than the others (Figure 24). That is the
activity in Sp can completely dominate the response in the target
population thereby providing a convenient mechanism for experimental
control of postsynaptic activity, Thus the activities both pre- and
postsynaptic to the synapses from the spaxse projections can be
imposed by the experimenter. However, the dense or modulatory
projection modifies passively, that is the activity postsynaptic to
this projection is principally dependent on the projection's
(presynaptic) signal. The synapses from the sparse projection
undergo active modification in the sense that they are driven by

' activities with no strong causal relation,

; Caution must be exercised with respect to the passively
modifying modulatory projection. Assuming this projection is
plastic, one must recognize that a constant stimulus to this bundle
does not necessarily elicit a constant postsynaptic response.
Therefore before one proceeds with an equilibrium perturbation
paradigm in a dense-sparse system, both the sparse SEE under
examination and the dense SEE must achieve sufficiently stable
activity levels. Presynaptic perturbations, that is perturbatiomns in

.‘ the stimuli to the sparse bundles, can be used to provide

s

Jistys 1l




Eigure 24, The afferent vector S projects f£o a population R.
(a) The population R is the common target of several axon

bundles S.. The projection Sy is much denser thamn the
others. (b) A single cell in R.
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information about the X dependence of m (the middle columns in

Table 1).

The investigation of postsynaptic effects is not so

straightforward. To alter the steady-state activity in R, we must
change the stimulus delivered to Sy, thereby forcing a& change in
the corresponding SEE. This unfortunate aspect of the experimental
design is not fatal. The procedure's validity can be ensured by
monitoring the SEE from S;. As long as the change in the efficacy
of the S; ensemble follows the change in the Sy stimulus, it is
valid to infer that the activity in the target population is

similarly affected.

However, if the S)-SEE changes in the direction (+ or -)
opposite to the perturbation in the Sg stimulus, it is difficult
or impossible to ascertain the change in the activity in R. If the
connection is excitatory, the ipnitial change in the S,-SEE will
most likely follow the change in the stimulus. On the other hand,
as is seen in the next section, certain models predict that the
change in the net asymptotic efficacy value gppogses the change in

the stimulus after initially following it.

Investigation of passive potentiation is not only a necessary

59
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control stage for the experimental framework we have outlined. It
may also be used as a self-contained technique for distinguishing
between certain associative models. As a control for active synapse
modification experiments, passive potentiation in the dense

projection S; must be understood for the reasons stated in the

above section.

In this section we will examine the utility of a passive-
potentiation study as a stand-alone experiment to reveal traits of
the modification process that are important from a mathematical
standpoint. Consider two models both having postsynaptic

equilibrium points y = b_ as in (47b), but differing in their

y

evolution equations for the balance point itself (48). The time
scale for the modification of by is assumed to be slower than that

for m. Notice that equilibrium can be attained only when both m and

b ish.d
y vanish

- - (48)

1f f(y.by) = by. then there is a single criterion for

equilibrium, namely when y = b Otherwise (as in the FP model),

y.
the system has a much more restricted set of equilibrium points. 1In

this case y must simultaneously satisfy two conditions and so in

gereral only certain isolated values of y are allowed.

3 The expectation values of m and b_ over their pattern
environments should be zero at eqxilibrium. Tn the experi-
mental paradigms discussed here, only one patcern is presented

for the duration over which the expectation values are

integrated.
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Consider an experiment similar to that described in the last
section, in this case for the measurement of the SEE of a dense
(controlling) projection. As before, the synapse ensemble is driven
to asymptotic efficacy. Hypothetically, (47b) has been accepted as a
description of m local to equilibrium. The mest step is to determine
whether (48) can be expressed with f(y.by) = by. When the system
settles down, the constant stimulus to the axon bundle is shifted and
i again held constant. If the condition y = by alone is sufficient
for equilibrium, the prediction of the coupled equations (47b,48) is

that the SEE will monotonically shift to a new asymptote.

On the other hand, if y is forced to the same equilibrium value

by both constant stimulus level- then the SEE must initially follow
the stimulus change, peak at an extreme (relative minimum or
maximum), and asymptotically seek a net shift opposite to the
} stimulus shift. To appreciate this, consider a more detailed
example (Figure 25). The synapse ensemble is initially potentiated
to a steady state value M} by a stimulus of intensity X; over a
time period Ty, after which a stronger stimulus X; is delivered
for a period Tz driving the SEE to a new asymptotic value My.
Following (47b) in the short time scale, an initial synaptic
increase is expected. The weak criterion, under which y = by is
sufficient for equilibrium, allows the system to achieve a secound
steady state without reversing the trend. Otherwise both asymptotic

population responses must be equal, and since x2 > X; the wmodel

PfediCCB Mz < Hlo




Figure 25, ITheoretical predictions for a populatiou experiment.
Whereas nearly all functions f(y,b ) may give the same initial
behavior (TI)‘ the prediction for {he veriod following a post-
equilibrium” stimulus shift (T

T,) is different for (a) f = by
than for (b) other functions %.
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These predicted behaviors of the SEE result from the interaction
between the coupled differentiil equations for m and By' This is
illustrated by the global state diagrams in Parts II & III (Figures
8 and 19). Even though these figures represent single synapse
cells, the SEE of a multisynaptic neuron should behave accordingly.
In Figure 26, we see that a shift in the constant stimvlus value
causes a corresponding shift in the nullclines. Thus new "rules™
are established in the state space and the synaptic strengths must
obey them. Note the direct approach allowed in (a) as opposed to the
spiral trajectory in (b). The projections of these paths on the m-

coordinate give the T, time courses illustrated in Figvre 25.

D. Testing Nophebbian Medels

Nonhebbian (in the sense that they are not multiplicative)
models are not described by any of the formulations in (47), hence
they predict combinations of experimental results not included in
Table 1. These theories are by no means excluded from our
experimental approach. The only requirement is that one be able to
predict qualitative behavior of the SEE near equilibrium Jor various
paradigms. In this section we again contrast the predictions of two

variants of a class of models.

Recall the presynaptically balanced modification rule (47a). As
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Eigure 26. State space diagrams. Two cases are illustrated: (a)
f(y.b,) = b, , and (b) other functions f. Note that the
n-pro}ectio 8 of these curves give the predictions for M in the

previous figure.
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@ hebbian rule, the expression for m should be factorable imto pre-

and postsynaptic components, so the term (x - b,) ghould be
independent of postsynaptic vaxiables. Consider a nonhebbian
generalization of (47a) in which the equilibrium condition is

expressed as a balance betyeen pre~ and postsynaptic activities

(49).

- x(xo.yo.-*) (x - £(y)b) (49)

Prediction combinations for various functions f(y)

are given in Table 2: (a) f(y) incresses monotonically ; (b) f(y) is

constant (hebbian case) ; (c) £(y) decreases monotomically.
[

E. Application to the EC-DG Pathway

The principal input to the hippocampus arises from the
entorhinal cortex, an adjacent structure., Figure 27 gives a
schematic view of the bilateral pathway projecting from the
entorhinal cortex (EC) to the dentate gyrus (DG) in hippocampus.
Plasticity in the EC-DG pathway has been demonstrated by many
investigators. The response of DG granule cell populations has deen
shown to increase as s result of stromg electrical stimulation
applied directly to the pathway (Bliss & Lowmo, 1973). The so-called
long-term potentiation (LTIP) effect has been shown to last for a
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left right ]

Eiguxe 27, Ihe hilataral EC-DG pathvay. This diagram is based om
the dats of Steward & Vinsant (1978) in which they induced
sprouting in the crossed pathway and found all new crossed
projections to be collaterals of ipsilateral projections. The
dotted lines indicate the sparse, crossed pathways. 8olid lines
are the denser ipsilateral projectionms.
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period of months (Douglas & Goddard, 1975). Levy & Steward (1979)
have simultameously stimulated contra- and ipsilsteral pathways for
Hebb-like modification. The above development of the SEE approach in

this section was motivated by this system.

In the proposed experiment, stimulating electrodes are placed

(see Levy & Steward (1979) for details of the setup) in the left and
right angular bundles and at least one recording electrode is placed
in the dentate gyrus, either unilaterally or bilaterally. When both
stimulators are active, the DG population response is under the j
nearly complete control of the ipsilateral electrode. Thus, the
experiment is to observe the change in the contralateral SEE

(cSEE). A measure of the cSEE is the population voltage response in

DG to a single contralateral pulse.

One must be careful to follow the cSEE to equilibrium for each
driving stimulus. It is important to be aware of the possibility of
8 change in the iSEE. Hence it may be a worthwhile precaution to

measure the iSEE as well as the cSEE as a test of equilibrium.




A. The 8-cell as a Contrast-Eshaaciag Bait

Tonic inhibition can easily be shown to incresse specificity in
s selective neuron. Experimentsl evidence for this phemomenoa is
provided by 8illito (1975). The role of imhibitory activity in s
model neuron is discussed by Biemenstock (1980). 1Im that paper it
is shown that cells lose specificity if their “ideal”™ symaptic
inputs sre confined to positive values. Anstomicsl dsta does mot
support the notion of the ideal synmapse. Feed-forvard imhibitiom by
an S-cell to several D-cells all hsving roughly the seme receptive

field supplies them with a generslized, tomic. megative imput.

Consider a& circuit (Figure 28) inm which s certical D-cell
receives strictly excitatory patterned thalamic iaputs aad is
inhibited by s neighboring cell receiviag the same jnput. Asewming
linear response properties, the D-cell responds accordiag to (50),
vhere m and n are respectively the states of the D and I (imhibitery)
cells and k is the magnitude of the imhibitory I-D cowpling.

x = ud - kind) = (u-kn)d (50)

By restricting m, n, and k to be moa-negstive, the medel is were

consistent with contemporary snatomical theory. For ma sad &
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Liguxe 28. Ihe S-cell as a contrast snhancer Lo a
simple circuit, s gemeralizing wmit (S-cell) inhibits a D-cell

wmiformly over their common pattern environment thereby
separating the pstterns for the D-cell.
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nonmodifisble, the product kn provides an arbitrary offset since
d/dt(m-kn) = dm/dt. Provided km is sufficiently large for all

patterns, there exist positive synaptic values m; for which the D-

cell has maximum selectivity. If the inhibitory contribution kn is
too large the D-cell will never fire. Hence, the "allowed” values of
kn over the pattern space are restricted by these two

considerations.

Taking a more robust approach, let the inhibitory neuron seek
minimum selectivity and let the k-synapse be modifiable. The S-cell
receives only excitatory input and therefore develops according to
the analysis in previous sections. Note the response x of the D-
cell (50). As the S-cell approaches equilibrium, n goes to zero and
d/dt(m;~kn;) = dm;/dt - n;dk/dt. To maintain the properties
of D-cell parallel modification, k should modify gppogite to m
(51), since they share the same post-synaptic cell.

k = -¢(x,q) * [S—-cell output]

(51)
= -¢(x,q) * (n-d)

Hence m and k change such that d/dt[(m-kn)+d] increases if x>e(q) for
& given d, and decreases if 0<x<0(q). This circuit will tolerate a
such broader range of initial conditions then if the imbhibitory cell
is nonplastic. The time course of both 8 and D response
characteristics for a (monocular) circular environment is givea in

Appendix C using the FP model.
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Note that a single S-cell way inhibit several D-cells receiving
inputs from the same receptive field (Figure 29), each tuning
independently. Recent experimental data from Hubel and Livingstone
(1982) and Tootell et al (1982) support this kind of circuit. They
find periodic clusters of nonselective cells centered in ocular
dominance columns. Also, Hendrikson et al (1981) report having found
the GABA-synthesizing enzyme gluatamic axid decarboxylase (GAD) in
localized regions arranged in a strikingly similar pattern. Their
studies in monkey visual cortex reveal these GAD-rich aress to run

parallel to the centers of the ocular dominance columns.

This approach to resolving the ideal synapse has been developed
in cooperation with Chris Scofield who is applying it to a theory for
the development of the topography of orientation preference across

cortex,

B. Comments Regarding the Antagonistic Mechanisms Approach
q A% A synaptic value

As is mentioned in Part III, either of the saturating functions
o(x) may be related to the firing response of the neuron. Consider
the term q0;(x). Since q modifies in a hebb-like fashion, it may
reflect the efficacy of a synapse. Figure 30 depicts q as the

efficacy of an autapse (s synaptic junction having pre- and




Eigure 29. 4n 8-cell snhances several D-cells. A single S-cell
can provide contrast enhancing feed-forward inhibition to

several D-cells.
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Eigure 30, Annp_u.r. modulation of ¢. In this circuit the neuron's

output is fed back to the cell as the function o This may
be acconpluhed via a special autaptic comnection of strength q.
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postsynaptic elements that are processes of a common neuron (van der

Loos and Glaser, 1972)).

Whether qo;(x) inhibits the firing of the cell and whether

it is mediated by an actual autaptic gtructure are details not
considered here except for the following observation. If an explicit
structure mediates the subtractive term qql(x). such structures are
expected to be axosomatic so they can interact with the quantity
g7(x). (Note that x is a somatic quantity). Calvet & Calvet

(1979) report the existence of axosomatic autapses in Purkinje cells
from young kittens. Such 8 structure must either function
differently than other synapses or give the neuron negative

feedback. In the latter case, the autapse would be inhibitory and
therefore this mechanism would only be expected on inhibitory

neurons,

The fuaction £(x) = 27 ln(x+l) where x is the total membrane
current in pamp/cm has been computed by Agin (1964) from the
equations of Hodgkin and Huxley (1952) to give the response
frequency (pulses/sec) of an axon. Strictly speaking, this function
is not bounded, however it increases very alowly for large x and
behaves like a saturating function in other respects. Keep in mind
that x is bounded in practice. Note that by (52) this function

L]
satisfies the condition (43) and hence by Theorem &4 it givee a ¢ with

only one nontrivial zero.
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for x>0
The equation for the system in Figure 30 can be rewritten in the

N+1 dimensional form of (53). A formalism imspired by the four-
vector approach to relativity theory in physics can now be presented

for the D-cell.

d
- [oz(x) - qol(x)] (53)
ol(x)

g.

e

PSSV S

Consider a linear range for Oz(x) such that °2(x) = x. Then
4 the (N+1)-vectors (m,q) and (d»%(x)) can be considered to consist
of N components describing the apatisl pattern of afferent activity

and connectivity to the neuron and a single temporally varying

: spatial integration and self-connectivity. The metric g (54) allows
¢ (= x - qo;(x)) to be written as the inner product of (m,q) and

; (d,0;(x)) giving (55).

g = (54)
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M = (MD)D
‘ (55)
4 where M = (m,q) D = {d,0,)
i
g
; ; Note further that all components of M are *synaptic’ and those of D

are measures of axonal activities. The postsynaptic activity x is
then just the N-product of m and d while the modulatory signal ¢ is

the (N+1) 'scalar' M-D.

\ istic Mechani

The simplicity of the approach in Part I1I, namely that two
mechanisms work against one another to give the modulatory function
¢, is important. Together with the parallel aspect of modification
(mpd), this permits the system equation to be separated into a few

straightforward principles of synaptic modification:

1. The efiicacy of an afferent's signal to a given
target neuron varies over time in proportiom to that

(instantaneous) signal. (Parallel modification)

2. 7Two mechanisms, which are dependent on the

postsynaptic activity, determine the ratio of efficacy

change to input signal. One strengthens the synapses;

the other weakens them.

o, 301 U 0 VRN MNPy DRI R Wy O T e

3. The mechaniams are coupled by a variable quantity
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which varies linearly with the postsynaptic activity

accoxding to the same ratio.

As long as the functional dependence of each mechanism on the
cell's activity satisfies (37), the neuron will seek either -ini-ﬁl
or maximum selectivity, depending on the sign of the Wronkskian
W(0),07) alone. In terms of the earlier presentstions of the
model in Part II, the sign of W(cl.cz) determines whether the
monotone function x = 6(q) is increasing or decreasing. Thus it is
observed that the feature-abstracting character of a neuron can be
determined eithexr by the relative signs of m and q (the parameter

@) gr the monotonic trend of &(q).

C. Cognitive Applicati

Four neuronal types can be straightforwardly defined based om
the models described here. The afferents of each neuron can be
tuned for either minimum (S-cell) or maximum (D-cell) selectivity
over a single stimulus parameter and the gfferept action is either
excitatory or inhibitory. It is hypothesized that a network
consisting exclusively of these four cell types can be designed to
perform arbitrarily complex similarity-difference perceptual tasks.

That is, such a network should be able to construct a taxonomy

appropriate to any stimulus enviromment. Certainly more easily said

than done, this hypothesis is nevertheless difficult to disprove. It
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is offered as -a challenge to provoke the realization of the full
potential of such circuits. In this subsection some initisl steps

to test this hypothesis are oxylined.

It must be emphasized from the outset that this discussion is

limited to the cognitive phenomenon of hierarchical abstractiom, i.e.

classification of stimuli by their similarities and differences. The
activity of each neuron simultaneously modulates the modification of
all its input synapses in proportion to the activities of their
individual afferents relative to an internal time-varying scalar

parameter. This mechanism allows individual units to evolve such that

they abstract simple (scalar) information from their stimulus
environments. In this sense, the above hypothesis anh the
mathematical model given in this thesis are consistent with the
single~unit approach of Barlow (1972). NHis five dogmas rely on the
notion of 2 neuron's 'trigger feature' -~ that aspect of a stimulus
which excites the neuron. In the picture of the nervous system
presented here, stimuli drive neuronal states to become maximally
sensitive to certain trigger features. These may be specific
'redundant patterns of stimulation' (D~ cells) as in Barlow's third
dogma or generalized prototypical aspects common to various stimulus

patterns that are rarely or never observed as pure inputs (S-cells).

As is commonly stated (implicitly or explicitly), the nervous

system is thought to be orgamized in stages, progressing inm

perceptual complexity from sensation to recognition, association, amd
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cognition. 8o, it is proposed, should the hypothetical feature
abstracting network be organized. A genetically éoded macrostructure
lends efficacy and relevance t3 environmentally influenced learming
at the cellular level in that whereas each neuron is modifiable and

adapts to informational qualities in its environment, the overall

design of the system is genetically programmed so that increasingly

complex information is abstracted by successive stages of neural

processing.

Shepard and Podgorny (1975) point out that symbolic stimuli are

discretely coded while physical (nonsymbolic) stimuli vary

continuously along one or several dimensions: “For, whereas we can
continuously shift a color (for example, blue) in brightness, hue,
and ssturation until it becomes as similar as we wish to any other
color (for example, green), we cannot comtinuously deform a word
'blue' into snother word 'green' without passing through intermediate
configurations that are not words at all”. Thus it is expected that
inputs to the higher level (more “gnostic”™) stages are more
distinctly separated than early (sensory) input patterns. Two candi-
dates for implementing such separation between inputs are strategic
coding and tomic inhibition. Vectors of very high dimensionality
tend to be nearly orthogonal and are hence intrinsically well-
separated. Tonic inhibition can emhance separstion by quashing

responses to mediocre excitation.

The perception of differences and similarites by human subjects
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has been studied by several researchers (e.g. Rosch, 1975; Tversky
and Gati, 1978, 1982). The cousidersble amount of dats these studies
have generated ought to provide tests for theoretical hierarchy-
sbstracting networks. For exsmple, the response to stimulus pattera
A of a neuron broadly tuned to stimulus pattern B may measure the
perceived similarity of A to B. Such a definition is consistent

with Tversky's (1977) notion of asymmetry judgements expressed by

a contrast model (56). Such mathematical formulations provide s
means of comparing the performances of wodel networks with behaviorasl

data.

D(1,§) = of(i-3) + BE(j-1) - O£(1NY)
(56)
a,8,06 >0

As & final point, the value of this approach to understanding
the relationships between neural and cognitive phenomena is

considered. The complex information-processing capabilities of

biological networks can only be understood via the increased H
spplication of sophisticsted mathemstical tools to neuroscience.

Such efforts may provide brain resesrch with the long-awaited

unravelling of the neural mechsnisms underlying learnring and
cognition. The mapping of s msthemstical structure for neural
network processing onto s mathematical model of cognitive

performance is likely to be the wnifying event in this wmdertaking.
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D. Ibe Synapse Ensemble Method

Data from a variety of investigative modes (linguistic,
psychological, electrophysiological, and neuropharmachological) have
been subjected to analytical treatment of an increasingly sophis-
ticated mathematical nature over the last few decades. As synaptic
modification models evolve, a growing interaction between model
development and laboratory research is anticipated. The method for
electrophysiological testing put forward in Part IV is suited to the
current state of laboratory technique. It promises to narrow the
allowed classes of models for certain synaptic networks by revealing

aspects of their plasticity properties near equilibrium states.

The notion of measuring a synapse ensemble efficacy (SEE) is an
important one. It is based on the following assumption: Aa the net
response of A neuxal population Lo a constant stimulus pattern from a
projecting population or populations approaches an asymptotic value.
the activity of each individual neuron converges to a limit and
furthermore. s does the efficacy of each synapss. This should be
considered as nothing more than a working hypothesis until it is
either proven false or no longer necessary as single-cell methods
improve. The notions of convergence and asymptotic approach must be

carefully considered by the experimenter, for they have a strong

impact on data interpretation.
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The terms “active” and "passive” modification respectively
correspond to the notions of supervised and unsupervised lesrnimg
used in theories of knowledge acquisition (see Cooper, 1973). Both
types require that the organism (student) abstract informatiom from s
stimulus environment (the world). Passive learning is a fully sslf-
organizing process while active learning requires a teacher or
supervisor to rectify incorrect conclusions drawn by the inductive
process, thereby directing and accelerating the organization of the
system, Analogously, individual neurons or neuron populatiomns sre
students undergoing a process of syraptic modification so that they
“learn” to respond appropriately to their stimulus environment. If a
projection has sufficient strength to coatrol a population it can
perform the teacher role in associatively modulating the plasticity
of weaker projections. However the strong projection must modify
passively unless it receives very weak stimulation while another

(convergent) bundle “teaches”.
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Appendix A. The Model Meuron as a Signal Detector

In multipattern stimulus environments, D-cells seek maximum

selectivity and S-cells seek minimum selectivity. In the context of

NOE a one-pattern environment, selectivity is no longer well-defined.

The parallel modification models (both S and D) described in this

thesis drive the synaptic state parallel to the pattern until (Al)

AT AR TSR

is satisfied (Figure 3la).

- i rep— Xt

n'd = 0(q) (Al)

The addition of a decay term (antiparallel to m) to the function

<

[ Y NV

driving synaptic modification causes the components of m not

L

parallel to d to vanish (Figure 31b), thereby forcing m to a final
state parallel to d. The decay term must be carefully chosen to
= ' ensure that not m does not vanish completely. Consider a linear

decay (A2).

m = ¢(x,q)d - em (A2)
o ' This wvorks for my sufficiently large, however the state m = 0 is
E;; . unstable. By using a decay term that goes as a higher power of =,
& this problem is solved (A3).

A = ¢(x,9)d - c|m|m (AJ)
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Random or noisy components to the signal cause perturb the
state, but if each modificativd to m is not too large (i.e. for small

time steps in the difference equation), the state remains nearly

parallel to d forever (Figure 3lc).
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Figure 3l. Extraction of a aignal from npise. A single pattern is
presented to a D-cell in this 2-dimensional simuliation. (a) no
decay, no noise. (b) linear decay, no noise. (c) linear decay
with noise.
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So for B < ¢, the real parts of both roots are positive and

therefore s limit cycle exists. For B > ¢y the trajectories

converge to the critical point. Note that for Pigure 8, 4= {':

0.785 was used.
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Appendix B. Stability of the (l+1)-dimensional FP-model
D-cell about the Critical Point (ma.q) = (1.1)

The behavior of the system (14) is analyzed about the critical
point (1,1) in this appendix. From Theorem 1 it is understood that
if trajectories diverge locally, they must eventually converge to a
limit cycle on & more global scale. Consider the perturbation
(meq) = (1+x,1+y). This gives a linear first order system (Bl) for x

and y.

x = ¢ (m=1,q=1) [x - 2y] ‘ .
» (81) |
y = B [x-yl]

The solutions of (Bl) are of the form (B2):

A B
(;) - (A;)exp(rlt) +-(Bj)exp(r2t) (B2)

where r) and ry (both non-zero) satisfy (B3): 1

£+ (8- o, (1, 1r+ 48 = 0 (33)

therefore

1 S
T, - B yfe + 8" +608)




T T AR T ey

Appendix C. Computer Simulation of an S-cell Inhibiting a D-Cell.

The circuit used in this simulation is described in Part Va

(Figure 27).

ENVIRONMENT (10 patterns in 7 dimensions):

pattern

CVONO VL LN

—

Initial state
Initial state
Initial value

pattern 1

t:
D-cell:
S-cell:

t = 100
D-cell:
S-cell:

k =
1.34
1.06

200 k =
7.77
1.02

t".’
D-~cell:
S~cell:

300 k =
9.63
1.02

t =
D~cell:
8-cell:

1.518
1.677
0.917
0.224
0.000
0.000
0.000
0.000
0.076
0.644

=]
h
[
e § 1
0
n
—
—

0.67

1.30
0.73
1.05

0.000
0.016
0.417
1.235
1.732
1.235
0.417
0.016
0.000
0.000

[
-0
-0
b g
-o
-
—

4

q{D-cell) =
4,38 4.63
3.55 2.16

q(D-cell) =
0.04
0.95 0.96

q(D-cell) =
4,69 0,98
0.93 0.97

q(D-cell) =
S5.41 0.36
0.93 0.97

components

1.722
1.729
1.713
1.717
1.732
1.717
1.713
1.729
1.722
1.711

0.000
0.0l6
0.417
1.235
1.732
1.235
0.417
0.016
0.000
0.000

5 6 7

0.00 q(S-cell)
5.20 4.63 4.38
1.73 1.72 1.71

0.99
0.00
1.04

q(S-cell)
0.‘00 0.00
0.94 0.%0

2.47
0.00
1.07

q(S-cell)
0.00 0.00
0.97 0.93

2.90
0.00
1.06

q(S-cell)
0.00 0.00
0.97 0.93

0.076
0.000
0.000
0.000
0.000
0 .224
0.917
1.677
1.518
0.644

8

= 0.
5.11
1.73

o
*
882

"
UOe

-0
*
[~ XX -]

"

-0
L]
&8°

1.518
1.677
0.91/
0.224
0.000
0.000
0.000
0.000
0.076
0.644

00
4,91
1.87

N4 -

o L]
-0 (=N}
5L &
N o ‘08

N
-]

-0
.
S8
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t= 400 k= 1.77
D-cell: 10.47 11.69
S-cell: 1.02 1.05

t= 500 k= 2.25
D-cell: 10.83 12,13
s'cell: 1-02 1.05

t = 600 k= 2,75
D'cell: 11.08 12.‘5
S'ce11: 1.02 1.05

t=z 700 k= 3.25
D-cell: 11.33 12.77
S-cell: 1.02 1.05

t= 800 k= 3.76
D-cell: 11.59 13.09
S-cell: 1.01 1.04

t= 90 k= 4,26
D'Ce11: 11.84 13-41
S-cell: 1.01 1.04

t = 1000 k = 4.77
D-cell: 12.10 13.74

S-cell: 1.01 1.04

t = 2000 k = 9.76
D-cell: 14.63 17.00
S-cell: 1.01 1.03

q(D-cell) =
5.76 0.09
0.93 0.97

q(D-cell) =
5.82 0.00
0.94 0.97

q(D-cell) =
5.81 0.00
Nn.9% 0.98

q(D-cell) =
5.79 0.00
0.94 0.98

q(D-cell) =
5.77 0.00
0.94 0.98

q(D-cell) =
5.74 0.00
0.94 0.98

q(D-cell) =
5.72 0.00
0.95 0.98

q(D-cell) =
5.42 0.00
0.96 0,98

t = 3000 k = 13.38 q(D-cell)

D-cell: 16.55 19.49
S-cell: 1.01 1.02

5.14 0.00
0.97 0.99

t = 4000 k = 16.32 q(D-cell)

D-cell: 17,20 20.53
S'ce11: 1-01 1.02

4.32 0.00
0.98 0.99

t = 5000 k= 19.28 q(D-cell)

D-cell: 17.85 21.58
S-cell: 1,00 1.01

3.48 0.00
0.99 0.99

t = 6000 k = 22,20 q(D-cell)

D~cell: 18.50 22.62
S'cellt 1.00 1001

2,66 0.00
0.99 1.00

t= 7000 k= 24,98 q(D-cell)
D~cell: 19.15 23.64
S°ce11: 1.00 1.01

1.89 0.00
0.99 1.00

3015 q(s-cell) = 0099
0.00 0.00 0.00 0.00 0.00
1.06 0.97 0.93 1.0> 1.02

3023 q(S’cell) = 0.99
0.00 0.00 0.00 0.00 0.00
1.06 0.97 0.94 1.05 1.02

3.27 q{(S-cell) = 0.99
0.00 0.00 0,00 0.00 0.00
1.06 0.98 0.94 1.05 1.02

-

3.31 q(S’Cell) = 0099
0.00 0.00 0.00 0.00 0.00
1.06 0.98 0.94 1.05 1.02

3.35 q(S-cell) = 9

0.00
1.06 0.98 0.94 1,01

0.9

0.00 0.00 0.00 0.00
1.04

0.9

3.39 q(S-cell) =
0.00 0.00 0.00 0.00 0.00
1 1

1.05 0.98 0.94 1.04 1.01
3.43 q(S-cell) = 0.99
0.00 0.00 0.00 0.00 0.00
1.05 0.98 0.95 1.04 1.01

3,81 q(S-cell) = 1.00
0.00 0,00 0.00 0.00 0.00
1.06 0.98 0.96 1.03 1.01
= 4.12 q(s-cell) = {00
0.00 0.00 0.00 B¢ 0.00
1.03 0.99 0.97 .02 1.0l
= 4.20 q(s-cell) = 1‘00
0.00 0.00 0.00 0.00 0.00
1

.02 0.99 0.98 1.02 1.01

= 4,29 q(S'Cell) = 1000
0.00 0.00 0.00 0.00 0.00
1.02 0.99 0.99 1.01 1.00

4,38 q(S-cell) = 1.00
0.00 0.00 0.00 0.00 0.00
1.00 1.00 0.99 1.01 1.00

= 4,47 q(S-cell) = 1.00
0.00 0.00 0.00 0.00 0.00
1.00 1.00 0.99 1.01 1.00




t = 8000 k = 27.48 q(D-cell) = &
4 ‘ D-cell: 19.80 24.64 1.25 0.00 0.00
y : S-cell: 1.00 1.01 0.99 1.00 1

]

7 q(S-cell) = 1.00
0.00 0.00 0.00 0.00
1.00 0.99 1.01 1.00
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t= 9000 k = 29.58 q(D-cell) = 4
D'cell: 20.“‘ 25.56 0.78 0.00 0.00
S$-cell: 1,00 1.00 1,00 1.00 1

8 q(s-cell) = 1.00

0.00 0.00 0.00 0.00 0.00
1.00 1.00  1.00 1.00 0.99
i ' t = 10000 k = 31.25 q(D-cell)

. = 4
’ D-cell: 21.03 26038 0.49 0.00 0.00
S-cell: 1.00 1.00 1.00 1.00 1

9 q(S-cell) = 1.00
0.00 0,00 0.00 0.00 O
1.00 1.00 1.00 1.00 0.

t = 20000 k = 38.65 gq(D-cell) =
D-cell: 22.44 28.71 0.00 0.00 O.
S-cell: 1.00 1.00 1.00 1.00 1

5.12 q(S‘cell) = 1.00
0 0.00 0.00 0.00 0.00 0.00
1 1.00 1.00 1.00 1.00 0.99

t = 30000 k = 44.92 q(D-cell) =
D-cell: 22.24 29.16 0.00 0.00 O.
S-cell: 1.00 1.00 1,00 1.00 1

5.14 q(S-cell) = 1.00
0 0.00 0.00 0.00 0.00 O
1 1,00 1.00 1.00 1.00 O.

! t = 40000 k = 51.30 q(D-cell) = 5.17 q(S-cell) = 1.00
D-cell: 22.05 29,63 0.00 0.00 0,00 0.00 0.00 0.00 0.00 0.00
S-cell: 1.00 1.00 1.00 1.00 1 01 1.00 1.00 1000 1.00 0.99

‘ t = 50000 k = 57.78 q(D-cell) =
D-cell: 21.87 30.12 0.00 0.00 0.
s‘cell: 1.00 1.00 1.00 1.00 1

5.20 q(s-cell) = 1.00
0 0.00 0.00 0.00 0.00 0.00
1 1.00 1.00 11,00 1.00 0.99

t = 100000 k = 91.23 q(D-cell) = 5.38 q(S-cell) = 1.00
)_ * D-cell: 21004 32.78 0.00 0.00 0.00 0.00 0.00 0000 0.00 0
. S-cell: 1.00 1.00 1.00 1.00 1 1.00 1.00 1.00 1.00 O.

t = 150000 k = 125.77 q(D-cell) = 5.60 q(S-cell) = 1.00
D-cell: 20.32 35.68 0.00 0.00 0.00 0.00 0.00 0.00 0.00 O
S-cell: 1.00 1.00 1.00 1,00 1.01 1.00 1.00 1.00 1.00 O.

t = 200000 k = 160.84 q(D-cell) = 5.84 q(S-cell) = 1.00
D-cell: 19.66 38.70 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
S-cell: 1.00 1,00 1.00 1,00 1,01 1.00 1.00 1.00 1.00 0.99

t = 250000 k = 196.27 q(D-cell) = 6.07 q(S-cell) = 1.00
D-cell: 18,98 41.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
S-cell: 1.00 1,00 1,00 1,00 1,01 1.00 1.00 1.00 1.00 0.99

t = 300000 k = 232.13 q(D-cell) = 6.31 q(S-cell) = 1.00
D-cell: 18.29 44.81 0.00 0,00 0.00 0.00 0.00 0.00 0.00 0.00
S-cell: 1.00 1,00 1.00 1,00 1.0f 1.00 1.00 1.00 1.00 0.99

t = 350000 k = 267.99 q(D-cell) = 6.54 q(S-cell) = 1.00
D-cell: 17.56 47.84 0.00 0.00 0,00 0.00 0.00 0.00 0.00 0.00
§-cell: 1,00 1,00 1,00 1,00 1,01 1.00 1.00 1.00 1.00 0.99




t = 400000 k = 304.61 q(D-cell) = 6,77 q(S-cell) =
D-cell: 16.78 50.89 0.00 0.00 0.00 0.00 0.00 0.00
s"'cell: 1.00 1.00 10“ 1.00 1.01 1.00 1.00 1.00

t = 450000 k = 341.23 oa(n-cell) 2 6.99 q(8-cell) =
D-cell: 15.97 53.89 O. 0.00 0.00 0.00 0.00 0.00
S~cell: 1.00 1.00 1.00 1.00 1.01 1.00 1.00 1.00

t = 500000 k = 377.72 q(D-cell) = 7.20 q(S-cell) =
D-cell: 15.11 56.85 0.00 0.00 0.00 0.00 0.00 0.00
S~cell: 1.00 1.00 1.00 1.00 1.01 1.00 1.00 1.00

t = 550000 k = 413.29 q(D-cell) = 7.40 q(S-cell) =
D-cell: 14.25 59.70 0.00 0.00 0.00 0.00 0.00 0.00
S'Cell: 1.00 1.00 1.00 1.00 1.01 1.00 1.00 1.00

t = 600000 k = 448.89 q(D-cell) = 7.59 q(S-cell) =
D-cell: 13037 62.53 0.00 0.00 0.00 0.00 0.00 0.00
S-cell: 1.00 1,00 1.00 1.00 1.01 1.00 1.00 1.00

t = 650000 k = 484,52 q(D-cell) = 7.78 q(S-cell) =
D‘cell: 12.46 65.34 0.00 0.00 0.00 0.00 0.00 0.00
S-cell: 1.00 1,00 1.00 1,00 1,01 1.00 1.00 1.00

t = 700000 k = 520.39 q(D-cell) = 7.96 q(S-cell) =
D-cell: 11.51 68.12 0.00 0.00 0,00 0.00 0.00 0.00
S-cell: 1.00 1.00 1.00 1.00 1.01 1.00 1.00 1.00

t = 750000 k = 557.01 q(D-cell) = 8.15 q(S-cell) =
D-cell: 10.53 70.95 0.00 0.00 0.00 0.00 0.00 0.00
S-cell: 1.00 1,00 1.00 1.00 1.01 1.00 1.00 1.00

t = 800000 k = 593.40 q(D-cell) = 8.33 q(S-cell) =
D'cell: 9-54 73 074 0.00 ODOO 0.00 0.00 0000 0.00
S-cell: 1.00 1,00 1.00 1,00 1,00 1,00 1.00 1.00

t = 900000 k = 663.15 q(D-cell) = 8.67 q(S-cell) =
D-cell: 7.60 79.07 0.00 0.00 0.00 0.00 0.00 0.00
S-cell: 1 -00 1 .00 1.00 1 .00 1.01 1.00 1 .00 1 .00

t = 1000000 k = 730,29 q(D-cell) = 8.99 q(S-cell) =
D'cell: 5.71 84.17 0.00 0.00 0.00 0.00 0.00 0.00
S-cell: 1.00 1,00 1.00 1.00 1,01 1.00 1,00 1.00

t = 1100000 k = 797,08 q(D-cell) = 9,30 q(S-cell) =
D-cell: 3.83 89.22 0.00 0.00 0.00 0.00 0.00 0.00
S-cell: 1.00 1.00 1.00 1.00 1.01 1.00 1.00 1.00

t = 1200000 k = 856.50 q(D-cell) = 9.59 q(S-cell) =
D-cell: 2018 93075 0.00 0.00 0.00 0.00 0.00 0.00
S-cell: 1,00 1,00 1.00 1.00 1.01 1.00 1.00 1.00

1.00
0.00
1.00

1,00
0.00
1.00

1.00
0.00
1.00

1.00
0.00
1.00

1.00
0.00
1.00

1.00
0.00
1.00

1.00
0.00
1.00

1.00
0.00
1.00

1.00
0.00
1.00

1.00
0.00
1.00
1.00

1.00
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t = 1300000 k = 903.06 q(D-cell) = 9.82 q(S-cell) =
D-cell: 0.91 97.33 0.00 0.00 0.00 0.00 0.00 0.00

S-cell: 1.00 1.00 1.00 1.00 1.01 1.00 1.00 1.00

t = 1400000 k = 926.71 q(D-cell) = 9.95 q(S-cell) =
D-cell: 0.28 99.17 0.00 0.00 0.00 0.00 0.00 0.00
S-cell: 1.00 1.00 1.00 1000 1.01 1.00 1.00 1.00

t = 1500000 k = 934.69 q(D-cell) = 9.99 q(S-cell) =
D-cell: 0.07 99.79 0.00 0.00 0.00 0.00 0.00 0.00
S-cell: 1.00 1.00 1.00 1.00 1.01 1.00 1.00 1.00

t = 1600000 k = 935.10 q(D-cell) = 9.99 q(S-cell) =
D-cell: 0.06 99.82 0.00 0.00 0.00 0.00 0.00 0.00
S-cell: 1.00 1.00 1.00 1.00 1.01 1.00 1.00 1.00

t = 1700000 k = 935.10 q(D-cell) = 9.99 q(S-cell) =
D-cell: 0.06 99.82 0.00 0.00 0.00 0.00 0.00 0.00
§-cell: 1.00 1.00 1.00 1.00 1.01 1.00 1.00 1.00

t = 1800000 k = 935.10 q(D-cell) = 9.99 q(S-cell) =
D-cell: 0.06 99.82 0.00 0.00 0.00 0.00 0.00 0.00
S-cell: 1.00 1,00 1,00 1.00 1,01 1.00 1.00 1.00

t = 1900000 k = 935.10 q(D-cell) = 9.99 q(S-cell) =
D-cell: 0.06 99.82 0.00 0.00 0.00 0.00 0.00 0.00
S-cell: 1.00 1.00 1,00 1.00 1.01 1.00 1.00 1.00

t = 2000000 k = 935.10 q(D-cell) = 9.99 q(S-cell) =
D'cell: 0006 99 082 0.00 0.00 0.00 0.00 0.00 0.00
S‘cellt 1.00 1.00 1.00 1000 1.01 1.00 1.00 1.00

0.00
1.00

1.00
0.00
1.00

1.00
0.00
1.00

1.00
0.00
1.00

1.00
0.00
1.00

1.00
0.00
1.00

1.00
0.00
1.00

1.00
0.00
1.00
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