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ABSTRACT

A hypothesis is made that the Galerkin Finite Element

Method (GFEM) offers a viable option to the traditional

* 1 Finite Difference Method (FDM) for numerical weather predic-

tion. The shallow water barotropic primitive equations are

the forecast equations for all experiments. The hypothesis

is tested by observing simple, analytic, atmospheric wave

propagation on uniform and variable mesh grids. Second, a

strongly forced solution simulating small scale nonlinear

interactions is evaluated for both the GFEM and FDM.

Finally, a variable, moving grid for a GFEM model is

compared to a uniform, higher resolution GFEM model for a

4strong vortex in a mean flow. The GFEM shows a better

propagation for simple atmospheric waves and better preditc-

tion to a forced nonlinear solution than the FDM model. A

moving variable grid follows an area of strong gradients

while not generating noise in the transition zone.
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1. INTRODUCTION

Proper simulation of atmospheric flow is the main

objective of numerical weather prediction. The foundation

of numerical weather prediction is a set of equations

including the momentum, thermodynamic, moisture and conti-

nuity equations for modeling the atmosphere. Through

computer simulation, numerical weather prediction predicts a

future state based on initial conditions describing the

atmosphere. A successful forecast model must include small

scale processes. Transports, conversions and exchanges of

mass, momentum and energy occurring on the small scale

represent important features which must be properly simula-

ted. Feedbacks from the proper representation of these

small features can sometimes markedly influence the larger

scale solutions. Representation of the effects of small

scale processes can be accomplished directly through

increased spatial resolution. Continued increases in the

spatial resolution will eventually allow the desired process

to be resolved properly. However, a doubling of resolution

generally requires an eight fold increase in computational

effort. The value of increased spatial resolution must

ultimately be measured by its contribution to the overall

forecast. A level of confidence in the forecast must be

achieved that the process is resolved near that particular

14
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grid resolution. The grid resolution could be uniformly

fine in the forecast domain. The computational effort for

.% uniform fine mesh models could be far in excess of available

resources. An alternative to a uniform fine mesh is a

variable mesh where the fine mesh covers only regions of

interest or high activity.

The conventional numerical weather prediction forecast

scheme, the finite difference method, approximates the

partial differential equations with a truncated Taylor

series. It has performed admirably when forecasting the

larger scales of motion. Technological improvements in

computing power coupled with better understanding of the

atmosphere now allow the smaller scales to be forecast.

An alternate method for numerical weather prediction,

the GFEM approximates the partial differential equations

while minimizing the error between the actual equations and

their approximation. This best fit logically ieads one to

the expectation that the GFEM will better model the smaller

scales than the finite difference schemes. This research

will demonstrate practical aspects of the GFEM theoretically

possible.

In this dissertation, the GFEM will be evaluated to

determine its potential to model atmospheric flow. Equiva-

lent GFEM and FDM models will be utilized to compare the two

methods. Simulations of small scale processes explicitly

resolved on uniform and variable grids will be investigated.

15
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Rigorous experiments will demonstrate both GFE4 and FD4

1responses for forcing near the grid length scale. Finally,

a demonstration will be made of a GFEN moving variable mesh

which moves with the small scale process or feature, and

thereby allows the fine mesh to resolve the highly active

region initially and throughout the forecast period.

16



.. . . . . . . . . II- .. . . . . . . .- -

I. HYPOTHESIS

Numerical weather prediction has steadily improved in

the simulation of atmospheric flow. Large scale flows have

been adequately represented by finite difference models for

several decades. Galerkin-type formulations (Cullen, 1974b;

Hinsman, 1975; Staniforth and Mitchell, 1978; Cullen and

Hall, 1979; Staniforth and Daley, 1979; MacPherson and

Aksel, 1980; and Sasaki and Reddy, 1980) have been shown to

be competitive with finite difference models, but have not

shown a marked improvement. Comparing the current opera-

tional models at selected large computer centers, one finds

that two are Galerkin and three are finite difference

(Galerkin: National Meteorological Center and Canadian

Meteorological Center; and finite difference: Fleet

Numerical Oceanography Center, Air Force Global Weather

Center and European Center for Medium Range Weather

Forecasting. However, all centers have ongoing research

with Galerkin models and there are indications that these

will give better long range forecasts. The dichotomy arises

because the Galerkin applications have not vindicated them-

selves with a marked increase in accuracy, but rather have

shown equivalent accuracies. Staniforth and Mitchel (1977)

stated that ultimately the best global/hemispheric models

will be a spectral model. The spectral model is based on

17
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the Galerkin procedure and the use of trigonometric func-

tions is particularly appealing for hemispheric or global

grids. However, where non-uniform grids are required, the

GFEM is a more logical choice.

Marked improvements in regional forecasts will not come

from better large-scale models, but rather from models that

can simulate smaller atmospheric features. The National

Weather Service Limited Fine Mesh Model is an improvement

over the hemispheric model, partly because it has higher

resolution and can resolve smaller phenomena. These smaller

features can also affect the large scale flow. Numerical

meteorologists have realized this for years and have

attempted to model these features.

The GFEM has the potential to increase efficiently the

spatial resolution for the purpose of simulating accurately

the small-scale processes. If a variable mesh is to be

employed, then it should be evaluated by proper simulation

of a small-scale feature. In previous research (Staniforth

and Mitchell, 1978), the refined grid was tested by pro-

pagating synoptic-scale waves into the finer grid and

demonstrating that the wave could move into the finer grid

without generation of significant noise. These conditions

represent a prerequisite. If synoptic-scale waves cannot

move freely into and through the variable grid, then advec-

tion interactions will not occur properly in the fine grid.

18
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However, one must also show that C smaller scale atmospheric

feature can be properly resolved or developed in the fine

mesh area. This will be a milestone. The efforts of

Staniforth and Mitchell (1978) and Staniforth and Daley

(1979) have stressed the movement of synoptic scale features

into the fine mesh area but have not demonstrated improved

resolution of smaller scale atmospheric features in the fine

mesh area.

The hypothesis is that the GFEM is a viable option for

numerical weather prediction when simulating atmospheric

flow on variable grids. Three separate features of the GFEM

will be explored. Each feature will establish the creden-

tials of the GFEM as a viable option. Each feature is

intimately related to the proper representation of a small-

scale phenomenon. The cost effectiveness of the GFEM, when

evaluated in these contexts, will provide a measure of the

potential contribution of the method.

A. FEATURES

The following three specific features will be explored

to support the hypothesis.

1. Variable Grid

investigations of a suitable alternative to the

finite difference models for a variable grid will be

performed. Two basic subdivisions are available--triangular

or rectangular. Staniforth and Mitchell (1978) employed the

19



T
variable rectangular grid as shown in Figure 1. The grid

contained some areas of finer resolution which were not in

the verification area. Two points associated with having

variable resolution in peripheral regions arise:

(a) Unnecessary computational overhead is required;
and

(b) Undesirable phase changes occur as the wave
propagates in the peripheral regions.

Older (1981) and Woodward (1981) developed a transformation

procedure to vary smoothly the resolution for a channel

domain from a coarse to a fine area in a triangular subdivi-

sion. A uniform equilateral subdivision is shown in Figure

2. The use of triangles allows the increased resolution to

occur only where desired and not in peripheral regions.

Two possible choices of triangles include the right and the

equilateral. Hinsman (1975) utilized equilateral triangles

while Cullen (1974b) utilized near-equilateral triangles. Both

reported excellent wave propagation. Kelley and Williams

(1976) utilized right triangles and experienced very noisy

solutions. Woodward (1981) duplicated Kelley and Williams

effort with equilateral triangles and found a major

reduction in the noise.

The differing geometries and results thus far reported

mandate a further review of triangular subdivisions. It is

not obvious which subdivision is most suitable. A distinct

advantage of the rectangular subdivision is that it allows

20
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Fig. 2. Triangular subdivision for a channel in Cartesian
coordinates (Woodward, 1981).
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algorithms to be developed which take full advantage of

4vector processors. However, both subdivisions afford the

luxury of obtaining a variable grid. Therefore, similar

experiments performed on each type subdivision will point

out the advantages and disadvantages of each.

2. Numerical Simulation of Physical Processes

The variable grid chosen as the most suitable

alternative will be tested while simulating a physical

process to show that a small-scale atmospheric feature can

be properly portrayed in the fine mesh area. As stated inIChapter It, the ability of variable grids to resolve small

scale atmospheric features has not been rigorously tested.

The ability to move synoptic scale features into a finer

mesh is a prerequisite and must be shown. The main crux of

the problem is what is happening in the fine mesh area. A

proper scheme must resolve a small scale feature near the

smallest grid length. Schoenstadt (1980) and Williams

(1981) indicated that the most responsive schemes were either

a staggered finite element grid with primitive variables or

an unstaggered finite element grid with vorticity/divergence

formulation. This research will utilize the latter.

The simulated process will be that of a mass source

analogous to that found in the upper atmosphere above a

hurricane or on the leading side of a strong trough. The

source will appear in the continuity equation. A known wave

23
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form will be assumed and the required source to support the

wave form will be analytically derived. The expression for

the wave form will allow control of the scale of the process

so that a near-grid scale phenomena can be simulated.

3. Moving Grid

The ability to move the fine grid so that it

remains centered on an atmospheric circulation will also be

demonstrated. This capability will further enhance the

applicability of the GFEM for atmospheric simulation. If it

is shown that small-scale forcings are properly reflected in

the flow, and the grid can be moved with the forcing

disturbance, then the GFEM has great potential for

atmospheric prediction.

24
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III. THE DEVELOPMENT OF THE GFEM

The hypothesis in Chapter II proclaims the GFEM as a

viable option for simulating atmospheric flow. An under-

standing of the history and principles of the GFEM will give

further insight for the expected improved performance as

compared to the conventional FDM.

The origin of the GFEM can be traced to the seventeenth

century work by Leonhard Euler. His work established the

branch of mathematics known as calculus of variation. He

recognized that there existed a partial differential equa-

tion (POE) associated with the minimization of a functional.

This POE has been appropriately named the Euler-Lagrange

equation. Solving the POE was equivalent to determining a

stationary value of the functional. In the late nineteenth

century, Lord Rayleigh furthered the variational calculus by

representing the dependent variable as a mathematical

expression, typically as a power series. The stationarity

of the solution allowed determination of the unknown coeffi-

cients of the power series. His work was generalized in the

early twentieth century by W. Ritz and the procedure has

since been referred to as the Rayleigh-Ritz method. A

limitation in the solution by the Rayleigh-Ritz method is

the fullness of the matrix to be inverted. Shortly after

jI Ritz completed his work, Galerkin developed a procedure
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using weighted residuals which had a wider application than

classical variational calculus. The residual is made ortho-

* gonal to a function, called the test function, and thereby is

minimized. While the Rayleigh-Ritz procedure applies to the

functional of an associated Euler-Lagrange equation, the

Galerkin procedure pertains to any PDE. The methods produce

identical results when applied to equivalent extremum

problems.

The Galerkin procedure was unknowingly well established

by the end of World War I. The rapid technological

advances made during and after the war, coupled with the

emergence of the computer, led the aircraft industry to

develop new numerical procedures for solving stress problems

in aircraft design. A successful technique was developed

and mathematicians realized, long after the fact, that the

Galerkin procedure was being utilized.

The GFEM is a commonly used subset of the set of

Galerkin procedures. After subdivisio.i into a set of ele-

ments, the domain resembles a completed jigsaw puzzle, and

hence leads to the terminology "finite elements." Figures 1

and 2 are samples of such subdivisions. The dependent

variables of the PDE are represented as a linear combination

of known functions, which are usually low order polynomials.

The same function is employed as the test function. When

substituted into the PDE, these approximations leave a

residual. Minimizing the residual completes the procedure.
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The functions are globally zero except where the dependent

variables are defined near each individual node. The pro-

duct of functions remains zero except where the representing

and test functions are both non-zero. This makes the method

attractive for computer implementation. It removes the

matrix "fullness" problem found with the Rayleigh-Ritz

approach. The minimization process lies at the heart of the

expected improved performance. Each term of the PDE has

been simultaneously approximated and the error in those

approximations has been minimized.

2
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IV. MODEL DESCRIPTION

Two different barotropic shallow-water models will be

employed to test the hypothesis in Chapter II. Each model

will have the identical domain, boundary and initial

conditions. The difference will lay with the partial

differential equation approximation. In one model, a

Galerkin approximation to the partial differential equation

will be used, while the other model will use a finite

difference approximation. Two versions of the Galerkin

model will be evaluated. The first version will have trian-

gular subdivisions and basis functions, while the other will

have rectangular subdivisions and basis functions.

A. GALERKIN FINITE ELEMENT MODEL

The system of equations referred to as the shallow-

water equations consists of three equations with three

forecast variables 0, u and v. The equations are written

+ + + (2u + 1)- 0 (4-1)
3t ax ay ax ay~

l u + vl- - fv + 1 0 (4-2)
t +aux +ay ax

av av av
it + uT'R" + v'7 + fu + 0 (43)

28

T PW
-, .9



i

Here # is the geopotential height,

u is the east/west component of the wind,

v is the north/south component of the wind, and

f is the Coriolis parameter

By expanding * into a mean (4) and a deviation (.1) the

equations can be written

at + ' + (uO ) + L(v*') - 0 (4-4)at ax ay
au + 21U + aK

I - - -vQ - 0 (4-5)at ax ax

av + a# + aK + uq 0 (4-6)

t ay ay

here D is the divergence

K is the kinetic energy (per unit mass), and

Q is the absolute vorticity.

The primes will be dropped for the rest of the paper for

clarity.

Cullen and Hall (1979) showed that the accuracy of the

GFEM solution was better for the vorticity-divergence

formulation of the shallow-water equations than for an

increase in resolution with the primitive formulation.

Williams and Schoenstadt (1980) noted that staggered

variable formulation of the primitive equations and the

unstaggered vorticity-divergence formulation gave the best

treatment of geostrophic adjustment for small-scale

f features.
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The vorticity-divergence form of the shallow-water

equations also allows the use of a semi-implicit time

scheme. This scheme artificially slows the propagation

speed of the fastest gravity waves, which allows a much

larger time step than one could expect for a normal Courant-

Fredrich-Lewy (CFL) stability criterion. This scheme thus

offsets some of the extra computational expense required to

solve the system of equations assembled at each time step.

The vorticity/divergence form of the equations is

A + a + 2-uv + -. (v#) a0 (4-7)
at 3x 3y

+ + (vQ) - 0 (4-8)
3t axa

aD 7 2 v - (vQ) + -L(uQ) = 0 (4-9)

~# au
Here v2 is the Laplacian operator and c is the - -y

relative vorticity.

The velocity can be written as the sum of the rotational and

irrotational components as

y -, + vx

where V - KXV* and V x

The equations can be rewritten using

ax ay
and'I av ) 2

3x 3y
(i3a

30r
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I
i resulting in

x .-. * .±4" (.vQ) - (uQ) ax ax ay ay 1-2

Equation (4-12) can be further manipulated

, f + ax " a j((uQ) + K) (4-13)

i..L(Q) - ayQ

The domain of integration i s a channel with east-west

periodicity. The boundary condtlion at a wall is

V.•N=O

where N 1 s an outward pointing normal vector. Along the
,y

ay ax

Vix ax ay3_y3_thern anh oth/sn oe the where e qual t

" zro, o tat +h v x aqato af aoio (4-4-13)e t

The oa n of itegatioonenis o chel wtd east-es

ri tboundary con-didontton alo ns

V -N -_ 0_

axoy (tu14

14 31

ay a

Thenonalond the nrth/oh compnens ofhere windquals eoh

writtnday ondivegnt an tsain opnnsa

u _' + 2x.

., ax ay (-4

Thn-ln h othsuhwlI hreveul eo h
bonaycniini

+ax a ( -4
• ,,31



The above condition is imposed by setting

- a constant (4-15)

when solving the vorticity equation and

11 . (4-16)

ay

when solving the divergence equation. This is an overspe-

cification but (4-14) would be difficult to apply. The

initial conditions which will be presented later are

-f specifically selected to satisfy (4-15) and (4-16).

The semi-implicit scheme is implemented by evaluating

all the terms on the left hand side of the equations as an

average at time levels (t + At) and (t - At) or with a

centered time difference as appropriate. All the terms on

the right hand side are evaluated at time level t. The

equations become

+ s(v2x(t+at) +  u2X(tQ) --(uq) - (vQ) (4-17)
at axtAt a y-A) -'(

2 = L(uQ) _ ~ L(vQ) (4-18)I2k ~:(-+ tA)+ *(t-Mt)) 2K) Q) - u) -+ Ku

(4-19)

The divergence equation (4-19) can be solved for X at

(t + At)and substituted into the equation (4-17) to yield
72 _- ((vQ) - 3) -a((uQ) + 1)

ax ay ay

{(t-At) + 72X(t-At) + j(-L(+u) (W (-(2v))

2(at)2
( 32



where the overbar denotes an average of t + At and t - At.

The system of three equations in three unknowns has been

reduced to two Poisson equations and one Helmholtz equation

to be solved at each time step.

The solution procedure involves solving the # equation

(4-20) for a new I. The divergence equation (4-19) is then
solved for and by subtraction for . Finally, the

sove +fornfo

vorticity equation (4-18) is solved for -t There are twoat*

.4 options as to which variables will be history-carrying:

either *, q and x or *, u and v. The choice was made to use

o, u and v as history-carrying variables. They are updated

after each time step followlng Staniforth and Mitchell

(1977) by

o(t+At) - 2j - *(t-At) (4-21)

u(t+"t) = 2At(-- 2X - _L a*) + u(t-At) (4-22)

v(t+At) = t x + ) + v(t-At) (4-23)i ~tAt)- ayC at ax a

Implementation of the GFEM is accomplished as described

in Chapter Ill. The north and south latitudes are input

parameters, and the north/south distance is subdivided into

N equal parts, where N is also an input parameter. The

east/west increment is a function of the north/south incre-

ment, as explained in the section describing the individual

33
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experiments. The Coriolis parameter will be a constant

equal to the mid-channel value.

4' The triangular and rectangular domain subdivisions will

be demonstrated in the experiment sections. An appropriate

approximating function for the rectangular subdivision is a

bilinear function. In either case, the forecast equations

in Galerkin form are

(72-V - ; Ji((vQ)jVj K ))V" x J 71x i

J "

)11+a ~l+ f1 Au)v1 + - 1(v ) V-/(-((uQ)jVj + -yKjVj))V i +/-(-L(wujVj +- wjVj i

J(t'at)V-+_7ji + Xj(t-,At)VjVi (4-24.)

2  iv fj-L(UQ)Jvj)v - ) V)V(

-VQ J(.CQ Jv 19~ 1 Qv (4-25)

~- C -(uQ)Jvj 4-Y3K jV ))V I  (4-26)

Here the integral sign implies an area integral over the

domain, the j subscript denotes Einstein summation for the

dependent variables and the i subscript is the ith nodal

equation.
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The strength of the GFEM is that the spatial deriva-

tives of the dependent variables become derivatives of the

known approximating function and, therefore, are known

exactly at each node. When using piecewise continuous

linear functions, the first derivatives are piecewise

discontinuous and second derivatives are not defined.

Therefore, the second derivatives must be handled in a

different fashion,

f !ji 7 ViV +7 -, j~

2 2 a V V ,raP av

where the V implies a line integral along the east/west

or north/south boundaries. The east/west line integrals

are zero because of periodicity, but the north/south line

integrals add additional terms to the equations and are

satisfied by the boundary conditions. The Laplacian terms

become
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This integration-by-parts procedure allows the use of a

linear function while approximating second derivatives. The

final form of the forecast equationsis

!Vi~. A + i Aj Ai + 4jv jV1  -

i ax ax j ay ay O(At)2

J(-L((vQ)j - KVJ))Vi

j ax ax

- 3 ((uQ) Vj + K j *~ i +J . .(.u) + (wv ~~J)Y.

J -*-**- A**) +JA-Lut-t) ,v. v.(t-A&t)2-J

N

-~0u V V (4-27)

- J~- ~ Lyi + 3j ay. ayij - ((uQ)j 2-j)Y 1

- f~j2V i 1Y (4-28

I ax jj ax Ix

-J~i(uQ aV y )1  (4-28)

- f(xj A avi+ 1X 2-V A 36
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Here the Helmholtz equation (4-27) has utilized

V2X DIVERGENCE -= + '
an x ay

and0

along the walls.

The line integral along the north and south boundary

has been dropped from the vorticity equation (4-28), since

the value of * on the boundaries is a constant and therefore

the value of 1 is zero. The line integral along the north

and south boundary has been dropped from the divergence

equation (4-29), because the value of the normal derivative

along the north/south walls is zero, as stipulated by the

boundary conditions. The initial conditions will also

satisfy the condition that the normal derivative of x is

zero along the north/south walls.

B. FINITE DIFFERENCE MODEL

The comparison model to the GFEM model is an adaptation

of the staggered, primitive-equation model as described in

Section 7-4 of Haltiner and Williams (1980). The equations

are in the flux form and employ Scheme C as shown in Section

7-3 of Haltiner and Williams (1980). The baroclinic model

described there has been coded to pr -form in a barotropic

mode.
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Since the GFEM is written in differentiated form,

vorticity and divergence have been diagnosed from the primi-

tive variables in the finite difference model to allow

appropriate comparisons.

C. NUMERICAL METHODS

Although no attempt is made to optimize computational

efficiency in this research model, the GFEM must utilize

efficient numerical techniques to be considered a viable

option for numerical weather prediction. Various solution

procedures are available for the GFEM system of equations.

Successive over-relaxation was employed during the early

research stages. Several problems arose which indicated a

need for a better solution procedure. The successive over-

relaxation procedure resulted in a bias if the sweeping

during each pass was in the same direction. Alternating the

direction alleviated that particular problem, but the number

of passes required to achieve a desired level of accuracy

became prohibitive. A second approach employed a direct

solver using a Gaussian elimination procedure. The matrices

from the Galerkin procedure are decomposed into upper and

lower block tri-diagonal matrices. A preprocessing, repre-

senting the forward substitution stage, can be done once.

The back substitution must be done each time a solution is

desired. The coefficients necessary for this back substitu-

tion are stored in an efficient manner. The particular
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algorithm is called a "1skyline" solver and is described in

detail in Bathe and Wilson (1976). Skyline refers to the

compact method of storing only those coefficients required.

Thi s method has the desi red l evel of accuracy and a hi gh

degree of computati onal effi ci ency. Stani forth and Mitchell

(1977) employed another direct solver method called, the

conjugate- gradient method. This method is very computa-

tionally efficient, even when the non-cons;tant coefficient

Helmholtz equation is involved. The theoretical operation

count indicates that for very large domains with many

degrees of freedom, the conjugate-gradient method will be

much better than the other direct sol ver mentioned above.

The Gauss elimination procedure was utilized instead of the

conjugate-gradient method for reasons of axpediency.

Numerical integration of the three forecast equations

involves solving first a Helmholtz equation for 0, second a

Poisson problem for 0, and finally a Poisson problem for x.

The boundary conditions and the equations are well posed for

the first two equati ons. However, the normal derivative of

x is equal to zero for the last Poisson equation and

requi res special attenti on. The sol uti on plus a constant is

also a solution. Since only derivatives of x are required,

the shape of the field is much more important than the

actual value of X. To avoid computer round off errors, the

average value of the terms on the right hand side of (4-29)

is removed at each time step. This sets the constant to
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zero and does not allow the solution to grow by a constant

each iteration.

The current technology of large mainframe computers

incorporates vector processing. Utilization of this

ability can be achieved when the system of equations can be

vectorized. The GFEM is derived in vector formulation and

is easily vectorized.

D. INITIAL CONDITIONS

1. Simple Atmospheric Waves

The initial conditions must allow a relative

amount of control for the desired input parameters as well

as satisfy the boundary conditions. The forecast model

history-carrying variables are *, u and v. The analytic

expression for the streamfunction, p, is

= A sin 2  1-X sin 2InX - U(y-ym + fWL mi fo (4-30)

where A = amplitude of the perturbation,

W = width of the channel,

L = length of the channel,

n = wave number,

0 = mean flow speed, and

Ymid = middle point of the channel
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The first term in the expression is the perturbation.

The second term represents the north/south slope necessary

to support a mean flow of 0. The third term is the mean

depth term. The geopotential height, *, is related geostro-

phically to the streamfunction, 0, by

*= fo (4-31)

By use of a trigonometric identity, the streamfunction is

written as

1 l - cos )sin---- - U(Yy ) (4-32)

The vorticity is given by

= 2o12 A sincL2 x cos 2aly - a2
2 Afsia 2X

-) (4-33)
+ a2 2 A sina2x cos 2alY

2

where

C11

"= L

The divergence is determined through a linearized form of

the quasi-geostrophic divergence equation from Chapter 3-2

of Haltiner and Williams (1980), in the form

v2 - D =0 5 2 (4-34)
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The right-hand side of this equation becomes

[(*~ , 3Aco 0- 3 (4-35)

Assuming a solution form for divergence on the left-hand

side

D =cos 0 2 x(Clcos 2aly + C2 )

the constants C1 and C2 become

A 2

C1 ~ ~ G ct 2 (-QUc 1 A2 +-U )/(4 al +0L

and

C f 0 32+f02

2 _ U2 2 C 2  j7~

U s ing 72 X - D and assuming a solution form for x as

X = cosca2 x(C3 cos2ca1y + C4 ) (4-36)

then C3  and C4  become

C3 =-Cj/(4aj
2 +4a 2)

and
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Observe that i equals a constant and *- equals zero along

the north/south walls. With the expressions for stream-

function, (4-32), and velocity potential, (4-36), appropriate

formulae for u and v can be derived.

u = U - sin G2 x(Aa 1 sin2Aly + c2 (C3 cos 2aly + C4)) (4-37)

and

v = cos 12x(a2A(1-cos 2aly) - 2C3 alsin 2aly) (4-38)

and o is given by equations (4-31) and (4-32).

2. Source Term

The addition of a source term into the continuity

equation will test the resolvability of the GFEM model for a

source. The source is constructed to represent a small-

scale meteorological phenomenon to provide a measure of the

response of the GFEM model to forcing near the smallest grid

scale. The source initial conditions must be able to

describe a small-scale feature embedded in a large synoptic

situation. The initial conditions are derived by choosing a

desired solution and then back substituting to derive the

form of the source required. This is a unique approach when

adding a source term. First, a source, S, is added to the

continuity equation in the form of

+ u _. + vA + (+u + v.) S
at ax ay ax ay (4-39)
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Following the scale analysis of Chapter 3-2 In Haltiner and

Williams (1980),a new quasi-geostrophic potential vorticity

equation is formed with the source term included,

+-u .) + fS -

Solving for S leaves

at ay ax a a2Dk -. + 2 (4-40)

x y

The technique for testing the source term is to pick a

streamfunction and then solve for the source term which will

satisfy that streamfunction. The particular streamfunction

evaluated will be a steady state solution. The source in

this case is

T_ a~ + a

= 0,y - + a yy x2 +  y4

The particular form of the streamfunction is

2I sin 2 -)
" -"u(y-mi d ) - Asin 2X e R (4-42)

where R is a constant. The use of the exponential allows a

variation in the scale whereby a small scale feature can be

embedded in a larger flow pattern. Substitution of this

particular p into the expression for the source yields

(
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I in2 w .sin 2 ix

1 . 2iry l T R LS = 1 -(.U + -l - t -stn 2 .'e
-L +o z i

A 2 s 2 2irx 1 22i 2 2
R sin (-e ksin -7-)-2A(w) cos-')

15j2
I sin -A _ A i2 22X 2 22x

(e ) s ( 0 ) (w)(2cOs L + 1 sin2

f~ U W LY(~ L RL

+ 4A( )3 ) ) (4-43 )

Z E. NONLINEAR EFFECTS

Cullen (1974a) discussed the requirement to simulate

W the cascade of energy to unresolved wavel engths. To avoid

accumulation of energy in the shortest resolvable wave

lengths, he developed a two-step method for computing the

nonlinear terms. Implementation of the two-step method can

be accomplished efficiently. In the formal development of

the model equations, there are several nonlinear terms. The

two-step method involves projecting both variables in a

4nonlinear term into Gal erki n saeand then performin the

; 45
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multiplication. This procedure insures the best approxima-

tion to that nonlinear term in a weighted-mean sense.

Additionally, the computational effort for the two-step

method is much less than the one-step method which involves

computation of all the possible interaction coefficients.

F. STABILITY CRITERION

The stability criterion for the forecast equations is

At< 1
l l + f

AX

This is more restrictive than a normal Courant-Fredrich-Lewy

(CFL) condition. It is made up of the normal CFL criterion

based on advection plus another effect due to rotation

(inertial motion). It provides an upper boundary to the

maximum allowable time step when using a semi-implicit

scheme. In this research, time steps in excess of an hour

are easily used. Care must be taken not to exceed the

stability criterion when larger mean flows are experienced

or when moving to higher latitudes (larger f).
A more detailed discussion of the derivation of the

stability criterion can be found in Appendix A.
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V. EXPERIMENTS AND RESULTS

Experiments will be performed lnvolvlrg the features in

Chapter 11 to test the hypothesis. Four separate experi-

ments will be performed. The first experiment will

establish the overall performance characteristics of three

specified models. The next three experiments will address

each specific feature supporting the hypothesis.

Standards of comparison must be established for each

experiment. The basic comparison will be achieved through

harmonic analysis of the initial and forecast fields. The

harmonic analysis is a double Fourier decomiposi ti on. The

harmonic analysis requires that the data be on a uniform

grid. Because of the triangular and variable grids, an

interpolation is necessary. A fifth degree polynomial

surface fitting routine from the International Mathematics

and Statistics Library (IMSL) was employed to interpolate

data on the non-uni form grids to a uni form spaci ng. First,

a harmonic analysis is performed along columns of constant x

to obtain the y structure of the initial conditions. Then a

harmonic analysis of the amplitudes of each y wave number

along rows gives a true double harmonic analysis. This

*double transform approach is 2necessary due to the initial

conditions. The use of sin -Wyin the y direction is the

same as using (1.0 -cos The boundary conditions are
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satisfied by a sine wave in the y direction. Therefore, an

infinite sine series is needed to represent the cosine

function.

The theoretical rmovement of each wave is obtained from

an analysis of the shallow-water equations. The analysis in

Section 2-6 of Haltiner and Williams (1980) predicts the

wave speed as

(f f/H)3 H

C =U + (f/H) (5-1)
S+ f /gH

where

C equals wave speed,

H equals height, and

v x direction wave number.

By generalizing the streamfunction to a two-dimensional wave1
form

= A sin niy cos U(x-ct) (5-2)W

and after further manipulation, the wave speed becomes

C=~l(lf2 2 2C - U(I/(l + f20 /4ix + 1y2)))

where

0 equals average geopotential height,

I x equals x direction wave number, and

My equals y direction wave number.
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A. EXPERIMENT 1

Establishing wave propagation characteristics en a

uniform grid will illuminate the properties of each model.

Three models will be compared:

1. A triangular subdivision GFEM model;

2. A rectangular subdivision GFEM model; and

3. An equivalent finite difference model.

The GFEM models will use the differentiated form of the

shallow-water equations with a semi-implicit scheme. The

finite difference model uses the undifferentiated form on a

staggered grid with a centered (leapfrog) time scheme. The

triangular subdivision uses equilateral triangles. The

relationship between base and height for an equilateral

triangle is

BASE = 2 x HEIGHT/,/

The x distance therefore has the same relationship to the y

di stance

ax = 2 Ay/13

To perform comparisons of similar models, the same x, y

relationship is retained for the rectangular and finite

difference models.

The basic difference between the rectangular and

triangular models will be in the approximating polynomials.

h1 The rectangular polynomials are bilinear while the
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triangular polynomials are linear. The higher order

polynomials should provide an increase in accuracy. During

the integration process, many integrals require evaluation.

Numerical quadrature could be utilized, however, a more

efficient method is available through the use of natural

coordinates. Quadrature with no error can be accomplished

by formula with this method. A detailed description of the

natural coordinate method is delineated in Appendix B for

both triangles and rectangles.

Diagrams for the grids for the triangular, rectangular

and finite difference models are shown in Figures 2, 3 and 4

respectively. The domain is 4896.0 km in the y direction

and 5653.0 km in the x direction. Each model has 12 incre-

ments in the x and y directions. This gives 156 degrees of

freedom. All tests will be for a 48 hour time integration,

a mean flow of 10 m/s and a mean depth of 1000 meters. A

perturbation of 1 m/s will be added to the geopotential

field, which includes the mean height plus the north/south

slope required for the 10 m/s mean flow. This small pertur-

bation will focus on the linear aspects of the model's

capabilities. Experiments described below will evaluate

larger perturbations, and hence the nonlinear interactions.

Models are evaluated for wave numbers 1, 2, 3 and 4.
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Fig. 3. Rectangular uniform subdivision for a channel in

Cartesian coordinates.
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VI

IFig. 4. Finite difference uniform grid for a channel in
Cartesian coordinates.
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B. RESULTS I

The propagation characteri stics of the GFEM models and

the finite difference model on a uniform grid will be

evaluated. Graphical displays will highlight synoptic

characteri sti cs. Harmonic analysis will show phase

propagation and wave amplitude di stributions.

The initial and 48-h forecasts for the conditions

stated in experiment 1 with wave number one on a triangular

grid a,~e shown in Figures 5 and 6. The southeast/northwest

f ~orientation in the forecast fields is due tothe sinewave-

form in the y direction. This waveform with model boundary

conditions requires an infinite number of y modes.

Fortunately, the amplitudes of the higher wave numbers are

small. Consequently, there are only a few important modes.

The multiple modes cause a skewness in the solutions for all

three models since the y-modes have different phase speeds.

Additionally, an analytic expression for the solution

requires an infinite sum of the modes. For this reason, no

true solution has been computed to compare with the GFEM and

FDM models.

The divergence equation is the most sensitive equation

of the three forecast equations. A mean depth of 1000

meters was chosen because the di vergence is large. There-

toe a rtisa emvortatior ogi cal parameivter can bhe

modelcrtica evalutatio mtoofia theaenstivtr ofn theG
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performed. A divergence field which has propagated

uniformly with the vorticity field is shown in Figure 6.

Harmonic analysis (not shown) indicates divergence ampli-

tudes which initially adjust and then oscillate slightly

about a mean value of .1270x,0-7 s-1. The phases of all

forecast fields are uniform. Synoptically, the forecast

fields 4, u, and *v indicate a smoothly resolved atmospheric

wave.

A rectangular subdivision 48-h forecast for wave number

one is shown in Figure 7. Comparisons between Figures 6 and

7 show little if any difference which indicates that the

triangular and rectangular subdivisions give comparable

resul ts. Harmonic analysis of the divergence fields

indicates a small oscillation about a mean similar to that

observed for the triangular subdivision. The 48-h forecast

from the finite difference model for wave number one i s

shown in Figure 8. The equivalent finite difference model

also has 12 increments in each direction. Comparisons

between Figures 6, 7 and 8 show that the finite difference

model vorticity field lags the GFEM models. Additionally,

the divergence field has lost its areal extent and developed

a strong gradi ent of divergence.

In each of the wave number one tests there were 12 grid

points representing the wave. Good propagation should be

expected from all three of the models for a 12-increment

56



GEOPOTENTIAL HEIGHT STREAMLI~JNES

x K x K X M A X X 
----

S4 1A 2.0 9A 4.0 S41.0W

xx

0.0 .4 a.0 386 1. . . .0 2.0 .0 4.0 B.5

X-MKIS (0CTM) AM -Xfil (3ItO s) -if

VORTICITY DI VERGENCE
Im in 48 1 46

R21S21 11 R21S2111

K ~ D X

0 .8 1.x. . . .

Fig. 7. As in Fig. 6 but a rectangular subdivision.

57



GEOPOTETIA HEIGHT STREMLIJNES
721111 721021

x x xx x x xx x

x x K x x K it X K K x

X. i. .0X X. 4.0X LO 11.

xi mu xx - 48

72113111 721S2111

x- x

x Er):

0.0 1.0 3.0 X.0 4.9 4.0 1.

VORTICITY QIVERS'ENCE
r2152111721S2111

x x x x
K( CIK

* N N K N

e.
x K x

Fig. 8. As inFg u aF mdl

58



wave. As the wave number is increased with the same degrees

of freedom, the wave resolution will be decreased, and

clearer comparisons can be made.

Figures 9 and 10 are the initial and 48-h GFEM model

forecasts for wave number 2, triangular subdivision.

Forecasts for the rectangular subdivision and the FOM model

are shown in Figures 11 and 12. The triangular and

rectangular subdivision forecasts are similar. However, the

FOM model forecast displays additional divergence and

vorticity centers near the boundaries. Figures 13 through

16 are a series similar to Figures 9 through 12 except for

wave number three. The-e waves are represented by 4 grid

points. There are indications in Figure 14 that energy is

appearing in wave numbers other than wave number 3.

Comparison of Figures 14 and 1.5 show that the triangular

forecast contains more noise than the rectangular forecast.

Figure 16 shows a divergence field from the FDM model which

Is very different from Figures 14 and 15. There is a

north/south asymmetry in the u and divergence fields. The u

cells in the northern regions appear to be expanding while

the southern cells are decreasing.

Table 1 is a composite of the harmonic analysis for

the triangular, rectangular and finite difference wave

number 3 case (v component amplitudes). The initial and
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48-h v component amplitudes for wave number 3 in the x

direction and the first six possible y modes are tabulated

bel ow.

TABLE 1

Harmonic analysis (v component mis) -wave number 3

Triangles Rectangles Finite Difference

Wave Initial 48-H Initial 48-H Initial 48-H

1 2.12 2.14 2.20 2.22 2.20 2.20

2 .01 .04 .01 .02 .01 .09

3 .41 .43 .44 .44 .44 .42

4 .00 .00 .00 .00 .00 .00

5 .05 .06 .06 .06 .06 .05

6 .00 .00 .00 .00 .00 .00

The minor differences in the initial state amplitudes

are due to the differences between the triangular and

rectangular approximation for the initial condi ti ons.

However, the 48-h amplitudes show that the rectangul ar

version has slightly better preserved the initial state

amplitudes than either the triangular or finite difference

model s. The finite difference model has transferred more

amplitude to the other modes, especially in the second y

mode.

Fi gures 17 and 18 are the i niti al and 48-h GFEM model

triangular subdivision forecasts for wave number 4. Wave

4 number 4 is a severe test for this model. The energy
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transfer to other modes is readily apparent. Additionally,

both the u component of the wind and the di vergence show

considerable noise at the boundaries. Figure 19 is the 48-h

forecast for the rectangular model. No energy transfer nor

noise at the boundaries is apparent in Figure 19. Figure 20

is the 48-h forecasts for the finite difference model. The

asymmetry in the wave number three finite difference case

is magnified for wave number four. The divergence field is

heavily asymmetric. The u cells have developed a dipole

from each onigi nal center. Comparisons of Figures 18, 19

and 20 show the superiority of the rectangular forecast.

While the triangular versi on is noi sy, it still has

maintained the main features better than the finite

difference model.

Table 2 is similar to Table 1 except for the wave number

4 case.

TABLE 2

Harmonic analysis (v component m/s) -wave number 4

Triangles Rectangles Finite Difference

Wave Initial 48-H initial 48-H Initial 48-H

1 2.68 2.60 2.94 2.96 2.94 2.96

2 .00 .03 .01 .10 .01 .05

3 .51 .59 .58 .56 .58 .60

4 .00 .00 .00 .04 .00 .05

5 .06 .08 .08 .08 .08 .08

6 .00 .00 .00 .00 .00 .01
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The harmonic analysis shows that the triangular version

transfers more energy in the fifth y mode than does either

other model. However, the rectangular model transfers more

energy in the second y mode than does either other model.

Table 3 compares the divergence for the wave number 4 case.

TABLE 3

Harmonic analysis (divergence s-1) - wave number 4
(All numbers are scaled 10 to the minus 10.)

Triangles Rectangles Finite Difference

Wave Initial 48-H Initial 48-H Initial 48-H

1 2682.0 1741.0 2929.0 2179.0 2801.0 4462.0

2 .0 140.8 .0 207.5 447.4 5934.0

3 521.3 391.1 589.8 440.7 545.5 2314.0

4 .0 20.5 .0 81.2 .0 923.5

5 62.6 60.5 84.4 56.8 68.7 1382.0

6 .0 10.5 .0 8.4 .0 882.0

The finite difference model has greatly amplified the

initial divergence. A choice between the triangular or

rectangular grids version based only on these results would

be purely subjective. However, the response of both grids

at this high wave number in terms of divergence is highly

superior to the FOM.

4
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Figure 21 is the phase propagation dix-am for the

three models obtained from the double harm(..ic analysis. In

all cases, the percentage propagation is for the first y

mode and the appropriate x mode. The phase propagation

diagram indicates that the triangular and rectangular models

are comparable for the low wave numbers and diverge slightly

at higher wave numbers. In all cases the GFEM models have

better wave propagation than the FDM model.

The analysis performed on the uniform grids has shown

that each GFEM model performs in a highly satisfactory

fashion. There are minor differences in the phase

propagation, while the rectangular version has an advantage

in the control of energy transfers which .nanifest themselves

in the divergence. The finite difference model performs as

well as the GFEM models for the long waves. However, when

forecasting the shorter waves, the finite difference model

does not perform as well as either GFEM model.

C. EXPERIMENT 2

This experiment will investigate two options for a

variable grid. Atmospheric wave propagation on variable

triangular and rectangular grids will be the test vehicle.

Since this FDM model has no capability on a variable grid,

it will not be evaluated during this experiment. The

comparisons will be between a rectangular and triangular

GFEM model.
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There are many criteria for determination of a suitable

variable grid. Both rectangles and triangles allow a

successful implementation of a variable grid. One

criterion is the accuracy of resolving the atmospheric waves

that move through the variable grid. A second criterion is

the increase in resolution. Another consideration is the

ease with which the grid can be refi ned.

Cullen (1979) stressed the importance of a smooth

variation in element size when increasing the resol ution

from coarse to fine. Older (1981) developed a technique for

transforming a uniform triangular grid into a variable grid

wher; working with a GFEM model. He demonstrated that a

smoothly varying grid allowed atmospheric waves to propagate

through the transi ti on zone with much less noise generati on

than an abruptly varying grid. Some finite difference

models with nested grids, for example Harrison (1973), have

abruptly varying resolution. A generalization of Older's

techniques allows a similar transformati on for a rectangular

grid.

The test cases for experiment 2 will be for a simple

atmospheri c wave. A mean depth of 5 km , a mean flIow of

10 m/ s, wave number one and a pert urba t ion of 1 .0 mn/s are

employed.
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D. RESULTS 2

The ability to refine a grid should be easily achieved.

The method of transforming from a uniform grid to smoothly

varying should allow one to choose not only what degree of

refinement but also where the refinement occurs. Older

(1981) developed a transformation method based on

X a x + A cos Kx

where

X = the transformed grid

x - the original grid

A - a constant

k = 2s/L.

Woodward (1981) modified the transformation to include a

2

for the longitudinal stretching. A trignometric identity

is employed yielding

X = x + A(l - cos kx)

This research added the capability to control the location

of the refinement through

X x + A(I - cos(kx + 6))

The map factor 2 is defined by

Tx 1 + kA sin(kx + 6)
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The maximum and minimum values are

x = I + kA, X I - kA
axmax axmin

The ratio R of maximum map factor to minimum map factor is

1 +kA

Solving for A yields

R-1
A = kR+l1)

For purposes of this experiment R was chosen to vary from

1.0 to 4.0. A value of R = 4 implies that the minimum X is

one fourth of the maximum X. The Y transformation is

performed in a similar fashion except that Y = y + B sin Ly

is employed where

Y = the transformed grid,

y = the original grid,

B = a constant, and

L = 2%/W

Placement of the high resolution is accomplished by

determining the value of 6 required to place the minimum map

factor as desired. For instance, if the refined grid is

desired in the middle of the channel (L/2) then a would be

equal to w12.
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Figure 22 is the 48-h forecast with the triangular

subdivision for a uniform grid. This forecast will act as

the control for the triangular cases. Figure 23 is the

triangular subdivision, 48-h forecast with R a 2.0. Figure

24 is the triangular subdivision, 48-h forecast with.

R -3.0. Figure 25 is the triangular subdivision, 48-h

forecast wi th R - 4.0. All of the 48-h u and v fields

appear identical. This indicates that there is no degra-

dation in forecast skill when using the same number of

degrees of freedom and locating many of those unknowns into

a refined area. There is no noise apparent in the

transition regime. However, there are definite differences

in the divergence field, although the magnitude of the

maxi mum/ minimum value of divergence is rel ati vely small

(1.OxlO- 8 5

Table 4 shows the harmioni c analysis amplitudes o~f the

geopotential fields for the different triangular cases. The

relationship between initial and final amplitudes remains

the same regardless of the degree of variability. The phase

propagation of the v field in the control case is 97.7%,

whereas it is 96.7%, 95.4% and 94.1% for R values of 2, 3

and 4. The variation from the control of the phase propaga-

ti on with grid refi nement is under four percent.
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TABLE 4

Harmonic Analysis (Geopotential m21s2)

rri angles

R= 1.0 R =2.0 R. - 3.0 R = 4.0

Wave Initial 48-H Initial 48-H Initial 48-H Initial 48-H

1 67.98 67.16 67.91 64.65 67.91 64.95 67.91 63.70

2 .00 .55 .00 .69 .00 .99 .00 .57

3 13.55 12.90 13.45 12.55 13.41 13.24 13.29 11.16

4 .00 .21 .00 .37 .00 .54 .00 .28

5 1.90 1.70 1.67 1.30 1.33 1.62 1.32 1.38

6 .00 .16 .00 .23 .00 .36 .00 .21

Figure 26 is the control case for the rectangular

version, 48-h forecast. Figure 27 is the rectangular

subdivision, 48-h forecast with R = 2.0. Figure 28 is the

rectangular subdivision, 48-h forecast with R = 3.0.

Figure 29 is the rectangular subdivision, 48-h forecast

with R = 4.0. Close inspection reveals no noise in either

the , u or v fields. No degradation in forecast skill has

been observed due to increased resolution with a rectangular

subdivision. All 0, u and v fields are very similar in

structure. The main difference in the forecasts lies in the

divergence field where the magnitudes are small (10- 8 s-1)

because of the specified mean depth.
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Table 5 is similar to Table 4 except for the

rectangular cases. Phase propagation for the control case

v field is 98.0%, whereas it is 98.3%, 98.1%, and 97.9% for

R values of 2, 3, and 4. The variation from the control

case of the phase propagation with grid refinement is less

than half a percent.

TABLE 5

Harmonic Analysis (Geopotential m2/s2)

Rectangles

R = 1.0 R - 2.0 R = 3.0 R = 4.0

Wave Initial 48-H Initial 48-H Initial 48-H Initial 48-H

1 68.03 67.48 67.98 65.26 68.22 66.45 68.14 66.34

2 .01 1.00 .03 .36 .00 .85 .00 1.22

3 13.59 12.95 13.39 13.26 13.49 13.81 13.36 12.39

4 .01 .46 .05 .22 .01 .48 .00 .43

5 1.92 1.81 1.57 1.64 1.54 1.59 1.46 1.19

6 .02 .23 .07 .04 .01 .30 .00 .22

The tests thus far indicate a successful grid refine-

ment capability for both triangles and rectangles. There

are neither drastic impairments nor improvements in either

phase propagation or amplitude changes for either technique.

Neither version stands out above the other although the

rectangular version has less phase propagation variation and

better amplitude conservation. Both versions allow compara-

ble grid refinement through the use of the procedure
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previously described. Both allow an easy and straightfor-

ward implementation of the procedure.

However, there is a more fundamental difference between

the versions. Operators, such as a simple derivative, have

weighting coefficients associated with finite element appli-

cati ons as well as with finite difference schemes. For

instance, a simple-centered, one-dimensional finite differ-

ence derivative has weights of 1/2 and -1/2. The finite

element weights are identical to the finite difference

wei ghts in this one-di mensioanal case. The wei ghts can
similarly be computed for two-dimensional operators such as

a Laplacian. The quadrature formulas used to determine the

weights are explained in more depth ii Appendix S. The

geometry of the triangles affects the weights. For

instance, the two-di mensi onal Laplaacian applied to a finite

element application on an equilateral triangular subdi vi sion

gives weights of 1/6 to all surrounding points, and -, .

the center point, as indicated in Figure 30. However, the

wei ghts change if a triangle with a hei ght equal to one half

the base is employed as shown in Figure 31. The fact that

some weights are zero is a strong cause for alarm. If the

triangles are flattened further, the farthest end point

weights become negative. This is strictly a function of the

geometry of the tri angl e and i s a cl ear si gn that use of

the triangles 4arrants extreme caution. In fact, Williams
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1/6 116

1/6 1/6

Fig. 30. Weights associated with a Laplacian operator
for a triangular subdivision using equilateral
triangles.

1/4 1/4

1-7
1/4 1/4

Fig. 31. Weights associated with a Laplacian operator for a
triangular subdivision using triangles with a base
equal to twice the height.
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(unpublished notes) has determined that the geometry of the

triangles dictates that unless a triangle with at least two

equal sides (i soscel es) is employed the boundar-y conditions

will not be exactly satisfied.

E. EXPERIMENT 3

The capability of the GFEM model to resolve atmospheric

phenomena near the scale of the smallest grid "length will be

demonstrated. This experiment is in response to Task II of

the hypothesis.

The ultimate motivation for any "improvement" in a

model is a better forecast. During the past decade,

improvements have come, to a certain degree, by increased

resolution. While it is intuitively obvious tnat increased

resolution will improve a forecast, demonstrations have not

been made to show how the model resolves features near the

smallest grid length. Staniforth and Mitchell (1978)

increased the resolution with a variable grid but resolved a

synoptic scale feature in a 37x37 uniform fine mesh area.

In this experiment, a source term simulating a mass

source is added to the continuity equation. An expression

for the source term in terms of a wave form is derived by

theoretical means. The wave form allows a very small scale

feature to be simulated. A detailed description of this

Iprocedure can be found in Chapter IV-D-2. By assuming the
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wave is in equilibrium and steady state, the solution and

source are known for all time when the Rossby number is

smal .

The development of the source term expression followed

traditional quasi-geostrophic theory. One requirement for

quasi-geostrophic theory is that the Rossby number be small.

In the linear case, the Rossby number will be approximately

0.1. However, in the nonlinear case the Rossby number is

approximately 0.4 and the quasi -geostrophic theory

assumption is violated.

The first test will be on a uniform grid for the

rectang;lar GFEM and finite difference models and the second

test wi'.l be on a variable rectangular grid GFEM model.

High resolution versions of the uniform test will be run and

act as the control. A mean depth of 5 km was selected.

Perturbations of 2.5 m/s and 25 m/s upon a mean flow of

10 m/s will be evaluated for the uniform grid. This will

allow both the linear and nonlinear aspects of the different

models to be observed. Here linearity ii implied by the

smallness of the perturbation amplitude. The source term

solution is nonlinear and nonlinear interactions do occur

when the amplitude is small. Each test will be integrated

for 96 h of forecast time. A perturbation of 25 m/s upon a

mean flow of 10 m/s will also be evaluated for the variable

grid.
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The main thrust of this experiment is to determine the

grid-scale sensitivity for the GFEM model and the equivalent

finite difference model. Sensitivity will be measured by

insertion of a source term into the continuity equation.

However, the theoretical development presented in Chapter

IV-D-2 is for the rotational component of the wind. Because

the initial conditions for u and v are non-divergent, the

divergence in the model must increase from a zero initial

state. This increase will require an adjustment process.

This serendipity effect will be exploited during the

compari sons.

The linear cases examined represent a small-scale short

wave embedded in a long wave pattern. Using a small per-

turbation for the first tests will establish a level of

confidence that each model responds to the source term

creditably. The nonlinear cases represent an active vortex

in a mean flow. The maximum u component is 35 m/s which is

hurricane/typhoon strength. Physically, the source term in

the divergence field opposes the advection of the vorticity

j field, and "anchors" the steady-state vorticity solution.

In either the linear or nonlinear test , the source

term is nonlinear. By constraining the perturbation to be

small , the source term plays a linear role. However, when

the perturbation is large, the source term allows full

nonlinear interactions.
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F. RESULTS 3

1. Linear Case - Uniform Grids

A Figures 32 and 33 are the initial and 96-h fore-

casts for the rectangular GFEM model. There are 156 degrees

of freedom in these forecasts. The initial v field has a

maximum value of +2.27 m/s across a separation of 4 incre-

ments. The initial u field maximum and minimum are 12.5 m/s

and 7.5 m/s. The source term is shown in the initial fields

and remains constant throughout the integration. The diver-

gence value increased to a steady state solution during the

first 12 hours with an oscillation that died out after hour

24. Figure 34 is the equivalent finite difference 96-h

forecast. Figure 34 demonstrates that the finite difference

model performs well for these initial conditions. Figure 35

is the high-resolution 96-h forecast for the rectangular

GFEM model. Close inspection of Figures 33 and 35 shows

little difference. The low resolution forecast with 156

degrees of freedom has converged to the high resolution

forecast with 600 degrees of freedom. Figure 36 is a graph

of v component amplitudes at hour 96 as a function of x and

y wave numbers for the low and high resolution and finite

difference models. The high resolution (S253115) and low

resolution (S153115) forecasts are in excellent agreement.

However, the FOM (F153115) forecast departs from the control
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Fig. 36. V component amplitude as a function of x and y
wave number at hour 96 for the high (S253115) and
low (S153115) resolution GFE£ models and the
finite difference (F153115) model and
perturbation - 2.5 m/s. Contour interval is
.OS m/s.
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even with this relatively linear case. For uniformity of

comparison, similar ranges of x, y wave numbers will be

shown in Figures 36 and 41.

2. Nonlinear Case - Variable Grids

Figures 37 and 38 are the initial and 96-h

forecasts for the rectangular GFEN model with low

resolution. The initial v field has a maximum of +22.7 m/s

across a separation of 4 increments, but most of the change

occurs over 2 increments. The initial u field maximum/

minimum is 35 m/s and -15 m/s. The source term as shown

remains constant during the integrations. The adjustment

process is evident when viewing 96-h forecasts. The final v

field has a maximum of 44.3 m/s, and a minimum of -38.0 m/s.

The final u field has a maximum of 40.2 m/s and a minimum of

-29.8 m/s. Figure 39 is the equivalent finite difference

model forecast of Figure 38 and the marked differences in

the forecast are readily apparent. The maximum final v

component is 41.2 m/s and the minimum is -47.3 m/s. The

maximum final u component is 50.6 m/s and the minimum value

is -38.6 m/s. Figure 40 is the 96-h forecast for the

rectangular high-resolution GFEN model. Comparisons of

Figures 38, 39 and 40 show a convergence of the low-

resolution GFEM version towards the high-resolution solution

with a much poorer showing for the finite difference model.

Figure 41 is a graph of v component amplitudes at hour 96 as

a function of x and y wave numbers for the low and high
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Fig. 41. V component amplitude as a function of x and y
wave number at hour 96 for the high (S258115) and
low (R158115) resolution GFEM models and the
finite difference (F158115) model. Perturba-

tion -25.0 m/s. Contour interval is 0.5 u/s.
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resolution and finite difference model. As in the linear

case, there is strong agreement between the low and high

resolution forecasts. The departure of the FDM from the

control is readily apparent in this highly active case. The

inability of the FDM to properly handle the nonlinear

interactions manifest itself as large spurious amplitudes at

high x and y wave numbers.

The relatively poor showing of the finite difference

model for the forced cases shown so far can be improved, to

a certain degree, by increasing the resolution. However,

increased resolution requires more computational effort.

Figure 42 is the 96-h forecast with a perturbation of 25.0

m/s for the FDM model. The initial conditions are identical

to the nonlinear cases shown in Figure 37. The difference

in the forecasts is the resolution where there are now 576

degrees of freedom (24X24). The 96-h forecast is certainly

better than the 12X12 forecast. However, there is some high

frequency noise in the forecast. Figure 43 is identical to

Figure 42 except that there are 1296 degrees of freedom

(36X36). The high frequency noise is readily apparent and

is a manifestation of nonlinear aliasing. For this forced

case the finite difference model is unable to achieve the

same forecast as the low resolution GFEM model. This result

will be amplified when a model with the same number of

degrees of freedom as the low resolution model is employed

but with a variable grid.
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This comparison of the finite element and finite

difference methods for the source term dramatically high-

lights the potential improvement when utilizing a Galerkin

approach. Both graphical displays and harmonic analysis

leave little doubt as to the superiority of the GFEM model

over the equivalent finite difference model.

Adding an extra margin to the already established

superiority can be accomplished by using the low-resolution

model with a variable grid. Figure 44 is similar to the

tests in Figure 38 except that a variable resolution grid

(R = 2.0) was utilized. A 96-h forecast for a variable

resolution grid (R = 3.0) is shown in Figure 45. Comparison

of Figures 38, 40, 44, and 45 show the convergence of the

low-resolution uniform solution towards the high resolution

solution as the degree of variability is increased. Figure

46 Is a graph of geopotential amplitudes at hour 96 versus y

mode wave number (x wave number one) for the uniform,

variable, and high resolution models. The R a 2.0 case

better represents the control than the uniform low

resolution forecast especially at low wave numbers.

However, at wave number three and above all models have

similar differences from the control.

The harmonic analysis demonstrates an improvement with

increasing variability but is not conclusive. Another

method to evaluate the improvement with increased varia-

bility is to look at the difference charts between the
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control and each level of variability. The difference chart

in Figure 47 is the control 96-h forecast (high resolution)

minus the low-resolution 96-h forecast. Figure 47 shows a

maximum difference in the center of the vortex. Figure 48

is the comparison of the high resolution 96-h forecast and

the R - 2.0 variable grid 96-h forecast. The maximum

difference has decreased from the uniform case. Figure 49

is the comparison of the high resolution 96-h forecast and

the R - 3.0 variable grid 96-h forecast. The difference

centers at the right-hand edge in Figures 47, 48 and 49 are

a result of post processing interpolation errors. Although

the maximum difference in the center of the vortex is

, greater in Figure 49 than Figure 48, the latitudinal

difference gradient is less. Root mean square differences

from the high resolution control are 652.2 m2 /s 2 , 608.8

m2 /s 2 and 469.7 m2 /s 2 for the low resolution, R - 2.0 and

R a 3.0 tests respectively. The forecasts have definitely

been improved at each level of increased resolution.

G. EXPERIMENT 4

This experiment will demonstrate a moving grid

capability. Harrison (1973) demonstrated the use of a

moving grid in his finite difference model. The inherent

problems with moving finite difference models are abrupt

* changes in resolution causing spurious noise. The noise,

unless damped, is magnified if left unattended every time a
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grid moves. In a GFEN model there is a smooth transition

into the fine grid area with no attendant noise. Therefore,

4 moving the entire grid with the fine grid is simply a matter

-2 of accurate interpolation.

Three tests will be performed. First, uniform low and

high resolution models will be integrated. These models

T- will not use a moving grid. Then a model with the same

degrees of freedom as the low-resolution model, but

employing a moving, variable grid, will be run. The high-

I resolution model will act as the control. Identical initial

conditions will be used for all three tests. These condi-

tions are similar to tho,;e developed for experiment 3,

except that the source term will be zero throughout the

course of the integration. The initial conditions include a

2 sharp trough with a relative vorticity maximum which Is

advected by the mean flow in the absence of any forcing (the

source).

Of particular concern is the generation of noise

incurred during grid movement. Therefore, a forecast of

96-h is made during which this grid moved eleven times. As

previously stated, the model utilizes absolutely no diffu-

sion, filters or friction. If spurious modes are excited

during the movement of the grid, they will appear In the

harmonic analysis.
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The procedure of moving the finite element grid is

achieved by displacing all the nodes one unit distance in

the direction desired. This retains the relative

distribution of the nodes and merely moves the entire grid

as an entity. Ramifications of this approach are:

1. The areas of each element remain the same and the
numerical quadrature coefficients for all the
associated integrals do not have to be recomputed.

2. The unit distance moves should be the smallest
grid increment; and

3. Direct solvers that utilize a preprocessing
procedure based on the grid distribution will notrequire the preprocessing to be recomputed after

each move.

The most important aspect of moving the grid is to accurate-

ly interpolate the new field values for the new grid point

., position. In this dissertation a standard International

Mathematics and Statistical Library's (IMSL) bi-cubic spline

interpolating routine was employed. The movement will occur

only in the x direction and, therefore, a one-dimensional

interpolator suffices. The interpolator accommodates the

periodic boundary condition. However, interpolators for

non-periodic boundary conditions are available. The accu-

racy of the interpolator is exact at grid points for a

uniform distribution. Initial experimentation verified that

a field could be moved with no loss in accuracy for a

uniform grid. Experiment 4 will test its capability to move

a variable grid with R - 2.0.
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HI RESULTS 4

Figures 50 and 51 are the initial and 96-h forecasts

for the uniform low-resolution model. The perturbation is

25.0 m/s, mean flow 10 m/s and mean depth 5 km. The initial

divergence is a zero field but spins up through geostrophic

adjustment. The northeast/southwest trough orientation is a

manifestation of the nonlinear interactions occurring for

this highly active perturbation. Figure 52 is the 96-h

forecast fo" the uniform high-resolution model. The

northeast/southwest trough orientation is evident in this

forecast as well. Figure 53 is the 96-h forecast for the

low-resolution, moving variable grid (R = 2.0) model.

Time steps were 4320s, 3085.7s and 3600s for the low,

high and variable models, respectively. The variable model

took 95 full time steps and two hal steps during the 96-h

J forecast. The half steps are required only to start the

model to obtain the N and N+1 time levels in the leapfrog

time stepping. The grid moved 11 times during the forecast

at time steps 8, 16, 24, 32, 40, 48, 56, 64, 72, 80 and 88.

The x axis origin in Figure 53 is 3530 km indicating

eastward grid movement. The vortex is still in the fine

mesh area. Additionally, there is no noise in the forecast

fields. To reiterate a previous statement, there are no

filters, diffusion or friction terms employed during this

integration. Comparisons among Figures 51, 52 and 53 show
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that the variable grid forecast more closely approaches the

*1 control than does the uniform low-resolution model. This is

to be expected since the fine mesh area has been moved to

coincide with the active region of the forecast domain.

Table 6 shows the geopotential harmonic analysis for

the three models after a 96-h forecast.

TABLE 6

Harmonic Analysis (Geopotential) for Experiment 4

Units are m
2/s2

Wave Low Resolution High Resolution Moving Grid

1 876.1 904.7 850.0

2 167.4 152.9 146.6

3 122.5 176.9 159.6

4 54.7 39.0 39.0

5 20.3 10.2 9.6

6 5.1 7.6 7.3

Comparisons of the higher wave number amplitudes show

almost identical amplitudes in y modes four, five and six

for the moving case and high-resolution uniform case. The

amplitude in y mode six indicates that the movement of the

grid has not generated unwanted noise. The overall improve-

ment for the moving case is a result of the finer grid's

ability to better resolve the small-scale interactions

occurri ng.
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4

VI. SUMMARY AND RECOMMENDATIONS

-I
Numerical weather prediction requires that the

equations governing atmospheric flow be solved numerically.

These flows cover a large range of scales. Classical
modeling schemes have successfully forecast the longer

scales and improvements are being sought for the smaller

scales.

In this dissertation, the GFEM has been employed for

the shallow-water equations in a channel domain. The

differentiated form of the equations on an unstaggered

finite element grid with a semi-implicit time scheme has

been utilized. An equivalent finite difference model

representing the conventional approach has also been

utilized. Analytic initial conditions representing simple

atmospheric waves and a more complex source term have been

used to test the different models.

The hypothesis of this dissertation is that the GFEM is

a viable option for numerical weather prediction. The

theoretical foundation of the GFEM leads to a minimization

of the error between the actual equations and their approxi-

mation. This minimization implies a basis for expected

improvement in forecast capabilities. Three features were

addressed to support that hypothesis. First, alternatives

for variable grids were investigated. Second, forcing near
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the smallest grid scale determined if the GFE4 model

resolved the smaller scales better than a finite difference

counterpart. Finally, a proof of concept for the ability to

move the grid was demonstrated. Each task adds to the

usability of the GFEM and illuminates the well-rounded

potential that it contains.

First, the ease with which the method allows variable

grids was demonstrated. In all cases, no numerical

techniques were employed to damp or filter any field. The

grid refinement obtained when using a rectangular

subdivision was more attractive than with a triangular

subdivision. It allowed refinement to be easily obtained

with increased accuracy from the higher order polynomial and

decreased computational effort due to reduced operation

counts. Additionally, it was shown that the geometry of the

triangular elements greatly influences the problem.

Furthermore unless specific constraints are enforced, the

boundary conditions would not be satisfied.

Second, the ability of the GFEM to resolve atmospheric

phenomena occurring near the scale of the smallest grid-

length was shown. A small-scale steady state solution was

cast into a source required for that solution. Integrations

showed that the GFEM model resolved the small-scale forcing

admirably and far exceeded the performance of an equivalent

finite difference model. Even when the resolution of the
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finite difference model was doubled and tripled, it could

not match the performance of the low-resolution variable

grid GFEM model. The responsiveness of the GFEM model near

the smallest resolvable grid length clearly demonstrates

that the variable grid concept is worth the computational

effort.

Finally, the concept of moving the variable grid was

demonstrated. The ability to resolve a small-scale

phenomenon is a tremendous asset to the GFEM. The ability

to move the grid with the atmospheric phenomena further

enhances its usefulness.

Throughout this dissertation the GFEM model has

demonstrated desi-able characteristics. It has conservative

properties. It propagates atmospheric waves better than an

equivalent finite difference model. It allows variable-

resolution grids and responds better than an equivalent

finite difference model near the smallest grldlength.

Moving grids can be achieved with no apparent noise

generation. It can utilize direct solvers and is a natural

choice for vectorizatlon on large computers. It truly is a

viable option for simulation of atmospheric flows.

The success of this dissertation mandates further

research. The next logical step would be a baroclinic

model. Completion of a baroclinic model should allow its

application as a regional model. Additionally, different
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basis functions could be employed for the vertical

'I discretization, such as solutions to the vertical structure

equation. For the moving variable-resolution grid, further

research into two-dimensional movement is required. The

proof of concept in this dissertation of one-dimensional

movement can logically be extended to two dimensions. Upon

completion of two-dimensional movement, an operational

forecast capability for tropical cyclones should be investi-

gated. The superior small-scale response of the GFEM

indicates potential increase in skill for both regional and

tropical cyclone/hurricane prediction.

1
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APPENDIX A

STABILITY ANALYSIS

A one-dimensional linear analysis of the forecast

equations will be presented. The analysis was obtained

through personal communication with Dr. Andrew Stani forth

(Recherche en Prevision Numerique). The primitive form of

the forecast equations and a semi-implicit time scheme will

be analyzed, because the results are identical for the

vorticity/divergence form. The one-dimensional equations

with a mean flow U are

3u U22. f v(A-1)

t ax a

--U ! fu (A-2)

+ au (A-3)

Time derivatives are evaluated with a centered time dif-

ferencing and the other terms on the left-hand side are

averaged between time levels (t + at) and (t - at).

Equations (A-1), (A-2) and (A-3) become

utx,t+at) -utxt-at) + I ixtx0t -__________________

+ (#(x+ax.t-At) - ON-Ax .t-At)3 *-j U(x+&x.t) -utx-ax~t

+ f v(x,t) (A-4)
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v(x~t+&t) -v(x't-At) - [V(X+AX.t) -vtx-Ax~t)]

zat ZAX

f u(x,t)(A)

#(x,t+at) #(xt,&t) + * rtutx ax~ t) -utx-ax~t+at)
zat 2zAX

+ (u(x+ax,t-at) 2 - u(x-ax.t-at))] 0j(#tX+hx.t) - 4(x-&X.t)) (A-6)

Assuming that a function, F, can be expressed as

F(x,t) - F'el(kx +wt) (A-7)

then

Fxta)- F(x,t-tl JP' + wt)t
____________ = tsiwte (A-8)

F(x,t+at) + F(x,t-6t) P F cos(wat)e i(x+ wt) (A-9)I 2
Equations (A-4), (A-5), and (A-6) become, after

substitution,

l su' - v + = k a (A-10)

At

tke' + u0 (A-12)at
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where s *sin wht + VuAt, c *cos wht and k' asin kAx
Ax*

The determinant of the system of equations (A-10), (A-li)

and (A-12) when set equal to zero yields

[$ .2 + 2 f~)] . 0 (A-3

The roots are s*0 and

S2 - (fAt) 2 + C 2 )20(-4

The roots of this second order equation when requiring w to

be real yield the stability criterion

At < -I(A-15)

-1

133



APPENDIX B

NUMERICAL QUADRATURE

Evaluation of the Galerkin integrals requires a fast,

efficient method . Two different elements, triangles and

rectangles, have been employed and the quadrature schemes

for evaluation are presented here. In the first case,

triangles, area coordinates are used. For the rectangles,

integration formulas are based on an orthogonal axis trans-

formation. In both cases, the integrals to be evaluated

contain either products of basis functions, products of

derivatives of basis functions, or a mixture of both.

Zienkiewicz (1971: developed the relationship between

the Cartesian coordinates of a triangle and the area

coordinates as

,'j! (B-i)
X = LIX 1 + L2X2 + L3X3

Y = L1Y1 + L2Y2 + L3Y3  (B-2)

L =1 + L2 + L3

(8-3)

where (xl,yl), (x2 ,y2) and (x3,Y3) are the Cartesian coordinates

of the triangle's vertices and LI, L2 and L3 are the area

coordinates. Here

Ll A I/A L2 A 2/A L3  A3/
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where A1 , A2 and A3 are shown in Figure 54 and A is the area of

the entire triangle. He further shows that

(( L a L b L c dxd ab~c! 2A

1 2 3x (a+b+c+2): A

The L's are the basis and test functions used during the

approximating process. Figure 55 defines some necessary

parameters for evaluation of the derivatives.

Equations B-i, B-2 and B-3 can be written in matrix

form as

2 1= 2A b2  a2  x(-)
L L 2 b3 a3J LVJ

Differentiation of Eq. (B-5) shows t hat

3 b.
2 i a (B-6)

Tl x i=l 2A DL3 a
" 3 ai a (8-7)
T--i i 2A aLi

However, the derivative of the basis function with respect

to the area coordinate is non-zero only where the basis

function and area coordinate coincide. In fact, the non-

zero value is one. Therefore, using V1 as a basis function

5Vl  b1

1(3-8)
i1

13



x 3,0,31

V3

xAl2 X2 2

Fig. 54. Cartesian coorcinates vs. natural coordinates.

y 82 x,- 13

I y 2 13

2 '3'2

2 3 Y3 -1

4Fig. 55. Triangle definitions for area coordinates.
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All integrals can be evaluated by combination of these

quadrature formulas for triangles.

An orthogonal axis transformation will allow similar

quadrature formulas for rectangles. The rectangle shown in

Figure 56 can be transformed by

X'Xo Y'Yo
= n = (B-9)

The values of c and n at each corner are shown in

parentheses. The basis function, Vi, becomes

V (l+ i¢)l+ntn} (8-10)

4

y
4 ________________ 3

T ----" (X-,IYJ 1,11
2b+

'".L _1-I,-11I 1 ,-I.1
.L

1 2

2j

x

Fig. 56. Orthogonal axis transformation for rectangular

integration formulas.

Derivatives of the basis function become

=Vt1 V1
ax a ac

and

-ay b an
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By substituting and integrating, the 4 x 4 matrix with the

interaction coefficients can be determined for a derivative

or straight inner product. For instance, the straight inner

product is

cij =lfiV 1 dxdy ab J i [ 1V dcdn

6- 231j )231ij) (B-12)

and the mixed derivative is

d =f -vi!! dxdy I-j J 1 d~d

11

b 2

These quadrature rules allow the evaluation of any integrals

when using rectangles.
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