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ABSTRACT

g A hypothesis is made that the Galerkin Finite Element

Method (GFEM) offers a viable option to the traditional

L,; % . Finite Difference Method (FDM) for numerical weather predic-
i tion. The shallow water barotropic primitive equations are
é ' the forecast equations for all experiments. The hypothesis
' is tested by observing simple, analytic, atmospheric wave
propagation on uniform and variable mesh grids. Second, a
strongly forced solution simulating small scale nonlinear
interactions is evaluated for both the GFEM and FDM.
Finally, a variable, moving grid for a GFEM model is

compared to a uniform, higher resolution GFEM model for a

strong vortex in a mean flow. The GFEM shows a better

propagation for simple atmospheric waves and better bré&ic-
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tion to a forced nonlinear solution than the FDM model, A
moving variable grid follows an area of strong gradients

while not generating noise in the transition zone.
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I. INTRODUCTION

Proper simulation of atmospheric flow is the main
objective of numerical weather prediction. The foundation
of numerical weather prediction is a set of equations
including the momentum, thermodynamic, moisture and conti-
nuity equations for modeling the atmosphere. Through
computer simulation, numerical weather prediction predicts a
future state based on initial conditions describing the
atmosphere. A successful forecast model must include small
scale processes. Transports, conversions and exchanges of
mass, momentum and energy occurring on the small scale
represent important features which must be properly simula-
ted., Feedbacks from the proper representation of these
small features can sometimes markedly influence the larger
scale solutions. Representation of the effects of small
scale processes can be accomplished directly through
increased spatial resolution. Continued increases in the
spatial resolution will eventually allow the desired process
to be resolved properly. However, a doubling of resolution
generally requires an eight fold increase in computational
effort. The value of increased spatial resolution must
ultimately be measured by its contribution to the overall
forecast. A level of confidence in the forecast must be

achieved that the process is resolved near that particular

14




grid resolution. The grid resolution could be uniformly
fine in the forecast domain. The computational effort for
uniform fine mesh models could be far in excess of available
resources. An alternative to a uniform fine mesh is a
variable mesh where the fine mesh covers only regions of
interest or high activity.

The conventional numerical weather prediction forecast
scheme, the finite difference method, approximates the
partial differential equations with a truncated Taylor
sertes. It has performed admirably when forecasting the
larger scales of motion. Technological improvements in
computing power coupled with better understanding of the
atmosphere now allow the smaller scales to be forecast.

An alternate method for numerical weather prediction,
the GFEM approximates the partial differential equations
while minimizing the error between the actual equations and
their approximation. This best fit logically ieads one to
the expectation that the GFEM will better model the smaller
scales than the finite difference schemes. This research
will demonstrate practical aspects of the GFEM theoretically
possible.

In this dissertation, the GFEM will be evaluated to
determine its potential to model atmospheric flow. Equiva-
lent GFEM and FDM models will be utilized to compare the two
methods. Simulations of small scale processes explicitly

resolved on uniform and variable grids will be investigated.

15




Rigorous experiments will demonstrate both GFEM and FDM
responses for forcing near the grid length scale. Finally,

a demonstration will be made of 2 GFEM moving variable mesh

which moves with the small scale process or feature, and
thereby allows the fine mesh to resolve the highly active
o J region initially and throughout the forecast period.




I1. HYPOTHESIS

Numerical weather prediction has steadily improved in
the simulation of atmospheric flow. Large scale flows have
been adequately represented by finite difference models for
several decades. Galerkin-type formulations (Cullen, 1974b;
Hinsman, 1975; Staniforth and Mitchell, 1978; Cullen and
Hall, 1979; Staniforth and Daley, 1979; MacPherson and
Aksel, 1980; and Sasaki and Reddy, 1980) have been shown to
be competitive with finite difference models, but have not
shown a marked improvement. Comparing the current opera-
tional models at selected large computer centers, one finds
that two are Galerkin and three are finite difference
(Galerkin: National Meteorological Center and Canadian
Meteorological Center; and finite difference: Fleet
Numerical Oceanography Center, Air Force Global Weather
Center and European Center for Medium Range Weather
Forecasting. However, all centers have ongoing research
with Galerkin models and there are indications that these
will give better long range forecasts. The dichotomy arises
because the Galerkin applications have not vindicated them-
selves with a marked increase in accuracy, but rather have
shown equivalent accuracies. Staniforth and Mitchel (1977)

stated that ultimately the best global/hemispheric models

will be a spectral model. The spectral model fs based on




the Galerkin procedure and the use of trigonometric func-
tions is particularly appealing for hemispheric or global
grids. However, where non-uniform grids are required, the
GFEM is a more logical choice.

Marked improvements in regional forecasts will not come
from better large-scale models, but rather from models that
can simulate smaller atmospheric features. The National
Weather Service Limited Fine Mesh Model is an improvement
over the hemispheric model, partly because it has higher
resolution and can resolve smaller phenomena. These smaller
features can also affect the large scale flow. Numerical
meteorologists have realized this for years and have
attempted to model these features.

The GFEM has the potent1a1_to increase efficiently the
spatial resolution for the purpose of simulating accurately
the smali-scale processes. [f a variable mesh is to be
employed, then it should be evaluated by proper simulation
of a small-scale feature. In previous research (Staniforth
and Mitchell, 1978), the refined grid was tested by pro-
pagating synoptic-scale waves into the finer grid and
demonstrating that the wave could move into the finer grid
without generation of significant noise. These conditions
represent a prerequisite. If synoptic-scale waves cannot

move freely into and through the variable grid, then advec-

tion interactions will not occur properly in the fine grid.




However, one must also show that c smaller scale atmospheric
feature can be properly resolved or developed in the fine
mesh area. This will be a milestone. The efforts of
Staniforth and Mitchell (1978) and Staniforth and Daley
(1979) have stressed the movement of syanoptic scale features
into the fine mesh area but have not demonstrated improved
resolution of smaller scale atmospheric features in the fine
mesh area.

The hypothesis is that the GFEM is a viable option for
numerical weather prediction when simulating atmospheric
flow on variable grids. Three separate features of the GFEM
will be explored. Etach feature will establish the creden-
tials of the GFEM as a viable option. Each feature is
intimately related to the proper representation of a small-
scale phenomenon. The cost effectiveness of the GFEM, when
evaluated in these contexts, will provide a measure of the

potential contribution of the method.

A. FEATURES
The following three specific features will be explored
to support the hypothesis.
1. Variable Grid
Investigations of a suitable alternative to the

finite difference models for a variable grid will be

performed. Two basic subdivisions are available--triangular

or rectangular. Staniforth and Mitchell (1978) employed the
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variable rectangular grid as shown in Figure 1. The grid
contained some areas of finer resolution which were not in
the verification area. Two points associated with having
variable resolution in peripheral regions arise:

(a) Unnecessary computational overhead is required;
and

(b) Undesirable phase changes occur as the wave
propagates in the peripheral regions.

Older (1981) and Woodward (1981) developed a transformation
procedure to vary smoothly the resolution for a channel

domain from a coarse to a fine area in a triangular subdivi-
sion. A uniform equilateral subdivision is shown in Figure
2. The use of triangles allows the increased resclution to
occur only where desired and not in peripheral regions.

Two possible choices of triangles include the right and the

equilateral. Hinsman (1975) utilized equilateral triangles

while Cullen (1974b) utilized near-equilateral triangles. Both

reported excellent wave propagation. Kelley and Williams
(1976) utilized right triangles and experienced very noisy
solutions. Woodward (1981) duplicated Kelley and Williams
effort with equilateral triangles and found a major
reduction in the noise.

The differing geometries and results thus far reported
mandate a further review of triangular subdivisions. It {s
not obvious which subdivision is most suitable. A distinct

advantage of the rectangular subdivision is that it allows
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Fig. 1.

Rectangular subdivision of the Northern Hemisphere
on a polar stereographic projection (Staniforth
and Mitchell, 1978).
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algorithms to be developed which take full advantage of
vector processors. However, both subdivisions afford the
luxury of obtaining a variable grid. Therefore, similar
experiments performed on each type subdivision will point
out the advantages and disadvantages of each.

2. Numerical Simulation of Physical Processes

The variable grid chosen as the most suitable
alternative will be tested while simulating a physical
process to show that a small-scale atmospheric feature can
be properly portrayed in the fine mesh area. As stated in
Chapter II, the ability of variable grids to resolve small
scale atmospheric features has not been rigorously tested.
The ability to move synoptic scale features into a finer
mesh is a prerequisite and must be shown. The main crux of
the problem is what is happening in the fine mesh area. A
proper scheme must resolve a small scale feature near the
smallest grid length. Schoenstadt (1980) and Williams
(1981) indicated that the most responsive schemes were either
a staggered finite element grid with primitive variables or
an unstaggered finite element grid with vorticity/divergence
formulation. This research will utilize the latter.

The simulated process will be that of a mass source
analogous to that found in the upper atmosphere above a

hurricane‘or on the leading side of a strong trough. The

source will appear in the continuity equation. A known wave
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form will be assumed and the required source to support the
wave form will be analytically derived. The expression for
the wave form will allow control of the scale of the process
sd that a near-grid scale phenomena can be simulated.

3. Moving Grid

The ability to move the fine grid so that it
remains centered on an atmospheric circulation will also be
demonstrated. This capability will further enhance the
applicability of the GFEM for atmospheric simulation. 1If it
is shown that smalil-scale forcings are properly reflected in
the flow, and the grid can be moved with the forcing
disturbance, then the GFEM has great potential for

atmospheric prediction.
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I11. THE DEVELOPMENT OF THE GFEM

The hypothesis in Chapter 11 proclaims the GFEM as a
viable option for simulating atmospheric flow. An under-
standing of the history and principles of the GFEM will give
further insight for the expected improved performance as
compared to the conventional FDM.

The origin of the GFEM can be traced to the seventeenth
century work by Leonhard Euler. His work established the
branch of mathematics known as calculus of variation. He
recognized that there existed a partial differential equa-
tion (PDE) associated with the minimization of a functional.
This PDE.has been appropriately named the Euler-Lagrange
equation. Solving the PDE was equivalent to determining a
stationary value of the functional. In the late nineteenth
century, Lord Rayleigh furthered the variational calculus by
representing the dependent variable as a mathematical
expression, typically as a power series. The stationarity
of the solution allowed determination of the unknown coeffi-
cients of the power series. His work was generalized in the
early twentieth century by W. Ritz and the procedure has
since been referred to as the Rayleigh-Ritz method. A
limitation in the solution by the Rayleigh-Ritz method is
the fullness of the matrix to be inverted. Shortly after

Ritz completed his work, Galerkin developed a procedure
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using weighted residuals which had a wider application than
classical variational calculus. The residual is made ortho-
gonal to a function, called the test function, and thereby is
minimized. While the Rayleigh-Ritz procedure applies to the
functional of an associated Euler-Lagrange equation, the
Galerkin procedure pertains to any PDE. The methods produce
identical results when applied to equivalent extremum
problems.

The Galerkin procedure was unknowingly well established
by the end of World War II. The rapid technological
advances made during and after the war, coupled with the
emergence of the computer, led the aircraft industry to
develop new numerical procedures for solving stress problems
in aircraft design. A successful technique was developed
and mathematicians realized, long after the fact, that the
Galerkin procedure was being utilized.

The GFEM is a commonly used subset of the set of
Galerkin procedures. After subdivisioa into a set of ele-
ments, the domain resembles a completed jigsaw puzzle, and
hence leads to the terminology "finite elements." Figures 1
and 2 are samples of such subdivisions. The dependent
variables of the PDE are represented as a linear combination
of known functions, which are usually low order polynomials.
The same function is employed as the test function. When
substituted into the PDE, these approximations leave a

residual. Minimizing the residual completes the prccedure.
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The functions are globally zero except where the dependent
variables are defined near each individual node. The pro-
duct of functions remains zero except where the representing
and test functions are both non-zero. This makes the method
attractive for computer implementation. [t removes the
matrix "fullness" problem found with the Rayleigh-Ritz
approach. The minimization process lies at the heart of the
expected improved performance. Each term of the PDE has
been simultaneously approximated and the error in those

approximations has been minimized.
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IV. MODEL DESCRIPTION

Two different barotropic shallow-water models will be
employed to test the hypothesis in Chapter IlI. Each model
will have the identical domain, boundary and initial
conditions. The difference will lay with the partial
differential equation approximation. In one model, a
Galerkin approximation to the partial differential equation
will be used, while the other model will use a finite
difference approximation. Two versions of the Galerkin
model will be evaluated. The first version will have trian-
gular subdivisions and basis functions, while the other will

have rectangular subdivisions and basis functions.

A. GALERKIN FINITE ELEMENT MODEL
The system of equations referred to as the shallow-
water equations consists of three equations with three

forecast variables ¢, u and v. The equations are written

30, 20 4 20 4 (2L, BV . ‘-
st P U tVay Yelx t ) = 0 (4-1)
3y v 1 3 . 4-
3t Y Usx T Vay - TVt t 0 (4-2)
a_v. a—v él 29;3 4"3
st P U tVay tfuty e 0 (4-3)
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Here ¢ is the geopotential height,
u is the east/west component of the wind,
v is the north/south component of the wind, and
f is the Coriolis parameter
By expanding ¢ into a mean (¢) and a deviation (¢') the

equations can be written

9’ 3 (s 2 (va') =

5t T oD+ 3lue’) + ay(“ ) =0 (4-4)
du , 39" , 3K _ vQ = 0 (4-5)
ot Ix X

v , 3", 3K .

ey tay ' uQ = 0 (4-6)

here D is the divergence

K is the kinetic energy (per unit mass), and

Q is the absolute vorticity.
The primes will be dropped for the rest of the paper for
clarity.

Cullen and Hall (1979) showed that the accuracy of the
GFEM solution was better for the vorticity-divergence
formulation of the shallow-water equations than for an
increase in resolution with the primitive formulation.
Williams and Schoenstadt (1980) noted that staggered
variable formulation of the primitive equations and the
unstaggered vorticity-divergence formulation gave the best

treatment of geostrophic adjustment for small-scale

features.
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The vorticity-divergence form of the shallow-water

i

‘ equations also allows the use of a semi-implicit time

{

‘ scheme. This scheme artificially slows the propagation
speed of the fastest gravity waves, which allows a much
larger time step than one could expect for a normal Courant-
Fredrich-Lewy (CFL) stability criterion. This scheme thus
offsets some of the extra computational expense required to
solve the system of equations assembled at each time step.

The vorticity/divergence form of the equations is

it . ot

3 3 ) s
3% + 4D + ST(us) + 3;(V¢) 0 (4-7)
3 3 2 .

| 3% + 3x(uQ) + 35va) = 0 (4-8)
3D 2 2 ? ) - ’
ST Ve K - o(va) 4 3;(00) 0 {4-9)

Here v2 is the Laplacian operator and ¢ is the (%% - %%)

relative vorticity.

The velocity can be written as the sum of the rotational and

vl Sl ;s

irrotational components as

where ¥ = KXYy and yx = Vx

v

The equations can be rewritten using

AV 2
5x T ay T VX
and
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.; resulting in
. ) 2 ]
_’ 3%+ oy - - 3xlue) - f% (ve) (4-10)
t

3 2 )

3ET Y T - 3xlvd) - f%(VQ) (4-11)
f 32 2 3 2

STV Xt e s ) - h(ug) - 23K L 3K (g gy

Equation (4-12) can be further manipulated

f Vz(%{ +4) = f%((vO) - %5) - 2((uQ) + %5) (4-13)

‘ ay y
_ The domain of integration is a channel with east-west
| periodicity. The boundary condition at a wall is
j V.N=0
where N is an outward pointing normal vector. Along the
northern and Southern walls, the v component is equal to

zero, so that the v equation of motion (4-3) reduces to

3% . .
3y fu
The zonal and meridional components of the wind can be
written as non-divergent and irrotational components as
= . ¥, 3X
v 3y | ax
and

vsé—!’-+.al
X ay

Then, along the north/south walls where v equals zero, the

boundary condition 1is

ax "~ 3y (4-14)
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The above condition is imposed by setting
v = a constant (4-15)

when solving the vorticity equation and

X , -
Y 0 (4-16)

when solving the divergence equation. This is an overspe-

cification but (4-14) would be difficult to apply. The
initial conditions which will be presented later are
{ specifically selected to satisfy (4-15) and (4-16).
i The semi-implicit scheme is implemented by evaluating
' all the terms on the left hand side of the equations as an
| average at time levels (t + At) and (t - At) or with a
| centered time difference as appropriate. All the terms on
‘ the right hand side are evaluated at time level t. The

equations become

%% + o(vzx(t+At) + vzx(t-At)) = - §§(u0) - é%(vo) (4-17)

v2 2. L 2(uq) - 3y(vQ) (4-18)

v2(§§ + o(t+at) + p(t-at)) = g%((vo) - %é) - f%((uO) + %%)
(4-19)

The divergence equation (4-19) can be solved for Xx at

(t + At)and substituted into the equation (4-17) to yield

v UL IR (TR

g(t-at) 1 2 1,3 3
) e(at) *ag Uoxlt-at) ¥ TEtlaxlou) ¢+ 3y(OV))

(4-20)
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where the overbar denotes an average of t + At and t - At.
The system of three equations in three unknowns has been
reduced to two Poisson equations and one Helmholtz equation
to be solved at each time step.

The solution procedure involves solving the ¢ equation
(4-20) for a new #. The divergence equation (4-19) is then
solved for @& + %f and by subtraction for %%. Finally, the
vorticity equation (4-18) is solved for %%; There are two
options as to which variables will be history-carrying:
either ¢, v and xor ¢, u and v. The choice was made to use
¢, u and v as history-carrying variables. They are updated

after each time step following Staniforth and Mitchell

(1977) by
o(t+at) = 26 - s(t-at) (4-21)
u(t+at) = 2At(§% %% - f% %%) + u(t-at) (4-22)
v(t+at) = 2At(;a; 4 B3 4 y(teat) (4-23)

Implementation of the GFEM is accomplished as described
in Chapter III. The north and south latitudes are input
parameters, and the north/south distance is subdivided into
N equal parts, where N is also an input parameter. The
east/west increment is a function of the north/south incre-

ment, as explained in the section describing the individual
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! experiments. The Coriolis parameter will be a constant

PIPRESRE S = e

equal to the mid-channel value.

The triangular and rectangular domain subdivisions will

P

be demonstrated in the experiment sections. An appropriate
approximating function for the rectangular subdivision is a
bilinear function. In either case, the forecast equations
in Galerkin form are

Jootagvy - —J—J—g)v - [ty - kv Y,

o(at)

it g Aot

. - [y vy FR Yy [aERlen) vy ¢ e vy,

o(at)

j : -‘[-—~l—z(t AtV 4 v H(t At)V Y, (4-22)

2 3 .
[72 3 gvgyy = - [ERO vy - [y, (8.25)

ol i 2o

2 : = (2
72 G xgvy + 5y, = [y - 2K v,

(4-26) ]

- [y« 2 vy,

Here the integral sign implies an area integral over the
domain, the j subscript denotes Einstein summation for the

dependent variables and the i subscript is the ith nodal

equation.
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The strength of the GFEM 1s that the spatial deriva-
tives of the dependent variables become derivatives of the
known approximating function and, therefore, are known
l exactly at each node. When using piecewise continuous
1inear functions, the first derivatives are piecewise

discontinuous and second derivatives are not defined.

e

Therefore, the second derivatives must be handled in a

different fashion,

JARAADE [( ARE -—-z(v ")

[ vy« [ - f3k 3
’f%"j"ilz -3 B

g [ -3 3 |

- $i v" - [35's

S P S
.

where the f implies & line integral aldng the east/west

or north/south boundaries. The east/west line integrals

are zero because of periodicity, but the north/south line
integrals add additional terms to the equatfons and are
satisfied by the boundary conditions. The Laplacian terms

become
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This integration-by-parts procedure allows the use of a

i
S

linear function while approximating second derivatives. The

final form of the forecast equationsis

| 3 (S CL I PR

- fvayg 35 v,
aV ayv
- [ B v 3

v
[ty - kg B

__ 3V, aV $.V v1 .
/( 3 ax X °j ayj ay1 + Q(At)i)
’ JiEivar vy - kI,

i ./At(u (t-at) 2y + v (t- At)avJ)V

vy + faptlou)y B+ vy 350y,

(4-27)
Wy 2y = - )y vy

(4-28)
g;j 3%1 + 84V J,) =
DV,
J))V




Here the Helmholtz equation (4-27) has utilized

2 . TR 1
véx = DIVERGENCE = 3% + -

and

%% = -y fo
along the walls.

The line integral along the north and south boundary
has been dropped from the vorticity equation (4-28), since
the value of y on the boundaries is a constant and therefore
the value of %% is zero. The line integral along the north
and south boundary has been dropped from the divergence
equation (4-29), because the value of the normal derivative
along the north/south walls is zero, as stipulated by the
boundary conditions. The initial conditions will also

satisfy the condition that the normal derivative of x is

zero along the north/south walls.

B. FINITE DIFFERENCE MODEL

The comparison model to the GFEM model is an adaptation
of the staggered, primitive-equation model as described in
Section 7-4 of Haltiner and Williams (1980). The equations
are in the flux form and employ Scheme C as shown in Section
7-3 of Haltiner and Williams (1980). The baroclinic model

described there has been coded to pe¢ “form in a barotropic

mode.
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| Since the GFEM is written in differentiated form,
vorticity and divergence have been diagnosed from the primi-
tive variables in the finite difference model to allow

appropriate comparisons.

c. NUMERICAL METHODS

Although no attempt is made to optimize computational
efficiency in this research model, the GFEM must utilize
efficient numerical techniques to be considered a viable
! option for numerical weather prediction. Various solution
procedures are available for the GFEM system of equations.
Successive over-relaxation was employed during the early
research stages. Several problems arose which indicated a

need for a better solution procedure. The successive over-

relaxation procedure resulted in a bias if the sweeping
during each pass was in the same direction. Alternating the

direction alleviated that particular problem, but the number

vt el

of passes required to achieve a desired level of accuracy

X
s

became prohibitive. A second approach employed a direct
solver using a Gaussian elimination procedure. The matrices
from the Galerkin procedure are decomposed into upper and
Tower block tri-diagonal matrices. A preprocessing, repre-
senting the forward substitution stage, can be done once.
The back substitution must be done each time a solution is
desired. The coefficients necessary for this back substitu-

tion are stored in an efficient manner. The particular
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algorithm is called a "skyline" solver and is described in
q detail in Bathe and Wilson (1976). Skyline refers to the
compact method of storing only those coefficients required.

This method has the desired level of accuracy and a high

. Ak

degree of computational efficiency. Staniforth and Mitchell
(1977) employed another direct solver method called, the
conjugate- gradient method. This method is very computa-
tionally efficient, even when the non-constant coefficient

Helmholtz equation is involved. The theoretical operation

count indicates that for very large domains with many
degrees of freedom, the conjugate-gradient method will be
much better than the other direct solver mentioned above.
The Gauss elimination procedure was utilized instead of the
conjugate-gradient method for reasons of 2xpediency.
Numerical integration of the three forecast equations
involves solving first a Helmholtz equation for ¢, second a
Poisson problem for y and finally a Poisson problem for x.
The boundary conditions and the equations are well posed for
the first two equations. However, the normal derivative of
x s equal to zero for the last Poisson equation and
requires special attention. The solution plus a constant is
also a solution. Since only derivatives of y are required,
the shape of the field is much more important than the
actual value of y. To avoid computer round off errors, the

average value of the terms on the right hand side of (4-29)

is removed at each time step. This sets the constant to
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zero and does not allow the solution to grow by a constant

each iteration.

The current technology of large mainframe computers
incorporates vector processing. Utilization of this
ability can be achieved when the system of equations can be
vectorized. The GFEM is derived in vector formulation and

is easily vectorized.

D. INITIAL CONDITIONS

1. Simple Atmospheric Waves

The initial conditions must allow a relative
amount of control for the desired input parameters as well
as satisfy the boundary conditions. The forecast model
history-carrying variables are ¢, u and v. The analytic

expression for the streamfunction, y, is

2 . -
by = A sin® I sin 2["" - U(y-yiq) * 7 (4-30)
0

where A = amplitude of the perturbation,
W = width of the channel,
L = length of the channel,
n = wave number,

0 = mean flow speed, and

Ymid middle point of the channel
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The first term in the expression is the perturbation.
The second term represents the north/south slope necessary
to support a mean flow of U. The third term is the mean
depth term. The geopotential height, ¢, is related geostro-
phically to the streamfunction, y, by

o= fo¥ (4-31)

By use of a trigonometric identity, the streamfunction is

written as

v = 50 - cosfT)sindIX L f(yay )+ 2 (4-32)
0

The vorticity is given by
g = 2a12A sinagx cos 2ayy - a22 %sinazx
(4-33)

+ 022 %.S‘inazx cos 2ajy

where

o1

N EjR

[}
—

a2

The divergence is determined through a linearized form of
the quasi-geostrophic divergence equation from Chapter 3-2

of Haltiner and Wiliiams (1980), in the form

2
2 f f

_o = 9 3_
veD 3 D 7 Uaxv v




The right-hand side of this equation becomes
f f,- fo- 2A
cos agx [(-202a)2Aa +-2ap33)cos 2ay - Jlag’z]  (4-35)

Assuming a solution form for divergence on the left-hand

side
D = cos apx(Cyjcos 2ayy + Cp)

the constants C; and Co become

fo- fo- A f°
Cp = - (QU22Rap + Uaz33)/ (4ay? + 0% + )
and
2
£ 3 2 f
- 0 A 0
C, = g¥a, /lay + 570

Using vzx = D and assuming a solution form for x as

x = cosapx{C3cos2ayy + Cg) (4-36)
then C; and C4 become

€3 = - C1/ (421 + a3?)
and

C4 =2 - Czlazz
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Observe that y equals a constant and %? equals zero along
the north/south walls. With the expressions for stream-
function, (4-32), and velocity potential, (4-36), appropriate

formulae for u and v can be derived.

u=0U- sin agx(Aay sin2ajy + ap(C3 cos 2ayy + C4)) .(4-37)
and

V = COS azx(uzg(l-cos 2ayy) - 2C3 aysin 2a,y) (4-38)

and ¢ 1is given by equations (4-31) and (4-32).

2. Source Term

The addition of a source term into the continuity
equation will test the resolvability of the GFEM model for a
source. The source is constructed to represent a small-
scale meteorological phenomenon to provide a measure of the
response of the GFEM model to forcing near the smallest grid
scale. The source initial conditions must be able to
describe a small-scale feature embedded in a large synoptic
situation. The initial conditions are derived by choosing a
desired solution and then back substituting to derive the
form of the source required. This is a unique approach when
adding a source term. First, a source, S, is added to the

continuity equation in the form of

(4-39)

3% , 3¢ , .38 . ,(3U . 3vy _
at * Uax * vay ¥ ¢(ax * ay) Se
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Following the scale analysis of Chapter 3-2 in Haltiner and
Williams (1980),a new quasi-geostrophic potential vorticity
equation is formed with the source term included,

- b -
*ay)(c ) + £S=0

Solving for S leaves

= (2 . 3% 3 _i 3 _& 1 __% *_ﬂ
The technique for testing the source term is to pick a
streamfunction and then solve for the source term which will
satisfy that streamfunction. The particular streamfunction
evaluated will be a steady state solution. The source in

this case is

2 2 2 2
- (3w 3,37y , __k _ 3% 3 ¢3¢y L Ay
S =% (ay ax(axz 2) 3X ay(axz * ayz)) (4-41)

The particular form of the streamfunction is

] 2, X
2 - §s1n(L]

a - Uly- - a1y -
¥ U(y-ypiq) - Asin L e (4-42)
where R is a constant. The use of the exponential allows a
variation in the scale whereby a small scale feature can be
embedded in a larger fiow pattern. Substitution of this

particular y into the expression for the source vields
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(4-43)

+ an(5)3))

E. NONLINEAR EFFECTS

Cullen (1974a) discussed the requirement to simulate
the cascade of energy to unresolved wavelengths. To avoid
accumulation of energy in the shortest resolvable wave-
lengths, he developed a two-step method for computing the
nonlinear terms. Implementation of the two-step method can
be accomplished efficiently. In the formal development of
the model equations, there are several nonlinear terms. The
two-step method involves projecting both variables in a

nonlinear term into Galerkin space and then performing the
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multiplication. This procedure insures the best approxima-
tion to that nonlinear term in a weighted-mean sense.
Additionally, the computational effort for the two-step
method is much less than the one-step method which involves

computation of all the possible interaction coefficients.

F. STABILITY CRITERION

The stability criterion for the forecast equations is

This is more restrictive than a normal Courant-Fredrich-Lewy
(CFL) condition. It is made up of the normal CFL criterion
based on advection plus another effect due to rotation
(inertial motion). It provides an upper boundary to the
maximum allowable time step when using a semi-implicit
scheme. In this research, time steps in excess of an hour
are easily used. Care must be taken not to exceed the
stability criterion when larger mean flows are experienced
or when moving to higher latitudes (larger f).

A more detailed discussion of the derivation of the

stability criterion can be found in Appendix A.
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V. EXPERIMENTS AND RESULTS

Experiments will be performed involvirg the features in
Chapter II to test the hypothesis. Four separate experi-
ments will be performed. The first experiment will
establish the overall performance characteristics of three
specified models. The next three experiments will address
each specific feature supporting the hypothesis.

Standards of comparison must be established for each
experiment. The basic comparison will be achieved through
harmonic analysis of the initial and forecast fields. The
harmonic analysis is a double Fourier decomposition. The
harmonic analysis requires that the data be on a uniform
grid. Because of the triangular and variable grids, an
interpolation is necessary. A fifth degree-pdlynomial
surface fitting routine from the International Mathematics
and Statistics Library (IMSL) was employed to interpolate
data on the non-uniform grids to a uniform spacing. First,
a harmonic analysis is performed along columns of constant x
to obtain the y structure of the initial conditions. Then a
harmonic analysis of the amplitudes of each y wave number
along rows gives a true double harmonic analysis. This
double transform approach is necessary due to the initial
conditions. The use of sin ~%1 in the y direction is the

same as using (1.0 - cos gﬁl). The boundary conditions are
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satisfied by a sine wave in the y direction. Therefore, an
infinite sine series is needed to represent the cosine
function.

The theoretical movement of each wave is obtained from
an analysis of the shallow-water equations. The analysis in

Section 2-6 of Haltiner and Williams (1980) predicts the

wave speed as

(/)28

C=u+—5—%— (5-1)

o+ f/gH

SN

where

C equals wave speed,

H equals height, and

u X direction wave number.

By generalizing the streamfunction to a two-dimensional wave

A

form
v = A sin ﬂﬁl cos u(x-ct) (5-2)

and after further @anipulation, the wave speed becomes

c=u(l/(1 + f°2/¢(ux2 + u 2)))

y

where
o equals average geopotential height,

ux equals x direction wave number, and

vy equals y direction wave number.
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A. EXPERIMENT 1

Establishing wave propagation characteristics cn a
uniform grid will illuminate the properties of each model.
Three models will be compared:

1. A triangular subdivision GFEM model;

2. A rectangular subdivision GFEM model; and

3. An equivalent finite difference model.
The GFEM models will use the differentiated form of the
shallow-water equations with a semi-implicit scheme. The
finite difference model uses the undifferentiated form on a
staggered grid with a centered (leapfrog) time scheme. The
triangular subdivision uses equilateral triangles. The
relationship between base and height for an equilateral

triangle is
BASE = 2 x HEIGHT/Y3

The x distance therefore has the same relationship to they

distance
Ax = 2 Ay/Y3

To perform comparisons of similar models, the same x, ¥y
relationship is retained for the rectangular and finite
difference models.

The basic difference between the rectangular and
triangular models will be in the approximating polynomials.

The rectangular polynomials are bilinear while the
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triangular polynomials are linear. The higher order
polynomials should provide an increase in accuracy. During
the integration process, many integrals require evaluation.
Numerical quadrature could be utilized, however, a more
efficient method is available through the use of natural
coordinates. Quadrature with no error can be accomplished
by formula with this method. A detailed description of the
natural coordinate method is delineated in Appendix B for
both triangles and rectangles.

Diagrams for the grids for the triangular, rectangular
and finitedifference models are shown in Figures 2, 3 and 4
respectively. The domain is 4896.0 km in the y direction
and 5653.0 km in the x direction. Each model has 12 incre-
ments in the x and y directions. This gives 156 degrees of
freedom. All tests will be for a 48 hour time integration,
a mean flow of 10 m/s and a mean depth of 1000 meters. A
perturbation of 1 m/s will be added to the geopotential
field, which includes the mean height plus the north/south
slope required for the 10 m/s mean flow. This small pertur-
bation will focus on the linear aspects of the model's
capabilities. Experiments described below will evaluate
larger perturbations, and hence the nonlinear interactions.

Models are evaluated for wave numbers 1, 2, 3 and 4.




Fig. 3. Rectangular uniform subdivision for a channel in
Cartesian coordinates.
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‘5 B. RESULTS 1

The propagation characteristics of the GFEM models and
the finite difference model on a uniform grid will be i
evaluated. Graphical displays will highlight synoptic
characteristics. Harmonic analysis will show phase i
propagation and wave amplitude distributions.

The initial and 48-h forecasts for the conditions
stated in experiment 1 with wave number one on a triangular
i grid are shown in Figures 5 and 6. The southeast/northwest
[ orientation in the forecast fields is due to the sine wave-

form in the y direction. This waveform with model boundary

conditions requires an infinite number of y modes.

Fortunately, the amplitudes of the higher wave numbers are
small. Consequently, there are only a few important modes.
The multiple modes cause a skewness in the solutions for all

three models since the y-modes have different phase speeds.

L.

Additionally, an analytic expression for the solution

o

requires an infinite sum of the modes. For this reason, no
true solution has been computed to compare with the GFEM and
FOM models.

The divergence equation is the most sensitive equation
of the three forecast equations. A mean depth of 1000
meters was chosen because the divergence is large. There-

fare, a critical evaluation of the sensitivity of the GFEM

-MM s e N

model to this important meteorological parameter can be

Be aln St
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Y

performed. A divergence field which has propagated
uniformly with the vorticity field is shown in Figure 6.
Harmonic analysis (not shown) indicates divergence ampli-
tudes which initially adjust and then oscillate slightly
about a mean value of .1270x10~7 s-l, The phases of all
forecast fields are uniform. Synoptically, the forecast 1
fields ¢, u, and v indicate a smoothly resolved atmospheric
wave.

A rectangular subdivision 48-h forecast for wave number
one is shown in Figure 7. Comparisons between Figures 6 and
7 show little if any difference which indicates that the
triangular and rectangular subdivisions give comparable

results. Harmonic analysis of the divergence fields

indicates a small oscillation about a mean similar to that
observed for the triahgular subdivision. The 48-h forecast N
from the finite difference model for wave number one is
shown in Figure 8. The equivalent finite difference model
also has 12 increments in each direction. Comparisons
between Figures 6, 7 and 8 show that the finite difference
model vorticity field lags the GFEM models. Additionally,
the divergence field has lost its areal extent and developed
a strong gradient of divergence.

In each of the wave number one tests there were 12 grid
points representing the wave. Good propagation should be

expected from all three of the models for a 12-increment
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wave. As the wave number is increased with the same degrees
of freedom, the wave resolution will be decreased, and
clearer comparisons can be made.

Figures 9 and 10 are the initial and 48-h GFEM model
forecasts for wave number 2, triangular subdivision.
Forecasts for the rectangular subdivision and the FDM model
are shown in Figures 11 and 12. The triangular and
rectangular subdivision forecasts are similar. However, the
FOM model forecast displays additional divergence and
vorticity centers near the boundaries. Figures 13 through
16 are a series similar to Figures 9 through 12 except for
wave number three. Thece waves are represented by 4 grid
points. There are indications in Figure 14 that energy is
appearing in wave numbers othar than wave number 3.
Comparison of Figures 14 and 15 show that the triangular
forecast contains more noise than the rectangular forecast.
Figure 16 shows a divergence field from the FDOM model which
is very different from Figures 14 and 15. There is a
north/south asymmetry in the u and divergence fields. The u
cells in the northern regions appear to be expanding while
the southern cells are decreasing.

Tablel is a composite of the harmonic analysis for

the triangular, rectangular and finite difference wave

number 3 case (v component amplitudes). The initial and
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48-h v component amplitudes for wave number 3 in the «x

direction and the first six possible y modes are tabulated
below.
TABLE 1
Harmonic analysis (v component m/s) - wave number 3
Triangles Rectangles Finite Difference

Wave Initial 48-H Initial 48-H Initial 48-H

1 2.12 2.14 2.20 2.22 2.20 2.20
2 .01 .04 .01 .02 .01 .09
3 .41 .43 .44 .44 .44 .42
4 .00 .00 .00 .00 .00 .00

.05 .06 .06 .06 .06 .05
6 .00 .00 .00 .00 .00 .00

The minor differences in the initial state amplitudes
are due to the differences between the triangular and
rectangular approximation for the initial conditions.
However, the 48-h amplitudes show that the rectangular
version has slightly better preserved the initial state
amplitudes than either the triangular or finite difference
models. The finite difference model has transferred more
amplitude to the other modes, especially in the second y
mode.

Figures 17 and 18 are the initial and 48-h GFEM model
triangular subdivision forecasts for wave number 4, Wave

number 4 is a severe test for this model. The energy
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| l

transfer to other modes is readily apparent. Additionally,
both the u component of the wind and the divergence show
considerable noise at the boundaries. Figure 19 is the 48-h
forecast for the rectangular model. No energy transfer nor
noise at the boundaries is apparent in Figure 19. Figure 20
is the 48-h forecasts for the finite difference model. The
asymmetry in the wave number three finite difference case
f is magnified for wave number four. The divergence field is
heavily asymmetric. The u cells have developed a dipole
from each original center. Comparisons of Figures 18, 19
and 20 show the superiority of the rectangular forecast.
While the triangular version is noisy, it still has
maintained the main features better than the finite
difference model.

Table 2 is similar to Table 1l except for the wave number
4 case.

TABLE 2

1 Harmonic analysis (v component m/s) - wave number 4

Triangles Rectangles Finite Difference

Wave Initial 48-H Initial 48-H Initial 48-H

1 2.68  2.60 2.94  2.96 2.94  2.96

2 .00 .03 .01 .10 .01 .05

3 .51 .59 .58 .56 .58 .60

4 .00 .00 .00 .04 .00 .05

.06 .08 .08 .08 .08 .08

{ 6 .00 .00 .00 .00 .00 .01
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,i The harmonic analysis shows that the triangular vers{on
transfers more energy in the fifth y mode than does either
other model. However, the rectangular model transfers more
energy in the second y mode than does either other model.

Table 3 compares the divergence for the wave number 4 case.

TABLE 3

Harmonic analysis (divergence s'l) - wave number 4
(A11 numbers are scaled 10 to the minus 10.)

Triangles Rectangles Finite Difference

s |

Wave Initial 48-H Initial 48-H Initial 48-H

¢ 1 2682.0 1741.0 2929.0 2179.0 2801.0 4462.0
| 2 .0 140.8 .0 207.5 447.4 5934.0
‘ 3 521.3  391.1 589.8  440.7 545.5 2314.0

4 .0 20.5 .0 81.2 .0 923.5
| 5 62.6 60.5  84.4 56.8  68.7 1382.0
. 6 .0 10.5 .0 8.4 .0 882.0

The finite difference model has greatly amplified the
initial divergence. A choice between the triangular or
rectangular grids version based only on these results would
be purely subjective. However, the response of both grids

at this high wave number in terms of divergence is highly

superior to the FDM,




it

Figure 21 is the phase propagation di2 -am for the
three models obtained from the double harmc¢..:c analysis. 1In
all cases, the percentage propagation is for the first y ‘
mode and the appropriate x mode. The phase propagation 3
diagram indicates that the triangular and rectangular models |
are comparable for the low wave numbers and diverge slightly
at higher wave numbers. In all cases the GFEM models have
better wave propagation than the FDM model.

The analysis performed on the uniform grids has shown
that each GFEM model performs in a highly satisfactory
fashion. There are minor differences in the phase

propagation, while the rectangular version has an advantage

in the control of energy transfers which nanifest themselves
in the divergence. The finite difference model performs as
well as the GFEM models for the long waves. However, when
forecasting the shorter waves, the finite difference model

does not perform as well as either GFEM model.

c. EXPERIMENT 2

This experiment will investigate two options for a
variable grid. Atmospheric wave propagation on variable
triangular and rectangular grids will be the test vehicle.
Since this FDM model has no capability on avariable grid,

it will not be evaluated during this experiment. The

comparisons will be between a rectangular and triangular

GFEM model.

75




” ¥ — “——ﬁ
:

PHASE PROPAGAT ION
0 IAGRAM

TRI

100.0

) RECT

FD

PER CENT PROPAGATION

ot ¢

0.0

p—

0.0 1.0 2.0 3.0 4
WRVE NUMBER

Fig. 21. Phase propagation diagram for the triangular,
rectangular and finite difference models from
Experiment 1.




There are many criteria for determination of a suitable
variable grid. Both rectangles and triangles allow a
successful implementation of a variable grid. One
criterion is the accuracy of resolving the atmospheric waves
that move through the variable grid. A second criterion is
the increase in resolution. Another consideration is the
ease with which the grid can be refined.

Cullen (1979) stressed the importance of a smooth
variation in element size when increasing the resolution
from coarse to fine. Older (1981) developed a technique for
transforming a uniform triangular grid into a variable grid
wher. working with a GFEM model. He demonstrated that a
smocthly varying grid allowed atmospheric waves to propagate
through the transition zone with much less noise generation
than an abruptly varying grid. Some finite difference
models with nested grids, for example Harrison (1973), have
abruptly varying resolution. A generalization of QOlder's
techniques allows a similar transformation for a rectangular
grid.

The test cases for experiment 2 will be for a simple
atmospheric wave. A mean depthof 5 km, a mean flow of
10 m/s, wave number one and a perturbationof 1.0 m/s are

employed.

17




D. RESULTS 2
The ability to refine a grid should be easily achieved.

The method of transforming from a uniform grid to smoothly
varying should allow one to choose not only what degree of
refinement but also where the refinement occurs. Older

(1981) developed a transformation method based on

X = x + A cos Kx

where

the transformed grid

>
"

the original grid

X

A = a constant

k = 2=n/L.

Woodward (1981) modified the transformation to include a

2
. k x
sin - 5

A trignometric identity

for the longitudinal stretching.

is employed yielding

X = x + A(l - cos kx)

dbats L

This research added the capability to control the location

of the refinement through
X = x + A(1 - cos(kx + §))

The map factor %% is defined by

X _
-5-;-'l+kAsin(kx+6)




The maximum and minimum values are

3X

= X gL
axm =14k, ax 1 - kA

ax min

The ratio R of maximum map factor to minimum map factor is

Solving for A yields
R-1
A= R

For purposes of this experiment R was chosen to vary from
1.0 to 4.0. A value of R = 4 implies that the minimum X is
one fourth of the maximum X. The Y transformation is
performed in a similar fashion except that Y=y + B sin Ly
is employed where

Y

the transformed grid,

y = the original grid,

B a constant, and
L = 2=/W
Placement of the high resolution is accomplished by
determining the value of 6§ required to place the minimum map
factor as desired. For instance, if the refined grid is

desired in the middle of the channel (L/2) then & would be

equal to «x/2.
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Figure 22 is the 48-h forecast with the triangular
subdivision for a uniform grid. This forecast will act as
the control for the triangular cases. Figure 23 is the
triangular subdivision, 48-h forecast with R = 2.0. Figure
24 is the triangular subdivision, 48-h forecast with .

R = 3.0. Figure 25 is the triangular subdivision, 48-h
forecast with R = 4.0, All of the 48-h u and v fields
appear identical. This indicates that there is no degra-
dation in forecast skill when using the same number of
degrees of freedom and locating many of those unknowns into
a refined area. There is no noise apparent in the
transition regime. However, there are definite differences
in the divergence field, although the magnitude of the
maximum/ minimum value of divergence is relatively small
(1.0x10‘8 ST

Table 4 shows the harmonic analysis amplitudes cof the
geopotential fields for the different triangular cases. The
relationship between initial and final amplitudes remains
the same regardliess of the degree of variability. The phase
propagation of the v field in the control case is 97.7%,
whereas it is 96.7%, 95.4% and 94.1% for R values of 2, 3

and 4. The variation from the control of the phase propaga-

tion with grid refinement is under four percent.
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TABLE 4
Harmonic Analysis (Geopotential mz/sz)
Triangles
R =1.0 R = 2.0 R = 3.0 R =4.0
Wave Initial 48-H Initial 48-H Initial 48-H Initial 48-H

1 67.98 67.16 67.91 64.65 67.91 64.95 67.91 63.70
2 .00 .55 .00 .69 .00 .99 .00 .57
3 13.55 12.90 13.45 12.55 13.41 13.24 13.29 11.16
4 .00 .21 .00 .37 .00 .54 .00 .28
5 1.90 1.70 1.67 1.30 1.33 1.62 1.32 1.38
6 .00 .16 .00 .23 .00 .36 .00 21

Figure 26 is the control case for the rectangular
version, 48-h forecast. Figure 27 is the rectangular
subdivision, 48-h forecast with R = 2.0. Figure 28 is the
rectangular subdivision, 48-h forecast with R = 3.0.

Figure 29 is the rectangular subdivision, 48-h forecast

with R = 4.0. Close inspection reveals no noise in either
the 4 u or v fields. No degradation in forecast skill has
been observed due to increased resolution with a rectangular
subdivision. All ¢, u and v fields are very similar in
structure. The main difference in the forecasts lies in the
divergence field where the magnitudes are small ( 10-8s-1)

because of the specified mean depth.
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Table 5 is similar to Table 4 except for the
rectangular cases. Phase propagation for the control case
v field is 98.0%, whereas it is 98.3%, 98.1%, and 97.9% for
R values of 2, 3, and 4. The variation from the control
case of the phase propagation with grid refinement is less
than half a percent.
TABLE 5
Harmonic Analysis (Geopotential mé/s2)
Rectangles
R =1.0 R = 2.0 R = 3.0 R = 4.0
Wave Initial 48-H Initial 48-H Initial 48-H Initial 48-H
1 68.03 67.48 67.98 65.26 68.22 66.45 68.14 66.34
2 .01 1.00 .03 .36 .00 .85 .00 1.22
3 13.59 12.95 13.39 13.26 13.49 13.81 13.36 12.39
4 .01 .46 .05 .22 .01 .48 .00 .43
5 1.92 1.81 1.57 1.64 1.54 1.59 1.46 1.19
6 .02 .23 .07 .04 .01 .30 .00 .22

The tests thus far indicate a successful grid refine-
ment capability for both triangles and rectangles. There
are neither drastic impairments nor improvements in either
phase propagation or amplitude changes for either technique.
Neither version stands out above the other although the
rectangular version has less phase propagation variation and
better amplitude conservation. Both versions allow compara-

ble grid refinement through the use of the procedure
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previously described. Both allow an easy and straightfor-

ward implementation of the procedure.

However, there is a more fundamental difference between
the versions. Operators, such as a simple derivative, have
weighting coefficients associated with finite element appli-
cations as well as with finite difference schemes. For
instance, a simple-centered, one-dimensional finite differ-
ence derivative has weights of 1/2 and -1/2. The finite
element weights are identical to the finite difference
weights in this one-dimensional case. The weights can
similarly be computed for two-dimensional operators such as
a Laplacian. The quadrature formulas used to determine the
weights are explained in more depth i1 Appendix B, The
geometry of the triangles affects the weights. For
instance, the two-dimensional Laplacian applied to a finite
element application on an equilateral triangular subdivision
gives weights of 1/6 to all surrounding points, and -. *o
the center point, as indicated in Figure 30. However, the
weights change if a triangle with a height equal to one half
the base is employed as shown in Figure 31. The fact that
some weights are zero is a strong cause for alarm. If the
triangles are flattened further, the farthest end point
weights become negative. This is strictly a function of the
geometry of the triangle and is a clear sign that use of

the triangies warrants extreme caution. In fact, Williams




=

1/6 1/6

1/6 1/6

1/6 1/6

Fig. 30. Weights associated with a Laplacian operater
for a triangular subdivision using equilateral

triangles.

1/4 1/4

NN

1/4 1/4

Fig. 31. Weights associated with a Laplacian operator for a
triangular subdivision using triangles with a base

equal to twice the height.
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(unpublished notes) has determined that the geometry of the
triangles dictates that unless a triangle with at least two
equal sides (isosceles) is employed the boundary conditions

will not be exactly satisfied.

E. EXPERIMENT 3

AThe capability of the GFEM model to resolve atmospheric
phenomena near the scale of the smallest grid iength will be
demonstrated. This experiment is in response to Task II of
the hypothesis. i

The ultimate motivation for any "improvement" in a
model is a better forecast. During the past decade,
improvements have come, to a certain degree, by increased
resolution. While it is intuitively obvious taat increased
resolution will improve a forecast, demonstrations have not
been made to show how the model resolves features near the
smallest grid length. Staniforth and Mitchell (1978)
increased the resolution with a variable grid but resolved a
synoptic scale feature in a 37x37 uniform fine mesh area.

In this experiment, a source term simulating a mass

source is added to the continuity equation. An expression

for the source term in terms of a wave form is derived by
theoretical means., The wave form allows a very small scale

feature to be simulated. A detailed description of this

procedure can be found in Chapter [V-D-2. By assuming the




wave is in equilibrium and steady state, the solution and
5 source are known for all time when the Rossby number is
‘; ! small.

The development of the source term expression followed
traditional quasi-geostrophic theory. One requirement for
quasi-geostrophic theory is that the Rossby number be small.
In the linear case, the Rossby number will be approximately
0.1. However, in the nonlinear case the Rossby number is
k. | approximately 0.4 and the quasi-geostrophic theory
] assumption is violated.

The first test will be on a uniform grid for the

rectangtlar GFEM and finite difference models and the second
test wi 1l be on a variable rectangular grid GFEM model.

High resolution versions of the uniform test will be run and
act as the control. -A mean depth of 5 km was selected.
Perturbations of 2.5 m/s and 25 m/s upon a mean flow of

10 m/s will be evaluated for the uniform grid. This will
allow both the linear and nonlinear aspects of the different
models to be observed. Here linearity is implied by the
smallness of the perturbation amplitude. The source term
solution is nonlinear and nonlinear interactjons do occur
when the amplitude is small. Each test will be integrated
for 96 h of forecast time. A perturbation of 25 m/s upon a

mean flowof 10 m/s will also be evaluated for the variable

‘ grid.
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The main thrust of this experiment is to determine the
grid-scale sensitivity for the GFEM model and the equivalent
finite difference model. Sensitivity will be measured by
insertion of a source term into the continuity equation.
However, the theoretical development presented in Chapter
IV-D-2 is far the rotational component of the wind. Because
the initial conditions for u and v are non-divergent, the
divergence in the model must increase from a zero initial
state. This increase will require an adjustment process.
This serendipity effect will be exploited during the
comparisons.

The Tinear cases examined represent a small-scale short
wave embedded in a long wave pattern. Using a small per-
turbation for the first tests will establish a level of
confidence that each model responds to the source term
creditably. The nonlinear cases represent an active voirtex
in a mean flow. The maximum u component is 35 m/s which is
hurricane/typhoon strength. Physically, the source term in
the divergence field opposes the advection of the vorticity
field, and "anchors” the steady-state vorticity solution.

In either the linear or nonlinear tests, the source
term is nonlinear. By constraining the perturbation to be
small, the source term plays a linear role. However, when

the perturbation is targe, the source term allows full

nonlinear interactions.
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F. RESULTS 3
1. Linear Case - Uniform Grids
Figures 32 and 33 are the initial and 96-h fore-

casts for the rectangular GFEM model. There are 156 degrees
of freedom in these forecasts. The initial v field has a
maximum value of +2.27 m/s across a separation of 4 incre-
ments. The initial u field maximum and minimum are 12.5 m/s
and 7.5 m/s. The source term is shown in the initial fields
and remains constant throughout the integration. The diver-
gence value increased to a steady state solution during the
first 12 hours with anoscillation that died out after hour
24. Figure 34 is the equivalent finite difference 96-h

forecast. Figure 34 demonstrates that the finite difference

model performs well for these initial conditions. Figure 35
is the high-resolutionAQG-h forecast for the rectangu]ak
GFEM model. Close inspection of Figures 33 and 35 shows
little difference. The low resolution forecast with 156
degrees of freedom has converged to the high resolution

forecast with 600 degrees of freedom. Figure 36 is a graph

of vcomponent amplitudes at hour 96 as a function of x and
y wave numbers for the low and high resolution and finite
difference models. The high resolution (S253115) and low

resolution (S153115) forecasts are in excellent agreement.

However, the FDM (F153115) forecast departs from the control
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even with this relatively linear case. For uniformity of
comparison, similar ranges of x, y wave numbers will be
shown in Figures 36 and 41.

2. Nonlinear Case - Variable Grids

Figures 37 and 38 are the initial and 96-h
forecasts for the rectangular GFEM model with low
resolution. The initial v field has a maximum of +22.7 m/s
across a separation of 4 increments, but most of the change
occurs over 2 increments. The initial u field maximum/
minimum is 35 m/s and -15 m/s. The source term as shown
remains constant during the integrations. The adjustment
process is evident when viewing 96-h forecasts. The final v
field has a maximum of 44.3 m/s, and a minimum of -38.0 m/s.
The final u field has a maximum of 40.2 m/s and a minimum of
-29.8 m/s. Figure 39 is the equivalent finite difference
model forecast of Figure 38 and the marked differences in
the forecast are readily apparent. The maximum final v
component is 41.2 m/s and the minimum is -47.3 m/s. The
maximum final u component is 50.6 m/s and the minimum value
is -38.6 m/s. Figure 40 is the 96-h forecast for the
rectangular high-resolution GFEM model. Comparisons of
Figures 38, 39 and 40 show a convergence of the low-
resolution GFEM version towards the high-resolution solution
with a much poorer showing for the finite difference model.
Figure 41 1s a graph of v component amplitudes at hour 96 as

a function of x and y wave numbers for the low and high
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Fig. 41.
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resolution and finite difference model. As in the linear
case, there is strong agreement between the low and high
resolution forecasts. The departure of the FOM from the
control is readily apparent in this highly active case. The
inability of the FDM to properly handle the nonlinear
interactions manifest itself as large spurious amplitudes at
high x and y wave numbers.

The relatively poor showing of the finite difference
mode) for the forced cases shown so far can be improved, to
a certain degree, by increasing the resolution. However,
increased resolution requires more computational effort.
Figure 42 is the 96-h forecast with a perturbation of 25.0
m/s for the FDM model. The initial conditions are identical
to the nonlinear cases shown in Figure 37. The difference
in the forecasts is the resolution where there are now 576
degrees of freedom (24X24). The 96-h forecast is certainly
better than the 12X12 forecast. However, there is some high
frequency noise in the forecast. Figure 43 is identical to
Figure 42 except that there are 1296 degrees of freedom
(36X36). The high frequency noise is readily apparent and
is a manifestation of nonlinear aliasing. For this forced
case the finite difference model is unable to achieve the
same forecast as the low resolution GFEM model. This result
will be amplified when a model with the same number of

degrees of freedom as the low resolution model i1s employed

but with a variable grid.
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This comparison of the finite element and finite
difference methods for the source term dramatically high-
lights the potential improvement when utilizing a Galerkin
approach. Both graphical displays and harmonic analysis
leave l1ittle doubt as to the superiority of the GFEM mode!
over the equivalent finite difference model,

Adding an extra margin to the already established
superiority can be accomplished by using the low-resolution
model with a variable grid. Figure 44 is similar to the
tests in Figure 38 except that a variable resolution grid
(R = 2.0) was utilized. A 96-h forecast for a variable
resolution grid (R = 3.0) is shown in Figure 45. Comparisen
of Figures 38, 40, 44, and 45 show the convergence of the
low-resolution uniform solution towards the high resolution
§o]ut10n as the degree of variability is increased. Figure
46 is a graph of geopotential amplitudes at hour 96 versus y
mode wave number (x wave number one) for the uniform,
variable, and high resolution models. The R = 2.0 case
better represents the control than the uniform low
resolution forecast especially at low wave numbers.

However, at wave number three and above all models have
similar differences from the control.

The harmonic analysis demonstrates an improvement with
increasing variability but is not conclusive. Another
method to evaluate the improvement with increased varia-

bility is to look at the difference charts between the
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control and each level of variability. The difference chart
in Figure 47 is the control 96-h forecast (high resolution)
minus the low-resolution 96-h forecast. Figure 47 shows a
maximum difference in the center of the vortex. Figure 48
is the comparison of the high resolution 96-h forecast and
the R = Z.d variable grid 96-h forecast. The maximum
difference has decreased from the uniform case. Figure 49
is the comparison of the high resolution 96-h forecast and
the R = 3.0 variable grid 96-h forecast. The difference
centers at the right-hand edge in Figures 47, 48 and 49 are
a result of post processing interpolation errors. Although
the maximum difference in the center of the vortex is
greater in Figure 43 than Figure 48, the latitudinal
difference gradient is less. Root mean square differencas
from the high resolution control are 652.2 m2/s2, 608.8
m2/s2 and 469.7 m2/s2 for the low resolution, R = 2.0 and

R = 3.0 tests respectively. The forecasts have definitely

been improved at each level of increased resolution.

G. EXPERIMENT 4

This experiment will demonstrate a moving grid
capability. Harrison (1973) demonstrated the use of a
moving grid in his finite difference model. The inherent
problems with moving finite difference models are abrupt
changes in resolution causing spurious noise. The notse,

unless damped, is magnified if left unattended every time 2
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fields and 200 m2/sZ for the difference field.
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grid moves. In a GFEM model there is a smooth transition
into the fine grid area with no attendant noise. Therefore,
moving the entire grid with the fine grid is simply a matter
of accurate interpolation.

Three tests will be performed. First, uniform low and

high resolution models will be integrated. These models

it will not use a moving grid. Then a model with the same
degrees of freedom as the low-resolution model, but
employing a moving, variable grid, will be run. The high-
resolution model will act as the control. Identical initial

conditions will be used for all three tests. These condi-

tions are similar to those developed for experiment 3,
except that the source term will be zero throughout the

course of the integration. The initial conditions include a

1
b
'
-t
=
L]
4
et

sharp trough with a relative vorticity maximum which is
advected by the mean flow in the absence of any forcing (the

source).

-

0f particular concern is the generation of noise
incurred during grid movement. Therefore, a forecast of

96-h is made during which this grid moved eleven times. As

At ——

previously stated, the model utilizes absolutely no diffu-

{ sion, filters or friction. If spurious modes are excited
during the movement of the grid, they will appear in the

harmonic analysis.
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The procedure of moving the finite element grid is

achieved by displacing all the nodes one unit distance in
the direction desired. This retains the relative
distribution of the nodes and merely moves the entire grid
as an entity. Ramifications of this approach are: ;
1. The areas of each element remain the same and the
numerical quadrature coefficients for all the
associated integrals do not have to be recomputed.

2. The unit distance moves should be the smallest
grid increment; and

3. Direct solvers that utilize a preprocessing
procedure based on the grid distribution will not
require the preprocessing to be recomputed after
each move.

The most important aspect of moving the grid is to accurate-
1y interpolate the new field values for the new grid point
position. In this dissertation a standard International
Mathematics and Statistical Library's (IMSL) bi-cubic spline
interpolating routine was employed. The movement will occur
only in the x direction and, therefore, a one-dimensional
interpolator suffices. The interpolator accommodates the
periodic boundary condition. However, interpolators for
non-periodic boundary conditions are available. The accu-
racy of the interpolator is exact at grid points for a
uniform distribution. Initial experimentation verified that
a field could be moved with no 1oss in accuracy for a

uniform grid. Experiment 4 will test its capability to move

a variable grid with R = 2.0.
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H. RESULTS 4

Figures 50 and 51 are the initial and 96-h forecasts
for the uniform low-resolution model. The perturbation is
25.0 m/s, mean flow 10 m/s and mean depth 5 km. The initial
divergence is a zero field but spins up through geostrophic
adjustment. The northeast/southwest trough orientation is a
manifestation of the nonlinear interactions occurring for
this highly active perturbation. Figure 52 is the 96-h
forecast fo# the uniform high-resolution model. The
northeast/southwest trough orientation is evident in this
forecast as well., Figure 53 is the 96-h forecast for the
low-resolution, moving variable grid (R = 2.0) model.

Time steps were 4320s, 3085.7s and 3600s for the low,
high and Yariab]e models, respectively. The variable model
took 95 full‘time steps and two hal. steps during the 96-h
forecast. The half steps are required only to start the
model to obtain the N and N+1 time levels in the leapfrog
time stepping. The grid moved 11 times during the forecast
at time steps 8, 16, 24, 32, 40, 48, 56, 64, 72, 80 and 88.

The x axis origin in Figure 53 is 3530 km indicating
eastward grid movement. The vortex is still in the fine
mesh area. Additionally, there is no noise in the forecast
fields. To reiterate a previous statement, there are no
filters, diffusion or friction terms employed during this

integration, Comparisons among Figures 51, 52 and 53 show
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that the variable grid forecast more closely approaches the
control than does the uniform low-resolution model. This is
to be expected since the fine mesh area has been moved to
coincide with the active region of the forecast domain.
Table 6 shows the geopotential harmonic analysis for

the three models after a 96-h forecast.

TABLE 6
Harmonic Analysis (Geopotential) for Experiment 4
Units are mzls2

Wave Low Resolution High Resolution Moving Grid

1 876.1 904.7 850.0
2 167.4 152.9 146.6
3 122.5 176.9 159.6
4 54.7 39.0 39.0
5 20.3 10.2 9.6
6 5.1 7.6 7.3

Comparisons of the higher wave number amplitudes show
almost identical amplitudes in y modes four, five and six
for the moving case and high-resolution uniform case. The
amplitude in y mode six indicates that the movement of the
grid has not generated unwanted noise. The overall improve-
ment for the moving case is a result of the finer grid's
ability to better resolve the small-scale interactions

occurring.
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VI. SUMMARY AND RECOMMENDATIONS

Numerical weather prediction requires that the
equations governing atmospheric flow be solved numerically.
These flows cover a large range of scales. Classical
modeling schemes have successfully forecast the longer
scales and improvements are being sought for the smaller
scales.

In this dissertation, the GFEM has been employed for
the shallow-water equations in a channel domain. The

differentiated form of the equations on an unstaggered

finite element grid with a semi-implicit time scheme has
been utilized. An equivalent finite difference model
representing the conventional approach has also been
utilized. Analytic initial conditions representing simple
atmospheric waves and a more complex source term have been
used to test the different models.

The hypothesis of this dissertation is that the GFEM is
a viable option for numerical weather prediction. The
theoretical foundation of the GFEM leads to a minimization
of the error between the actual equations and their approxi-
mation. This minimization implies a basis for expected
improvement in forecast capabilities. Three features were
addressed to support that hypothesis. First, alternatives

for variable grids were investigated. Second, forcing near
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the smallest grid scale determined if the GFEM model
resolved the smaller scales better than a finite difference
counterpart. Finally, a proof of concept for the ability to
move the grid was demonstrated. Each task adds to the
usability of the GFEM and illuminates the well-rounded
potential that it contains.

First, the ease with which the method allows variable
grids was demonstrated. In all cases, no numerical
techniques were employed to damp or filter any field. The
grid refinement obtained when using a rectangular
subdivision was more attractive than with a triangular
subdivision. It allowed refinement to be easily obtained
with increased accuracy from the higher order polynomial and
decreased computational effort due to reduced operation
counts. Additioha]ly, it was shown that the geometry of the
triangular elements greatly influences the problem.
Furthermore unless specific constraints are enforced, the
boundary conditions would not be satisfied.

Second, the ability of the GFEM to resolve atmospheric
phenomena occurring near the scale of the smallest grid-
length was shown. A small-scale steady state solution was
cast into a source required for that solution. Integrations
showed that the GFEM model resolved the small-scale forcing
admirably and far exceeded the performance of an equivalent

finite difference model. Even when the resolution of the
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finite difference model was doubled and tripled, it could
not match the performance of the low-resolution variable
grid GFEM model. The responsiveness of the GFEM model near
the smallest resolvable grid length clearly demonstrates
that the varijable grid concept is worth the computational
effort.

Finally, the concept of moving the variable grid was
demonstrated. The ability to resolve a small-scale
phenomenon is a tremendous asset to the GFEM. The ability
to move the grid with the atmospheric phenomena further
enhances its usefulness.

Throughout this dissertation the GFEM model has

demonstrated desirable characteristics. It has conservative

properties. It propagates atmospheric waves better than an
equivalent finite difference model. It allows variable-
resolution grids and responds better than an equivalent
finite difference model near the smallest gridlength.
Moving grids can be achieved with no apparent noise
generation. It can utilize direct solvers and is a natural
choice for vectorization on large computers. It truly is a
viable option for simulation of atmospheric flows.

The success of this dissertation mandates further
research. The next logical step would be a baroclinic

model., Completion of a baroclinic model should allow its

application as a regional model. Additionally, different
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basis functions could be employed for the vertical
discretization, such as solutions to the vertical structure
equation. Ffor the moving variable-resolution grid, further
research into two-dimensional movement is required. The
proof of concept in this dissertation of one-dimensional
movement can logically be extended to two dimensions. Upon
completion of two-dimensional movement, an operational
forecast capability for tropical cyclenes should be investi-
gated. The superior small-scale response of the GFEM
indicates potential increase in skill for both regional and

tropical cyclione/hurricane prediction.
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APPENDIX A
STABILITY ANALYSIS

A one-dimensional linear analysis of the forecast
equatioﬁs will be presented. The analysis was obtained
; through personal communication with Dr. Andrew Staniforth
(Recherche en Prevision Numerique). The primitive form of

the forecast equations and a semi-implicit time scheme will

.! be analyzed, because the results are identical for the
{ vorticity/divergence form. The one-dimensional equations :
) with a mean flow U are i
{
' W L3, g
| 3t | 3x Ut (A-1)
; av I LA
. at V3% fu (A-2)
3 Wy, _n3
IR TR (A-3)

Time derivatives are evaluated with a centered time dif-
ferencing and the other terms on the left-hand side are
averaged between time levels (t + at) and (t - at).

Equations (A-1), (A-2) and (A-3) become

ulx,ttat) - ulx,t-at) . 1 [ x+ax,t+at) - ¢ (x-ax,t+at
2at z AX
+ {o(x+ax, t-at) - !(x-Ax,t-At)] a o pufxeax t) - ulx-ax,t ]
AX ax
§

+ f vix,t) (A~4)
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v(x,t+At) - vix,t-at = oV{xX+AX,t) - vix-Ax,t
7at =- Ul AX ]

- f u(x,t)

X, t+At) -~ olx,t-At + 2 [ u{x+ax,t+at) - u{x-ax,t+at
at 2 AX

u{x+ax,t-at) - ulx-ax,t-at))q . _ neolxtax,t) - ¢(x-ax,t
+ L_L___J___JEK;_L_-_;___J.] u( ™ )

Assuming that a function, F, can be expressed as
F(x,t) = F-e‘i(kx +wt)

then

1(kx + wt)
F(x!t+At)Z£tF(X-t'Atl,= %g' sin(wat)e

+

Equations (A-4), (A-5), and (A-6) become, after

substitution,

isu' _ oo o' =
Y3 fv' + ikce 0

! j_S_V_. =
fu' + % 0

! ] l&i‘ =
tkeou Yt 0
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The determinant of the system of equations {A-10), (A-11)

where s = sin wat + k'uat, ¢ = cos wat and k' = sin

and (A-12) when set equal to zero yields
£ 15, - (12 + 2] = 0 (A-13)
at He2 T 0 y

The roots are s=0 and

s = (fAt)z + cz(kAt)2 ? (A-14)

The roots of this secoand order equation when requiring w to

be real yield the stability criterion

at < — (A-15)
_q.l+ f

IAX
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APPENDIX B
NUMERICAL QUADRATURE

Evaluation of the Galerkin integrals requires a fast,
efficient method . Two different elements, triangles and
rectangles, have been employed and the quadrature schemes
for evaluation are presented here. In the first case,
triangles, area coordinates are used. For the rectangles,
integration formulas are based on an orthogonal axis trans-
formation. In both cases, the integrals to be evaluated
contain either products of basis functions, products of
derivatives of basis functions, or a mixture of both.

Zienkiewicz (1971 developed the relationship between

the Cartesian coordinates of a triangle and the area

coordinates as

(B-1)
X = L1X1 + L2X2 + L3X3
1=+ + 1,

(8-3)

where (x1,y1), (x2,¥2) and (x3,y3) are the Cartesian coordinates

of the triangle's vertices and L1, Lp and L3 are the area
coordinates. Here
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where A;, Ay and A3 are shown in Figure 54 and A is the area of

the entire triangle. He further shows that

L L0 L any - oy A | | |
The L's are the basis and test functions used during the
approximating process. Figure 55 defines some necessary
parameters for evaluation of the derivatives.

Equations B-1, B-2 and B-3 can be written in matrix

form as
9
I‘L1 ] A by g 1 ]
le =% 2A b2 a, X (B-5)
Ly 2A b3 a, Y
Differentiation of Eq. (B-5) shows that
3 b
3 i 3
— 1 P e s (B"s)
X 4oy 2R 3Ly
3 a,
_a_.a —1...3~_ B-7
3y o 7R 3L, (8-7)

However, the derivative of the basis function with respect
to the area coordinate is non-zero only where the basis
function and area coordinate coincide. In fact, the non-

zerqo value is one. Therefore, using Vl as a basis function

[-2

>R (8-8)

ax
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A1l integrals can be evaluated by combination of these
quadrature formulas for triangles.

An orthogonal axis transformation will allow similar
quadrature formulas for rectangles. The rectangle shown in
Figure 56 can be transformed by

X=X y-y
C"'—a"'o' n=—5—9- (8-9)
The values of ¢ and n at each corner are shown in

parentheses. The basis function, V;, becomes

(1+z,2) (1+nyn) (8-10)
7 3
y
4 3
]‘ (-1,1] (1.1)
' Xo.Y
a |4
l [-1,-1) (,-1)|
1 2
< 2 >
X

Fig. 56. Orthogonal axis transformation for rectangular
integration formulas.

Derivatives of the basis function become

and

]
e (B-11)




By substituting and integrating, the 4 x 4 matrix with the
interaction coefficients can be determined for a derivative

or straight inner product. For instance, the straight inner

product is

11
cij =[/Vivjdxdy = ab ./1 [‘ vivj dzdn

1 1
=9[% _/](Hcic)(H;jc)dc[] (14nyn) (140 n)dn

- ab, 2 2
16¢23%4%3) (2¥gnyny)

(B-12)
and the mixed derivative is
1 1
aV, av, v, av,
Y ok i | SEI /_1__.1
dij //ax P =g L K 3¢ 3¢ dzdn
1 1
a2
]6a_/1 Cicjd?;!] (1+nin)(1+njn)dn
(8-13)

These quadrature rules allow the evaluation of any integrals

when using rectangles.
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