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development of maximum selectivity (discrimination) and minimum selectivity
(generalization) by neurons. Strengthening and weakening of synapse is
expressed as a product of the presynaptic activity and a nonlinear modulatory
function of two postsynaptic variables--namely a measure of the spatially
integrated activity of the cell and a temportal integration (tine-average) of
that activity.) Some theorems are given for low-dimensional systems and a
computer 8 ation results from wore complex system are discussed.

del neurons that achieve high selectivity mimic the development of cat
visual cortex neurons in a wide variety of rearing condiditons. A role for
low-selectivity neurons is proposed in which they provide inhibitory input to
neurons of the opposite type, thereby suppressing the common component of a
pattern class and enhancing their selective properties. Such contrast-enhanc-
ing circuits are analyzed and supported by computer si ation. To enable
maximum selectivity, the net inhibition to a cell must ecome strong enough
to offset whatever excitation is produced by the non eferred patterns.
4~~iicatons of parallel models for certa n experimental paradigms are
analyzed A methodology is outlined for testing synaptic modification
hypo se in the laboratory. A plastic projection from one neuronal popula-
on to another will attain stable equilibrium under periodic electrical stim-

ulation of constant intensity. The perturbative effect of shifting this
intensity level can yield important inffrmation regarding the form of the
modification equation. The pathway from entorhinal cortex to dentate gyrus
in the rat is an ideal candidate for such experiments.

$N 102.l| LFi 610641

C -



11eural Plasticity:

single Neuroa ftdels for Discrimination a Cssealizutim

and an txparimental heemble Approach

by

Paul Wesley Mauro

B.S.* Rensselaer Polytechnic Institutes 1977

Sc*.. Brow University, 1979

Thesis

Submitted in partial fulfillmt of the requirements for the
Degree of Doctor of Philosophy in the Department of

Physics at srow University

,-Pt,



Abstract of -neural Plasticity: Single Neuron Models for
Discrimination and Generalization and an Experimental gnsemble
Approach- by Paul Wesley Hanroe Ph.D., Brown University. June. 1983.

A special form for modification of neuronal response properties
is described in which the change in the synaptic state vector is
parallel to the vector of afferent activity. This process is termedparallel modification- and its theoretical and experimental
implications are examined.

A theoretical framework has been devised to describe the
complementary functions of generalization and discrimination by
single neurons. This constitutes a basis for three models each
describing processes for the development of maximum selectivity
(discrimination) and minimm selectivity (generalization) by neurons.
Strengthening and weakening of synapses is expressed as a product of
the presynaptic activity and a nonlinear modulatory function of two
postsynaptic variables -- nmely a measure of the spatially
integrated activity of the cell and a temporal integration (time-
average) of that activity. Some theorems are given for low-
dimensional systems and computer simulation results from more complex
systems are discussed.

Model neurons that achieve high selectivity mimic the
development of cat visual cortex neurons in a wide variety of rearing
conditions. A role for low-selectivity neurons is proposed in which
they provide inhibitory input to neurons of the opposite type.
thereby suppressing the comon component of a pattern class and
enhancing their selective properties. Such contrast-enhancing
circuits are analyzed and supported by computer simulation. To enable
maximum selectivity, the net inhibition to a cell must become strong
enough to offset whatever excitation is produced by the non-
preferred patterns.

Ramifications of parallel models for certain experimental
paradigms are analyzed. A methodology is outlined for testing
synaptic modification hypotheses in the laboratory. A plastic
projection from one neuronal population to another will attain stable
equilibrium under periodic electrical stimulation of constant
intensity. The perturbative effect of shifting this intensity level
can yield important information regarding the form of the
modification equation. The pathway from entorhinal cortex to dentate
gyrus in the rat is an ideal candidate for such experiments.
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ntroxneMtin

That synaptic modification is a principal component of neural

plasticity has come to be a widely held opinion among

neuroscientists. Theoreticians have launched several attempts, with

varying degrees of success, to deduce explicit (synaptic) principles

underlying learning by examining the selforganizatLonal consequences

of various microscopic hypotheses for comparison with anatomical.

physiological, and behavioral data. Such efforts have beendirected

toward several brain structures and pathways including sensory

cortex, motor cortex, the hippocampal and reticular formations, the

4 cerebellum, and various thalamic nuclei. It is not known whether the

diverse set of subsystems that make up the CBS employ general

learning mechanisms that are few in number or several specialized

ones. Two plasticity phenomena motivate the ideas in the present

thesis:

- the development of stimulus selectivity in visual cortex
neurons

- potentiation and depotentiation of the bilateral pathway from
entorhinal cortex to dentate gyrus

It is generally agreed that the instantaneous spiking frequency

of an axon reflects a spatiotemporal integration of synaptic

excitation and inhibition over the corresponding neuron, but the

informational content of a neuron's response with respect to the

stimulating activity pattern is an open issue. The very existence of

IIi l ' 4, .,
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behavioral phenomena implies that large neural networks evolve to

give appropriate ensemble responses to their stimuli. Bach

constituent neuron must therefore develop response attributes which

are, in some sense. meaingful. After defining the model neuron and

its stimulus environment as mathematical structures* Part I presents

a mathematical framework describing two complementary forms of

abstraction by individual neurons: generalization, a process of

finding similarities between stimuli, and differentiation* a

separation process. An analogous dichotomy in cognitive theory has

been extensively studied by Tversky and Gati (1978, 1982). They

develop a contrast model of similarity and difference perception

and apply it to psychological data.

Part 11 extends a theory for selectivity development in visual

cortex proposed by Bienenstock et al (1982) which describes a process

by which cells become maximally selective over their input

environments. Development of orientation specificity and ocular

dominance has been subject to extensive study using many paradigms

that manipulate the visual environment in various ways. Some of

these investigations are described and it is shown that the theory

accounts for the corresponding results. It is then shown that a

simple change in the evolution equation describes cells which seek

minimum, rather than maximum, selectivity. These cells tuMe to

common features rather than distinctive features. Thus a general

system is developed to account for both types of selectivity

development.
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In Part III an alternative model is introduced to describe the

same set of visual cortex data. It also includes an implementation

of the maximum-minimum selectivity framework. Here, two antagonistic

mechanisms are postulated: one weakening a cell's input synapses and

the other strengthening them. These mechanisms are coupled by a

variable which evolves according to the same equation as the

synapses. This theory rests on a more basic set of hypotheses which

lead to a mathematical formulation quite similar to the previous

model's starting hypothesis, but with some differences. First, the

new hypotheses make certain assumptions about the biochemical

mechanisms responsible for synaptic modification and second, there is

- . a testable difference between the two models which is discussed in

Part IV.

Part IV describes a population stimulus-record method for

electrophysiological testing of synaptic modification models. The

pre- and postaynaptic activities of certain synapses can be

controlled to a degree and their efficacies roughly measured in some

systems. Such measurements can give important information regarding

the dependence of the change in synaptic strength on the pre- and

postsynaptic variables. Since this method is applicable to neuron

populations it may prove a useful tool for experimental design and

data interpretation. The predicted results of the model in Part I

are discussed as well as those of some other models. This approach

was inspired by the hippocampal potentiation studies of Levy and

o ,
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it Steward (1979). so it is no accident that the anatomy and physiology

isa that system is ideal for this experimental framework. An outline

of th. biology of the entorhinal cortex to dentate gyrus projection

is therefore included at the end of Part IV.

IA1



The ability of organisms to process information constitutes a

common basis for all behavioral phenomena. Over the past century.

many empirically based theories of behavior have evolved, reshaping

philosophical and clinical approaches to mental function. A nearly

jI simultaneous accumulation of discoveries in the fields of

neuroanatomy and neurophysiology has established a detailed picture

of the nervous system as an enormously complex network of highly

specialized cells. A full appreciation of neural function must begin

with an understanding of the sub-microscopic chemical and physical

membrane mechanisms of the neuron and eventually account for

psychological data. Theoreticians are attempting to close the gap

between neurobiology and psychology by developing mathematical

, theories of learning by neurons and neural networks.

The technique of stimulus-response (SR) is perhaps the most

valuable protocol in all of experimental science. Response

characteristics may provide the common language needed to relate

electrophysiological and psychological data. We will assume that

the action taken by a neural network is dependent solely upon the

stimulus applied to the network and quantities internal to the

network. These internal quantities constitute the state of the

network. If the state can be modified by the application of

stimuli, it is called plastIig. Nonmodifiable states are termed

: L
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now! lasri.. Learning processes are intrinsically plastic since

they involve adjusting response properties in a network. This

approach to the study of learning is taken by Thorndike (1932) who

begins the introduction to his book Zhea ntlQL LAAiz

with this sentence: 'We are concerned in this volume with the

fundamental facts of learning whereby a situation which first evokes

response A later evokes response B. different from A'.

}( Note that nothing has been said regarding the complexity of the

network. A neural network may be anything from an entire nervous

system down to a single neuron or even MR= of a single neuron

(Poggio and Koch@ 1981). If the network's internal quantities and

the transfer (input-output) function are known, then the state of the

network has been specified such that the response to any stimulus can

be calculated. Alternatively, if a sufficient (complete) set of

jresponses to hypothetical stimuli and the transfer function are
known, then the internal quantities can be deduced, again specifying

4 the network state. Each complete set of neural stimuli is a

coordinate system for the network state space. A natural or

preferred coordinate system is given by the internal quantities. A

nonplastic network is fully described by its state and transfer

function. However, these values only g.axLiAlly] specify plastic

* " systems.

We are interested in the Anjamu of the neural state. While

the state and transfer function represent information stored

" i4 ) I. . . . .
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order of 104 ) sites along its membrane. These sites are called

synapses, a term coined by Sherrington (1906) to indicate a junction

between neurons. The neuron membrane maintains a -resting-

electrical potential of about -60 mV (interior with respect to

exterior). Each synapse tranaduces the incident signal to a slight

disturbance in the resting potential across the membrane. If the

soma membrane is sufficiently depolarized (driven above about -45

mV). a pulse is transmitted by the cell along its axon. The pulse

frequency increases with membrane polarization to a maximum, while

the amplitude remains constant. The frequency-coded signal is sent

to many other neurons along the generally intricate arborization of

the axon. This signal then either inhibits or excites other cells at

synaptic sites by hyperpolarizing or depolarizing other membranes.

Thus each nuron operates as a stimulus-response mechanism

generating a single-valued response to a multidimensional stimulus.

Aggregations of nerve cells are known to cooperate functionally.

receiving inputs from and projecting to common populations. So the

nervous system can be sequentially broken down into subsystems of an

arbitrary level down to the single-neuron system. The state of

A of these subsystems can be characterized either by its SR

properties or its electrophysiological properties (internal

quantities and transfer function).

Deterministic treatments of neural function in the experimental

framework of stimulus-response methodology are weil suited

- -. -
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(-knovledge-). the storage process (learning-) is expressed by a

.niicAtign zul& or RI~sticiLy .Lns.im for the change in the

neural state. This rule* together with the stimulus set delivered

to the network thus determine the trajectory of the system through

the state space.

Let us now consider the components of neural networks. Neurons

are the basic units of neural function. As components of complex

networks, these units are responsible for an extraordinary range of

>1 information processing tasks including perception. cognition, and

action. Not all neurons are identical, there exist several

anatomically defined categories of these cells as well as

corresponding physiological and biochemical properties, but they

have many features in common. All neurons contain the structures

inherent to biological cells, however they are not self-

replicating. Furthermore, each neuron transmits a time-varying

electrical signal and receives several simultaneous electrochemical

stimuli which also vary in time.

Nerve cells are irregularly shaped. Extending from the cell

body (soma) are several VajLA&1 - long. narrow extentions of the

cell. These are of two types: dendrites, which generally conduct

signals inwardly toard the cell body. and axons, which trannit

frequency-coded signals to other cells. A typical neuron includes a

soma. several dendrites, and a single axon which may have several

branches. It receives signals from other cells at many (up to the

I}'l



to synaptically based theoretical approaches. The S technique has

been used by both physiologists and psychologists for many decades.

The pioneering works of Sherrington (1906) and Skinner (1938)

together with their bibliographical references establish.

respectively, the foundations of stimulus-response methodology in

electrical and behavioral contexts. Both experimental approaches

survive today. exemplified by electrophysiological data from

orientation-specific cells in visual cortex (e.g.. Hubel & Viesel.

1962. 19773 Rauschecker & Singer. 1981) and the response time data of

subjects learning prototypes (e.g.. Posner & Keele, 1968a 1970).

Several mathematical models have been developed to account for

these and other data. Examples of such theories for physiological

data are Karr (1969), von der Xalsburg (1973) and Nass & Cooper

(1975); cognitively based models include Anderson (1972. 1973) and

McClelland & Rumelbart (1981). Such models are usually based on the

notion of synaptic weights". As is described above, a neuron's

instantaneous activity level is determined by a spatiotemporal

summation of the influences of the activities of many other neurons.

The influence of one neuron upon another is quantified as a synaptic

-weight- or -efficacy". These synaptic weights along with other

variables generally determine the transfer function of a neuron or a

neuron network.

For exanples a linear function might be used to express the

output y of a neuron to its inputs zi (1). The coefficients ei

i_____i___i __ i_______'____'_____,________'__'___"___i
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are the synaptic veights* representing the net influence of one cell

upon another. This can easily be extended to a network consisting of

a population (xj) projecting to a population (yi) (2). A simple

, (•nonlinear example is the threshold function given by (3). each

neuron yi having an activity threshold ei .

Y i (1)

J

-Y; K(Fa Jx1 - e8) (3)

where K(x) = x O

4

Such matrix or associative approaches began to receive attention

in the 1940's (McCulloch and Pitts, 1943; Culbertson* 1948). This

sort of mathematical formulation makes clear the close relationship

between the transfer function and the quantification of the neural

state. Modification rules (differential equations for the change in

a or e) are formulated or hypothesized in models for learning. An

early hypothesis which has been a guiding principle for many

theories is Bebb' (1949) "neurophysiological postulate":

-When an axon of cell A is near enough to excite a
cell B and repeatedly or persistently takes part in firing
it. some growth process or metabolic change takes place in
one or both cells such that A's efficiency, as one of the
cells firing go is increased.- p. 62
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This states for neural function what Thorndike's (1913) Lm of

Use states for learning behavior:

-The Law of Use is: When a modifiable connection is
made between a situation and a response, that connection'$
strength is, other things being equal. increased." [p. 2]

-Ultimately degrees of strength of a connection in
behavior will be defined as degrees of some anatomical or
physiological fact whereby synapses between neurones differ

in intimacy. [p. 3J

Most synaptically based learning schemes extend this assumption

to account for decrease in syntaptic efficacy as well. Inhibitory

synapses must be separately considered as in Stent (1973) and Levy

jand Desmond (1982). An extensive examination of learning rules and

their application is provided by Kohonen (1977).

The degree to which memory is distributed is an issue addressed

Kby many models. Lashley (1929) sought to locate the site of

learning in rat cortex by performing an extensive series of cortical

lesions and measuring the ability to learn maze patterns as a

function of the extent and location of each lesion. His results

indicate that this ability is not localized to any particular locus

in cortex:

-The same retardation in learning is produced by equal
mounts of destruction in any of the cyto-architectural
fields. Hence the capacity to learn the maze is dependent
upon the mount of functional cortical tissue and not upon
its anatomical specialization.- [p. 1753
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Lashley's data are summarized in Figure 1.

The notion of distributed memory is attractive to many

theoreticians. A bologrm model was put forward by Longuet-liggins

(1968) since holography is a non-local storage technique -- partial

destruction of a hologram reduce@ overall resolution of the stored

image without affecting any particular region.

The opposing viewpoint is held by many researchers who point to

observations (e.g. Hubel and Viesel, 1963) of feature sensitive

neurons in cortex. Several classes of selective neurons have been

defined according to their modality and degree of specificity (Figure

42). The level of neuronal specificity at the most "gnostic" stage is

thought to indicate the extent to which memory and cognition are

localized. Barlow (1972) postulates the cardinal cell as a

compromise between Sherrington's (1940) pontifical cell concept and

complete distribution of memory traces.

Recent experimental data demonstrate even higher specificity

than the well-documented hypercomplex neurons in visual cortex.

Bruce et al (1981) find polymodal neurons in the extrastriate area

they call the superior temporal polysensory area (SLP). Gross et

al (1972) report neurons in macaque inferotemporal cortex selective

to visual inputs resembling a monkey's band.
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MAZE III

~F1

MAZE II

4 V

JLAnz I., LAAhI&Sx!J. AaaziauaL, Lashley's dateabsove a roughly
continuous dependence of probim solving capability on the
difficulty of the problem and on the degree of injury to the
brain. (From Lashley (1929))
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Finally, experiments by Yeo et al (1982) and Clark et al

(1982) identify specific cerebellar nuclei that abolish classically

conditioned responses in rabbits. These may be the loci sought by

Lashley. It seems clear that the brain is specialized into

functional regions. however the internal operation of these areas

may be distributed to some extent. Also. the neural loci of

individual memory traces may be distributed over several

functionally distinct areas.

iM

.... , -,.I ..I1 r 1 I 'r "
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It is assumed that each neuron generates a dynamic frequency-

coded scalar response to a time-varying vector stimulus and that the

response properties evolve with experience (learning). Each of N

afferent signals di are transduced to membrane depolarizations and

ultimately induce a potential (x) at the soma. Spatiotemporal

integration is idealized here to be an instantaneous linear sum x of

the N inputs di weighted by the corresponding V synaptic efficacies,S

ai (4).

N
-" im.d1  (4)

For now, the integrated activity level x may be considered to

correspond to an arbitrary physiological measure of the cellts

excitation level such as the net postsynaptic potential or the

resulting firing frequency. Although it is somewhat important for

the signals to be summed linearly, the neuron's output frequency may

be described by certain (nondecreasing, positive, bounded. and

continuous) nonlinear Lunctions of x. Thus the response of the model

L _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _



neuron is purely a function of its synaptic weights.

The state of the neuron is specified by the synaptic vector

mi together with an internal quantity q which, although it plays no

I role in the transfer function (4). modulates the modification or

plasticity process (5). Such systems are (N+l)-dimensional: N

synapses plus the internal quantity.

(t) - 4(x(t),q~t))d i(t) (5a)

j (t) - (x(t),q(t)) (5b)

Since (5b) is an autonomous equation. q reflects a temporal

integration of x over some recent interval, the scope of which is

determined by the relative magnitudes of * and . Thus the synaptic

vector m is modified parallel or antiparallel to the presented

stimulus vector d, the strength of the modification being a function

of x and q. Of all possible input stimuli of a given magnitude,

the response to the one in the direction of d is most greatly

affected by the change m. Parallel modification thus has the

following behavioral implication: I-Arning indnedA kx IL L• M

LjUJLL M= ara Llz inflmna f nt rZA ZULU La Lb&L £aLh- IL,

th o r& others L Lh sAM Magailn". The intuitive plausibility of

4

: . ... ' - M 
"

. . . .. . . . . . ' - '-- ":-- -L.-"



i ! -m-| - - - - --

r: 16

this statement, though it may not rigorously hold, supports the

formulation (5). One must be aware that -magnitude- is a nebulous

term in this context.

Certain functions # and * that yield otherwise desirable

attributes for describing certain types of neural plasticity, may

cause some or all of the state components (miq) to grow without

bound. There are several standard approaches to problems of

divergence. For example the sum of the synaptic weights .m i) may

be normalized to or restricted to be less than a particular value.

Another approach is to introduce an exponential decay term (6). While

it is not included in the bulk of this thesis, Appendix A illustrates

-the utility of this term to a specific application.

'(t) = #d - c(m) (6)

Like the term -neuron- the -stimulus environment is a tangible

to the experimentalist and an abstract mathematical entity to the

theoretician. All possible neurally encoded stimuli d can be

represented by points in a hypervolume U (universe) in N-space

4bounded along each coordinate by a minimum firing frequency (zero)
.a ~and a ma'ximum, determined by the absolute refractory period of the

I
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afferent. A world which presented input stimuli from a uniformly

random distribution over the entire hypervolume would be completely

chaotic - a maximum entropy environment containing no information

(snow on television and radio static are electronic examples of high

entropy environments). The complexity of an environment's information

content is reflected by the topological structure of the input

environment. An environment may be any probability distribution over

the entire stimulus space. continuous or discrete.

Sensory experience of all modalities presents the healthy

organism with a highly structured set of stimuli. In the course of

processing information, the network codes. recodes, integrates, and

finally generates a response to these stimuli and it must learn to

respond appropriately. The precise nature of the coding will not be

addressed here. The stimulus sets used in computer simulation were.

in general. -fuzzy- (having a small random component) subspaces of U

that share certain topological properties with the physics. ., _imuli

used in the laboratory.

The order of presentation of patterns from the environment is

given by a stochastic process, which may be either discrete or

continuous. In the present thesis, a stationary jump process of

independent presentations is assumed for most of the analysis and

computer simulation. The trajectory profile imposed by the process

4 is illustrated by averaging the system (5) over the stimulus

environment E to generate a deterministic process (7) yielding
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solutions for (mi(t).q(t)) from various initial states

(mi(to).q(to)).

< t <(x(t).q(ty)d1 (t)dj

- 'E *(x(t),q(t))d1 (t) P(dE) (7)

" (*(x(t),q(t))E f 'E *(x(t),q(t)) P(dE)

Generally a stimulus space is neither entirely noisy nor is it

devoid of noise -- it contains information corrupted by random or

uncorrelated interference. The separation of a signal from static

can be a tedious task, but in general a repeated signal reinforces

itself while noise interferes with itself destructively. Thus,

systems such as those discussed in this thesis are resistant to noise

given sufficient exposure to the stimulus environment. Interestingly,

noise can enhance the development of neural networks (Anderson et

al. 1977). This is discussed in Part Ha.

In the following sections, stimuli will be generated as the sum

of patterned and chaotic components. The at.Ltern za&= E can

therefore be considered a k-dimensional manifold (k'N) in the N-

dimensional space U. The environment or stiulus .aMq D is the

sum space of the pattern space and a more homogeneous process. One

i7"
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can imagine the stimulus space as an N-dimensional -fuzz- encasing

the pattern subspace (Figure 3).

A neural response function, c(mE). can be calculated over the

pattern set E for a given synaptic state m. Bienenstock (1980) gives

a precise definition of selectivity for a general stimulus density in

terms of such a density function. For the purpose of this

presentation, this is paraphrased (8).

IE c(r,E) P(dE),,I --" c > 0
1c max max

Sel(m,E) (8)

0 C .0
max

where c max Z (c(m,E))

E

Note that Sel (m.E)C [0.13 with 0 indicating a uniform response

across E and 1 indicating that the entire set of evocative stimuli is

I

ofmauezr it epc oI



FigureL LXQ & ZA mPOL na.l -.fuzzy-. stimulust A~a&. The union of
the shaded regions is a stimulus space consisting of a pattern
apace {dlsd2) and a random vector uniformly distributed on a
small circular area.
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CircJl1Ar aA t g a nic environmennts,

A pattern set E is called cirenlAr if it describes a circle of

uniform density embedded in a sphere about the origin. That is the

elements d(v) of E must satisfy j(v = constant, p(v) - and

d(w1 ) - d(v2 ) = f(w2-wI ) where v is a parameter of the period

T and p(w) is a density function. A c ila 1attice pattern set

"t is an analogous structure with finitely many elements equally spaced

on a circle. The response characteristics of a synaptic state with

respect to such one-parameter entities can be represented by a simple

function of one variable or index from which the selectivity is

easily evaluated (Figure 4).

Circular environments are idealizations of test-pattern sets

used by physiologists to investigate orientation specificity

development in visual cortex. The neural representations of

oriented contrast bars of constant width certainly constitute a

closed one-parameter (i.e., orientation) curve, if not a circle, in

the axon frequency space of the optic nerve. Indeed, data from such

experiments is plotted on a so-called Iaisntit"n £Jmiaa samuch

like the response curves in Figure 4. Thus, response data and

selectivity measurements over them represent a point at which theory

and experiment meet.

General and arbitrary circular environments of high dimension

for computer simulation are not straightforwardly generated. This

*AN,
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Figure. SjI erjgjy.. The fraction of the rectangle that is
gLshaded gives the selectivity of the response curve.
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motivates retinal m=J pattern sapping (illustrated in Figure 5).

a straightforward technique for simulating retinal coding of any

- spatiotemporal visual stimuli. An array is assembled of N units of

uniform size and shape constituting the model retina, on which

geometric stimuli are projected. The i-th component of the pattern

vector is a measure of the excitation density of the i-th retinal

unit. Retinal mapping distorts geometrical relationships between the

visual stimuli, but fortunately the topology is conserved. Thus,

applying uniform brightness patterns of constant width and intensity

to such an array results in a pseudocircular pattern set for finite

N.

Circular and pseudocircular environments are adequate for

simulating one- parameter patterns coded by one retina. They suffice

as well for cells receiving perfectly correlated patterns from

j several retinae. However more general treatments of multiocular

coding of circular visual environments require that the destination

(neural) map be a K-parameter product space. Binocular experimental

paradigms invoking diffet-et stimulus sequences to the two eyes.

such as strabismus or binocular disparity, can be simulated using

toroidal or pseudotoroidal environments, sets of patterns

characterized by two independent periodic parameters.

* 2.1
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Each of the models presented in this thesis describes neurons of

two kinds, which differ in the nature of the information they

abstract from their stimulus environments. Neurons which seek to

minimize their selectivity functions will be called miuia.

calls or u.La.= , since they seek the pattern component most

common to their environmental stimuli. The other kind of neuron,

seeking maximum selectivity, will be labelled a diference ALa or

Rz*.1I. These two functions should be considered elementary

abstraction processes into which more complex functions can be

analyzed.

Consider an environment of two stimuli represented by vectors

dl and d2. The selectivity S(mdld 2) for the linear

transfer function (4) is given by (9).

12d' + md 2

S(m~d ,d) 1- (9)
2max(m.d )
I

Lines of constant selectivity can be plotted (Figure 6) in the

plane spanned by two patterns. Maximally selective (Sal) states are

orthogonal to one vector and not to the other. Minimally selective

WPM 7
*dim
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(Sa0) states are orthogonal to the difference vector d2 -dle

For arbitrary S. m must satisfy (10).

[(2S - I)dI + dj].m - 0

where m.d >M.dj (10)

The goal of each model is to drive the states of S-cells to an

S=0 point and D-cells to an S=1 point. Constraints on the synapses

(such as the sign of m) may prevent a cell from realizing optimal

selectivity. In such cases, the neuronal state will be driven to

the constraint boundary.

ial cortx

Single unit recording techniques were employed by Rubel and

Wiesel (1959) to reveal the highly specific response properties of

neurons in cat striate cortex. They found that thesv cells are

sensitive to the orientation of contrast edges and bars in their

visual fields. These neurons were shown (Wiesel and Hubel, 1963) to

develop their selectivity attributes over the first ten weeks after

birth -- the so-called critical period. The development can be

influenced by manipulating the kitten's visual environment during the

critical period. Results of various laboratory paradigms for such

j manipulations are now described.

4
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Normal Roaring (NR): Kittens reared in normal visual

environments develop (for the most part) neurons which are highly

sensitive to orientation (Rubel and Wiesel. 1959. 1962). Layer IV

cellsl develop to be responsive to inputs from one eye. Other

cells exhibit binocular responses which may .idvor one eye or the

other. The preferences for ocularity and orientation vary

topographically across cortex.

an z D (MD): Neurons in the visual cortex of a

kitten, deprived of visual stimulus to one eye during the entire

critical period by means of eyelid suturing, become generally

nonresponsive to inputs presented to the deprived eye (Blakemore.

1976).

Rees ylaigrp (RS): The effects of the MD paradigm can be

reversed during the critical period by opening the closed eye and

closing the open one (Movshon. 1976).

DAXk BAaLifg (DR): One would probably intuit, based on the NR

and HD results, that binocular deprivation would cause complete non-

responsiveness in visual cortex neurons. Moreover, while the ocular

dominance statistics indicate a shift toward monocularity (Blakemore

and Van Sluyters, 1975) many cells are binocularly responsive

N Fearly all layer IV neurons receive direct thalamic inputI (Hornung and Garey, 1981).

, - ,. . , \ ~ ~ .. .. , . •,, . - ..
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(Leventhal and Hirsch. 1980) and very few cells are non-responsive

(Buisseret and Imbert. 1976).

Artifiai l StrAbisuns (AS): By cutting one of the extraocular

muscles in newborn kittens. Rubel and Wiesel (1965) eliminated the

normally high correlation between inputs from the two eyes. They

found most cells developed monocularly.

*1
Each of these experiments support the conjecture that some

neurons seek maximum selectivity over their stimulus environments.

The search for cells of low selectivity is less intense and hence

the data less abundant. Nonetheless. cells in visual cortex have

been classified as -circularly symmetric- (Rubel and Wiesel. 1977).

Other authors (e.g.. Kelly and van Essen. 1974) report difficulty in

finding a cell's optimal stimulus. Barlow (1972) points out that

many neurons display invariance in their response as a stimulus

changes.

4
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IL. Generalization and Differentiation S ingle Neurons

In this section a version of the model put forward by

Bienenstock et al (1982) for development of orientation specificity

in visual cortex is described and then extended to include

selectivity-minimizing neurons as well. Bienenstock's (1980) doctoral

thesis includes formal theorems and detailed proofs in support of

that theory. The extended model presented in this section will be

called the fixed point (EP) model to distinguish it from the

alternative formulations discussed in subsequent sections. The FP

model (and those that follow as well) uses R.Ara.laii L m4difAtin

and hence can be expressed in terms of (4) and (5).

Selectivity maximizatio

The function 0 for the maximum-selectivity (D-cell) process must

be continuous, bounded, and satisfy (11)

agn( D(xq)) - agn(x) sgn(x - qP)
(11)

where p N 1

The rate of change of q(t) is given by (12). This is chosen so that

q is a running time average over the activity x(t) (13).

t'V
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*D(x,q) = B(x - q) a>0 (12)

toq(t) -exp[-B(t-t 0 )q(t 0) + 0 expf-O(t' -t 0 )x(t') dt' (13)

0

Consider a simple system of a single synapse m receiving a

steady, noiseless signal d=l. The concept of selectivity is

meaningless with respect to a one-element pattern environment, but

aspects of the system dynamics are easily analyzed in this two-

dimensional state space. The system is a completely deterministic

Pair of coupled autonomous equations for ia and 4 (14).

a(t) - D(m(t),q(t))

i(t) - 8(m(t) - q(t)) (14)

M(O) > ; q(0) > 0

The critical points of the system lie at the intersection of the

nullclines &=0 and 4=0 (Figure 7). which partition the state space

into regions characterized by the signs of the state velocity

(sgn m, sgn 4). the quadrant of (i.4).

The asymptotic behavior of (14) is never divergent (Theorem 1).

Depenair. on the value of 8, the trajectory (u(t),q(t)) either

converges to (1.1) or to a finite limit cycle (Figures 8a and 8b).

4
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(b)

8. Er L .aatA traiactoriu. The nullclines from

Figure 7 are again shown along with sample trajectories for 
two

values of 0. (a) p = 0.7 gives limit cycle behavior -- two

trajectories are shown: one spirals in from the outside and the

other from the inside. (b) B 1.3 gives convergence to the

4point (1.1).
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Theorem£ As t-,~ the system (14) drives the state to either the

origin, the point (1.1), or to a closed path about that point.

Proof Since (14) is an autonomous system. 0a.4) is purely a

function of (m.q) and therefore no trajectories cross at any point

with the possible exception of a critical point ((i.4) =(0.0)).

Trajectories may only intersect at a critical point in the limit as

Along the coordinate axes, (14) simplifies to (15) and (16)

,i(Mu') -0

C -0 -Bq (15)

di(q-O) - *(m(t) .0) 'a 0 (16)
4(q-0) - Om

Therefore if m(0)>O and q(0)>O then m(t)>O and q(t)>0 for all

t>O (see figure 8). Now, consider the four regions defined by the

nuliclines:

R, (agn isn. sgn 4) (+.)

2 (sgn '2. sgn 4 -. l

4 ~R3 :(sgn a, gn 4) (--)

R4 :(sgn a~ gn 4 4.l
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In Rl 4>0 . but a trajecto .y may not cross from Rl to R4.

Since # is bounded, a state in RI either asymptotically approaches

(1.1) or is driven to R2 . A trajectory in R2 must cross into

R3 " In R3 . each state is driven toward the q-axis and toward

R4 . However since the q-axis is a trajectory to (0.0). a state in

R3 must either enter R4 or go asymptotically to (0.0).

A linear approximation (17) shows that if #m(0,0) > 0. the

origin is a saddle point, and hence, unstable. In this case, only

the trajectory exactly along the q axis is not pushed into R1 .

i(-O, q-0) m(17)

't 4 " (m-q)

The stability of the critical point at the origin depends on the

derivative of # and the magnitude of B. We will use a sufficiently

well behaved and a sufficiently high value of B to assure convergence

to (1.1).

ThM (2+fl i MaIa Dzcall

Now consider a cell with 2 synapses in an environment consisting*1 of exactly two independent patterns (dl.d 2). This is the

A- 7M
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simplest environment in which selectivity can be measured. The

corresponding stochastic system of coupled ODE's (18) possesses 4

equilibrium points at which ( .q) - 0 for both stimulus vectors.

- #D(m.d)q)d

*1 12

for the random stimulus 14(dl1 ,d
2

Since the input stimuli are independent, this condition is

prerequisite to the more general deterministic criterion <miq>D=0-

Two of the equilibrium points have zero (minimum) selectivity. The

other two each have selectivities of 0.5. the maximum for this

environment. One of these is preferential to dl. the other to

d2 . A projection of the system to the ml-m 2 plane (Figure 9)

illustrates the situation. The point m = (1.1) is a saddle point and

m=(OO) is an unstable node. Only the points of maximum selectivity

are stable. A detailed analysis of a very similar system is done by

Bienenstock (1980).

Djg~Lfimnsinon littea

The (N+) dimensional generalization (19) admits 28

equilibrium points in an environment of N independent stimuli

{di).

IA, I 4 i
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i (t) (m.d~q)df (19)

for the random stimulus dC(d I

Of these, N are maximally selective, vith selectivity (N-I)/N. two

(the origin and (ml...%.mnq) :(I.....l.1)) exhibit zero

selectivity, and the remaining 2N-N-2 display intermediate levels

of selectivity. Each of the maximally selective points is -tuned- to

a different one of the N patterns. It is conjectured on the strength

of numerical simulations (Figure 10a) that only these points display

asymptotic stability. This has been proven for a similar system in

an orthogonal environment (Cooper et al, 1982).

Dewndent Stimuli

Environments containing more than N stimuli also drive the model

neuron (19) to high selectivity (Figure lOb). The maximum

selectivity attainable is a function of the environment. In

particular this is sensitive to the extent of separation between

vectors in the pattern set (Bienenstock. 1980).

One can generally consider * as a function that reinforces-

patterns giving a high response (x>q) and -suppresses- patterns that

evoke low (x<q) activity (Figure 11).

__ _ _ _ _ _ _i~
v~
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): X X X X :

•; (b)

AF*igue IL. luing rves. Computer simulation shovs that the

system of differential equations given by (19) drive the model
neuron to maximum selectivity. (a) Independent stimuli: all but
one of the patterns give a null response in the final state.
(b) Dependent stimuli: some patterns give intermediate

responses.
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GgMLAflh 2L 1k mnZ1 VISA varinum biniacaza intargian SAXAdiM

The visual system is perhaps the best understood of ammalian

sensory systems. This model is in good agreement with the bulk of

data for binocular selectivity development in visual cortex. Below.

the experimental paradigms described in Part Ic are discussed in

terms of the model. Both analysis and computer simulation support

the agreement between theory and experiment.

No .a] iaxjin& (NR): The NR stimuli are represented as 2N-

dimensional vectors in which the N left-eye components are highly

correlated with the N components from the right eye. The

environment is essentially circular since the patterns are periodic

over a single parameter. Results from computer simulation are shown

in Figure 12a.

Binocular Deprivation (BD): Patternless inputs ("pure" noise)

drive the state of a model neuron through a random walk. Thus, the

state wanders aimlessly from its initial condition. Figure 12b

illustrates a typical result from computer simulation.

Mcar Deprivation (MD) and Reverag Suture (RS):

Deprivation of patterned input to a single eye by way of eyelid

suture results in a large shift in ocular dominance favoring the

II

functional eye. The theoretical explanation for the HD and RS

-- - - - -----4
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phenomena is subtler than for NR and BD and is discussed below. The

MD environment is represented by a 2N-dimensional vector generated by

concatenating N noise components to an N-dimensional pattern (or

pattern-plus-noise) vector. Note that computer simulation (Figures

12c and 12d) supports the success of the model in accounting for the

experimental results.

Artificial Strabismus (AS): The AS environment is toroidal (or

pseudo-toroidal). being periodic over two independent parameters,

namely the left-eye orientation and the right-eye orientation. Thus

the AS inputs are 2N-dimensional concatenations of independently

selected patterns. Computer simulation suggests that only monocular

states are stable. Figure 12c (MD) reflects a typical AS

simulation. Occasional trials show binocular selective states (the

preferred orientations of the two eyes appear to be uncorrelated)

that survive for some time but eventually become monocular. Figure

13 shows the final state plotted over a toroidal environment.

Orientation Seletiviy. an u ilrnmia

Detailed examination of theoretical behavior in an MD

environment highlights a subtle relationship between orientation

selectivity and ocular dominance. Here it is explained why on the

one hand deprivation drives synapses to zero efficacy in an MD

environment. and on the other hand deprived synapses fluctuate

randomly in a BD situation. It is shown that the efficacy of

'I . M L
i __________________ ______

- , _____________ ________________
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Xi urL 1,uig2 a lirentA. The
neuron tunes along only one parameter. This environment is

analogous to an artificial strabismus paradigm.
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deprived synapses decreases exponentially if the neuron is highly

selective over the environment of the opposite eye. Hence it is

predicted that in an MD envirolment, selectivity development in the

open eye must precede loss of responsiveness in the closed eye

(Figure 14).

Consider a neural state (m m* q) where m *and a
l~ r .q) ihr m n are

synaptic vectors corresponding to left-eye and right-eye inputs

respectively, which is driven by patterned input to the left eye

(d1(t) = d(w(t)) periodic over w) and pure noise to the right eye

(dr(t) = n(t) uniformly distributed about 0). In general, the

state m* fluctuates randomly and m; is driven to a high-

selectivity equilibrium state (m,,mr9q) where (20) is satisfied.

<O(m*.d,,q*) d(w)> M 0 (20)

The expectation values of m and mr over the entire

environment D(w.n) can be calculated:

(rj~l- <O(m*-d~w) + m-~*dw>wn r jn

- 0 + <0l(m*.d(w),q*)[m*.nd(w))w,n (21)

-0S (ir) n - 4((m*.d(w) + m*.nq*)d(w))

(,(m.d(W) ,q*) [m nn)n (22)

" *'d(w)'q*)). <(m*n )"n
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Figure JAn. Mnocular deyAtgn ".. Computer simulation
illustrates the modelts prediction that the neuron must first
become highly selective to patterns from the open eye before
that eye dominates the neuron.
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The expectation value <(mr •rn)n> n is parallel to mr. For

an N-cube with each component ni varying between -a and +a:

+
<(m," n)ni~ ra n' mjnl dnl,"'d

-a -a

Consider a constituent integral over nk:

r
m_ nI 2jnjni  if ik and jik

-a m J n k 0 if i-k or J-k but not both

23r5a m if i- j- k

Hence:

1 -12 3r a 2r
((m, n)ni) -n -(2) (2a) - -.ini m -1 i (23)

(2a)

A similar calculation is done for n distributed on an N-sphere:

(("j ITn - n n (n n mr (24)
)n Mr r mr7 r

By spherical symmetry:

n2 1 1 1 a) n-O
M)n " if<n'n>n = N 1V(Na) 1V

1 x2 dV
N V(Nia) fV

Since V(N.x) = VNxN, dV = NVNxN-ldx

S2a R11 VNaN2a 2t ~vxN+ dx - --

'mn V(N,a) e Nxa- -- N+2mr n 0 VNaN N+2

2

(m-n)n - (25)
4 r n N+! Mr

. ..
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Thus by (22) one sees that <ir>i.n is parallel to mr and

that if <0I>w is negative, then mr decays exponentially. Since

*i is negative when m..dl(w) is near zero, which is true over

most of the environment when m is a highly selective state, such a

state should satisfy <0l> 0<O. Low selectivity states are thus

unstable in two senses: (1) m is unstable with respect to dL and

(2) <Oi> may be positive thereby driving mr to higher magnitude.

SSelectiVity imzaol

The functions * and * satisfying (26) drive the model neuron (5)

to minimum selectivity.

sgn(O - sgn(x).sgn(x - qP)
(26)

*S = B(x-q) ; 8> 0

where 0 < p <

Note * S= *D and that (11). (12) and (26) can be reformulated into a

single model (27).

sgn(F (xq)) - a sgn(x) sgn(x - qP)

*F (x,q) 3 (x-q) ; > 0 (27)

For a>O and p>1. the cell seeks maximum selectivity; for 9<0 and

'~~~~ ~ '"T "OII II I I P.. OIt
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O<p<l. the cell seeks minimum selectivity; otherwise, the system

diverges.

TIM (1) impgainnal .Satm

Again consider a one-synapse cell driven by a steady, clean

signal. As in the case of the D-cell, the S-cell equation (26)

reduces to a deterministic, autonomous system (28). All trajectories

converge to (1.1) unless (0,0) is the initial point.

;(t) - *S(m(t).q(t))

;(t) = 8 (m(t),q(t)) 
(28)

The origin is unstable for all OS and there are no limit cycles

(Theorem 2).

Theorem 2. With the exception of (m(0),q(0)) = (0.0). all

trajectories driven by (28) go to (m(t).q(t))(ll) as t-,-.

Proof. As in theorem 1. consider four regions (Figure 15).

: (+I, + ) : RI

sgn)(-1. ) : R2~(89n im. $gn 4)
(- . -1) : R3

" (+1. -1) : K4

The point is monotonically driven to satisfy the simultaneous

13 7 " M -... . .
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conditions r0. ;=O and it is always driven am from the axes m0o

and q=0. (QED)

Higher Dimensionalitis

A two synapse cell in a two-pattern (independent) environment is

driven to (mlm 2 .q) = (1.1.1). a zero selectivity state, with

the exception (in a noiseless environment) of the initial point

(m(O).m 2(O).q(O)) = (0.0q 0 ). The other state of zero-

selectivity, namely the origin, is always unstable. The highly

stable asymptotic behavior of the (1+1)-dimensional system is

maintained in (2+1) dimensions (Figure 16).

Due to the parallel aspect of the modification, patterns driving

the cell below qP are encouraged and patterns yielding x > qP

are -discouraged- (Figure 17). This, combined with the influence of

q. causes the responses to the various stimuli to converge toward a

common value. This can be achieved for sets of independent patterns

(Figure 18a). For dependent pattern sets it may be possible. but not

in general (Figure 18b). Thus. qujitatixeU. in the sense of Gati

and Tversky (1982). the synapse vector seeks the pattern component

most common in its environment.

Ca I0
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Figure 9, q is idealized to be the expected value of =,d over
the orthogonal environment ((.)*(0.1)). In this figure

p =0.5 and both nuliclines (parabolas) are LzaL.1
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In this section, an (N1)-parallel model is presented (29).

Again *(xq) is bounded and continuous. The function 8(q) gives the

value of x for which the signs of * and * change.

sgn( ) a u sgn(x) sgn(x - 6(q))
(29)

S aB *(x,q) x
il >

It need not be specified as a power function as was done in the FP

model, however it is subject to certain restrictions. The a

parameter determines whether the cell generalizes (O=-l) or seeks

maximum selectivity (a=+). Not only is this model parallel in the

sense of (5) (ild), but the change in the neuronal state (1.4) is

parallel to the (N+1) - aciiy vector (ad.Bx). Thus the system

can be expressed more concisely in terms of an -(N+I) formalism"

(30). The model is given in a general form in that e(q) is not

specified, so that overall properties of the system (30) can be

examined. A more specific example is presented in Part IV.

() m9 q) (xxq )(30)

where sgn(§(xq)) = spn(x) sgn(x - 8(q))
a=ml ; B>0

O(q) nondecreasing & continuous

. ., , ~.. :.. ........................................ ,. ..,, . .-, '  :
' 

'
' i ... . . ='f . .. . , . . ' - K" ' , ,
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The one synapse - one pattern situation is examined first.

Synapse m receives a noncorrupted steady signal d-1. and so x=-m

giving (31).

- *(m,q) B (31)

{+1 : D-cell
-1 :- :S-cell

The trajectories in the m-q plane are seen to be parabolas (32)

since (31) gives the path derivative - - om (Figure 19).dm

qB c 2 2q "qo + 2 ' m2 - 00) (32)
(32

For the S-cell. the conditions on 8(q) are that it be

continuous, nondecreasing and positive on some domain [qa,qbl.

If qa>O. then e(qa)=O and *(x.qa)>O for all x. Remember that

xC[O.-). If qb is finite then O(qb) is not and 4(x. q>qb)<O

for all x.

The D-cell needs additional restrictions on 8(q) for global

stability of (31). If q(t=0) is very large, the synapses vill -die-

- i.e.. (m~q) converges to a point on the q-axis. This is not a

serious problem. If necessary, restrictions can be put on the

4initial state. Possible divergence of the system is more

problematic. If O(q) does not increase sufficiently fast as q gets

A' _ _
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large, some trajectories (m(t),qCt)) will grow without bound.

Therefore, we impose (33) on 6(q). Note that there are many

functions which can be used for bath cell types.

lim q) = 0 (33)

Unlike the FP model, this system does not have a finite number

of isolated equilibrium points. Instead, the equilibrium points

define a locus consisting of the q-axis (m=0) and the curve m=e(q).

All points satisfying m=(q) are the attractors with the possible

exception of (O.qa). Points on the q-axis can be either stable

(attractors) or unstable equilibria. For aq>aqa they are stable,

otherwise they *repel" states.

StLablit.L in uaia~ environments

Isolated attractors are generally stable in environments

*corrupted by a not-too-large noise level. However, continuous

equilibrium loci are subject to noi e-driven -creep- effects.

Chaotic perturbations may preferentially drive the neuronal state

along the equilibrium surface. Consider a one-synapse cell

receiving a signal d(t) = 1+ e(t) where c(t) is a stochastic variable

uniform on E-a.aJ where a<<l. The stability of the system (34) can

be analyzed by expanding about an equilibrium point (moqo)

where m= O(q).

V- _ _ _ _ _
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(a) D-cell m

(b) S-cellm

Figure~ Par.abolic. txra-ject.oxrie. The (1+1) neuron follows a
parabolic path in the m-q plane for any initial point. The

function e(q) determines at what point 2along the trajectory the

path direction changes. Here e(q) q. (a) D-cell.
(b) S-cell.



(- *(m+mc(t)q) (34)
q am + $ME

The effect of noise on the stability of q-axis equilibrium

points is not relevant to this thesis. The expected value of (i. 4)

is calculated over c in (35). For either value of 6 thl bez

prturbation tinl a a trajectoAy and hence the neuronal

state tends to return to (MOO qo).

aa

" a r_-a 4tM (mo'qo) mOc  IM0 (I+e de

M a r E (1+) dc (35)

m "0 (am)

(21 ZDimensions

The selectivity properties of this (N+l)-parallel model for a

two-synapse cell in a two-pattern environment (dl.d 2 } resemble

those of the FP model. However, we again have a locus of connected,

rather than isolated, equilibrium points. These points lie along

four curves intersecting at the point (ml,m 2,q) = (0,0,qa ).

The four curves correspond to the following intersections of

surfaces (Figure 20):



q

CO

Figur~e (..L2+1) A2= The four equilibrium curves and the
four regions defined by the surfaces m-d =0(q) and m-d 0 for
dC {dl,d 2 ) are shown for 8(q) q2 in an orthogonal
environment.
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Co : m.dl = m-d 2  0 (the q-axis)

C1 : md
1 = 8(q) ; m-d2 = 0 (maximum selectivity)

C2 : m'd I = 0 ; m.d2 = 8(q)

C1 2 : m-d
I = m.d2 = 8(q) (minimum selectivity)

The surfaces partition the space into four regions, according to

the sign of * resulting from each of the two patterns. For

mdl > O(q) and md 2 > e(q). q increases until the one or both

patterns cannot stimulate the neuron above 8(q). Neuronal states in

the opposite region (mod < O(q) for both patterns) are likewise

forced out of that region. Therefore the state generally finds

itself in a region -between- the surfaces m-dl = 8(q) and

m.d2 = 6(q) or, in the case of the D-cell, possibly on

the q-axis (if q(t=O) is "too large").

Once the trajectory is between the two surfaces, that is for

m-d' < O(q) < m-dJ where i 0 j, its behavior depends on a. For

a-+l, the trajectory converges to some point on C. and hence the

neuron becomes maximally selective whereas for a-l the trajectory

goes to a minimally selective point on C12.

HihrDimensionalit ies

A linearly independent environment of N patterns admits 2N

equilibrium curves in the (N+1) - state space of the neuron. These

curves lie at the intersections of the surfaces m'd' O(q) and



m.di  0 for i =1.....N. Of these. two (one trivial and one non-

trivial) represent states of minimum selectivity and N represent

states of maximum selectivity -- one per pattern.

The behavior of the model in more complex environments is

difficult to analyze. Numerical techniques suggest that for

circular environments, D-cells seek maximum selectivity and S-cells

seek minimum selectivity. Toroidal environments have also been

simulated for which the pattern depends on two stochastic parameters

and a6. Computer results indicate that a D-cell tunes with

respect to one parameter only (see Figure 13) and that S-cells seek a

uniform response across the entire environment.

77 7
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Contr LU jMo (+l)-iaralll. Mod

A function satisfying the conditions on 0 in (30) can be

constructed (36) as a q-coupled difference of tvo non-negative

monotone increasing saturating functions satisfying certain criteria

(Figure 21).

f(x,q) =- a2(x) - qal(X) (36)

The subtractive nature of 0 suggests an antagonism between two

synaptic modification mechanisms - one potentiating :strengthening).

and the other depotentiating. It is seen that as q varies. 02 and

qo. intersect at different values x=e(q).

There are tvo conditions that both a, and 02 must satisfy to

let O(x.q) fulfill the conditions of the (N+) parallel model:

First. 01(0) = o2(0) 0 and second, the sign of the Wronskian

sgn(W(o1 (x).o 2 (x))) = a for x>0 (Theorem 3).

3hporpma 1. If sgn(W(Ol(x). 02(x))) = a for x>0 and

a (0 ) = 02(0) = 0. then sgn($(x.q)) = a sgn(x) sgn(x-e(q)).

Pr.aon. The proof is as follows: First, since #(0.q) = 0 for

all q. 0 (0) = 02 (0) 0 must be satisfied. The other zero of

*(x.q) is at x= 0(q). or q =6-1 (x) 02(x)/Ol(x). The slope of

97 'T , .- - . : =-:-. ' - - _ - ' -- 7 . . -- i ' "", .. T T .- : ' -& , -- :
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, * with respect to x is evaluated (37) at this point and shown to be

of the same sign as the Wronskian W(o,o 2).

a 2(x)

: " a]x) 1% 2 2lz  (37)

1 Ia1() a2 (x)

a Ix i j(x) oa(x)

I --- ~-W(o1 x W.0(W)

Therefore if sgn(W(OlO 2)) is positive or negative definite for

x>O, so is * x(X=e(q)) and $ = o2-qoI has at most two zeros: x=0

and x=d(q). D-cells and S-cells can be characterized by

sgn(Ox(x=6(q))) as well as by a since a sgn (0,(x=e(q))). hence

a=sgn(W(o 1 0 2) )

a&L AL L.WY*Ay=

As in (13), the quantity q(t) is a kind of time average of the

the post-synaptic activity. Equation (38) can be solved for q(t)

using an integrating factor to give the solution (39).

! iw

.ll ..N .. . M

*Mk
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Mq(t) - W(o2() - qol(x)) x (38)

q(t) - q0 exp[-BJo X(t) 1 (x(t")) dt"

'. :'(39)

3+ -t ) x(t")o(x(t"))] a2 (x(t')) x(t') dt'

Note that the first term vanishes as t0. Again. q(t) is seen

to be an exponentially damped average of some measure of the cell's

activity (in this case xo2(x)).

SD= allowed functions L

.S

For simplicity's sake. only functions a, and 02. which are

identical in form while having different horizontal and vertical

scales, are considered (40).

Slet oix) 3 a(n) rni  > 0 (40)

where o(O) -0

a() 1 1O11) 1 (x-n, gives 1-max of FL)

lim OWx - I ( is max(a 1 ))~x-

o'(x) 0 for all x
*i

I ,

., - .. . . . . _-7_.u. .. :. - . . ... ... . . . --- - " "' T 2
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Since the product UIP2 can be factored from the Wronskian. W is

independent of P, and P2 Thus* consider the determinant

The following Theorem (4) establishes a sufficient

condition on a so that *(xq) will have at most one zero for x>O.

Theorem &, If O(x) satisfies x(o') 2 - xao" - Go' > 0. then

for a given value of q, there will exist either one or zero values

x>O for which (x.q) = 0. depending on the value of q.

Pro W((-).(--)) is evaluated and expressed so that itsnI  2
1 ~2

sign depends upon a difference of two terms, separated according to

Sn 

(41).

x _n2
-a(!-)a(-)x

111 n2 n( na1 Cy

Hence, the condition (42) is sufficient to our purpose and we

see that ago (#,(O(q),q)) depends on the sgn (n2-nl)"

--- *I,, - *'. J I |
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,1.

d4 0~ 0 (42)

for all x>O , n>O

The derivative with respect to n is evaluated and the substitution

a - completes the proof (43).

a~, ' 1 y(A)-12"(1) - a , -I ) + VS)]

ni ro(!) OoAn n (43)

-sa(s)o"(s) + s(ao ()) - a'(s)a(s)
2(no(s))2

=> x(o') - xao - aoo ) 0 is sufficient! QED

Under this formulation the feature abstracting quality (S or D)

of a neuron depends on which of two saturating functions increases

more rapidly rather than on the sign of a variable in the model's

- differential equation. A mechanistic interpretation poses two

biochemical processes as antagonists modulating synaptic plasticity.

each increasing with the activity of the postsynaptic cell. The S/D-

nature of the cell then depends on certain details of the functional

relationships relating each process to the cell's activity.

Among functions satisfying the condition (43) are those

sigmoidal functions belonging to the class (44).

7, 7N
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(x) P P >  (44)
+ 1

The parameter p determines the sigmoidocity of the curve. Near

x=O, the function behaves like the power function xP. This

suggests that one or both of the functions ai may be linked to the

firing rate of the cell, which is seen (Chapman* 1966) to be an

increasing bounded function of the summed potential with a threshold.

This system is no longer precisely of the form (30). While the

properties of the D-cell model are maintained, the S-cell version of

this variation is somewhat different. Here, and and are awy.. . i x

the same sign: that is, there is no a. Thus, the system is written

in a more appropriate form (45). where o satisfies (43). For a D-

cell. n2>nl whereas the opposite holds for an S-cell.

in(- ) (d) (45)(41 a 2  x x

For N=1. the system is always bounded. As in (30), the synaptic

weights may vanish altogether if the initial value of q is too

large. Sample trajectories are shown (Figure 22) to converge to

points on either the nullcline or on the q-axis above the nullcline

I.
* i -4 ' *,,

.. ... ... " ' i . ::i i: : , / I
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Figre22 Tra tctories a x~ha Ayjlma IA4 . The function
OW ) x/(x~l) was used here. No'e that for the two cases. the
trajectories lie along the same parabolas. (a) nI > 2 :D-

Icell. (b) nI2 < :i S-cell.

k~iI m om....a..i~.h~bd~.4h~.I~, ..... ~ ~ .' . - ~ ~ ~ '
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locus which depends on n, and n2 . Note that, in contrast to

Figure 19, the trajectories for the two cell types are the same in

both cases and the nullcline is not.

The surfaces o2 (m-d') - qol(m.d') 0 for i =12 are

sheets defined by a q-translation of the nullcline above. The

pairwise intersections of these nullclines and the planes m-di 0

with each other consitute the locus of points in equilibrium with the

environment {dld 2 }. Whether the function x = &-1 (q)

0 2 (x)/Ol(x) is monotone increasing or monotone 
decreasing is seen

to determine the feature abstracting properties of the neuron.

Figure 23 illustrates the (2+1) dimensional case. For e(q)

between m-dl and m'd 2 the neuronal state is driven toward

maximum selectivity for n2>nl and toward minimum selectivity for

n2<nl . For n2 fixed, as nlincreases from less than n2 to

greater than n2' the surfaces *pass through one another, thereby

reversing the directions of the trajectories in the m-projection. At

nl=n2 the surfaces coincide and the neuron seeks neither maximum

nor minimum selectivity.

(

I iiiIlII IIII_..... .._____......___-___--- --_ .__"'
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In higher dimensional sys.ems, computer simulation indicates

that for n2>nl, the model neuron always seeks maximum selectivity

and for n2<nl, it seeks minimum selectivity. Simulation of

binocular stimulus environments to D-cells give results consistent

with the experimental data reviewed in Part Ic.

4I

I
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IN, Aa Ensemble Meho LoL Electrophysiological Test~ingo 2LSn i

ModiicaionHypotheses

A,. ALsIDmL.Q..icStailt jjj.~ Invest i2at ion DI. Eqiirium RtaZtgi

Both experimental and theoretical considerations allow

elimination of several hypothetical excitatory synaptic modification

rule formulations. In particular a good formulation should (1)

allow for both strengthening and weakening of a synapse. (2) not

allow synaptic strength to grow without bound, and (3) not allow the

sign of a synaptic strength to change (a synapse must be always

excitatory or always inhibitory).

Properties (2) and (3) are particularly relevant to the present

note. Experiments show that, with repetition, conditioning

stimulation that initially produces increased synaptic strength is

eventually ineffective for producing change. That is, the continued

stimulation drives the synapse to an equilibrium state (the approach

to equil'brium may be asymptotic). Likewise experimental conditions

which initially depress synaptic function are eventually ineffective

and, particularly from a theoretical viewpoint, provide no reason to

posit synaptic influence reversing modes from excitatory to

inhibitory or vice-versa. Of courae formulations that predict

asymptotic neural states that change due to shifts in environmental

statistics are desirable.

S___ __ TOWN

... "c, . . " ,' " . . . .. .' , , : . . .. i: .... : -: -ii; .a
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Based on these considerations, we now restrict our concern to

formulations that yield this a3yMptotic stability. In fact this

criterion is the basis for the proposed experiments and yields a

method that is insensitive to many of the problems of other classes

of laboratory paradigms. By performing all experiments after an

initial asymptote has been reached, actual values of postsynaptic

excitation and presynaptic frequency can be ignored.

Experimental data (see section Ne) have revealed that the

strength m of a synapse can be increased or decreased depending, at

least in part, on the presynaptic activity x and the postsynaptic

activity y. As a plastic synapse adjusts to a constant activity

pattern (xo,yo), in its pre- and postsynaptic elements, its

efficacy levels off G-0, where the dot indicates derivative with

respect to time). This equilibrium state can be perturbed, shifting

to either positive or negative values, by altering the constant

activity pattern by an amount (dxdy) to (xlyl). The dependence

of the sign of m on the signs of dx and dy reveals primary

information regarding the form of synaptic modification rule (46) and

secondary clues to plasticity mechanisms.

Si(X% y, . .) (46)

.................,,...,.,....,,,,,..,.................
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The condition m = 0 thus implies that some quantities varying

with x and/or y have achieved a static equilibrium which can be

disrupted by perturbing the activity pattern (x.y). Thus by

appropriately adjusting (x.y). one ought to be able to induce

potentiation (I > 0) or depression (& < 0).

By investigating the dependence of the sign of I on the various

manipulations (dxdy). one can determine the approximate form of the

modification function (46) in the neighborhood of (x0 .y0 ). Let a

given experiment be characterized by (sgn dx, sgn dy) where each

component is a member of the set (+, 0 ,+) and let each possible

result be written as (sgn dx, sgn dy; sgn dm). For PxAnle, the

paradigm x, > x0 and yl = Yo is expressed as (0.0) and if the

result is i < 0. then we would write (+,0 ; -).

There are nine possible experiments of this type. The (0,0)

experiment is assumed to have a null result, so considering 3

possible results for each of the remaining eight paradigms gives

38 or 6561 combinations of possible outcomes. Certain (seemingly

inconsistent) combinations imply very complex modification

functions. We will confine our analysis to predictions of some

simpler theories.

Consider a set of (bi)linear approximations (47) to i in the

tneighborhood of an equilibrium state in which a constant activity

pattern (x0 ,Y0 ) has driven the synaptic efficacy to a value a.
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K(a)(x 0 1yom ) (x - bX) (47a)

SK (b) (x0 ym) (y- b) (4Tb)

K(c)(xOyO,m) (x- bx) (y- b ) (47c)|y

The equilibria in these hypothetical systems result from a

balance in (a) presynaptic. (b) postsynaptic, or (c) both pre- and

postsynaptic (independently) terms. In each formula. K is positive

(or negative) semi-definite and considered constant in these

approximations. The zeros, or balance points, bx and by vary

according to their own rules follina A .iz £gZM AAzUnrA m Lo ba

LAIL £flugh that we can reach equilibrium in the laboratory and

gAjiQX amug. that we can measure the immediate change in m4i
resulting from the perturbation.

These formulae represent classes of theories for various neural

systems including probability learning (47a) (e.g. Levy & Desmond,

1982). development of specificity in visual cortex (47b) (Bienenstock

et al, 1982). and associative memory (47c) (Kohonen, 1977; Sejnowaki.

1977ab). The predictions of the paradigm for each of these models

are given in Table 1.
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The above analysis for individual synapses can be extended to

population stimulus-response paradigms. Instead of measuring the

effect of a single afferent upon a neuron, consider the macroscopic

effects of a stimulus pattern over an axon bundle on the target

population. Just as the response of a single cell to a test pulse

in an afferent axon is a measure of synaptic efficacy, the net

response potential of a population to a test pulse pattern is

similarly a measure of the ne f ficac of the yAUi ensemble

corresponding to the afferent bundle.

As all neurons in the postsynaptic population approach an

equilibrium steady state in response to a constant stimulus pattern.

so must the syn uaki ensemble Cicacy (SEE). The relationship

between the SEE and the individual synaptic strengths is closely

related to the concepts of Micros tat and magxaALU& introduced

by Amari (1974) in his method of statistical neurodynamics. It will

be noted that Amari is concerned with activity levels rather than

synaptic states, hence one should be aware that the test stimulus

evokes an activity level that reflects the synaptic state (either of

a single synapse or a synapse ensemble). The SEE concept can be

generalized to a vector or matrix quantity 2 describing the pattern

2 The terms -vector" and -matrix- are meant in the multi-

dimensional sense. Tensorial mappings between coordinate
systems do not hold in general.

40 jn nI I
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of ensemble efficacies of several bundles to a population or to

several populations.

Consider the special case in which several bundles

(SoS ,...SN ) project to a common population R, one projections

So. being much denser than the others (Figure 24). That is the

activity in S0 can completely dominate the response in the target

population thereby providing a convenient mechanism for experimental

control of postsynaptic activity. Thus the activities both pre- and

postsynaptic to the synapses rm .hg p ions can be

imposed by the experimenter. However. the dense or modulatory

projection modifies RasUi.y. that is the activity postsynaptic to

this projection is principally dependent on the projection's

(presynaptic) signal. The synapses from the sparse projection

undergo active modification in the sense that they are driven by

activities with no strong causal relation.

Caution must be exercised with respect to the passively

modifying modulatory projection. Assuming this projection is

plastic, one must recognize that a constant stimulus to this bundle

does not necessarily elicit a constant postsynaptic response.

Therefore before one proceeds with an equilibrium perturbation

paradigm in a dense-sparse system. both the sparse SEE under

examination Mnd the dense SEE must achieve sufficiently stable

activity levels. Presynaptic perturbations, that is perturbations in

the stimuli to the sparse bundles, can be used to provide

4.!4
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((b)

Fiure& 2A,~ Ihg affre~nt yI-L= A proect AC.a . A p1latign IL.
(a) The population R is the common target of several axon
bundles St The projection So is much denser than the
others. tb) A single cell in R.

I I
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information about the x dependence of i (the middle columns in

Table 1).

The investigation of postsynaptic effects is not so

straightforward. To alter the steady-state activity in R. we must

change the stimulus delivered to S0 . thereby forcing a change in

the corresponding SEE. This unfortunate aspect of the experimental

j design is not fatal. The procedure's validity can be ensured by

monitoring the SEE from So. As long as the change in the efficacy

of the So ensemble follows the change in the So stimulus, it is

valid to infer that the activity in the target population is

similarly affected.

However. if the SO-SEE changes in the direction (+ or -)

opposite to the perturbation in the So stimulus, it is difficult

or impossible to ascertain the change in the activity in R. If the

connection is excitatory, the initial change in the SO-SEE will

most likely follow the change in the stimulus. On the other hands

as is seen in the next section. certain models predict that the

change in the net asymptotic efficacy value a the change in

the stimulus after initially following it.

I
fj PAssiia Porengiation

Investigation of passive potentiation is not only a necessary
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control stage for the experimental framework we have outlined. It

may also be used as a self-contained technique for distinguishing

between certain associative models. As a control for active synapse

modification experiments, passive potentiation in the dense

projection So must be understood for the reasons stated in the

above section.

In this section we will examine the utility of a passive-

potentiation study as a stand-alone experiment to reveal traits of

the modification process that are important from a mathematical

standpoint. Consider two models both having postsynaptic

equilibrium points y = by as in (47b), but differing in their

evolution equations for the balance point itself (48). The time

scale for the modification of b is assumed to be slower than that
y

for m. Notice that equilibrium can be attained only when both m and

b vanish.
y

L - 6 (y - f(y,b )) (48)

If f(yoby) by a then there is a single criterion for

equilibrium, namely when y = by . Otherwise (as in the FP model),

the system has a much more restricted set of equilibrium points. In

this case y must simultaneously satisfy two conditions and so in

general only certain isolated values of y are allowed.

3 The expectation values of m and b over their pattern
environments should be zero at eqhilibrium. Tn the experi-
mental paradigms discussed here, only one pattern is presented
for the duration over which the expectation values are
integrated.ni. 1

Ul -- = .- . .. . . . . . ....
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Consider arn experiment similar to that described in the last

section. in this case for the measurement of the SEE of a dense

(controlling) projection. As before, the synapse ensemble is driven

to asymptotic efficacy. Hypotbetically, (47b) has been accepted as a

description of ;i local to equilibrium. The ne~t step is to determine

whether (48) can be expressed with f(y~b y) = b.When the system

settles down, the constant stimulus to the axon bundle is shifted and

again held constant. If the condition y =by alone is sufficient

for equilibrium, the prediction of the coupled equations (47b,48) is

that the SEE will monotanicall shift to a new asymptote.

On the other hand, if y is forced to the same equilibrium value

by both constant stimulus level- then the SEE must initially follow

the stimulus change, peak at an extreme (relative minimum or

maximum), and asymptotically seek a net shift opposite to the

stimulus shift. To appreciate this, consider a more detailed

example (Figure 25). The synapse ensemble is initially potentiated

to a steady state value Ml by a stimulus of intensity XI over a

time period Ti, after which a stronger stimulus X2 is delivered

for a period T2 driving the SEE to a new asymptotic value M2.

Following (47b) in the short time scale, an initial synaptic

increase is expected. The weak criterion, under which y =by is

sufficient for equilibrium, allows the system to achieve a second

steady state without reversing the trend. Otherwise both asymptotic

population responses must be equals and since X2> Xthe model

Ipredicts M2 < Ml*



SEE

T2

behavior (TI), the prediction for The period following a post-
equilibrium stimulus shift (T )is different for (a) f b
than for (b) other function~s

4 -~ -T,
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These predicted behaviors of the SEE result from the interaction

between the coupled differentiil equations for 1 and by. This isyis

illustrated by the global state diagrams in Parts II & III (Figures

8 and 19). Even though these figures represent single synapse

cells, the SEE of a multisynaptic neuron should behave accordingly.

In Figure 26, we see that a shift in the constant stimulus value

causes a corresponding shift in the nullclines. Thus new "rules-

are established in the state space and the synaptic strengths must

obey them. Note the direct approach allowed in (a) as opposed to the

spiral trajectory in (b). The projections of these paths on the m-

coordinate give the T2 time courses illustrated in Fig're 25.

D, Tesing Nohbba Models

Nonhebbian (in the sense that they are not multiplicative)

models are not described by any of the formulations in (47). hence

they predict combinations of experimental results not included in

Table 1. These theories are by no means excluded from our

experimental approach. The only requirement is that one be able to

predict qualitative behavior of the SEE near equilibrium -'or various

paradigms. In this section we again contrast the predictions of two

variants of a class of models.

Recall the presynaptically balanced modification rule (47a). As



O D SC R IM IN A T IO N A N D G EN E R A L IZA ..U ) B R O W N U N IPROVIDENCE RI CENTER FOR NEURAL SCIENCE P W MUNRO
UNLSIID JN8 R8N01-1K03 / /6 N

L



-1.0

Si

MICROCOPY RESOLUTION TEST CHART 

t

i 

NIAL BUR AU OF STAN ARDS- 963-A

*. 

I

MIROOY EOLTINTETCIR

I5l.A.BUEUO TNDRS16-

• •

"3 .

N



by
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a-Pro3ectiols of these curves give the predictions for X in the
previous figure.
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a hebbian rule, the expression for a should be factorable into pre-

and postsynaptic components* so the tern (z - bz) should be

independent of postsynaptic vaciables. Consider a nonhebbian

generalization of (47a) in which the equilibrium condition is

expressed as a hLIAu b2Lxm pre- and postsynaptic activities

(49).

it K(xoyou ) (x - f(y)b (49)Ix
Prediction combinations for various functions f(y)

are given in Table 2: (a) f(y) increases monotonically 1 (b) f(y) is

constant (hebbian case) ; (c) f(y) decreases monotonically.

I. AULLL L a £ha Z&- Raba

The principal input to the hippocampus arises from the

entorhinal cortexo an adjacent structure. Figure 27 gives a

schematic view of the bilateral pathway projecting from the

entorhinal cortex (IC) to the dentate gyrus (DG) in hippocampus.

Plasticity in the IC-DG pathway has been demonstrated by many

investigators. The response of DC granule cell populations has been

shown to increase as a result of strong electrical stimulation

applied directly to the pathway (Bliss &Louo, 1973). The so-called

long-term potentiation (LWT) effect has been sbown to lest for a

' - - . . . . . .. .' . ... ... ... ll I l t I E~ . . ..
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* period of months (Douglas & Goddard, 1975). Levy & Steward (1979)

have simultaneously stimulated contra- and ipsilateral pathways for

Hebb-like modification. The above development of the 533 approach in

this section was motivated by this system.

In the proposed experiment, stimulating electrodes are placed

(see Levy & Steward (1979) for details of the setup) in the left and

right angular bundles and at least one recording electrode is placed

in the dentate gyrus, either unilaterally or bilaterally. When both

I stimulators are active, the DG population response is under the

nearly complete control of the ipsilateral electrode. Thus, the

experiment is to observe the change in the contralateral SEK

(cSEE). A measure of the cSEE is the population voltage response in

DG to a single contralateral pulse.

One must be careful to follow the cSEK to equilibrium for each

driving stimulus. It is important to be aware of the possibility of

a change in the iSIE. Hence it may be a worthwhile precaution to

measure the iSER as well as the cSEE as a test of equilibrium.
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Tonic inhibition can easily be shown to increase specificity in

a selective neuron. Kzperimental evidence for this phsmoonom is

provided by Sillito (1975). The role of inhibitory activity insa

model neuron is discussed by Sieneastock (1960). In that paper it

is shown that cells lose specificity if their ideal" synaptic

inputs are confined to positive values. Anatomical data does mot

support the notion of the ideal synapse. Feed-forvsrd inhibition by

an S-cell to several D-cells all having roughly the same receptive

field supplies them with a Seneralized, tonic, magatlve input.

Consider a circuit (figure 25) in which a cortical D-cll

receives strictly excitatory patterned thalamic inputs d is

inhibited by a neighboring cell receiving the rome input. Assuming

linear response properties, the D-cell responds accordis to (SO)

where a and n are respectively the states of the 9 and I (inhibitory)

cells and k is the magnitude of the imbibitecy 1-3 eoupling.

x a md - k(n.d) a (a - ks).d (50)

By restricting a. o. and k to be o-negaive, the model is we

consistent with contemporary anatomieal theory. Mst a sad k

Tr.
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simple circuit. a generalizing unit (8cell) inhibits a D-celR.
mifomaly ever their comon pattern envirooment thereby

separating the patterns for the fl-cell.



nosmodifiable, the product kn provides an arbitrary offset since

d/dt(•-kn) - dm/dt. Provided kn is sufficiently large for all

patterns, there exist positive synaptic values mi for which the D-

cell has maximum selectivity. If the inhibitory contribution km is

too large the D-cell will never fire. Bence, the -allowed" values of

km over the pattern space are restricted by these two

considerations.

J

Taking a more robust approach, let the inhibitory neuron seek

minimum selectivity and let the k-synapse be modifiable. The S-cell

receives only excitatory input and therefore develops according to

the analysis in previous sections. Note the response x of the D-

Icell (50). As the S-cell approaches equilibrium, n goes to zero and

d/dt(mi-kni) = dmi/dt - nidk/dt. To maintain the properties

of D-cell parallel modification. k should modify aasire to m

(51). since they share the same post-synaptic cell.

k - -(x,q) • (S-cell output)
(51)

- -$(x,q) • (n-d)

Bence a and k change such that d/dt[(m-kn).d] increases if x~e(q) for

& given d. and decreases if 04x4(q). This circuit will tolerate a

much broader range of initial conditions than if the inhibitory cell

is nonplastic. The time course of both S and D response

characteristics for a (monocular) circular environment is given in

Appendix C using the 1? model.
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Note that a single S-cell nay inhibit several D-cells receiving

inputs from the same receptive field (Figure 29). each tuning

independently. Recent experimental data from Rubel and Livingstone

(1982) and Tootell et al (1982) support this kind of circuit. They

find periodic clusters of nonselective cells centered in ocular

4 dominance columns. Also. Rendrikson et al (1981) report having 
found

the GABA-synthesizing enzyme gluatamic axid decarboxylase (GAD) in

localized regions arranged in a strikingly similar pattern. Their

studies in monkey visual cortex reveal these GAD-rich areas to run

parallel to the centers of the ocular dominance columns.

This approach to resolving the ideal synapse has been developed

in cooperation with Chris Scofield who is applying it to a theory for

i tthe development of the topography of orientation preference across

rcortex.

As is mentioned in Part III* either of the saturating functions

a(x) may be related to the firing response of the neuron. Consider

the term qoi(x). Since q modifies in a hebb-like fashion, it may

reflect the efficacy of a synapse. Figure 30 depicts q as the

efficacy of an AuL&M (a synaptic junction having pre- and

-- -.



Eianz*. An. 12a MLI S *a A ugZA R-0210k~s~a A single S-cell
can provide contrast enhancing feed-forward inhibition to
several D-ceIlls.



ol(x)
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I £iguxn AUWI xua du l j= u1Loa n ± In this circuit the neuron's
j output is-fed back to the cell as the function al. This may

be accomplished via a special autaptic connection of strength q.
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I postsynaptic elements that are processes of a com on neuron (van der

Loos and Glaser. 1972)).

Whether qol(x) inhibits the fiin of the cell and whether

it is mediated by an actual autaptic structure are details not

considered here except for the following observation. If an explicit

structure mediates the subtractive term qa(x)s such structures are

expected to be axosomatic so they can interact with the quantity

o2(x). (Note that x is a AamatL a quantity). Calvet & Calvet

(1979) report the existence of axosomatic autapses in Purkinje cells

from young kittens. Such a structure must either function

differently than other synapses or give the neuron negative

feedback. In the latter case, the autapse would be inhibitory and

therefore this mechanism would only be expected on inhibitory

neurons.

The function f(x) = 27 ln(x+l) where x is the total membrane

current in pamp/cm has been computed by Agin (1964) from the

equations of Hodgkin and Huxley (1952) to give the response

frequency (pulses/sec) of an axon. Strictly speaking, this function

is not bounded, however it increases x=~ aslawl3 for large x and

behaves like a saturating function in other respects. Keep in mindI|

that x is bounded in practice. Note that by (52) this function
S

satisfies the condition (43) and hence by Theorem 4 it gives a w with

only one nontrivial zero.
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) . o(x) -ln(1+x) a'(x) al (x)-2

1+X (,+X)2

2 - xaa" -o " - + x ln(l+x) - !n(1+x)

xW) .. 2 a a 2 1x (52)

(1+X)

-1 (x- n(l+x)) > 0

for x > 0

The equation for the system in Figure 30 can be rewritten in tae

N+l dimensional form of (53). A formalism inspired by the four-

vector approach to relativity theory in physics can now be presented

~for the D-cell.

[2(x) - qa1(x)] (53)

Consider a linear range for 02 (x) such that 02(x) = x. Then

j the (N+1)-vectors (m.q) and (d.Ol(x)) can be considered to consist

of N components describing the spatial pattern of afferent activity

and connectivity to the neuron and a single Lar&IIX varying

spatial integration and self-connectivity. The metric g (54) allows

, ( x - qol(x)) to be written as the inner product of (m.q) and

(d.Ol(x)) giving (55).

0 (54

I ;Y 17-3- :
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* Li -(MD)D
(55)

where M S (m,q) D B (d,a 1 )

J Note further that all components of M are 'synaptic' and those of D

are measures of axonal activities. The postsynaptic activity x is

then just the N-product of a and d while the modulatory signal * is
the (N I) 'scalar' M.D.

Anavognistia M3ekLins

The simplicity of the approach in Part III, namely that two

mechanisms work against one another to give the modulatory function

*. is important. Together with the parallel aspect of modification

(mod). this permits the system equation to be separated into a few

straightforward principles of synaptic modification:

1. The efficacy of an afferent's signal to a given

target neuron varies over time in proportion to that

(instantaneous) signal. (Parallel modification)
*

2. Two mechanisms, which are dependent on the

postsynaptic activity, determine the ratio of efficacy

change to input signal. One strengthens the synapses;

the other weakens them.

3. The mechanisms are coupled by a variable quantity

'
-a V_. ,,, Ir

_
, l

_ ,'''
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which varies linearly with the postsynaptic activity

ALGnuiiu & 1ha am ratia.

* As long as the functional dependence of each mechanism on the

cell's activity satisfies (37)9 the neuron will seek either minimum

or maximum selectivity, depending on the sign of the Wronkskian

W(alo 2) alone. In terms of the earlier presentations of the

model in Part II the sign of W(O1 ,02 ) determines whether the

monotone function x = O(q) is increasing or decreasing. Thus it is

observed that the feature-abstracting character of a neuron can be

determined either by the relative signs of m and q (the parameter

a) ax the monotonic trend of 6(q).

I

Cognitive ~~tui

Four neuronal types can be straightforwardly defined based on

the models described here. The ALtzzx= of each neuron can be

tuned for either minimum (S-cell) or maximum (D-cell) selectivity

i over a single stimulus parameter and the Iafen action is either

excitatory or inhibitory. It is hypothesized that a network

consisting exclusively of these four cell types can be designed to

perform arbitrarily complex similarity-difference perceptual tasks.

That is, such a network should be able to construct a taxonomy

appropriate to any stimulus environment. Certainly more easily said

than done, this hypothesis is nevertheless difficult to disprove. It

,1* " l ' ' ri ! '
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is offered assa challenge to provoke the realization of the full

potential of such circuits. In this subsection some initial steps

to test this hypothesis are oWlined.

It must be emphasized from the outset that this discussion is

linited to the cognitive phenouenon of hierarchical abstractions i.e.

classification of stimuli by their similarities and differences. The

activity of each neuron simultaneously modulates the modification ofIall its input synapses in proportion to the activities of their
individual afferents relative to an internal time-varying scalar

parameter. This mechanism alloys individual units to evolve such that

they abstract simple (scalar) information from their stimulus

environments. In this sense, the above hypothesis and the

mathematical model given in this thesis are consistent with the

single-unit approach of Barlow (1972). io five dogmas rely on the

notion of a neuron's *trigger feature' -- that aspect of a stimulus

which excites the neuron. In the picture of the nervous system

presented heret stimuli drive neuronal states to become maximally

sensitive to certain trigger features. These ay be specific

'redundant patterns of stimulation' (D- cells) as in Barlow's third

dogma or generalized prototypical aspects comon to various stimulus

patterns that are rarely or never observed as pure inputs (8-cells).

As is cnmonly stated (implicitly or explicitly), the mrvous

system is thought to be organized in stages, progressing in

perceptual complexity from sensation to recognitions association. sad

V.~
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cognition. So. it is proposed* should the hypothetical feature

abstracting network be organiged. A Snetically coded macrostructure

lends efficacy and relevance ta environuentally influenced learning

at the cellular level in that whereas each neuron is modifiable and

adapts to informational qualities in its environment, the overall

design of the system is genetically progrmed so that increasingly

complex information is abstracted by successive stages of neural

processing.

Shepard and Podgorny (1975) point out that symbolic stimuli are

discretely coded while physical (nonsymbolic) stimuli vary

continuously along one or several dimensions: -For. whereas we can

vj *continuously shift & color (for example, blue) in brightness, hue.

and saturation until it becomes as similar as we wish to any other

* color (for example, green), we cannot continuously deform a word

'blue' into another word 'green' without passing through intermediate

configurations that are not words at all. Thus it is expected that

inputs to the higher level (more "gnostic") stages are more

distinctly separated than early (sensory) input patterns. Two candi-

dates for implementing such separation between inputs are strategic

coding and tonic inhibition. Vectors of very high dimensionality

tend to be nearly orthogonal and are hence intrinsically well-

separated. Tonic inhibition can enhance separation by quashing

responses to mediocre excitation.

TdThe perception of differences and similarites by bean subjects j

IJ
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has been studied by several researchers (e.g. Rosch, 19758 Tvorsky

and Gatis 1978, 1982). The considerable mount of data these studies

have generated ought to provide tests for theoretical hierarchy-

abstracting networks. For example. the response to stimulus pattern

A of a neuron broadly tuned to stimulus pattern 5 may measure the

perceived similarity of A to B. Such a definition is consistent

with Tversky's (1977) notion of esymmetry judgements expressed by

a contrast model (56). Such mathematical formulations provide a

means of comparing the performances of model networks with behavioral

data.

D(i,j) - of(i-J) + Of(j-i) - Of(J)
(56)4 0 0

As a final point, the value of this approach to understanding

the relationships between neural and cognitive phenomena is

considered. The complex information-processing capabilities of

biological networks can only be understood via the increased

application of sophisticated matbeatical tools to neuroscience.

Such efforts say provide brain research with the long-awaited

unravelling of the neural mechanisms tuderlying learning and

cognition. The mapping of a mathematical structure for neural

network processing onto a matbematical model of cognitive

performance is likely to be the unifying event in this wndertakig.
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Data from a variety of investigative modes (linguistic.

psychological, electrophysiological, and neuropharuachological) have

been subjected to analytical treatment of an increasingly sophis-

ticated mathematical nature over the last few decades. As synaptic

modification models evolve, a growing interaction between model

development and laboratory research is anticipated. The method for

electrophysiological testing put forward in Part IV is suited to the

current state of laboratory technique. It promises to narrow the

allowed classes of models for certain synaptic networks by revealing

.4 aspects of their plasticity properties near equilibrium states.
4

The notion of measuring a synapse ensemble efficacy (SEE) is an

important one. It is based on the following assumption: LA& £h. nat

ZsAUlflh 91 A aauu.L ma~Llaiz= IQ~ a £QnSL.M Iti-dus m u±z m I L

thl AGULU~ 2L PAa~ indiviy AM SaLTZISU t&nis LA lii J LA"

Lxa A= JJs of aLLsuz oL Aa&h xjxuap. This should be

considered as nothing more than a working hypothesis until it is

either proven false or no longer necessary as single-cell methods

improve. The notions of convergence and asymptotic approach must be

carefully considered by the experimenter, for they have a strong

impact on data interpretation.
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The terso "active" ad 'passive" modification respectively

correspond to the notions of supervised and u=supervised learning

used in theories of knowledge acquisition (see Cooper, 1973). bothi types require that the organism (student) abstract infotuation from a
stimulus environment (the world). Passive learning is a fully aLfr

ozamuinaprocess while active learning requires a teacher or

supervisor to rectify incorrect conclusions drawn by the inductive

system. Analogously* individual neurons or neuron populations are

students undergoing a process of synaptic modification so that they

learn to respond appropriately to their stimulus environment. If a

$ projection has sufficient strength to control a population it can

perform the teacher role in associatively modulating the plasticity

of weaker projections. lowever the strong projection must modify

passively unless it receives very weak stimulation wehile aother

I (convergent) bundle teaches-.
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Ag~audis LA. Ikea Mdel ls" A1 £ isal hau&n

j In multipattern stimulus eaviroments. D-cells seek maximum

* selectivity and S-cells seek minimum selectivity. In the context of

a one-pattern environments ag crvi: is no longer well-defined.

The parallel modification models (both S and D) described in this

thesis drive the synaptic state parallel to the pattern until (Al)Ii is satisfied (Figure 31a).

m-d O (q) (Al)

The addition of a decay term (antiparallel to a) to the function

* driving synaptic modification causes the components of a not

parallel to d to vanish (Figure 31b), thereby forcing a to a final

state parallel to d. The decay term must be carefully chosen to

ensure that not a does not vanish completely. Consider a linear

decay WA).

O (xq)d -cm (A2)

This works for sao sufficiently large, however the state a 0 is

unstable. By using a decay term that goes as a higher power of at

this problem is solved WA).

it *(x,q)d - claim (3
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Random Or noisy components to the signal cause perturb the

state. but if each modificatiwd to u is not too large (i.e. for mall

* time steps in the difference equation), the state remins nearly

* I ~parallel to d forever (Figure 31c).

Wh
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d

Fivazg, 31, Extraction a A igual frxm noise. A single pattern isj presented to a D-cell in this 2-dimonsional simuliation. (a) no
decay. no noise. (b) linear decay, no noise. (c) linear decay
with noise.

.;



So for B < #a. the real parts of both roots are Positive aid
therefore a liit cycle exists. For > 42,,the trajectories

converge to the critical point. Note that for Figure So 4.. =

0.785 was used.
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Dz-Ill about tbs Critical Point IaLL). (1.

The behavior of the system (14) is analyzed about the critical

point (1,1) in this appendix. From Theorem 1 it is understood that

* if trajectories diverge locally. they must eventually converge to a

limit cycle on a more global scale. Consider the perturbation

(u.q) =(14x,l*y). This gives a linear first order system (B1) for x

and y.

x ,*(nml,q-1) [x -2y]

- B [B-1)

The solutions of (BI) are of the form (32):

(x) (A X)e(r t) +(By:x)p(r 0) (B2)

vhere rl and r2 (both non-zero) satisfy (B3):

r 2 +(0 #,(1,1))r +* 0 (M3)

therefore

21(



Ananmdix . Q=U=CZ l5izLLL L jAn Z~ J.Bhi~L~l& A LAMCA.

The circuit used in this simulation is described in Part Va

(Figure 27).

ENVIRONMENT (10 patterns in 7 dimensions):

pat tern components

1.518 0.076 0.000 1.722 0.000 0.076 1.518

2 1.677 0.000 0.016 1.729 0.016 0.000 1.677
3 0.917 0.000 0.417 1.713 0.417 0.000 0.91/
4 0.224 0.000 1.235 1.717 1.235 0.000 0.224
5 0.000 0.000 1.732 1.732 1.732 0.000 0.000
6 0.000 0.224 1.235 1.717 1.235 0.224 0.000
7 0.000 0.917 0.417 1.713 0.417 0.917 0.000
8 0.000 1.677 0.016 1.729 0.016 1.677 0.000
9 0.076 1.518 0.000 1.722 0.000 1.518 0.076

10 0.644 0.644 0.000 1.711 0.000 0.644 0.644

Initial state of S - cell : 1 0 0 1 0 0 1
Initial state of D - cell : 1 1 1 1 1 1 1
Initial value of k : 0

pattern 1 2 3 4 5 6 7 8 9 10

t = 0 k = 0.00 q(D-cell) = 0.00 q(S-cel1) = 0.00
D-cell: 4.91 5.11 4.38 4.63 5.20 4.63 4.38 5.11 4.91 4.29
S-cell: 4.76 5.08 3.55 2.16 1.73 1.72 1.71 1.73 1.87 3.00

t = 100 k = 1.48 q(D-cell) 0.99 q(S-cell) = 0.99
D-cell: 1.34 1.53 0.67 0.04 0.00 0.00 0.00 0.00 0.00 0.39
S-cell: 1.06 1.10 0.95 0.96 1.04 0.94 0.90 1.03 0.99 0.92

t 200 k 2 1.11 q(D-cell) : 2.47 q(S-cell) 0.99
D-cell: 7.77 8.57 4.69 0.98 0.00 0.00 0.00 0.00 0.16 3.26
S-cell: 1.02 1.05 0.93 0.97 1.07 0.97 0.93 1.05 1.02 0.91

t 300 k 1.30 q(D-cell) 2.90 q(S-cel.) 0.99
D-cell: 9.63 10.73 5.41 0.36 0.00 0.00 0.00 0.00 0.00 3.46
S-cell: 1.02 1.05 0.93 0.97 1.06 0.97 0.93 1.05 1.02 0.92

-611 7 .0- .0 . .
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t : 400 k : 1.77 q(D-cell) s 3.15 q(S-cell) = 0.99

D-cell: 10.47 11.69 5.76 0.09 0.00 0.00 0.00 0.00 0.00 3.58
S-cell: 1.02 1.05 0.93 0.97 1.06 0.97 0.93 1.05 1.02 0.92

t = 500 k = 2.25 q(D-cell) : 3.23 q(S-cell) : 0.99
D-cell: 10.83 12.13 5.82 0.00 0.00 0.00 0.00 0.00 0.00 3.49
S-cell: 1.02 1.05 0.94 0.97 1.06 0.97 0.94 1.05 1.02 0.92

t = 600 k = 2.75 q(D-cell) 3.27 q(S-cell) : 0.99
D-cell: 11.08 12.45 5.81 0.00 0.00 0.00 0.00 0.00 0.00 3.35
S-cell: 1.02 1.05 A.94 0.98 1.06 0.98 0.94 1.05 1.02 0.92

t = 700 k = 3.25 q(D-cell) = 3.31 q(S-cell) = 0.99
D-cell: 11.33 12.77 5.79 0.00 0.00 0.00 0.00 0.00 0.00 3.20
S-cell: 1.02 1.05 0.94 0.98 1.06 0.98 0.94 1.05 1.02 0.93

t = 800 k = 3.76 q(D-cell) = 3.35 q(S-cell) = 0.99
D-cell: 11.59 13.09 5.77 0.00 0.00 0.00 0.00 0.00 0.00 3.05
S-cell: 1.01 1.04 0.94 0.98 1.06 0.98 0.94 1.04 1.01 0.93

t = 900 k = 4.26 q(D-cell) 3.39 q(S-cell) = 0.99
D-cell: 11.84 13.41 5.74 0.00 0.00 0.00 0.00 0.00 0.00 2.89
S-cell: 1.01 1.04 0.94 0.98 1.05 0.98 0.94 1.04 1.01 0.93

t = 1000 k = 4.77 q(D-cell) = 3.43 q(S-cell) = 0.99
D-cell: 12.10 13.74 5.72 0.00 0.00 0.00 0.00 0.00 0.00 2.73
S-cell: 1.01 1.04 0.95 0.98 1.05 0.98 0.95 1.04 1.01 0.93

t = 2000 k = 9.76 q(D-cell) 3.81 q(S-cell) = 1.00
D-cell: 14.63 17.00 5.42 0.00 0.00 0.00 0.00 0.00 0.00 1.11
S-cell: 1.01 1.03 0.96 0.98 1.04 0.98 0.96 1.03 1.01 0.95

t = 3000 k = 13.38 q(D-cell) = 4.12 q(S-cell) = I 00
D-cell: 16.55 19.49 5.14 0.00 0.00 0.00 0.00 0*00; 0.00 C .W
S-cell: 1.01 1.02 0.97 0.99 1.03 0.99 0.97 I.O2 1.01 0.97

t = 4000 k = 16.32 q(D-cell) = 4.20 q(S-cell) = 1.00
D-cell: 17.20 20.53 4.32 0.00 0.00 0.00 0.00 0.00 0.00 0.00
S-cell: 1.01 1.02 0.98 0.99 1.02 0.99 0.98 1.02 1.01 0.97

t = 5000 k = 19.28 q(D-cell) = 4.29 q(S-cell) = 1.00
D-cell: 17.85 21.58 3.48 0.00 0.00 0.00 0.00 0.00 0.00 0.00
S-cell: 1.00 1.01 0.99 0.99 1.02 0.99 0.99 1.01 1.00 0.98

t=6000 k =22.20 q(D-cell) = 4.38 q(S-cell) =1.00
D-cell: 18.50 22.62 2.66 0.00 0.00 0.00 0.00 0.00 0.00 0.00
S-cell: 1.00 1.01 0.99 1.00 1.01 1.00 0.99 1.01 1.00 0.99

t = 7000 k = 24.98 q(D-cell) = 4.47 q(S-cell) = 1.00
D-cell: 19.15 23.64 1.89 0.00 0.00 0.00 0.00 0.00 0.00 0.00

S-cell: 1.00 1.01 0.99 1.00 1.01 1.00 0.99 1.01 1.00 0.99

r w.
, k
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= 8000 k : 27.48 q(D-cell) : 4.57 q(S-cell) : 1.00
D-cell: 19.80 24.64 1.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00I S-cell: 1.00 1.01 0.99 1.00 1.01 1.00 0.99 1.01 1.00 0.99

t = 9000 k = 29.58 q(D-cell) = 4.68 q(S-cell) = 1.00
D-cell: 20.44 25.56 0.78 0.00 0.00 0.00 0.00 0.00 0.00 0.00
S-cell: 1.00 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.00 0.99

t = 10000 k : 31.25 q(D-cell) = 4.79 q(S-cell) = 1.00
D-cell: 21.03 26.38 0.49 0.00 0.00 0.00 0.00 0.00 0.00 0.00
S-cell: 1.00 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.00 0.99

t = 20000 k = 38.65 q(D-cell) = 5.12 q(S-cell) = 1.00
D-cell: 22.44 28.71 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
S-cell: 1.00 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.00 0.99

t = 30000 k = 44.92 q(D-cell) = 5.14 q(S-cell) = 1.00
D-cell: 22.24 29.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
S-cell: 1.00 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.00 0.99

t = 40000 k 51.30 q(D-cell) = 5.17 q(S-cell) = 1.00
D-cell: 22.05 29.63 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
S-cell: 1.00 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.00 0.99

t = 50000 k = 57.78 q(D-cell) = 5.20 q(S-cell) = 1.00
D-cell: 21.87 30.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
S-cell: 1.00 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.00 0.99

t = 100000 k = 91.23 q(D-cell) = 5.38 q(S-cell) = 1.00
D-cell: 21.04 32.78 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

S-cell: 1.00 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.00 0.99

t = 150000 k = 125.77 q(D-cell) = 5.60 q(S-cell) = 1.00
D-cell: 20.32 35.68 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
S-cell: 1.00 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.00 0.99

t = 200000 k = 160.84 q(D-cell) = 5.84 q(S-cell) a 1.00
D-cell: 19.66 38.70 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
S-cell: 1.00 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.00 0.99

t = 250000 k = 196.27 q(D-cell) = 6.07 q(S-cell) = 1.00
D-cell: 18.98 41.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
S-cell: 1.00 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.00 0.99

t = 300000 k = 232.13 q(D-cell) = 6.31 q(S-cell) a 1.00
D-cell: 18.29 44.81 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
S-cell: 1.00 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.00 0.99

t = 350000 k = 267.99 q(D-cell) = 6.54 q(S-cell) a 1.00
D-cell: 17.56 47.84 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
S-cell: 1.00 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.00 0.99

I _ __ _ _ _ _ __
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* t~4100000 k *304.61 q(D-cell) *6.77 q(S-cell) z1.00
U-cell: 16.78 50.89 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

; S-cell: 1.00 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.00 0.99

t x 450000 k =341.23 CgD-cell) z6.99 0q(S-cell) - 1.00
U-cell: 15.97 53.89 0.0 0.00 0.00 0.0 0.00 0.00 0.00 0.00
S-cell: 1.00 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.00 0.99

t = 500000 k z 377.72 q(D-cell) a7.20 q(S-cell) z 1.00
D-cell: 15.11 56.85 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
S-cell: 1.00 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.00 0.99

t= 550000 k a413.29 q(D-cell) a7.40 q(S-cell) =1.00
D-cell: 14.25 59.70 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
S-cell: 1.00 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.00 0.99

t = 600000 k = 448.89 q(D-cell) =7.59 q(S-cell) = 1.00
~ 1D-cell: 13.37 62.53 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

S-cell: 1.00 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.00 0.99

t = 650000 k = 484.52 q(D-cell) =7.78 q(S-cell) = 1.00
D-cell: 12.46 65.34 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
S-cell: 1.00 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.00 0.99

t =700000 k = 520.39 q(D-cell) a7.96 q(S-cell) = 1.00
D-cell: 11.51 68.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
S-cell: 1.00 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.00 0.99

t=750000 k =557.01 q(D-cell) =8.15 q(S-cell) = 1.00
U-cell: 10.53 70.95 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
S-cell: 1.00 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.00 0.99

t =800000 k = 593.40 q(D-cell) = 8.33 q(S-cell) = 1.00
*D-cell: 9.54 73.74 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

S-cell: 1.00 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.00 0.99

t =900000 k = 663.15 q(D-coll) = 8.67 q(S-cell) =1.00
U-cell: 7.60 79.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
S-cell: 1.00 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.00 0.99

t =1000000 k =730.29 q(D-cell) = 8.99 q(S-cell) = 1.00
D -cell: 5.71 84.17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
S-cell: 1.00 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.00 0.99

t a 1100000 k =797.08 q(D-cell) =9.30 q(S-cell) = 1.00
D-cell: 3.83 89.22 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
S-cell: 1.00 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.00 0.99

t a1200000 k a 856.50 qCD-cell) 29.59 q(8-cell) 2 1.00
U-cell: 2.18 93.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
S-cell: 1.00 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.00 0."9
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t 1300000 k = 903.06 q(D-cell) - 9.82 q(S-cell) : 1.00
D-cell: 0.91 97.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
S-cell: 1.00 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.00 0.99

- t = 1400000 k : 926.71 q(D-cell) a 9.95 q(S-cell) a 1.00
D-cell: 0.28 99.17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
S-cell: 1.00 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.00 0.99

t = 1500000 k = 934.69 q(D-cell) : 9.99 q(S-cell) x 1.00
D-cell: 0.07 99.79 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
S-cell: 1.00 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.00 0.99

t a 1600000 k = 935.10 q(D-cell) = 9.99 q(S-cell) x 1.00
D-cell: 0.06 99.82 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
S-cell: 1.00 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.00 0.99

t a 1700000 k = 935.10 q(D-cell) = 9.99 q(S-cell) a 1.00
D-cell: 0.06 99.82 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
S-cell: 1.00 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.00 0.99

t = 1800000 k = 935.10 q(D-ce11) = 9.99 q(S-cel1) = 1.00
D-cell: 0.06 99.82 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
S-cell: 1.00 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.00 0.99

t = 1900000 k = 935.10 q(D-cell) = 9.99 q(S-cel) a 1.00
D-cell: 0.06 99.82 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
S-cell: 1.00 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.00 0.99

t = 2000000 k = 935.10 q(D-cell) = 9.99 q(S-cell) z 1.00
D-cell: 0.06 99.82 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
S-cell: 1.00 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.00 0.99
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