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I. Introduction

A self-pinched electron or ion beau propagating In gas ill excite a

substantial return current if the gas is pre-ionized, If it is rapidly. ionized

collisionally by the beau headl, or if avalanche breakdown is driven by

inductive electric fields at the beau head. One my well expect highly

current neutralized beams to be subject to a variety of instabilities excited

by the repulsive force between beam and return current, and several model

calculations2 "5 have reached this conclusion with regard to beaus propagating

in resistive plasm. The situation differs sharply from that of a non-

current-neutralzed beau In a resistive plasm, for which the hose mode is the

only unstable node.

Under conditions where they are unstable, the axisymetric beau nodes

appear to be particularly dangerous to propagation, because they are almost

inevitably excited at large amplitude. Unless the beu euittance is perfectly

matched at injection, the beau will oscillate in radius, and in particular,

the violent pinchdown associated with the process of nose expansion and

erosion1 ,6 can be expected to excite some radial oscillations. Von-

axisymetric odes, such as hose and filamntation, most grow out of initially

low-level noise if the accelerator produces a high-quality beau, and thus must

e-fold many more times before they pose a threat to beau integrity.

We classify the linearized normel modes of a beau by an azimatbal mode

-. nember a and a radial node number n. for a ode(un), all perturbed

:, I, quantities a are of the form

*(r,9,x,C) -exp(LaS - ift) *(r,C),

where, - ct - is the poeition in the be measured back from the beau

head. Rtoughly speaking, a is the number of oscillationa of 9(,;). as c varloo

I~.IS sp~s4MmA 6, 1963.
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from zero to the outside of the beam, for fixed C . The a - 0 (ausysisetlc)

nodes are sometimes referred to collectively as sausage nodes, but we shall

reserve this term for the a - 0, n - I node, which corresponds roughly to

salf-similar radial oscillation or "breathing" of the bean, and we shall refer

to the next axisyuestric mode, a - 0, n - 2, as the axisy metric hollowing

mode. A recent theoretical study by Uhm and Laape4 , based on the simplifying

assumptions of a fixed flat-topped radial profile of plasm conductivity and a

flat-topped beam radial profile, predicted sausage instability when the ratio

of plasma return current to beam current7 I p/ b > 0.50 and auisysmetric

hollowing instability when Ip/Ib > 0.38. Lee 5 extended the theory of the

sausage mode to arbitrary beam profiles and arbitrary (but fixed) conductivity

profiles, and also predicted sausage instability when I p/Ib exceeds a

threshold whose exact value depends on the profile. For similar Sennett

profiles of beam current and conductivity, the threshold is 0.69; when

I p/ b > 0.75, instability at a - 0 is predicted. However the sausage

instability has not been observed, as far as we are aware, for beams

propagating in neutral gas, although Ip/Ab often exceeds any of these

instability thresholds.

In this paper, we present a more complete linearized theory of the

sausage mode of a relativistic electron beam which begins from Lee's

forsulation 5 but includes a self-consistent treatment of the plasma

conductivity, including collisional ionization of the gas by the perturbed

beam. We find that the conductivity channel perturbs In such a way as to

follow the distortions of the beam. This inhibits the separation of beam and

plasma current, which is the cause of the instability, and consequently leads

to a more stringent instability condition, which is never satisfied for beams

propagating In high density initially unionised gas. (The situation at low
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gas density, 50 tort depending on conditions, is discussed later in this

introduction.) This instability condition is [see Sq. (41) In Sec. 21

> ;k,+ IL

off.

where I off io a radially-averaged net current which determines the mean pinch

force,

db d( _ _r. , )a_ 2

Is a measure of the rate of change of conductivity a due to beam-molecule

collisions, K is a coefficient dependiu on the Ionization coefficient and

mobility of the particular gas, and R is a factor of order unity.

The inequality (1) can easily be satisfied for beams propagating into

pre-iouised gas. The instability predicted under those conditions typically

has a smaller growth rate than the hose mode, but could dominate if the

sausage mode Is initiated at larger amplitude, as it normally will be In a

vell-prepared bea.

For beams injected Into neutral gas, a very brief burst of avalanche

ionization at the bea head typically has a strong influence on the degree of

current neutralization. This effect is tacitly Included in our theory, since

1 I /1 is treated as a free parameter. Hovever our analytic theory treats

off b
4 only bea-collisional ionization, and not avalanche, in the beau body where

the instability growe. This is usually a good approximation, except in low

density gas (5 - 50 torr depending on beam current density and gas type). We

have found sow cases in low density gas where avalanche at the beam bead is

so strong that the instability condition (1) is satisfied, but in all of these
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cases noted to date avaa che should also be included in modeling in the bea

body. Hourtstit considerations indicate that the neglected avalanche term In

the beau body would enhance stability, by further perturbing the conductivity

channel so as to follow the bean distortions. We have tosted this idea by

performing a few siuulations vith the axisymsetric bean envelope code VIPE-O,

which Includes avalanche everywhere and permits sausage-like oscillations to

develop (but does not permit any higher axisyumetric perturbations). Sausage

Instability did not occur In these cases, even though condition (1) was

satisfied. Further study of this low-density regime is needed, however.

Particle simulations at several laboratories 8- 10 have recently observed

strong azLsymmetrLc instabilities under a variety of conditions that are

compatible with the instability condition

Ip/I 0.50 (2)

but are incompatible with condition (1). We have shown by means of a

simulation analysis that these instabilities involve the hollowing mode, not

the susage mode, and are triggered by a complex set of circumstances with

other requirements In addition to (2). These results are reported in a

separate paper11

The outline of this paper is as follows. We introduce our model and list

its assumptions in Sec. 2. Our analytic calculation of the sausage mode

dispersion relation is presented in Sec. 3. Our conclusions, with regard to

beau propagation in initially neutral gas, pre-ionLsed gas, or In a channel of

fLxed conductivity profile, are discussed in Sec. 4.
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2. Tormalisn and Assumptions

In this section we develop a fully analytic theory of the sausage nde of

a relativistic electron bean that includes the modifications of the channel

conductivity that result from bean-collisional Ionization treated self-

consistently with the sausaging of the beau. We find that the conductivity

channel tends to follov the susage distortion of the beam; as a result,

spatial separation of the plasm return current density J from the beamP

current density Jb is reduced, and the mode is found to be much more stable

then it would be in a fixed conductivity channel. 5

In order to carry out the analysis in simple form, we sake a number of

simplifying assumptions, most of them having wide validity. Four of these

assumptions have been widely employed In beam propagation theory. They are

that the background gas can be regarded as an immobile medium with a scalar

conductivity o(j,t), that the beam is highly relativistic

(y > 1) and paraxial (v, << vz for all electrons), and that therefore

V 0 C.
z

We consider only instability growth in the region of the beam which we

shall call the beam *body*, behind the pinch point 1 ' 6 but forward of the beau

tail where recombination limits the conductivity. This is the region where

violent axisymmetric instability has been observed in simulaftons,8 - 1 0 and

where theory indicates that instabilities should grow most rapidly. Here the

conductivity a is large enough to insure space charge neutrality in the

viW.4ty of the beam, and Axvell's equations reduce to Amperes law,

1 A(r,C,z)- 4so(r,j~x) M n.41 jb(r ,C * )(3

for an axisyumtric beau, where k(r,C,s) is the axial component of the vector

AS
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Potential- We can expect the beaut body in equlibrium to hav, e a Bennett

radial profile,

3bo
Jbo(r 'C-z) + 2 22 (4)(1 + r /a o )

(Other profiles could be treated.) In the beau body, the Bennett radius

a typically decreases slowly with C and increases very slowly (erosion ando

NordsLeck expansion 1, 6 ) with z; we use the approximation that a is completely
0

independent of both z and C in equilibrium. Since avalanche is normally

unimportant in the beau body except for beams propagating in low density gas,

e.g. P < 50 torr for a typical induction linac beau with Ib - 10 kA,

a - 0.5 cm, and since recombination is by definition unimportant in the beam

body, we assume that the conductivity evolution is determined by direct

collisional ionization of the gas by the beau,

- (rC,z) - cJb. (Sa)

(Rowever the effect of avalanche in the beau head is tacitly included as an

initial condition, i.e. the values of a and Ip/Ib specified at the front of

the beam body segment included in the calculation, C C.;o depend implicitly

on avalanche in the bean head, C < co.) We neglect the fairly weak dependence

of o on plasea temperature (through the plasma electron collision frequency v )

and thus treat K as a constant. A reasonable estimate of K, based on the typical

value1 2 v - 2 x 1012 sec " I for air at standard density and 0.5 eV s T :5 1 eV, is

K8.8 x 10" a /statcoul. (5b)
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To facilitate the analysis, we also ake the following additional

assumptions. The equilibrium electric field Z 0 (C,), which has a weak radial

dependence
1 , 6

1 + b2 /a 2

(r;z aIn 0(6a)so Iu 1 + r2 /a
0

is regarded as independent of r,

E (r,C,z) - Ko(O,€,z). (6b)

In (6a) b is a larSe radius where charge neutrality faLls. Approximation (6b)

is common to all previous stability analyses. We note elsewhere that the

breakdown of this approximation plays a key role in the destabilization of the

hollowing mode,11 but we believe that the approximation is acceptable in

I analysis of the sausage node.

As a result of Eqs. (4) - (6), the equilibrium conductivity and plasma

current density, a (r,1) and J po(r,C), both have Bennett profiles of radius

00eo . This turns out to be very helpful to the analysis: it allows us to

reduce a problem in r,€ and z to the for. of ordinary differential equations

in C and z only. For related problems of Interest, the r-dependence cannot be

eliminated. For example, in the beam "tail" where beau-collisional ionization

Is belanced by recombinstion, o(r) - [Jb(r)] a broader profile than

J (r). As a result, uch of the plasma current flows outside the beam and be*

no destabilizing effect on the bean, which essentially guarantees that the

ausage mode will be stable. On the other hand, if the channel is fully

ionized, as is the case typically for applications to ou-bea inertial

fusion, O(r) T3/2 Jb(r)]3 / 2 for Spitzer conductivity and so effective
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heat loss mechanism. Thus a(r) L1, narrower than Jb(r), causing the plasma

current to peak on axis, further destabilizing all beau modes.

We assume for convenience that Jbo and J are also independent of C.

(The analysis could be carried out without these assumptions, but not in

closed form.) The justification for the latter is that the decay length Tr ofo

Jbo is long compared to the decay length T1 of current perturbations,

' - 2-wa In b (7a)
0 c a

0

i Was 2  (7b)

I 2c b

T also characterizes the instability growth length.

We consider only beam pertjrbations in the form of self-similar radial

expansion and contraction, i.e. the perturbed beam is of the form

Jb~,z - b 2I 8
b~r'¢z =wa2 (,z) [I + r 2/a 2(.z)]2 (

which is a reasonable but not exact representation of the sausage mode. The

variation of the root-mean-square beam radius1 3 a (&,z) is calculated from the

Lee-Cooper1 4 envelope equation,

all C 2 U2
- =a (9)

az a a

where U2 is a measure of the average pinch force,

.2wrJL (r2+r[Jb(r
2.21b f dr f r dr" b (10)r

'A o lb 0 l

I low

:V~- '~ A'



1A= 17Y IA is the Alfven current, J is the plasma current denswity 7, and e is

the emittance, defined as 1 <e>, where <$> is the root-mean-square beam

electron velocity angle.

The principal effect omitted by the model (8) - (10) is sausage

oscillation damping due to phase mixing among beam electrons of different

betatron frequency.15'16  This effect is included phenomenologically by

adding a damping term in the form derived by Lee and ¥ul 7 ,

ac2 ;cc2  2_

a IA az 2

eff a

The damping constant a is sensitive to the beam profile.13  Lee5 17 estimates

a - 0.7 for use with a Bennett profile.

We perform a linearized perturbation calculation in which small

perturbations are added to the equilibrium profiles of Jb, Jp,

a and Az described above. Perturbed quantities are calculated from the

linearized forms of Eqs. (3), (5), (9), (11), and Ohm's law,

J a E (12)
p z

Because of the assumed radial dependences of the equilibrium and

perturbations, the equations reduce to coupled ordinary differential

equations.

We note particularly that both the equilibrium and the perturbed

conductivity are calculated self-consistently from Eq. (5); this is the new

feature of the present calculation and leads to enhanced mode stability.

|91tI



3. Calculation

The equilibrium described in Sec. 2 is specified by
7

.1-w 3bo(1 + r/a 0)- (13a)

I ~ 2 2 -2(1bjO O(1 + r/a ) (1b

00M c:Y, c(I + r2/&2 -2, (13c)

1- 1+ r2/a2  b 2

1+/0  0

dA dA b2
E - - - -1 In (13e)

a0

Equations (3), (9) and (10) reduce to the equilibrium relations

0 odc c" bo' (4

E2/ -2 _ 2 I /1(5
0/ 0 U 0 ff 1 A* 15

where

'eff b p (6

for the present case of beam and plasm currents with the same profile 7

The front of the beam segment of interest is taken to be at C 4 0 ; the value

of C may be chosen so that Eq. (13c) gives the conductivity desired as an

initial condition in ~
10
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The perturbed parts of Jb- Jp' , uian A, designated

61b , 6a an 6&v are treated as small quanities. To first order Zqs. (3),

(5), (9), (11) and (12) become

r A- w MAk 41 aA0  461(17a)

U6 bs (17b)

and

2- 2U.12 2263a 0 ua- ;2a36a 6U

== a oo 5z - ,(8

where vs have used (11) and (15) to simplify (9). These equations aduit the

solution

8 - J r2 0 3 (19a)
b b (1 + I a)2

r 2 r/a 2

0

aj ~ ~ (1 p Ia)Cz)223 1b
0

2 2
60~~~ ~a r / 1c

6A k(~z 2 2' (19d)
1+r /a~

which corresponds to self-similar oscillations, since

11

jilw ill -p ll 11 11 11 1



0 a I 1(20)
(I +r /a) a (I +r Ia) 0

0

jEquations (17) and (18) then reduce to the ordinary differential equations

23 oa oa2  (b

K b (21b)

0 (21c)

a23 2U2
_ a. - U ;2 b+ d2(21d)

0 0

We address the linearized envelope equation (21d) first. Since Ib and Ip

are unchanged by self-similar expansion, only the cross terms between J.and

2
ibin Eq. (10) contribute to the perturbed pinch force 6U. Recalling our

convention that Ipand Ib are both positive7 , we find

2 - (- " 3+ I P)(22)
110 3 bo3 ofeff

and the perturbed envelope equation (21d) then reduces to

321b 31b i .2 1 ) b 2 lb *(3
2 a T~7X7 (2 T P b-f(3

3(zIA 0 ) Taeffef

where we have defined ant average betatron wavelength

x 0 IU . (24)

12



The quvattyI3  0 appears only through A

In order to close the analysis. w met express in terms of thog

I Eqs. (2La-c). first w simplify Eq. (21a) by taing the approzimatiee that 17

88 well aL b ate indepeudent of r, so that
7

.2 co t (25)
Tb

II- Jbo

and from Eqs. (12) a (13e)

dA

witte aso d n-2(6
e(Th e yit d be cared out without the" approximtion, bt wud2 then require numerical solution of a co(pl)cated ordinary differential

i . equation, rather than yielding t~he slutions we shall find in closed form*.)

ealThus Eqs. (213) can be written as

'Nx we rewrite Eq. (21b) as

• , and a"e (28) to ell..-t* a from (27), which yiel.ds an expression for A In terme

oe lb b

Wle also use Zqs. (13), (19) an (26) In (17a), toe obtlacl,

1 "3
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and msais (28) agatn L (30) gives

+ )~'!~ +~ (31)

Equations (29) and (31) together specify 3 as a linear function of Jb"
p -

We observe that (23), (29) and (31) constitute a closed system of linear

equations with constant coefficients if (3/3s) and C(313r) a (3/3 In C) are

regarded as the basic operators. Thus it is natural to use a and In C as the

independent variables. A couplete solution of the problem with perturbation

initial conditions at C 0 would require a Laplace transform analysis, which

is beyond the scope of this paper, but the equations admit a free mode

solution in the form

MOO,-) - f exp [-L.:/ia- 1 In (C/ )]

f 0 /t  ( '[coo)(; In -i sin Iwrn -],(32)

where f(C,u) is any perturbed quantity. The z-dependence of the mode is in

the usual exponential form, but in C the mode shove power law growth or decay

and oscillation with steadily increasing wavelength, due to the non-uniformlty

of the equilibrium in C1 i.e. the linear increase of a (rc) with C.
0

Using (32) In (29) and (31) yields the required relation

between 2 and r

14



We also use (32) to reduce the envelope equation (23) to algebraic foru, and

use (33) to eliminate 3VO After sore algebra, but so approximatious the

envelope equation reduces to the dispersion relation

- 2 1 -2  1+X Ip 2) + (X 1 _)2;21 [ + . +' ], (34)
+ X 1+ 1+ ;2 eff I + eoff

where

X" =- d -(35&)

TI from Eq. (7b) In the characteristic decay time of the perturbed plasma

current, and a is the phenomenological damping constant from Eq. (11).

1f we use Eq. (5b) for s, we can write Eq. (35a) in the convenient form

Ib
o .044 (b~-) (35b)

1 kA

Ar



4. Results

The dispersion relation (34) can be solved for either 0 or as a

function of the other. The mode is unstable if 0 1> 0 for real

or If > 0 for real Q. We consider the instability condition 0 > 0 for real

(o. Rewriting (34) in the schematic for

-2 _ IGO - F 1(x, Ip/I eff,) + LF2(X, Ip/Ioff* (36)

where F1 and 72 are real, this condition is

F1 > - F2 2/2. (37)

For a P 0 (no phase mix damping included in the formalilm) all modes are

unstable; as might be expected the conditions for instability become more

restrictive as a increases, but instability can occur even in the limit

a . - If F I> 0, i.e.

1 + X>0(36)
I + ;2 leff -2

There are modes that satisfy condition (38) If and only if

> 2 + (39)
eff +

and the range of unstable nodes is given by

C C2  
2 <C1 + C2. (f)

16



Vhere

c+- C - [(1+x)-L- 4x 2 -3] (4+))

ex y e ff

Ca1 I((+X)I--0 -3]2 4A21.(0c

If condition (39) is satisfied, there are very firm mdaL-Lmdeemadest

grounds for expecting strong instability, imdepemdet of the dsmping

coefficient a. In fact, if one solves for *(C) it i soen that Instability

can occur () 0) Is this case even with Q - 0, l.e. mare tlme-ledepeadest

beam no-uniforuities can grow unstably as one noves beck in the beem. If the

weaker condition (37) is satisfied, instability is still predicted, but of an

oscillatory and somewbat weaker form, somavat dependent on the mel sad the

value of s. Lee S uses a - 0.7, corresponding to a emnett profile truncated

at three to four esmett radii1 3 . We cam write the critical value of t p/eff

for instability, from 9q. (37), in the for of a correction to (39),

+ I 1s - 0.7, X (. 41)

Numrical evaluation show that I(* - 0.7, A) is quite cloee to mity, varying

only from 0.75 for x - 0 to 0.S1 for X , -, so (39) is a reesosably accurate

instability criterion even for finite s.

Under conditions Vhere avalanche is unimportant eve at the pinch point,

e.g. for a typical induction lime best18 1 with Ib S 10 kA, so 2 0.5 ca,

In air at density cloee to or above alest, the Inetability eeditiem (41) is

. sever stisfLed. In tbese cases, hatP sod L e ! have sheim that ll ff

reches a peek "le1

7A



I
I p/I of 3Xto 4A (42a)

at the pinch point, andthnflsoftafirycsatvlu

Xp/ef ~ (I ± 0. 3) X (42b)

a few centimeters further back in C. gquatLon (42b) is incompatible with

condition (41).

If avalanche is Impotant near the pinch point, Ip/lef f is Increased-

Nevertheless a survey performed with the siulation code S]IO01 1 , which does

Include avalanche, Indicates that over a very wide range of beu parameters in

i air the InstabiJlity condition (41) is not satisfied over a long enough stretch

of been to permit effective mode growth. [In sawm cases (41) is satisfied for

a region of only a few centimeters about the pinch point.] For example, beams

with I b - 10 kA and radius Z 0.5 cm are predicted to be sausage-stable in air

at densities above 50 torr, and beams with Ib up to at least 100 kA are

predicted to be sausage-stable in air at ambient density. We have found,

however, that the instability condition (41) is satisfied In some low-density

regimes where avalanche is so strong near the pinch point that I /I is
P off b

small, e.g. in air at 10 torr 1eff'tb w 0.06 for a 10 kA beas with radius 0.5

cm and current risetim 0.33 nse. This low density regime around 10 torr is

of interest, since considerable experimental effort has been devoted to it in

past 2 0 and present ezperiments. 1 8

lowever in this regime avalanche often dominates the conductivity physics

even well behind the pinch point. Thus the conductivity model (5) used in the

present theory is seriously Incomplete,, Inclusion of avalanche elf-

consistently in the model of the beem body probably would be stabilisiag,

,}is



since it further reduces the spatial separation of the plaisa current f rom the

bea current. To date, we have been unable to treat avalanche @elf-

consistently In an analytic theory, but ws are presently using the

axisy etric beam envelope code VIPER-0 to simulate sausage evolution in this

regime. In limited studies to date we have found no case for which the

sausage mode is unstable for boom injection Into neutral gS". 21

Recent particle simulations$-10 have shown very strong axisy meetric

* Instabilities In some regimes where (41) predicts stability. We present a

detailed simulation analysis of these instabilities in a companion papar"l.

We find that the unstable mode is the (a - 0, n - 2) hollowing mode, not the

(a - 0, n - 1) sausage mode.

For beams propagating Into a pro-Ionized channel, PIf'eff can be

arbitrarily large, and the instability conditions (41) or even (39) CAn be

satisfied. The limit of a fixed pro-ionized channel, I.e. the case in which

beam-induced conductivity augmetation is negligible compared to the pre-

existing conductivity, ha been considered previously by Lee 5 . In our

formalism, this is the limit X + 0, Q fixed,X a ) fixed, (a)*-i, c

restricted to arange 40, c~ j c 4&, where ;Ar «<lIand a (C) has the

essentially constant value K3 C Since Is proportional to A, we note

also that C **is the limit. The dependence of an perturbed quantity f

on C, from Zq. (32), then reduces to

f() fop-; 0 * XP [..i6n( co)], (43)

I.e. exponential growth and sinusoidal oscillation with complex frequency

0 /.(4



Our dispersion relation (34) reduces to one previously derived by Lee 5 ,
2, .~f + 2 ,f+
2_b L) (45)

f f To* f

Oar condition (39) for instability to occur and not be stabilized by any value

of the damping coefficient a reduces to

I /I > 3, (46)
p eff

in agreement with Ref. 5.

In conclusion, then, we have deterained the mode structure, Eq. (32), for

instability growth in the beau body, and have calculated a dispersion

relation, Eq. (34), and instability conditions, (39) and (41), for the sausage

mode. We find that the sausage mode instability condition is not satisfied

for beams injected into neutral gas under conditions that satisfy our

assumptions. However the instability conditions are usually satisfied for

beam injected Into a pro-ionized gas channel with the same profile as the

beau (and with 4wo a > c), because of the substantial current neutralization
0 0

under those conditions. There is a region of low neutral gas density where

our theory would predict instability but where the theory is itself

Inapplicable because avalanche Is strong and persistent. Although sausage

stability properties are not well understood in this regime, early indications

are that sausage Instability does not occur.

To our knowledge, sausage instability has not been observed

experimentally for beams injected into neutral gas, in agreement with our

conclusions.
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