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ABSTRACT

The evaluation of the direction-finding capabilities of non-uniform
arrays 1is approached via algorithm—independent lower bouida on achievable
angle estimation errors. Two classes of bounds are considered. The first,
known as the Cramer~-Rao bound, applies only to unblased estimates. Compact
analytical expressions for these bounds are developed which are spplicable to
very general direction-finding problems, including an arbitrary number of
emitters.

It 1s well-known that Cramer-Rao bounds are overly optimistic at low
signal-to-noise ratios. As this ratio decreases, a point is reached at which
estimation accuracy decreases abruptly. Another class of bounds, known as
Ziv~Zakai bounds, provide information about the location of this threshold
point. Their study suggests that poor direction~finding performance occurs in
situations where the emitter direction vectors are part of a set which is
nearly linearly dependent.

Such linear dependence does not occur in the case of uniformly spaced
linear arrays (without getting lobes). However, it does occur when elements
are removed from such arrays. A systematic test is developed to test a given

array geometry for this coundition.
Finally, direction-finding perfo ce of the QUICK LOOK array is evalu-

ated via both bounds and ﬁml&tlon.
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I. INTRODUCTION

The evaluation of the direction~finding capabilities of non—uniform ar-
rays is approached vis algoritha-independent lower bounds on achievable angle
estimation ervors. Two classes of bounds are considersd. The first, known as
the Cramar-Reo bound, spplies only to unbissed estimates. Since almost all
“reasonable”™ estimates are asymptotically unbilased as the signal~to-noise ra-
tio becomes large, these bounds are us~ful for evaluating performance in that
situation. Compact analytical expressions for these bounds are developed
which are applicable to very general direction-finding problems, including an
arbitrary number of emitters.

It is well-known that Cramer-Rao bounds are overly optimistic at low
signal-to-noise ratios. As this ratio decreases, a point is reached at which
estimmtion accuracy decreases abruptly. Another class of bounds, kaown as
Ziv-Zakal bounds, provide information about the location of this threshold
point. Calculation of these bounds requires numerical maximization of a func-
tion. In the case of more than one emitter, this function is wmulti-
dimensional and the cowputational load appears to be prohibitive. Despite
this difficulty, the study of Ziv-Zakal bounds suggests that poor threshold
behavior occurs in situations where the emitter direction vectors are part of
s set which is nearly linearly dependent.

The simplest example of linear dependence is a grating lobe of a uni-
formly spaced linear array. When the array elements are separated by more
than half a wavelength (A/2), there exist two (or more) directions which pro-
duce the same direction vector. It is impossible to determine from the array
data whether the signal is from direction A, direction B, or both. When the
spacing is less than A/2, it can be shown that for every set of distinct di-
rections, the corresponding set of direction vectors is linearly independent,
and therefo=s no ambiguity problems exist.

A special case of non-uniformly spaced linear arrays, called thinned lin-
ear arrays, are those obtained by resoving elements from a uniform linesr ar-
ray. These exhibit ambiguities of a more complicated nature. For example,
vhen a set of three direction vectnrs is linearly dependent, the observed data




could have coms from direction A and B, .or A and C, or B and C, or all three.
A given array geometry can be systematically tested for the presence of line-
arly dependent direction vectors.

Finally, direction-finding performance of the QUICK LOOK array is evalu-
ated via both bounds and simulation. Results show that the curreatly used
“phase only” processing is essentially optimum for a single emitter. For two
emitters, a processing algorithm called MUSIC provides nearly optimum perform—
ance except in certain difficult cases. PFurther work is needed to determine
whether these failures are due to the array geometry or to a weakness in the
algorithm {teelf.
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I1I. PERFORMANCE BOUNDS

The first question that arises in the study of unequally spaced linear
arrays is that of array geometry. What sort of arrey geometries are "best”
for locating multiple emitters? Evaluation of an array via simulation
requires the choice of an algoritim; if performance is bad, it may be due to &
poor choice of algorithm. ' The study of algoritha - independent performance
bounds is motivated by the desire to separate these two factors.

The oldest and best known bound is the Cramer—-Rao bound. It is wvalid
only for unbiased estimstors (or estimators of known bias). When the
observations from which an estimate is to be made are of the fora

2= As(a) +§
where 8 is a deterministic vector which depends on a set of unknown parameters
a, and £ 1s a Gaussian noise vector, it can be shown that there exists an
estimator which achieves the Cramer~Rao bound asymptotically as the signal-to-
noise ratio Azlzlzilz becomes large.

As signal-to-noise ratio decreases, a point 1s reached at which the
nccuricy of the estimate degrades nbrupt_ly. This value of S/N is referred to
as the threshold S/N; in general, it will depend on the estimation
algorithm. The Cramer—Rao bound gives no information sbout this behavior. A
bound which doas give such information is the Ziv-Zakai bound.

1. The Cramer—Rao Bound
A. General Discussion

Derivations of the multiparameter Cramer—-Rao bound ars readily available
in the literaturs (e.g., [1]). The result may be stated as follows: 1let g be
a real K-dimensional vector parameter, and let p(s/a) be & probabilistic
mapping from this parameter space into an observation space whose elements are
N~dimensional real or complex vectors 2. The Cramer—-Raso bound states that the
covariance matrix of any estimate ;_ of g satisfies |

R e i R e
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Cov(a) - 5:) ) 4 5—;)0 : (2.1)

i.e. the difference of these two matrices is positive semidefinite. Here

n = E(a)
= b
and F=E {( ? 19)1 3 lngl
3 a 3 a
is called the Fisher information matrix.
m
For unbiased estimates, e I , the identity matrix, and the bound

becomes simply

-1

Cov (a) > F (2.2)

The remainder of this section will discuss only unbiased rstimates.

It is frequently the case that only some of the unknown parameters,
denoted by 8, are of interest. The remaining parameters y, called "nuisance”
parameters, are not of interest but must be estimated. The information matrix
can then be partitioned as follows:

F F
Y8 Y

It is readily showm that

-1
-1 _[ (Fgq - Fgy w v Fre) ] (2.3)
®

*

Expressions for the other submatrices are easily obtained, but will not be
required here. Since Cov(g_ )n‘.l. it follows that

cov(8)>(P,,- Py BB )7 2.4)

e e T
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for otherwise a principal minor of Cov (a) ~F~! would be negative.

The matrix whose inverse appears on the right side of (2.4) 1s often
called the reduced information matrix for the parameter set R, denoted by

F(-)QS‘ It consists of the appropriate submatrix of F reduced by a positive
semidefinite matrix.

Application of this result to the case of a single parameter shows that
the variance in the estimate of a single parameter must exceed the inverse of
the corresponding diagonal element of F, {i.e.,

-~

Cov(g) »

|~

(205)

&)

A8

B. Estimation of Signal Parameters in Gaussian Noise

An important special case to which the Cramer-Rao bound may be applied is
the estimation of the parameters of a deterministic signal observed in the
presence of additive Gaussian noise, i.e.,

z=sla) +E

where £ 18 a circular complex Gaussian vector with zero mean and covariance A.

The logarithm of the likelihood function is then of the form
H -1
fn p(z/a) =-Mmm~tn[A|-(z - 8(a))” A (z-8(a))

with derivative

s
2I0Pu g Re (o)W = | = 2re (P71
-1 == ‘e = &
The Fisher information matrix is then
(d2np) TDinp 282
F-E,\ \l) ‘g -ZR{\E) A E} (206)
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It is often the case that some of the real parameters q are actually the
real and imaginary parts of complex-valued parameters, e.g. unknown complex
amplitude of the signal vector s. Denote this set of complex parameters by
the vector ¢ and assume that s(c) i{s an analyti¢ vector function of ¢ i.e.,
each component of 8 18 an analytic function of each of the components of c.

-1,%8
Define C = A /25 « It follows from the Cauchy-Riemann equations that*
-1, 38 -y, °%
2 - 2 =
A "Rec C, A “Tme ic
48
Let u now denote the remaining real parameters and define A= < The Fisher
information matrix for the (transposed) parameter vector (2'1" Re £T’ Im _gT) is
then
A"a afc gafc
H H
F= 2 Re ccCc jcc

Hermitian C nC

The reduced information matrix for the parameter vector u alone is then,

- . . g [recle -mcic]fre ca
) = 2tre AA - (re Allc, - Tma0)

mcdic reclc[\mm cMa

Evaluation of this expression is greatly simpiified by wmaking use of the
isomorphism between multiplication of complex NxN matrices and of real 2Nx2N

matrices of special form.

Re A -Im A Re B -ImB| Re AB -Im AB
ImA ReA ImB ReB Im AB Re AB

A B AB

*We use the letter j to denote /-1 throughout.

i
!
|
1




It followe immediately that

Re 8 -InB] 1 [Re(a)) -1mz’™}H)

InB ReB m(El) resl)
and that
(Re A, - InA) [Re B -Im B]™} [Re ¢ ] = Re(anc)
Im B ReB Im C
Application of these results to the above expreasion yields

F‘(.;)' Re | A% 1-¢( )2 cP)a) (2.7)

and the Cramer—-Rao bound on the covarisace matrix of any unbiased estimate

u of uis

cov (g) > (¥4 (2.8)

C. Multiple Elemeatary Signals in Gaussian Noise

This 1is actually a special case of the preceding section. The
observation is modelled as

K
z=)

. lpkxhk) +tE=Vwp+i

where

!‘1‘(“) _r_é(‘jhuxl/x. ethulex. . .ijuxnll)

is s normalized direction vector which represents the response of aa idesl
linear array with elements at positions x_, to a plane wave from direction u.




It is convenient to define the origin of the x coordinate so that [ x «0 .
The “elementary” signals are all of the form v(u) and have unknown complex
amplitudes. The results of the last section are directly applicable with the
substitution

8 (a) = V(u)p

Thus,
-1 83_ _-1/”
A=A 55 A {p]
-y, 38 -V
2 - 2
C =A agep A v
vhere
gy 2
Ju aul 8\12 auk
and
Pi. o
[LI = 0 o. PK [

The reduced information matrix for u is then obtained using (2.4). The result
is

() =2 e ([p)" (W - ) [p]) (2.9)
where
wi iy (2.10a)
sh vy (2.10b)
wh a1l (2.10¢)
8
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The U notation is mneumonic only and should mot be confused with that for
derivatives.

The Cramer—Rao bound on the covarisnce matrix of any unbissed estimate of
u is then given by

cov(a) > 3 me”t {1p)"(w - )| p)) (2.11)

D. Extension to Multiple Observatioms

In the multiple look case, the question of signal coherence arises. Two
limiting cases are of pattl.énlat i{nterest. In the incoherent case, the signal
amplitudes are completely independent from one look to the next; they are
treated as additional unknown paramsters. The at? observation is modelled as

B, = VW, Y&, nel,..N

The most concise derivation of the information matrix for this case makes use
of the Krounecker product [2] of two matrices, defined by

8B 8B a)p
Aen=|a,B

% ® or®

If A is M X N and B is R X S, their Kronecker product is MR X NS. The

following easily verified properties of the Kronecker product will be
required.

(aon)T = AHgpfl

(A8B) (CRD) = ACQEBD if A,C and B,D sre conformable




Following the developmeut of the preceding section

s (a) = V(wp,

Define the concatenated vectors

B T

‘

1

-3
<

e’ -(g}‘, _l_g, 3:)

2" = (2], Bgs ++omy)

Now
A1 A-l:Z v [211
A Y2y e |
A=l =] k = a2 4

9 g e (2y! (2.12)
ff“ where
T jA 1 2y 1]
,. Q W B ]
[ 2y}
A -
; and
;.‘.%’
?’ ; 10

M

X3

e st gt P A
IR g T d
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Y
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-1
ce- °11c22 °r - /sz_ Y2y - w2y am
0 ..°uu 2y
From (2.12) end (2.13) there follows, agsin using the notation of (2.10)
A - Fan 2 nE am %2y - Fasin (2.142)
¢ = o™ 2R am” 240 = (asdde (2.14b)
(o) = am”~ 2 )E (o™ 2v) = (19w (2.14¢)

Use of (2.14) in (2.7) gives
P = 2 Re{Q"| 2w - (20h)" (20w™")(18k) Jo}

= 2 Ref 'fl[gnj“(?a-ﬁ“ v 8) p )} (2.15)

vwhich is the reduced information matrix for the multiple-look incoherent case.

In the other limiting case of complete coherence, the amplitude and phase
relationships among the signals are fixed froe look to look; only the overall
complex amplitude b, changes. Thus the at? vector observation is modeled as

z,=bvup+g m=1,N;b =1

The number of unknown parameters in this model 1s 2(N~-1)+K+2K, as opposed to

2NK4K in the incoherent case.

Proceeding as before

s.(a) =» V(wp

11




An-A' 1/2;;'2 - b“A-llzﬂkj

. a2y Ip)
‘ - J‘ A= AZ - bza\-l/zb (2] - _Igot\-yzﬂgl
;“ b“;"lz\? {p)

wheu-!E - (l,bz, ese bu) - (1,21)0

Combine all the complex parameters into a vector cf = (p7, _b;_r). Then

5
ro
-]

L %8
s,
i aub. - 6mv2 o=l, N; m=2, N
s
| oyt [ 2%
Co A ™ | 3Rep * IRab
¢ A'l/zv 0 )
-y b ; -1y
C= ?2 - bz.A v oA Vg.. = b, nl’&, 1M "2vp)
L ] .~l L ] -
Cy b Ry o A vp

-

where I, = |0 .1“_11.

Then
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a% = 1] b 821 pl = ¢*(pl" Wl

vhere

b,
clA - =0 ﬁ[g]

aw  wpd®

e |7 Tl a2, 1 2 -
- 0 t .b.ln" 2"21.-1

2

- 4°1
e o [} |
bp
there follows immediately

2
A Po)7ca = Al (c"c)"[l 1:] “pl

bp

- (oA &1 p ¥ [g‘] el
- a(p%A 4 p)

and finslly, from (2.7)

13
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) w2 ane{ ()W - A7) (o)} (2.16)

which is the reduced information mstrix for the multiple-look coherent case.
The Cramer-Rso bound on the error in estimating U is again the inverse of this
msatrix,

Although the derivation in the two cases is quite different, it is a
curious fact that (2.16) can be obtained formally simply by making the
substitution p =b p in (2.15).

The principle results of this section are equations (2.15) and (2.16),
which sre the reduced information matrices for estimating the directions of
1 arrival of multiple emitters in interference of an arbitrary nature, from
: mltiple independent observations. Equation (2.15) is for the incoherent case
in which the unknown cowplex amplitudes of the emitters change independently
from observation to observation. Equation (2.16) covers the completely

coherent case in which the unknown complex amplitudes have the same fixed
relationship on every observation; the only fluctuation is a complex scale
factor which changes from one observation to the next.

E. Examples
Single Emitter in White Noise

For a single emitter in white noise with covariance 021, equations (2.10)

-1 hx, 2 2
become simply W=1, W=0, W= i ): (—-A-) = (2%2)° . The Cramer—-Rao bound
(2.11) 1s then simply
. 2 .
Cov (u) > g - (2.17)

N 2
2 2 |p| (2v2)

The covariance of u is ouu;lto be inversely proportional to signal-to-noise
ratio, independent of the true direction u, and dependent on array geometry
ouly through the "RMS array length” %.

Two Emitters in White Noise
Bounds for the case of two emitters with directions U}, uy are more

14
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complicated. Results have been obtained.for a sequence of cases of incressing
complexity. The amplitude, phase, and direction of the first emitter are
ncu-id to be unknown parameters. The corresponding parameters for the second
interfering emitter are known or unknown, as specified.

(1) Interference Known
If all of the parameters of the second emitter are
known, it can be subtracted out and does not degrade
the accuracy. Thus we get the single emitter bound.
2

Cov (:1 y»> & 1 4 cz
177 9y Ipnllt ()2 1

(2) Interference Amplitude and Phase Unknown

2
0

[

Cov(iy) > o] T — ¢
- 1 IvI v |

@2 |8 v 1D

sl

(2.18)

The function n(u,, uy) is an efficiency factor (0<n<1) which depends on
the source directions and the array geometry.

(3) Interference Amplitude, Phase, and Direction Unknown

2
- o
Covley) > = : TN 2 (2.19)
l-nz{——l-i-— (%‘I’%I P T e o M PR
()"0 1- |y, vl
4,21 1
In l-h!{yoj'}

The last factor in the denominator, which has been called a correlation or
coherency factor [3], is criticslly dependent on the phase difference between
the signals. In the most favorable situstion l.(vo-“) = 0 and no degradation
is caused by not knowing the direction of the interferer. In the least

L
AN

v N P
el :‘.H“:}_J .‘,-!&P‘:w“t"?-‘”“""‘f"‘? ?
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favorable circumstance Re yeJ¥ =~ |y| and the correlation factor is l-|1|2.

From these examples we conclude that the efficiency factor is due to the
unknown strength of the interference, while the coherency factor is due to
unknown direction,

When multiple observations are available, it is inmstructive to compare

the reduced information matrices for the incoherent and coherent cases. For
the incoherent case, we have from (2.15)
p<’).&l£2_'£.L2R, g ( ]n 1, ¢ p_ ]
uu 2 21: E 1l )
g n=1
(2.20)
2 'Y
_mae? | lenl Re(y [ py) Py}
2
o symmetric T Ipnzl
which

The bound depends on the actual set of complex signal amplitudes

occurred. If the two signals are really incoherent, the off-diagonal term

will be small and the errors will be almost independent.

The completely coherent case gives

2 *
£ o man)? 2 | Pl Relvpypy! (2.21)
uu 2 2 *
o symmetric |p2|

The coupling term here is not reduced by multiple observations, and so the
resulting dbound on the variance contains the correlation factor I—Rez(ve'“).

One Emitter in the Presence of One Interfering Emitter and White Noise

The amplitude, phase, and direction of the emitter are modelled as

unknown parameters. The interference is modelled as a signal from a knowmn




iaid -fb.h'( (T

e i 2R

direction uy with a complex Gsussian smplitude of known power. The covarisnce
matrix of interference plus noise is thus

o2 "
A= (I+p v vy

with inverse
2la ﬂ} (1 -vyyy !'I')
o
where v = ;I—}r « After considerable algebra we f;nd
02 N <12 1 1 .
U 23 [pn|? (2n2)? . Y'E:i;iﬁ (2.22)

2 H 2
(2n2) 1—y|11!.|

This is the same as (2.18) except for the factor y , which approaches 1 as
the interference becomes large relative to the noise. Note also that as the
interference power goes to zero, (2.22) becomes the one emitter bdound
(2.17). This bound will be compared later to a similar one in which the
emitter signal is also modelled as a Gaussian process.

F. Cramer—-Rao Bounds for the Gaussian Signal Model

The preceding paragraphs have presented Cramer-Rao bounds on the accuracy
of angle of arrival estimates which apply when the signals are deterministic
with unknown parameters. Another popular signal wmodel treats the complex
smplitudes as complex Gaussian random variables, The parameters to be
estimated are then imbedded in the covariance matrix of the observations
rather than in their mean value. In this gection, CR bounds based on a
Gaussian signal model are derived.

Angle estimation is to be based on N independent snapshots of array
data. The otl snapshot 1e of the form

17




X .
-z-n-kzl pnlc!(“k)+§-n-V(-'-’-)2n+§-n

Both E a and p n are complex circular Gaussian random vectors, i.e.,

BE ) ~EE £ =0, BE _ED =4
Bp ) =E(p ,p) =0, E(p _ph)=p

Consequently z a is also complex circular Gaussian,

T H
E(_z_n)-E(gn_g_n)-O,E(_z_n_z_n)-vrv“-i-Aoé-A

The likelihood function for the observations is

b P(_z_ 1’ ee e -z_n /2’ p) - ml “
A

‘ with logarithm

-1

|
lnp(il, .o-!_ nA _z_n

n/-“- » P) = -MN Lox -~ N enfA| - Z z
n

Let x,y denote any two of the unknown parameters.

A typical entry in the Fisher information matrix is

B atnp 3tnp
ax y

The derivative is

N -1
oL N 3]A H A
BEe-prh- 1oAY

Making use of the relations [4]




£t~ g

2 - B SIS b

2L o pprea™t 2

Ix 5;}
-1 41
"x ' ax
this becomes
-1
aimp H 3A - -1 3A,
IX nglin I = N Tr{A 9
1 3A 1
NTrA =~ oA (S~A)
1 Y H
vhere § = % Y z ntn 18 the sample covariance matrix. Since E(S) =4 ,
n=]1

The desired expectation is

dfnp 3tnp, _ -138 ,-13A
E ( 3% 3y ) = NTr (A % A ay) (2.23)

This result is derived in detail in [5], Appendix 2.

Assume first that the “signal in space” covariance matrix P is completely
known, and evaluate the information matrix for estimating u . The required

derivatives are

H
1 1 Yy
and since
av(u,) ‘
av_ _ e | _: H_ H
3u, @, .ees O 3y, 9, +:0) = ¥(u,) e, e 184

1th

vhere e; 1s a unit vector whose element 18 unity, and

19




¥ = (30D 9wy, e M)
we have

-vH

e

A H -
u P 1PV+VP 18

The 1k'? element of the information matrix is given by (2.23) as

F E(_.E..___R .
; ik du, Ay
: -1 H H H, ,-1 B H H
. =Nt e e e e vre e WA (B, o] mh e, o ¥

As in Section C, we define the matrices

w=viprly
w - vik 1y
w=vly

Since any cyclic permutation of matrices does not affect the trace operatics,

~ the preceding expression can be rewritten as

H H e
} Fe =N Tr{(e , PW k) (g_k Pw_pi) + complex conjugate
(g_? Ve ) (e x PWPe 1) + complex conjugate}

The quantities 1in parenthesis are scalars, so the trace operator can be

dropped. Also each term can be combined with its complex conjugate to give

Fik-zuke{(g_':m'egk) (e

5""’21’”2




Define the Hadamard product of two MXN intricea to be

(A on)m =A B

Then we can write the matrix lpikl as

F = 2N Re (P O (el)T+ W © (PWP)T} (2.26)

su

The result can be put in a more convenient form {3]. Seek an inverse for
A of the form

PRI RR R o W
o o 0
Computation yields
M7 1+ ve-or VA -
A7l = 1+ At VP = 1
where W_= vV'lv.
Thus Q must satisfy
P-Q=PW _Q=(M P (2.241)
Solving for Q, we find
Q= (I+ pwo)'l P=P(I + HOP)-I
and, if Pl exists

-1 -1
Q=(P " +W)

21
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Computation of the elements of (2.24) with frequent use of (2.241) yields
- 9 - PR 3 T
F=2NRe (W -W0h) o (2-0)" + a8 ©(h)T) (2.242)

where
v o=Vl
o o
W=y
o o
This 1is the desired result for the case of Gaussian signals with known
covariance.

As the smgllest (diagonal) element of P becomes large, Q + H;1 , P=Q»P
and (2.242) becomes asymptotically.

. 1
F = 2N Re{(V_ -~ ﬁ': Vi) on (2.243)

In the case of unknown covariance P, indexing becomes a problem. We
shall restrict our attention to one simple limiting case, namely, completely
incoherent signals (diagonal P). We again make use of (2.23). The necessary

derivatives are

H H
1 v

dp dp

dA d H
_—— A+ P v {(u)v(u)) =Ve ,e
11 1 © %. meome=om ==

We then compute

eG2P L) -w Te(A (v e L e o By
11 “Tkk -
B H -1, 2
N |e 1 v Ve k‘

or
3(3;’—:1’-)1' a_;_?_ ~aN@WOWD)
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and
3tnp 3¢n -1 -1, B _H )
E{a—lﬁ-s-u—kﬂ) = N THA Ve e [V (Ve e 4 BV + VPe e )
= 2N Ref(e JV'A e ) (e FPVA Ve )
or

B AL2)T LB L oN e (B 0 (DT

The overall information mstrix for a diagonal covariance matrix P then takes

the form
T T
[Fggpgg WO W 2 Re{fl © (PW)") J
F= Fu P Fu " =N symmetric 2 Re{(W © (PUP)T + PO (Pﬁ)r} (2.25)
Use of (2.241) gives the more convenient form
T T ~-1
. [P-1 o] ¥, O () 2 n(oftoo ()"} Pl
0 I}|symmetric 2 Re( (wo—ﬁgqﬁo) o (p—Q)T+qﬁ°<> (m‘ao)r} 0 I J
(2.251)

provided that P! exists.

G. Examples of CR Bounds for Gaussian Signal Model
One Emitter in White Noise
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The covarisnce matrix for this case is
2 R
A=og (I+pvy)

vhere p 1is the array signal-to-noise ratio per observation. The inverse 1is

-1 __1 - P H
A 01—(1 p+lll) .
We compute
W-!HA-I_Y_'-%(I—-‘%T)' 21
¢ P o (p+1)
x
R R R e TR
o (p+l)
veialy e Ly B )H)2
y 4 7Y ¥ 3 yy
o o (p+1)

We assume as before that the array coordinate system is chosen so that

l xn-O .

Then
=0, wa-L ¥ Cray2 o ety
H32 2 ol
Equation (2.24) becomes
F = 2N (azp)z (2wl)2 -2 (21£¢2
uu 02(p+1) 62 I+41/p " )

Therefore the CR bound for estimating the array coordinate u of one Gaussian

signal form N independent obgervations is

o2 > -illﬂ—z (2.27)
2N (2n2)

which 1s the same as the bound for a deterministic signal (2.17) except for
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"4 the factor 1+1/p. Note that the bound is the same whether the signal power is

known or unknown.

One Emitter in Noise and Known Interference

This differs from a previous example in that the desired signal 1is
mnodelled as Gaussian rather than deterministic.

The covariance matrix is

I\-R+l?'v__v_n

j where R is the known covariance matrix of the interference and noise and P is

the unknown power of the emitter., For brevity, define

r=v R" v
{
r=virly ;
. -1-
r=yv A4

Then

5.l e il

-1 -1 P -1 -1
A R~ - yry R _Vlak

The required matrices (scalars) are

r

ol

T
Lo L + Pr

oo e P ° 2
Wer T

Using (2.25) we obtain the information matrix for the parameters P, u

25




f} respectively,
[}

H 2 2Pr Re(r)

P = -‘_"L_z' 2 P 2 z . (2'28’
(1+Pr) symmetric 2P°[(1+Pr)(rr-|r|®) + 2 Re“(r)]

© e e

This agrees wi.n a result obtained by Miller and Huber [6].

The reduced information matrix for u alone 1s

e SR S "2

) 2 .
rﬁ ) a2 oz (e = (e (2.29)

! To compare this with a previous result (2,22) which was derived using a

deterministic signal model, we take
2 H
R=¢" (I + pI !'I !I)

The iaterference then consists of white noise plus a single source of Gaussian

interference at known direction uye. Then

-1 _1 H
R 2 (X - yyyvp)

where y = pI/(pI+l).

We evaluate

" [ ]
]
e
=
<
']
¥
k<
~
{o=
H<
A
I
1<
e’

Substitution of these results {nto (2.29) gives
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RPN Gae .

#______.______;_;_;_——-—-——-:::-—_gs_ﬁ

He 2
Ylvye |
2 [(21:!.)2 - s
) ) 1- ”'ﬁ‘-’x'z
Fu - 1 (2.30)
1+

"2
pg(l-v|¥,v |
P
where e ;i .

The reciprocal of (2.30) agrees with (2.22) except for a factor (the
denominator of (2.30)) which approaches unity for large signal-to-noise

ratio.
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2. ZIV-ZAKAI BOUNDS [7]

A. One Unknown Parameter

Let u be an unknown parameter taking values in an interval U. The value
of u is to be estimated based on some set of observations which may be written
as a vector z. A statistical model is giver relating the observations to the

value of u. o

For any two values of u, u;, and u; > u}, there exists an optimal :
statistical decision rule, the likelihood ratio test (LRT), for deciding on .
‘ the basis of the observations which of the two values is correct. The LRT is !
? optimal in the sense that it minimizes the probability of error. |

If the values uj, up are equally likely to occur a priort*, the LRT

| chooses uy if

A p(glul)

z'lnm> 0

3 and otherwise u,. The probability of error for this optimal test is
r

$ P-lpr(z<o|u)+lpr(z>o|u)

3 E 2 1 2 2

Note that PE depends on the two values up, uy, and also on the statistics of

the observations.
Now consider a suboptimal decision rule based on an arbitrary estimate u

of u. This rule chooses u; if u 18 closer to u; than to uy, and vice versa.
The error probability of this decision rule is 4

*It is posgible to derive a more general form of the ZZ bound by allowing
arbitrary a priori probabilities [8]. However, this tends to obscure the
basic ideas involved and furthermore provides no improvement in the bound for
the examples to be discussed here. See Appendices II, III, ]
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1 [~ mtw 1 A~ u tu,
QB--Z-Pt(u> 3 lul)+-2-l’r(u<—2-—|u2

1 - |, = u 1 - lv, - v,
‘f"Q""ﬁ'"—T—I “1)+’I"<'“‘“z"—“'z"—‘| )

Application of the Chebychev inequality yields

2 2
Q<.l.. °(“1) . 1 °(“2)
4 2 “2_“12 2 “2-“12

(2 (25

where ez(u) denotes the nean squared error in the estimate ; when u is the
true value. Since Qg > Pg, we have
u, - u 2
-;-(ez(ul) + ez(uz)) > (—2—7—1) Pg(“l' uz) (2.31)

for any pair of values up, Upe

The right-hand side of (2.31) has been increased by a factor of 2 by Wax
and 2iv (9] using a much more complicated argument (see Appendix I). We
incorporate this improvement in the remainder of this report. Thus, the basic
Ziv-Zakai bdound is

1.2 2 (v, = u)’
3 (e°(u)) + 2%(u))) » —5—— P, (u;, u,) (2.32)

Observe that the ZZ bound is a lower ‘ocund on the average wmean squared
estimation error at two parameter values. This is the best one can hope for
vhen considering a completely unrestricted class of esatimators, since the
estimate :x = u, has zero crrof wvhen u = uge To obtain a point bound, note
that for any given estimator u there exists some value u, which produces the
largest mean square error. The left hand side of (2.32) is then less than
cz(u.) for auny choice of uy, uy and s0 we can saximize the right-hand side

over these variables, getting
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) | e (u*) > uuxuz —_— PE (ul, uz) (2.33)
‘ 1°

;J which 1s a lower bound on the worst possible error any estimator can make.

B. Additional Unknown Parameters

The argument leading up to the two-point bound (2.32) is unchanged by the
presence of other unknown parameters in the statistical lodel*. Let g denote
the vector of additional parameters. The LRT chooses between two values (ul.
ﬁl)' (u,, 9_2). Its error probability is a function of these values.

{ As before, define a suboptimal hypothesis test based on an arbitrary
! estimate u of u. This leads directly to a multi-parameter version of (2.32).
’ 1.2 2 (uy = “1)2
{ 7 (e Gy ap) + el (uy,0))) > —F5——Pylu, uy, gy, ay)  (2.38)

u

There are many ways to obtain point bounds from (2.34). The parameter vector
a can be divided into a vector g of "interesting” parameters and a vector y of
"nuisance” parameters y. The distinction is that we wish to obtain a bound
which 18 an explicit functicn of the "interesting” parameters, but are willing

to choose worst-case values y,(8) for the “nuisance” parameters (and u). This

glves

 ndl st

-;-[ ef(u*(gl) B51a(8))) + ef( u.(8,).8, 12 (85)) ]
u u
2
(u,mu))

> —5——— Pglu;,u,,8,,8,:Y)5X,)

*Known paraweters are simply part of the statistical model for the
observations and need not be considered explicitly.




The inequality is valid for any choice of B8;, B; however, it is wmost
usaful when we chooge 8; = 87 = B to get a point bound

‘ ) (u2 - “1)
i e2 (14(8)s B, Yo(B)) 2 —=5—— B, (u;, u,, 8y 10 X,)
u

This inequality holds for any choice of uj;, uz, YY), Y2; as in the
one-parameter case, the tightest bound is obtained by maximizing the right-~
hand side with respect to these variables. The result is

2 (u, - ul)
e;(u*(B), B, Y,(8)) > “T’iﬁz 5 .Y_Te.{z Peluys vy, By Y06 Xy)

! (2.35)

l The problems to be considered in this report are signal parameter esti-

mation problems characterized by the observation model

-z_ - Z Aie i l(ui) + i

>
-
[oS
L]
—

To get a meaningful bound on the error in estimating uy, the associlated

RN L

signal amplitude Ay must be treated as an “interesting” parameter. The
reason is that the worst-case value of Ay is clearly zero. The signal is
then absent and the observation provides no information about uj. The
other amplitudes, however, may be treated as "nuisance” parameters. 1

The Cramer—-Rao bound clearly shows how the presence of additional un-
known parameters degrades the bound on accuracy for estimating a parameter.
With the Ziv-Zakai bound, the distinction is less clear. The parameters g in
(2.35) are held fixed in the two hypotheses being tested; they are thus

treated in the same way as the known parameters. The parameters Yy are
different in the two hypotheses being tested and therefore mist be unknown




X parameters. The bound (the right-hand side of (2.35)) is an explicit func-
{ tion of parameters B and makes no distinction between whether they are known
or unknown; it is an implicit function of unknown parameters Y for which
worst—-case values have been selected.

We now specialize the bound (2.35) to some cases of particular inter-—
est, Paralleling the development of Cramer-Rao bouands, we begin with deter-
ministic signal models and then treat the Gaussian signal model.

C. One Known Signal in White Gaussian Noise

The observation is a complex Gaussian random vector with covariance ma- -

! trix 021 uader either hypothesis; its mean is

. Aej¢§ﬂu) .

The error probability for deciding between two values uj} and uy when

A and ¢ are known is (see Appendix k.

o

‘ 8(u;) - s(u)) ‘]

P, = erfc [
* —
E V2o

; Of particular interest is the case where the length of the signal vector s is
unity for any parameter value, and the projection gﬂul)gg(uz) depends
only on the parameter difference u; - ujp. Thegse assumptions hold, for
example, in the time-of-arrival and direction-finding problems when only one
signal is present.

Then the error probability becomes

B = erfe, [ 2/ T Re(Cu, = o))

etfc*(x)g—:—__—l——- ] e dr
2 o x

hﬂﬂ




where |§(u)|2 4 1 and c(u1 - u,) g g(ul)gg(uz). The function ¢ is a measure
of the correlation, or degree of similarity, between normalized signals hav-

ing different parameter values. The ZZ bound for this case is then

2
. (u, - u,)
1 2 2 1 2 A
5 [e (u,a) +e (uZ,A)] > 5 erfc*[s-/'l - Re{c(u1 - uz)fj
(2.36)
and the worst-case Z bound is
2 (o) - u))” A
e (uy,A) > max erfc*(s-/71 = Rejc(u; - u,)}) (2.37)

1 2
The right-hand side of (2.37) involves two competing terms - the first grows
quadratically, while the second usually becomes small as the parameter values
separate. In the time-of-arrival problem, for example, c(u); - uy) is the
normdlized correlation function of the pulse envelope, which typically de-
creases smoothly and becomes zero once the time difference u; - uy ex-
ceeds the pulse width., Typical behavior of the right-hand side of (2.37) is
shown as a function of parameter separation for increasing values of signal-
to~noise ratio in Fig. 2.1. The non-monotonic behavior reflects that of the
signal correlation function c.

At large signal-to-noise ratios, the maximum required on the right-hand
side of (2.37) occurs when u; - uy is small, as shown in Fig. 2.2, The

argument of the error function can be bounded for small € = u; - uy by

using the inequality cos x - 1 - 0.5 x2,

Wv/ 1 1 2nx_¢ 2
1 - M z (1'5{ Am ) )

bl A, I ) i
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where

x 2
o)

(-

M
)
me]

is the same mean squared array length which appears in the Cramer-Rao bound

(see (2.17)).
The right-hand side of (2.37) is then greater than

2 j

(EK%T xzerfc*x

which has a maximum over x of 0.16572 at x = 0.84188. !
Thus, for large S/N, the worst~case ZZ bound becomes

2
f(u,) 2 0.16572 & L (2.38)
A" (2w2)

This bound is smaller (weaker) by a factor of 0.33044 (4.8 dB) than the

Cramer-Rao bound.

D. One Signal with Unknown Phase in White Gaussian Noise ﬁ
The contending hypotheses are

¢,
Hi: z2=he “slu)+g
4
is,
Hy: 2z =4e “s(uy) +§
where, E(E) = E(f £T) = 0, E(g EH) = 621 .
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,f The derivation of the minimum error probability for deciding between

i H] and Hy is given in Appendix III. Assuming |_-_(u1)|2 -1,

' gP(ul) 8(u2) = c(uy - wu2) as in the preceding section, the result
is

Pplu,, “2) - erfc*(%-/ 1 - ]c(u1 - u2)|)

and the corresponding worst—case bound is

|
! (u1 - u.)2

2 2 A
? e“(u,) Z_Uma: —— etfc*(;-/ U= Jelu; = u27|) (2.39)
172

Thus, the oaly change to the bound (2.37) is that Re c is replaced by |c|.
Note that by treating phase as an unknown (nuisance) parameter, we ob~
tain a bound which differs from that for known phase and is independent of

the actual phase value.

It was pointed out previously that at large S/N ratios, the desired
maximm occurs for small u -u,; this implies 'c(ul-uz)l " Re C(“l-“z) “1.
Thus, the worst-case ZZ bounds for known and unknown phase coincide for large

S/N ratios.

E. One Signal with Random Phase in White Gaussian Noise
A third signal model of interest is one that treats phase as a random
variable uniforaly distributed as (0, 2r). It can be shown (8] that the op-
) timum hypothesis test between equally likely parameter values u; and uj

has error probability




P, = S(a,B) -2 (1 -8, /D) +-;-Q(";. 8 )

where

2

A - - -
a 202( 1 'Jl lc:(ul

u, )TT).

= (VT fete ~ )
20

and

xz +a2
2

Q(a, b) = [ xe Io(ax) dx
b

is Marcum's Q function. The resulting worst—case ZZ bound is

2
(u, = u,)
f(u) > max —LoE 50, 8) (2.40)
1™

For large S/N ratios, the expression for the error probability is asymptoti-
cally equal to erfcs (v’- - v"&') and the right-hand side of (2.40) becomes

(approximately)

2 A .\[ N A/ V-l
m:x-‘i'— erfc*(l-_—_z—-; 1+ 1 - IC(u)' _7%'_; 1 - 1 - |c(u)| )




At high S/N ratios, the maximum occurs for small u, so that Ic(u)' -1, and

the above expression is approximately

u2 A
max 73— erfc*(a- /1 - lcluil)

u
Thus, at high S/N ratio, the random phase bound agrees with the unknown phase

bound.

F. Multiple Elementary Signals with Uoknown Phases in White
Gaugsian Noise

The observation is modelled as
z=Vwp+g
The columns of V are the elementary signals v(uj) and p 1s a vector of

unknown complex amplitudes. The minimum error probability for deciding
between (u,p) and [u', p'] in this case is derived in Appendix IV. The

result is

Ad
P = erfc, (— )
E 3

where
d = f(u, u'5 p, p')
The resulting worst~case ZZ bound on the error in estimating the

angle~of -arrival u, of the nth signal is

2
(w =-u') Ad
ez(un*, An) 2 max L 3 erfc*[-:—‘: ) (2.41)
u,u',p,p' 20

The maximization over p, p' can be done analytically, as discussed in
Appendix IV. However, the wmaximization over u, u' does not appear tractable

for more than one signal.
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G. One Gaussian Signal in White Gaussian Noise

The contending hypotheses are

Bprz = l’u—v-("’l) ti,
%" "nl(“z) +5-n

n=1, N

o

B,
where En 10 a complex Gaussian noise vector with zero mean and covariance
matrix 021, and p, is a complex Gaussian random variable with zero mean and 1

variance MP. Both £ and P, are independent from look to look.

The minimum error probability for deciding whether H; or H, is true 1s
shown in Appendix V to be

P, = Pr {U> V}

E

where U, V are independent chi-squared random variables with 2N degrees of

freedom and variances (per degree of freedom)

2 H
[+ (1 + 2Re(A Vl 2) +-—-—T—rp—-—

2 H -
C (Ial +2Re(Av v, + T, )

and

p = L LN array signal-to-noise ratio/look

2
g
s=--La-fpd
X
2v !
\ - LY
1+p,vl__2l

1+———-————1+p

It is further shown in Appendix VI that this probability is equal to the
probability of obtaining less than N successes in 2N~1 trials with probability

40
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of success

2

]

v

Pl ) + o2
% v

The resulting worst case ZZ bound 1is

2
(u,~u,)
1 72 P

ez(u) > max —5——— P

U1
It 1s particularly interesting to look at the result for a single snapshot
(N=1). Then

A rather tedious calculation shows that for large signal-to-noise ratio p
Py S 1 - Jew)|?) p17!

and the ZZ bound becomes

u P1-e(u]

This is quite different from the corresponding results for deterministic

signal models. In those cases, the maximizing value of u exhibits
discoutinuities as signal-to-noise ratio 1s 1increased, and ultimately
approaches zero. In this case, the maximizing value of u is independent of
signal-to-noise ratio (provided S/N is large enough) and is not necessarily *

small, Thus the ZZ bound does not approach the CR bound at high signal-to-

noise.

As the number of looks increases, the behavior of the Gaussian signal 22

41
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bound approaches that of its deterministic counterpsrt. Fig. 2.3 shows the
two sets of bounds for a uniform, 9-element linear array with \/2 spacing, for
1, 5, 10, and 100 looks. The two bounds ultimately agree for 2 or more looks;
with 20 looks they are almost identical for all signal-to-noise ratios.

The intuitive explanation of this result is that on a single trial the
probability of drawing a low signal-to-noise ratio from a Gaussian sample is
too high. With wmultiple independent observations, this situation 1s
rectified.

The conclusion is that when multiple independent observations are
available, the choice of a signal model is not critical. However, if only one
observation 1s available, the two signal models lead to quite different

results.
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III. UNEQUALLY SPACED LINEAR ARRAYS

A. Applicable Methods

Many angle estimation techniques can be interpreted in terms of adaptive
array concepts. The basic idea is to form a weighted sum of the array element
outputs so that the total output power is minimized. Some sort of constraint
must be imposed on the weighting vector to avoid the trivial solution w = O.

If the constraint is a linear one of the formiﬁgg_- 1, then it 1is easily

shown that the minimizing weighting vector is

and the adapted array pattern in the direction u = ginf 1is
6(w) = |wv(w)] = o IR tv(w)

When the signal-to-noise ratio (SNR) is large enough, it can be shown that
under certain conditions the adapted pattern has (asymptotic) nulls ia the
directions of the external sources. The required conditions are:

(1) The direction vectors of the sources are linearly
independent.

(2) The signal-in-gpace covariance matrix P has an inverse.
These nulls can be used to determine the source directionms.

If g?- (1, 0, «e., 0), the constraint fixes the weight applied to one
element (the "reference” element). For a uniformly spaced linear array, this
method is mathematically identical to a specilal case of
autoregressive/maximum—entropy spectral estimation in which the model order is
equal to the number of array elements. While it continues to have meaning in
an adaptive array coatext for unequally spaced arrays, it does not provide a
spectral estimate having maximum entropy. Since the weights constitute the
best linear prediction of the signal at the reference element based on the
signals observed at all the other elements, we will refer to this method as




the linear prediction (LP) technique. In adaptive array terminology, when the
i reference element 1is the main antenna and the other samples are from

auxiliary antennas, the technique is called sidelobe cancellation.

When ¢ = v(u;), the constraint fixes the adapted array gain [gngu)l in
the direction ug. This pattern has (asymptotic) nulls ia all source
directions (except uo), which could be used to locate them. However, the
rationale behind the maximum likelihood method (MLM) is somewhat different.

Assume that the process on the aperture consi{sts of a desired signal from
; . direction u; and interference. Assume further that the signal and
interference are uncorrelated. The expected power output of the array using

! weighting vector w is

E vzl - wRw

where R = RI + Ps‘!(uo) gg(uo) is the covariance matrix of the process. The
constraint .!ﬁxﬁuo) = ] fixes the output power due to the desired signal.
Minimizing the interference power output is thus equivalent to minimizing the
total power output. The minimizing weighting vector is

i R_lx(uo)
wlu ) = ——0
. - ° xﬂ(uo) R 1g(uo)

and the expected output power is

1
m (3.1)

P(u ) = -
R v

This quantity is computed as a function of u, and the locations of its peaks

(exceeding a threshold) are the estimates of the source directions.

A third choice for the weight constraint 1is !E! = 1., This fixes the
thermal noise output power of the array. The minimizing welghting vector in

this case satisfies the equation




¢

Rw = \w

This eigenvalue problem has M solutions, M being the number of array elements
and consequently the dimension of R. The M solution vectors are mutually
orthogonal and their associated eigenvalues xm are real. The desired solution
is the eigenvector corresponding to the minimum eigenvalue. In general, this
solution 18 not unique. It can be shown [10] that i{f I < M emittere are
present, R has I “"signal” eigenvectors with relatively large eigenvalues and
M-I "noisé” eigenvectors with a common minimum eigenvalue. Any one of these

noise eigenvectors is a valid solution to the minimization problem.

I1f the signal-in-space covariance wmatrix P 1is non-singular, it can be
shown that the signal vectors v(uy), 1 = 1, . . . I and the “gignal”
eigenvectors span the same I-dimensional subspace, which is orthogonal to the
(M-1)-dimensional subspace spanned by the "noise” eigenvectors LA It follows
that the adapted array patterns gmgx(u) all have nulls in each of the signal
directions. When the covariance matrix is perfectly known, these are true,

rather than asymptotic, nulls.

The array pattern generated by a particular "noise" eigenvector will, in
general, have extraneous nulls. However, the only nulls common to all of the
"noise” eigenvector patterns are those corresponding to source directions.
This 1s true because if v(u) is orthogonal to all the "noise” eigenvectors, it
must lie in the signal subspace, which 1s spanned by the source direction
vectors v(u;), . . ., ¥(uy). But v(u) 1s linearly independent of these
vectors unless u is one of the source dtrections*. The appropriate function
to examine for nulls 1s thus

M-1

2
I spvw)]
m=1

*If the direction vectors are not linearly independent, extraneous nulls will
exist,




for which all nulls correspond to source directions. This technique is called
l MUSIC (multiple signal classification) [10].
‘ As the signal-to-noise ratio” becomes large, it was shown in [3] that
: -1 H
5 R+ ENEN
o]
: where
g £
‘ Ey = l!l’ Myseees -‘!M-I]
] is a matrix whose columns are noise eigenvectors. The MLM method seeks the
? maxima of (3.1), or equivalently the minima of
AR 2 M-I
3 Hw &7 v v =T sw)r
E o=l
: Thus, MLM is asymptotically (high S/N) equivalent to MUSIC and has no

extraneous nulls, At lower S/N, however, extraneous nulls may be

encountered. Th*s 1s also true for the linear prediction method.

To reject whatever extraneous nulls exist, an estimate of the power
received from each candidate source direction is made. Those that fall below
a threshold are eliminated. The power estimate is obtained by solving the

matrix equation
R=vpvi+q21
for the signal-in-space covariance matrix P, with the result

PV (R -0% 1) v

*Defineg as the ratio of the smallest non-zero eigenvalue of P to the noise
power ¢“,
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where V+ = (VHV) VH i3 the pseudo-inverse of the matrix t of (candidate)

direction vectorgs V. An estimate of the noise power level 02 is required.

The rational for the adaptive methods collapses when the signal sources
are coherent, 1i.e., when the signal-in-space covariance matrix P {is
singular. The adapted array pattern no longer has nulls in the directions of
all sources. The reason is that the component of array output power due to a
combination of coherent sources can he reduced to zero by cancellation, i.e.,
by combining them with appropriate complex weights. These weights are the

values of the adapted pattern at the directions of the coherent sources.

A technique known as “spatial averaging” (3] has been shown to be
effective in locating coherent sources with a uniform linear array. At

present, no such method is known for unequally spaced linear arrays.

Extension of other high resolution spectral estimation techniques such as
maximum entropy, AR, and ARMA wmodeling, etc., to unequally spaced linear
and/or two-dimensional arrays is the subject of much recent research [11,
12}, We plan to study and evaluate some of these algorithms during the coming

year.

B. Array Geometry

The use of unequally spaced, small linear arrays 1s motivated primarily
by the desire to avoid the grating lobes which result from uniform element
spacing*. Elements spaced uniformly d wavelengths apart can determine the
direction u = sin of a source only modulo %w This results from the fact that
phase can only be determined modulo 27 and consequently sources at any two of
= sing % n&-produce identical amplitude and phase patterns

n d
at the array elements. This is no longer true when the spacing is irregular.

the directions u

THere again, we assume that the candidate direction vectors are linearly
independent (1i.e, the direction matrix V has full rank).

*Unequal spacing 1s also used as a form of tapering in large arrays, but these
are not of interest to us.




W 25

An undesirable effect of unequal spacing is an increase in sidelobe
level. Figure 3.1 shows the spacing of the four-element, 12.1A QUICK LOOK
array. Figure 3.2 shows the corresponding array factor (uniform weighting).
While there are no perfect grating lobes, there are several extremely high
sidelobes. The performance bounds obtained in Section II show that the
sidelobes of the array factor are very important in determining the direction-
finding capability of an array.

C. Linear Dependence of the Direction Vectors and Array Ambiguities

The study of the Ziv-Zakai bound leads one to the conclusion that when
direction vectors are nearly 1linearly dependent, estimation accuracy
suffers. In this section, the consequences of 1linear dependence are

discussed, and a way of testing an array for this condition 1s proposed.

Suppose there exists some set of K direction vectors which are linearly

dependent, i.e., there exist complex constants aj such that

]

o v(w ) =0

a1 k= Yk

This means that the array is completely blind to this particular distribution
of sources. Of course, the proper combination of complex amplitudes 1is
required in order to get complete cancellation; if the sources are incoherent,
this situation would not persist over multiple snapshots. However, since any
one of the signals can be expressed as a linear combination of K-1 others, a
distributior of K sources with arbitrary amplitudes cannot be distinguished

from any one of K distributions of K-1 sources.

A simple example of this is a uniform linear array with element spacing
2. Such an array has grating lobes at u=tl. A signal arriving from direction
u is indistinguishable from one arriving from directions uil (one of which is
in “visible space”). These signals are linearly dependent. An estimator
faced with this situation (and no a priori information) can do no better than
to choose one of the two possible directions at random. The result is a large

mean squared estimation error.
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It can be shown that for equally spaced linear arrays without grating
lobes, every set of distinct direction vectors is linearly independent. This
result does not extend to nonequally spaced arrays. The following argument

shows why.

Congider an M-element equally spaced 1linear array illuminated by L<M
sources equally spaced in angle in the unit circle, i.e.,

ul = %-%3 £ =1, ..L. The response of array element m to source £ is
ol
jZﬂ—f

X, @) = a,e

where a, is the complex amplitude of source {. The responge of element m to

all sources is
L

L
x =) x (@) =] a
R ogm1 ® g=1

mf,
I =
ze L

2n

Assume a, = 1 . Since eJ "L is an Lth root of unity, it follows that

wmod L

x = 0
0 wod L

0O w
m L m=
If the elements whose indices are O mod L are removed from the array, the
remaining elements all have zero respounse, and the source distribution cannot
be detected. This 1s just another way of saying that there exists a linear
combination of direction vectors (sources) which 1s identically zero. The
elements to be removed can be varied by adjusting the relative phases of the

sources.

In order to cause problems, the linearly dependent source directions must
all bde in "visible space”. The L sources span an interval in u of %- E%l 3
this length must be less than 2 {f all sources are to be in visible sgpace.

Thus i{f the element spacing of the array satisfies d > %-(l-%? ambiguity

problems will occur.
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As a simple example, consider a five element array with spacing d-% .
and three sources at u=0, %+ éﬂ' o The phase shift per element across the array
is 0°, +120° respectively for the three sources. FPigure 3.3 shows how the
complex amplitudes of the sources add up at each array element when they are
in phase at the center element. When the center element is missing, the array
cannot distinguish between one signal at broadside and two signals of the same

amplitude at u-:l:% both having 180° relative phase.

More generally, since for u;~0, up= e-Jh/ 3, uy= e"z'"/3

_v_1+_v_2+_!3-0

any combination of three sources from these three directions

avy + b_v_z + cva
cannot be distinguished from pairs of sources

(a—c)_yJ + (b—c))_rz
or (3“’)11 + (c-b)l-,
or (b-a)_w_rz + (c-a)_!a.

If no {information about the signal-in-space covariance matrix P {is
available, these ambiguities are fundamental; there is no way to determine the
true source directions. However, 1f the signals are known a priori to be
incoherent (diagonal P matrix) the true source directions can be determined.
The reason is that only one of the possible configurations of sources will

yield a diagonal P matrix.

An algorithm incorporating this feature is currently under investigation.

Testing for Linear Dependence

A set of vectors v;, Vs, ..y is linearly dependeat if and only if the
matrix G=viy = [¥; 93 oo )" [y ¥5 «oo 3] 18 singuler, i.e., if |viv|=0.
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The test for linear dependence is simply to evaluate the determinant as a
*

g function of the direction parameters u and look for zeros. Since 0<|VHV]<1,
' an equivalent procedure is to look for peaks of 1- IVHVI . For arrays of
isotropic elements and k=2 signals, this function 1is simply the magnitude of
the normalized array pattern, and the peaks represent grating lobes.

For k=3 signals on an isotropic array, we have {
. 1 f(uz-ul) f(u3-ul)
l—IVHVI-l- £ (u,mu)) 1 £(uymu,)
. * *
f £ (u3-ul) f (03-\12) 1
: |

M
where f(u) = 'l!(' ) er’”‘m“/x is the array pattern. This is a function of
m=1

two independent variables, x=uy-u;, and y=uz-uj. Thus

Glx,y) = |£(x)| 2+ £0y) | 2+[ E(xty) |2-2Re{ £V (xty) }

Without loss of generality, we may assume u <u2<u3, which implies x, y >
0., We are only interested in source distributions which are entirely in
“visible space”, 1.e., uz - u; = xty<2. Thus the region of interest becomes
OKy< 2-x), 0<x<2, Furthermore, it follows immediately from the relation f(-u)
= £*(u) that G(y,x) = G(x,y). We plot it over the entire region for esthetic

reasons.

Figure 3.4 shows a coatour plot of the function G(x,y) over this region
for the expurgated linear array of Fig. 3.3 with element spacing 1/2. The
contours go from 0.5 to 1 in steps of 0.05. For any linear array, the
direction vectors are dependent when two of the directions are equal. This
creates ridges of ambiguity along the lines upy~u;=0 and u3-uz-0, the left side

* This sssumes an ideal array whose direction vectors satisfy la(u)l(u)-l.
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z and { “tom of the triangle. Also, for linear arrays (expurgated or not) whose
: element spacings are multiples of 1/2, there is a ridge of ambiguity along the
hypotenuse of the triangle, which corresponds to u3-ul+2. The plot shows
there 1s also ambiguity at x=y=2/3 which corresponds to the source

distribution previously discussed.

; The corresponding plot for the unexpurgated array is shown in Fig. 3.5,
; As expected, the ambiguity at x=y=2/3 has disappeared. .

Somewhat more interesting results are obtained for the QUICK LOOK
array. Figure 3.6 1is an ambiguity plot for this array. The contour levels

S

begin at 0.7 and go upward in steps of 0.05. The contours of high ambiguity
are predominantly straight lines, either horizontal (comstant uj3 - u,),

vertical (conmstant uy ~ u;), or sloping downward to the right (comstant uj -

A RGN Sl

“l)' Close examination shows that the peaks (excluding those along the line
Uy - uy = 0) never reach unity. The largest peak, located at UpTu; ® u3zTuy =
0.33038, has value 0.99990.

R

The nature of Fig. 3.6 can be largely explained on the basis of the array
pattern. This pattern is shown in Fig. 3.7 with the locations and values of
the 9 largest sidelobes shown. Lines representing the sidelobe separations

have been drawn on the figure. The ridges of high ambiguity follow these i
lines and their intersections produce the largest peaks. For example, there :
is a peak value of 0.997 at uy—u;=1.65, uz~uy,=0.33. This corresponds to u;=-

1.65, uz-o, u3-0.33; signals in the main lobe and two large sidelobes.

The ridges represent nunear linear dependence between two direction
vectors. At their intersections all three vectors are nearly equal, In
addition, there are additional peaks, such as the one at uz-ul-u3-u2-0.67,
where a linear combination of the three vectors in nearly zero, but no linear
combination of two is.

To predict the location of these near ambiguities note that the QUICK
LOOK array spacing is nearly 3, 2.5, 6.5). This i1s an expurgated linear array
with %- = 0,5 and element spacing 6, 5, 13 d. Suitably phased equal
amplitude sources at -:—u-o. *31_ produce outputs on the array at element

numbers 3k+1, none of which are present; consequently, these direction vectors
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are linearly dependent. Although certainly not obvious at the outset, an

1

ambiguity also exists for %~u-0, t-z, viz,

1 1 L

ej1lr/3 _ (1+ejﬂ/3) : + e_‘hr/3 e-5"/3 ~0
t 1 t
The array 1is also nearly 3, 2.4, 6.6\, which is an expurgated linear
array with d =0,6 and element spacing 5, 4, 11d. Sources at u=0,
%(—;- +£),% (—:2-;- +m) for any integers £, m will produce zero input. An
example that falls within the region plotted is ujy-u;=uj-u, = 5/9.

A third approximation to the array is 3.3, 2.2, 6.6\, with d/x = 1.1 and
spacing 3, 2, 6d. This produces ambiguiries at ujy-uj;=uj-u,=0.303, 0.606,
0.909 at up-u;=1.212, uy—u;=1.212, u3~uy=0.303, and perhaps elsewhere.

Since these are oniy approximations to the QUICK LOOK array, its
ambiguities are not perfect. However, all produce ambiguity peaks which

exceed 0.95.

The fact that the ambiguities of the array are not perfect means that at
sufficiently high §S/N ratio, the correct source distribution can be
determined. However, in near ambiguous situations, the required S/N can be

very large. This can be shown via the Ziv-Zakal bound for two signals (see

Appendix VII),

Array ambiguities involving more than three directions also exist. For N
directions, the quantity to be examined is a function of N-1 variables, and
finding the peaks 18 a much more laborious process. For this reason, we con-

fine our attention to ambiguities involving cnly three directions.

This study of linear dependence of direction vectors has led to the

following conclusions for unequally spaced arrays.

1. Ambiguous source distributions involving combinations of
two or more sources exist for expurgated linear arrays.

2, For wmore general unequally spaced arrays, these

ambiguities are usually not perfect. However, the
threshold signal-to-noise ratio necessary to resolve them
can be quite large,
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IV. QUICK LOOK Performance Simulation

A. One Emitter
QUICK LOOK performance was evaluated first for the case of a single

Theory predicts and simulations confirm that at high S/N ratio, the

emitter.
i.e.,

maximum 1likelihood estimate of u = ginf is asymptotically efficient,

approaches the Cramer~Rao bound, and thus is the best posasible (unbiased)

estimate. The ML estimate is just the value of u for which the steered array

output

is a maximum. This is referred to here as beamsum processing.,

Current QUICK LOOK processing, which assumes only one emitter is present,

uses only phase differences between three pairs of elements. This processing

was also simulated. A correction to the algorithm, detailed in Appendix D,

was found to be necessary in order to get correct results for emitters near

end fire.
Figure 4.1 shows simulation results for beamsum processing for emitters

at u = 0, 0.5, .855, .995 (8 = O, 30°, 60°, 84°). The RMS error in

beamwidths® is plotted vs. array signal-to-noise ratio for each case. Also

shown for comparison is the single emitter Cramer—-Rao bound. The threshold
depends on the emitter direction.

e N

SNR, where the error increases abruptly,
This is due to the nature of the array pattern of the QUICK LOOK array (Fig.

3.7}, as we now show.,

M-1 A
‘ *Beamvidth 1s defined to be M 1 where M is the number of array elements and

L 1s the array length,
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Beamsum processing scans the beam over all of "visible space,” i.e., from

u=-1tou=1, and takes the direction of maximum response as the emitter

direction. When the emitter is at broadside (0°), the result of the scan is a

noisy version of the array pattern from u = -1 to u = | (the array pattern is

symmetric abut u = 0). The largest sidelobe in this interval is 0.88535 at u

= $0,33, When the SNR drops sufficiently so that these three peaks can be

confused, the direction-finding error starts to increase abruptly. When the

emitter is at 30°, the region of interest 1s u = -1.5 to u = 0.5. Since the

largest sidelobe 1s unchanged, the threshold SNR remains nearly the same.

With an emitter at 60°, however, the region of interest is u = -1.866 to u =

0.134, and the largest sidelobe 1s 0.95467 at u = —0.784. The threshold SNR

should, therefore, increase by about (1~0.88636)2/(1-0.95467)2 or about 8

F. dB. An emitter at 84° brings an even larger sidelobe with height 0.96962 into
the visible region. The resulting change in threshold SNR should be about 3.5

dB. These predictions are 1in reasonable agreement with the simulation

results.

The ZZ worst—case bound (2.33) does a reasonable job of predicting the
threshold SNR. Figure 4.2 shows again the simulation results for beamsum
processing with a single emitter at 0° or at 60°, together with the
appropriate 2ZZ bound. For example, when the enitter is at 60°, the
appropriate 2Z bound is the worst-case value taken over u - -1.,866 to u =
0.134,

The QUICK LOOK processing algorithm is not a pure estimator but combines

estimation and detection (see Appendix VIII). When phase ambiguity resolution

fails, the algorithm rejects the data and makes no estimation of direction.
At low S/N (< 10 dB), only about 202 of the trials result in estimates., Such
“edited” estimates are not subject to the performance bounds discussed

previously, except in the limit of large S/N.

For this reason, the QUICK LOOK algorithm was modified for purposes of
comparison with other pure estimators and bounds. When ambiguity resolution
fails, the modified algorithm chooses a random number between -1 and 1 for the
emitter direction u. Simulation results for this modified algorithm are shown

;
!
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in Fig. 4.3 together with the CR bound. At high SNR, the algorithm achieves
' the CR bound; its threshold SNR is somewhat higher, particularly for emitters

near broadside.,

The most important conclusions to be drawn from the simulations are:

! (1) Beamsum processing offers 1little improvement in the
single-emitter case. The (modified) QUICK LOOK algorithm

is essentially optimum, é

(2) Z2iv-Zakai bounds can be used to determine a bound on
threshold S/N for estimating the direction of arrival of

t a single signal.

t B. Two Emitters

Two emitter CR bounds on the standard deviation of the angular error* are
shown as functions of emitter separation in Fig. 4.4, Plotted are the bounds
for a Gaussian signal model and for a deterministic signal model with best and
J worst case phase relationships. The received signals have equal power (20 dB

array S/N) and 100 observations are available. 1In the deterministic model,
the phase difference between the signals is a critical parameter. The
difference in performance between best and worst case phase conditions is
often appreciable., However, it was pointed out in section II.l.E that when
multiple observations are available and the signal phases are random, the

correlation between the directional errors will be small and the deterministic

RIS WY WU

and Gaussian signal models yield similar bounds on performance, For these
reasons, the Gaussian signal model was used in the simulation.

In the single emitter simulation, the maximum likelihood (ML) algorithm
(beamsum) was used., For the two-~emitter simulation, the MUSIC algorithm [10]
was used.

Figure 4.5 shows the results for signal separations greater than 1

beanwidth., Each point represents the standard deviation in the angle error
for a particular emitter after 100 Monte Carlo trials. Two emitters of equal

*More precisely, the standard deviation of the error in u = gin 6,
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power comprised the simulated signal, so two points were produced for each set
of 100 trials., Signal separations of 0.1 to 0.5 in u = sind, and S/N ratios
of 10 to 40 dB were simulated. Shown also are the CR bounds (Gaussian signal
model). The agreement 18 very good, indicating that the MUSIC algorithm
achieves nearly optimal performance for signal separations in excess of 1
beamwidth.

Fig. 4.6 shows results for signal separations of 0,05, 0.1, 0.2, 0.4, and
0.8 beamwidths. A breakdown in estimation accuracy occurs as the emitters come
closer together in angle. The mechanism is that the emitters are no longer
resolved; they produce only one peak in the spectrum. Consequently a spurious
peak 1s accepted and its angle estimate assigned to one of the two emitters,
causing a large RMS error. A similar effect was noted 1in (3] where a two
emitter simulation was vrun using the MUSIC algorithm and a8 uniform linear

array.

In the absence of a Ziv-Zakal bound for the two emitter case, it is not
possible to say on the basis of the present results whether or not the
resolution performance of QUICK LOOK can be improved by the choice of a
different high resolution algorithm, Simulations using other algorithms are

now being conducted to resolve this question.
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V. Summary

The problem of evaluating the emitter location capability of arrays has
been addressed by studying Cramer-Rao and Ziv-Zakai bounds on angle estimation

accuracy. These bounds are useful for two reasons:

1. They provide a standard against which angle estimation algorithms caa
be judged.
2. They permit comparisons of various array geometries which are

algorithm-independent.

Although not leading directly to an analytical theory of optimum array
geometries, the study clarified the notion of array ambiguities in
noauniformly spaced linear arrays and revealed a method for finding them. A
power estimation technique for resolving these ambiguities when the signals

are incoherent 18 now beiag tested.

The study also showed the coanection betweea high array sidelobes and the
threshold signal-to-noise ratio required to locate one emitter. When one
sidelobe is dominant, threshold S/N is directly related to the height of the
sidelobe; this becomes less true if multiple sidelobes of roughly equal height
are present. Nevertheless, a useful rule of thumb for reducing the required

S/N is to minimize the maximum sidelobe of the array.

Speclal attention was devoted to simulating the performance of the QUICK
LOOK array. For a single emitter, QUICK LOOK processing was found to be
essentially optimum. For two emitters, the lack of an appropriate Ziv-Zakai
bound makes it difficult to say whether the breakdown in emitter resolution
capability is a property of the algorithm employed or a fundameatal limitation
caused by the array geometry. This question is preseantly being resolved via

analysis and simulation.
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APPENDIX 1
IMPROVED ZZ BOUND

Wax and Ziv [9] have improved the bssic Ziv-Zakai bound by a factor of
two. Their derivation assumes that an estimate ; of some parameter xc[-A, A]
takes values in the finite, symmetric interval [-R, ;l where R < A. The
result is then

% [ez(a) + ez(-a)] > 2 az PE(-a, a)

a bound on the average mean squared error when the true values are x=a and x=-—
a. This is not as specialized a result as it appears to be at first glance.
Given any parameter x ou a finite interval [A, B] and any two values
x, + x
1 2

X), X9 e(A, B], the linear transformation y = x - —g— =x- x, maps x;

X, - X

iato -a, x, into a, where a = -3—7—~l. The new parameter y takes values on
the non-symmetric interval [A - x,, B-x,]. We also use the transformation to
generate a new estimate y taking values in this same interval, The mean

squared error of the estimate is preserved under the transformation.

Now define a truncated estimate y. on the largest symmetric interval
contained in the mapping of [A, B], namely [-Y, Y], where

Y = atn(JA - x|, [3x,])
If y lies outside of this interval, ;t = +Y as appropriate. The mean squared

error of this truncated estimate will be smaller than that of y when the true
values are X1, X3 Thus,

Fled xp + edixp) = 1 el (o) + & (-0))
x x y y
2
(x,-x,)
> % [ezA (a) + 2, (-a)| » 242 B (-a, a) = 2 21 PE.(xl’xz)
e Ve Y, x

This shows that the result holds for any finite interval, symmetric or not.
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APPENDIX II
PROBABILITY OF ERROR IN CHOOSING BETWEEN SIGNALS OF KNOWN COMPLEX AMPLITUDE

The contending hypotheses are:

-
[}

z=ps(u) +E

-]
N

z=psu) +g
where p = Aej¢ is the known complex amplitude,
2
l-s-(ui)l =1 s

and £ 1s a complex Gaussian noise vector with zero mean and
EgET=0, EE ENm AL

A decision rule is a division of the complex M-dimensional space a of all
possible observation vectors z into two parts, a; and age If the observation
falls in a, choose H;; otherwvise, Hz. The a priori probabilities of the two
hypotheses are P, and P,.

The probability of error for this decision rule is

P = PzPr{E_c a,lﬂz} + PlPt{E.e azlﬂl}

il ) / p(EJHZ)dE.+ P / P(EJHI)di
a a-a,

=P+ { |p,p(2]H,) - P p(2|H,)|dz
1

To minimize Pp, assign z to a; if and only 1if

Plp(_z_'ﬂl) 4 P2P(£|B2)
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An equivalent and more convenient form is

P
- =2
tn p(z|H) - tn p(z|H,) > 2n )

This is the well-known likelihood ratio test. For the problem at hand,

- lz- p,g(ui)l2

, 1
’ p(i'ﬂi) "—x e i=1,2
v |A|
1 and the likelihood ratio test becomes
A
H, P,

-1 2 -t
x & 2ge {QEFA (8,- 8}} + A (g?A 8- gA El)ﬁ tn T A
]

x 18 a real Gaussian random variable with mean
2 2 .
m, = E(x[H)) = A ‘21'22|A‘

under Hl and

I m, = E(xlﬂz) = -m;

under H,. The variance of x, which is the same under either hypothesis, is

given by
o = el4re?(pg™n (s, - 8,0}

-« 222 _ 2, -
%8, - s,y 2m,

R -M‘-ﬁm-hu,m ..




The probability of error is

o

P = P,Pr{x > A|H} + P lPr{x <aln )

1 2
- (x + m,) _ 1 _ 2
] 202 ! A 7~ (x - =)
; 1 ® x Zox
A = > | P 2 Jf e dx + ? an e dx|
Y 21tcx A 2 X‘ml 2
o - X P -x
1 2 X 2
= = L®, f e dx + B, {” e dx]|
v A+m
1
o
x
m, + X m, - A
= Pzerfc*( ) + P, erfc,( "x__—)

To get the tightest bound, we maximize this expression with respect to X.
Since
BRLoLTR
Pl P1
we have
A
: 91-1/(1+e)
i
-\
: K Pz'l/(1+e )
¥
3 % m, + A 1 m, - x)
S P, (\) = erfc,( ) + erfe (—
: i E 1 +e %% 1+ e %%
3

am—
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The derivative is

dPE 1 nl+ by ll- A
& " I0F coaﬁif'lerfc*( o ) - erfc.(-—:i:——ﬁl
('l- 1)2 (ml+ l)z
- 2 - 2
el 1. Loy U S |
/_'2_;0,( 1+ & 1+ e

When the expressions for my and o, are substituted into this expression,the

x
second term vanishes and the derivative becomes

m, + 2 m, - A
) - erfe,(
X X

dPp 1 1
T " T T cosmy LeFEcHl

)]

This is obviously zero when A = 0; furthermore, it is clearly always negative
for A > 0 and positive for A < O. Thus, Pg(1) has a single maximum at X = O,
(equal a priori probabilities) and

ml Ad )

max P (\) = erfc, —= = erfc, ( (11.1)
x

where d = [8) - 8, | A-I is the distance between the signals.

For multiple snapshots Zo n=1, N the likelihood ratio test becomes

B
-1 2 -1 <l
x =8 [2Re(p z) A7 (8- 0} + [p | (A" 8y - S48 ;o

If the total signal power is defined to be

NS

2
nky |Pp!

then the previous equations for the means and variance of x still apply and




the result (II.I) is still valid. The only effect of multiple snapshots on

the bound is to increase the signal-to-noise ratio.

Sk o Y L it
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APPENDIX I1II

ERROR PROBABILITY FOR CHOOSING BETWEEN SIGNALS WITH UNKNOWN PHASE

The contending hypotheses are
iz =aed® a4 g
z = et su) + g

where the statistics of £ are as defined in Appendix II.

i
We use the result (II.1) of Appendix II, replacing s; by 31°j¢ , and

obtain immediately

Py = erfc (#g) (111.1)
V2
where now
2 2 2
¢t = 1e¥ 5" elt2 5| A7l - |-"-1"’:";9—2| Al

There remains only the task of maximizing Pg over the remaining free variable

8. To maximize Pp, we ninimize d2.

2 2 2 H, -1
= g 1t LIy A-1'2R‘{.§1A s,e%)

Obviocusly, this expression is minimized by making the last term as negative as

possible.

«

2 2 2 R -1
i |£1|A_1+ '!QIA-I- 2|g)A syl
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When N snapshots z,, o=1,N are available the result is again (III.1l)

where now

18,

w2 = F AZls e s, 12
A

n-l n
This 1is minimized term by term over the nuisance parameters B, to get

2 2
CORES A <|£1lf + e, | 2|50 '8, )

which is used in (III.1).
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APPENDIX IV
MULTIPLE SIGNALS

The preceding analysis applies virtually unchanged to the multiple signal
problem. The hypotheses are

3¢ 3¢

H:z - Ae 1_!(111) + 12}'2 Ase lx(ui) +E=V(uw pt+teg

N S e
H: 2z =Ae “vlu)) + .5, Aje “v(u) +g=V()p +¢
where u is a vector of angles of arrival and p is a vector of complex
amplitudes. Because of the multiplicity of parameters, we have changed
notation; the parameter values under the two hypotheses are now denoted by
unprimed and primed variables. Also, to avoid degeneracies caused by
reindexing of parameters, we specify that

uy <u

2(...<u18ndu1<u‘2<..-<u.[.

Proceeding as before, we conclude that

Ad(p, p° ))

Pp(p, p7) = erfe,(




i
i
]
i
i

This is to be minimized with respect of y, b, b, and ug, ug, 1=2, . . . I *
Define 1

. .
WA Vv v :
T _ ("ET» E'T)
.l/ 1
- 2 I ) { .
8 =A Cy —ey))
I 8o that

| a® = |s, - va]?

which is minimized by choosing a = w+£1.

, 1
! % - l(x - wihs, |? = |(1-ww+)A/2(g_l—éY )
Ly, - Myl 2e g 1P fug )2 - 2Re{w) w; eV}

2 2 2 H
ngn a? = Ju 12+ 1317 - 208 )

Wik 3 o B

f
2 ¥ ¥
= (w | = lwgD” + 2]w | |w;] Q "*[—lr'[;l-]’)

d d
The vectors ¥, _gi are the components of A /211_1,1\ /Zy_i. respectively, which
are orthogonal to the space spanned by the columns of W. The distance d is a

function of the 2I directions of arrival Upy, ¢ o o uy, u{, « e e “i'
Maximization over these variables must be done numerically and requires a fine

sampling grid. This appears to be impractical for more than one signal.

¢

Hithout thﬁ ordering restriction on the u's, d can be made zero by setting
uy=ui, b -e » uj=u bj=l. This asounts to a reindexing of parameters.

Note alsq that A['Al in accordance with the discussion in Section II.2.B.
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APPENDIX V
PROBABILITY OF ERROR IN CHOOSING BETWEEN TWO GAUSSIAN SIGNALS

The contending hypotheses are

By f 2y = p¥e) HE,

n'l,...N
By ¢ 2 = Pa¥ly) * Ly

where £, 1s the usual complex Gaussian noise vector with zero mean and

covariance matrix Ao, and p, is a complex Gaussian random variable with

statistics

E(p) = E(p2) = 0, E|p’| = mp

The observations z, are therefore zero wean complex Gaussian random

vectors whose covariance matrix depends on which hypothesis is true.

| H
E(z z IH) = A, =A + MPv v,

The log likelihood ratio is

P.P(2z,,..2,/H. ) IAI N P
1" '=1""°"=N""1 l -1 1
L =2n = N2n Yoz ~A7") z+tn >
P,P(z,,..2,/H,) IR | n-l 17 =n P,

1 -1
We assume that A is positive definite so that A{?, A 0/2 exist. Then

A l = IA/2(1+MP w)A’% ~ A T + M w, 1|

-1
= A /- V4. The second determinant on the right is readily evaluated

where »
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by enumerating its eigenvectors and eigenvalues, with the result
|A|-(1+HPw LW

For brevity, we define q; = M w?wi.

The inverse A-i is evaluated using Schur's formula.

MP
1+q1 LA 1

- y&

A

Using these results reduces the log likelihood ratio to

z-uxn(1+q2)—nzn(1+q1)+znp ~ 2oP

1 2

Py e,

L] o —nl

...l/ 2
y) b
-2 o znl '

Define the complex Gaussian random vectors

-1
(1 + ql) /2"1 Y
x, - /B | 2
(1+4q,) 23_2

and the 2 x 2 matrix

-4 D

The likelihood ratio test can then be written in the simple form




The first term is just the difference of two chi-squared variates wi~h 2N

degrees of freedom. If the two components of X, were uncorrelated (and
therefore statistically independent), then the chi-squared variates would also
be independent and the probability of error could be calculated as shown in
_ Appendix VI. Since this is not the case, we seek a linear transformation T of
v i X, vhich will give independent components while preserving the simplicity of
the decision region.

We first compute the covariance matrix of X, under each hypothesis. The

B Ry

results are

l+q11/

j q ( )24

i H 1 1+ qz 12 A cll Clz
E(xx /H )=

, ~n—n" 1 2 ck c

! q, + Iqlzl 12 22

| Hermitian —e——————

1+q2

. 2

. - 1+ q 1+ 9 92
; E(x x /HZ) -

- Hermitian 9,

where q2 = HPu?wz.
Define the transformed vector.

1
Lo Tx, " [b 2]5..

The covariance matrix of_wz’n under Hl is

+2Re(ac. )+|al? LFORNL LI *
¢, t2Re(a c,,) |al gy  €5;b *e e e ab +c,,ac

E(y yo/8,) =

12 * 2
Hermitian [o] "¢, #2Re(e ,0e Y+ e| ey,




-

while the test statistic t = 2'3§q§u becomes

e ey e,

¢ = 1 ~) Ig [ lel —*Iﬁl 1y ; c*a] 2

] j |c~ab| b~ ca |a}® -
To preserve the form of the test statistic as a difference of chi-squared

variates, we must choose b-ca*. The test statistic then becomes

1 . Zg 1 0 Zﬂ
/. -
1 - |af? 0 -|c|

We may as well choose c=1 so that

t =

g 1 . H
e=—t— 0 Py (v.1)
f 1 - |a| X
With these choices, the covariance ‘matrix under H; becomes
o ¢, +c c
* 2 * 2. 711 22 12
¢ +2Re(a c12)+|a| Cyy (@t —— a+ 5 )
H 12 12
E(y y /H,) = *
1 Hermitian |a|2cu + 2Re(a c;,) + ¢,y

The off-diagonal elements are made zero by choosing

a=--a1 t‘ll -2 (v.2)
A

2 ¢ 2 [(1+9,)(1+g,) 172
12 1 27" "2

where

c,,+c 2
11 722 q,+ q2+ qlq2+ |q12\
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and the covariance matrix becomes

: 2
. 149, a,+la,,|
] 17 * 2 27112
o q1+2(——1+q )4 Re(a qlz) + |a| ——I—-;Tz- 0
0 |l q{'z‘ ) Re(a'e;) + Lyl
2

A similar exercise under Hy leads to the same expression for ), showing

that the transformation works regardless of which hypothesis 1is true. The

covariance under Hy is

? A a + 'qlzlz
" |a| q2 + 2( ) Re(a qlz) + ——-r_;—q—-—— 0
H 1
By g /) = MRS
1vayy, o« 2 9 * lap,l
0 9y + 2y PReta’ayy) + fal® =gt
1

We have not yet chosen a sign in the expression (V.2) for a. Since any

covariance matrix is nonnegative definite, we have |c12|2 L ¢;1¢€92, and 80

2/c (/cll

ll €22
€22

et e

ll

From a right triangle with hypotenuse 1 and side |A| we have

so that |A] < 1.

] > 1-{1 - IAI2

which shows that |a] < 1 provided we choose the negative sign in (V.2). This
in turn means that the factor 1 -~ [a|2 {8 nonnegative, and so the algebraic

sign of the test statistic (V.1) 1s preserved.

-.i;_hht m_'g-
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We can now compute the probability of error for the test. It is

PE - Pl Pr{t < G/Rl} + (1-Pl)Pt{t > 6/32}

where

1+q P

1 2
+ zn —
l+q2 P1

§ = N2&n

and
Pr(e <8/0) = () |y |12 <Y Iy 12+ - |a]®)6)
1 nl n2

is computed using the results of Appendix VI. The variances of y,; and y,,
are obtained from (V.3) under H;, and from (V.4) under H,.
The probability of error 1is, of course, a function of the a priori

probability P; that H; 1is true. To get the tightest Ziv-Zakal bound we must
choose Pl to maximize PE' We now show that 1if the noise is white (AO = 021),

P| = 1/ 18 the appropriate choice.

When A = 021, we have

MP A H
ql q2 '3—2 Py q12 D_Y_(ul) X(uz)

and the covariance matrices become

p Lo lviv, |2
1+2Re(a V ) + Ial __377F7;——— 0
H
0 la]2+2Re(a” vlvz) + __1_:7::.2__
1+l 12
2 * AAAL)
" |a| + 2Re(a !l_gz) +-—-————-—1 - 0
B(z Y /M) = (V.6)
o . 1+ olv |
0 la'h"' zke(a lllz) + -———f—+—o—'——
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' We observe that the variates Ynl> Yn2 simply change their statistical
q identities under an hypothesis change. Thus U = x|ynl|2, vV = E[ynzlz also
reverse roles. It follows that 1in any conditional probability expression

involving these variable, we can change hypotheses by interchanging U and V,

etgn

Pr(U > V + c/ul) =Ppr(V>U + 5/!12)

Since for white noise 9] = 99, it follows that

1-p

P

§ = gn

It will be convenient to wminimize Pp with respect to § rather than P;. Thus

The probability of error 1s

1 1 ]
Pe 5) = 5 Pr{iU< V + b6/H1} + = Pr{U > V + b6/h2}

l+e 1+e

where for brevity we have put b = 1 - |a|2. We first show that Pg is a

gsymmetric function of §.

i P () = 1_5 Pr{U <V - bS/H,} + 15 Pr{U> V - bs/az}
i 1
; , ‘e 1+e
- = Pr{u > V + bslnz} + 16 Priu< Vv + bG/Hl} - PE(G)
1 1+e 1+e
j This result, as well as those to follow, uses the fact that the

distribution function of U-V is continuous, so that the distinction between <,

£ can be ignored.
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The derivative of P! is

apP
B 1

- [(Pe{U > V+DbS/H)} - Pr{UC V+bS/H,}]

#  (1red)1re) b 1
(v.7)
1 1

+ bl Pr{U =V + b/8,)} - Pr{U = V + b8§/H,}]

+ed 1 1+e 2

It 18 readily verified that this expression vanishes when § = 0, and that

P,(0) = Pr{U < V/u}

Furthermore, when § > 0, the first bracket in (V.7) is negative. We now show
that the second bracket is also negative.
The pdf of U under H is

|=

T2
-1 2
S U
(2"0)
and similarly for V., Define for brevity
02
v U % v

the variances being those under H) given by (V.5). Note that

H 2
lp|v.v,|
2 2 2 —=]1=2
oy = oy = (1= Ial)(l--—-——-—-“p >0

since |a| < 1, |_v_¥g_z| < 1 and therefore 0< r< 1.

90




NS SN
o

Then

Pr(U = V + bS/H} = { Py (V)P (vHbs)dv

v+l
-e » - .—,
1 e I N-1 N-1 r
- y (yte)” " e dy
22 (DD o
and
pr{U =V + bs/uz} -zr{V =y + N/Bl}
- { Py(w)p (utbs )du
o+l
~c/r = - —x
- __l_i__e___i / xn—l(xﬂ:)"‘lc Fodx
20y ((N~1)DD° o
lr
«e® Trr{u=v+ bs/8,}
i
The second term can then be written as constant (y‘T e T oy,
which is negative for w > 0, x<l. I+e

We have shown that the derivative of Pp vanishes at 8=0 and is negative

for §>0. It follows from the symmetry of Pg that its unique maximum occurs at
8=0(p, =1,




APPENDIX V1
PROBABILITY THAT THE DIFFERENCE OF TWO X2 VARIATES EXCEEDS A THRESHOLD

Let u and v be x2 variates with 2N degrees of freedom, having variances
(per degree of freedom) 0,2,. 03 respectively. The pdf of u is
- —u
N S
p(u) '——Z'TFTN-—ITT‘ ud> 0 (VIi.l)
(237)
Then for § > 0
[ [ ]
Pr(u > v+8)=[ p(v) [ p(u)dudv (V1.2)
° vi$
Using (V1.1) and (V1.2), we obtain
Pr(ud>v+s)= ——1——2- T Wi .f. W leaudv (V1.3)
((N-1)1)° o rvic
2
% [
vhere r=—g,c"—3. Using the result
(] %
u u
» N-1 o
fo¥le ™M - -1 ] & (VI.4)
a n=0

in (VI.3), we expand (rvic)® in a binomisl series, use (VI.4) again, change a
summation index, and obtain eventually (still for § > 0)

N-1 n N~lma n
. N1 r . ¢ _=¢
Pr(udv+8)= ( ) ( T ® ) (v1.5)
-zo B e M n-l-o e

which is the desired result.
I£ 8 < 0, (VI.S) can be used to get the desired result.

Priludv+8)aPr(v<u=~8)=1-Pr(v>u-38)




The last probability can be computed from (VI.5) since - > 0.
When § = 0, this reduces to

N-1 n
Ma-! r
-Zo = ()

which can be put in more convenient form.

N-1 -
Pr(udv) = a;:%ﬁ:f I-O (lﬂ:-l) r (.l:i'r)ll 1-»

Expand the last factor in a binomial series.

N1 N~-1-m
1 MHe-l, = : N-1-a, N-l-=a-n
Pr(u)v)-———ﬁ-r_ ( )r ( dr
(14r) =0 * L -
Interchange the order of susmation
N-1 N-1-n
1 . N-1-n : Me~-l, N-=n—-l
Pr(u > r) = ————mpe—mr r ( ) ( )
(14r) 21 ,3.0 -éo n n
Replace n by N-1-n
Nl na
1 . MHa-1l, N-m-1
Pr(u > v) = —=py r ( ) ( )
(1+1) n,zo -):o » rm

FPinally, using an identity involving binomial coefficients (Feller [13],
p.62), we obtain

N-1
Pr> v =} *h " g

This is just the probability of less than N successes in 2N-1 trials with
probability of success (1%-?) « This form has been given previously by

PR o A e A g . LN e 1




APPENDIX VII
LINEAR DEPENDENCE AND THE ZIV-ZAKAL BOUMD

A developmant of the Ziv-Zakai bound on accuracy in estimating direction
u; in the presence of multiple signsls is given in Appendix IV. It is showm
that the probability of error is

- L &

where, for two signals,

q 2
4 & = |1 - wh g
s - A~ [xts)) - Mutu)) & Fu)) - M5 ()

WA Any) , yr )] & By, Huy)l

1
b ,

1 The vector (I - W) 8; is just the component of s; orthogonal to the subspace

3 spanned by the columns of W. Suppose that E(ul). i(uz). E(us) are linearly

_ dependent direction vectors” and set u'l =u,, “2 = ug. Then s; 1s a linear

; combination of the columns of W and so d=0. This leads to the two—point bound

2

: (uy = u,)

| %{ez(ul JA) + ez(uz,A)] > -—IT—-z—-
s v
% since P, = -i-. We are assured that the error at either u; or u; (whichever is
g worse) exceeds the bound, no matter how large the signal-to-noise ratio may
Ay
Qﬁ y beo

Suppose instead that :v'_(ul), ¥u,), 2(\:3) are "almost” linearly dependent
in the sense that the determinant |[V'V| is nearly sero. The component of s;,

*Shec Lv\" sA 'll? Yy, and A '1’21. nongingular, the ."\:i. are linearly independent if
and only if the v, are.




or equivalently "61 ., orthogonal to the space spanned by 72. ';3 has squared
length

2 ~ ~ ~ 2
d” = wig |y, - av, - bv,|

= uin !ll Lol v ‘subject to 3"! -1

wvhere gn = (1, 0, 0). The solution to this familiar problem is

2 1 _ [N
vhere ¥ = (iz ~_v_3). The denominator is a measure of the linear dependence of
_"22 and v,, which does not affect the accuracy of estimating u,.

d

A countour plot of 1- dz as a function of u; - u; and uj - uy for the
QUICK LOOK array is shown in Fig. VII.1*. Since d 1s not symmetric in these
two variables, the entire region O« uy - u, €2 -(n2 -u )< 2 must be
plotted. The result is very similar to a contour plot of [V V| (Fig. 3.6)
except that the horizontal ridges which represent near linear dependence of A2
and V3, are missing. This is due to the denomimator factor. If we compute a2
for estimating u,, the vertical ridges disappear; for uy, the slanting
ridges. Since we are ultimately interested in all three accuracies, the
Granian determinant |VBV| 1s most appropriate.

Since d > 0, incressing S5/N ratio will eventually mske Pp small,
Comparing two situations, one with minimum distance d;, the other with minimum
distance d,, the second will require 20 log dy/d, dB additional S/N ratio for
equal accuracy.

We have shown that when ¥, 1s nearly & linear combination of
:'-2 and :v_3 the Ziv-2akai bound predicts large estimation errors in trying to
distinguish between a pair of signals from directions u}, uy and a pair from

“2, u3.

*ror white noise, i.e., Ao- 0?1,

i ekl et ki v
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APPENDIX VIII
QUICK LOOK PROCESSING MODIFICATION

Phase differences are measured over baselines of 2.5, 5,5, and 12,1
wavelengths (at the highest operating frequency £),) . Without nofse, an
emitter at frequency f and direction u will produce the results

‘2.5 -ZQSfr“'n

05.5 - Sos fr u-~-N v (VIIIQI)

4121 " 12.1 fr u-1

where the phases are expressed in cycles (i.e., fractions of a complete
revolution), f, 1s the frequency ratio f/fn and L, M, N are integers. From
these, we derive

+M ¢S.S+N 5

b2,5 T M .
+ N 412,07 L 1T

¥s.5

or

14, 5-5¢55=5N-11M=1,

(VII1.2)
11 45,5 - 5 $12.1 = S5L-11N= I,
In rveality, of course, the quantities on the left-hand side will not be
integars because of noise and interference. However, if these effects are
smali, they will be nearly integers, and by rounding them to the nearest
integers, correct results will be obtained. As the interference beromes
larger, the rounded values will be incorrect. Since 5 and 1l are relatively
prime, equations (VIII.2) always have a solution, i.e., for anmy integers I,
I, there exist integers L, M, N such that the equations are satisfied.
Rowever, most such coiutiom can be discarded as physically impossible. Since

=1 € u< 1, the first equation (VIII.1) implies

-Z.Sfr<0+!l‘2.5fr .
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we have
-2.Sfl_,-l<-2.5.‘.r-0<M<2.Sf~r-¢<2.5fr . -

Since M 1is an ianteger,

-{2.5 £r] < M< [2.5 ftl
~[5.5 ft] < N< [5.5 ft] (V1I1.3)

-f{12.1 fr] < L< [12.1 fr]

where [x]) deunotes the largest integer < x.

Solutions which do not satisfy these constraints can be discarded.

The equations (VIII.l) are solved as follows: the first equation 1s
solved for N modulo 11. Since 1IM = 0 mod 11, 5Ny = I -10 I wmod 11, so

N, = -21l mod 11 (VIII.4)

A similar procedure applied to the second equation yields
!02 E -I2 mod 5 (VII1.S)

The physical constraints (VIII.3) require (for f. = 1) that -6 < N < 5.
Bquation (VI1I.4) can be rewritten in the equivalent form

K, (28 ~ 211) mod 11 - 6 (VIII.4')

where now -6 < 'l < 4, 8Similarly, (VIII.5) can be written

98




My (6-1,) wod 5-1 v. | (VIIL.S*)

where -1 < N, ¢ 3. It 1s now necessary to check whether or mot W, ead N,
match within the interval [-6, 5]. Figure VIII.1 shows that matching N with
Ny, Np+5, Ny=5 covers all possibilities but one, namely thet ul-s. Thus, 1if
no match occurs after three comparisons, we must compare N +11 with ll2+5.
This is the required wodification to the QUICK LOOK processing algorithm. A
block diagram of the modified processing algorithm is shown in Fig. VIII.2.

1




‘my371087e UOTINTOSAL
£33n8yque eseyd YOOT-AOIAD °U3 UT Ty pue Ty BupyoleR “I°IIIA *8%d

g + °N N g-N 8
€ L-
X X x X X o [ ® ® ® ) ¢ b 4 X x b 4
O o o o ® ® ® o ® ® L J o
S v Fz 9-




‘myj3yi081e Burssadoad YOOT-AD1AD PFIFPOM T IIIA °BFd

S3IA
ON
m Nun13y v L - ¢ Gow (% - 9)
= Nz
LL+ LN = IN
4 ‘uzoaN
voQ - viva 1S34V3N 0L ONNOY
v0a + .09¢

SNONOISNY i
tZgg . 99py

*

9 - L1 aONW (Liz - 82)
= Fz

¥

I TEETL]
153¥VaN 01 GNNOY

101

s T S




— e ok i

s

%

L

1.

10.

11.

12.

REFERENCES

H. L. Van Trees, Detection Estimation and Modulation Theory, Part I,
Wiley, New York (1968).

R. Bellman, Introduction to Matrix Analysis, McGraw-Hill, New York
(1960).

J. E. Evans, J. R. Johnson, and D. F. Sun, "Application of Advanced
Signal Processing Techniques to Angle Estimation in ATC Navigation and
Surveillance Systems,” Technical Report 582, Lincoln Laboratory, M.IL.T.
(23 June 1982), DTIC~AD-A11830610.

M. Athans, F. C. Schweppe, “Gradient Matrices and Matrix Calculations,"”
Technical Note 1965-53, Lincola Laboratory, M.I.T. (17 November 1965),
DDC-624426.,

D. F. Delong, "A New Algorithm for Adaptive Radar Signal Processing,”
Technical Note 1979-72, Liancoln Laboratory, M.L.T. (31 December 1%79),
DDC-AD~A082856/6.

T. W. Miller, S. D, Huber, "Antenna Array Techniques For Fractional
Beamwidth Angular Resolution of Multiple Emitters,” preseated at 1980
Adaptive Antenna Conference.

J. 2iv, M. Zakai, "Some Lower Bounds on Signal Parameter Estimation,”
IEEE Trans. Info. Theory, Vol. IT-15, No. 2 (1969), pp. 386-39l.

R. S. Orr, R. D. Yates, "On the Estimation of Arrival Time of Pulse
Signals in Gaussian Noise,” Technical Note 1974-~13, Lincoln Laboratory,
M.I.T. (26 August 1974), PB-236768/8.

M. Wax, J. Ziv, "Improved Bounds on the Local Mean-Square Error aand the
Bias of Parameter Estimators,” IEEE Trans. Info. Theory, Vol. IT-23, pp.
529-530 (July 1977).

R. Schmidt, "Multiple Emitter Location and Signal Parameter Estimation,”
Proc. RADC Spectrum Estimation Workshop, Rome, New York (1979}.

S. W. Lang, “Spectral Estimation for Sensor Arrays,” PhD Thesis, M.I.T.
(August 1981).

J. S. Lin, N. A. Malik, "A New Algorithm for Two-Dimensional Maximum
Entropy Power Spectrum Estimation,” IEEE Trans. ASSP, Vol. ASSP-29, pp.
401-413 (June 1931).




REFERENCES (cont'd.)

13. W. Feller, An Introduction to Probability Theory and Its Applications,
Vol. I, Wiley, New York (1957).

l4. E. J. Kelly, "Finite-Sum for Signal Detection Probabilities,” Technical
Report 566, Lincoln Laboratory, M.I.T. (20 May 1981), UTIC-AD-Al02143.

R Ry T T

R s L

103

. prea b Wil 2 385
O A T
QI EIT PP e i




|

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (Wihen Date Entered)

BEPORT DOCUMENTATION PASE |
1. REPORT NUMSER 2 oavy 80, 3. RECIPIENT'S CATALAG BUMDER
ESD-TR-83-008 m’w
4. TME (and Subitls) §. TYPE OF REPOAT & PERIOO COVERED
Multiple Signal Direction Finding With Project Report
Thinned Linear Arrays . PRRTORINNG RS AEPORT UUINER
Project Report TST-68
7. AUTUOR(Y 6. CONTRALT O GRAST NUMSER(Y
Darrol F. DeLong ' F19628-80-C-0002
9. PERFORINNG ORGANIZATION NAME ARD ADDRESS 15. PROGRAN ELEMENT, PROJECT, TASK
Lincoln Laboratory, M.1.T. AREA & WORK VINT SUMSERS
P.O. Box 73 Program Element No. 63250F
Lexington, MA 02173-0073 Project No. 649L
11. CONTROLLING OFFICE NAME AND ABDDRESS 12. REPORT DATE
Air Force Systems Command, USAF 13 April 1983
Andrews AFB 12. NUNSER OF PAGES
Washington, DC 20331 114
16. MOIITONNG AGENCY RAME & ADBRESS (if difforont from Controlling Office) 15. SECURITY CIASS. (of this report)
Electronic Systems Division Unclassified
Hanecom AFB, MA 01731 5. BECLASSIFICATION DOWNORASING SCHEBVLE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTMBUTION STATEMENT (of the abstract ensered in Black 39, if differont from Repert)

None "

18. KEY WORES (Continue on side if ry and idonsify by block number)

Cramer-Rao bound emitters signal-to-noise ratios
Ziv-Zakai bounds direction-finding performance linear arrays
20. ABSTRACT (Continue on ade if y and idensify by bloch number)

The evaluation of the direction-finding capabilities of non-uniform arrays is approached via
algorithm-independent lower bounds on achievable angle estimation errors. Two classes of
bounds are considered. The first, known as the Cramer-Rao bound, applies only to unbissed esti-
mates. Compact analytical expressions for these bounds are developed which are applicable to
very general direction-finding problems, including an arbitrary number of emitters.

‘00 O 1473 Eamen oF 1 NOV 05 13 SBSOLITE UNCLASSIFIED
1im72 SECURITY CLASSINCATION OF TIIS PAGE (Whon Sate Sntored)




UNCLASSIFIED ,
SSCURITY CLASSINCATION OF THIS PAGE (When Duss Entored)

2. MSTALT (Continued)

. It is well-known that Cramer-Rao bounds are overly optimistic at low signal-to-noise ratios. As
this ratio decreases, a point is reached at which estimation accuracy decreases abruptly. Another class
of bounds, known as Ziv-Zakai bounds, provide information about the location of this threshold
point. Their study suggests that poor direction-finding performance oocurs in situstions where the
emitter direction vectors are part of a set which is nearly linearly dependent.

Such linear dependence does not occur in the case of uniformly spaced linear arrays (without get-
ting lobes). However, it does occur when elements are removed from such arrays. A systematic test is
) developed to test a given array geometry for this condition.

Finally, direction-finding performance of the QUICK LOOK array is evaluated vis both bounds
. and simulation.

UNCLASSIFIED
SECURITY CLASSIRGATION OF WIS PGS hen Bums B




