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ABSTRACT

The evaluation of the direction-finding capabilities of non-unifor

arrays is approached via algoritm-independent lower bounds on achievable

angle estimation errors. Two classes of bounds are considered. The first,

known as the Cramer-Rao bound, applies only to unbiased estimates. Compact.1 analytical expressions for these bounds are developed which are applicable to

very general direction-finding problems, including an arbitrary number of

emitters.

It is well-known that Cramer-Rao bounds are overly optimistic at low

estimation accuracy decreases abruptly. Another class of bounds, known as

Ziv-Zakal bounds, provide information about the location of this threshold

point. Their study suggests that poor direction-finding performance occurs in

situations where the emitter direction vectors are part of a set which is

nearly linearly dependent.

Such linear dependence does not occur in the case of uniformly spaced

linear arrays (without getting lobes). However, it does occur when elements

are removed from such arrays. A systematic test is developed to test a given

array geometry for this condition.

Finally, direction-finding perform ce of the QUICK LOOK array is evalu-

ated via both bounds and simaulation. f
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I. InInODUCTIOs

The evaluation of the direction-f Lnding capabilities of non-unifor ar-

rays Is approached via algorithm-ndependent lower bounds on achievable angle

estimation errors. Two classes of bounds are considered. The first, known as

the Cramer-Rao bound, applies only to unbiased estimates. Since almost all
"reasonable" estimates are asymptotically unbiased as the signal-to-noise ra-

tio become large, these bounds are uso.ful for evaluating performance in that

situation. Compact analytical expressions for these bounds are developed

which are applicable to very general direction-finding problem, including an

arbitrary umber of emitters.

It is well-known that Cramer-Rao bounds are overly optimistic at low

signal-to-noise ratios. As this ratio decreases, a point is reached at which

estimation accuracy decreases abruptly. Another class of bounds, known as

Ziv-Zakat bounds, provide Information about the location of this threshold

point. Calculation of these bounds requires numerical maximization of a func-

tion. In the case of more than one emitter, this function is multi-

dimnsional and the computational load appears to be prohibitive. Despite

this difficulty, the study of Ziv-Zakai bounds suggests that poor threshold

behavior occurs in situations where the emitter direction vectors are part of

a set which is nearly linearly dependent.

The simplest example of linear dependence Is a &rating lobe of a uni-

formly spaced linear array. When the array elements are separated by more

than half a wavelength (A/2), there exist two (or more) directions which pro-

dace the same direction vector. It is impossible to determine from the array

data whether the signal is from direction A, direction 3, or both. When the

spacing is less than X/2, it can be shown that for every set of distinct di-

rections, the corresponding set of direction vectors is linearly independent,

and therefo-a no ambiguity problem exist.

A special case of non-uniformly spaced linear arrays, called thinned lin-

ear arrays, are those obtained by removing elements from a uniform linear ar-

ray. These exhibit ambiguities of a more complicated nature. For exaple,

wen a sat of three direction vectors is linearly dependent, the observed data

1



could have cown from direction A and 3, or A and C, or B and C, or all three.

A given array geomtry can be systematically tested for the presence of line-

arly dependent direction vectors.

Finally, direction-finding performance of the QUICK LOOK array is evalu-

ated via both bounds and simulation. Results show that the currently used
"phase only" processing is essentially optima for a single emitter. For two

emitters, a processing alprith called MUSIC provides nearly optimum perfora-

ance except in certain difficult cases. Further work Is needed to determine

whether these failures are due to the array geometry or to a weakness in the

algorithm itself.
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II P.OINANC BOUNDS

The first question that arises In the study of unequally spaced linear

arrays is that of array geometry. What sort of array geometries are "best"

for locating Multiple emitters? Ivaluation of an array via siulation

requires the choice of an algorithm; if performance Is bad, it may be due to a

poor choice of algorithm. The study of algorithm - independent performance

bounds is motivated by the desire to separate these two factors.

The oldest and best known bound is the Cramer-lao bound. It is valid

only for unbiased estimators (or estimators of known bias). when the

observations from which an estimate is to be made are of the form

5- As(e) +

where s is a deterministic vector which depends on a set of unknown parameters

., and L Is a Gaussian noise vector, it can be shown that there exists an

estimator which achieves the Cramer-Rao bound asymptotically as the signal-to-

noise ratio A2 /Ek%12 becomes large.

As signal-to-noise ratio decreases, a point is reached at which the

accuracy of the estimate degrades abruptly. This value of SIN Is referred to

as the threshold S/IN; in general, it will depend on the estimation

algorithm. The Cramer-Rao bound gives no Information about this behavior. A

bound which does give such information is the Ziv-Zakal bound.

1. The Cramer-Rao Bound

A. General Discussion

Derivations of the aultiparamater Cramr-lao bound are readily available

in the literature (e.g., [11). The result may be stated as follow: lot a be
a real K-dimnulonal vector parameter, and let p(aLs) be a probabilistic

mapping from this parameter space into an observation space whose elements are

W-dimunsional real or complex vectors a. The Cramer-lao bound states that the
a

covarlance matriz of any estimate a of g satisfies

3
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Do- )T  I z
Cov(G) - i )1(01

i.e. the difference of these two matrices to positive semldefluite. Here

- m i
E*a)

and F1 R (I Up)T L2. Inp

is called the Fisher information matrix.

For unbiased estimates, -I, the identity matrix, and the bound

becomes simply

Cov (J. , F -  (2.2)

The remainder of this section will discuss only unbiased estimates.

It Is frequently the case that only some of the unknown parameters,

denoted by 0, are of interest. The remaining parameters y, called "nuisance"

parameters, are not of interest but must be estimated. The Information matrix

can then be partitioned as follows:

F FF

It is readily shown that

(fee Foy YB :1F 1 (2.3)

Expressions for the other submatricee are easily obtained, but will not be
required here. Since Cov(*);F - , it follows that

cov.€1C,- 1, 7 -1 (2.4)

'4
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for otherwise a principal minor of Cov (a) -F - 1 would be negative.

The matrix whose inverse appears on the right side of (2.4) is often

called the reduced information matrix for the parameter set 1, denoted by

F(-) W It consists of the appropriate submatrix of F reduced by a positive

semidefinite matrix.

Application of this result to the case of a single parameter shows that

the variance in the estimate of a single parameter must exceed the inverse of

the corresponding diagonal element of F, i.e.,

Cov( 1 (2.5)

B. Estimation of Signal Parameters in Gaussian Noise

An important special case to which the Cramer-Rao bound may be applied is

the estimation of the parameters of a deterministic signal observed in the

presence of additive Gaussian noise, i.e.,

z - s(a) + _

where t is a circular complex Gaussian vector with zero mean and covariance A.

The logarithm of the likelihood function is then of the form

fn p(z/a) -- Mtnw-LnIAI-(z - s(a)) A(z-s( ))

with derivative

tn pu 2 H-1~ as H -l 32Re((z- -) A - 2Re A A

The Fisher information matrix is then

anIn's H
*~~ F E~ ~2 RejJ ' ~(2.6)
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It is often the case that some of the real parameters a are actually the

real and imaginary parts of complex-vaiued parameters, e.g. unknown complex

amplitude of the signal vector s. Denote this set of complex parameters by

the vector c and assume that s(c) is an analytic vector function of c i.e.,

each component of s is an analytic function of each of the components of c.

Define C - /2 5- . It follows from the Cauchy-Riemann equations that*

^- /2 "- c, - = ic
'2 Rec C Imc -'

Let u now denote the remaining real parameters and define A- 7 The Fisher

information matrix for the (transposed) parameter vector (uT, Re cT, Im. T) 
is

then

AA ARC JAC
F,, 2 Re C"C j CHC

Hermitian C 'C

The reduced information matrix for the parameter vector u alone is then,

F -) 2(je OA-(Re AC, - leA C) ReCBC -i ] e CHAuu m CHC Re CRCJIII CHA/

Evaluation of this expression is greatly simplified by making use of the

isomorphism between multiplication of complex Nxg matrices and of real 2Nx2N

matrices of special form.

[Re A -Is Al rRe B -InmB 1-A eAB -In Al
Is A A Re AJ Im B [ A ImAB ReAB

*We use the letter j to denote Ft throughout.

6
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It follows Immediately that
I 1

[Re 5 -Ina t.(3 " ) -Im( - )

In B Re In-1 R -1

and that

*(Re A, - Im) BRe -Im]11 [Re C] Re(AB3C)
[nB ROD J Lac

Application of these results to the above expression yields

(-). RJ(I-C(CiiCflC)_je) (2.7)I uu

and the Cramer-Rao bound on the covariance matrix of any unbiased estimate

u of u is

cov (.Li ), (-)'- (2.8)ruuJ

C. Multiple Elementary Signals in Gaussian Noise

This is actually a special case of the preceding section. The

observation is modelled as

7K

1 - -P.(uk)+ V(u)I+

where

T I ,jwuxA JwxAjWx
v(u) iai a ~ix/ JiJ~/L

is a normalized direction vector which represents the response of an ideal

linear array with elements at positions x to a plans wave from direction u.

7
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It Is convenient to define the origin of the x coordinate so that X7

The "elementary" signals are all of the form v(u) and have vuno complex
amplitudes. The results of the last section are directly applicable with the

substitution

a (a) -

Thus,

A -A 2 D - /

31/ qe -A/2 V

where

3v av 8v

and

The reduced Information matrix for u Is then obtained using (2.4). The result

is

F -2 Re 1 12 (i - 'O?) [2j} (2.9)

where

W V" YJ A1 v (2.10la)

I .V 1 A 1-4 (2.10b)

H'~A-'~ (2.10c)

8
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*f" The (I notation Is mumnic only and should not be confused with that for

derivatives.

The Crar-Ro bound on the covariance matrix of any unbiased estimate of

u is then given by

CO(u)) -1 R(

D. Extension to Multiple Observations

In the mltiple look case, the question of signal coherence arises. Two

limiting cases are of particular interest. In the incoherent case, the signal
amplitudes are completely Independent from one look to the nex; they are

treated as additional unknown parameters. The nth observation Is modelled as

t in v(u)n + i n-1,..N

The most concise derivation of the Information matrix for this case makes use

of the Xronecker product [21 of two matrices, defined by

11 B [aia 12 3 INS•A 4 3 a a21 B

If A Is N X N and B is R I 8, their Eronecker product is MR I S. The

following easily verified properties of the Ironecker product will e

required.

(B)B AsOI'

(ASS) (C D) - ACID If AC and I,D are conformable

9
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="- - 1
(AMR) A A -

Following the development of the preceding section

,fl

C a -/

a. an

1efine the concatenated vectors

T- T T T

PT CT  T T

Now

~~~~~AA-1/2 [p] 1rl-/2rq

Sf'1 - ji ! ((2.12)

where

t ii
and

f 10



1[ c - ["1/1 /- 2 } - % V (2.13)
A 2V

From (2.12) and (2.13) there follows, again using the notation of (2.10)

AOAm B e(IU&2L)" Ot-%V)Q - QK(4*W)Q (2.14a)

CBA - (IA /2V1) (la-"~) (IgI)Q (2.14b)

(CC) - (IS, 1/V)4 (19A- 1/ (V) (2.14c)

Use of (2.14) In (2.7) gives

F(-)- 2 Ref Q"j IW - (336)" ( ).-l)JQIu

N
. - 2tRef [pJwH W-1 4i) LJ) (2.15)

-1

which in the reduced information matrix for the multiple-look incoherent case.

In the other limiting case of complete coherence, the amplitude and phase
relationships ong the signals are fixed from look to look; only the overall

complex amplitude bn changes. Thus the ath vector observation Is modeled as

-n " a + .' ,m1,;b 1 1

The =vmber of unknown parameters in this model ts 2(N-1)+K+2K, as opposed to

2NK+K In the incoherent case.

Proceeding as before

4 *j bV(ju

11
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1/2~. A/~ 2 J

A. [A] A2 1/ b SK 42i~

where ITO (1 (b 2. .l -(b)

Combine all the couplex parameters into a vector CT j b) Then

b V

V2  n-1, U; wft2, I

C"A- 12V 0 0

-- 1/ -1 V A [.b~2f2 2 0 P A"' MEV2
1  p-

wre 4T i,

Theo

12



A'A. ORJWItJ id2 [ J j

uu2

'A - [SIBO~IA -1/ i0r - b ~~ dk

1 .11 (b A [V, IOU1

there follow :Lid:LatelY

d 2

sgd tfll, frcm (2.7)

13



d( - )  2 Rej -Z'RW - '§) (2.16)

which is the reduced information matrix for the sultiple-look coherent case.

The Cramer-tao bound on the error in estimating u is again the inverse of this

matrix.

Although the derivation in the two cases Is quite different, it is a

curious fact that (2.16) can be obtained formally simply by making the

substitution -bnp in (2.15).

The principle results of this section are equations (2.15) and (2.16),

which are the reduced information matrices for estimating the directions of

arrival of ultiple emitters In interference of an arbitrary nature, from

multiple independent observations. Equation (2.15) is for the incoherent case

in which the unknown complex amplitudes of the emitters change independently

from observation to observation. Equation (2.16) covers the completely

coherent case in which the unknown complex amplitudes have the same fixed

relationship on every observation; the only fluctuation is a complex scale

factor which changes from one observation to the next.

U9. Examples

Single Emitter in White Noise

For a single emitter In white noise with covartance o 2 !, equations (2.10)

2Wu 2
becomsimply W-,It 0 W~ (j) 2  Owlr) 2  The Cramer-Itao bound

(2.11) is then simply

* a2

Cov (u) (2.17)

2 Ip (2"-)2
The covariance of u i seen to be inversely proportional to signal-to-noise

ratio, independent of the true direction u, and dependent on array geometry

only through the "RS array length" 1.

Two Smtters in White Noise

Bounds for the case of two emitters with directions Ul, 2 are mare

14



complicated. Results have been obtained, for a sequence of cases of increasing

complexity. The amplitude, phase, and direction of the first emitter are

assumed to be unknown parameters. The corresponding parameters for the second

Interfering emitter are known or unknown, as specified.

(1) Interference Known

If all of the parameters of the second emitter are

known, it can be subtracted out and does not degrade

the accuracy. Thus we get the single emitter bound.

.o ( ) ;' o2 1 j. 2

2 1 Ipnl' (hi' ) 2

(2) Interference Amplitude and Phase Unknown

2

CoY(^ 1  a 2 ____ _____

1- (2) 2(_ i_-z 2 (2.18)

The function n(us, ul) is an efficiency factor (Oincl) which depends on

the source directions and the array geometry.

(3) Interference Amplitude, Phase, and Direction Unknown

2

c°v(uI) M -,. 2 (2.19)
1 _t 2 [ 1 o n * M I (+ X, -- 0-- ) e }

1-Re (20) 2 (!1,1 + VA1. 12 !.(!

2 1 1

The last factor In the denominator, which has been called a correlation or

coherency factor (31, Is critically dependent on the phase difference between
the signals. In the sost favorable situation Ro(y*J*) - 0 and no degradation
is caused by not knowing the direction of the Interferer. In the least

15
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favorable circumstance Re ye* -ly I and the correlation factor is -ly 12.

From these examples ue conclude that the efficiency factor is due to the

unknown strength of the interference, while the coherency factor is due to

unknown direction.

When multiple observations are available, it is instructive to compare

the reduced information matrices f or the incoherent and coherent cases. For
the incoherent case, we have from (2.15)

uu 2 Re 1] 1n

(2.20)

2 pl2 Rey p*.2
2n (2wt) 2  Re(y nl

2 ymmetric F ipn212

The bound depends on the actual set of complex signal amplitudes which

occurred. If the two signals are really incoherent, the off-diagonal term

will be small and the errors will be almost independent.

The completely coherent case gives

2n( L )2 1P112  P2(.
uu 2 syuetric IP2  )] (2.21)

The coupling term here is not reduced by multiple observations, and so the

resulting bound on the variance contains the correlation factor 1-Re2 (ye").

One Emitter in the Presence of One Interfering Emitter and White Moise

The amplitude, phase, and direction of the emitter are modelled as

unknown parameters. The Interference Is modelled as a signal from a known

I ~~~ 16 i* ,



direction ul with a comlex Gaussian ampliude of known power. The covariance
matrix of Interference plus noise 15 thus

A 02
(I + P Iv

j with Inverse

aR

PI

02 a I
21pn2 Owl) 2 1R*12 (2.22)

the Interference becomes large relative to the noise. Note oleo that as the

Interference power goes to zero, lat2) eomth oy1!2s1 emitr bund

emiter ignl I alo mdeled s aGaussian process.

F. Cramer-lao Bounds for the Gaussian Signal Model

The preceding paragraphs have presented Cramr-lao bounds on the accuracy
of angle of arrival estimates which apply when the signals are deterministic

with unknown parameters. Another popular signal model treat* the complex

amplitudes as complex Gaussian random variables* The parameters to be
estimated are then Imbedded In the covariance matrix of the observations
rather than in their mean value. In this section, CR bounds based on a

Gaussian signal model are derived*

Angle estimation Is to be based on N Independent snapshots of array
data. The nth snapshot Is of the form

17



K

Both and p a are complex circular Gaussian random vectors, i.e.,

d) n) - 0, E(S n f n A0T H
a(£n) E(P- n P n ) -0, E(! n p n) - P

Consequently z n is also complex circular Gaussian.

E (z n)-E(zz)TO, (z z H) VPVH+A o  An a a - - n 0

The likelihood function for the observations is

- z A z~.~.n n
P(Z!, e n/u.-) en u P) MIAIN

with logarithm

in p(Z l, "'" z /  , p) -NN t - N nf - z ' H -
n-

Let x,y denote any two of the unknown parameters.

A typical entry in the Fisher Information matrix is

E aLne Otp
ax 9y

The derivative is

alnp N a JAI R 3' A1

ax TAXT a x AnixA

Making use of the relations [41

18
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I 1A I iA ITr[A ' v4}
ax ax

M-1 - 1X x
--

this becomes

. nnp E H3A - N Tr[A
)-- n "x -n

- N Tr - A (S-A)

I N H
Nnhr z N is the sample covariance matrix. Since E(S) = A

we have nwi

E. (.P) 0.E x

The desired expectation is

E ax ay) N Tr (A F- A T) (2.23)

This result Is derived in detil in [5], Appendix 2.

Assume first that the "signal in space" covariance matrix P is completely

known, and evaluate the information matrix for estimating u o The required

derivatives are

: A =!v p V11 + V P I V l

a u auI  au t

t. and since

___av(u t )
-o .(0 - , 0, .. o) - ;,(u i ) • i - R -

where- is a unit vector whose 1th element is unity, and

19
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.h (_(ul) 1j(u2),... i(uk))

we have

BA e e• HP VH+ VP He-
u - -i

The ikth element of the information matrix is given by (2.23) as

Fik - E (alulP 2P
au I auk

-1 H )H e Y e • i))
- N Tr{A- -- k-k - k - k

As in Section C, we define the matrices

vHAI

W -4 1

Since any cyclic permutation of matrices does not affect the trace operati"&,

the preceding expression can be rewritten as

Pik - N Trf(e N e k) (e e ) + complex conjugateiki k - k - )+(eH ek) (e H PWPe ) + complex conjugate}

The quantities in parenthesis are scalars, so the trace operator can be

dropped. Also each term can be combined with its complex conjugate to give

F m 2 N Re ((e i) +(e ak) (e PWPe))(ik I ~k)( k I k

20
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Define the Hadamard product of two W1N matrices to be

(A C B),, A,, A Bm

Then we can write the matrix [Fik] as

F - 2N Re (A * (Pw)T+ (PWP) T1 (2.24)
u u

The result can be put in a more convenient form [31. Seek an inverse for

A of the form

A-1 A-1 -A -1 V Q vH - 1

0 0 0

Computation yields

-l V(~~WQVRAk-l
AA I1+ -(--W 0 0MI

A A-i + A0 V(P-QWoP)V I

where W - VB^-V.0 0

Thus Q must satisfy

P-QNWo0Q 0Wop (2.241)

Solving for Q, we find

Q - (I + PWo ) - 1 P-P(I + W P)-I

and, if P-1 exists

Q (P-1 + Vo)-I

21



Computation of the elements of (2.24) with frequent use of (2.241) yields

F - Re (e o - 'oo ¢  (P-Q)T + 0 (o)T0 ) (2.242)

where

0 0

O0  o
0

This is the desired result for the case of Gaussian signals with known

covariance.

As the smallest (diagonal) element of P becomes large, Q WQo P-(. P

and (2.242) becomes asymptotically.

F - 2N Ref&W ° - oB W
- 1 4l ) (2.243)

0 0 0 0

In the case of unknown covariance P, indexing becomes a problem. We

shall restrict our attention to one simple limiting case, namely, completely

incoherent signals (diagonal P). We again make use of (2.23). The necessary

derivatives are

-dA . d (A + ) P v(u )v (u - Ve it e V"
dPii dP 1 0 UMr- a- a

We then compute

E(alnp a ) N Tr{A-I(V e V)
aPii apkk (- e- k!- k H )

N Is_ V ̂ -AVe k2

or

E.11np)T aLIM N (W W T
5P 2 P

l2



and

_. n N Trn^f¢e n An)

E( - i . -TrA -Ie H VPe-- 1 1 k - - V + V - k-k

-2N Ref(e HVHA-I4. ica B.PV 1A 1Ve )

or

Ef I~p) a ±M 4- 2N Re (0 (P)

The overall information matrix for a diagonal covarlance matrix P then takes

the form

F W* W! [cT 2 Re(O 0 (W) T)

[Fp FJ Nsymmetric 2 Re[y 0 (PWP)T + P4 0 (PO)Tj (2.25)

Use of (2.241) gives the more convenient form

[1 0] yime )t 2 RefQ ((w o T (P-Q)0

F-N lop- I i 2 Re( -00'O (~)) 0 (P+ i (4 0)T1
lx:t0 0 0 0 Ti

(2.251)

provided that P exists.

G. Examples of CR Bounds for Gaussian Signal Model

One Emitter in White Noise
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* f The covariance matrix for this case is

A 2 (1 + P v v )

where p is the array signal-to-noise ratio per observation. The Inverse is

A
a

We compute

H ^-i 1 1,P

- - (a 2 -P-- a v P

p+l 2 .S- v"- 2 v+ 2 (
-- - o 2(p+1)

9H A-' 1 He H.e

2 2pv X

- - o - a (p+i)

We assume as before that the array coordinate system is chosen so that

xa -

Then

2wxM) l 2

Equation (2.24) becomes

2 2 T 2. N M 2
Fuu . 2N(02) (2 ) (W1)2

Therefore the CR bound for estimating the array coordinate u of one Gaussian

signal form N independent observations is

2 , 1+1/p (2.27)
u 2Np (2wt )2

which Is the same as the bound for a deterministic signal (2.17) except for
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the factor 1+1/p. Note that the bound is the eane whether the signal power Is

known or unknown.

One mitter In Noise and Known Interference

This differs from a previous example In that the desired signal is

modelled as Gaussian rather than deterministic.

The covartance matrix is

A - R + P v _

where R is the known covariance matrix of the interference and noise and P is

the unknown power of the emitter. For brevity, define

r-v R-1 v

o~r I° -1.,rMH R7v

r v*- '*

Then

A-1 R-1 PvVl
l+Pr -

The required matrices (scalars) are

rW T-
l+ Pr

I + Pr

Using (2.25) we obtain the Information matrix for the parametere P, u

* 25
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:1 respectively.

2 2Pr Rte(i)
S r2 2 2 (2.28)

-(lPr)2 1 symmetric 2P ((l+Pr)(rr-Ir ) + 2 Re ( )

This agrees wi..n a result obtained by Miller and luber 161.

The reduced Information matrix for u alone is

(-) 2  r r )

-2-- (r. - (2.29)

To compare this with a previous result (2.22) which was derived using a

deterministic signal model, we take

II
£ R- 2 (H+P t"

The interference then consists of white noise plus a single source of Gaussian

Interference at known direction u. Then

where y m pi/(P1+l).

We evaluate

H R-l 1 .H.2
r v 1 v 1 (1-y 1v2

6 -62 X
a

i H -71. Hv H

r (2wl 2 Re 2
2 a214

Substitution of these results into (2.29) gives
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2 H. 2
2 .2(-) '1 -II

u = I (2.30)U1+ *"

p8 (1-y I iH 1I

where P 2

The reciprocal of (2.30) agrees with (2.22) except for a factor (the

denominator of (2.30)) which approaches unity for large signal-to-noise

ratio.

I
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2. ZIV-ZMKAI BOUNDS [71

A. One Unknown Parameter

Let u be an unknown parameter taking values in an interval U. The value

of u is to be estimated based on some set of observations which may be written

as a vector z. A statistical model is given relating the observations to the

value of u.

For any two values of u, ul, and u2 > ul, there exists an optimal

statistical decision rule, the likelihood ratio test (LRT), for deciding on

the basis of the observations which of the two values is correct. The LRT is

optimal in the sense that it minimizes the probability of error.

If the values uI, u2 are equally likely to occur a priori*, the LRT

chooses u, If

S p(z I u2)

and otherwise u2. The probability of error for this optimal test is

P Y Pr (I <0 1 u1) + Pr (I > Of u2 )
E 2 2

Note that PE depends on the two values ul, u2 , and also on the statistics of

the observations.

Now consider a suboptimal decision rule based on an arbitrary estimate u

of u. This rule chooses u I if u is closer to u I than to u2 , and vice versa.

The error probability of this decision rule is

5It is possible to derive a more general form of the ZZ bound by allowing

arbitrary a priori probabilities [81. However, this tends to obscure the
basic ideas involved and furthermore provides no improvement In the bound for
the examples to be discussed here. See Appendices I, II.
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u ui 2 U, + P

QmPru ".)+Fru< "2'2

-Z 22 22

Application of the Chebychev inequality yields

S2 (Ul + a2e (u2)

2E' _ 2 2 _ 2

2221 2 1 2U-) " -

where e2 (u) denotes the mean squared error in the estimate u when u is the

true value. Since O PE, we have

2
I (e2(ul) + e2(u 2 )) ( u 2  u l )  PE(Ul u2 ) (2.31)

for any pair of values uI , u2.

The right-hand side of (2.31) has been increased by a factor of 2 by Wax

and Ziv [91 using a much more nomplicated argument (see Appendix I). We

incorporate this improvement in the remainder of this report. Thus, the basic

Ziv-ZakaI bound Is

I (@2 (u ) + e2(u 2 ) 2 - u 2  (2

1 2 2 - E P u2) (2.32)

Observe that the ZZ bound is a lowe .ound on the average mean squared

estimation error at two parameter values. This Is the best one caD hope for

when considering a completely unrestricted class of estimators, since the
estimate u - u0 has zero error when u - uO. To obtain a point bound, note

that for any given estimator u there exists som value u* which produces the

largest man square error. The left hand side of (2.32) is then less than

e2(u*) for any choice of uI , u2 and so we can maximize the right-hand side
over these variables, getting
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(U U 2

e (u*) mx u 2 1  E (u ,u 2 ) (2.33)
u2

which is a lower bound on the worst possible error any estimator can make.

B. Additional Unknown Parameters

The argument leading up to the two-point bound (2.32) is unchanged by the

presence of other unknown parameters In the statistical model5 . Let a denote

the vector of additional parameters. The LRT chooses between two values (ul,

M_), (u2, Ad) Its error probability is a function of these values.

As before, define a suboptimal hypothesis test based on an arbitraryI
estimate u of u. This leads directly to a multi-parameter version of (2.32).yI

I- (e2 (u, cl1) + e2 (u2,_2)) ( 2 1) PE(Ul, u2  , 2 (2.34)

u u

There are many ways to obtain point bounds from (2.34). The parameter vector

a can be divided into a vector _ of "interesting" parameters and a vector _ of

"nuisance" parameters x. The distinction is that we wish to obtain a bound

which is an explicit functicn of the "interesting" parameters, but are willing

to choose worst-case values W_(O) for the "nuisance" parameters (and u). This

gives

.~ e 2(u(liL~~ + e 2(u,(S2),,2,)L. (S.)

u u(u2-ul )2

0 2 P(ul 'u2 1 '1112'1 'Y2)

Known parameters are simply part of the statistical model for the
observations and need not be considered explicitly.
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The inequality is valid for any choice of 01, 02; however, it is most

'1 useful when we choose 01 - f22 - . to get a point bound

.22

2 (u2 - uI)2

e.u (u,(B), ._, x(0)) _ 2 PE(ul, Iu 2 ,  li 1 _2)

This inequality holds for any choice of ul, u2, yj, 12; as in the

one-parameter case, the tightest bound is obtained by maximizing the right-

hand side with respect to these variables. The result is

(u2 P(ul' u2 , -u')2)
e!(u*(O), 8,Y() mx 2 a U

(2.35)

The problems to be considered in this report are signal parameter esti-

mation problems characterized by the observation model

- ( A)e v(ui)+

To get a meaningful bound on the error in estimating ui, the associated

signal amplitude Ai must be treated as an "interesting" parameter. The

reason is that the worst-case value of Ai is clearly zero. The signal is

. then absent and the observation provides no information about ui. The

other amplitudes, however, may be treated as "nuisance" parameters.

The Cramer-Rao bound clearly shows how the presence of additional un-

known parameters degrades the bound on accuracy for estimating a parameter.

With the Ziv-Zakai bound, the distinction is less clear. The parameters 0 in

(2.35) are held fixed in the two hypotheses being tested; they are thus

treated in the same way as the known parameters. The parameters . are

different in the two hypotheses being tested and therefore must be unknown

31



parameters. The bound (the right-hand side of (2.35)) is an explicit func-

tion of parameters B and makes no distinction between whether they are known

or unknown; it is an implicit function of unknown parameters y for which

worst-case values have been selected.

We now specialize the bound (2.35) to some cases of particular inter-

est. Paralleling the development of Cramer-Rao bounds, we begin with deter-

ministic signal models and then treat the Gaussian signal model.

C. One Known Signal in White Gaussian Noise

The observation is a complex Gaussian random vector with covariance mas-

trix o2l under either hypothesis; its mean is

AeJ s(u)

The error probability for deciding between two values uI and u2 when

A and * are known is (see Appendix II)I

PE =erfc, [ 2 --

"' a

* Of particular interest is the case where the length of the signal vector s is

unity for any parameter value, and the projection s(ul)Hs(u2) depends

only on the parameter difference uI - u2 . These assumptions hold, for

example, in the time-of-arrival and direction-finding problems when only one

signal is present.

Then the error probability becomes

- erfc,[ f I- Re c(u - u

erfc*(x) e 2 dr

32

-7-771

erf,(xT , 1 f e d



where Isu)12 M I and c(u - u') s _(uI) s(U2 ). The function c is a measure

of the correlation, or degree of similarity, between normalized signals hav-

ing different parameter values. The ZZ bound for this case is then

(U1  u 2

1 f e2 (UA) + e2 (u.,A)] 1 2 erfc[A - .' u uM

(2.36)

and the worst-case Z bound is

1(U I 1 u 2 )2

e-Cu,,A) > x erfc, "(A - Re c(u1 - u2)fl (2.37)

The right-hand side of (2.37) involves two competing terms - the first grows

quadratically, while the second usually becomes small as the parameter values

separate. In the time-of-arrival problem, for example, c(uI - u2 ) is the

normalized correlation function of the pulse envelope, which typically de-

creases smoothly and becomes zero once the time difference ul - u2 ex-

ceeds the pulse width. Typical behavior of the right-hand side of (2.37) is

shown as a function of parameter separation for increasing values of signal-

to-noise ratio in Fig. 2.1. The non-monotonic behavior reflects that of the

signal correlation function c.

At large signal-to-noise ratios, the maximum required on the right-hand

side of (2.37) occurs when ul - u2 is small, as shown in Fig. 2.2. The

argument of the error function can be bounded for small c - ul - u2 by

using the inequality cos x : I - 0.5 x2 .

A - . . e . - , cos ,A M
- R7 e co 2M- 1 (112{-9-

A 2 T Z e x
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where

2 1 M x 2
t2 i

is the same mean squared array length which appears in the Cramer-Rao bound
(see (2.17)).

The right-hand side of (2.37) is then greater than

22

2 x erfc x

which has a maximum over x of 0.16572 at x - 0.84188.

Thus, for large S/N, the worst-case ZZ bound becomes

2 2 1 23t
e 2(u,) > 0.16572 a2 (2w) 2  (2.3)

This bound is smaller (weaker) by a factor of 0.33044 (4.8 dB) than the

Cramer-Rao bound.

4D. One Signal with Unknown Phase in White Gaussian Noise

The contending hypotheses are

.I2: z Ae s(u1 ) +

where, E() - E(_ 4T) - 0, E(E tH) -21
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The derivation of the ainimum error probability for deciding between

HI and i2 is given in Appendix 111. Assuming Is(ui)12 - 1,

s(ul) Su2) - c(uI - u2) as in the preceding section, the result

is

E a I - 2 I o, '  ")

and the corresponding worst-case bound is

2
2 (uI - u2 )2e (U*)> max 2 efc,( / V .-i:c., 1 ) (2.39)~UL,U 2

Thus, the only change to the bound (2.37) is that Re c is replaced by I.

Note that by treating phase as an unknown (nuisance) parameter, we ob-

tain a bound which differs from that for known phase and is independent of

the actual phase value.

It was pointed out previously that at large S/N ratios, the desired

maxim m occurs for small u1 -u 2 ; this implies Ic(u-"U2)1 " Re c(u-u 2) -.

Thus, the worst-case ZZ bounds for known and unknown phase coincide for large

S/N ratios.

E. One Signal with Random Phase in White Gaussian Noise

A third signal model of interest is one that treats phase as a random

variable uniformly distributed as (0, 2w). It can be shown (81 that the op-

timum hypothesis test between equally likely parameter values ul and u2

has error probability
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P S(aB) (1 +

where

2

200

B 2a 2 (l

a ! n 
2 + a 2

Q(a, b) =f xe 2-- 1 0(ax) dx

is Marcum's Q function. The resulting worst-case ZZ bound is

(u1 -
) 2

e2(u*) > max 2 S(a, 0) (2.40)

122u I -u 2

For large S/N ratios, the expression for the error probability is asymptoti-

calL)y equal to erfc* (/ - ) and the right-hand side of (2.40) becomes

(approximately)

2 -2

ax!L eirf c*-& 1cu --. U-- I

YI

u 2 V-2 a38(7 a
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At high S/N ratios, the maximum occurs for small u, so that Ic(u)I 1, and

the above expression is approximately

2
mx - erfc- Iu

u

Thus, at high S/N ratio, the random phase bound agrees with the unknown phase

bound.

F. Multiple Clementary Signals with Unknown Phases in White
Gaussian Noise

The observation is modelled as

Z - V(u) F +

The columns of V are the elementary signals v(ui) and p is a vector of

unknown complex amplitudes. The minimum error probability for deciding

between (u,p) and [u', p'I in this case is derived in Appendix IV. The

result is

P E = erf c*(.-

where

d - f(u, u', p, I)

The resulting worst-case ZZ bound on the error in estimating the

angle-of-arrival un of the nth signal is

(U - u') 2  A d2 n ne (un, An ) > max 2 erfc*( o ) (2.41)

The maximization over p, p' can be done analytically, as discussed in

Appendix IV. However, the maximization over u, u' does not appear tractable

for more than one signal.

!
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G. One Gaussian Signal in White Gaussian Noise

The contending hypotheses are

1 I - Pn v(u) + II -n n-,I -iN

2 : Pn X(u 2 ) + 1,

where 6 Is a complex Gaussian noise vector with zero mean and covariance

matrix o2I, and Pn is a complex Gaussian random variable with zero mean and

variance MP. Both n and pn are independent from look to look.

The minimum error probability for deciding whether H, or H2 is true is

shown in Appendix V to be

P E Pr (U > V1

where U, V are independent chi-squared random variables with 2N degrees of

freedom and variances (per degree of freedom)
1 iH 12

2 -X___ 12 + l 2
- (1 + 2Re(Av V2 ) lal

H 2
2 P ( a 2 + 2Re(AVV 2) + l+p ) 2

and

p - array signal-to-noise ratio/look

P 2

a

'- l+p

'. It is further shown in Appendix VI that this probability is equal to the
! probablity of obtaining less than N successes in 214-1 trials with probablity

40
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of success

2

p -

The resulting worst case ZZ bound is

((u)max 2
2 -u 2

It is particularly interesting to look at the result for a single snapshot

(N-i). Then

Pm
E 2a

I+.O
v

2
a

u

A rather tedious calculation shows that for large signal-to-noise ratio p

E - Ic(u)l 
2 ) PF -I

and the ZZ bound becomes

2 2 2
e (u) ) max - . 2

uP 1 - Ic(u)1

This is quite different from the corresponding results for deterministic

signal models. In those cases, the maximizing value of u exhibits

discoutinuities as signal-to-noise ratio is Increased, and ultimately

approaches zero. In this case, the maximizing value of u is independent of

signal-to-noise ratio (provided S/N is large enough) and is not necessarily

small. Thus the ZZ bound does not approach the CR bound at high signal-to-

noise.

As the number of looks increases, the behavior of the Gaussian signal ZZ

.4
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bound approaches that of its deterministic counterpart. Fig. 2.3 shows the

two sets of bounds for a uniform, 9-element linear array with X/2 spacing, for

1, 5, 10, and 100 looks. The two bounds ultimately agree for 2 or more looks;

with 20 looks they are almost identical for all signal-to-noise ratios.

The intuitive explanation of this result is that on a single trial the

probability of drawing a low signal-to-noise ratio from a Gaussian sample is

too high. With multiple independent oboervations, this situation is

rectified.

The conclusion is that when multiple independent observations are

available, the choice of a signal model is not critical. However, if only one

observation is available, the two signal models lead to quite different

results.

1
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II. UNEQUALLY SPACED LINEAR ARRAYS

A. Applicable Methods

Many angle estimation techniques can be interpreted in terms of adaptive

array concepts. The basic idea is to form a weighted sum of the array element

outputs so that the total output power is minimized. Some sort of constraint

must be imposed on the weighting vector to avoid the trivial solution w - 0.

If the constraint is a linear one of the form wic - I, then it is easily

shown that the minimizing weighting vector is

2 -1w - c

and the adapted array pattern in the direction u - sine is

H 2 H-
G(u) - I. y(u)I - o ic -7v(u)I

When the signal-to-noise ratio (SNR) is large enough, it can be shown that

under certain conditions the adapted pattern has (asymptotic) nulls in the

directions of the external sources. The required conditions are:

!I (1) The direction vectors of the sources are linearly
independent.

(2) The signal-in-space covariance matrix P has an inverse.

These nulls can be used to determine the source directions.

If CT. (1, 0, ... , 0), the constraint fixes the weight applied to one

element (the "reference" element). For a uniformly spaced linear array, this

method is mathematically identical to a special case of

autoregressive/maximum-entropy spectral estimation in which the model order is

equal to the number of array elements. While it continues to have meaning in

an adaptive array context for unequally spaced arrays, it does not provide a

spectral estimate having maximum entropy. Since the weights constitute the

best linear prediction of the signal at the reference element based on the

signals observed at all the other elements, we will refer to this method as

44

& m



the linear prediction (LP) technique. In adaptive array terminology, when the

reference element is the main antenna and the other samples are from

auxiliary antennas, the technique is called sidelobe cancellation.

When c - v(uo), the constraint fixes the adapted array gain f!v(u)i in

the direction uO. This pattern has (asymptotic) nulls in all source

directions (except u0 ), which could be used to locate them. However, the

rationale behind the maximum likelihood method (LM) is somewhat different.

Assume that the process on the aperture consists of a desired signal from

direction u0  and interference. Assume further that the signal and

interference are uncorrelated. The expected power output of the array using

weighting vector w is

P, AiWH2  A w

where R - RI + P v(u o) vH (u ) is the covariance matrix of the process. The
constraint Hvv(u o ) - I fixes the output power due to the desired signal.

Minimizing the interference power output is thus equivalent to minimizing the

total power output. The minimizing weighting vector is

R- v(u)
IN 0o  - 0)1

and the expected output power is

P(u 0) - 1 (3.1)H -IX(u 0)R v(u 0)

This quantity is computed as a function of uo and the locations of its peaks

(exceeding a threshold) are the estimates of the source directions.

A third choice for the weight constraint is ___ - 1. This fixes the

thermal noise output power of the array. The minimizing weighting vector in

(this case satisfies the equation
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Rw Xw

This eigenvalue problem has M solutions, M being the number of array elements

and consequently the dimension of R. The M solution vectors are mutually

orthogonal and their associated eigenvalues Xm are real. The desired solution

is the eigenvector corresponding to the minimum eigenvalue. In general, this

solution is not unique. It can be shown [101 that if I < K emitters are

present, A has I "signal" eigenvectors with relatively large eigenvalues and

M-I "noise" eigenvectors with a common minimum eigenvalue. Any one of these

noise eigenvec~ors is a valid solution to the minimization problem.

If the signal-in-space covariance matrix P is non-singular, it can be

shown that the signal vector% v(ui), i - 1, . . . I and the "signal"

eigenvectors span the same I-dimensional subspace, which is orthogonal to the

(M-I)-dimensional subspace spanned by the "noise" eigenvectors w . It follows

that the adapted array patterns w Hv(u) all have nulls in each of the signal

directions. When the covariance matrix is perfectly known, these are true,

rather than asymptotic, nulls.

The array pattern generated by a particular "noise" eigenvector will, in

general, have extraneous nulls. However, the only nulls common to all of the

"noise" eigenvector patterns are those corresponding to source directions.

This is true because if v(u) is orthogonal to all the "noise" eigenvectors, it

must lie in the signal subspace, which is spanned by the source direction

vectors v(ul), • . ., v(ui). But v(u) is linearly independent of these

vectors unless u is one of the source directions*. The appropriate function

to examine for nulls is thus

M-I 2
1-i Hw'v(u)j

m-i

*If the direction vectors are not linearly independent, extraneous nulls will

exist.
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for which all nulls correspond to source directions. This technique is called

MUSIC (multiple signal classification) f10j.

As the signal-to-noise ratio* becomes large, it was shown in 131 that

-1 H

where

EN - I' 22'"" -M I]

is a matrix whose columns are noise eigenvectors. The ML4 method seeks the

maxima of (3.1), or equivalently the minima of

vH(u) R71 v(u) IEH v(u)l 2 2 I 2(u)12

lN -(~ m 1 1~ v~)

Thus, MLM is asymptotically (high S/N) equivalent to MUSIC and has no

extraneous nulls. At lower S/N, however, extraneous nulls may be

encountered. Tb 4 s is also true for the linear prediction method.

To reject whatever extraneous nulls exist, an estimate of the power

received from each candidate source direction is made. Those that fall below

a threshold are eliminated. The power estimate is obtained by solving the

matrix equation

R - V P + 2I

for the signal-in-space covariance matrix P, with the result

(-v CR- 2 1) v+H

Definel as the ratio of the smallest non-zero eigenvalue of P to the noise
power a
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where V+  (VHV) VH is the pseudo-inverse of the matrix t of (candidate)

direction vectors V. An estimate of the noise power level is required.

The rational for the adaptive methods collapses when the signal sources

are coherent, i.e., when the signal-in-space covariance matrix P is

singular. The adapted array pattern no longer has nulls in the directions of

all sources. The reason is that the component of array output power due to a

combination of coherent sources can be reduced to zero by cancellation, i.e.,

by combining them with appropriate complex weights. These weights are the

values of the adapted pattern at the directions of the coherent sources.

A technique known as "spatial averaging" (31 has been shown to be

effective in locating coherent sources with a uniform linear array. At

present, no such method is known for unequally spaced linear arrays.

Extension of other high resolution spectral estimation techniques such as

maximum entropy, AR, and ARMA modeling, etc., to unequally spaced linear

and/or two-dimensional arrays is the subject of much recent research [11,

121. We plan to study and evaluate some of these algorithms during the coming

year.

B. Array Geometry

The use of unequally spaced, small linear arrays is motivated primarily

by the desire to avoid the grating lobes which result from uniform element

spacing*. Elements spaced uniformly d wavelengths apart can determine the
direction u - sire of a source only modulo L. This results from the fact that

d
phase can only be determined modulo 2w and consequently sources at any two of

the directions un = sin o * n A produce identical amplitude and phase patterns

at the array elements. This is no longer true when the spacing is irregular.
I

t Here again, we assume that the candidate direction vectors are linearly

independent (i.e, the direction matrix V has full rank).

Unequal spacing is also used as a form of tapering in large arrays, but these
are not of interest to us.
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An undesirable effect of unequal spacing is an increase in sidelobe

level. Figure 3.1 shows the spacing of the four-element, 12.1A QUICK LOOK

array. Figure 3.2 shows the corresponding array factor (uniform weighting).

While there are no perfect grating lobes, there are several extremely high

sidelobes. The performance bounds obtained in Section II show that the

sidelobes of the array factor are very important in determining the direction-

finding capability of an array.

C. Linear Dependence of the Direction Vectors and Array Ambiguities

The study of the Ziv-Zakai bound leads one to the conclusion that when

direction vectors are nearly linearly dependent, estimation accuracy

suffers. In this section, the consequences of linear dependence are

discussed, and a way of testing an array for this condition is proposed.

Suppose there exists some set of K direction vectors which are linearly

dependent, i.e., there exist complex constants ok such that

K

k aky(uk) - 0k-I

This means that the array is completely blind to this particular distribution

of sources. Of course, the proper combination of complex amplitudes is

required in order to get complete cancellation; if the sources are incoherent,

this situation would not persist over multiple snapshots. However, since any

one of the signals can be expressed as a linear combination of K-I others, a

distribution of K sources with arbitrary amplitudes cannot be distinguished

from any one of K distributions of K-1 sources.

A simple example of this is a uniform linear array with element spacing

. Such an array has grating lobes at u--il. A signal arriving from direction

u is indistinguishable from one arriving from directions u*l (one of which is

in "visible space"). These signals are linearly dependent. An estimator

faced with this situation (and no a priori information) can do no better than

to choose one of the two possible directions at random. The result is a large

mean squared estimation error.
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It can be shown that for equally spaced linear arrays without grating

4 lobes, every set of distinct direction vectors is linearly Independent. This

result does not extend to nonequally spaced arrays. The following argument

shows why.

Consider an M-element equally spaced linear array Illuminated by LM

sources equally spaced in angle in the unit circle, i.e.,

d L, I - 1, ..L. The response of array element m to source I is

at

4where a is the complex amplitude of source 1. The response of element m to

all sources is

L L U'

27
Assume at 1 . Since e L is an Lth root of unity, it follows that

0 m*O modL

xm L m-O mod L

If the elements whose indices are 0 mod L are removed from the array, the

remaining elements all have zero response, and the source distribution cannot

be detected. This is just another way of saying that there exists a linear

combination of direction vectors (sources) which is identically zero. The

elements to be removed can be varied by adjusting the relative phases of the

sources.

In order to cause problems, the linearly dependent source directions must
), L-I

all be in "visible space". The L sources span an interval in u of I --

this length must be less than 2 if all sources are to be in visible space.

Thus If the element spacing of the array satisfies d) . (-{) ambiguity

problems will occur.
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As a simple example, consider a five element array with spacing d=6 ,

A2* and three sources at u-0, * * The phase shift per element across the array

is 0, *120" respectively for the three sources. Figure 3.3 shows how the

complex amplitudes of the sources add up at each array element when they are

in phase at the center element. When the center element is missing, the array

cannot distinguish between one signal at broadside and two signals of the same

amplitude at u-* 2 both having 180* relative phase.3
More generally, since for ul-0, u2- e-j 2w 3 , u- e.j 2w/3

Y + -0

any combination of three sources from these three directions

+ by +

cannot be distinguished from pairs of sources

(a-c)yj + (b-c)y2

or (a-b).4 + (c-b)_3

or (b-a)y2 + (c-a)._3 .

If no information about the sgnal-in-space covariance matrix P Is

available, these ambiguities are fundamental; there is no way to determine the

true source directions. However, if the signals are known a priori to be

incoherent (diagonal P matrix) the true source directions can be determined.

The reason is that only one of the possible configurations of sources will

yield a diagonal P matrix.

An algorithm incorporating this feature is currently under investigation.

Testing for Linear Dependence

A set of vectors y4, y2, " is linearly dependent if and only If the
matrix G.VUV [.Z 12 "'" R [- 1 2 '" is singular, i.e., if Iv vl-0.
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The test for linear dependence is simply to evaluate, the determinant as a

function of the direction parameters u and look for zeros. Since cIVHVIcl, *

an equivalent procedure is to look for peaks of 1- IVHVJ. For arrays of

isotropic elements and k-2 signals, this function is simply the magnitude of

the normalized array pattern, and the peaks represent grating lobes.

For k-3 signals on an isotropic array, w have

[ 1 f(u2 -u f(u 3 -u 1 )
IvJAIi. f*(u 2-u ) I f(u3 -u2 )

*(u3"-u) f (u 3 -u 2 ) 1 2

where f(u) eJ mu is the array pattern. This is a function of
M-1

two independent variables, x-u2-ul, and Y-u3-u2 . Thus

G(xy) - If(x) I2+lf(y)1 2+If(x+y) 12-2Relf(x)f(y)f*(x+y)f

Without loss of generality, we may assume u I<u 2(u 3 , which implies x, y >

0. We are only interested in source distributions which are entirely in

"visible space", i.e., u3 - u1 m x"y'2. Thus the region of interest becomes

Okyc 2-x), 0Cx<2. Furthermore, it follows immediately from the relation f(-u)

f *(u) that G(y,x) - G(x,y). We plot it over the entire region for esthetic

reasons.

Figure 3.4 shows a contour plot of the function G(x,y) over this region

for the expurgated linear array of Fig. 3.3 with element spacing X/2. The

contours go from 0.5 to 1 in steps of 0.05. For any linear array, the

direction vectors are dependent when two of the directions are equal. This

creates ridges of ambiguity along the lines u2-ul=o and u3-u2-0, the left side

This assumes an ideal array whose direction vectors satisfy v(u)v(u)-1.
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and t' om of the triangle. Also, for linear arrays (expurgated or not) whose

element spacings are multiples of 1/2, there is a ridge of ambiguity along the

hypotenuse of the triangle, which corresponds to u 3 mul+2. The plot shows

there is also ambiguity at x-y-2/3 which corresponds to the source

distribution previously discussed.

The corresponding plot for the unexpurgated array is shown in Fig. 3.5.

As expected, the ambiguity at x-y-2/3 has disappeared.

Somewhat more interesting results are obtained for the QUICK LOOK

array. Figure 3.6 is an ambiguity plot for this array. The contour levels

begin at 0.7 and go upward in steps of 0.05. The contours of high ambiguity

are predominantly straight lines, either horizontal (constant u 3 - u2) ,

vertical (constant u2 - u1), or sloping downward to the right (constant u3 -

u1 ). Close examination shows that the peaks (excluding those along the line

u3 - u2 - 0) never reach unity. The largest peak, located at u2-u1 m u3-u2 -

0.33038, has value 0.99990.

The nature of Fig. 3.6 can be largely explained on the basis of the array

pattern. This pattern is shown in Fig. 3.7 with the locations and values of

the 9 largest sidelobes shown. Lines representing the sidelobe separations

have been drawn on the figure. The ridges of high ambiguity follow these

lines and their intersections produce the largest peaks. For example, there

is a peak value of 0.997 at u2-ul-1 .65, u3-u2 =0.33. This corresponds to ui--

1.65, u2-0, u3-0.33; signals in the main lobe and two large sidelobes.

The ridges represent near linear dependence between two direction

vectors. At their intersections all three vectors are nearly equal. In

addition, there are additional peaks, such as the one at u2-ulMu 3-u2 -0.67,

where a linear combination of the three vectors in nearly zero, but no linear

combination of two is.

To predict the location of these near ambiguities note that the QUICK

LOOK array spacing is nearly 3, 2.5, 6.5A. This is an expurgated linear array

with 0.5 and element spacing 6, 5, 13 d. Suitably phased equal
d 1

amplitude sources at f u-0, .1 produce outputs on the array at element

. numbers 3k+1, none of which are present; consequently, these direction vectors
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are linearly dependent. Although certainly not obvious at the outset, an
ambiguity also exists for d u , viz.

- (+e j /3) + eil/3 (e-1/ -0

The array is also nearly 3, 2.4, 6.6X, which is an expurgated linear

array with -0.6 and element spacing 5, 4, ld. Sources at u-0,A 1 A 12 pouezr nu. A

f (+i), +m (-.m) for any integers I , m will produce zero input. An

example that falls within the region plotted is u2-ul-u3-u2 - 5/9.

A third approximation to the array is 3.3, 2.2, 6.6X, with d/X - 1.1 and

spacing 3, 2, 6d. This produces ambiguities at u2 l-ufU 3-u2 0.303, 0.606,

0.909 at u2 -Ul-l.212, u2-ul-l.212, u3 -u2-0.
303 , and perhaps elsewhere.

Since these are oniy approximations to the QUICK LOOK array, its

ambiguities are not perfect. However, all produce ambiguity peaks which

exceed 0.95.

The fact that the ambiguities of the array are not perfect means that at

sufficiently high S/N ratio, the correct source distribution can be

determined. However, in near ambiguous situations, the required S/N can be

very large. This can be shown via the Ziv-Zakai bound for two signals (see

Appendix VII).

Array ambiguities involving more than three directions also exist. For N

directions, the quantity to be examined is a function of N-1 variables, and

finding the peaks is a much more laborious process. For this reason, we con-

fine our attention to ambiguities involving only three directions.

This study of linear dependence of direction vectors has led to the

following conclusions for unequally spaced arrays.
1. Ambiguous source distributions involving combinations of

two or more sources exist for expurgated linear arrays.

2. For ore general unequally spaced arrays, these
ambiguities are usually not perfect. However, the
threshold signal-to-noise ratio necessary to resolve them
can be quite large.
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IV. QUICK LOOK Performance Simulation

A. One Emitter

QUICK LOOK performance was evaluated first for the case of a single

emitter. Theory predicts and simulations confirm that at high S/N ratio, the

maximum likelihood estimate of u - sinO is asymptotically efficient, i.e.,

approaches the Cramer-Rao bound, and thus is the best possible (unbiased)

estimate. The ML estimate is just the value of u for which the steered array

output

x
z m m

~I z
m'1 m

is a maximum. This is referred to here as beamsum processing.

Current QUICK LOOK processing, which assumes only one emitter is present,

uses only phase differences between three pairs of elements. This processing

was also simulated. A correction to the algorithm, detailed in Appendix D,

was found to be necessary in order to get correct results for emitters near

end fire.

Figure 4.1 shows simulation results for beamsum processing for emitters

at u - 0, 0.5, .855, .995 (9 - 0, 30, 60, 840). The RMS error in

beamwidths * is plotted vs. array signal-to-noise ratio for each case. Also

shown for comparison is the single emitter Cramer-Rao bound. The threshold

SNR, where the error increases abruptly, depends on the emitter direction.

This is due to the nature of the array pattern of the QUICK LOOK array (Fig.

3.7), as we now show.

*Beamwdth 1-1
Beamldth is defined to be M L where M is the number of array elements and

L is the array length.
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Beamsum processing scans the beam over all of "visible space," i.e., from

u - -1 to u - 1, and takes the direction of maximum response as the emitter

direction. When the emitter is at broadside (0°). the result of the scan is a

noisy version of the array pattern from u - -1 to u - I (the array pattern is

symmetric abut u - 0). The largest sidelobe in this interval is 0.88535 at u

= *0.33. When the SNP. drops sufficiently so that these three peaks can be

confused, the direction-finding error starts to increase abruptly. When the

emitter is at 30, the region of interest is u - -1.5 to u - 0.5. Since the

largest sidelobe is unchanged, the threshold SNR remains nearly the same.

With an emitter at 60, however, the region of interest is u - -1.866 to u -

0.134, and the largest sidelobe is 0.95467 at u - -0.784. The threshold SNR

should, therefore, increase by about (1-0.88636)2/(I-0.95467)2 or about 8

dB. An emitter at 848 brings an even larger sidelobe with height 0.96962 into

the visible region. The resulting change in threshold SNR should be about 3.5

dB. These predictions are in reasonable agreement with the simulation

results.

The ZZ worst-case bound (2.33) does a reasonable job of predicting the

threshold SNR. Figure 4.2 shows again the simulation results for beamsum

processing with a single emitter at 0* or at 60, together with the

appropriate ZZ bound. For example, when the emitter is at 60, the

appropriate ZZ bound is the worst-case value taken over u - -1.866 to u =

0.134.

The QUICK LOOK processing algorithm is not a pure estimator but combines

estimation and detection (see Appendix VIII). When phase ambiguity resolution

fails, the algorithm rejects the data and makes no estimation of direction.

At low S/N (< 10 dB), only about 20% of the trials result in estimates. Such

"edited" estimates are not subject to the performance bounds discussed

previously, except in the limit of large S/N.

For this reason, the QUICK LOOK algorithm was modified for purposes of

comparison with other pure estimators and bounds. When ambiguity resolution

fails, the modified algorithm chooses a random number between -1 and 1 for the

emitter direction u. Simulation results for this modified algorithm are shown
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in Fig. 4.3 together with the CR bound. At high SNR, the algorithm achieves

the CR bound; its threshold SNR is somewhat higher, particularly for emitters

near broadside.

The most important conclusions to be drawn from the simulations are:

(1) Beamsum processing offers little improvement in the
single-emitter case. The (modified) QUICK LOOK algorithm
is essentially optimum.

(2) Ziv-Zakai bounds can be used to determine a bound on
threshold SIN for estimating the direction of arrival of
a single signal.

B. Two Emitters

Two emitter CR bounds on the standard deviation of the angular error are

shown as functions of emitter separation in Fig. 4.4. Plotted are the bounds

for a Gaussian signal model and for a deterministic signal model with best and

worst case phase relationships. The received signals have equal power (20 dB

array SIN) and 100 observations are available. In the deterministic model,

the phase difference between the signals is a critical parameter. The

difference in performance between best and worst case phase conditions is

often appreciable. However, it was pointed out in section II.l.E that when

multiple observations are available and the signal phases are random, the

correlation between the directional errors will be small and the deterministic

and Gaussian signal models yield similar bounds on performance. For these

reasons, the Gaussian signal model was used in the simulation.

In the single emitter simulation, the maximum likelihood (ML) algorithm

(beamsum) was used. For the two-emitter simulation, the MUSIC algorithm [101

was used.

Figure 4.5 shows the results for signal separations greater than 1

beamwidth. Each point represents the standard deviation in the angle error

for a particular emitter after 100 Monte Carlo trials. Two emitters of equal

More precisely, the standard deviation of the error in u * sin 0.
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power comprised the simulated signal, so two points were produced for each set

of 100 trials. Signal separations of 0.1 to 0.5 in u - sir, and S/N ratios

of 10 to 40 dB were simulated. Shown also are the CR bounds (Gaussian signal

model). The agreement is very good, indicating that the MUSIC algorithm

achieves nearly optimal performance for signal separations in excess of 1

beamwidth.

Fig. 4.6 shows results for signal separations of 0.05, 0.1, 0.2, 0.4, and

0.8 beamwidths. A breakdown in estimation accuracy occurs as the emitters come

closer together in angle. The mechanism is that the emitters are no longer

resolved; they produce only one peak in the spectrum. Consequently a spurious

peak is accepted and its angle estimate assigned to one of the two emitters,

causing a large RMS error. A similar effect was noted in [31 where a two

emitter simulation was run using the MUSIC algorithm and a uniform linear

array.

In the absence of a Ziv-Zakai bound for the two emitter case, it is not

possible to say on the basis of the present results whether or not the

resolution performance of QUICK LOOK can be improved by the choice of a

different high resolution algorithm. Simulations using other algorithms are

now being conducted to resolve this question.
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V. Summary

The problem of evaluating the emitter location capability of arrays has

been addressed by studying Cramer-Rao and Ziv-Zakai bounds on angle estimation

accuracy. These bounds are useful for two reasons:

1. They provide a standard against which angle estimation algorithms can

be judged.

2. They permit comparisons of various array geometries which are

algorithm-independent.

Although not leading directly to an analytical theory of optimum array

geometries, the study clarified the notion of array ambiguities in

noauniformly spaced linear arrays and revealed a method for finding them. A

power estimation technique for resolving these ambiguities when the signals

are incoherent is now being tested.

The study also showed the connection between high array sidelobes and the

threshold signal-to-noise ratio required to locate one emitter. When one

sidelobe is dominant, threshold S/N is directly related to the height of the

sidelobe; this becomes less true if multiple sidelobes of roughly equal height

are present. Nevertheless, a useful rule of thumb for reducing the required

S/N is to minimize the maximum sidelobe of the array.

Special attention was devoted to simulating the performance of the QUICK

LOOK array. For a single emitter, QUICK LOOK processing was found to be

essentially optimum. For two emitters, the lack of an appropriate Ziv-Zakai

bound makes it difficult to say whether the breakdown in emitter resolution

capability is a property of the algorithm employed or a fundamental limitation

caused by the array geometry. This question is presently being resolved via

analysis and simulation.
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IAPPENDIX I

IMPROVED ZZ BOUND

Wax and Ziv [9) have improved the basic Ziv-Zakai bound by a factor of

two. Their derivation assumes that an estimate x of some parameter xel-A, Al

takes values in the finite, symmetric interval [-A, A] where A < A. The

result is then

I [e 2(a) + e2 (-a)J A 2 a2 P (-a, a)

a bound on the average mean squared error when the true values are x-a and x-

a. This is not as specialized a result as it appears to be at first glance.

Given any parameter x on a finite interval [A, BI and any two values
xl, x2 e[A, B, the linear transformation y - x 1 2 x -x maps x1

x 2 - x 2

into -a, x2 into a, where a - 2  . The new parameter y takes values on

the non-symetric interval [A - Xo, B-xo ]. We also use the transformation to

generate a new estimate y taking values in this same interval. The mean

squared error of the estimate is preserved under the transformation.

Now define a truncated estimate yt on the largest symmetric interval

contained in the mapping of [A, B1, namely 1-Y, Y1, where

Y - mIA - Ix0 , IB-x0I)

If y lies outside of this Interval, yt a *Y as appropriate. The mean squared

error of this truncated estimate will be smaller than that of y when the true

values are xl, x2. Thus,

1 2 2 e2.. e2
i" le2 (xI) + (x2)J " e .(a) + (-a)J

x x y y

1 *2 B.(x2_xl )2

I [ 2 (a) + e2. (-*)I w 2a
2P (-a, a)- 2 PE(xlX 2 )

Yt Yt Yt x

This shows that the result holds for any finite Interval, symmetric or not.
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APPENDIX II

PROBABILITY OF ERROR IN CHOOSING BETWEEN SIGNALS OF KNOWN COMPLEX AMPLITUDE

The contending hypotheses are:

H: z - p s(u) +

H 2  z - p 8(u 2) +

where p - Ae is the known complex amplitude,

I.(ui)I - 1

and is a complex Gaussian noise vector with zero mean and

E_ 0 , E F H-A

A decision rule is a division of the complex H-dimensional space a of all

possible observation vectors z into two parts, a, and a2. If the observation

falls in a,, choose HI; otherwise, H2 . The a priori probabilities of the two

hypotheses are P1 and P2.

The probability of error for this decision rule is

PE = P2Pr{E C a) 1H21 + P IPr( e a2IH1 }

W P2 P p(z1H2 )dz + P1  f p(zJH)d.
al a-a I

• PI +  f [P2P(zIH 2) - PIp(z1Hl)]d!
a 1

To minimize PE' assign zto a1 if and only if

1 p(zlH1 ) P2 p(z . 2 )
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An equivalent and more convenient form is

I -n )( I tuAnj tt~n p~z 1 ) -, p(z(H2) •t~

This is the vell-known likelihood ratio test. For the problem at hand,

J- I_! - p s(ui)12

12
P(IH) e - 1,2

P i IAI

and the likelihood ratio test becomes

x I 2Re jHA' + A' (!.H?>

x is a real Gaussian random variable with mean

a, a E(x(H1) -A (p-!1^ - 1

under H, and

- E(x1R 2) -ml

under H2 . The variance of x, which Is the same under either hypothesis, is

given by

a 2. E(4ke2( PC' H A -1 (a

= 2A2 1 2 - 21 2mL

75



The probability of error is

PE- P2Prlx 
>  XII)j + P 1Pr{x < II)H

1(X + m2 
(x -

2

2a2 X 2cy 2

S p 2  f e dx+P if e dxj

2w 2 o X 2 X)" 1 2

2 2

x x
O 2x 2 -+d

[P2 f e dx-P + ePdx

ax

m + X m

P P2erfc*( 1 ) + P1 erfc* a x

To get the tightest bound, we maximize this expression with respect to X.

Since

P 2 1 - I
P p PPI PI

we have

P1 - 1/(0 + e)

P2  i/Cl + e )

I m+ X1:- + I  erfc,

P .W,- erfc*( a ) + JE"+ x 1 + e x
7+e
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The derivative is

dPs 1 _+ A r 1-
d " 20 + cosh)) 1erfc,.. ) - eracCx x

(a l _ ),)2 (a + X)2

2r2' 2a 2
+ 1 1 • 1 •

+ [ e x - 1x:,V' 2"w ar I + •e'  1+ e-)

When the expressions for m, and ox are substituted into this expressionthe

second term vanishes and the derivative becomes

dP E I +  X 1 - )'P- 2(l + cos) 1erfc,( ) - erfcj I )]

X x

This is obviously zero when A - 0; furthermore, it is clearly always negative

for A > 0 and positive for X < 0. Thus, PE() has a single maximum at X 0,

(equal a priori probabilities) and

ml Ad
~x rE(),) - erfc 2x erfc, (- ) (Ad.1)

x vry

where d - III - !21 i- s the distance between the signals.

For multiple snapshots z, n-1, N the likelihood ratio test becomes

HI
x - 2 H- 1  -1 >0
X nt, [2Re(pn!. A (!. _)} + Ipn( !2.A,. -92 A F )I

If the total signal power is defined to be

: A 2-911 Pn 1

then the previous equations for the means and variance of x still apply and
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the result (II.I) is still valid. The only effect of altiple snapshots on

the bound is to increase the signal-to-noise ratio.

7
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APPENDIX III

ERROR PROBABILITY FOR CHOOSING BETWEEN SIGNALS WITH UNKNOWN PHASE

The contending hypotheses are

HI: Z - Ae s(u) +

H : z M Ae .(u +

where the statistics of I are as defined in Appendix II.

We use the result (II.1) of Appendix II, replacing t by _ e  , and

obtain immediately

PE erfc (Ad) (MII.1)%/2

where now

d2  Je'1 I,- e j 2 .-212-_ 1-e- 2
12 A-

There remains only the task of maximizing PE over the remaining free variable

B. To maximize PE' we minimize d2.

d2  ,-t- + Is 12 e. d- S
!.1A I 11AI .2

Obviously, this expression is minimized by making the last term as negative as

possible.

2 2 2 21 H-I

1 -Ei1 A-1 A 1 2
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When N snapshots Znl nlN are available the result is again (111.1)

where now

(Ad)2  AItS .ion 12

n=1 ni 12 A-

This is minimized term by term over the nuisance parameters Bn to get

(Ad)2  , A2 (1"12-+ I!2.1 2.2 2 s2 1)
(A) n A A--1A1

which is used in (I11.1).

4
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APPENDIX IV

MULTIPLE SIGNALS

The preceding analysis applies virtually unchanged to the multiple signal

problem. The hypotheses are

H :z -Ae v(u1 ) + i 2 Aie v(U+ V(u).2 +

H': z Ae v(u 1 ) + L e, e J001v(u'.) + ,V(u')p +

where u is a vector of angles of arrival and S is a vector of complex

amplitudes. Because of the multiplicity of parameters, we have changed

notation; the parameter values under the two hypotheses are now denoted by

unprimed and primed variables. Also, to avoid degeneracies caused by

reindexing of parameters, we specify that

u < u2  . . . < u1 and < u . . . < u'

Proceeding as before, we conclude that

Ad(p, p)
P .) E erfc,( )

where

d2 1 g . 2 b jy v- b-V
d ,IV P-V -1 III + 12b -ev1-112 b -

jy 2

I -eJ + v b - b I^_
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This is to be minimized with respect of y, b, b, and u1 , ui, i-2, 1 . I *

Define

W -A/2[

_Ta- -bT. VT)

A! -1"/2  (v I e v -I )

so that

' d 2  = s l _ a 2

which is minimized by choosing a = ±4 .

d2 . I(,- W)s.2  1 (1 - W+) AW'1/2 ( - ay v_)( 2

2~w! -erwI 2 I!112 + t -

min d- fall Y1 2~ 112jH,.

IM _ l- Iq 1)2 + 2"Il I1 Y.- ,j

The vectors y4, -j are the components of A'1/2 v4,A/2.v, respectively, which

are orthogonal to the space spanned by the columns of W. The distance d is a

function of the 21 directions of arrival ul, . . . ul, uf, . . . uJ.

Maximization over these variables must be done numerically and requires a fine

sampling grid. This appears to be impractical for more than one signal.

Without thU ordering restriction on the us, d can be made zero by setting

u2 uj, b2 -e . , ul-ul, bi-1. This a.ounts to a reindexing of parameters.
Note also that AlmA1 in accordance with the discussion in Section 11.2.3.

-"8"
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APPENDIX V

PROBABILITY OF ERROR IN CHOOSING BETWEEN TWO GAUSSIAN SIGNALS

The contending hypotheses are

1 n - p,(u 1 ) +

n-1, . . . N

H2 : P . V(u - 2 ;-n

where F is the usual complex Gaussian noise vector with zero mean and

covariance matrix Ao, and Pn is a complex Gaussian random variable with

statistics

2 * ,E 2
E(p) E(p n) 0, lp - HP

The observations z are therefore zero mean complex Gaussian random

vectors whose covariance matrix depends on which hypothesis is true.

E(z z H) - Ai A + M!i v

The log likelihood ratio is

INN nH -1 -1P
-In -#Pr(.- " "N/In T 21- + I In (A 2  - I ) z n tn

2 "!tH2 na i F2i

We assume that A0 is positive definite so that 4/; A-1 2 exist. Then

l I ) o IA4.(I 0 HP1 0111 + MP 4 i

where - A lyv. The second determinant on the right is readily evaluated
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by enumerating Its eigenvectors and eigenvalues, with the result

JAil - (1 + Wti) 1^Ao

For brevity, we define qj HP .

The inverse A-1 is evaluated using Schur's formula.

i 0 lq ii 0

Using these results reduces the log likelihood ratio to

I - N In (1 + q2 )- N In (1 + qj) + nP,- I 2

MP I -112 12 1P 1 A
1 + q, 24 I 'oA 2 ,l - 1+ q2  E2 o

Define the complex Gaussian random vectors

[1+ q 1 /2vf H '2

+ q2 /2J

and the 2 x 2 matrix

! 0

The likelihood ratio test can then be written in the simple form

u1+ q,2 P I H 1
x Jx + NIn ++ n -  >1 0

S--2 2
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i

The first term is just the difference of two chi-squared variates i-h 2N

l degrees of freedom. If the two components of 7. were uncorrelated (and

therefore statistically independent), then the chi-squared variates would also

be independent and the probability of error could be calculated as shown in

Appendix VI. Since this is not the case, we seek a linear transformation T of
_n which will give independent components while preserving the simplicity of

the decision region.

We first compute the covariance matrix of E. under each hypothesis. The

results are

E ([ /H 1 + q 2 12 1 C 12

Hermitian 1+qL + q

q+ 1q 121 2  1 + q2 / 1

Hermitian q+ 2

where q12 m M .
Define the transformed vector.

The covariance matrix of 7 under H, is

[ c l 21 e a* l ) +  2 * " * * * 1:

Z( /H1 . ic1 c22  c11b +c12c +C ab +C22ac'Lzo'L' [c 2e-"a n lo i, 1 1+2R.(c 12bc*)+1 c1 2c2j
2 2
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while the test statistic t " J~n becomes

H [ Icl -b t - ctea sttsi ja 2 a 's

t=Ic-ebl2  b - ca 1el

To preserve the form of the test statistic as a difference of chi-squared

variates, we must choose b-ca*, The test statistic then becomes

t I H [10 - 2]
2' 0  1lC,2

We may as well choose c-i so that

t H (V.1)j- a12 ZUn Z(.)

With these choices, the covariance 'matrix under HI becomes

[ *2 * 2+ cI 2 C12c11+2Re(a c12 )+Ial c22  c12(a + a +-_- )J

H e 212 c12
) Hermitian 

lal 2 cll + 2Re(a c12) + c22

The off-diagonal elements are made zero by choosing

12
s - (l 1- lx2 ) (V.2)

where

2 c12  2 [(1+ql)(1+q 2 )I/2q 1 2

c11+C2 2  q1+ q2+ qlq2 + Iq1212
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and the covariance matrix becomes

S+q2 
q2  lq 1 21

2I

- q1 +2( -1 )12 Re(a q 1 2 ) + lal 0

E(lH - 2 1+q 2  2lal _.. I I/q2 + 1qIjZ.
0 Jai q,+ 2(  2Re(a q12) + I + q2

A similar exercise under H2 leads to the same expression for A, showing

that the transformation works regardless of which hypothesis is true. The

covariance under H2 is

i2

2 1+q 2 * q +  Iq 1(21

0 q2 + 2( 1--l-Re(a q12) + I + q 1 0 q j
0 q[ + 2( 1 + q )/2 Re(a q12) + jai2  1  + qcii I V.4

We have not yet chosen a sign in the expression (V.2) for a. Since any

covariance matrix is nonnegative definite, we have Ic 1 2 (_ c11c22 , and so

21c 12 1 2'/cI I 2 2  (J - V'-2

1 - - 11 _/c22)
JAI1+ c22 C11 + c22 c1 1+ c2 2

so that JAI 1. From a right triangle with hypotenuse 1 and side IxI we have

JAI > I AT -

which shows that Ja j 1 provided we choose the negative sign in (V.2). This

in turn means that the factor 1 - Ja1 2 is nonnegative, and so the algebraic

sign of the test statistic (V.1) is preserved.
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We can now compute the probability of error for the test. It is

PE = PI Pr{t < 6/H 1 } + (1-PI)Pr{t > 8/H 2
where

+qN P2

6 - N In =- + In

and 1+q2 P1

Pr(t < S/H I) - Pr( lynl 2 < Y lYn2I 2 + (I - al 2)S)

is computed using the results of Appendix VI. The variances of Yn1 and Yn2

are obtained from (V.3) under H1 , and from (V.4) under H2.

The probability of error is, of course, a function of the a priori

probability P1 that H, is true. To get the tightest Ziv-Zakai bound we must

choose PI to maximize P.. We now show that if the noise is white (A0  2I),

PI - 1/2 is the appropriate choice.

When Ao = a2I, we have

MPA H v(u
2 ' - 2  p 12 v(u1) - 2

and the covariance matrices become

H 1-P IH 2

1+2Re(a H + la28 1 0

-P .1+-12) + ja
E(V0ya/H)+2Re(aVlV 2) (V.5)

'I

0 + 2Re(a VV 2) + e + 1 O-Y j +)

E( H /H2) P 11 + 2 (V.6)
2 1 + P1 H_ 2

laI' 2ke(a* "V1v 2) + I +
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We observe that the variates Yn1 1 Yn2 simply change their statistical

identities under an hypothesis change. Thus U - ylYnll 2 , V - ItYn2I2 also

reverse roles. It follows that in any conditional probability expression

involving these variable, we can change hypotheses by interchanging U and V,

e.g.

Pr(U > V + 6/H ) - Pr(V > U + 6/H2 )

Since for white noise q, q2 ' it follows that

En 
1-P1

PI

It will be convenient to minimize PE with respect to 6 rather than PI" Thus

1l+e I

Il+e

The probability of error is

+ -fl Pr{U ) V + b6/H2 }P E (6) - 1 6 PrfU < V + bWH 1} + l rU +e/H2

l+e 1+e

where for brevity we have put b - 1 - Ja1 2. We first show that PEis a

symmetric function of S.

P (-- Pr{U < V b6/HI + ' Pr{U > V - b6/H)
1+e- I+e2

|1 1
Pr{U > V + b6/H 2) + 6 PrfU < V + b6/H I } I PE ()l~+e''  1+e

This result, as well as those to follow, uses the fact that the

distribution function of U-V is continuous, so that the distinction between <,

< can be ignored.
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F The derivative of Pi In

dP3  1
(-p[r(U > v + ba / 21 - Pru U -cv + b/Ali)!I

(V.7)

- ~ + bf& I Pr{U -V + b6/R I  1e 6 P( V + WEH)

It is readily verified that this expression vanishes when 8 - 0, and that

P (O) - Pr{U C V/H)I Furtheruore, when 6 > 0, the first bracket in (V.7) is negative. We now show

that the second bracket is also negative.

The pdf of U under H, to

U

and similarly for V. Define for brevity

2
U V 0V bfx -. , -- ., - c. o-

the variances being those under N1 given by (V.5). Note that

- v - (I- l5 2  eI U 0

2 22 14p
sinc mar 1, orv 2  D 1 and therefore 0 v rt 1.

0 T

.... , . M -7m
th va ie bin ths une I B ... , given (V5) Not tha



Then

Pr(U - V + b8/l 1 } -J pV(v)pg(v+bS)dv1. 0
0 r+]1.1 c-c r*

( W) 2N-C) 11 1 * dy
2*(0N-1) ) r o

and

pr(U WV + b/R 2) mprfV U+ b/H 1)

' Pu(u)Pv(u+bg)du
0

r+1l

= 2 x (X+c) e dx

, -r
0 - Pr{U- V + bd/Rl1

-c+ 
-c

The second term can then be written as constant a •-  -1),

ii which 1 negative for w > 0, r<l. l4-

We have shown that the derivative of PS vanishes at 8-0 and Is negative

for >0. It follow from the symetry of P3 that its unique maximum occurs at

a 00(p, .
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AfMIDII VI

PICOBILITY THAT TU DIW3um or Iwo Y.2 vazc a mtu A ]i O

Let u and v be X2 variates with 2B degrees of freedom, having variances

(per degree of freedom) a!, a2 respectively. The pdf of u is

u
v2

1 N-1 2a u
p (u) - 0 u 0 (VI.I1)

i •Then for 8 > 0

T* a
Pr(u > v + 8) - p(v) p(u)dudv (VI.2)

0 v4d

Using (Vl.l) end (Vl.2), we obtain

Fr(u > v +8) - 2 7 vN-ie7" !-'."du, (VI.3)
((N-i)!) o rV+c

A, 2
aY v

where r , e . Using the result
a 2*

U U

N-1-u -au 0 e"uc - (N-I)I -"i" (VIA4)

a n-O

in (VI.3), it expand (rv+c)n in a binomial series, ass (VI.A) again, change a

summtion index, and obtain eventually (still for 6 > 0)

Pr(u > V + 8) - I ( a r" I -. ) (VI.5)
W-O ( ) +  wo

which is the desired result.

If 8 < 0, (VI.5) cam be used to get the desired results

?r(u > v + 6) - ?(v <U - 8) 1 - lr(v > U-)
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The last probability can be computed from (V1.5) since -4 > 0.
when 8 - 0, this reduces to

Pr(u> V)i1___
Eno (3l+r),'

which can be put In more coavenient form.

)p ( L )r
(1+0) U-0

Expand the last factor In a binomial series.

1 N+u-1 3- 31- -1-u-u

(14r0 m'0n-

Interchange the order of su stiou

Pr(u > r) - 1 I- 3 i -- 3 1 3ui
(10 U-0 wo

Replace n by 3-1-u

Pr~u> V) (l+r)2- U10 umsO a 100

Finally, using an identity involving binomial coefficients (Feller [13),

p.62), we obtain

Pr~u > -1 21-1 rn 1 2N6-1-n

n-0

This Is just the probability of loe than 3 successes In 21-1 trials with

probability of success (TL - This form has been given Previously by
K.elly (141.
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APPiIIX VI1

LIU3M DBDSUI AM TU ZZIY-ZAKAI DO=D

A development of the Ziv-Zakai bound on accuracy in etimsting direction

ul In the preence of ultiple signals is given In AppendixV. It Is shown

that the probability of error Is

1PE - arfejA

where, for two signals,
2

d 2 (1i w)-1

1/2 [v(u 1) -eJLyv(uo)] ;(uu) -e; (UJ)

V - ^~/ v(u2) , v(u) & [;(u2). ;(u)

The vector (I- W+) is just the component of .i orthogonal to the subepace

spanned by the colums of V. Suppose that ;~l(), ;(u 2 ), -(u 3 ) are linearly

dependent direction vector* and set uj - u2 , uj -u 3 . Then ft Is a linear

combination of the columns of V and so dw0. This leads to the two-point bound

2
1 2 (u -u 2 )-go(u, ,A) + e (u2 ,A) j

since Pe W . e are assured that the error at either uI or u2 (whichever Is

worse) exceeds the bound, no matter how large the signal-to-noise ratio my

be.

Suppose ls"ed that u,), (u ), ;(u 3 ) are "al..t" linarl dende
in the sense that the determinant IYnI is nearly zero. The component of a,

Sine -A and A % is nouisagular, the '%' are linearly independent If

and only f the _ are.

94



or equivalently , orthogonal to the space spanned by m2' equaed

length

d 2 " I - -2-3 2

-m-in v subject to e--

where eR - (1, 0, 0). The solution to this familiar problem is

2 1
td

where (:nv2  v3). The denominator is a measure of the linear dependence of

a2 and v3 , which does not affect the accuracy of estimating uI .

A contour plot of 1- d2 as a function of u2 - ul and u3 - u2 for the

QUICK LOOK array Is shown In Fig. VII.1 Since d is not symstrIc in these

two variables, the entire region 0C u3 - u2  2 -(u 2 - )< 2 met be

plotted. The result is very similar to a contour plot of jI | (Fig. 3.6)

except that the horizontal ridges which represent near linear dependence of.12

and , are missing. This Is due to the denominator factor. If we compute d2

for estimating u3 , the vertical ridges disappear; for u2, the slanting

ridges. Since we are ultimately interested in all three accuracies, the

Gramian determinant JVY is most appropriate.

Since d > 0, Increasing S/N ratio will eventually make P1  small.

Comparing two situations, one with minimum distance dj, the other with minimum

distance d2 , the second will require 20 log d2/d1 dB additional SIN ratio for

equal accuracy.

We have shown that when 1 is nearly a linear combination of

A W2 and 1 3  the Ziv-Zakai bound predicts large estimation errors in trying to

distinguish between a pair of signals from directions ul, u2 and a pair from

u2, u30

For white noise, i.e., Ao- 021.
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APPENDIX VIII
QUICK LOOK PIOCESSING NODIFICATION

Phase differences are measured over baselines of 2.5, 5,5, and 12,1

wavelength. (at the highest operating frequency fh )  W ithout noise, an

emitter at frequency f and direction u will produce the results

25= 2.5 fr u -M

, * 5 .5 " 5 .5 f r u -N vi x t
+'5.5 iS fru

S12o! - 12.1 f u - L

where the phases are expressed in cycles (i.e., fractions of a couplete

revolution), fr is the frequency ratio f/fH and L, M, N are integers. From

these, ue derive

j i'2.5 + - *5. 5 5
# ++NT

05.5 + N 12.1+ L - ,

or

1 .2 - 5 5.5 5N- 11 M I1
(VIII.2)

11* 5*5 - 3 412.1 " 5L - N1 N - 12

In reality, of course, the quantities on the left-hand side will not be

intewirs because of noise and interference. However, If these effects are

small, they will be nearly integers, and by rounding them to the nearest

integers, correct results will be obtained. As the interference beeoms

larger, the rounded values will be incorrect. Since 5 and 11 are relatively

prime, equations (VIII.2) always have a solution, i.e., for any Integers I1,
12, there exist Integers L, K, N such that the equations are satisfied,

Howver, nost such solutions can be discarded as physically Impossible. Siuem

-1 C u 4 1, the first equation (VIII.1) Implies

-2.5 fr 1 # + N C2.5 fr "
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Since

we have

-2.5 f -I -2a5 fr - C N 2.5 f < 2.5 fr

Since N is an integer,

-12.5 f I c X < [2.5 fr1

r r
-[5.5 fr N • (5.5 fr (VIIIh3)

-[12.1 f I L( (12.1 f

r: r

where Ix] denotes the largest integer < x.

Solutions which do not satisfy these constraints can be discarded.

The equations (VII[h1) are solved as follows: the first equation Is

solved for N modulo 11. Since 11M - 0 mod 11, SN - I -10 I1 mod 11, so

NI _ -21 md II (VIII.4)

A similar procedure applied to the second equation yields

P2 =- 2 modS 
(VI.5)

The physical constraints (VIII.3) require (for fr a 1) that -6 < N c 5.

Equation (VII.4) can be rewritten in the equivalent form

H, 3 (28 - 2Y1) sod 11 - 6 (V11.4')

where no -6 < 1 C 4. Similarly, (VIII.5) can be written
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N2 s (6 - 1 2 od 5 - IvI5

where -1 < 52 C 3. It In now necessary to check Maher or not 1 amd 5
match within the itetrval (-6, 51 * Figure VIII.1 show that matching M, wit

N2, N2+5, N2 covers all possibilities but one namely that Ng'S. Tbue. If
no match occurs after three comparisons, we Mat compare 31+11 with 12+5.
This to the required modif ication to the QUIK LOOK processing algorithm. A
block diagram. of the modified processing algorithm Is shown In Fig. YIII.2*
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