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NOTATION

The data in this paper are referred to the stability axis system.
aspect ratio

jet exit area, m

wing span, m

flap span, m
effective span of jet flap system, m; see fig, 17
1ift coefficient, 1ift/qS

power 1ift coefficient, CLO = A(CL)Q + A(CL)f

increment of 1ift coefficient due to angle of attack

increment of lift coefficient due to flap deflection

increment of lift coefficient due to blowing, ACL = CL - CL
n o

rolling moment of coefficient, rolling moment/qSh

effective dihedral parameter, 3cl/as

DATCOM estimate of effective dihedral parameter at zero lift;
tail off

(C2 /CL)D DATCOM estimate of variation of effective dihedral parameter
8 with 1ift coefficient; tail off

fncrement of effective dihedral parameter due to flap
deflection

increment of effective dihedral parameter due to inlet flow

increment of effective dihedral parameter due to blowing

vi
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NOTATION (Continued)

yawing moment coefficient, yawing moment/qSh

directional stability parameter, 3Cn/38

DATCOM estimate of directiornal stability parameter; tail off
increment of directional stability parameter due to lift
coefficient; power off

increment of directional stability parameter due to inlet flow
increment of directional stability parameter due to blowing

increment of directional stability due to the tail

side force coefficient, side force/qS

side force parameter, aCY/aB

DATCOM estimate of side force parameter; tail off
increment of side force parameter due to 1ift coefficient;
power off

increment of side force parameter due to inlet flow

increment of side force parameter due to blowing

jet flap momentum coefficient, ﬁve/qS

vii
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MOTATION (Continued)

constant used in calculating effect of sweep on ACt . see

fig. 15 su

constants used in calculating effect of jet sheet deflection
on ACQ ; see fig, 14
3

u

constant used in calculating effect of aspect ratio on gci ;

see fig., 13 3u

constant used in calculating effect of dihedral on Acl ;

see fig, 13 su

constant used in calculating sidewash at tail; see fig, 20

inlet mass flow

ratio of inlet to exit mass flow
freestream dynamic pressure, N/mZ
wing area, m2

freestream velocity, m/s

jet exit velocity, m/s

longitudinal distance from moment reference point to inlet
face; positive forward, m

longitudinal distance from moment reference point to aero-
dynamic center of vertical tail; positive rearward, m

longitudinal distance from trailing edge of jet flap to aero-
dynamic center of vertical tail; positive rearward, m

vertical distance from moment reference point to center of
inlet face; positive upward, m

vertical distance from moment reference point to aerodynamic
center of vertical tail; positive upward, m

viii
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NOTATION (Continued)

a angle of attack, deg.

B angle of sideslip, deq.

Ac/d sweepback angle of wing quarter chord line, deg.
Ac/Z sweepback angle of wing mid chord line, deg.

r dihedral, deg.

Gf flap deflection, degq.

pe/po ratio of exit flow density to freestream density
8 jet sheet deflection angle, deg.

ix
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SUMMARY

This study has examined the possibility of developing a method for
astimating the lateral/directional stability characteristics of distributed
jet (jet flap) STOL configurations and developad a method that is believed
to account for the major effects of operating at high power-on 'ift coef-
ficients. In addition to inducing a large stabilizing side wash at the
vertical tail, powered 1ift reduces the directional instability contribu-
tion of the wing/body, increases the side force due to sideslip and tends
to reduce (depending on the amount of geometric dihedral incorporated) the
high level of effective dihedral normally associated with swept wings at
high 1ift coefficients.

The method is intended for use only in preliminary design and not as a
substitute for a carefully conducted wind tunnel program which will stil)
be required in the development of any powered lift aircraft. The data base
on which the method is based is primarily from model tests of high wing
transport configurations. The effects of moving the wing to a low position
are unknown and application of the method to configurations with wings hav-
ing aspect ratios less than about 7 and sweep angles above about 30 degrees

should be made with caution.
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INTRODUCTION

A number of concepts have been developed that use power to augment
wing 1ift to achieve STOL performance. They use various approaches to dis-
tribute the exhaust flow from the engine, or high pressure air taken from
the engine, over a significant part of the wing span. These distributed
jet STOL concepts include: the Internally Blown Flap (IBF) in which high
pressure air from the engines is ducted to a spanwise nozzle at the flap
knee, the Externally Blown Flap (EBF) in which the engines are mounted
under the wing and the engine exhaust is blown at and tnrough the slotted
flaps, the Upper Surface Blowing (USB) concept in which the engines are
mounted on the top of the wing and the exhaust is directed and spread over
the top of the wing and flap system, and the Circulation Control Wing (CCW)
concept in which high pressure air from the engines is ducted to tne wing
trailing edge and exhausted over a small radius cylinder that forms the
wing trailing edge. All of these concepts control flow separation of the
flaps as well as produce a deflected jet sheet that generate 1ift signifi-
cantly greater than can be obtained with mechanical flaps.

The aerodynamic effects that act to produce the augmented 1ift also
affect the lateral/directional characteristics of these configurations., A
number of investigations have shown large effects of power-on directional
stability and dihedral effect. The present study was undertaken to attempt
to develop a method for estimating the static lateral/directional charac-
teristics of these various STOL concepts. The method is based on an

empirical correlation of the available data.
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The present method is intended for use only in preliminary design work

and to give a general indication of the effects of the primary configura-

tion variables. The aerodynamic characteristics of STOL configurations are

a complex function of many configuration variables and the development of

any distributed jet STOL aircraft will require careful experimental inves-

tigations to accurately determine the lateral/directional forces and

moments.
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AVAILABLE METHODS

;: The V/STOL Aerodynamics and Stability and Control Manual (ref. 1)
being developed by the Naval Air Development Center is intended to provide
simple methods for estimating the aerodynamic characteristics of V/STOL and
STOL aircraft. The concept of the manual is to develop and present methods
of the type presented in the USAF DATCOM (ref., 2) (i.e., methods that can
be easily handled with hand calculators) that extend the methodology into
é; the hover and low speed modes of flight. The present study was undertaken
to extend the DATCOM methods for estimating the sideslip derivatives

CYB . C"B’ and Cgs to cover jet flap STOL configurations operating at high
1ift coefficients.

The present DATCOM method (ref. 2) is applicable only to the cruise
configuration, Methods for estimating the effects of flap deflection and
power are not included.

In the early 1970's Convair and Rockwell, under USAF sponsorsh}p, con-
ducted extensive programs to study and develop metﬁods for estimating the
aerodynamic characteristics of STOL aircraft. Internally Blown Flap (IFB),
Externally Blown Flap (EBF), and vectored thrust concepts were covered but

most emphasis was placed on the EBF concept and on the longitudinal

St 2
LRI

characteristics.

.
A

The methods developed by Convair (ref. 3) and Rockwell (ref. 4) for
estimating the lateral/directional characteristics produce significantly
different results. For example, the Rockwell method (ref., 4) estimates the

rolling moment due to sideslip C“B simply by extending the DATCOM estimate

v . - e . . .
K LR P AT ST VY ST W S Wi S wy T . e . - S R > vy N LY

LI L P 2 e A




''''''''''''''

..........
..................

NADC 81275-60

of the rolling moment per unit 1ift coefficient (Cis/cL) to the flaps
deflected power on lift coefficient, Thus, the Rockwell method predicts
very large negative values of CQB. The Convair method (ref. 3) on the
other hand provides for separate estimates for the effects of flap deflec-
tion and power, both of which yield positive increments of Cgs and, there-
fore, predicts much less dihedral effect than the Rockwell method. As will
be shown later, the difference between the methods is largely due to the
geometric dihedral of the models that provided the data bases for the two
methods. The Rockwell data base was obtained on models with zero dihedral
while the Convair data base was obtained on models with negative geometric

dihedral.
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METHOD DEVELOPMEMT

The data base examined in the present study is presented in references
3 to 31 and contains data not available at the time. of the Rockwell and
Convair studies (refs. 3 and 4). Unfortunately, not all of these data were
useful in developing the estimating method. Many studies did not include
tail off data so that the wing-body and tail contributions could be
examined separately and some did not even include power off cruise confiqu-
ration (flaps retracted) data so that the applicability of the present
DATCOM method to that configuration could be checked; Nevertheless, most
provide some insight and were useful in checking the method developed in

this study.
Wing-Body Contribution

The process used in this study was to examine the wing-body (tail off)
d;ta and the tail contributions separately. The wing-body data will be
discussed first,

Typical Wing-body data for two configurations (and sketches of those
configurations) are presented in figures 1 to 4 along with estimates from
DATCOM and from the method developed in the present study. In general,
flap deflection and power both produce an increase in side force (more
negative values of CVB) and a stabilizing contribution to directional
stability (positive increment in C"s)’ For these two configurations which
had essentially the same wing planforms the effect of flap deflection on
dihedral effect depend on the wing geometric dihedral. With negqative

dihedral (fig. 2) flap deflection produces a positive increment in CQS.
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Figure 2 Wing-Body Data for the Configuration of Ref. 10 and

Comparison with Estimates.
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Figure 4 Wing-Body Data for the EBF Configuration of Ref. 18 and Comparison
With Estimates,
A=7.0 Ac/Z =22 r=20
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However, with zero dihedral (fig, 4) Cgs continues to increase negatively
as lift coefficient is increased by flap deflection. The data obtained are
essentially an extension of the DATCOM estimate to the higher 1ift coeffi-
cients. For both configurations, power produced positive increments of

Cge relative to those that would be obtained by extending the DATCOM
estimate.

Comparison of the estimates made using the method developed in this
study with the data in fiqures 2 and 4 give an idea of the accuracy of the
method. More extensive comparisons will be given in a later section.

The available data usually contained a significant amount of scatter
as shown in figure 2. In this case, the model was fitted with both a lead-
ing edge slat and blowing on the wing leading edge in an attempt to
increase the 1ift generated. The data point§ shown by the flagged symbols
were taken with both the slat and blowing and show slightly higher 1ifts
than the plain symbols which were obtained with slat alone. 0Other than the
small effect on 1ift, the small amount of blowing used would not be
expected to affect the lateral/directional data and the differences shown
are attributed to data scatter. For most of the other configurations, much
more limited lateral/directional data were available and care had to be
taken not to confuse data scatter with legitimate effects of geometric
variables or operating conditions.

In general, the usual geometric parameters: aspect ratio, sweep,
dihedral, and flap span were found to be significant to the lateral direc-
tional characteristics. Both the blowing momentum coefficient and the lift
coefficient and various breakdowns of the 1ift coefficient were examined to

determine appropriate correlating factors. It was found that the lateral/

12
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directional characteristics could be correlated adequately with the power

Lf) (needed

off lift (CL ), the 1ift increment due to flap deflection (aC
0
only in estimating ACng) and the lift increment due to power (ACL ) and
1]
that the momentum coefficient did not enter directly. Initially, the lift

due to power (ACLu) was broken down into the direct thrust component and

the induced 1ift component. However, this added some complexity to the
method and did not produce as good a correlation as that obtained using the
Tumped 1ift coefficient increment (ACLu) which contains both the direct
thrust component and the induced 1ift. The problem was probably due to
inaccuracies in estimating the thrust deflection (to calculate the direct
thrust component) for many of the sets of data which did not present the

static thrust deflection data for their configuration,

Side Force

It was found that the side force parameter CY can be estimated by

the expression

Y Y Y Y Y
8 BD Bo 8 Bu
where
CY is the DATCOM estimate from section 5.2.1.1 (including nacelles)
B8
ACY D is the increment due to lift, power off
8
ACYO is the in-rement due to inlet flow
8
and ACY i is the increment due to blowing.
su
13
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The DATCOM method for estimating CYB is based on the fuselage side
force adjusting for wing height and is appropriate at zero angle of
attack., The side force contribution of the nacelles should also be
included in this estimate, particularly for the EBF and USR configurations
where the nacelles are large, and can contribute up to 49 percent of the
zero 1ift side force. Their contribution should be estimated by treating
them as small fuselages using the DATCOM method and their contribution
added to the fuselage contribution to make up the estimate of CYBD.

Effect of Lift

Toll and Queijo in reference 5, using a simple strip theory, developed
expressions for the side force contribution of swept wings at an angle of
attack. This side force is due to the lateral cant of the resultant force
vectors on the panels of a swept wing at combined angles of attack and
sideslip. The resulting expressions are included in the DATCOM in section
5.1.1.1 but are seldom applied because this contribution is a function of
CL2 and at lift coefficients appropriate to cruise configurations the
contribution is negligible. With the flaps deflected, however, power off
1ift coefficients over 3 can be reached and this term should be
significant,

Figure 5 presents the increments of side force parameter CYaoas a
function of 1ift coefficient squared for a variety of configurations, This

increment was obtained by subtracting the value of Cy3 at zero lift (using

faired data) from the power off data at lift. Figure 5 shows a good
correlation but all the values are negative rather than positive as

predicted by reference 5. Also CY appears to be independent of wing
8o
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configuration rather than a function of sweep and aspect ratio as predicted
by reference 5, thus suggesting that this increment of the side force para-
meter may be a 1ift induced side load on the fuselage and that the effects
predicted by reference 5 may be submerged in these data., Also, it should
be noted that all the data used in the present study were for high wing
configurations (the analysis of ref, 5 is for wing alone) and the effects
of mid or low wing placement are unknown.

For the present method, the increment of the side force parameter due
to lift is given by:
)2

AC, = -0.00044(C

Y L

So 0

Effect of Inlet Flow

The effects of power on the side force parameter arise from two
sources: the effects of inlet flow and the effects of blowing or jet flap
action.

The in]et-contribution to the side force parameter results frum turn-
ing the flow into the inlets when the configuration is at a sideslip
angle. The side force is simply the inlet momentum drag multiplied by the
sin of the sideslip angle. In terms of the side force parameter, the
increment due to inlet flow is given by:

ACYB = - %% 3%?3
i
Unfortunately, the inlet mass flow associated with the lateral/

directional data is not presented in most of the references available,

16
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However, most of the engine simulators used in testing of small scale
models were either ejectors or fans operating at relatively low pressure
ratios. The approximate ratio of inlet to exit mass flow ratios for these

engine simulators are known and the intet contribution can be approximated

by:
= /T on. 2R o
S L]
l‘. 30T he o
:j.
:;: Forturately, the inlet contribution to the side force parameter is small
HA
. and any errors introduced by approximations of the mass flow ratio are
believed to be small.

Effect of Blowing

The increments due to jet flap action are presented in figure 6 and
were obtained by subtracting the increments due to inlet flow, lift, and
the value at zero 1ift from the measured power on data. The data for the

Internally Blown Flap (IBF) and the Upper Surface Blown (USB) systems

(fig. 6a) show a linear variation with the 1ift increment due to blowing

ACL . The dependence on wing sweep and flap span suggest that this side
u
N force increment may be carried on the flaps themselves. For these configu-
??? : rations, the increment of sideforce parameter due to blowing is given by:
[
g; ACY = - 0.038(1 - cos Ac/z) ACL for IBF configurations
5 8 u
¥ u
A5
. ACY8 = - 0,019(1 - cos AC/Z) ACL» for USB configurations
u

The data for the Externally Blown Flap (EBF) configurations (fig. 6b) show

17
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considerably more scatter than that for the IBF and USB configurations.
Close examination of the data presented in figue 6b appears to show low
values of ACYBu at the lowest sweep angles with the values increasing to a
maximum at a sweep angle of 9.5 degrees and then reducing again at higher
sweeps. A physical explanation for this type of variation could not be
found and it was decided to treat the variations shown as scatter and draw
a single line through the data. The increment in side force factor due to
blowing is given by:

ACY = o n.OOZACL for EBF configqurations
u

B,

Directional Stability

As with the side force parameter, the directional stability parameter
is made up of a zero lift term and terms due to power off lift, inlet flow
and jet flap action. The directional stability parameter C"B can be

expressed as:

n n n n n
8 BD Bo Si 3,
where
Cn is the DATCOM estimate from section 5.2.3.1
8y (including nacelles)
Acn is the increment due to lift, power off
8
0
ACn is the increment due to inlet flow
8
and
ACn is the increment due to blowing,
8
u

20
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The DATCOM estimate of Cns is based on the unstable moment of the
fuselage (tail off) and is appropriate at zero angle of attack. The desta-
bilizing effects of the nacelles should also be included in this estimate,
particularly for EBF and USB configurations where the nacelles are large
and generally located relatively far forward where the nacelle side force
also adds significantly to the instability., Their yawing moment contribu-
tion (treated as small fuselages in the DATCOM method) plus their side
force contribution multiplied by the appropriate arm should be added to the
DATCOM estimate of the fuselage contribution in estimating C"BD
Effect of Lift

As with the side force, Toll and Queijo in reference 5 developed
expressions for the yawing moment of swept wings at high 1ift coeffi-
cients. The resulting expressions are included in the DATCOM in section
5.1.3.1 but are seldom applied because this contribution is a function of
CL2 and at lift coefficients appropriate to cruise configurations, the
contribution is negligible. With flaps deflected, however, power off lift
coefficients over 3 can be reached and this term should be significant.

Figure 7 presents the increments of the directional stability parame-
ter C"B as a function of 1ift coefficient squared for a variety of configu-
rations. This increment, which is stabilizing, was obtained by subtracting
the value of C"B at zero lift (using faired data) from the data at lift,
Figure 7 shows relatively good correlation and, as predicted by Toll and
Queijo, a dependence on wing sweep. The values obtained, however, are
about 40 percent of those predicted by Toll and Queijo in reference 5.

Toll and Queijo also predicted an increase in this increment with decreas-

ing aspect ratio particularly at low aspect ratios. The aspect ratio range

21
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aC, = .00001 AC/Z(LLO)

A Ref. Flmmq

O 8 16 Slotted
.00032

O 8 16

g 7.23 10} Slotted

$ 7.23 11

O 8 16 Plain

004 Acs2 = 9.5

\

-000095 o O 8 16 Siotted

(CLO)Z

Figure 7 Effect of Flaps on Cn ; Power Off.
&
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covered in the available data is too limited to confirm this trend but it
should be kept in mind if there are attempts to apply the present method to
low aspect ratio configurations.

For the present method, the increment of the directional stability

parameter due to 1ift is given by:

aC, = 0.000014 2

8

(VA
¢c/2 'L
o 0

Effect of Inlet Flow

The effects of power on the directional stability parameter Cn8 (tail
off) arise from two sources: the effects of inlet flow and the effects of
blowing or jet flap action. |

The inlet contribution to yawing moment results from turning the flow
into the inlets and is destabilizing for configurations with the inlets
ahead of the moment reference point as is typical of powered lift STOL con-
figurations. The yawing moment is simply the side force due to inlet flow
multiplied by the distance from the moment reference point to the inlet
face.

The inlet contribution to the directional stability parameter C, is

given by:

Acn =ACY T €0s a - 5= sin a)

Bi B;

Effect of Blowing
The effects of jet flap action are presented in figures 8 and 9 and

were obtained by subtracting the increments due to inlet flow, 1ift, and

23
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the value at zero 1ift from the measured power on data. The increment of
the directional stability parameter due to blowing appears to be propor-
tional to the square root of the lift coefficient due to blowing and to be
dependent on wing geometry and on the type of jet flap system used.

As with side force, there is considerable scatter in the data and
there are indications that the yawing moment is dJependent on how well the
flap system is working., An extreme example is shown in figure 8b where a
double slotted flap system and a triple slotted flap system, both deflected
60 degrees on the same wing produce almost the same lift but greatly

different yawing moments increments, Apparently, the double slotted flap

system is being worked near the limit of its capability and probably
encountering some flow separation which causes the large yawing moments.
(Data are available only at an angle of attack of 10 degrees and at only

one blowing coefficient for each flap system,) The 1ift and drag data were

o o8 KRR fa
‘-.‘-l: RN .. |

il )

s & F
. .
a4y

analyzed in hopes of finding characteristics that would explain and corre-

late with these differences in yawing moments. While the double slotted
configuration was operating closer to the 1ift coefficient at which the

drag begins to rise rapidly there was very little difference in the lift

curve slope, lift-drag ratio or rate of change of drag with 1ift at the
actual lift coefficients at which the two flap systems were operating.
Apparently, yawing moment data is more sensitive to incipient flow separa-
tion (probably because it is dependent on where separation starts on the
wing span) than the 1ift and drag data. In general, emphasis was placed on
the data from the lower flap deflections wherever possible in making corre-

lations used in developing the methods in this study.
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(a) Basic data used

A A b./b Ref
_¢/2 J
O 22 7.23 .35 1
u 3 7.0 13
A 25,270 .51 23
O 9.5 2.0 .58
g 22 ' I z 16
O 32
AN 3.0 7.0 .5 19

Figure 8 Yawing Moment Increments Due to Power.
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Gf Type of Flaps

O 30 Double Slotted
O 60 Double Slotted
O 60 Triple slotted

(9]
Aeso = 22
A = 7.14
bj/b = .581
.004 o
Bu A = 9,52
b./b = .581
J
0 2 2
0 1 2 3
C
u

(b) Effect of Flap Configuration, Ref. 16

Figure 8 Concluded
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The increment of the directional stability parameter due to blowing
AC"Bu is correlated with the wing sweep and flap span in figure 9. For
essentially unswept wings, all jet flap concepts show essentially zero
effect of power on the directional stability parameter Acniu. The IFB sys-
tem shows a linear increase with wing sweep but the data from reference 16
implies an unusual variation for the EBF systems; a rapid inc-edse with
sweep to about 9 or 10 degrees sweep followed by a constant level at higher
sweep angles. {(The data of reference 16 were presented only at an angle of
attack of 10 degrees and for only one blowing coefficient.) A logical
physical explanation for this trend could not be found and, therefore, the
linear variation with sweep identical to that for the IBF system has been
adopted. A linear variation of lower slope was also adopted for the USB
system,

For the present method, the increment of the directional stability

parameter due to power is given by:

- J
ACnB = - 0.000074A_, “/;E /al, L for IRF and EBF
u o
= I /ac—
ACnB = - 0.000028A_ ,, /z—— acLu for USB
H

Dihedral Effect

Five terms are used in estimating the effective dihedral parameter

CQ_S:

28
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£ 3 j 3

is the DATCOM estimate of C2 at zero lift from
] Section 5.2.2.1 2

c
2

(C_E) is the DATCOM estimate of the effect of 1ift
L )] coefficient on C2 from Section 5.2.2.1

8

ACQ is the increment due to flaps
Be

Acz is the increment due to inlet flow
8.
i

and
AC2 is the increment due to blowing.

w

The DATCOM method for estimating the effective dihedral parameter Cgs
consists of several terms that can be collected into two groups: those due
to geometric dihedral, wing height and wing twist that are independent of
Tift coefficient and lumped here as CQSO and those that are a function of
1ift coefficient lumped here as (CLB/CL)D‘ The DATCOM method for estimat-
ing the terms that are a function of 1ift coefficient is based on the work
of Polhamus and Sleeman in reference 6.

Effect of Lift

The method of reference 6 is based largely on the difference in the

11fting ability of the windward and leeward wing panels when the configura-

tion is sideslipping. With an unswept wing, the windward tip begins to act

29
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like a leading edge and the leeward tip a trailing edge when sideslipping
producing a positive dihedral effect (negative Cga ). This effect is
increased with a swept wing because the increase in effective aspect ratio
and decrease in sweep of the windward panel increases its 1ift curve slope
relative to the leeward panel which experiences a decrease in lift-curve
slope because of the increase in sweep and decrease in aspect ratio. These
differential changes in panel geometry would alsoc be expected to increase
the flap and blowing effectiveness on the windward panel and decrease them
on the leeward panel and cause the dihedral effect to increase {more nega-
tive Czs) with both flap deflection and blowing. This hypothesis is only
partially supported by the data (see for example figures 2 and 4). For
most configurations, flap deflection and blowing produce a positive
increment in Cgs (negative dihedral effect). Apparently, there are factors
at work that cause the total lift to shift slightly to leeward.

The effect of flap deflection on dihedral -effect is shown in figure
10. These data were obtained by subtracting the effective dihedral parame-
ter estimated by the DATCOM method [ngo + (Cls/cL)cLo] from the measured
data with the flaps deflected {(power off)., The large amount of scatter at
the highest values of the correlating parameter is believed to be due to
flow separation. These data points are from flap deflections of 60 degrees
on a wing at 10 degrees angle of attack. The data and the correlation in
figure 10 indicate that flap deflection causes a negative dihedral effect
(positive values of ACQSf ) for wings with geometric dihedral but have no
effect on the effective dihedral when the geometric dihedral is zero, A

positive shift in CQB can be explained as an effective shift of the total

30
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1ift toward the leeward and could be caused by the corresponding shift in
total wing-flap vortex system. There appears to be no physical explana-
tion, however, for why this should occur for wings with geometric dihedral
and not for wings with zero dihedral, Nevertheless, the evidence is so
strong both in the data used in figure 10 and in other references (refs. 4,
17, 26, and 27 clearly show the large negative values of CgB associated
with zero dihedral but could not be included in figure 10 because tail off
data were not presented) that geometric dihedral is included in the corre-
lating parameter,

One problem encountered in developing the correlation shown in fiqure
10 was that of determining the appropriate value of flap lift increment

ACLf to use. Most configurations designed to achieve high power on 1lift

coefficients are fitted with a large chord highly deflected leading edge
slat or flap. lnder power off conditions, this leading edge device is
usually stalled on the lower surface at negative (and often at zero) angles
of attack. On the other hand, with the high flap deflections often used,
wing-flap separation often occurs at angles of attack of 10 degrees and
higher in the power off condition, Careful inspection of the lift curves
is required in determining the true 1ift increment due to flap deflection,
For the present method, the increment of the effective dihedral param-

eter due to flap 1ift is given by:

Co

_ 8
aC, = 0.32 (t_)n aCy |r|(cos AC/Z)
B¢ L f

2
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i Effect of Inlet Flow
As with directional stability, the effects of power on the effective

dihedral (tail off) arise from two sources: the effects of inlet flow and

' the effects of blowing or jet flap action.
- The inlet contribution to rolling moment is generally small because
; the vertical distance from the moment reference point is usually small but
E can be easily included and is given by:
Z i
: 8C, = aCy (g cos a + = sin a)
By By

Effect of Blowing

The effects of jet flap action, or blowing, are presented in figures
11 and 12 and were obtained by subtracting the DATCOM estimate, the incre-
ment dué to flap deflection, and the increment due to inlet flow from the
power on data.

For EBF and USB configqurations, as shown by representative examples in
figure 11, there are effects of wing planform but there is no discernible
effect of flap deflection or angle of attack. However, for the IBF config-
urations of reference 29 (fig. 12), the increment of the effective dihedral
parameter due to power AC;LBu clearly increases with both angle of attack
and flap deflection. The increase appears to be related to the angle,
relative to the free stream, at which the jet leaves the trailing edge of
the flap (8 + a). In estimating this angle, the jet sheet deflection
angle, 8, is (for the IBF configurations) taken as the flap upper surface

trailing edge angle,
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The data for both EBF and IRF configurations also show effects of
aspect ratio, sweep, and geometric dihedral on the effective dihedral
parameter due to power ACZs . The increment of the effective dihedral

3]

parameter due to power can be expressed as:

The effects of aspect ratio and geometric dihedral were isolated using
primarily the data of references 16 and 29 as shown in figure 13, These
appear to be equally applicable to both EBF and [BF systems. The effects
of jet sheet deflection were also obtained from the data of references 16
and 29 and are shown in figure 14, The effect of jet sheet deflection is
proportional to the square of the deflection angle and applies to IBF sys-
tems only,

The effect of sweep on the increment of the effective dihedral parame-
ter due to blowing was obtained by subtracting the effects of aspect ratio,
dihedral and jet sheet deflection, as estimated by the correlations shown
in figures 13 and 14 from the tatal increments due to blowing (such as

shown in figures 11 and 12). The values of Ky, thus obtained are

‘presented in figure 15. A negative value of KgA is shown for IBF, EBF, and

USB configurations at zero sweep because the positive effect is included in
the factor for aspect ratio. The data shows the expected increase in posi-
tive dihedral effect (negative values of KiA) with increasing sweep. The
EBF and USB configurations show less negative values, probably because of
the distance between the jet nozzle and the flap system in these configura-

tions. That is, because the jet exhaust is ahead of the flap system it can

34
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be deflected slightly to leeward by the free stream before reaching the
flap system, thus, shifting the flap 1ift to leeward and producing a posi-
tive increment in ACQBU (negative dihedral effect).

For the present method, the increment of the effective dihedral param-

eter due to blowing is given by:

B+ a,2

AC28 = [Klﬂ + 0.000092A - 0.000035" + Ke(—TUU_) ]ACL
U ’ .
where
K, = -0.00065 - 0.0195(1 - cos Ac/z) for IBF configurations
A
K, = -0.00045 - 0.009 (1 - cos Ac/Z) for EBF and USB
A configurations
and
Ke = 0.0015 for IBF configurations
Ke =0 for EBF and USB

configurations
Tail Contribution

Examination of the data shows that, in general, the contribution of
the tail to both side force and directional stability increases signifi-
cantly with both flap deflection and power. This increase in tail contri-
bution results from a favorable sidewash induced at the tail. Examination
of rudder effectiveness data, vertical tail effectiveness data obtained by
incidence variation, and limited dynamic pressure surveys at the vertical

tail shows that, in the angle of attack range where the wing-flap system is

40
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not stalled, the dynamic pressure at the vertical tail does not vary by
more than about 5 percent from the free stream value.

Figure 16, taken from reference 13, gives some indication of the flow
behind an EBF configuration at moderate flap deflections. In this case,
smoke was introduced to try to show the vortex flow originating from the
outboard end of the flap.

The total flow field behind a powered 1ift configuration is complex as
partially depicted in figure 17. In addition to the vortices from the flap
tips, there are wing tip vortices and vortices originating at the outboard
end of the powered 1ift portion of the flaps as well as a pair of vortices
from the wing root rotating in the opposite direction to the others. Not
shown are the cross flow around the fuselage and the body vortices arising
from the side force carried on the fuselage. The system does not stay as
orderly as depicted in figure 17 because the vortices interact and the pre-
dominant vortex, although itself moved by the others, tends to move the
others about itself. Surveys a relatively short distance behind a wing
have shown the remnants of the wing tip vortex can be moved almost to the
centerline and the inboard vortex moved almost out to the wing tip.
Nevertheless, there is a strong general vortex flow behind the wing-flap
system and a tail placed asymmetrically in that flow field, as occurs with
sideslip, will experience a sidewash that is favorable for the types of
configurations being considered,

Bécause of the complexity of the flow field behind a powered lift wing
and the interaction between the vortices, it is not feasible to attempt to

estimate the sidewash by trying to construct a vortex system such as is
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(b) Three-quarter rear view.
Figure 16 Concluded
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of Vertical Tail
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i! Figure 17 Schematic of Wing Span Load Distribution and Wake System.
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shown in figure 17, In the present study, the effective -idewash was
determined from the measured tail contributions,

Convair, in reference 15, made measurements of the sidewash at the
position of the vertical tail for a 60-degree flap at several angles of
attack and power conditions. They presented the data as three curves as a
function of momentum coefficient but, when replotted against the 1ift
coefficient at which the wing was operating, the correlation shown in
figure 18 was obtained. The correlation shown is better than expected
because this is a full span flap system and, in the power off condition
(flagged symbols on figure 18), the predominant vortices would be arising
from the wing tip. At the highest 1ift coefficients, most of the lift is
generated by jet flap action, the primary vortices should be further
inboard and the sidewash per unit 1ift coefficient should be stronger

because the 1ift is carried on a shorter span. The agreement shown indi-

cates that there are compensating factors at work.
In this study the sidewash factor K, for each configuration for

which adequate data were available was determined from the yawing moment

data rather than the sideforce data because the yawing moment data is

usually more accurate. The sidewash factor was determined from the direc-

tional stability data by:

Ko = 7y ~ !
nll
‘o)
where
aC is the measured contribution of the tail to the

Bt m directional stability obtained by subtracting the
tail off directional stability data from the
complete model data,
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and ACn is the NATCOM estimate of the tail contribution from
Bt)D section 5.3.1.1.

Typical data for three configurations are presented in figure 19. The
data from reference 16 are for the same configuration for which the side-
wash measurements were made in reference 15 and are presented in figure
18, There is considerable scatter in the data but the average sidewash
factor is in agreement with that presented in figure 18, The data from
references 10 and 11 were measured on the same model tested at two differ-

ent times.

[t is interesting to compare the sidewash data from references 10 and
11 with the sidewash data from reference 9. These models had identical
fuselage tail confiqgurations. The model of references 10 and 11 has the
shortest jet flap span (as defined in figure 17) and the highest sidewash

factor. The model of reference 9 has a greater jet flap span and a lower

sidewash factor. Going a step further, the model of reference 16 has the

largest jet flap span and the lowest sidewash factor. This trend appears

to be logical at least for the high power 1ift conditions where most of the
lift is being generated by the jet flap action. The vortex strength and,
é! therefore, the sidewash should be inversely proportional to the span over
which the 1ift is carried and, at the high power conditions, this should be

the effective span of the jet flap system. The effective span of the jet

flap system cannot be determined; therefore, the span covered by the
nacelles as shown in figure 17 is used here as a measure of the jet flap
span in the present method.

The sidewash would also be expected to decay with distance downstream

from the point of origin of the vortex system generating the sidewash. The
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Figure 19 Effective Sidewash Factors for Several Configurations Determined
from Yawing Moment Data.
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tail length as defined in figqure 17 is used to represent this distance.

The sidewash is shown to correlate reasonably well with the inverse of the
product of jet flap spam and this tail length as shown in figure 20. These
data are for EBF configurations. Similar data are not available for [BF
and USB configurations, but these would be expected to behave similarly and
the correlation shown in figure 20 is, therefore, used for those configura-
tions as well,

For the present method, the sidewash at the tail is given by:

0.0135
K = C
-\ T
a5 B b
. -
: And the contributions of the tail to side force, directional stability
F! and dihedral effect are given by:
:i AC = /AC (1 + k)
N Yo - Ys ‘o
t t/D
- ("t 2t
ﬂf ACnB = ACYB (1 + Ko) B C0s a + §= sin a)
t t/D
2 X
AC2 = ACY (1 + Ko) (5— €os a - g— sin a)
By B¢ /0
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COMPARISON OF ESTIMATES WITH EXPERIMENTAL NATA

Comparison of the estimates made with the present method for two of
the configurations on which the method is based are presented in figures é
and 4. Additional comparisons, most with data from configurations not used
in developing the method are presented in this section.

EBF Configurations

The data of references 10 and 11 were taken on the same model tested
at two different times. Estimates for the tail off configuration are com-
pared with the data of reference 10 in figure 2. Both tail off and tail on
estimates are compared with the data from reference 11 in figure 22.

Tail off and tail on estimates for the YC-15 EBF configuration are
compared with data from model tests (ref. 19) in figure 24.

Additional comparisons for the model of reference 18 (also presented
in figure 4) are presented in figure 26. This configuration is interesting
because it was tested as a small, approximately 2-meter span, ejector
powered model in reference 18 and as a large jet engine powered approxi-
mately 12-meter span model in the 40 by 80 wind tunnel in refarence 17.
Nata from the later tests are available only for the tail on configuration
with the flaps deflected. These data are compared with the small scale
data and with tail on estimates in figure 27. Agreement between the small
and large models is considerably better than with the tail on estimates
which use the DATCOM estimate for the power off tail contribution. Esti-
mates made using the small scale model power off, zero 1ift tail contribu-
tion are in much better agreement with both the small and large scale

lﬂOde] Se
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The configuration of references 17 and 18 has a relatively large
vertical tail and a small fuselage; much smaller relative to the wing and
tail than most of the other configurations used in developing the present
method. The problem shown in figure 27 may illustrate a fundamental prob-
lem with the present method for estimating the tail contribution. The
DATCOM method for estimating power off sidewash at the tail is presented in
section 5.4.1 as:

s /s b4

A w W
—_— 4+ 0,4 — + N,009A
1 + cos Ac/A d

£

(1 +i§)q—"= 0.728 + 3.06

and for the configuration of references 17 and 138

= 0.724 + 0.708 - 0.2 + N.065

1.297

The DATCOM method estimates a very large sidewash at the tail for this
configuration for the power off case primarily because of the large ratio
of vertical tail area to wing area (which appears in the second term).
However, the sidewash arises from the "...side force developed by the body
in yaw" as stated in the DATCOM text. But the body size, which determines
the body side force does not appear in the expression for sidewash!
Apparently, the correlation presented in DATCOM was developed from a data
base that had much smaller ratio of tail to body size than that of refer-
ences 17 and 18. Care should therefore be exercised in making estimates of

the tail contribution and the experimental power off tail contribution for
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the configuration for which estimates are being made should be used if it
is available.

USB Configurations

The USB configuration shown in figure 28 (ref. 27) used the same fuse-
lage, tail, and wing box as the large scale model of reference 17. New
nacelles, nozzles, and flap system were installed to convert the model to
an USB configuration. Comparison of estimates with the data for this
configuration are shown in figure 29, As was the case with the EBF config-
uration (fig. 27), estimates based on the DATCOM estimate for the power off
tail contribution considerably overestimate the directional stability.
Flaps retracted, power off data were not measured on this configuration,
but estimates made using the power off, flaps retracted data from reference
18 (which has the same body/tail configuration) are in much better agree-
ment with the measured data. The differences between the estimates of the
side force parameter and the data and the differences between the side
force data for the two flap deflections cannot be explained.

The QSRA configuration and comparison of estimates with data are
presented in figures 30 and 31. Although the wing is basically swept, the
center section, where most of the powered lift is carried, is almost
unswept., Estimates were made for both zero and 11.76-degree sweeps. The
estimates for zero sweep are in better agreement with the measured effec-
tive dihedral, CLB, but significantly underestimate the directional
stability. Unfortunately, tail off data are not available to determine
whether this problem is in the estimate of the tail off data or in the

estimate of the tail contribution,
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The YC-14 confiqguration and comparisons of estimates with data are
shown in figures 32 and 33. The directional stability and side force are
seriously underestimated at the low momentum coefficient condition with the
flaps down. Similar but less dramatic underestimates are present in some
of the other comparisons (see for example figures 22b and 24) at moderate
1ift conditions. The problem appears to be in the estimate of the tail
contribution., There appears to be an additional sidewash at moderate 1ift
coefficients, perhaps from the nacelles or from the additional sideforce
generated on these rather large fuselages. Attempts to develop an adjust-
ment to the method to account for this additional sidewash were unsuccess-
ful because of the meager data base.

[BF Configurations

The configuration of the British H-126 jet flap research airplane is
shown in figure 34, DNata from wind tunnel tests (ref. 29) of models
preceding the development of this airplane provided much of the IBF data
used in developing the method. The comparison of estimates with data for
one of the configurations of reference 29 is presented in figure 35 and
gives an indication of the best that can be expected of the method,

The complete airplane was tested in the Ames Research Center 40 by 80
tunnel after the completion of the flight test program. Tail off data were
not obtained., The estimates compared with the measured data in figure 36
are based on the DATCOM estimate of the tail contribution.

CCW Configuration

Lateral/directional data are available for only one Circulation

Control Wing (CCW) configuration: the A-6 CCW demonstrator airplane of
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. Figure 31 Comparison of Estimates with Data for the USB Configuration
- of Ref. 21. (QSRA)
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Figure 37 Configuration of the Model of Ref. 31. (CCW)
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reference 31 shown in figure 37. This concept does not use conventional
flaps, but has a blowing slot at the wing trailing edge which blows over a
cylindrical trailing edge. The jet sheet deflection depends on the free
stream dynamic pressure (at zero speed, the jet sheet will turn through 180
degrees) and significant 1ifts can be generated with very low blowing
momentum coefficients, The comparison of the estimated lateral/directional
characteristics with the data from reference 31 is presented in figure 38.
Unfortunately, there is not tail off data available but the underestimate
of the side force and directional stability at zero lift is believed to be
due to an underestimate of the tail contribution by the DATCOM method.
Because the increment of side force factor due to power on ACY and the
corresponding increment of the directional stability parameter,uacngu is
believed to be‘carried primarily on the flap system and, as there is no
physical flap on this configuration, these terms were set at zero in the
power on estimates. If they had been taken at face value, the directional
stability would have been significantly overestimated at the higher lift
coefficients. Because the deflection of the jet sheet was unknown, the
estimate of the increment of effective dihedral parameter, ACQBu assumed
the jet sheet deflection was zero., The results show that the effective

dihedral is overestimated, indicating that there is an effect of jet sheet

deflection but there is no way to determine what it is.
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PRESENTATION OF THE METHQD

The method is recapped here for the convenience of the user.

Side Force

The tail off value of the side force parameter CYs is given by

CYB = CYQ + ACYB + ACYB + ACYB
*D 0 j u
where
CY is the DATCOM estimate from section 5.2.1.1 including
BD the contribution of the engine nacelles
2
aC = -0.00044(C, )
Y L
B 0
0
L
8y =3 573
8.
i
and
ACY = -O.OOZACL for EBF configurations
B u
u
ACYB = - 0,038(1 - cos Ac/Z) eC, for IBF configurations
" u
ACYB = - .019(1 - cos Ac/Z) ACLu for USB configurations.
u

Directional Stability

The tail off value of the directional stability parameter is given by:

n n n n
B BD Bo Si Bu
where
Cn is the DATCOM estimate from section 5.2.3.1 including
8p the contribution of the engine nacelles,
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_ 2
ac, = O.OOOOIAC/Z(CL )
8 0
0
X, Z,
ACn = ACY (E_ Cos a - 5= sin a)
Bi Bi

and

= ().000074A JEE vaC for EBF and IBF confiqura-
c/z b 2 tions

>
(ep]
=)
w
[

= J . .
aC = 0.000028/\C/2 Jg: /ACzu for USB configurations

Effective Dihedral

And the tail off value of the effective dihedral parameter is given

by:
c, =2¢ + C, + 4AC + AC + AC
e g \O /Jp L, T s, g
(0} f - u
where
Cz is the DATCOM estimate of C2 at zero lift from
60 section 5.2.2.! 8

c
2
(C_s) is the DATCOM estimate of the effect of 1ift
D coefficient on Cz from section 5.2.2.1.
8

(c%) 2
o = 0.3\ DIF'(cos Acsp) ACLP

AC =
Bf L
ACQ = ACY . Co0sS a + T sin a)
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X at high 1ift conditibns.

aC

Y
By
ACnB =
t
Aclg =
t
2 where
o ACYB'
- t/o
E! and
.; Kc
2 K
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and
_ 6 + a,2
Ac28 = [KQA + 0.000092A - 0.000035T + K, (“==2) ]AcLu
u
where
K = -0.00065 - 0.0195(1 - cos A_,,) for IBF configurations
zA c/2
Ky = -0.00045 - 0.009(1 - cos Ac/z) for EBF and USB
A configurations
] and
= Kg = 0.0015 for IBF configurations
3 K =0 for EBF and USB configurations
n Tail Contribution

The tail contribution increases because of a strong sidewash induced

The tail contributions are based on the DATCOM

estimate of the power off tail contribution and are given by:

aCy (1 + Ko)
B;)o

“t Zt
ACY (1 + Ko) (s— cos a + = sin a)
Be Jo

2y 2y .
ACY (1 + Kc) (5— cos a - p— sin a)
B /o

is the DATCOM estimate of the tail contribution from
section 5.3.1.1

is the 1ift induced sidewash factor and is given by:

. 0.0135
- b, x.

j 3
b b

CL
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DISCUSSION OF LIMITATIONS

The present study has examined the lateral/directional data on a wide
variety of powered 1ift STOL configurations in an attempt to identify the
primary factors that determine the lateral/directional characteristics at
high power, high 1ift conditions. A number of anomalies have been encount-
ered in developing the correlations presented hera, BRecause thaese anoma-
lies could not be explained, it was necessary in some cases to ignore what
appears to be perfectly good data in arriving at the expressions that make
up the present method., Data obtained in the future méy explain these
anomalies or show that data ignored should have been used and data used was
not valid, The user should keep in inind the problems discussed in the
preceding sections and be prepared to make adjustments as more pertinent
data becomes available to him,

Like the DATCOM method which provides the power off starting point for
thé present method, it is limited to the low to moderate angle of attack
range where the flow on the wing-flap system is unseparated. The data base
consisted primarily of high wing transport type configurations. The
effects of moving the wing to a low position are unknown and application of
the method o wings with aspect ratios below about 7 and sweep angles above
about 30 degrees should be made with caution.

The present method is intended for use only in preliminary design work
and to give a general indicatior. of the effects of the primary configura-
tion variables. The aerodynamic characteristics of STOL configurations are
a complex function of many configuration variables and the development of
any distributed jet STOL aircraft will require careful experimental in-
vestigations to accurately determine the lateral/directional forces and
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CONCLUDING REMARKS

This study has examined the possibility of developing a method for
estimating the lateral/directional stability characteristics of distributed
jet (jet flap) STOL configurations and developed a method that is believed
to account for the major effects of operating at high power-on lift
coefficients. [In addition to inducing a large stabilizing side wash at the
vertical tail, powered lift reduces the directional instability
contribution of the wing/body, increases the side force due to sideslip and
tends to reduce (depending on the amount of geometric dihedral
incorporated) the high level of effective dihedral normally associated with
swept wings at high 1ift coefficients,

The method is intended for use only in preliminary design and not as 2
substitute for a carefully conducted wind tunnel program which will still
be required in the development of any powered 1ift aircraft. The data base
on which the method is based is primarily from model tests of high wing
transport configurations. The effects of moving the wing to a low position
are unknown and application of the method to configurations with wings hav-
ing aspect ratios less than about 7 and sweep angles above about 30 degrees

should be made with caution.
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