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STABILIZING EFFECT OF GAS CONDUCTIVITY EVOLUTION ON THE
RESISTIVE SAUSAGE MODE OF A PROPAGATING BEAM

1. Iatroduction

A self-pinched electron or ion beam propagating in gas will excite a
substantial return current if the gas is pre-iomized, if it is rapidly. ionized
collisionally by the beam hudl. or if avalanche breskdown is drivea by
inductive electric fields at the beam head. One may well expect highly
current nsutralized beams to be subject to a variety of instabilities excited
by the repulsive force between beam and return current, and several model
calculations2~5 have reached this conclusion with regard to beams propagating
in resistive plasma. The situation differs sharply from that of a non-
current-nsutralized beam in a resistive plasaa, for which the hose mode is the
only unstable mode.

Under conditions where they sre unstable, the axisymmetric beam modes
appesar to be particularly dangerous to propagation, becsuse they are almost
inevitably excited at large amplitude. Unless the beam emittance is perfectly
matched at injection, the beam will oscillate in radius, and in particular,
the violent pinchdown associated with the process of nose expansion and
erosion!+6 can be expected to excite some radial oscillations. Non-
sxisysmetric modes, such as hose and filamentation, must grow out of ianitially
low-level noise if the accelerator produces a high-quality beam, and thus sust
e~fold many more times before they pose a threat to beam integrity.

We classify the linearized normal modes of a beam by an azimuthal mode
nuaber a and a radial mode number n. For a sode(m,n), all perturbed
quantities ¢ are of the form

v(r,8,3,0) = .31’(1‘ - 1i4g) ;(roC)o

vhere { = ¢t -~ 2 is the position in the beam measured back from the beaa
head. BRoughly spesking, n is the number of oscillations of ¢(r,{) as r varise
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from sero to the outside of the beam, for fixed {. The m = 0 (axisymmetric)
modes are sometinmes referred to collectively as sausage modes, but we shall
reserve this term for the m = 0, n = 1 mode, which corresponds roughly to
self~simflar radial oscillation or "breathing” of the beam, and we shall refer
to the next axisymmetric mode, m = 0, 5 = 2, as the axisymmetric hollowing

mode. A recent theoretical study by Uha and Lanp¢4

» based on the simplifying
assumptions of a fixed flat-topped radial profile of plasma conductivity and a
flat-topped bea-‘radiai profile, predicted sausage instability when the ratio
of plasma return current to beam current’ Ip/Ib > 0.50 and axisymmetric
hollowing instability when IpIIb > 0.38. LeeJ extended the theory of the
sausage mode to arbitrary beam profiles and arbitrary (but fixzed) conductivity
profiles, and also predicted sausage instability when Ip/Ib exceeds a
threshold whose exact value depends on the profile. For similar Beunett
profiles of beam current and conductivity, the threshold is 0.69; when

Ip/lb > 0.75, instability at Q = 0 is predicted. However the ssusage
instability has not been observed, as far as we are avare, for beams
propagating in neutral gas, although Ip/Ib often exceeds any of these
iastability thresholds.

In this paper, we present a more complete linearized theory of the
sausage mode of a relativistic electron besa which begins from Lee’s
torlnhtion5 but includes & self-consistent treatment of the plasma
conductivity, including collisional ionization of the gas by the perturbed
beam. We find that the conductivity channel perturbs in such a way as to
follow the distortions of the beam. This inhibits the separation of beam and
plasma current, which is the cause of the iastability, and consequently leads

to a more stringent instability condition, which is never satisfied for beams

propagating in high density initially unionised gas. (The situation at low
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gas density, 30 torr depending on conditions, is discussed later in this
introduction.) This instadility condition 1is [see Eq. (41) in Sec. 2]

1 2
s @yl

off

vhere I‘“ is a radially~averaged net current vhich determines the mean pinch

force,

A 3 ‘H * d ('G(M")‘z)
T X e

is a measure of the rate of change of conductivity o due to beam-molecule

collisions, x is a coefficient depending on the ionization coefficient and
-ﬁbnity of the particular gas, and H is a factor of order unity.

The inequality (1) can easily be satisfied for b)uu propagating into
pre-ionized gas. The instability predicted under those conditions typically
has a smaller growth rate than the hose mode, but could dominate if the
sausage mode is initiated at larger amplitude, as it normally will be in a
well-prepared beam.

For beams injected into neutral gas, a very brief burst of ‘anunchc
fonization at the beam head typically has a strong influence on the degree of
current neutralization. This effect is tacitly included in our theory, since
1 ."/Ib is treated as a free paramster. However our analytic theory treats
ouly beam=~collisional fonization, and not avalanche, in the bdeam body where
the instability grows. This is usually a good approximation, except in low
density gas (5 - 50 torr depending on beam current density and gas type). Ve
have found some cases in low density gas vhere avalanche at the beaa head is
80 stroug that the instability condition (1) is satisfied, but in all of these




cases noted to date avalaache should slso be included in modeling in the besm
body. Heuristic considerstions indicate that the neglected avalanche tera in
the beam body would enhance stability, by further perturbing the coaductivity
chaunel so as to follow the beam distortions. We have tested this idee by
performing a fev simulations with the axisymmetric beam envelope éode VIPER-O,
which includes avalanche everywhere and permits sausage-like oscillations to
develop (but does not permit any higher axisymmetric perturbstions). Sausage
instability did not occur in these cases, even though coundition (1) was
satisfied. Further study of this low-density regime is needed, however.
Particle simulations at several lnboratoricus'lo have recently observed
strong axisymmetric fanstabilities under s variety of conditions that are

compatible with the instability condition
Ip/Ib 2 0.50 (2)

but are incompatible with condition (1). We have shown by means of a
sisulation analysis that these instabilities involve the hollowing mode, not
the ssusage mode, and are triggered by a complex set of circumstances with

other requirements in addition to (2). These results are reported in a

separate ptp.t.ll

The outline of this paper is as follows. We introduce our model and list
its assumptions in Sec. 2. Our analytic calculation of the sausage mode
dispersion relation is presented in Sec. 3. Our conclusions, with vegard to
beaa propagation in initially neutral gss, pre-~ionised gas, or in a chaanel of
fixad conductivity profile, are discussed in Sec. 4.




2. Formalism and Assumptions
In this section we develop a fully analyéic theory of tﬁc sausage mode of

a relativistic electron beam that includes the modifications of the chanmel
conductivity that result from beam—collisional ionization treated self-
cousistently with the sausaging of tha beam. We find that the conductivity
channel tends to follow the sausage distortion of the beam; as s result,
spatial separation of the plasma retura current density JP from the beans
current density Jb is reduced, and the mode is found to be much more stable
than it would be in a fixed conductivity channel.’

In order to carry out the analysis in simple form, wve make a number of
simplifying assuaptions, wmost of them having wide validity. PFour of these
assumptions have been widely employed in beam propagation theory. They are
that the background gas can be regarded as an immobile medium with a scalar
conductivity o(x,t), that the beam is highly relativistic
(y >> 1) and paraxial (vl 144 v, for all electrons), and that therefore
v, "¢

We consider only instability ggowth in the region of the beam which we
shall call the besm "body”, behind the pinch point!’® but forward of the beam
tail where recombination limits the conductivity. This is the region where
violent axisymmetric instability has been observed in siuulntion-,a'IO and
where theory indicates that instabilities should grow most rapidly. Here thﬁ
conductivity o is large encugh to insure space charge neutrality in the

vici-Aty of the beam, snd Maxwell“s equations reduce to Ampere’s law,

19 ) < 4no(e,g,2) A _ _ &x
TR A(r,T,2) _S.é.tihl " - Jb(l‘nC.l) - €3)

for an axisymmetric beam, where A(r,},z) is the axial component of the vector




potential. We can expect the beam body in equilibrium to have a Bannett
radial profile,

Tbo

(1 + r¥/ad)

(Other profiles could be treated.) In the beam body, the Bennett radius

s, typically decreases slowly with { and incresses very slowly (erosion and
Nordsieck cxpancionl'G) with 2; we use the approximation that a, is completely
independent of both z and § in equilibrium. Since avalanche is normally

unimportant in the beam body except for beams propagating in low density gas,

e.g. P £ 50 torr for a typical induction linac beam with I = 10 kA,

b
'o = 0.5 cm, and since recombination is by definition unimportant in the beam
body, we assume that the conductivity evolution is determined by direct

collisional ionization of the gas by the beam,

)
t3 o(r,5,2) = an. (5a)

(However the effect of avalanche in the beam head is tacitly included as an
initial condition, i.e. the values of 0 and Ip/Ib specified at the front of

the beam body segment included in the calculation, § = ‘o’ depend implicitly

on avalanche in the beam head, % < :o.) We neglect the fairly weak dependence
of o on plasma temperature (through the plassa electron collision frequency “m)
aund thus trest x as a constant. A reasonable estimate of x, based on the typical

value12 vm = 2 x 1012 sec'l for air at standard density and 0.5 eV ¢ Te < 1 eV, is

I

xk =8,8 x 107 em/statcoul. (5v)

=y I A




To facilitate the snalysis, we also make the following additional

assumptions. The equilibrium electric field tzo(;,s), vwhich has a weak radisl

dcpcndcncel’sl
(— e (6a)
E_(r,5,2) = %0
20 doy 1 + B /az »
. o
is regarded as independent of r,
E o (Fs%s2) = E_ (0,5,2). (6b)

In (6a) b i a large radius vhere charge neutrality fails. Approximation (6b)
is common to all pte§1ous stability analyses. We note elsewhere that the
breakdown of this approximation plays a key role in the destabilization of the
hollowing mode,ll but we believe that the approximation is acceptable in
analysis of theftaqsagc mode.

As a result of Eqs. (4) - (6), the equilibrium conductivity and plasma
current densi:y, co(t,c) and Jpo(r.c). both have Bennett profiles of radius
8y This turns out to be very helpful to the analysis: it allows us to
reduce a problem in r,{ and z to the form of ordinary differential equations
in 7 and z only. For related problems of interest, the r-dependence cannot be
eliminated. PFor nxnlpie, in the beam "tail” where beam-collisional ionization

1/2, & broader profile than

is balanced by recombinstion, o(r) « [Jb(r)]
Jb(r). As & tesult, much of the plasma curreat flows outside the beam and has

00 destabilizing effect on the beam, which essentially guarantees that the

‘ssussge mode vill be stable. On the other hand, {f the chaonel is fully

ionized, as is the case typically for applications to iou-beam inertial

3

fusion, o(r) = T, 2 o [.Jb(:.-)]”2 for Spitzer conductivity end no effective
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heat loss mechanism. Thus o(r) i. narrower than Jb(t), causing the plasma
curreat to peak on axis, further destabilizing all beam modes.

We assume for convenience that JIbo and Jpo are also independent of Z.

(The analysis could be carried out without these assumptions, but not in

clogsed form.) The justification for the latter is that the decay length To of

Jpo 1s long compared to the decay length T, of current perturbations,

2
2502 b (7a)
[+] Cc a
[+ ]
2
noa
1.'1- e (7b)

rl also characterizes the instability growth leangth.
We consider only beam pert.irbations in the form of self-similar radial

expansion and contraction, i.e. the perturbed beam is of the form

L 1 @

nal(c,2) [1 + r2/a(z,2))?

Jb(rl;’z) =

which is a reasonable but not exact representation of the sausage mode. The

variation of the root-mean-square beam radiusl3d 3 (£,z) 1s calculated from the

Lee-Cooperl4 eavelope equation, o

2= 2 2 .
i -5-L, (9)
3z a a

vhere 02 is a measure of the average pinch force,

21 2red, () » 2xe [J(r ) +J (r)]
vl =2 [ % ar —2" [ Tar b 2 . (10)
A o b o b
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IA- 17Y kA is the Alfven current, Jo is the plasma curreamt density’, and € s
the emittance, defined as a <8>, where <8> is the root-mean-square beam
electron velocity angle.

The principal effect omitted by the model (8) - (10) is sausage

oscillation damping due to phase mixing among beam electrons of different
{

betatron frequency.ls'ls. This effect is included phenomenologically by
adding a damping term in the form derived by Lee and Yn17’
ae? 243> \ 2%
—— e N (11)
z 1 - 2
A e_.2a 9z
StE
eff a

The damping constant a 1s sensitive to the beam ptofile.13 Lee3s17 egtimates
a = 0.7 for use with a Bennett profile.

We perform a linearized perturbation calculation in which small
perturbations are added to the equilibrium profiles of Jp, Jp»

o and A, described above. Perturbed quantities are calculated from the

linearized forms of Eqs. (3), (5), (9), (l1), and Ohm”s law,
Jp- ag Ez. (12)

Because of the assumed radial dependences of the equilibrium and
perturbations, the equations reduce to coupled ordinary differential
equations.

We note particularly that both the equilibrium and the perturbed
conductivity are calculated self~consistently from Eq. (5); this is the new

feature of the present calculation and leads to enhanced mode stability.

e 'gj“b"u“ .

e Moo, o e g P z
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3. Calculation

The equilibrium described in Sec. 2 is specified by7

- ¥ 2, 2.-2
Jpo™ Jpol + T /ao) R (13a)
| ~ 2, 2,~2
Jpo— Jpo(l +r /no) . (13b)
- 2/1.2\=2
o, beo Z(l +r /ao) ’ (13¢)
- 1+ rzlag - bz
AO- AO(C)ln '—T—{ N - AO(C) Ln T > (13d)
1+bd/a a
o o
dAo dxo b2
Eoz--z-(-"zzn—z. (13e)
3

Equations (3), (9) and (10) reduce to the equilibrium relations

. &
Ao+ ‘to T - Jbo’ (14)
2, =2 2
e°/ a = Uo = Ieff/IA’ (15)
where
Ieff s Ib - Ip (16)

for the present case of beam and plasma curreats with the same profile7
The front of the beam segment of interest is taken to be at § = Co; the value

of Co may be chosen so that Eq. (l3c) gives the conductivity desired as an

initial condition in 3.
10




The perturbed parts of "b- Jp, o and A, designated
“b' GJP, §c and 8A, are trested as small quanities. To first order Eqs. (3),

(5), (9), (11) and (12) become

4no ]
i
E . %2—"- - 83, (17b)
. M
i ASA 3A°
e: GJP- - oo s-c—- - a—‘— 8o, (17¢)
1 and
|
3%sa 2"§ - -2 353 &0°
35--'5 Sa -ala 32 "= > a9
z ao ‘o

vhere we have used (11) and (15) to simplify (9). These equations admit the

solution

_ 2,2
1 |:'/ao

83, = = J (g,2) ——s—=, (19)
b b Qa + l__2/‘2)3

0

i
g

R 1
83 = = J,(5,2) (19b)

2

o 2
K i . $g = - 3(;,:) L%L!-TT . (19¢)

(L+r /no)

S . 1 - tzla:

rY . 6A = - A (E,2) ’ (194)

‘ ' 1+ e2/a?
°

‘:.,l which corresponds to self-similar oscillations, since

T N TR
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1 - rzla: ada [1 1 ] (20
(1+r/ao) TE?(I-&r/-) ‘-.o.

Equations (17) and (18) then reduce to the ordinary differential equations

:gzx 3 Iaz "2 dz 2
3y ~ ~
(1 + —°1-c——b—°' [ 4 TE’) A= —Iz— Jb"' -2'% Tz"o' Ln (“"'2') O (21a)
a
(-
9 ~
5=« 3, (21b)
~ dA
Jp- - °o 3T - g, (21¢)
2%3 202 R A
- - -alU a *—_— (214)
3z ’:EE o o dz 3

We address the linearized envelope equation (21d) first. Since Iy and Ip
are unchanged by self-similar expansion, only the cross terams between Jp and
Jb in BEq. (10) contribute to the perturbed pinch force 602. Recalling our

conveation that Ip and Ib are both pocitive7, wve find

2 I 1
il CE - R L (22)
v, Vo eff eff

and the perturbed envelope equation (21d) then reduces to

2
a’Jb a?fb ( 2 19]3 2 I, 5

- - -(2 - + » (23)
a(zns)i 3(z/%g) TTgee d IT e @

vhere we have defined an average betatron wavelength

A= : /uoo (26)




The quantityl3 i'o sppears oanly through A’.

In order to close the snalysis, we must express 39 in terms of 3" though

Eqs. (2la~c). PFirst we simplify Eq. (21ls) by using the approximatioca that lp

as well as I are independent of g, so that’

b 1
22 o - P« const (25)

Y50

and from EBqs. (12) and (13e)

~ ~ dxo bz
Jpo. x J“C a-z— 1.1 :-2- o (26)
(]

(The analysis could bde carried ocut without these approximations, but would
then require numerical solutioca of a complicated ordinary differential

equation, rather than yielding the solutions we shall find in closed form.)

Thus Eq. (21a) can be written as

I

2¢ 917 . _p o .
(Sy+xdsqp i3 -7 (27
Next we rewrite Eq. (21b) as
3,0 ~
(1+ 4 s-c-) z-,- x Jb' (28)

and use (28) to elimate S trom (27), which yields an expression for A in terms
of 3",
? 2¢ ~
(Hc;-‘-)('—.ru,,c;—)A-(1+c;---1f)J (29)
(Y

We also use Eqs. (13), (19) and (26) ia (17c), to obtain




e

AP W1 3 o
and usiang (28) again ia (30) gives

-~

I
A ) FaLF-«3 ) . 3A
(1 +¢ a;) R T I~ « Jbo(l +z a;) ¢ 3c (31)

Equations (29) and (31) together specify Ep as & linear function of 3b.

We observe that (23), (29) and (31) counstitute & closed system of linear
equations with constant coefficlents if (3/3s) and §(3/3L) 2 (3/3 2n }) are
regarded as the basic operators. Thus it is natural to use z and %n { as the
independent variables. A complete solution of the problem with perturbation
{initial conditions at { = co would require a Laplace transfora analysis, which
is beyond the scope of this paper, but the equations adait a free mode

solution in the form

£(g,z) = ; exp [-mxlks-' i 20 (C/Co)]

~ =iQz/)
o fe

®
8 (5=) 1[co¢(u tn &) - 1 sin (@ ta 5—)], (32)
4 r g r U
o o )
vhere £(Z,z2) is any perturbed quantity. The z-dependence of the mode is in
the usual exponential form, but in { the mode shows power law growth or decay
and oscillation with steadily incressing wavelength, dus to the non-uniformity
of the equilibrium ian , i.e. the linesr increase of oo(r.;) with Z.
Using (32) in (29) and (31) yields the required relation

between 'Jp and ‘Jb.

1/ (1 - -1/1
3’- [~ .._Li;-... Sl ’;c I._!)_ ] 3\' (33)
[ 3“ L
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We also use (32) to reduce the esuvelope equation (23) to algebraic form, and
use (33) to eliminate 3p' After some algebra, but no spproximations, the

envelope equation reduces to the dispersion relation

-Q" =41a = -2

2 1 =2, 1+) Ip 2 -y 1-)\52 ¢ '
+y g [ 0" (—— ) e (X - g B)], (30)
) 1+2%w 1+MTT.ff 1+ur ef £ )]
vhere
dr el
=_1-._b,
)\-.-—;—-=-2—c-— (35.)

11 from Eq. (7b) is the characteristic decay time of the perturbed plasma
current, and a is the phenomenological damping constant from Eq. (l1).

If we use Eq. (5b) for x, we can write Eq. (35a) in the convenient form

I
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4. Rssults

~ The dispersion relation (34) can be solved for either 8 or & as a
function of the other. The mode is unstable if 01> 0 for real &

or if ;1> 0 for real Q. We consider the instability coandition 01> 0 for real
@. Rewriting (34) in the schematic form
2 - - -
-Q iaQ rl(x, Ip/l.ff,u) + 1!2(X, Ipll.ff, ), (36) .

where F; and F; are real, this condition is

P> - rzzlaz. an

For a + 0 (no phase mix damsping included in the formalisam) all modes sre
unstable; as might be expected the conditions for instability become wore
restrictive as a increases, but instability can occur even in the limit

g+ {f F1> o. i.e.

1
i 2 aled, (38)
l+w eff w
There are modes w that satisfy condition (38) 1if and only if .
1 2
i s 2 ol 9 |
off

and the range of unstable modes is given by

¢~ ¢, < a? ¢ C,* Cps (40n)

16




S e 4 e

vhere

. .
1 2
C,x (1 + 1) =2— - 42 - 3], (40®)
1 -8? [ Ic!! ]
X
2
czz;%{[(u-x),l.’;.-uz-s] - }t/2, (40¢)

If condition (39) is satisfied, there are very fira sodel-independent
grounds for expecting strong instability, iundependent of the damping
coefficient a. In fact, if ons solves for w(Q) it is seea that imstebility
can occur (:1> 0) in this case eveun with @ = 0, i.e. msre time-independeat
beaa non-uniformities can grow unstably ss one moves back in the beem. If the
veaker condition (37) is satisfied, fnstability is still predicted, but of an
oscillatory and somsvhat weaker form, somevhat dependent on the model and the
value of a. Lee’ uses a = 0.7, corresponding to a Bennstt profile trumcated
at three to four Benmett redii!l. Ve can write the critical value of I/I,¢¢

for instability, from Eq. (37), in the forms of a correctiom to (39),

1 2
£—> E2M g (0 - 0.7, 1) (a1)

off

Numerical evaluation shows that H(a = 0.7,1) is quite close to uaity, varying
only from 0.73 for A = 0 to 0.81 for A + @, go (39) is a reascaably accurate
instability criterion even for fiaite a.

Under conditions vhere avalanche is uaimportaant evea at the pianch point,
e.g. for a typical induction linec besa'®1% wien 1, < 10 kA, & 2 0.5 cu,
in air at density close to or sbove ambient, the imstabdility conditieca (41) is
Sever satisfied. In these cases, Sharp and Lampe! have shown that 1/1.4,
reaches & pesk value

17
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I’II‘u = 31to 4 (42s)

at the pinch point, and then falls off to a fairly coastant value

Ipno!f ~ (1% o;a) A (42b)
a few centimeters further back in . Equation (42b) is incompatible with
condition (41).

If avalanche is important near the pinch point, Ipll‘“ is increased.
Nevertheless a survey performed vith the simulation code snavoll , vhich does
include avalanche, indicates that over s very wide range of beam paraseters in
air the instability condition (41) is not satisfied over a long enough stretch
of beam to permit effective mode growth. [In some cases (41) 1s satisfied for
a region of only a few centimeters about the pinch point.] For example, beams
with I = 10 kA and radius ? 0.5 cm are predicted to be sausage-stable in air

b

at densities above 50 torr, and beams with I up to at least 100 kA are

b
predicted to be sausage~stable in air at ambient density. We have found,

however, that the instability condition (4l) is satisfied in some low-density
regimes vhere avalanche is so strong near the pinch point that Icff./lb is

small, e.g. in air at 10 torr I."/Ib = 0.08 for a 10 kA beam with radius 0.5
cm and current risetime 0.33 nsec. This lov density regime around 10 torr is
of ianterest, since considerable experimental effort has been devoted to it in

20 and present cmuuntl.“

past

However in this regime avalanche often dominates the conductivity physics
even well behind the plach point. Thus the conductivity model (5) used in the
present theory is seriously incomplete. Inclusion of avalanche self-

consistently in the model of the beaa body probably would be stadbilising,

18
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since it further reduces the spatial separation of the plasma current from the

beam current. To date, we have been unable to treat avalanche self-
consistently in an analytic theory, but we are presently using the
axisysmetric beam envelope code VIPER-0 to simulate sausage evolution in this
regime. In limited studies to date we have found no case for which the
sausage mode 1s unstadble for bean 1nj¢ction‘ ianto neutral gu.n

Recent particle simulations8-10 have shown very strong axisymmetric

instabilities in sowe regimes where (41) predicts stability. We present a

; detailed simulation analysis of these instabilities in a companion peperll.
P { We find that the unstable mode is the (m = O, n = 2) hollowing mode, not the
t

(m =0, n= 1) sausage mode.

For beams propagating into a pre-ionized channel, IPII.“ can be

g i arbitrarily large, and the instability conditions (41) or even ¢39) can be
! N satisfied. The limit of a fixed pre~ionized channel, i.e. the case ia which

beas—induced conductivity augmentation is negligible compared to the pre-

] h existing conductivity, has been considered previously by Lee’. 1In our

formalism, this is the limit X + 0, 8 fixed, A w(R) fixed, w(Q)+, ¢

3 restricted to a range { < & < & 447, vhere @Ay << 1 and ;o(;) has the

essentially constant value « Since < is proportional to )\, we note

bo %o’
. also that ‘o + o {g the limit. The dependence of any perturbed quantity £

on g, from Eq. (32), then reduces to
£(c) = £ oxp(-1s 7——‘ %) 5 £ exp [t0c - 5] (43)
g) = - oxXp e =3 »
° 0

i o 1.e. exponential growth and siausoidal oscillation with complex frequency
w # ;/‘0. (“)
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Our dispersion relation (34) rcduca. to one previcusly derived by Lae3,
I

2 iw
a2 -t =-2+2 ( ). (45)
L sl Ieff I=~1a

Our condition (39) for instability to occur and not be stabilized by any value

of the damping coefficient a reduces to

; 19/1‘“ >3, : (46)

in agreement with Ref. 5.

, ‘ In conclusion, then, we have determined the mode structure, Eq. (32), for

instability growth in the beam body, and have calculated a dispersion

. relation, Eq. (34), and instability conditions, (39) and (41), for the sausage
t mode. We find that the sausage mode instability condition is not satisfied
1! . for beams injected into neutral gas under conditions that satisfy our
assumptions. However the instability counditions are usually satisfied for

4 beams injected into a pre-ionized gas channel with the same profile as the

beam (and with braoao 2 ¢), because of the substantial current neutralization

uander those conditions. There is a region of low neutral gas density where

our theory would predict instability but where the theory is itself

ié, inapplicable because avalanche is strong and persistent. Although sausage .
;i ,1; stability properties are not well understood in this regime, early indications
:?; LA are that ssusage instability does not occur.
}}3'¢*; To our knowledge, sausage instability has not been observed
z'fg fﬁ experimentally for beams injected into neutral gas, in agreement with our

4 ~ coaclusions.

i
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