UNCLASSIFIED	ELECTR	RONIC PI	ROPERTI	ES INFO	N AND G U) THER RMATION -C-1007	ERMANIU MOPHYSI ANALYS	IS., H	TS H LI 7/2	1/	2	_	
	GINDAU											
												E,

Sec. Sec. Sec. 1.

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

6

THERMOPHYSICAL PROPERTIES RESEARCH CENTER ELECTRONIC PROPERTIES INFORMATION CENTER THERMOPHYSICAL AND ELECTRONIC PROPERTIES INFORMATION ANALYSIS CENTER UNDERGROUND EXCAVATION AND ROCK PROPERTIES INFORMATION CENTER

REFRACTIVE INDEX OF SILICON AND GERMANIUM AND ITS WAVELENGTH AND TEMPERATURE DERIVATIVES

Bу

H. H. Li

CINDAS REPORT 53

March 1979

Prepared for

OFFICE OF STANDARD REFERENCE DATA National Bureau of Standards U.S. Department of Commerce Washington, D.C. 20234

and

DEFENSE SUPPLY AGENCY U.S. Department of Defense Alexandria, Virginia 22304

UN 0 2 1983

Ε

33

This document has been approved for public release and sale; its distribution is unlimited.

CENTER FOR INFORMATION AND NUMERICAL DATA ANALYSIS AND SYNTHESIS PURDUE UNIVERSITY PURDUE INDUSTRIAL RESEARCH PARK 2595 YEAGER ROAD WEST LAFAYETTE, INDIANA 47906

MA12888

00

ir file Copy

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS
REPORT NUMBER 2. GOVT ACCESSION NO	BEFORE COMPLETING FORM
An- A1288	× ×
TITLE (and Subtitle)	5. TYPE OF REPORT & PERIOD COVERE
Refractive Index of Silicon and Germanium and its Wavelength and Temperature Derivatives	State-of-the-Art Report
	6. PERFORMING ORG. REPORT NUMBER CINDAS Report 53
AUTHOR(s)	8. CONTRACT OR GRANT NUMBER(s)
H. H. L1	DSA-900-79-C-1007
PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Thermophysical and Electronic Properties	AREA & WORK UNIT NUMBERS
Information Analysis Center, CINDAS/Purdue Univ.,	
2595 Yeager Rd., W. Lafayette, IN 47906	
CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
Defense Technical Information Center, Defense	March 1979
Logistics Agency, Attn: DTIC-AI, Cameron Station,	13. NUMBER OF PAGES
Alexandria, VA 22314 MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office)	130 15. SECURITY CLASS, (of this report)
Army Materials and Mechanics Research Center	
Attn: DRXMR-P	Unclassified
Arsenal Street	15a. DECLASSIFICATION/DOWNGRADING
Watertown, MA 02172	SCHEDULE N/A
Distribution unlimited	
Distribution unlimited 7. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different fro	m Report)
7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different fro	m Report)
7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different fro B. SUPPLEMENTARY NOTES	m Report)
7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different fro	m Report)
DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different fro B. SUPPLEMENTARY NOTES (DTIC Source Code 413571); TEPIAC Publication Microfiche copies available from DTIC	
7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different fro 8. SUPPLEMENTARY NOTES (DTIC Source Code 413571); TEPIAC Publication Microfiche copies available from DTIC 1. KEY WORDS (Continue on reverse side if necessary and identify by block number)	
7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different fro B. SUPPLEMENTARY NOTES (DTIC Source Code 413571); TEPIAC Publication	
7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different fro 8. SUPPLEMENTARY NOTES (DTIC Source Code 413571); TEPIAC Publication Microfiche copies available from DTIC 9. KEY WORDS (Continue on reverse side if necessary and identify by block number, *Refractive index*Silicon*Germanium 9. ABSTRACT (Continue on reverse side if necessary and identify by block number)	*Electronic properties
7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from B. SUPPLEMENTARY NOTES (DTIC Source Code 413571); TEPIAC Publication Microfiche copies available from DTIC NEEY WORDS (Continue on reverse side if necessary and identify by block number, *Refractive index*Silicon*Germanium ABSTRACT (Continue on reverse side if necessary and identify by block number) Refractive index data for silicon and german and analyzed. Recommended values of refractive is spectral region were generated in the ranges 1.2 silicon, and 1.9 to 16 µm and 100-550 K for german values was based on a dispersion equation which be covering wide temperature and wavelength ranges. refractive index was simply calculated from the fi	*Electronic properties ium were searched, compiled, ndex for the transparent to 14 µm and 100-750 K for nium. Generation of these est fits selected data sets Temperature derivative of

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

20. ABSTRACT (Cont)

existing dn/dT data.

.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

REFRACTIVE INDEX OF SILICON AND GERMANIUM AND ITS WAVELENGTH AND TEMPERATURE DERIVATIVES

By

H. H. Li

CINDAS REPORT 53

March 1979

Accession For NTIS GRA&I Å Prepared for DTIC TAB Unannounced OFFICE OF STANDARD REFERENCE DATA Justification. National Bureau of Standards U.S. Department of Commerce Washington, D.C. 20234 By_ Distribution/ and Availability Codes Avail and/or DEFENSE SUPPLY AGENCY Dist Special U.S. Department of Defense Alexandria, Virginia 22304

CENTER FOR INFORMATION AND NUMERICAL DATA ANALYSIS AND SYNTHESIS Purdue University Purdue Industrial Research Park 2595 Yeager Road West Lafayette, Indiana 47906 ABSTRACT

micrometric

Refractive index data for silicon and germanium were searched, compiled, and analyzed. Recommended values of refractive index for the transparent spectral region were generated in the ranges 1.2 to 14 μ m and 100-750 K for silicon, and 1.9 to 16 μ m and 100-550 K for germanium. Generation of these values was based on a dispersion equation which best fits selected data sets covering wide temperature and wavelength ranges. Temperature derivative of refractive index was simply calculated from the first derivative of the equation with respect to temperature. The results are in concordance with the existing dn/dT data.

Key Words: refractive index, temperature coefficient of refractive index, optical constants, silicon, germanium.

CONTENTS

	Page
ABSTRACT	111
LIST OF TABLES IN TEXT	vi
LIST OF FIGURES	vii
LIST OF SYMBOLS	viii
1. INTRODUCTION	1
2. THEORETICAL BACKGROUND ON REFRACTIVE DISPERSION IN CRYSTALS	7
3. PRESENTATION OF NUMERICAL DATA	13
3.1. Silicon	15
3.2. Germanium	36
4. CONCLUSIONS AND RECOMMENDATIONS	59
5. REFERENCES	61
APPENDIX	67
Table A-1.Experimental Data on the Refractive Index of Silicon(Wavelength Dependence)	68
Table A-2.Experimental Data on the Refractive Index of Silicon (Temperature Dependence)(Temperature Dependence)	81
Table A-3. Experimental Data on the Temperature Derivative of Refractive Index of Silicon (Wavelength Dependence)	89
Table A-4. Experimental Data on the Temperature Derivative of Refractive Index of Silicon (Temperature Dependence)	90
Table A-5. Experimental Data on the Refractive Index of Germanium(Wavelength Dependence)	92
Table A-6. Experimental Data on the Refractive Index of Germanium(Temperature Dependence)	115
Table A-7. Experimental Data on the Temperature Derivative of Refractive Index of Germanium (Wavelength Dependence) .	122
Table A-8.Experimental Data on the Temperature Derivative of Refractive Index of Germanium (Temperature Dependence)	124

.....

V

LIST OF TABLES IN TEXT

		Page
1.	Some Physical Properties of Silicon	4
2.	Some Physical Properties of Germanium	5
3.	Recommended Values on the Refractive Index of Silicon	29
4.	Recommended Values on the Temperature Derivative of Refractive Index of Silicon	31
5.	Calculated Values on the Wavelength Derivative of Refractive Index of Silicon at 293 K	33
6.	Recommended Values on the Refractive Index of Germanium	51
7.	Recommended Values on the Temperature Derivative of Refractive Index of Germanium	53
8.	Calculated Values on the Wavelength Derivative of Refractive Index of Germanium at 293 K	55

vi

LIST OF FIGURES

		Page
1.	Available Experimental Refractive Index of Silicon (Wavelength Dependence)	. 16
2.	Available Experimental Refractive Index of Silicon (Temperature Dependence)	. 17
3.	Selected Experimental Refractive Index of Silicon (Wavelength Dependence)	. 19
4.	Available Experimental dn/dT of Silicon (Wavelength Dependence) .	. 21
5.	Available Experimental dn/dT of Silicon (Temperature Dependence) .	. 22
6.	Variation of Refractive Index of Silicon with Temperature at Wavelength 3 µm [12]	. 25
7.	Temperature Dependence of the Optical Energy Gap of Silicon [15] .	. 27
8.	Recommended n-λ-T Diagram of Silicon	. 30
9.	Recommended dn/dT-λ-T Diagram of Silicon	. 32
10.	Recommended dn/dλ Curve of Silicon at 293 K	. 34
11.	Available Experimental Refractive Index of Germanium (Wavelength Dependence)	. 37
12.	Available Experimental Refractive Index of Germanium (Temperature Dependence)	. 38
13.	Selected Experimental Refractive Index of Germanium (Wavelength Dependence)	. 41
14.	Available Experimental dn/dT of Germanium (Wavelength Dependence)	. 43
15.	Available Experimental dn/dT of Genuanium (Temperature Dependence)	. 44
16.	Variation of Refractive Index of Germanium with Temperature at Wavelength 3 μ m [12]	. 47
17.	Temperature Dependence of the Optical Energy Gap of Germanium [16]	. 49
18.	Recommended n-λ-T Diagram of Germanium	. 52
19.	Recommended dn/dT- λ -T Diagram of Germanium	. 54
20.	Recommended dn/d) Curve of Germanium at 293 K	. 56

Ward's .

.

LIST OF SYMBOLS

Adjustable constant; lattice constant Adjustable constants A, A_0, A_1, A_2 Ъ Adjustable constant Adjustable constant В С Adjustable constant С Adjustable constant D Adjustable constant Ε Adjustable constant Eg Energy gap Length at 293 K L293 Refractive index n Complex refractive index; density of harmonic oscillator N Т Absolute temperature Volume V Greek Symbols Linear thermal expansion coefficient α Damping factor γ Complex dielectric constant, value of dielectric constant ε ε, Real part of ε Imaginary part of ϵ ε2 Static dielectric constant ε, High-frequency dielectric constant æ³ Extinction coefficient; oscillator strength κ λ Wavelength of light Wavelength of the ith absorption band λ_i Δ Change in a quantity

v Wavenumber

٧₁

Resonant frequency; wavenumber of the ith absorption band

viii

1. INTRODUCTION

SCOPE OF PRESENT INVESTIGATION

The refractive index of a material is one of its fundamental and useful optical properties. Accurate knowledge of the refractive index over a wide range of wavelength is indispensable for many applications. Although this property continues to receive attention for both industrial as well as purely scientific applications, the current state of the available data is less than adequate. While experimental results for the refractive index of pure silicon and germanium are reported by several groups of investigators claiming high internal accuracy and agreement, the data as a whole are in disagreement.

In this study, an attempt is made to consolidate all of the published refractive index data on silicon and germanium and to critically evaluate the raw experimental data and techniques of observation. A modified Sellmeier type dispersion relation is utilized to describe the available body of data. The resultant equations were used to generate the most probable values which agree with the selected experimental data to within $\pm 2.0 \times 10^{-3}$ over the wavelength range 1.2 to 14.0 µm for silicon and 1.9 to 18.0 µm for germanium.

GENERAL CHARACTERISTICS OF SILICON AND GERMANIUM

Silicon makes up nearly 26%, by weight, of the earth's crust and is the second most abundant element. It is not found free in nature but occurs chiefly as oxides and silicates. Rock, sand, quartz, agate, flint, jasper, and opal are a few forms of silicon oxides. Granite, asbestos, feldspar, mica, clay, etc. are silicate minerals. Although Gay Lussac and Thenard probably were the first to prepare impure, amorphous silicon in 1811 by heating potassium with silicon tetrafluoride, Berzelius is generally credited with the discovery in 1824. He succeeded in preparing amorphous silicon by the same general method used earlier, but he purified the product by removing the fluorosilicates by repeated washings. Crystalline silicon was first prepared by Deville in 1854.

In commercial scale, silicon is recovered from its oxide by reduction with carbon. Purification is made by distillation of filicon tetrachloride with subsequent reduction of the tetrachlorine. With .nc. Hyper-pure single crystal silicon is produced by the thermal decomposition of ultrapure trichlorosilane in a hydrogen atmosphere and by a vacuum float zone process. Highly purified silicon has a resistivity of approximately 2.5 x 10^5 ohm-cm. Pure silicon crystal transmits more than 95% of incident radiation in the spectral range from 1.3 to 6.7 μ m. Thus, it is found to be useful in fabricating optical components used in infrared instruments.

Silicon is a chemically inert element which is attacked only by halogens, dilute alkali, and hydrofluoric acid. In its pure form or doped, respectively, with arsenic, boron, gallium, and phosphorus, silicon is a superb semiconductor that has found a wide variety of applications in infrared optics, electronics, solar energy conversion, and even as an industrial alloying agent and silicone products.

Germanium was first discovered in 1871 by Mendeleef as the 32nd element, and he named it ekasilicon, meaning "like silicon". Unfortunately, this label turned out to be somewhat of a misnomer and, although Clemens Winkler is credited with the discovery of the element in 1886, germanium has become an element of interest in its own right only since the early 1950's. Naturally occurring germanium has a tendency to crystallize with other elements rather than forming a binary mineral compound of its own. It is readily found in the ores of zinc, copper, silver, arsenic, and iron. While this property hindered early attempts at its isolation and purification, it has become the most prominent single asset of germanium for many varied applications in the electronics industry. Its extensive presence in nature allows for easy extraction and refinement with existing technology and underlies the present importance of germanium as a semiconducting material.

Germanium occurs naturally in agyrodite, a sulfide of germanium and silver, in germanite which is composed of approximately 8% pure germanium, in zinc ores, coal, and numerous other combinations. Commercially, germanium is most frequently extracted from the flue dusts of zinc ore smelting processes as well as from combustion by-products of several types of coal. This second source should assure an abundant supply of germanium for the immediate future. Subsequent purification of the raw element, most commonly by zone-refining techniques, permits the production of ultra-high purity samples in commercial quantities. Crystalline germanium, having an impurity content of less than one part in 10¹⁰ has been produced in this manner. Highly purified germanium has a resistivity of 50 ohm-cm or higher.

Germanium has rapidly become one of the most important semiconducting materials, second only to silicon in overall applications. Through existing techniques, germanium is readily doped with many elements in precisely determined quantities and thereby finds its important applications in solid state electronics. However, germanium is also finding many other applications ranging from an industrial alloying agent to a chemotherapeutic agent in bacteriological studies. Germanium, and germanium oxide, are both transparent in the infrared region of the spectrum and are extremely important optical materials for both lenses and lens coatings used in infrared detection equipment.

ALC: NO.

Both of these silvery-grey metals, silicon and germanium, are useful optical materials in both their single crystal and polycrystalline forms. They occur naturally in the diamond lattice wirtzite and zinc-blende structures. Most commonly it is seen as two interpenetrating face centered cubic structures displaced by about 1/4 of the distance along the main body diagonal. This creates a structure in which each atom has four nearest neighbors located at the corners of a regular tetrahedron. Thus, the distance between nearest neighbors is $\sqrt{3}$ a/4, where a is the lattice constant. Silicon and germanium occur as Group IV elements having four outer electrons and bonding orbitals of the sp³ hybrid type. The four orbitals define a regular tetrahedron and may accommodate two electrons, thus bonds are completely covalent in nature, an exact analogy to the diamond structure. Although hard and brittle at room temperatures, large crystals of high purity silicon and germanium have been grown and many difficult shapes have been fabricated including optical quality domes.

Some of the physical properties of silicon and germanium are given in Tables 1 and 2, respectively.

Property	Value	Reference
Atomic number	14	
Atomic weight	28.086	
Density, g cm ⁻³	2.32902	[1]
Melting point, K	1685	[2]
Energy gap at 300 K, eV	1.120	[3]
Lattice constant, Å	5.430951	[4]
Solubility in water at 298 K, $g \cdot 10^{-2} cm^{-3}$	<0.005	[5]
Linear expansion coefficient at 293 K, $10^{-6}K^{-1}$	2.6	[6]
Thermal conductivity at 300 K, W cm ⁻¹ K ⁻¹	1.48	[7]
Specific heat at 298 K, cal $g^{-1}K^{-1}$	0.170	[8]
Transmission region, μ m	1.2-15	
Young's modulus, 10 ⁶ psi	19.0	[5]
Hardness, Knoop no.	1100-1400	[5]

. . .

TABLE 1. SOME PHYSICAL PROPERTIES OF SILICON

Property	Value	Reference
Atomic number	32	
Atomic weight	72.593	
Density, g cm ⁻³	5.32674	[1]
Melting point, K	1210	[9]
Energy gap at 300 K, eV	0.663	[3]
Lattice constant, Å	5.646133	[11]
Solubility in water at 298 K, g • 10 ⁻² cm ⁻³	<0.005	[5]
Linear expansion coefficient at 293 K, 10^{-6} K ⁻¹	5.7	[10]
Thermal conductivity at 300 K, $W \text{ cm}^{-1} \text{K}^{-1}$	0.599	[7]
Specific heat at 298 K, $cal g^{-1}K^{-1}$	0.0769	[8]
Transmission region, µm	1.8-23	[8]
Young's modulus, 10 ⁶ psi	14.9	[5]
Hardness, Knoop no.	700~880	[5]

TABLE 2. SOME PHYSICAL PROPERTIES OF GERMANIUM

State of States

a set a state of the

وتحصيلات والا

2. THEORETICAL BACKGROUND ON REFRACTIVE DISPERSION IN CRYSTALS

Dispersion relations are of fundamental importance to the description of the optical properties of materials. They relate both the absorptive and dispersive properties into one relatively concise statement describing a general linear relationship between fundamental amplitudes. The only two major restrictions are boundedness and causality, thus these relations are useful in many fields and applications in both physics and engineering.

The dispersion of radiation in an optical material is intimately related to the microscopic structure of the material itself. In the most general terms, long wavelength transmission is limited by molecular vibrations and rotations while short wavelength transmission is limited by the electronic excitations of individual atoms. Practically, this implies that the fundamental transparent spectral range may be determined by knowledge of the absorption spectra of a material. The energy necessary for electronic excitations is generally noted by the location of the energy gaps while the molecular excitation is represented by the fundamental phonon frequency. Experimentally, both of these parameters may be altered by various techniques including doping, stress, strain, and temperature variations. One other area of primary importance is that of point defects. The varied effects of point defects in semiconducting materials plays an important role in both the electrical and optical properties, however a detailed analysis of these effects is given by Crawford and Slifkin [11].

In general, the absorption and transmission of a material is not well known except for a small wavelength range. Thus, on theoretical grounds, it is convenient to consider dispersion as arising from two major sources separately; namely, the bound and free electrons. In non-conducting dielectric materials, the bound electron, or molecular, interactions tend to predominate, while free electron interactions are most common in metals. In semiconducting materials, both of these contributions may be important. In fact, most semiconductors show an optical absorption and an anomalous dispersion in the far-infrared region. This effect is rather small in covalent semiconductors like Si and Ge, it increases, however, with increasing polarity. Both the radio-frequency measurement and infrared observation indicate that the effect of free carriers on Si and Ge are negligibly small. Furthermore, in the elemental Si and Ge, the lattice has no permanent dipole moment and carriers the lattice absorption.

PRECENCING PAGE BLANK-NOT FILMED

For pure dielectrics, the wavelength or frequency dependence of the optical constants may be described by the classical treatment of Lorentz. The theory assumes the solid to be composed of a series of independent oscillators, which are set into forced vibrations by the incident radiation. The Lorentz theory of absorption and dispersion for both insulating and semiconducting materials leads to the two familiar relations,

$$n^{2} - \kappa^{2} = 1 + \sum_{i} \frac{N_{i}(v_{i}^{2} - v^{2})}{(v_{i}^{2} - v^{2})^{2} + \gamma_{i}^{2}v^{2}}$$
(1)

and

$$2n \kappa = \frac{1}{\nu} \sum_{i} \frac{N_{i} \gamma^{2} \nu^{2}}{(\nu_{i}^{2} - \nu^{2})^{2} + \gamma_{i}^{2} \nu^{2}}$$
(2)

where n is the refractive index, κ the absorption index, N_i the parameter associated with the oscillator strength of the i-th oscillator, v_i the resonant frequency of the i-th oscillator and γ_i the damping constant of the i-th oscillator. In the transparent wavelength region, eq. (1) can be reduced to a Sellmeier type equation by neglecting the line width of the oscillators, thus reducing to:

$$n^{2} = 1 + \sum_{i} \frac{a_{i}\lambda^{2}}{\lambda^{2} - \lambda_{i}^{2}} + \sum_{j} \frac{b_{j}\lambda^{2}}{\lambda^{2} - \lambda_{j}^{2}}$$
(3)

(4)

Terms in the first summation are contributions from the ultraviolet absorption bands and those in the second from the infrared absorption bands. From eq. (3), the dielectric constants, ε_{∞} and ε_0 , of the material under consideration are defined as:

$$\varepsilon_{\infty} = 1 + \sum_{i=1}^{\infty} a_{i},$$

and

 $\varepsilon_0 = 1 + \Sigma a_i + \Sigma b_j$

As noted before, the effects of free carries and lattice absorption are found to be negligibly small in elemental Si and Ge, thus the contributions from infrared absorption bands can be dropped and eqs. (3) and (4) are simplified to:

$$n^{2} = 1 + \sum_{i} \frac{a_{i}\lambda^{2}}{\lambda^{2} - \lambda_{i}^{2}}$$
(5)

and

$$\varepsilon = \varepsilon_0 = \varepsilon_{\infty} = 1 + \Sigma \mathbf{a}_{\mathbf{i}}$$
(6)

In an ideal application of eq. (5), one would need to know the wavelengths of all of the absorption peaks in the short wavelength region. This is very difficult in practice because of the large number of absorption peaks. In fact, only a few absorption peaks are accessible for experimental observation. It is also observed that among the absorption peaks, only the one that is located closest to the transparent region has noticeable effect on the refractive index in the transparent region. In order to simplify the calculations of the effect due to unobserved absorption bands and those other than the one affecting most the refractive index in the transparent region, the following considerations were taken. Each term, except the predominating one, in the summation of eq. (5) is expanded as:

$$\frac{\mathbf{a}_{\mathbf{i}}\lambda^{2}}{\lambda^{2}-\lambda_{\mathbf{i}}^{2}} = \mathbf{a}_{\mathbf{i}}\left(1+\frac{\lambda_{\mathbf{i}}^{2}}{\lambda^{2}}+\frac{\lambda_{\mathbf{i}}^{4}}{\lambda^{4}}+\ldots\right)$$
(7)

Since λ_i 's are usually considerably smaller than λ 's in the transparent region, a good approximation of eq. (5) is

$$n^{2} = 1 + \sum_{i=2}^{N} a_{i} \left(1 + \frac{\lambda_{i}^{2}}{\lambda^{2}} \right) + \frac{a_{1}\lambda^{2}}{\lambda^{2} - \lambda^{2}}$$
(8)

or

$$n^{2} = 1 + \sum_{i} a_{i} + \frac{1}{\lambda^{2}} \sum_{i=2}^{N} a_{i}\lambda_{i}^{2} + \frac{a_{1}\lambda_{1}^{2}}{\lambda^{2} - \lambda_{1}^{2}}$$
(9)

with a_1 and λ_1 associated with the term that has the greatest effect on the refractive index in the transparent region. Therefore, we have the simplified dispersion equation as:

$$n^{2} = \varepsilon + \frac{A}{\lambda^{2}} + \frac{B\lambda_{1}^{2}}{\lambda^{2} - \lambda_{1}^{2}}$$
(10)

where A and B are adjustable parameters, $\lambda_1 = 1.1071 \ \mu m$ for Si and $\lambda_1 = 1.8703 \ \mu m$ for Ge [3]. Equation (10) can be generalized to include temperature as an independent variable. In this case, the parameters ε , A, B, and λ_1 are functions of temperature.

At long wavelengths, the dielectric constant, ε , is numerically equal to the square of refractive index, i.e., $\varepsilon(T) = n^2(T)$ at long wavelength. Therefore,

$$\frac{1}{\varepsilon(T)} \frac{d\varepsilon(T)}{dT} = 2 \frac{1}{n(T)} \frac{dn(T)}{dT}$$
(11)

Cardona, Paul, and Brooks [12] found the long-wavelength (1/n)(dn/dT) to be $(3.9 \pm 0.4) \times 10^{-5}K^{-1}$ for Si and $(6.9 \pm 0.4) \times 10^{-5}K^{-1}$ for Ge, between 77 and 400 K. Higher values of (1/n)(dn/T) were observed by other workers: $(4.8 \pm 0.2) \times 10^{-5}K^{-1}$ for silicon [13] and $9.7 \times 10^{-5}K^{-1}$ for germanium [14]. However, these constant values of (1/n)(dn/dT) only hold at high temperatures. Deviation from linearity at low temperatures requires that a non-linear relation between ε and T be established. The values of the dielectric constant which appear in the literature are inaccurate. In the survey work of Young and Frederikse [17], the value for Si varies from 11.7 to 12.1 and that of Ge from 13.6 to 16.6. As a consequence, the reported values of ε are not suitable for eq. (10) and $\varepsilon(T)$ can only be obtained by fitting selected room-temperature refractive index data to eq. (10). The temperature dependence of λ_1 was investigated by Macfarlane et al. [15,16], their results are $d\lambda_1/dT = 0.000267 \ \mu m \ K^{-1}$ for Si and 0.001016 \mu m \substant T for Ge at temperatures higher than 200 K. Non-linearity predominates at low temperatures.

The parameters, A and B, in eq. (10) can be expressed in terms of temperature based on the considerations given below. Since

$$A = \sum_{i=2}^{N} a_i \lambda_i^2 \text{ and } B = a_1$$
 (12)

and the a's are respectively proportional to the density of the corresponding oscillator, the temperature dependence of a_i is given by the relation

$$\frac{1}{a_{1}}\frac{da_{1}}{dT} = -\frac{1}{V}\frac{dV}{dT} = -3\alpha$$
 (13)

where V and α are respectively the volume and the thermal expansion coefficient of the material. Hence

$$-3 \int_{293}^{T} \alpha dT$$

$$a_{10} = a_{10} e^{-3\Delta L(T)/L_{293}}$$
(14)

with a_{01} being the value of a_1 at 293 K. Furthermore, each of the λ_1^2 's in the summation can be considered as a quadratic function of temperature because it is an experimentally observed fact that λ_1 is approximately a linear function of T [18] in the temperature region of interest. Therefore

$$A(T) = e^{-3\Delta L(T)/L_{293}}(A_0 + A_1T + A_2T^2)$$
(15)

and

$$B = B_0 e^{-3\Delta L(T)/L_{293}}$$
(16)

where A_0 , A_1 , A_2 , and B_0 are adjustable coefficients. Incorporating these considerations into eq. (10), the latter can be written in the general form as

$$n^2 = f(\lambda, T) \tag{17}$$

In the actual cases, however, one finds negligibly small values for B_0 's through data fitting procedures. As a result, the following dispersion equation is adopted to calculate the refractive index of Si and Ge:

$$n^{2}(\lambda,T) = \varepsilon(T) + \frac{A(T)}{\lambda^{2}}$$
(18)

With ε and the parameters A_0 , A_1 , and A_2 appropriately determined, dn/dT and dn/d λ can be easily calculated taking the first derivatives of eq. (18) with respect to T and λ .

3. PRESENTATION OF NUMERICAL DATA

Reference data are generated here through critical evaluation, analysis, and synthesis of the available experimental data. The procedure involves critical evaluation of the validity and accuracy of the available data and information, resolution, and reconciliation of disagreements in cases of conflicting data, correlation of data in terms of various controlling parameters, curve fitting with theoretical or empirical equations, and comparisons of experimental values with predictions. No attempt was made to analyze the thin-film data and the regions of strong absorption, because of the scantiness of reliable information. However, experimental data of thin films and absorption regions are also presented along with those of the transparent region in the tables reporting experimental data.

A number of figures and tables summarize the information and give data as a function of wavelength and temperature. The conventions used in this presentation, and specific comments concerning the interpretation and use of the data are given below. The subsections for Si and Ge give all the information and data for a given material and cover the following:

- a. A text discussing the data, analysis, and recommendations,
- b. A figure of experimental n values (for wavelength and temperature, respectively),
- c. A figure of experimental $dn/dT = f(\lambda)$,
- d. A figure of experimental dn/dT = f(T),
- e. A table of experimental data on $n = f(\lambda)$, given in Appendix
- f. A table of experimental data on n = f(T), given in Appendix,
- g. A table of experimental data on $dn/dT = f(\lambda)$ given in Appendix,
- h. A table of experimental data on dn/dT = f(T) given in Appendix,
- 1. Figures of recommended or provisional values of n, dn/dT, and dn/d λ ,
- j. Tables of recommended or provisional values of n, dn/dT, and $dn/d\lambda$.

In figures containing experimental data, selected data sets are labeled by appropriate legends corresponding to those in the corresponding tables of experimental data given in Appendix, where specifications for individual data sets are also included.

There are a number of experimental methods used for the determination of refractive index, among which the following are those commonly used:

NOR MARCHINE YILLOW

Deviation method (prism method) Interference method Transmission method Reflection method High frequency modulation method Brewster angle method Polarization method Thickness determination method Multilayer method

The methods listed above are arranged in the order of their inherent accuracy or popularity. The deviation method is the most popular means of determining the refractive indices, but the accuracy of the results depends on the conditions of the prism specimen. The highest accuracy that can be attained is in the fifth decimal place. The interference technique can be used to obtain data up to the fourth decimal place. Transmission and reflection methods yield results good to the second place, while the multilayer results are no better than two places. For a comprehensive, yet concise, review of all these methods, the reader is referred to references [19] and [20].

Dispersion equations for Si and Ge have been proposed in earlier works. Available relations are discussed in the text so as to facilitate comparison. Refractive indices for most of selected data sets are reported to the fourth decimal place. However, detailed compositions and characterizations of the specimens were usually not clearly given. Since impurities in the sample and conditions of the surface are decisive factors affecting the accuracy of the observed results, such highly precise data cannot be applied to a sample chosen at random. For this reason no attempt is made to recommend any particular set of data with the reported high accuracy, but to generate the most probable values for the pure crystals. As a result, the estimated uncertainties for the recommended values on the refractive index are higher than those for the reported data obtained even by high-precision measurements. The accuracy of the recommended refractive index values in this work is estimated to be 1 to 2×10^{-3} .

3.1. Silicon, Si

There are 55 sets of experimental data available for the refractive index (wavelength dependence and temperature dependence) of silicon as tabulated in tables A-1 and A-2 and plotted in figures 1 and 2. It should be pointed out that a few of the data sets are from observations for thin films and are reported here for purposes of comparison. After careful review and evaluation of the available information, it was found that data sets reported by Briggs [21], Salzberg and Villa [22], Cardona et al. [12], Lukes [13,23], Primk [24], and Icenogle et al. [14] are representative for the refractive index of sili-con in the transparent region between 1.3 and 12 μ m.

Briggs [21] probably was the first one who reported the measured refractive index of silicon. A 99.8% pure silicon wedge specimen of about 11.5° apex angle was investigated using minimum deviation method over a spectral range from 1.05 to 2.60 μ m. He stated that the accuracy of his measurements was good to the second decimal place.

Since this first measurement, a number of other investigations have been made. Refractive index determination from 1.35 to 11.04 μ m was made by Salzberg and Villa [22] for a wedge specimen of about 16° apex angle. The sample, of unknown purity, was obtained from the Texas Instrument Company. The autocollimation minimum deviation method was used to determine the refractive index. Their results were lower than those of Briggs by about 5 parts in the third decimal place. They claimed an accuracy of ± 2 parts in the fourth decimal place.

Cardona et al. [23] measured the refractive index of a thin silicon wedge of 5° in the wavelength range from 1 to 5 μ m and at temperatures 100, 194, and 297 K. Their results were about 4 parts in the third decimal place lower than the corresponding ones of Briggs.

Lukes [13,23] measured the refractive index at five wavelengths, 1.259, 1.407, 1.564, 2.409, and 5.156 μ m, over a wide temperature region between 109 and 750 K by the conventional method of minimum deviation. The silicon wedge of \sim 18° angle was prepared from a p-type single crystal with a resistivity of \sim 380 ohm-cm. The reported error was $\pm \sim$ 0.0004, but his values of refractive index were systematically lower than those of Salzberg and Villa by 0.0015.

FIGURE 2. AVAILABLE EXPERIMENTAL REFRACTIVE INDEX OF SILICON (Temperature Dependence)

Primak [24] went to great lengths in the determination of the refractive index of silicon from 1.12 to 2.16 μ m. His results corresponded closely to those reported by Lukes. As he took into account all of the influencing factors in arriving at the final values, he believed that his values were reliable within an uncertainty of 1 or 2 parts in the third decimal place.

Icenogle et al. [14] made a thorough investigation on the refractive index for silicon over the temperature and wavelength ranges of 99-296 K and 2.554-10.27 μ m, respectively. The samples were obtained from the Exotic Materials, Inc. and were characterized as "good optical grade" without further details of purity of the material. The results are in fair agreement with other data sets. The claimed errors were $\pm 3 \times 10^{-4}$.

For the purpose of ease of comparison, the above mentioned data sets are replotted in figure 3. It is obvious that the disagreement among the values reported by different researchers is greater than the accuracy claimed by them. Although internal consistency was observed in each investigation, unaccounted sources of errors are responsible for these discrepancies.

Primak [24] devoted considerable space to the discussion of both systematic and random errors with the conclusion that the systematic errors played the key role in data discord. The possible sources of error were attributed to:

- i. Inadequate care in checking the pyramidal error. If the wedge angle was not perpendicular to the circle and parallel to the telescope, the effective angle would be greater than the true wedge angle with the consequence of a larger deviation angle which would lead to a larger value of refractive index.
- ii. Small wedge angle of the samples. For a highly refracting material such as silicon, a small wedge angle is required to measure the refractive index. As a result, large errors in angle measurement can be introduced and hence in the observed refractive index.
- iii. Broad detector used. Observation in the infrared requires a detector in the determination of deviation angle. The detectors that have been used are in general many times broader than the width of the spectral line, thus decreasing the accuracy in reading the angles. Significant errors are, therefore, inevitably introduced.
- iv. Optical inhomogeneity of the sample. Optical inhomogeneity of the material causes image distortion and thus the error in the angle setting.

Among the above sources, the smallness of the wedge angle is the major factor that contributes to the error. A combination of these contributions limits the accuracy of the measurement of the refractive index by the minimum

SELECTED EXPERIMENTAL PEFRACTIVE INDEX OF SILICON (Wavelength Dependence)

FIGURE 3.

KEFRACTIVE INDEX, n

deviation method to 1 or 2 units in the third decimal place, a few times higher than that claimed by most investigators.

The effect of impurities on the refractive index is considerable. In some cases, observations made on samples of questionable origin and undefined purity may yield radically different results. Villa [25] reported his grossly divergent values (shown in figure 3) to show that sample differences can be very significant. In figure 1 one can see Simon's [26] radically different results obtained for a silicon sample of high impurity content. The data of Spitzer et al. [27], obtained on heavily doped silicon, are significantly divergent from those of pure samples. Thus, when the effects of impurities are taken into consideration, discrepancies from pure samples may be much larger than 2 parts in the third decimal place.

Although the factors discussed above are well known, unfortunately they are generally not cited in literature, but must be deduced from the assigned accuracies. In the present work it is assumed that data sets that are discordant only in the third decimal place are in reasonable agreement. This assumption can be supported by a careful comparison of the observations by Icenogle et al. [14] in which the values of the refractive index at a given wavelength and temperature, obtained from wavelength-dependence observation and from temperaturedependence observation, can be different in many cases by more than 1 part in the third decimal, few times higher than the claimed precision of $\pm 3 \times 10^{-4}$.

More data can be found in references [28-39] and are given in tables A-1 and A-2, in which one can find also data sets obtained on thin films. No attempt was made to analyze the thin film data. However, it has been observed that the refractive indices of pure silicon thin films tend to agree with those of bulk crystal if the films are deposited on substrates maintained at elevated temperatures during deposition or appropriately annealed after deposition. Surface contamination appears to be the most serious problem. However, data for thin films reported by those who exercise appropriate precautions in the sample preparation are usually in agreement with those of bulk material.

Literature data on the temperature coefficient of the refractive index is rather scarce. Data reported in tables A-3 and A-4 and plotted in figures 4 and 5 are those of Lukes [13,23]. His values were evaluated from his measurements given in table A-2 and in figure 2.

1 Ref. [13] [23] 300 300 ១១ T = 293 Kcalculated 2 Θ Θ Ð ย 9 ы 🖗 б 9 9 95 ⁹⁵ ⁹⁵

WAVELENGTH, µm

10 ²

50

10 1

ŝ

10 ⁰

0.5

1.4 [-] 10-1

1.8

1.7

1.6

5.1

4", 10" K-1

6.1

2.0-

2.1

21

Į

and the second second

T(K)

Symbol

Data Set

ହା

2.3 J

5.2

FIGURE 5. AVAILABLE EXPERIMENTAL dn/dT OF SILICON (Temperature Dependence)

Although a significant body of data on the refractive index of silicon are available, an attempt to data analysis has been rare. In the literature, only one quantitative study has been proposed. Hertzberger and Salzberg [40] proposed a dispersion equation for silicon which was derived in conjunction with 13 other materials. They noted that a comparison of the data from 14 materials indicated that all had refractive index values varying asymptotically with λ^2 . Furthermore, the mean asymptote was found to be at $\lambda_0 = 0.168 \ \mu m$. The dispersion relation was based upon a Taylor expansion in λ^2 which retains only the linear terms. The equation is

$$n = A + BL + CL2 + D\lambda2 + E\lambda4$$
 (19)

where λ is in units of μ m, L = $1/(\lambda^2 - \lambda_0^2)$, and the coefficients for silicon in the region 1.3 to 11.0 μ m are

A = 3.41696	D = -0.0000209
B = 0.138497	E = 0.00000148
C = 0.013924	

The determination of the coefficients in this equation was based on a single data set by Salzberg and Villa [22] and the fit is excellent.

In the present work, eq. (10) is used to represent the refractive index for silicon. The main task was the selection of the appropriate parameters ϵ and λ_{\star} , and the determination of the coefficients A and B. But the most important of all was the selection of reliable data sets used as input information to eq. (10). The selected data were limited to the works of Salzberg and Villa, Primak, and Icenogle et al. Data from Cardona et al. and Lukes were not used on the basis that their values had to be read off from the graphs in their reports. Deviations between the graph readings and the true values can occur in the second decimal place of the data. The data of Briggs were not chosen as his values disagree in the second decimal place with the corresponding values of Primak who exercised great care in the experiment for high purity silicon specimens. The remaining data sets from Primak, Salzberg and Villa, and Icenogle et al. constitute the basis of our recommendations. Their results are in agreement in the third decimal as expected. Fortunately, Icenogle's work covered a sizable temperature range, thus permitting the prediction of the refraction index at temperatures other than room temperature.

Selection of ε and λ_1 in eq. (10) was rather difficult. Figure 6 shows the results of Cardona et al. [12] who observed the relative changes of refractive index, $\Delta n/n$, at a wavelength of 3 µm as temperature varied between 77 to 400 K. The average slope, (1/n)(dn/dT), of this curve is $(3.9 \pm 0.4) \times 10^{-5} \text{K}^{-1}$. Lukes [13,23] obtained a higher value of $4.8 \pm 0.2 \times 10^{-5} \text{K}^{-1}$ for (1/n)(dn/dT) by extrapolating his results to longer wavelengths. It appeared that at long wavelengths, ε in eq. (10) could be determined from the relation (1/ ε)(d ε /dT) = (2/n)(dn/dT) using one of the above mentioned (1/n)(dn/dT) values. The result should be an exponential relation of the form $\varepsilon = \varepsilon_0 e^{CT}$. However, as the constancy of (1/n)(dn/dT) does not hold for the wide temperature range of our interest, an empirical relation between ε and T had to be found based on the experimental data of n.

It is shown in figure 2 that curves of temperature dependence of refractive index at various wavelengths are essentially parallel to each other and that each of them smoothly and monotonically increases with temperature. This provides the possibility to find relations between ε and T. Since ε is nearly equal to n^2 at long wavelengths, the best choice in the present case seemed to be the refractive indices at 10.27 µm by Icenogle et al. [14]. As the available data of n(T) at 10.27 µm cover only the limited temperature range from 100 to 298 K, a wider temperature range coverage is needed to establish the relation between ε and T that is valid over the temperature range 100-750 K. As shown in figure 2, the 5.156 µm curve by Lukes [23] is slightly above, but parallel to, the extension made from the 10.27 µm curve. The required 10.27 µm data in the high temperature region can be estimated by an appropriate extrapolation of Icenogle's data within that region. In this way, the following polynomial expression is found to be valid at 10.27 µm and over 100-750 K temperature range,

$$n^{2}(10.27 \text{ } \mu\text{m},\text{T}) = 11.4552 + 2.7765 \times 10^{-5} \text{T} + 1.7066 \times 10^{-6} \text{T}^{2} - 8.1423 \times 10^{-10} \text{T}^{3}$$
 (20)

Since at long wavelengths the dielectric constant closely approaches n , it is acceptable to consider the above quantity as a proportional factor and thus express the dielectric constant by the relation

$$\varepsilon(T) = E n^2 (10.27 \ \mu m, T)$$
 (21)

where E is the proportional constant.

- The second sec

The spectral positions of resonant absorption peaks have been observed by a number of investigators. Moss [41] made an attempt to calculate the refractive indices in the transparent region from the absorption data based on the general principle of oscillatory system. The spectral position of the natural frequency in his single oscillator model was determined at 3.4 eV or $\lambda = 0.365 \,\mu\text{m}$. McLean [3] investigated the absorption edge spectrum of silicon and found the optical energy gap at 300 K to be E_{p} = 1.12 eV or λ_{1} = 1.1071 μ m. Macfarlane et al. [15] further studied the absorption edge spectrum and found that the temperature variation of the optical energy gap is essentially linear in the temperature region 250-480 K, but nonlinearity progressively predominates at lower temperatures, as seen from figure 7. Lukes and Schmidt [18] studied the reflectivity spectrum of silicon and found two additional absorption peaks at about 0.36 and 0.27 μ m. The first one is in line with the Moss' [41] result, while the second corresponds to the prediction of Yu and Cardona [42]. A summary of these findings results in three absorption peaks; namely: $\lambda_1 = 1.1071 \ \mu m$, $\lambda_2 = 0.365 \ \mu\text{m}$, and $\lambda_3 = 0.27 \ \mu\text{m}$, that supposedly have significant effects on the refractive index in the transparent region from 1.2 to 14 μ m.

An attempt was made to fit the selected data to an equation similar to eq. (10) by including extra terms due to λ_2 and λ_3 . It was found, however, that the introduction of the λ_2 and λ_3 terms did not improve the agreement obtained when only the λ_1 term was included. Furthermore, the coefficients of the λ_2 and λ_3 terms could not be uniquely defined because there were no reliable data in the regions bounded by and near the three peak wavelengths. Also, the value of B was found to be negligibly small, thus making the contribution of the last term in eq. (10) insignificant. As a consequence, eq. (18) was adopted and the least squares fitting of selected data to this equation yielded the following expression for the refractive index of silicon in the ranges 1.2 to 14 µm and 100-750 K:

$$n^{2}(\lambda_{1}T) = E(T) + \frac{E(T)}{\lambda^{2}} (\Lambda_{0} + \Lambda_{1}T + \Lambda_{2}T^{2})$$
 (22)

where

 $\varepsilon(T) = 11.4445 + 2.7739 \times 10^{-4}T + 1.7050 \times 10^{-6}T^{2} - 8.1347 \times 10^{-10}T^{3}$, L(T) = $e^{-3\Lambda L(T)/L_{293}}$, λ = wavelength in units of µm, T = temperature in units of K,

$A_0 = 0.8948,$ $A_1 = 4.3977 \times 10^{-4},$ $A_2 = 7.3835 \times 10^{-8},$

and from reference [6]

 $\frac{\Delta L(T)}{L_{293}} = \frac{-0.021 - 4.149 \times 10^{-7} \Gamma - 4.620 \times 10^{-10} T^2 + 1.482 \times 10^{-11} T^3}{-0.071 + 1.887 \times 10^{-6} T + 1.934 \times 10^{-9} T^2 - 4.544 \times 10^{-13} T^3}$ (20-293 K),

It should be pointed out that the room-temperature dielectric constant for silicon can be calculated from the expression for ε in eq. (22). The result is 11.66 which agrees well with the commonly accepted value of 11.7.

Equation (22) was used to calculate the recommended values of the refractive index of silicon with uncertainties of $\pm 2 \times 10^{-3}$. The recommended values are given in table 3 and plotted in figure 8. To provide visual comparison of calculated values with the experimental data, calculated values at a few specified temperatures and wavelengths are plotted in figures 2 and 3 where excellent agreement is revealed. Tables 4 and 5, respectively, give the calculated dn/dT and dn/d λ values based on the first derivatives of eq. (22) with respect to T and λ . The corresponding plots are shown in figures 9 and 10.

Uncertainties in the calculated dn/dT are estimated based on Icenogle's [14] results which were the essential data on which eq. (22) is based. Icenogle et al. evaluated $\Delta n/\Delta T$ values using their own measurements of n and found the average accuracy in $\Delta n/\Delta T$ to be about $\pm 0.15 \times 10^{-4} \text{K}^{-1}$. Error bars corresponding to this amount are drawn on the calculated curves in figures 4 and 5 where calculations are compared with the experimental data. Although accuracies of experimental dn/dT are not given in Lukes' work [13,23], it is reasonable to adopt the same experimental error bar since the n versus T curves in figure 2 are closely parallel.

Uncertainties of the calculated $dn/d\lambda$ are estimated in the following manner. Taking the first derivative of eq. (22) with respect to λ , we have

$$-dn/d\lambda = (1/n) A(T)/\lambda^{3} = (1/n\lambda) (n^{2} - \epsilon)$$
(23)

which leads to

$$\delta(dn/d\lambda) \approx \pm 2 \, \delta n/\lambda \tag{24}$$

Based on the fact that the spectral dependence of the refractive index from various investigators are essentially parallel, it should be permissible to

There 3. Recomended unlies on the referctive index of silicon *

l)	มหานองอาน เล่าสายเล่าสายเล่าสายเล่าสายเล่าสายเล่าสายเล่าเป็นเป็นเป็นเป็นเป็นเป็น
	750	
	700	BR: 100 Provided and 1
	550	๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛
	600	a, a
	550	៵៰៵៵ ៵៵៵៵៵៵៵៵៵៵៵៵៵៵៵៵៵៵៵៵៵៵៵៵៵៵៵៵៵៵៵៵៵
	500	៰៰៰៰៰៰៰៰៰ ៰៰៰៰៰៰៰៰៰៰៰៰៰៰៰៰៰៰៰៰៰៰៰៰៰៰៰
ATURE, K	450	N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.
TEMPERATURE.	400	ម្លេង មួយ
	350	
	233	
	250	0.00000000000000000000000000000000000
	200	๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛
	150	8888 77776888888444488444444444444444444
	100	0.000 0.000 <td< td=""></td<>

TABLE 4. RECOMENDED UNLUES ON THE TEMPERATURE DERIVATIVE OF REFRACTIVE INDEX OF SILICON*

i.

La ran - An - and al

!	750	ຑຑຑຑຑຑຑຑຑຑຑຑຑຑຑຑຑຑຑຑຆຑຆຆຆຎຑຑຑຑຑຑຑຑຑ ຎຎຌຌຌຨຌຨຌຨຨຨຨຬຬຬຬຬຬຬຬຬຬຬຬຬຬຬຬຬຬຬຬຬຬຬຬຬຬ	GND
	200	៰៰៰៰៰៰៰៰៰៰៰៰៰៰៰៰៰៰៰៰៰៰៰៰៰៰៰៰៰៰៰៰៰៰៰៰	fESS
	650	៷ ៷៷៷៷៷៷៷៷៷៷៷៷៷៷៷៷៷៷៷៷៷៷៷៷៷៷៷៷៷៷៷៷៷៷៷	11
	600	ຑຑຑຑຑຑຑຑຑຑຑຑຑຑຑຑຑຑຑຌຎຎຎຎຎຎຎຎຎຎຎຎຎຎຎຎຎຎ	ISE DF TABULAR ACCURACY OF TI
	550	ຑຑຑຑຑຑຑຑຑຑຑຑຑຑຑຑຑຑຑຑຑຑຑຑຑຑຑຑຑຑຑຑຑຑຑຑຑ	URPO TO
	500	୶୶୶୶୶୶୶୶୶୶୶୶୶୶୶୶୶୶୶୶୶୶୶୶ ୶୶୶୶୶୶୶୶୶୶୶୶	FOR THE P RELEUANT
URE, K	450	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	MERELY ARE NOT
TEMPERATURE.	400	<i>៴៴៴៴៴៴៴៴៴</i> ៸៹៶ៜ៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹	UERSTRIKE
	350	よった。 、 、 、 、 、 、 、 、 、 、 、 、 、	NAH T AN NA
	293	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	E REPORTED . DIGITS UITH
	250	・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	PLACES ARE NUMBER OF D
	200		DECIMAL PL
	150		MORE
	100		-
			* IN THIS INTERNAL

λ,μm	$-dn/d\lambda$, $10^{-4} \mu m^{-1}$
1.20	1694.5
1.22	161 <u>4.0</u> 153 <u>8.6</u>
1.24	1538.5
1.26	1467.7
1.28 1.30 1.32	140 <u>1.1</u> 133 <u>8.5</u>
1 39	127 <u>9.5</u>
1.34	1224.0
1.36	1171.6
1.38	1122.1
1.40	112 <u>2.1</u> 107 <u>5.4</u>
1.45	969.3
1.50	96 <u>9.3</u> 87 <u>6.8</u>
1.55	79 <u>5.6</u>
1.60	72 <u>4.1</u>
1.65	660.9
1.70	60 <u>4.8</u>
1.80 1.90	60 <u>4.8</u> 51 <u>0.3</u> 43 <u>4.5</u>
1.90	434.5
2.00	373.0
2.25	262.5
2.50 2.75	131.7
3.00	111 2
4.00	191.7 144.2 111.2 47.0
5.00	24.1
6.00	13.9
7.00	24.1 13.9 8.8
8.00	5,9
9.00	4.1
10.00	4.1 3.0
11.00	2.3
12.00	1.7
13.00	1.4
14.00	1.1

TABLE 5. CALCULATED VALUES ON THE WAVELENGTH DERIVATIVE OF REFRACTIVE INDEX OF SILICON AT 293K*

* IN THIS TABLE MORE DECIMAL PLACES ARE REPORTED THAN WARRANTED MERELY FOR THE PURPOSE OF TABULAR SMOOTHNESS AND INTERNAL COMPARISON. THE NUMBER OF DIGITS WITH OVERSTIKE ARE NOT RELEVANT TO ACCURACY OF THE DATA.

apply the uncertainties, $\delta n = \pm 3 \times 10^{-4}$, quoted in Icenogle's work to evaluate $\delta(dn/d\lambda)$ using the above relation for the wavelength region between 2.55 and 14 µm. For wavelengths ± 2.55 µm, the uncertainty $\delta n = \pm 2 \times 10^{-3}$ of eq. (22) should be used. Under these conditions, uncertainties of $dn/d\lambda$ are about $\pm 20 \times 10^{-4}$ µm⁻¹ at 2 µm, $\pm 2.4 \times 10^{-4}$ µm⁻¹ at 2.55 µm, $\pm 0.6 \times 10^{-4}$ µm⁻¹ at 10 µm, and $\pm 0.44 \times 10^{-4}$ µm⁻¹ at 14 µm.

It should be noted that calculated values in tables 3, 4, and 5 are given with more decimal places than warranted merely for the purpose of tabular smoothness and internal comparison. They should not be interpreted as indicative of the accuracy of the values. Extra figures which are not indicative of the accuracy of the values are indicated with an overstrike.

3.2. Germanium, Ge

There are 88 sets of experimental data available for the refractive index (wavelength and temperature dependences) of germanium as given in tables A-5 and A-6 and plotted in figures 11 and 12. A few sets of measurements on thin films are included for the purpose of completeness and comparison. After careful review and evaluation of the available information, it was found that the data reported by Briggs [21], Salzberg and Villa [22], Cardona et al. [12], Rank et al. [43], Lukes [44,45], Icenogle et al. [14], and Edwin et al. [46] are representative for the refractive index of germanium in the transparent region between 1.8 and 16 μ m.

Briggs [21] measured the refractive index of a germanium specimen of 99.99% purity over the spectral region between 1.8 and 2.6 µm. He used the minimum deviation method on a wedge of about 17° apex angle. The range of his measurements was limited on the short wavelength side by absorption in the prism, and on the long wavelength side by absorption in the glass components of the optical system used. The claimed error was a few parts in the third decimal place. He also observed a definite increase in refractive index value with increasing temperature. In other words, the temperature coefficient of refractive index of germanium is positive.

Since Briggs' observation, several other independent measurements were carried out. Salzberg and Villa [22] used the autocollimation minimum deviation method in the determination of n over a wide wavelength range from 2.0 to 16 μ m for a single crystal germanium prism of 11.8° apex angle with unknown purity. The reported accuracy was estimated to be ±2 parts in the fourth decimal. Compared with the results of Briggs, their n values are systematically about 0.005 lower in the corresponding spectral region. No source was ascribed for such discrepancies. In a later work [47], a polycrystalline sample was measured and they found that there were no significant differences between the results obtained for different crystals.

Cardona et al. [12] measured the refractive index for a thin germanium wedge of 5° in the wavelength range from 1.7 to 5.6 μ m and at temperatures 87, 190, and 297 K. Their n values were also about 0.005 lower than those of Briggs in the corresponding wavelength region. Their results clearly indicate that dn/dt of germanium is positive over the transparent wavelength

ŧ

٩

FIGURE 11. AVAILABLE EXPERIMENTAL REFRACTIVE INDEX OF GERMANIUM (Wavelength Dependence)

AVAILABLE EXPERIMENTAL REFRACTIVE INDEX OF GERMANIUM (Temperature Dependence) FIGURE 12.

region. At a fixed long wavelength, 3 µm, they measure the relative changes of n, $\Lambda n/n$, as a function of temperature. A linear relation between $\Lambda n/n$ and T was observed over the temperature range between 77 and 400 K. The result, $(1/n)(dn/dT) = (6.9 \pm 0.4) \times 10^{-5} K^{-1}$, agrees well with those for the dielectric constant measurement at 10 mc/s [48] at low temperatures, but discrepancies occurred at high temperatures where values obtained in reference [48] are higher. Such discrepancies were attributed to the inhomogeneities and impurities in the samples which effectively reduced the thickness of the capacitors and thus resulted in an apparent increase in the dielectric constant.

Rank et al. [43] measured the refractive index over a wavelength region between 2.0 and 2.4 µm by an interferometric method. A single crystal germanium of unspecified purity was used and the resulting n's were about 0.01 higher than the corresponding values of Briggs. The temperature variation of the refractive index was observed to have a positive coefficient and the absorption edge moved to longer wavelengths as temperature increased.

Lukes [44,45] measured the refractive index for several germanium prism samples cut from single crystals of varying impurity. His measurements were carried out over a wavelength range of $1.8-5.5 \ \mu m$ and the temperature range 100-530 K. The results obtained for the purest sample were in agreement with those of Salzberg and Villa, while the results for the impure samples showed discrepancies at the long wavelengths, the higher the impurity, the lower the n. In the shorter wavelength region, <4 μm , the refractive index appeared practically independent on the impurity content.

Icenogle et al. [14] made a thorough investigation on the refractive index for germanium over the 95-297 K and 2.554-12.360 μ m regions. The samples were obtained from the Exotic Material, Inc. and were characterized as "good optical grade" without further details of purity of the material. The claimed error in the measurement of n was $\pm 6 \times 10^{-4}$. The results disagree with those of other workers by several parts in the third decimal. At room temperature and in the wavelength region where $\lambda > 3 \ \mu$ m, Icenogle's values are higher than the earlier works. The sources for such discrepancies can possibly be ascribed to differences in the impurity content of the samples.

Edwin et al. [46] made careful measurements of n for well characterized germanium specimens in the spectral region $8-14 \mu m$. Their results are in

agreement with Icenogle's values when account is taken of both of their claimed uncertainties. Edwin et al. took into account the main sources of uncertainty in arriving at their reported values, including probable errors from temperature readings, angle determinations, wavelength identification, curvature of slit image, and random errors. The claimed uncertainty of their results is ± 0.0003 . According to their sample description, the specimens had a resistivity about 45 to 53 ohm-cm which indicated that they used purer samples than others.

For ease of comparison, the above mentioned data sets are replotted on an enlarged scale in figure 13. It is obvious that the disagreement among the data sets is greater than the individually claimed accuracies. True internal consistency was observed in each measurement, unaccounted sources or errors were responsible for the discrepancies.

Primak [24] devoted considerable space to discussions of both systematic and random errors for the case of silicon (see subsection 3.1). The conclusions are generally valid for other materials. Among the possible sources, the smallness of the prism angle is the major factor that contributes to the error. Combined with the errors from other sources, the limit of accuracy in the measurement of n by the minimum deviation method is 1 to 2 parts in the third decimal place, a few times higher than that claimed by many workers.

The effect of impurities on the refractive index is considerable. In some cases, observations made on samples of questionable origin and undefined purity may yield radically different results. Simon [26] reported his radically different results (shown in figure 11) obtained for a germanium sample of high impurity content. Spitzer et al. [52] investigated the optical constants of heavily doped germanium with results greatly different from those of pure samples shown in figure 11. Thus, when the effects of impurities are taken into consideration, discrepancies from pure samples may be much higher than 2 parts in the third decimal place.

Although the error causing factors given above are well known, unfortunately they are not generally given in the literature and authors advance independent claims of their own precisions. In the present work it is assumed that data sets are concordant if they are not identical in the third decimal place.

More data can be found in references [49-66] and are given in tables A-5 and A-6, in which one can also find data sets obtained for thin films. No attempt was made to analyze the thin film data. However, it has been observed

SELECTED EXPERIMENTAL REFRACTIVE INDEX OF GERMANIUM (Wavelength Dependence) FIGURE 13.

that the refractive indices of pure germanium thin films tend to agree with those of bulk crystal if the films are deposited on substrates maintained at elevated temperatures during the course of deposition or appropriately annealed after deposition. Surface contamination appears to be the most serious problem. However, data for thin films reported by those who exercised precaution in sample preparation are usually in agreement with those for bulk material.

Literature data on the temperature derivative of the refractive index of germanium is rather scarce. The data tabulated in tables A-7 and A-8 and plotted in figures 14 and 15 are mainly those of Lukes [44,66,67]. His dn/dT values were evaluated from his measurements of n given in table A-6 and figure 12.

Although considerable amount of experimental data on the refractive index of germanium are available, they have received little analysis. The earliest quantitative results for germanium are generally attributed to Brattain and Briggs [49]. While they presented no dispersion relations in their work, they noted that their results were extremely sensitive to specimen preparation and that large discrepancies arose between samples.

The first qualitacive attempt was made by Rank et al. [43], who fitted a Cauchy type dispersion relation of the form

$$n = n_0 + \frac{a}{\lambda^2} + \frac{b}{\lambda^4}$$
(25)

where λ is in units of μ m. They presented results for fits on both their own data and for the Brattain and Briggs data with the following constants:

Data	no	a	<u>b</u>
RBC [43]	4.0385	0.21345	0.5363
BB [49]	3.9992	0.44647	0.6882

While this relation represented well each of the data sets, the authors found discrepancy between the two data sets as indicated by the coefficients.

The next dispersion relation was advanced by Hertzberger and Salzberg [40] which they developed using data for 13 materials in addition to germanium. They noted that comparisons of the data for 14 different materials indicated that all had refractive indices varying asymptotically with λ^2 . They found the mean asymptote of all the materials in the UV region to be at $\lambda_{c} = 0.168 \ \mu m$.

FIGURE 14. AVAILABLE EXPERIMENTAL dn/dT OF GERMANIUM (Wavelength Dependence)

43

- And a state of the second

Their dispersion relation is based upon a Taylor expansion in λ^2 which retains only the linear terms. The form is

$$n = A + BL + CL2 + D\lambda2 + E\lambda4$$
(26)

where λ is in units of μm , $L = 1/(\lambda^2 - \lambda_0^2)$, and the coefficients for the region 2.0 to 13.5 μm are:

А	=	3.99931	D = -0.000060
В	=	0.391707	E = 0.00000053
С	=	0.163492	

These results agree very well with the data from which they are derived.

In the present work, eq. (10) was used to represent the refractive index of germanium. The main task was the selection of the reliable data sets, the appropriate parameters + and λ_1 , and the determination of the coefficients A and B. The data reported by Cardona et al. and Lukes were not used on the grounds that their values in our collection were read from the graphs in their papers. We have found that deviations between the graph readings and the true values were quite large, estimated at 1 to 2 percent. Values reported by Rank et al. (after correcting from vacuum values to air values) appear to be relatively too high compared with those of Briggs and Salzberg and Villa in the corresponding wavelength region, 2.0-2.4 μm .

Although germanium has long been an important infrared material, its refractive index in the long wavelength region has not been well defined. Results from different workers often differ by as much as 0.003. Such a large discrepancy cannot be accounted for by merely experimental errors. Unknown impurities in some of the samples are probably responsible for the differences. However, this very important information is generally missing from the papers. As a result, the current knowledge of the refractive index of germanium still remains uncertain. Results of Edwin et al. [46] and loenogle et al. [14] are uniformly higher than those of Salzberg and Villa [22] in the long wavelength region. Spitzer and Fan [52] observed that the refractive index of an impure sample in the long wavelength region is lower than that of a purer specimen. According to this, it would seem that Salzberg and Villa had more impurities in their specimen than did Edwin and Icenogle. This is not the case, however, as the above mentioned data sets are essentially parallel in the long wavelength region while Spitzer and Fan's results indicate a progressively decreasing n with increasing wavelength (see figures 1 and 11). Based on this consideration, the selected data sets were given equal weight. Fortunately, data by Icenogle et al. cover a sizable temperature range, permitting the prediction of n at temperatures other than room temperature.

Selection of ε and λ_1 presented some difficulties. Cardona et al. [12] observed the relative changes of refractive index, $\Delta n/n$, at a wavelength of 3 µm as temperature varied from 77 to 400 K with results plotted in figure 16. The average slope, (1/n)(dn/dT), of this plot is $(6.9 \pm 0.4) \times 10^{-5} \text{K}^{-1}$. Icenogle et al. obtained a higher value of 9.9 x 10^{-5}K^{-1} for (1/n)(dn/dT) in the wavelength range 2.554 to 12.1 µm. It appeared that ε in eq. (10) could be determined from the relation $(1/\varepsilon)(d\varepsilon/dT) = (2/n)(dn/dT)$ using the value of (1/n)(dn/dT) at long wavelengths. The result would be an exponential relation of the form $\varepsilon = \varepsilon_0 e^{CT}$. However, the constancy of (1/n)(dn/dT) does not hold for a wide temperature range. Hence, an empirical relation between ε and T should be found based on available data of n.

It is shown in figure 12 that curves of temperature dependence of refractive index at various wavelengths are essentially parallel to each other and that each of them smoothly and monotonically increases with temperature. This provides a possibility to find a relation between ε and T. As ε closely equals n^2 at long wavelengths, the best choice in the present case is the refractive indices at 10.27 µm by Icenogle et al. [14]. However, their results cover only a temperature range from 100 to 298 K. A wider temperature coverage is required to establish a relation between ε and T that is reliable over the temperature region 100-550 K of general interest. As shown in figure 12, the 5.156 µm curve of Lukes [44] is slightly above and parallel to the extension made from the 10.27 µm curve. The needed refractive indices at 10.27 µm in the higher temperature region was therefore obtained by appropriate extrapolation of Icenogle's data in that region. In this way, the following polynomial equation is found to be valid at 10.27 µm and over 100-550 K:

 $n^{2}(10.27 \ \mu m,T) = 15.3122 + 1.4571 \ x \ 10^{-3}T + 3.5131 \ x \ 10^{-6}T^{2} - 1.2089 \ x \ 10^{-9}T^{3}$ (27)

Since at long wavelengths the dielectric constant closelv approaches but does not exactly equal n^2 , it is therefore appropriate to consider the above quantity as a proportional factor and the dielectric constant is exp essed as:

 $\varepsilon(T) = E n^2 (10.27 \mu m, T)$

where E is the proprtional constant.

A MANAME AND A

and the second second

FIGURE 16. VARIATION OF REFRACTIVE INDEX OF GERMANIUM WITH TEMPERATURE AT WAVELENGTH 3 µm [12]

Spectral positions of natural absorption peaks in germanium have been studied by a number of investigators. McLean [3] investigated the absorption edge spectrum of germanium and found the optical energy gap at 300 K to be $E_g = 0.663 \text{ eV}$ or $\lambda_1 = 1.8703 \mu m$. Macfarlane et al. [16] further studied the absorption edge spectrum and found the temperature variation of the optical energy gap is essentially linear in the temperature range 200-300 K, but nonlinearity progressively predominates at lower temperatures as shown in figure 17. Lukes and Schmidt [18] studied the reflectivity spectrum of germanium and found two additional absorption peaks at $\lambda_2 \sim 0.589 \mu m$ and $\lambda_3 \sim 0.282 \mu m$. The latter corresponds to that predicted by Yu and Cardona [42]. As a summary of these findings, one now has three absorption peaks; namely: $\lambda_1 = 1.8703 \mu m$, $\lambda_2 \sim 0.589 \mu m$, and $\lambda_3 \sim 0.282 \mu m$ that are supposed to have significant effects on the refractive index in the transparent region, 1.9-16 μm .

In this work, the selected data were fitted to an equation similar to eq. (10) by including extra terms due to λ_2 and λ_3 . It was found, however, that introduction of the λ_2 and λ_3 terms did not improve the agreement obtained when only the λ_1 term was included. Furthermore, the coefficients of the λ_2 and λ_3 terms could not be uniquely defined because there were no reliable data in the regions bounded by and near the three peak wavelengths. Also, the value of B was found to be negligibly low and hence the contribution of the last term in eq. (10) was insignificant. As a consequence, eq. (18) was adopted and the least squares fitting of selected data to this equation yielded the following expression for the refractive index of germanium in the ranges of 1.9 to 18 μ m and 100-550 K:

$$n^{2}(\lambda,T) = \varepsilon(T) + \frac{L(T)}{\lambda^{2}} (A_{0} + A_{1}T + A_{2}T^{2})$$
(28)

where

 $k(T) = 15.2892 + 1.4549 \times 10^{-3}T + 3.5078 \times 10^{-6}T^{2} - 1.2071 \times 10^{-9}T^{3}$ $L(T) = e^{-3\Lambda L(T)/L_{2.9.3}}$ $\lambda = \text{wavelength in units of } \mu\text{m},$ T = temperature in units of K, $\Lambda_{0} = 2.5381,$ $\Lambda_{1} = 1.8260 \times 10^{-3},$ $\Lambda_{3} = 2.8888 \times 10^{-6},$

ł

FIGURE 17. TEMPERATURE DEPENDENCE OF THE OPTICAL ENERGY GAP OF GERMANIUM [16]

į

and from reference [18]

 $\frac{\Delta L(T)}{L_{2\,9\,3}} = \frac{-0.089 + 2.626 \times 10^{-6} (T-100) + 1.463 \times 10^{-8} (T-100)^2 - 2.221 \times 10^{-11} (T-100)^3 \qquad (100 < T < 293)}{5.790 \times 10^{-6} (T-293) + 1.768 \times 10^{-9} (T-293)^2 - 4.562 \times 10^{-13} (T-293)^3 \qquad (293 < T < 1200).$

It is interesting to point out that the room temperature dielectric constant for germanium can now be calculated from the expression of ε in eq. (28). The result is 16.009 which is in good agreement with the commonly accepted value of 16.0.

Equation (28) was used to calculate the recommended values of the refractive index of germanium with uncertainties of $\pm 2 \times 10^{-3}$. The recommended values are given in table 6 and plotted in figure 18. To provide a visual comparison of the calculated values with experimental data, calculated values at a few specified temperatures and wavelengths are plotted in figures 12 and 13 where close agreement is revealed. Tables 7 and 8, respectively, give the calculated dn/dT and dn/d λ values based on the first derivatives of eq. (28) with respect to T and λ . The corresponding plots are shown in figures 19 and 20.

Uncertainties in the calculated dn/dT values are estimated based on Icenogle's data [14] which are essentially the basis for eq. (28). Icenogle et al. evaluated $\Delta n/\Delta T$ values using their own measurements of n and found the average uncertainty in $\Delta n/\Delta T$ to be about $\pm 0.5 \times 10^{-4} K^{-1}$. Error bars corresponding to this amount are drawn on the calculated curves in figures 14 and 15 where calculated results are compared with experimental data. Although accuracies of experimental dn/dT are not available in Lukes' work [44,46,67], it is reasonable to use the same error bar as the experimental errors because the n versus T curves in figure 12 are closely parallel.

Uncertainties in the calculated $dn/d\lambda$ are estimated from the expression:

$$\delta(dn/d\lambda) \approx \pm 2 \delta n/\lambda$$

as discussed in subsection 3.1. Similar to the case of silicon, the uncertainties in $dn/d\lambda$ of germanium are about $\pm 5 \times 10^{-4} \ \mu m^{-1}$ at 2.55 μm , 1.2 $\times 10^{-4} \ \mu m^{-1}$ at 10 μm , and 0.7 $\times 10^{-4} \ \mu m^{-1}$ at 18 μm .

It should be noted that calculated values in tables 6, 7, and 8 are given with more decimal places than warranted for the purpose of tabular smoothness

TABLE 6. RECOMMENDED VALUES ON THE REFRACTIVE INDEX OF GERMANIUN*

and the second second

- La Reserved - La reserved -

ł

ł

5.00

11					TEMPERATURE	ure, K				
	100	150	200	ŝ	583	R	400	450	200	550
			1000 T	1000			F	Free .		1
		•				:			•	•
•	•		•						•	
5.6	•	•		•	•	•		•	•	
	•	•	•			•		•	•	•
	٠		•	•	•	•		•	4. CIU	4.621U
	•	•	•		4.1008	٠		4.1865		4 5484
•		٠	٠	4.0755	•	•	4.1523	4.1810	4.2110	4.242
	•		•	4.071 <u>1</u>	4.0914		4.1472	4.1757	4.2054	4.2363
•	•	•	4.0454	4.067 <u>0</u>		4.1158	4.142 <u>6</u>	4.1708	4.2003	4.230 <u>9</u>
	•	•	4.0417	$4.063\overline{2}$		4.111 <u>6</u>	4.1382	4.1662	4.1954	4.2259
•	•	•	4,0383	4.0597	4.0795	4.1077	4.1341	4.1619	4.1909	4.2211
			4.0352	4.0564	-	•	4.1303	4.1575	4.1867	4.2167
	•	•	4.0294	4.0503	•	4.0974	4.1233	4.1506	4.1791	4.2087
	•	•	•	4.0450		•	•	4.1441	4.1723	4.2015
	•		4.0197	4.0402		•	4.1117	4.1384	4.1663	4.1952
			4.0157	4.0360			• •	4.1333	4.1609	4.1896
			• •	4.0322		•	2011	4.1287	4.1565	4.1845
			• •	4,0288	•	•	• •	4.1245	4 1518	4.1800
• •	• •		• •	4,0257	4.042	4.0704	4,0950	1200	1479	1750
•	• •		• •	4,0204	•	•	•	4 1144	4 1411	
•	•	•	•	4.0160	•	•	•	1001 7		
• •	• •	• •		4.0123	•	•	•	4.1045	4 1308	4 I SRO
• •		• •	•	4.0092	•	•	•			4.1538
				4.0065		•	4.0728	4.0976	•	4.1502
				4.0037		• •	• •	4.0342	• •	4.1464
• •	•			•		• •	4.0668	•	4.1168	4.1433
	• •	•		•			• •	• •	4.1142	4.1405
	•	•		•		• •	•	•	4.1.2]	4.1383
	•					• •	• •	• •	4,1085	4.1345
				•	4.0098	4.0342	• •	• •	4.1059	4.1318
						• •	4.0550	• •	• •	4.1296
	•	•		•		•	•	•	4.1021	4.1273
•	•	•	•			4.0283	•	•	4.0337	4.1253
•	•	•		•		•	•	•	4.0981	4.1236
÷	•	•	•	•	4.0025	4.0264	4.048	4.0723	4.0969	4.1223
		•	•	•		•	•	4.0715	•	4.1214
ູ	•	•	•			•	•		4.0953	•
m.		•		•		•	•	•	4.9348	4.1202
4	•		•			•	٠	•	4. U944	•
ທີ	•	•				•	•	4.069 <u>6</u>	•	•
ൎ	٠	•				•		4.0694	•	•
17.00	3.9342	3.9487	3.9650	3.9830	3.9997		4.0458	•	4.0936	4.1188
ໝໍ່	•	•		•		4.0234	4.0456	4.0690	4.0934	4.1186
STHT NT *	TABLE MORE	DFCIMAL	PI ACES ARE I	REPORTED THAN	AN LIARPANTET	MEREN FIN	THE PURPOS	F OF TARIA	SHITTHAS GO	S ANTI
INTERN				- I			FUANT TO		- 1	
		1	5							

TABLE 7. RECOMENDED VALUES ON THE TEMPERATURE DERIVATIVE OF REFRACTIVE INDEX OF GERMANIUM*

ł

......

オットレオ・

•

(

11					TEMPERATURE.	URE, K				
	100	150	200	250	233	350	400	450	500	220
				*** *********************************		NNNNNNNNNNN44444444444444 444444444444	 NNNNNNNNNNNNNNNNNNN44444444444444444	[ວິດທອດອອດອອດອອດອອດອອດອອດອອດອອດອອດອອດອອດອອດ
	IPALE TURE ULUTHU. COMPARISON. THE	,z	¥ ₩ H	- -	AN DUERSTRIKE	ARE NOT	EUANT	CURACY OF	THE DATA.	

λ,μm	$-dn/d\lambda$, $10^{-4} \mu m^{-1}$
1.90 1.92 1.94 1.96 1.98 2.00 2.05 2.10 2.15 2.20 2.25 2.30 2.40 2.50 2.50 2.60 2.70	1177.6 114 <u>1.8</u> 1107.5 1074.5 104 <u>3.8</u> 101 <u>2.3</u> 94 <u>1.2</u> 87 <u>6.5</u> 817.6 763.9 71 <u>4.7</u> 66 <u>9.7</u> 590.3 523.0 465.5
2.80 2.90 3.00 3.20 3.40 3.60 3.80 4.00 4.25 4.50 4.50 4.75 5.00 5.50	416.1 373.5 336.5 204.2 251.0 209.5 176.6 150.3 129.0 107.6 90.7 77.2 66.2 49.8
5.00 6.50 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00	38.3 30.2 24.2 16.2 11.4 8.3 6.2 4.8 3.8 3.0 2.5 2.0
17.00 18.00	1.7 1.4

TABLE 8. CALCULATED VALUES ON THE WAVELENGTH DERIVATIVE OF REFRACTIVE INDEX OF GERMANIUM AT 293K *

* IN THIS TABLE MORE DECIMAL PLACES ARE REPORTED THAN HARRANTED MERELY FOR THE PURPOSE OF TABULAR SMOOTHNESS AND INTERNAL COMPARISON. THE NUMBER OF DIGITS WITH DUERSTIKE ARE NOT RELEVANT TO ACCURACY OF THE DATA.

FIGURE 20. RECOMMENDED $dn/d\lambda$ CURVE OF GERMANIUM AT 293 K

and internal comparison. They should not be considered as an indication of the accuracy of the values. To identify the unwarranted significant figures in the values, an overstrike is used.

4. CONCLUSIONS AND RECOMMENDATIONS

Experimental data on the refractive index of crystalline silicon and germanium and its temperature derivative were exhaustively surveyed and reviewed. Values of physical properties which are related to the dispersion equation were selected from the open literature. In addition, a number of thin film data sets were also compiled.

The purpose of the present work was to survey and compile the available data and to generate recommended values of the refractive index and its temperature derivative for crystalline silicon and germanium. Recommended values for these materials were generated based on currently available data. Since the state of the refractive index of either of the crystals have not been well defined, our recommendations should be considered at best representing average values of the selected data sets. Many factors are known to influence the accuracy of the refractive index of a crystal. Although the minimum deviation method is known to be the most accurate way to determine the refractive index, this is not true in the case of silicon and germanium. Being highly refractive, the prism specimens used must be thin, usually about 15° apex angle or sometimes lower, thus giving rise to relatively higher uncertainties. Other possible sources of experimental errors were discussed by Primak [24]. However, the most important factor which contributes to the total error is the impurity content of the specimen. Although this is a well known source of error, unfortunately, this very important piece of information is usually not reported. As a consequence, discrepancies among the currently available data cannot be reasonably resolved.

Unless one is satisfied with the existing data having uncertainties of a few parts in the third decimal place, serious considerations should be given to obtaining data reliable in the fourth or fifth decimal place. A systematic measurement program on the refractive index should be carried out with the following considerations:

 Experimental method. Because the minimum deviation method does not yield high accuracy in the case of Si and Ge, it is strongly felt that the interference method should be used. In this method, the determination of interference order plays the decisive role in the accuracy of the results. In order to obtain high accuracy, thick plate specimens should be used.

59

FRECEDENG PAGE BLANK-NOT FILLED

- 2. Sample characterization. As the impurity content of the sample strongly affect the refractive index, the impurities in the sample should be ascertained and reported. Merely reporting the electrical resistivity of the sample is not adequate. The nature and amount of impurities should specifically be reported. In order to see the effects of impurities on the refractive index, measurement should be carried out for a group of specimens with systematically controlled impurities.
- 3. Environmental control. Since both silicon and germanium have high temperature coefficients of refractive index (in the order of $10^{-4}K^{-1}$), the temperature of the sample has to be carefully controlled in order to achieve the required accuracy. Pressure has little effect on the refractive index under ordinary conditions. The pressure coefficient of the refractive index of Ge at 297 K is $(1/n)(dn/dP) = -7 \pm 2 \times 10^{-7} kg^{-1} cm^2$ [12]. That of Si is $-3 \pm 2 \times 10^{-7} kg^{-1} cm^2$ [12].

In conclusion, it should be emphasized that the present work does not resolve the discrepancies between the available data sets, it simply recommends the most probable values of the refractive index that a pure crystal of Si and Ge may have with the quoted uncertainties. Also, it should be noted that, as in any statistical study of this type, the dispersion equations, eqs. (22) and (28), are valid to the reported accuracy only within the region of experimental data. In general, extrapolation of these equations for use outside of this region is invalid for quantitative results. Finally, the type of analysis presented here assumes the data to be an absolutely correct representation of the model at hand, which is not generally true since the model is an oversimplification of the true dispersion relation. However, for predictive purposes, based upon the experimental data from several authors, and within the usable region of the data, we believe that these equations are valid for calculation of the cefractive index in the given wavelength and temperature regions.

5. REFERENCES

1.	Smakula,	Α.	and Sils, V	., "Precision	Density	Determination	n of Large Single
	Crystals	by	Hydrostatic	Weighing," P	hys. Rev.	, 99, 1744-9	(1955).

- Hultgren, R., Orr, R.L., Anderson, P.D., and Kelly, K.K., <u>Selected Values</u> of <u>Thermodynamic Properties of Metals and Alloys</u> (Supplement, November 1965), Wiley, New York (1963).
- McLean, T.P., "The Absorption Edge Spectrum of Semiconductors," Prog. Semiconductors, 5, 53-102 (1960).
- Barns, R.L., "A Survey of Precision Lattice Parameter Measurements. A Tool for the Characterization of Single-Crystal Materials," Mater. Res. Bull., 2, 273-83 (1967).
- 5. Moses, A.J., Optical Materials Properties, Vol. I of Handbook of Electronic Materials, IFI/Plenum, New York, Washington, London, p. 34 and 70 (1971).
- Touloukian, Y.S., Kirby, R.K., Taylor, R.E., and Lee, T.Y.R., Thermal Expansion--Nonmetallic Solids, Vol. 13 of Thermophysical Properties of Matter--The TPRC Data Series, IFI/Plenum, New York, p. 154 (1977).
- 7. Touloukian, Y.S., Powell, R.W., Ho, C.Y., and Klemens, P.G., <u>Thermal</u> <u>Conductivity--Metallic Elements and Alloys</u>, Vol. 1 of <u>Thermophysical</u> <u>Properties of Matter--The TPRC Data Series</u>, IFI/Plenum, New York, p. 108 and 326 (1970).
- Touloukian, Y.S. and Buyco, E.H., Specific Heat--Metallic Elements and Alloys, Vol. 4 of Thermophysical Properties of Matter--The TPRC Data Series, IFI/Plenum, New York, p. 79 and 204 (1970).
- 9. Hultgren, R., Orr, R.L., Anderson, P.D., and Kelly, K.K., <u>Selected Values</u> of <u>Thermodynamic Properties of Metals and Alloys</u> (Supplement, March 1965), Wiley, New York (1963).
- Touloukian, Y.S., Kirbv, R.K., Taylor, R.E., and Desai, P.D., <u>Thermal</u> <u>Expansion--Metallic Elements and Alloys</u>, Vol. 12 of <u>Thermophysical Properties of Matter--The TPRC Data Series</u>, IFI/Plenum, New York, p. 116 (1975).
- 11. Crawford, J.H. and Slifkin, L.M., Point Defects in Solids, Vol. 2 of <u>Semi-</u> conductors and Molecular Crystals, Plenum Press, New York, 480 pp. (1975).

- Cardona, M., Paul, W., and Brooks, H., "Dielectric Constant of Germanium and Silicon as a Function of Volume," Phys. Chem. Solids, 8, 204-6 (1959).
- Lukes, F., "The Temperature-Dependence of the Refractive Index of Silicon," Phys. Chem. Solids, 11, 342-4 (1959).
- Icenogle, H.W., Platt, B.C., and Wolfe, W.L., "Refractive Indexes and Temperature Coefficients of Germanium and Silicon," Appl. Opt., <u>15</u>(10), 2348-51 (1976).
- Macfarlane, G.G., McLean, T.P., Quarrington, J.E., and Roberts, V., "Fine Structure in the Absorption-Edge Spectrum of Si," Phys. Rev., <u>111</u>, 1245-54 (1958).
- 16. Macfarlane, G.G., McLean, T.P., Quarrington, J.E., and Roberts, V., "Fine Structure in the Absorption Edge Spectra of Ge," Phys. Rev., <u>108</u>, 1377-83 (1957).
- Young, K.F. and Frederikse, H.P.R., "Compilation of the Static Dielectric Constant of Inorganic Solids," J. Phys. Chem. Ref. Data, 2(2), 313-409 (1973).
- Lukes, F. and Schmid², E., "The Fine Structure and the Temperature Dependence of the Reflectivity and Optical Constants of Ge, Si and III-V Compounds," in <u>Proceedings of the International Conference on Physical Semi-</u> conductors, 389-94 (1962).
- Ballard, S.S., McCarthy, K.A., and Wolfe, W.L., "Optical Materials for Infrared Instrumentation," Michigan University, Willow Run Lab. Rept. No. 2389-11-S, 115 pp. (1959). [AD 217 367]
- Coblentz, W.W., "Transmission and Refraction Data on Standard Lens and Prism Material with Special Reference to Infra-red," J. Opt. Soc. Am., 4, 432-47 (1920).
- Briggs, H.B., "Optical Effects in Bulk Silicon and Germanium," Phys. Rev., 77(2), 287 (1950).
- 22. Salzberg, C.D. and Villa, J.J., "Infrared Refractive Indexes of Silicon, Germanium and Modified Selenium Glass," J. Opt. Soc. Am., <u>47</u>(3), 244-6 (1957).

 Lukes, F., "The Temperature-Dependence of the Refractive Index of Silicon," Czech. J. Phys., B10, 317-26 (1960).

- 24. Primak, W., "Refractive Index of Silicon," Appl. Opt., 10(4), 759-63 (1971).
- 25. Villa, J.J., "Additional Data on the Refractive Index of Silicon," Appl. Opt., 11(9), 2102-3 (1972).
- 26. Simon, I., "Optical Constants of Germanium, Silicon, and Pyrite in the Infrared," J. Opt. Soc. Am., 41(10), 730 (1951).
- 27. Spitzer, W.G., Gobeli, G.W., and Trumbore, F.A., "Effect of Heat Treatment on the Optical Properties of Heavily Doped Silicon and Germanium," J. Appl. Phys., <u>35</u>(1), 206-11 (1964).
- 28. Runyan, W.R., "Silicon for Infrared Optical Use," in <u>Proceedings of the</u> <u>OSU-WADD Symposium on Electromagnetic Windows</u>, U.S. Air Force Rept. WADD-TR-60-274, Vol. 1, 53-73 (1960).
- 29. Philipp, H.R. and Taft, E.A., "Optical Constants of Silicon in the Region 1 to 10 eV," Phys. Rev., 120(1), 37-8 (1960).
- Archer, R.A., "Determination of the Properties of Films on Silicon by the Method of Ellipsometry," J. Opt. Soc. Am., 52(9), 970 (1962).
- 31. Bennett, J.M. and Booty, M.J., "Computational Method for Determining n and κ for a Thin Film from the Measured Reflectance, Transmittance, and Film Thickness," Appl. Opt., 5(1), 41-3 (1966).
- 32. Vedam, K., Knausenberger, W., and Lukes, F., "Ellipsometric Method for the Determination of All the Optical Parameters of the System of an Isotropic Non-Absorbing Film on an Isotropic Absorbing Substrate. Optical Constants of Silicon," J. Opt. Soc. Am., <u>59</u>(1), 64-71 (1969).
- 33. Randall, C.M. and Rawcliffe, R.D., "Refractive Indices of Germanium, Silicon and Fused Quartz in the Far Infrared," Appl. Opt., <u>6</u>(11), 1889-95 (1967).
- Verleur, H.W., "Determination of Optical Constants from Reflectance or Transmittance Measurements on Bulk Crystals or Thin Films," J. Opt. Soc. Am., 58(10), 1356-64 (1968).
- 35. Grigorovici, R. and Vancu, A., "Optical Constants of Amorphous Silicon Films Near the Main Absorption Edge," Thin Solid Films, 2, 105-10 (1968).
- Brodsky, M.H., Title, R.S., Weiser, K., and Pettit, G.D., "Structural, Optical and Electrical Properties of Amorphous Silicon Films," Phys. Rev. B, 1(6), 2632-41 (1970).

- 37. Shevchenko, G.K., Rachkovskii, R.R., Kol'tsov, S.I., and Aleskovskii, V.B., "Influence of the Surface Film on the Refractive Index of Single-Crystal Silicon," Zh. Prikl. Khim. (Leningrad), 45(11), 2541-3 (1972).
- 38. Thutupalli, G.K.M. and Tomlin, S.G., "The Optical Properties of Amorphous and Crystalline Silicon," J. Phys. C., Solid State Phys., 10, 467-77 (1977).
- Sato, T., "Spectral Emissivity of Silicon," Jpn. J. Appl. Phys., <u>6</u>(3), 339-47 (1967).
- Hertzberger, M. and Salzberg, C.D., "Refractive Indices of Infrared Optical Materials and Color Correction of Infrared Lenses," J. Opt. Soc. Am., <u>52</u>(4), 420-7 (1962).
- 41. Moss, T.S., "Inter-Relation Between Optical Constants for Lead Telluride and Silicon," Proc. Phys. Soc., London, B66, 141-4 (1953).

- 42. Yu, P.Y. and Cardona, M., "Temperature Coefficient of the Refractive Index of Diamond- and Zinc-Blende-Type Semiconductors," Phys. Rev. B, 2(8), 3193-7 (1970).
- Rank, D.H., Bennett, H.E., and Cronemeyer, D.C., "The Index of Refraction of Germanium Measured by an Interference Method," J. Opt. Soc. Am., <u>44</u>(1), 13-6 (1954).
- 44. Lukes, F., "The Temperature Dependence of the Refractive Index of Germanium," Czech. J. Phys., 10(10), 742-8 (1960).
- Lukes, F., "Optical Constants of Thin Germanium Films," Czech. J. Phys., B10, 59-65 (1960).
- 46. Edwin, R.P., Dudermel, M.T., and Lamare, M., "Refractive Index Measurements of a Germanium Sample," Appl. Opt., 17(7), 1066-8 (1978).
- Salzberg, C.D. and Villa, J.J., "Index of Refraction of Germanium," J. Opt. Soc. Am., <u>4</u>(8), 579 (1958).
- Cardona, M., Paul, W., and Brooks, H., Conference on Solid State Physics, Brussels, June (1958).
- 49. Brattain, W.H. and Briggs, H.B., "The Optical Constants of Germanium in the Infra-Red and Visible," Phys. Rev., 75, 1705-10 (1949).
- 50. Collins, R.J., "Infrared Properties of Germanium," Purdue University, Ph.D. Thesis (1953).
- 51. Oswald, F. and Schade, R., "On the Determination of the Optical Constants of Semiconductors of Type $A^{III}B^V$ in the Infrared," Z. Naturforsch., <u>9a</u>(7-8), 611-7 (1954).
- 52. Spitzer, W.G. and Fan, H.Y., "Determination of Optical Constants and Carrier Effective Mass of Semiconductors," Phys. Rev., 106(5), 882-90 (1957).
- 53. Archer, R.J., "Optical Constants of Germanium: 3600 A to 7000 A," Phys. Rev., 110(2), 354-8 (1958).
- 54. Philipp, H.R. and Taft, E.A., "Optical Constants of Germanium in the Region 1 to 10 eV," Phys. Rev., 113(4), 1002-5 (1959).
- 55. Huldt, L. and Staflin, T., "Optical Constant of Evaporated Films of Zinc Sulphide and Germanium in the Infra-red," Opt. Acta, 6(1), 27-36 (1959).
- 56. Kornfeld, M.I., "Dispersion of Light in Germanium," Sov. Phys. Solid State, 2(1), 42-3 (1960).
- 57. Kiseleva, N.K. and Pribytkova, N.N., "Determination of the Optical Constants of Ge and CdTe by the Reflection Method," Opt. Spectros., <u>10</u>(2), 133-4 (1961).
- 58. Aronson, J.R. and McLinden, H.G., "Low-Temperature Far-Infrared Spectra of Germanium and Silicon," Phys. Rev., 135(3A), A785-8 (1964).
- 59. Tauc, J., Abraham, A., Pajasova, L., Grigorovici, R., and Vancu, A., "Optical Properties of Non-Crystalline Semiconductors," in <u>Physics of</u> <u>Non-Cryatalline Solids, Proceedings of the International Conference</u> (Delft, July 1964), (Prins, J.A., Editor), Interscience Publishers, New York (1965).
- 60. Potter, R.F., "Optical Constants of Germanium in the Spectral Region from
 0.5 eV to 3.0 eV," Phys. Rev., 150(2), 562-7 (1966).
- 61. Gisin, M.A. and Ivanov, V.A., "Optical Properties of Thin Germanium Films in the Infrared Region of the Spectrum," Opt. Spectros., <u>26</u>(2), 124-5 (1969).
- 62. Wales, J., Lovitt, G.J. and Hill, R.A., "Optical Properties of Germanium Films in the 1-5 µm Range," Thin Solid Films, 1(2), 137-50 (1967).
- 63. Knausenberger, W.H. and Vedam, K., "Optical Constants of Germanium by Ellipsometry," Phys. Lett., 29A(8), 428-9 (1969).

- 64. Donovan, T.M., Spicer, W.E., Bennett, J.M., and Ashley, E.J., "Optical Properties of Amorphous Germanium Films," Phys. Rev. B, 2(2), 397-413 (1970).
- 65. Jungk, G., "Determination of Optical Constants: Disordered Germanium," Phys. Status Solidi B, 44, 239-44 (1971).
- 66. Lukes, F., "The Temperature-Dependence of the Refractive Index of Germanium," Czech. J. Phys., 8(2), 253-4 (1958).
- 67. Lukes, F., "On the Theory of the Temperature Dependence of the Refractive Index of Insulators and Semi-conductors," Czech. J. Phys., 8(4), 423-34 (1958).

APPENDIX

The tables included in the Appendix are available experimental data compiled during the course of present work. The collected information covers the reported works in the last three decades from 1949 to 1978.

The tables give for each set of data the following information: the reference number, author's name (or names), year of publication, wavelength range, temperature range, the description and characterization of the specimen, and information on measurement conditions contained in the original paper.

•

TABLE A-1. EXPERIMENTAL DATA ON THE REFRACTIVE INDEX OF SILICON (Wavelength Dependence)

[Temperature, T,	К;	Wavelength,	λ,	μm;	Refractive	Index,	n]
------------------	----	-------------	----	-----	------------	--------	----

Data Set <u>[Ref.]</u>	λ	r	Specifications and Remarks	Author(s), Year
1	(T=2)	98 K)	Sample from a commercial Electromet	Briggs, H.B., 1949
[21]	1.05	3 565	melt with a purity of 99.8%; prismatic	
	1.10	3.553	specimen of 11°24'11" angle; index of	
	1.20	3.531	refraction measured by method of	
	1.40	3.499	minimum deviation; data extracted	
	1.60	3.480	from a table.	
	1.80	3.466		
	2.00	3.458		
	2.20	3.451		
	2.40	3.447		
	2.60	3.443		
2	(T=29	18 21	Polyevrstalline; ρ<0.7 Ω-cm; im-	Simon 7 1051
[26]	4.145	1.416	purities: 0.70% Fe, 0.55% A1, 0.32%	Simon, I., 1951
[20]	4.952			
		1.467	Ca, 0.06% Ti, 0.05% Mn, 0.04% C,	
	6.203	1.700	0.04% Cr, 0.01% P, and traces of	
	7.193	2.007	Cu, Ni and S; reflectances at 20	
	8.305	2.260	and 70 degree incidence angles ob-	
	9.967	2.840	timed; refractive indices obtained	
	12.565	3.056	by a graphical analysis; data taken 110m a figure.	
3	(1-)	00 K)	Vin de en et de under unbroune	Salabora C.D. and
		99 K) 3.4975	Single crystal; purity unknown;	Salzberg, C.D. and
[22]	1.3570		supplied by lexas Instruments, Inc.,	Villa, J.J., 1957
	1.3073	3. 1462	Dallas, TX; prim cut with faces	
	1.3951	2,4929	30 x 30 cm and refracting angle of	
	1,5295	1.4795	15.8°; index of refraction measured	
	1.0605	3.4590	My autocollimation method; data	
	1,7092	3.4604	with uncertainty 12 in fourth	
	1.8131	3. AUU8	.cimal place taken from a table.	
	1.9761	3.4537		
	2.1526	0.4476		
	2.3254	3.4430		
	2.4373	3.4408		
	2.7144	3.4358		
	3.00	3.4320		
	3.303 3	3.4297		
	3.4188	3.4286		
	3.50	3.4284		
	4.()	2 4255		
	4.258	3.4242		
	4.50	3.4236		
	5.00	3.4223		
	5.50	3.4213		
	6.00	3.4202		
	6.50	3.4195		
	7.00	3.4189		
	7.50	3.4186		
	8.00	3.4184		
	8.50	3.4182		
	10.00	3.4179		
	10.50	3.4178		
	11.04	3.4176		
4	(T=100		5° silicon prism mounted against	Cardona, M., Paul, W
[12]	1.007 1.055	3.526 3 520	a plane mirror; Abbe autocollima- tion method applied to measure the	and Brooks, H., 1959
	1.033	1 1/0	LION METHOD ANDLIED TO MODEURO THO	

Data Set [Ref.]	λ	n	Specifications and Remarks	Author(s), Year
4(cont.)	1.134	3,504	deviation angle to within ±1'; data	Cardona, M., Paul, W.,
[12]	1.244	3.488	extracted from a figure.	and Brooks, H., 1959
	1.387	3.463		
	1.545	3.440		
	1.736	3.428		
	1.879	3.420		
	2.086	3.412		
	2.245	3.406		
	2.643	3.399		
	3.025	3.393		
	3.599	3,388		
	3.902	3.388		
	4.125	3.385		
	4.475	3.379		
	4.905	3.375		
5	(T=19	94 К)	5° silicon prism mounted against a	Cardona, M., et al.
<pre>(12) 1. 1. 1. 1. 1.</pre>	1.166	3.516	plane mirror; Abbe autocollimation	1959
	1.229	3.506	method applied to measure the	
	1.372	3.477	deviation angle to within ±1'; data	
	1.530	3.460	extracted from a figure.	
	1.752	3.439	ENERGEOS ITEM & EXBURAT	
	1.896	3.433		
	2.086	3.425		
	2.246	3.419		
	2.596	3.411		
	3.026	3.408		
	3.329	3.404		
	3.567	3.401		
	3.902	3.400		
	4.093	3.397		
	4.460	3.394		
	4.890	3.391		
6	(T=29	8 K)	5° silicon prism mounted against a	Cardona, M., et al.
{12}	1.230	3.519	plane mirror; Abbe autocollimation	1959.
[1 2]	1.340	3.497	method applied to measure the	1939.
	1.547	3.474	deviation angle to within 11'; data	
	1.737	3.458		
	1.896	3.438	extracted from a figure,	
	2.055	3.440		
	2.246	3.434		
	2.405	3.429		
	2,596	3.426		
	3.026	3.420		
	3.568	3.415		
	3.871	3.414		
	4.094	3.414		
	4.460	3.411		
	4.891	3.412		
7	(T=29		Crystal specimens; no details of	Runyan, W.R., 1960
27]	1.375	3.497	source, sample preparation and mea-	
	1.437	3.492	surement given; data read from a	
	1,449	3.487	figure; temperature not given,	
	1,487	3.483	298 K assumed.	
	1.512	3.479		

TABLE A-1.EXPERIMENTAL DATA ON THE REFRACTIVE INDEX OF SILICON
(Wavelength Dependence) (continued)

- 7

オンドー・

4]

Data Set	λ	n	Specifications and Remarks	Author(s), Year
[Ref.]				
7(cont.)	1.562	3.475		Runyan, W.R., 19 60
[27]	1.612	3.471 3.467		
	1.687 1.737	3.464		
	1.787	3,461		
	1.850	3.458		
	1.912	3.455		
	2.000	3.451		
	2.088	3.448		
	2.214	3.445		
	2.352	3.441		
	2.477	3.439		
	2.628	3 437		
	2.792	3.435		
	2.943	3.433		
	3.081 3.257	3.432 3.430		
	3.408	3.429		
	3.622	3.427		
	3.811	3.426		
	4.088	3.425		
	4.340	3.424		
	4.617	3.423		
	4.957	3.422		
	5.309	3.421		
	5.624	3.421		
	5.977	3.420		
	6.342	3.420		
	6.795	3.419		
	7.186 7.715	3.419 3.418		
	8.143	3.418		
	8,508	3.418		
	8,848	3.418		
	9.113	3.418		
	9.339	3.418		
	9.679	3.418		
	10.032	3.418		
	10.347	3.418		
	10.574	3.418		
	10.989	3.418		
	11.040	3.418		
8	(T=3(10 K)	Single crystal; etched surfaces; near	Philipp, H.R. and
[28]	0.124	0.332	normal reflectance spectrum between	Taft, E.A., 1960
(20)	0.128	0.414	0.11 and 1.24 µm observed; phase angle	1410, 2111, 1900
	0.138	0.409	computed using the Kramers-Kronig	
	0.150	0.488	relation; optical constants deter-	
	0.165	0.524	mined from the Fresnel formulae; data	
	0.174	0.564	taken from a figure.	
	0.187	0.687		
	0.207	0.978		
	0.217	1.187		
	0.227	1.397		
	0.229	1.524		
	0.237 0.240	1.607		
	0.240	1.606 1.521		
	V. 491	エ・フィエ		

TABLE A-1.EXPERIMENTAL DATA ON THE REFRACTIVE INDEX OF SILICON
(Wavelength Dependence) (continued)

70

1

A

ł

(

Data Set {Ref.]	λ	n	Specifications and Remarks	Author(s), Year
B(cont.)	0.257	1.646		Philipp, H.R. and
[28]	0.267	1.941		Taft, E.A., 1960
• • • •	0.269	2.322		
0.277 0.283	2.913			
	3.421			
	0.283	4.182		
	0.295	4.731		
	0.301	4.815		
	0.307	4.857		
	0.314	4.941		
	0.328	4.982		
	0.335	5.108		
	0.335	5.235		
	0.343	5.573		
	0.343	5.954		
	0.344	6.420		
	0.352	6.800		
	0.357	6.884		
	0.370	6.291		
	0.388	5.443		
	0.398	5.019		
	0.409	4.765		
	0.427	4.594		
	0.439	4.424		
	0.460	4.254		
	0.474	4.169		
	0.498	4.041		
	0.544	3.912		
	0.587	3.784		
	0.666	3.697		
	0.750	3.611		
	0.859	3.567		
9	(T=29	9 K)	Single crystal; ellipsometry method	Archer, R.A., 1962
[29]	0.5461	4.050	used to determine refractive index;	
			the effect of oxidized film on	
			silicon corrected; error in refrac-	
			rive index about ±0.007.	
10	(T=29	8 K)	n-type, phosphorus doped silicon	Spitzer, W.G.,
[30]	3.456	3.007	samples; carrier concentration N =	Gobeli, G.W., and
	4.458	2.654	7.5 x 10^{19} cm ⁻³ ; polished; refractive	Trumbore, F.A., 1964
	5.210	2.345	index derived from reflectivity mea-	
	5.555	2.155	surements; data taken from a figure.	
	5.963	1.973	butementes, data taken tiom a righter	
	6.370	1.764		
	6.715	1.588		
	6./15 7.153	1.300		
	7.748	1.266		
	8.436	1.172		
11	(+-20	9 Y)	n-tung phosphorum doubd of i foon	Spitzer, W.G., et al.,
11	(T=29) 3.456		n-type, phosphorus doped silicon	1964
[30]		2.943	silicon samples; carrier concentra-	1704
	4.459	2.584	tion N = 7.5 x 10^{19} cm ⁻³ ; polished;	
	5.179	2.286	specimen heated at 1310 K for 30 sec	
	5.618	2.111	in a vacuum of $\leq 1 \times 10^{-7}$ torr; refrac-	
	5.963	1.922	tive index derived from reflectivity	

A Constant

1

TABLE A-1.EXPERIMENTAL DATA ON THE REFRACTIVE INDEX OF SILICON
(Wavelength Dependence) (continued)

Data Set [Ref.]	λ	a	Specifications and Remarks	Author(s), Year
11(cont.)	6.371	1.701	measurements; data taken from a	Spitzer, W.G.,
[30]	6.778	1.550	figure.	Gobeli, G.W., and
	7.154	1.361		Trumbore, F.A., 1964
	7.436	1.265		
	7.749	1,191		
	8.468	1.084		
12	(T=2	298 K)	n-type, phosphorus doped silicon	Spitzer, W.G., et al.,
[30]	3.425	2.937	samples; carrier concentration N =	1964
	4.459	2.590	7.5 x 10^{19} cm ⁻³ ; polished; specimen	
	5.179	2.288	heated at 1310 K for 60 see in a	
	5,587	2.111	vacuum of :1 x 10 ⁻⁷ Torr; refractive	
	5.963	1.909	index derived from reflectivity mea-	
	6.370	1.714	surements; data taken from a figure.	
	7.123	1.380		
	7.436	1.291		
	7.749	1.216		
	8.499	1.109		
13	(T=2	98 K)	n-type, phosphorus doped silicon	Spitzer, W.G., et al.,
[30]	3.456	3.000	samples: carrier (oncentration N *	1964
/	4.459	2.559	7.5 x 10^{19} cm ⁻³ ; polished; specimen	2701
	5.179	2.269	heated at 1310 K for 90 sec in a	
	5.587	2.080	vacuum of $\leq 1 \times 10^{-7}$ Torr; refractive	
	5,963	1.878	index derived from reflectivity mea-	
	6.371	1.676	surements; data taken from a figure.	
	6.716	1.481	surements, usea caken riom a rigute.	
	7.154	1.323		
	7.436	1.222		
	.718	1.146		
	8.469	1.033		
14	(T=2)	98 K)	n-type, phosphorus doped silicon	Spitzer, W.G., et al.,
[30]	3.487	2.981	samples; carrier concentration N *	1964
[30]	4.521	2.572	7.5 x 10 ¹⁹ cm ⁻³ ; polished; specimen	1904
	5.180	2.250	heated at 1310 K tor 120-210 sec in	
	5.587	2.092	a vacuum of 1×10^{-7} Torr; refrae-	
	6.339	1.695		
	6.778	1.500	tive index derived from reflectivity	
			measurements; data taken from a	
	7.185	1.336	figure.	
	7.436	1.247		
	7.749 8.437	1.172 1.058		
15	(7-2)	лө и \		
		98 K)	Thin film specimen of 0.0346 µm thick;	Bennett, J.M. and
30]	0.400	3.191	no details of sample preparation	Booty, M.J., 1966
	0.420	3.162	given; reflectance and transmittance	
	0.441	3.128	measured and reduced to refractive	
	0.462	3.077	indices using iterative curve fitting	
	0.481	3.030	technique; data taken from a figure.	
	0.502	2.979		
	0.522	2.923		
	0.541	2.885		
	0.560	2.843		
	0.582	2.804		
	0.600	2.775		
	0.621	2.749		
	0.643	2.724		

TABLE A-1.	EXPERIMENTAL DATA ON THE REFRACTIVE INDEX OF SILICON	J
	(Wavelength Dependence) (continued)	

. . .

ذ

Data Set [Ref.]	λ	n	Specifications and Remarks	Author(s), Year
16 [32]	(T=3 0.5461	00 K) 4,140	Single crystal; specimens with surface either chemically etched or cleaved; refractive index determined using ellipsometric method; effects of the SiO ₂ thin film on the surface due to aging, annealing, chemical treatment, etc. were corrected and the true value of refractive index obtained; data taken from a table.	Vedam, K., Knausenberger, W., and Lukes, F., 1969
17 [33]	(T=30) 70.392 72.951 75.697 78.662 81.872 84.992 89.138 93.279 97.822 102.83 108.97 113.92 120.77 128.49 138.22 148.44 160.29 177.27 192.57 210.76 238.27 270.35 312.38 370.01 453.08 604.44	00 K) 3,4191 3,4193 3,4193 3,4193 3,4193 3,4193 3,4193 3,4193 3,4193 3,4193 3,4189 3,4189 3,4187 3,4184 3,4184 3,4184 3,4184 3,4184 3,4184 3,4181 3,4181 3,4181 3,4182 3,4180 3,4180 3,4180 3,4180 3,4180 3,4180	Single crystal; obtained from Exotic Materials, Costa Mesa, CA; p > 10 G-c; plate specimen of 1.94067 ± 2.3 x 10 ⁻⁴ mm thick; refractive indices measured using interference method; data taken from a figure.	Randall, C.M. and Rawcliffe, R.D., 1967
18 (33)	(T=300 68.242 70.395 72.689 75.704 78.669 81.875 85.354 88.749 93.282 97.354 102.83 107.80 113.92 120.77 128.50 138.23	 K) 3.4186 .4185 3.4183 3.4182 3.4184 3.4184 3.4184 3.4181 3.4181 3.4181 3.4180 3.4178 	Single crystal; obtained from Exotic Materials, Costa Mesa, CA; $\phi \ge 10$ 2-cm; plate specimen of 6.41495 ± 5 x 10 ⁻⁶ mm thick; refractive indices measured using interference method; data taken from a figure.	Randall, C.M. and Rawcliffe, R.D., 1967

1

ł

TABLE A-1.EXPERIMENTAL DATA ON THE REFRACTIVE INDEX OF SILICON
(Wavelength Dependence) (continued)

Data Set [Ref.]	λ	n	Specifications and Remarks	Author(s), Year
18(cont.)	148.45	3.4179		Randall, C.M. and
[33]	160.30	3.4178		Rawcliffe, R.D., 1967
	175.73	3.4177		······································
	190.76	3.4175		
	213.02	3.4175		
	235.51	3.4174		
	270.42	3.4170		
	312.53	3.4166		
	370.27	3.4156		
19	(T=29	98 K)	Bulk silicon; no details of sample	Verleur, H.W., 1968
[34]	0.124	0.35	preparation and experiment given;	ferreary many 1900
(34)	0.133	0.39	refractive indices deduced from	
	0.151	0.43	normal reflectance measurement	
	0.176	0.47	using classical oscillator fitting	
	0.196	0.54	technique; data taken from a	
	0.216	0.70	figure.	
	0.225	0.74		
	0.230	0.94		
	0.233	1.02		
	0.239	0.90		
	0.242	0.74		
	0.264 0.78 0.274 1.09 0.286 1.76			
	0.290	2.51		
	0.300	3.33		
	0.311	3,92		
	0.316	4.15		
	0.322	4.15		
	0.331	4.11		
	0.341	4.39		
		4.54		
	0.341			
	0.348	4.62		
	0.366	5.45		
	0.374	6.07		
	0.378	6.47		
	0.382	6.54		
	0.390	6.39		
	0.399	5.84		
	0.418	5.37		
	0.445	4.90		
	0.488	4.54		
	0.576	4.03		
	0.717	3.72		
	1.033	3.52		
	1.033	3.52		
	1,598	3.45		
	3.196	3.41		
	8.794	3.37		
	11.698	3.37		
20	(T=2	98 K)	Amorphous silicon film; deposited	Grisorovici, R. and
[35]	0.565	4.165	on polished silica glass slides by	· ·
(37)	0.591		on polished silica glass sildes by vacuum ($\le 1 \times 10^{-5}$ mm Hg) evaporation	Vancu, A., 1968
	0.622	4.157 4.119	of pure silicon crystals (p ~ 10	
	0.077	4.114	α pure stitems cructile ($\alpha \simeq 10$	

¥,

ç

L 8...

ł

TABLE A-1. EXPERIMENTAL DATA ON THE REFRACTIVE INDEX OF SILICON (Wavelength Dependence) (continued)

Data Set [Ref.]	λ	n	Specifications and Remarks	Author(s), Year
20(cont.)	0.692	3.968	refractive indices determined based	Grigorovici, R. and
0.7 0.8 0.8 0.9 1.0 1.1	0.732	3.938	on transmissivity, reflectivity and	Vancu, A., 1968
	0.780	3.877	thickness measurements; data read	
	0.836	3,817	from a flgure.	
	0.890	3.756		
		3,711		
		3.650 3.620		
	1.246	3.597		
	1.381	3.589		
	1.550	3.559		
	1.784	3.529		
	2.050	3.513		
21	(T=29	8 K.)	Thin files on substrates of single	Brodsky, M.H.,
[36]	0.95	3.97	crystal sapphire disk; deposited by	Title, R.S.,
	1.02	3.90	rf sputtering of a 6 iach diameter	Weiser, K., and
	1.14	3.84	intrinsic silicon cathede; substrates	Pettit, G.D., 1970
	1.29	3.80	held at or below room temperature and	
	1.52	3. 15	in an aryon atmosphere of 0.01 Torr	
	1.74	3.72	during deposition; specimen thickness	
	1.94	3.70	0.3 to 10 µm determined to within \$10%;	
	2.07	3.69	refractive indices determined from the	
	2.25	3.68	transmission interference tringes and	
			thickness of the specimen; data taken from a figure.	
22	(T=29	S K)	Thin tilms on substrates of single	Brodsky, M.H., et al.,
[36]	0.93	3.45	crystal sapphire disk; deposited by	1970
	0.98	1.91	r: sputtering of a 6 inch diameter in-	
	1.05	2.86	trinsic silicon cathode; substrates	
	1.16	3.82	held at or below room temperature and	
	1.36	3.26	in an argon atmosphere of 0.01 Torr	
	1.50	3.23	during deposition; specimen thickness	
	1.70	3.71	0.3 to 10 has determined to within '10%;	
	1.96	3.68	speciment annealed at 365 K for 2 hours;	
	2.25	3.66	refractive indices determined from the	
			transmission interference fringes and	
			thickness of the specimen; data taken	
			trom o figure,	
23	(T=29		Thin films on substrates of single	Brodsky, M.H., et al.,
[36]	0.91	3.93	crystal sapphire disk; deposited by	1970
	0.93	3.89 3.84	r: sputtening of a 6 inch diameter in- triasic silicon cathede; substrates held	
	1.08	3.80	at or below room temperature and in an	
	1.15	3.76	argon atmosphere of 0.01 Torr during	
	1.30	3.72	deposition; specimen thickness 0,3 to	
	1.44	3.69	10 um determined to within *10%; speci-	
	1.66	3.66	rens annealed at 496 K for 2 hours;	
	1.82	3.64	retractive indices determined from the	
	2.18	3.61	cranspiration interference fringes and	
			thickness of the specimens; data taken from a figure.	
24	(T=29	8 K)	Thin files on substrates of single	Brodsky, M.H., et al.,
[36]	0.82	3.97	crystal supphire disk; deposited by	,,, 44 , j

Ę

4

TABLE A-1.EXPERIMENTAL DATA ON THE REFRACTIVE INDEX OF SILICON
(Wavelength Dependence) (continued)

TABLE A-1.EXPERIMENTAL DATA ON THE REFRACTIVE INDEX OF SILICON
(Wavelength Dependence) (continued)

			Specifications and Remarks	Author(s), Year
24(cont.)	0.86	3.92	rf sputtering of a 6 inch diameter	Brodsky, M.H.,
[36] 0.92 3.85 0.98 3.80 1.03 3.76 1.13 3.72	0.92	3.85	intrinsic silicon cathode; substrates	Title, R.S.,
	0.98	3.80	held at or below room temperature and	Weiser, K., and
	in an argon atmosphere of 0.01 Torr	Pettit, G.D., 1970		
	1.13	3.72	during deposition; specimen thickness	
1.26 3.67 0.5 to 10 µm	0.5 to 10 μm determined to within $\pm 10\%$;			
			specimens annealed at 669 K for 2 hours;	
	1.58	3.61	refractive indices determined from the	
	1.76	3.60	transmission interference fringes and	
	1.96	3.58	thickness of the specimen; data taken	
	2.21	3.57	from a figure.	
25	(T=2	98 K)	Thin films on substrates of single	Brodsky, M.H., et al.
[36]	0.81	3.83	crystal sapphire disk; deposited by	1970
	0.86	3.78	rf sputtering of a 6 inch diameter in-	
	0.92	3,73	trinsic silicon cathode; substrates	
	1.01	3.67	held at or below room temperature and	
	1.12	3.63	in an argon atmosphere of 0.01 Torr	
	1.30	3.59	during deposition; specimen thickness	
1.48 1.68 1.95 2.14	3.55	0.3 c. 10 µm determined to within *10%;		
		3.52	specimens annealed at 773 K for 2 hours;	
		3.50	refractive indices determined from the	
	2.14	3.49	transmission interference fringes and thickness of the specimen; data taken	
			from a figure.	
. 5		93 K)	This films on substrates of single	Brodsky, M.H., et al.,
[3b]	0.718	3.00	creatal sapphire disk; deposited by rf	1970
		sputtering of a 6 inch diameter intrinsic		
	1.805	3.49	silicon cathede; substrate held at or	
	0.473	3.41	below room temperature and in an argon	
	0.947	1.38	atte , here at U. P. Torr during deposi-	
	1.316	3.35	tion; percimen thickness 0.3 to 10 µm	
	1.101	3.31	determined to within '''; perimen	
	1.99	3.25	smealed at 1222 K for 2 hours; refrac-	
	1.358	3.25	tive indices determined from the trans-	
	1.816	3,24	nitsion interference tringes and	
	2.112	3.22	thi kness of the specimen; data taken	
	2.451	3.21	trom a figure.	
27		47 K)	Silicon wedge specimen; cut from a	Prímak, W., 1971
[24]	1.2	3.5195	state crystal rod obtained from Morek	
	1.4	3	and (o,; ultrashish purity pstype; / =	
	1.5	1, 1, 1, 1, 1	1250 area; orientation \$1115 along the	
	1.8	3.4583	rod as is and perpendicular to one face	
	2.0	3	of the wedge; wedge angle 11°40'35";	
			wedge faces 22 mm leng by 12.7 mm ligh;	
			retractive indices determined by auto- collimation method; data taken from a table.	
28	(T=2%	97 KY	2) from we long one of ments one for men	Primab 11 1071
(24)	1.144	3.5295	Silicon wedge specimen; out from a conditional term Morsk	Primak, W., 1971
()	1.144	3.5184	studie (lystal rod obtained from Merck	
	1.372	5.5507	and (), altra-high purity p-type; p = 1000 cm; ortent(tion (111) along the	
	1.4	3.4841	tod axis and perpendicular to one face	
	• -•	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	real agree and betbeurgeners to obe type	

ł

Data Set [Ref.]	λ	n	Specifications and Remarks	Author(s), Year
28(cont.) [24]	1.696	3.4644	wedge faces 22 mm long by 12.7 mm high; refractive indices determined by auto- collimation method; data taken from a table.	Primak, W., 1971
29 [24]	(T≈297 1.12 1.2 1.4 1.6 1.8 2.0 2.16	K) 3.5361 3.5193 3.4886 3.4706 3.4573 3.4487 3.4427	Silicon wedge specimen; cut from a single crystal rod obtained from Merck and Co.; ultra-high purity p-type; $\rho = 1200$ Q-cm; orientation <111> along the rod axis and perpendicular to one face of the wedge; wedge angle 11°40'35"; wedge faces 22 mm long by 12.7 mm high; refractive indices determined by auto-collimation method; data taken from a table.	Primak, W., 1971
30 [37]	(T=298 0.5461	K) 4.05	Single crystal; surface polished with diamond dust; refractive index deter- mined by the method of ellipsometry.	Shevchenko, C.K., Rachkovskii, R.R., Kol'tsov, S.I., and Aleskovskii, V.B., 1972.
31 [14]	(T=10 2.554 2.652 2.732 2.856 2.958 3.090 4.120 5.190 8.230 10.270	4 K) 3.41172 3.40896 3.40754 3.40611 3.40475 3.40365 3.39595 3.39388 3.39064 3.38989	Good optical grade silicon samples; supplied by Erotic Materials, Inc.; prism specimen measured with a modified minimum deviation method; data taken from a table.	Icenogle, H.W., Platt, B.C., and Wolfe, W.C., 1976
32 [14]	(T=20) 2,554 2,652 2,732 2,856 2,958 3,090 4,120 5,190 8,230 1/7,270	2 K) 3.42184 3.42006 3.41843 3.41776 3.41587 3.41483 3.40800 3.40496 3.40169 3.40084	Good optical grade silicon samples; supplied by Exotic Materials, Inc.; prism specimen measured with a modified minimum deviation method; data taken from a figure.	Icenogle, H.W., et al. 1976
	(;;=27) ;;;;; ;;;;	5 K) 3.43264 3.43264 3.43097 3.42971 5.42736 6.42723 5.42723 5.427 5.477 5.477 5.477 5.4777 5.4777 5.4777 5.4777 5.4777 5.4777 5.4777 5.4777 5.47777 5.477777 5.4777777777777777777777777777777777777	Good optical grade silicon samples; supplied by Exotic Materials, Inc.; prism specimen measured with a modified minimum deviation method; data taken from a table.	Icenogle, H.W., et al. 1976

TABLE A-1.EXPERIMENTAL DATA ON THE REFRACTIVE INDEX OF SILICON
(Wavelength Dependence) (continued)

.....

Data Set [Ref.]	λ	n	Specifications and Remarks	Author(s), Year
34	(T≈	296 К)	Good optical grade silicon samples;	Icenogle, H.W.,
[14]	2.554	3.43681	supplied by Exotic Materials, Inc.;	Platt, B.C., and
(,	2.652	3.43529	prism specimen measured with a modified	Wolfe, W.C., 1976
	2.732	3.43367	minimum deviation method; data taken	
	2.856	3.43224	from a table.	
	2.958	3.43102	trom a table.	
	3.090	3.42987		
	4.120	3.42304		
	5.190	3.41974		
	8.230	3.41629		
	10.270	3.41551		
35	(T≈29	8 K)	Thin films of thicknesses 0.06-0.350	Thutupalli, G.K.M. and
[38]	0.30	2,92	µm; deposited on quartz substrate in	Tomlin, S.G., 1977
	0.32	3.18	a vacuum of 10^{-6} Torr; evaporation	
	0.35	3.54	produced by electron beam bombardment;	
	0.39	3.90	rate of deposition 0.0002-0.001 µm per	
	0.45	4.26	second; substrate kept at 548 K during	
	0.51	4.51	deposition; refractive index determined	
	0.58	4.60	from normal incident teflectance and	
	0.61	4.50	transmittance measurements; data tal en	
	0.66	4.34	from a figure.	
	0.00	4.20	rion a riguie.	
	0.82	4.04		
	0.93	3.91		
	1.12	3.80		
	1.40	3.71		
	1.61	3.68		
	1.98	: 7		
36	(T=2%	i8 к,	Thin films of thicknesses 0.06-0.350	Thutupalli, G.K.M. and
[38]	0.52	4.57	um; deposited on quartz substrate in	Tomlin, S.G., 1977
	0.55	4.44	a vacuum of 10 ⁷⁶ Torr; evaporation	
	0.60	4.27	produced by electron beam bombardment;	
	0.65	4.13	rate of deposition 0.0002-0.001 µm per	
	0.75	3.97	second; substrate kept at 873 K during	
	0.86	3,84	deposition; refractive index determined	
	1.04	3.74	from normal incident reflectance and	
	1.32	3.65	transmittance measurements; data taken	
	1.56	3.62	from a figure.	
	1.89	3.58		
37	(T=29	8 K)	Thin films of thicknesses 0.06-0.350	11)
[38]	0.43	4.86	um; deposited on quartz substrate in	Thutupalli, G.K.M. and Tomlin, S.G., 1977
[]0]	0.43	4.67	μ m; deposited on quartz substrate in a vacuum of 10^{-6} Torr; eviporation	TOHITTH' 2.0. 7111
	0.46		produced by electron beam bombardment;	
	0.52	4.31		
		4.07	rate of deposition 0.0002-0.001 µm per	
	0.66	3.87	second; substrate kept at 1048 K during	
	0.76	3.71	deposition; refractive index determined	
	0.88	3.61	from normal incident reflectance and	
	1.10	3.54	transmittance measurements; data taken	
	1.36	3.50	from a figure.	
	1.67	3.48		
	1.89	3.47		
	(8 K)	Thin films of thicknesses 0.06-0.350	Thursday of the and
38	(T=29	0 K)	THIR TITMS OF CHICKNESSES 0.00-0.330	Thutupalli, G.K.M. and

; ;

ł

TABLE A-1.EXPERIMENTAL DATA ON THE REFRACTIVE INDEX OF SILICON
(Wavelength Dependence) (continued)

ata Set [Ref.]	λ	n	Specifications and Remarks	Author(s), Year
d(cont.)	0.56	4.44	a vacuum of 10 ⁻⁶ Torr; evaporation	Thutupalli, G.K.M. and
[38]	0.64	4.23	produced by electron beam bombardment;	Tomlin, S.G., 1977
	0.74	4.00	rate of deposition 0.0002-0.001 µm per	
	0.90	3.84	second; substrate kept at 548 K during	
	1.04	3.77	deposition and then annealed at 873 K	
	1.24	3.68	for 3 hours; refractive index deter-	
		3.65	mined from normal incident reflectance	
	1.50			
	1.85	3.61	and transmittance measurements; data taken from a figure.	
39	(T=298	зк)	Single crystal; cut at <111> face and	Thutupalli, G.K.M. and
[38]	0.30	4.16	polished with successively tiner grades	Tomlin, S.G., 1977
	0.30	4.52	of diamond abrasives and finally with	
	0.30	4.85	an Al ₂ O ₃ polishing powder on a beeswax	
	0.31	5.21	lap; refractive index determined from	
	0.32	5.43	normal incident reflectance and trans-	
	0.33	5.65	mittance measurements; data taken from	
	0.34	5.94	a figure.	
	0.34	6.30	a ligute.	
	0.36	6.55		
	0.37	6.70		
	0.38	6.52		
	0.39	6.08		
	0.40	5.68		
	0.41	5.32		
	0.44	4.91		
	0.48	4.59		
	0.52	4.29		
	0.58	4.04		
	0.72	3.82		
	0.91	3.64		
	1.10	3.53		
	1.43	3.45		
	2.06	3.38		
	3.10	3.38		
	6.96	3.34		
40 [25]	([=29 1.3570	9 K) 3.5151	Single crystal; obtained from the Raytheon Co.; prism specimen of 15°38'	Villa, J.L., 1972
[2]]				
	1.3673	3.5139	29" apex angle; refractive index deter-	
	1.3951	3.5167	mined by minimum deviation method;	
	1.5295	3.4976	reported uncertainty 2×10^{-4} ; the	
	1.6606	3.4879	values in this set are much higher than	
	1.7092	3,4849	the author's previous measure (data	
	1.8131	3.4792	set 3) for a sample obtained from	
	1.9701	3.4724	Texas Instrument Co.; impurities in	
	2.1526	3.4664	Raytheon sample may be responsible to	
	2.3254	3.4618	such discrepancies; data extracted	
	2.4374	3,4596	from a table.	
	2.7144	3.4545	rion a fubic.	
		3.4509		
	3.00			
	3.3035	3.4488		
	3.4188	3.4478		
	3.50	3.4475		
	4.00	3.4448		
	4.258	3.4436		

TABLE A-1.EXPERIMENTAL DATA ON THE REFRACTIVE INDEX OF SILICON
(Waveleagth Dependence) (continued)

1 .

ł

ار شر

State of the second second

Ę,

Data Set λ [Ref.]	n	Specifications and Remarks	Author(s), Year
40(cont.) 5.0	3.4415		Villa, J.L., 1972
[25] 5.5	0 3.4405		
6.0	0 3.4397		
6.5	0 3.4391		
7.0	0 3.4387		
7.5	0 3.4383		
8.0	0 3.4380		
8.5	0 3.4377		
10.0	0 3.4375		
10.5	0 3.4373		
11.0			

TABLE A-1.	EXPERIMENTAL DATA ON THE REFRACTI	VE INDEX OF SILICON
	(Wavelength Dependence) (continu	ied)

TABLE A-2. EXPERIMENTAL DATA ON THE REFRACTIVE INDEX OF SILICON (Temperature Dependence)

[Temperature]	Т,	К;	Wavelength,	λ,	11m ;	Refractive	Index,	n]	
---------------	----	----	-------------	----	-------	------------	--------	----	--

Data Set [Ref.]	T	n	Specifications and Remarks	Author(s), Year
1	(λ=	2.554 µm)	Good optical grade silicon samples;	Icenogle, H.W.,
[14]	103	3.41279	supplied by Exotic Naterials, Inc.;	Platt, B.C., and
	110	3.41302	prism specimen measured with a modified	Wolfe, W.L., 1976
	120	3.41374	minimum deviation method; data taken	
	131	3.41471	from a table.	
	137	3.41534		
	144	3.41616		
	152	3.41695		
	160	3.41789		
	167	3.41868		
	175	3.41967		
	182	3.42074		
	189	3.42158		
	193	3.42216		
	200	3.42303		
	205	3.42375		
	210	3.42448		
	220	3.42603		
	224	3.42668		
	228	3.42/30		
	235	3.42836		
	244	3.42961		
	251 255	3.43081		
	255	3.43181 3.41889		
	267	3.43331		
	274	3.43430		
	277	3,43492		
	282	3.43576		
	286	3.43633		
2	() =	2.732 µm)	Good optical grade silicon samples;	Iconogle, H.W., et al.,
[14]	97	3.40857	supplied by Exotic Materials, Inc.;	1976
(14)	106	3.40923	prism specimen measured with a modified	1770
	116	3.40999	minimum deviation method; data taken	
	126	3.41084	from a table.	
	133	3.41234		
	143	3.41256		
	150	3.41317		
	159	3.41429		
	165	3.41502		
	169	3.41551		
	177	3.41656		
	182	3.41723		
	190	3.41833		
	197	3.41825		
	203	3.42006		
	211	3.42118		
	217	3.42197		
	221	3.42265		
	234	3.42422		
	241	3.42523		
	245	3.42600		
	251	3.42682		
	255	3.42762		
	262	3.42863		
	267	3.42949		

Solar Sec.

Υ.

1

L

Data Set [Ref.]	T	n	Specifications and Remarks	Author(s), Year
2(cont.)	272	3.43037		Iconogle, H.W.,
[14]	277	3.43112		Platt, B.C., and
	282	3.43182		Wolfe, W.L., 1976
	286	3.43251		
3	(λ=	5.190 µm)	Good optical grade silicon samples;	Icenogle, H.W., et al.,
[14]	99	3.39330	supplied by Exotic Materials, Inc.;	1976
	106	3.39388	prism specimen measured with a modified	
	114	3.39441	minlmum deviation method; data taken	
	120	3.39497	from a table.	
	127	3.39554		
	133	3.39608		
	140	3.39679		
	147	3.39757		
	155	3.39838		
	160	3.39898		
	167	3,39981		
	171	3.40037		
	180	3.40144		
	186	3.40213		
	192	3.40288		
	199	3.40382		
	205	3.40455		
	213	3.40574		
	219	3.40657		
	227	3.40760		
	233	3.40843		
	239	3.40931		
	243	3.41013		
	250	3.41104		
	262	3.41280		
	268	3.41380		
	273	3.41449		
	279 285	3.41529 3.41621		
4		0.27 µm)		.
[14]	99	3.39109	Good optical grade silicon samples; supplied by Exotic Materials, Inc.;	Icenogle, H.W., et al., 1976
(14)	108	3.39185	prism specimen measured with a modified	1970
	114	3.39273	minimum deviation method; data taken	
	124	3.39313	from a table.	
	131	3.39374	rion a cabie,	
	142	3.39484		
	148	3.39555		
	155	3.39629		
	161	3.39693		
	170	3.39796		
	177	3.39884		
	185	3.39973		
	194	3.40029		
	204	3.40229		
	210	3.40307		
	216	3.40389		
	223	3.40516		
	230	3.40572		
	236	3.40667		

TABLE A-2.EXPERIMENTAL DATA ON THE REFRACTIVE INDEX OF SILICON
(Temperature Dependence) (continued)

uta Set [Ref.]	T	n	Specifications and Remarks	Author(s), Year
(cont.)	248	3.40838		Icenogle, H.W.,
[14]	253	3.40905	· ·	Platt, B.C., and
	260	3.41021		Wolfe, W.L., 1976
	281	3.41088		
	271	3.41186		
	276	3.41270		
	280	3.41337		
	283	3.41380		
	287	3,41427		
5	$(\lambda = 1, 2)$	59 µm)	Single crystal; p-type; p = 380 ohm-cm;	Lukes, F., 1959
(13)	109.6	3.478	prism specimen of 17°51.4' apex angle;	
()	133.1	3.481	refractive indices for the spectral line	
	150.8	3.484	$\lambda = 1.259 \ \mu m$ at various temperatures	
	166.4	3.485	determined by the minimum deviation	
	186.0	3.488	method; reported error in $n \sim 0.0004$;	
	201.7	3.491	data read from a figure.	
	213.5	3.493		
	227.2	3.495		
	235.0	3.497		
	250.7	3.499		
	272.2	3.504		
	295.7	3.510		
	327.1	3.517		
	356.5	3.523		
	368.2	3.526		
	387.8	3.529		
	413.3	3.533		
	440.7	3.539		
	452.4	3.542		
	466.1	3.546		
	493.6	3.551		
	505.3	3.553		
	534.7	3,561		
	554.3	3.565		
	573.9	3.570		
	613.0	3.580		
	628.7	3.582		
	646.3	3.587		
6	(λ=1.4		Single crystal; p-type; p = 380 ohm-cm;	Lukes, F., 1959
[13]	109.7	3.460	prism specimen of 17°51.4" apex angle;	
	143.0	3.465	refractive indices for the wavelength	
	160.6	3.467	λ = 1.407 um at various temperatures	
	172.4	3.468	determined by the minimum deviation	
	188.1	3.470	method; reported error in $n \sim 0.0004$;	
	207.7	3.473	data read from a figure.	
	221.4	3.476		
	235.1	3.478		
	246.9	3.481		
	258.6	3.483		
	268.4	3.485		
	278.2	3.486		
	286.0	3.488		
	288.0	3.489		
	299.8	3.490		
	331.1	3.496		

 TABLE A-2.
 EXPERIMENTAL DATA ON THE PEFRACTIVE INDEX OF SILICON (Temperature Dependence) (continued)

í

ata Set [Bef.]	T	n	Specifications and Remarks	Author(s), Year
(cont.)	356.6	3.501		Lukes, F., 1959
[13]	360.5	3.502		
	372.2	3.505		
	397.7	3.509		
	407.5	3 512		
	421.2	3.514		
	434.9	3.517		
	458.4	3.523		
	.,/8.0	3.529		
	489.7	3.531		
	497.6	3.532		
	505.4	3.532		
	517.2	3.535		
	532.8	3.539		
	544.0	3.54.		
	554.4 Env. 1	3.545 3.547		
	500.1 508.1	3.549		
	577.0	3.550		
	581.8	3.551		
	593.0	1.554		
	603.4	3.555		
	609.2	3.558		
	624.9	3.552		
	135.6	3.564		
	636.6	3.005		
	6.8.4	5.561		
	038.2	· · · · O		
	651.7	1.015		
	e91.5	3.577		
	4.9 . 4	3.579		
	$7.5 \cdot 1$	1.582		
	210.0	3.583		
	7 3	3,533		
	2.5.7	3.549		
	742.4	3.5.1		
	744.3	3.593		
7 [13]	(++1.5 1 + 0		<pre>Single crystal; p-type; , = 380 ohm-cm; prism specimen of 17°51.4' apex angle;</pre>	Lukes, F., 1959
ر د. ها	117.8	3.446	refractive indices for the wavelength	
	129.4	3.448	$\lambda = 1.564$ km at various temperatures	
	141.1	3.450	determined by the minimum deviation	
	152,9	3.451	method; reported error in $n \sim 0.0004$;	
	160.7	3.453	data read from a figure.	
	178.4	3.455		
	192.1	3.457		
	207.7	3.459		
	219.5	3.461		
	229.3	3.462		
	241.1	3.464		
	252.8	3.467		
	272.4	3.470		
	280.2	3.471		
	299.8	3.475		
	311.6	3.477		
	327.3	3.480		

TABLE A-2.	FXPERIMENTAL	DATA ON THE	REFRACTIVE	INDEX	OF	SILICON
	(Temperature	Dependence)	(continued)		

Data Set [Ref.]	T	n	Specifications and Remarks	Author(s), Year
(cont.)	344.9	3.483		Lukes, F., 1959
[13]	352.7	3.485		
-	368.4	3.488		
	374.3	3.490		
	388.0	3.492		
	399.7	3.495		
	417.4	3.498		
	423.2	3.500		
	431.1	3.502		
	438.9	3.503		
	446.7	3.504		
	458.5	3.507		
	468.3	3.509		
	473.1	3.511		
	491.8	3.514		
	501.6	3.516		
	511.4	3.519		
	529.0	3.522		
	536.8	3.525		
	546.6	3.526		
	554.5	3.530		
	564.3	3.532		
	574.0	3.534		
	583.8	3.537		
	607.3	3.542		
	621.0	3.545		
	632.8	3.547		
	644.6	3.549		
	658.3	3,554		
	670.0	3.555		
	683.7	3.559		
	695.5	3.561		
	709.2	3.566		
	724.9	3.570		
	736.6	3.573		
	750.3	3.576		
8		09 μm)	Single crystal; p-type; p = 380 ohm-cm;	Lukes, F., 1960
[23]	111.6	3.412	prism specimen of 17°51.4' apex angle;	
	120.7	3.415	refractive indices for the spectral line	
	144.8	3.417	λ = 2.409 μm at various temperatures	
	156.9	3.418	determined by the minimum deviation	
	187.1	3.421	method; reported error in n \sim 0.0004;	
	199.2	3.424	data read from a figure.	
	211.3	3.426		
	229.4	3.428		
	238.4	3.430		
	247.5	3.431		
	262.6	3.433		
	265.6	3.435		
	274.7	3.436		
	280.7	3.437		
	286.8	3.438		
	289.8	3.440		
	295.8	3.440		
	307.9	3.443		
	323.0	3.445		
		2.442		

7

Ņ

 TABLE A-2.
 EXPERIMENTAL DATA ON THE REFRACTIVE INDEX OF SILICON (Temperature Dependence) (continued)

Data Set [Ref.]	T	n,	Specifications and Remarks	Author(s), Year
B(cont.)	335.1	3.446		Lukes, F., 1960
[23]	341.1	3.449		-
	353.2	3.452		
	371.3	3.453		
	380.4	3.455		
	395.5	3.458		
	407.6	3.460		
	419.7	3.464		
	.431.8	3.465		
	446.9	3.468		
	456.0	3.470		
	462.0	3.472		
	477.1	3.475		
	480.2	3.478		
	501.3	3.480		
	516.4	3.483		
	528.5	3.485		
	540.6	3.488		
	546.6	3.489		
	561.7	3.492		
	567.8	3.495		
	585.9	3.498		
	598.0	3.500		
	610.1	3.502		
	622.2	3.506		
	628.2	3.507		
	020.2	1.507		
9	(λ=ŝ.)	156 µm)	Single crystal; p-type; c = 380 ohm-cm;	Lukes, F., 1960
[23]	298.6	3.420	prism specimen of 17°51.4' apex angle;	, ,
	310.7	3.423	refractive indices for the spectral line	
	316.7	3.423	λ = 5.156 µm at various temperatures	
	334.9	3.426	determined by the minimum deviation	
	337.9	3.427	method; reported error in $n \sim 0.0004$;	
	347.0	3.429	data read from a figure.	
	359.0	3.430	0	
	377.2	3.433		
	401.3	3.436		
	425.5	3.444		
	440.6	3.445		
	446.7	3.448		
	455.7	3.450		
	479.9	3.453		
	495.0	3.455		
	510.1	3.458		
	5.6.2	3.461		
	528.2	3.462		
	543.4	3.467		
	564.5	3.472		
	573.6	3.472		
	585.7	3.475		
	594.7	3.475		
	621.9	3.476		
10	(λ=0.4)		Single crystal; $\rho = 15 \Omega$ -cm; plane-	Sato, T., 1967
[39]	266	4.74	parallel disk specimens of 23 mm in	
	373	4.8:	diameter; optical polished; emissivities	
	466	4.91	directly measured by comparison of the	

No. of Concession, Name

1

 TABLE A-2.
 EXPERIMENTAL DATA ON THE REFRACTIVE INDEX OF SILICON (Temperature Dependence) (continued)

Data Set	T	n	Specifications and Remarks	Author(s), Year
[Ref.] O(cont.)	568	4.96	emission of the specimer and that of	Sato, T., 1967
[39]	675	5.02	a V-shape cavity of graphite with the	
[]]]	760	5.14	emissivity of about 0.97; refractive	
	875	5.18	index determined using the expression:	
			emissivity = $4n/(n+1)^2$; data taken	
	968	5.32	from a figure.	
11	(λ=0.	55 µm)	Single crystal; $\rho = 15 \Omega$ -cm; plane-	Sato, T., 1967
[39]	275	4.14	parallel disk specimens of 23 mm in	
(37)	368	4.22	diameter; optical polished; emissivities	
	466	4.23	directly measured by comparison of the	
	564	4.34	emission () the specimen and that of	
	675	4.40	a V-shape cavity of graphite with the	
	773	4.42	emissivity of about 0.97; refractive	
	800	4.51	index determined using the expression:	
	977	4.55	$missivity = 4n/(n+1)^2$; data taken	
	711	7.23	trom a figure.	
12	(\=0.	65 µm)	Single crystal; o = 15 L-om; plane-	Sato, T., 1967
[39]	275	4.03	parallel disk specimens of 23 mm in	
(386	4.07	diameter; optical polished; emissivities	
	475	4.12	directly measured by comparison of the	
	577	4.23	emission of the specimen and that of	
	693	4.24	a V-shape cavity of graphite with the	
	791	4.30	emissivity of about 0.97; refractive	
	880	4.40	index determined using the expression:	
	995	4.42	emissivity = $4n/(n+1)^3$; data taken	
	,,,,		from a figure.	
13	(<u>)</u> =0.	90 Jm)	Single crystal; o = 15 D-cm; plane-	Sato, T., 1967
[39]	271	3.75	parallel disk specimens of 23 mm in	
(22)	368	3.83	diameter; optical poliched; emissivities	
	475	3.83	directly measured by comparison of the	
	568	3.92	emission of the specimen and that of	
	675	3.91	a V-shape cavity of graphite with the	
	768	4.00	emissivity of about 0.97; refractive	
	871	4.00	index determined using the expression:	
	973	4.10	erissivity = $4n/(n+1)$; data taken	
	, , , , , , , , , , , , , , , , , , ,		from a figure.	
14	()=] .	56 µm)	Single crystal; 6 = 15 S-cm; plane-	Sato, T., 1967
[39]	280	3.55	parallel disk specimens of 23 mm in	
,	377	3.61	diameter; optical polished; emissivities	
	484	3.60	directly measured by comparison of the	
	573	3.68	emission of the specimen and that of	
	671	3.72	a V-shape cavity of graphite with the	
	782	3.69	emissivity of about 0.97; refractive	
	871	3.79	index determined using the expression:	
	977	3.77	emissivity $\approx 4n/(n+1)^2$; data taken	
	711	2.11	from a figure.	
15	(λ=2.	00 µm)	Single crystal; $\rho = 15 \Omega$ -cm; plane-	Sato, T., 1967
[39]	284	3,47	parallel disk specimens of 23 mm in	
[22]	382	3.48	diameter; optical polished; emissivities	
	488	3.52	directly measured by comparison of the	
		3.59		
	573	1.74	emission of the specimen and that of	

 TABLE A-2.
 EXPERIMENTAL DATA ON THE REFRACTIVE INDEX OF SILICON (Temperature Dependence) (continued)

L L

İ

Data Set T n [Ref.] T n		n	Specifications and Remarks	Author(s), Year		
15(cont.) [39]	782 871 977	3.59 3.65 3.64	emissivity of about 0.97; refractive index determined using the expression: emissivity = $4n/(n+1)^2$; data taken from a figure.	Sato, T., 1967		

ŝ

والمعالمة والمستحد

1

to 1...

Ł

TABLE A-2. EXPERIMENTAL DATA ON THE REFRACTIVE INDEX OF SILICON (Temperature Dependence) (continued)

.

Data Set [Ref.]	λ	Jn/dî	Specifications and Remarks	Author(s), Year
1	(1=30)0 к)	Single crystal; p-type; a = 380 G-cm;	Lukes, F., 1959
[13]	1.130	2.17	prism specimen of 17°51.4' apex angle;	
	1.158	2.12	refractive indices at various tempera-	
	1.192	2.09	tures determined using the minimum	
	1.260	2.06	deviation method and dn/dT at 300 K	
	1.327	2.04	obtained; data read from a figure.	
	1.457	1.97	-	
	1.589	1.95		
	1.734	1.91		
	1.781	1.88		
2	(T=30	0 к)	Single crystal; p-type; / = 380 fr-cm;	Lukes, F., 1960
[23]	1.146	2.18	prism specimen of 17°51.4' apex angle:	
	1.162	2.13	refractive indices at various tempera-	
	1.207	2,10	tares determined using the minimum	
	1.238	2.07	deviation method and dn/d^+ at $300~K$	
	1.328	2.64	obtained; data read from a figure.	
	1.389	1.98		
	1.554	1.96		
	1.720	1.85		
	1.766	1.34		
	2.080	1.30		
	2.393	1.80		
	3.410	1.74		
	3.829	1.68		
	5.144	1.60		

 TABLE A-3.
 EXPERIMENTAL DATA ON THE TEMPERATURE DERIVATIVE OF REFRACTIVE INDEX OF SILICON (Wavelength Dependence)

[Temperature, T, K; Wavelength, λ_{s} am; Temperature Derivative of Refractive Index, dn/dT, $10^{-4} K^{-1}$]

a strate days

and the second second

1

ł

TABLE A-4. EXPERIMENTAL DATA ON THE TEMPERATURE DERIVATIVE OF REFRACTIVE INDEX OF STLICON (Temperature Dependence)

[Temperature, 1, K; Wavelength, λ , μm ; Temperature Derivative of Refractive Index, dn/dT, $10^{-9}K^{-1}$]

Data Set 19 1,1	τ	dn/dT	Specifications and Remarks	Author(s), Year
i [13]	$(\lambda - 1.2)$ 117.3 170.9 216.6 206.3 315.9 415.4 522.4	<pre>2%9 (µm) 1.01 1.60 1.84 1.98 2.09 2.22 2.37</pre>	Single crystal; p-type; $p = 360 \Omega$ -cm; prism specimen of 17°51.4° apex angle; refractive indices for the line 1.259 µm at various temperatures detertained using the minimum deviation method and da/dT obtained; data read from a figure.	Lukes, F., 1959
2 (14)	(X=1, 117.7 167.2 216.8 266.4 319.9 419.2 522.5 621.6 721.4	664 j.m) 1.07 1.40 1.03 1.83 1.95 2.14 2.29 2.39 2.44	Single crystal; p-type; $\mu \approx 380$ C-cm; priom specimen of 17°51.4° apex angle; retractive indices for the fine $\lambda =$ 1.564 pm at various temperatures deter- mined using the minimum deviation method and m/dT obtained; data read from a figure.	Lukes, F., 1959
3	(3.41.4) 1.5.7 1.7.6 1.5.2 1.84.0 210.7 2.52.3 2.90.9 771.2 4.21.7 4.60.3 516.9 547.4 6.09.0 629.0 665.5 719.1 736.9	<pre>()7 [µm]) C.95 L.09 L.+* 1.54 L.77 L.92 2.06 2.15 2.20 2.29 2.32 2.33 2.32 2.30 2.30 2.30</pre>	Single crystal; p-type; . = 380 Ω -cm; priod specimen of $17^{51.4}$ apex angle; retractive indices for wavelength $\lambda =$ 1.427 pm at various temperatures deter- and 1 using the minimum deviation method and du/df obtained; data read from a figure.	Lukes, F., 1960
4 [23]	() = 2.44 115.7 157.6 157.3 184.0 207.7 249.3 290.9 308.8 368.2 415.8 466.4 516.9 567.4 606.1	9 (ata) 0.78 0.97 1.22 1.42 1.57 1.78 1.86 1.88 1.94 1.98 2.04 2.06 2.14 2.17	Single crystil; p-type; $z = 380$ fl-cm; prism spectrum of 17°51.4' oper angle; tetractive indices for the line $\lambda =$ 2.409 .m at various temperatures deter- mined using the minimum deviation method and du/dT obtained; dita read from a figure.	Lukes, F., 1960

ţ

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

ata Set [Ref.]	T	dn/dT	Specifications and Remarks	Author(s), Year
5	(λ=3.8	26 µm)	Single crystal; p-type; ρ = 380 Ω-cm;	Lukes, F., 1960
[23]	311.8	1.74	prism specimen of 17°51.4' apex angle;	
	371.2	1.83	refractive indices at various tempera-	
	418.8	1.95	tures determined using the minimum	
	466.4	2.00	deviation method and dn/dT obtained;	
	519.9	2.03	data read from a figure.	
	567.5	2.06	• •	
	609.1	2.09		
6	(λ =5.1	56 µm.)	Single crystal; p-type; ρ = 380 Ω-cm;	Lukes, F., 1960
[23]	308.8	1.62	prism specimen of 17°51.4' apex angle;	
	368.3	1.74	refractive indices at various tempera-	
	418.8	1.86	tures determined using the minimum	
	469.4	1.94	deviation method and dn/dT obtained;	
	516.9	1.98	data read from a figure.	
	567.5	1.95	-	
	606.2	1.85		

TABLE A-4. EXPERIMENTAL DATA ON THE TEMPERATURE DERIVATIVE OF REFRACTIVE INDEX OF SILICON (Temperature Dependence) (continued)

[Temperatur	a. , F , K; Wavelength, λ , jum; Refractive Inde	x, n]
λ	n	Specifications and Remarks	Author(s), Year
(T=24 0.36 0.43 0.50 0.68 0.78 0.88 0.99 1.0 1.2 1.4 1.5 1.5 1.6 1.6 1.6 1.8 1.8 2.0 2.2 2.6 3.1 3.9	2.03 2.43 3.40 5.15 5.22 5.17 5.20 4.92 4.84 4.79 4.61 4.74 4.61 4.74 4.61 4.74 4.61 4.74 4.61 4.74 4.61 4.74 4.61 4.74 4.61 4.74 4.61 4.74 4.61 4.36 4.38	Thin film specimens of thickness ranged from 0.04 to 1.0 µm; refrac- tive index determined from the in- terference fringe order of the trans- mitted radiation and the thickness of the specimen; data excracted from a figure.	Brattain, W.H., and Briggs, H.B., 1949
5.2	4.33		

TABLE A-5.	EXPERIMENTAL	DATA	11 1 (111)	REFRACTIVE	LNDEX	OF	GERMANIUM	(Wavelength	Dependence)
------------	--------------	------	-------------------	------------	-------	----	-----------	-------------	-------------

	1.5 1.6 1.8 1.8 2.0 2.2 2.6 3.1	4.74 4.61 4.74 4.66 4.56 4.64 4.46 4.46 4.43		
	3.9	4.38		
	5.2 7.6	4.33 4.30		
2		198 K)	Sample from a standard high back-	Briggs, H.B., 1949
[21]	1.80	.143	voltage melt with impurity content	
	1.85 1.90	4.135 4.129	estimated at less than 0.01%; pris-	
	2.00	4.116	matic specimen of 17°6'30" angle; index of refraction measured by	
	2.10	4.104	method of minimum deviation; data	
	2.20	4.092	extracted from a table.	
	2.30	4.085		
	2.40	4.078		
	2.50	4.072		
	2.60	4.068		
3		00 К)	Crystal; obtained from RCA Labora-	Simon, I., 1951.
[26]	3.842	2.669	tories; $\rho \sim 1$ Ω -cm; polished specimen	
	4.147	2.648	of 0.89 mm thick; reflectances at	
	4.518	2.698	20 and 70 degree incidence angles	
	4.715	2.750	obtained; refractive indices obtained	
	6.209	2.993	by a graphical analysis; data taken	
	7.158	3.403	from a figure.	
	8.202	3.652		
	9.735 12.168	3.954 3.968		
	13.983	4.128		
4	(T=7	7 K)	Pure crystal; thin plate specimen of	Collins, R.J., 1953
[50]	8.66	3.77	227 µm thick; interference fringe of	
	9.4	3.81	transmitted radiation observed and	
	10.2	3.81	refractive index determined; data	
	11.22	3.81	extracted from a table.	
	12.35	3.82		
				_

ą

Data Set [Ref.]

1 [49]

[Ref.]	λ	n	Specifications and Remarks	Author(s), Year
5 [50]	(T=300 8.66	3.92	Pure crystal; thin plate specimen of 227 µm thick; interference fringe of	Collins, R.J., 1953
	9.4	3.90	transmitted radiation observed and	
	10.2 11.22	3.93 3.92	refractive index determined; data extracted from a table.	
	12.35	3.93	extlacted from d .abie,	
6	(T=297		Germanium crystal; grown at the	Rank, D.H.,
[43]	2.00	4.1254	General Electric Co., Electronic	Bennett, H.E., and
	2.10 2.30	4.1145 4.0980	Lab., Electronic Park, Syracuse, NY; plane parallel plate specimen of	Cronemeyer, D.C., 195
	2.40	4.0918	3.0575 mm thick and 28 mm clear	
			aperature; interference fringe order	_
			observed and vacuum refractive in-	
			dex of the plate determined; data	
			taken from a table.	
7	(T=297		Single crystal; $\rho=56 \ \Omega-cm$; plate	Oswald, F. and
[51]	1.8	3.95	specimen of about 7 mm thick; refrac- tive index deduced from reflectance	Schade, R., 1954
	to 15.2		and transmittance measurements; re-	
	13.4		flective index in the wavelength	
			region between 1.8 and 15.2 µm being	
			a constant 3.95.	
8	(T=297	•	Single crystals, n-type with majority	Spitzer, W.G. and
[52]	2.811	4.027	carrier concentration $N = 3.9 \times 10^{19}$	Fan, H.Y., 1957
	3.217 3.623	4.027 4.027	cm ⁻³ ; refractive index derived from reflectivity and transmission mea-	
	4.029	4.014	surements; data taken from a figure.	
	7.139	3.959		
	10.926	3.662		
	12.008	3.595		
	12.820	3.514		
	13.361 13.902	3.500 3.432		
	14.172	3.392		
	15.254	3.297		
	16.066	3.230		
	17.012	3.095		
	17.959	2.946		
	18.906 19.988	2.811 2.649		
	21.070	2.649		
	22.152	2.270		
	22.963	2.054		
9	(T=297		Single crystals, p-type with majority	Spitzer, W.G. and
[52]	7.816	3.824	carrier concentration $N = 1.1 \times 10^{19}$	Fan, H.Y., 1957
	8.762 9.980	3.824 3.797	cm ⁻³ ; refractive index derived from reflectivity and transmission mea-	
	10.926	3.770	surements; data taken from a figure.	
	12.008	3.730	at a second train a reburgt	
	12.955	3.703		
	14.037	3.622		
	14.984	3.514		
	16.066 17.148	3.432 3.324		
	17.148	3.230		
	18.906	3.162		

10.11

 TABLE A-5.
 EXPERIMENTAL DATA ON THE REFRACTIVE INDEX OF GERMANIUM (Wavelength Dependence) (continued)

TABLE A-5.	EXPERIMENTAL	DATA ON	The	REFRACTIVE	INDEX	0r	GERMANIUM
	(Wavelength 1)ependen	ce)	(continued))		

[Ref.]	λλ	n	Specifications and Remarks	Author(s), Yean
10	(T-30		Single crystal of germanium from	Salzberg, C.D. and
[22]	2.0581	4.1016	Sylvania Electronic Products Co.,	Villa, J.J., 1957
	2.1526	4.0917	Woburn, MA; test prism cut with faces	
	2.3126	4.0788	4.5×4.0 cm and refracting angle of	
	2.4374	4.0706	11.8°; index of refraction measured	
	2.577	4.0610	by autocollimation method at 300 K;	
	2.7144	4.0554	data with uncertainty ±2 in fourth	
	2.998 3.3033	4.0453	decimal place taken from a table.	
	3.4188	4.0370 4.033 6		
	4.258	4.0217		
	4.866	4.0170		
	6.238	4.0092		
	8.66	4.0036		
	9.72	4.0026		
	11.04	4.0020		
	12.20	4.0018		
	13.02	4.0016		
	14.21	4.0015		
	15.08	4.0014		
	16.00	4.0012		
11	(1=30		Remeasurement of above single crystal	Salzberg, C.D. and
{47}	2.0581	4.1016	prism; minimum deviation method used;	Villa, J.J., 1958
	2.1526	4.0919	comparison of the single and poly-	
	2.3126	4.0786	crystalline results indicated no sig-	
	2.4374	4.0708	nificant differences; data from a	
	2.577 2.7144	4.0609 4.0552	table.	
	2.998	4.0452		
	3.3033	4.0369		
	3.4188	4.0334		
	4.258	4.0216		
	4.866	4.0170		
	6.238	4.0094		
	8.66	4.0043		
	9.72	4.0034		
	11.04	4.0026		
	12.20	4.0023		
	13.02	4.0021		
12	(T=300		Polycrystalline; supplied by Sylvania	Salzberg, C.D. and
[47]	2.0581	4.1018	Electronic Products Co., Towonda, PA;	Villa, J.J., 1958
	2.1526	4.0919	refractive index measured by minimum	
	2.3126 2.4374	4.0785	deviation method; data taken from a	
	2.4374	4.0709 4.060 8	table.	
	2.7144	4.0554		
	2.998	4.0452		
	3.3033	4.0372		
	3.4188	4.0339		
	4.258	4.0217		
	4.866	4.0167		
	6.238	4.0095		
	8.66	4.0043		
	9.72	4.0033		
	11.04	4,0025		
	12.20	4.0020		
	13.02	4.0018		
			and a second	-

1-

- 3

j

ata Set [Ref.]	λn		Specifications and Remarks	Author(s), Year	
13	(T=29)8 K)	Specimens of both mechanically pol-	Archer, R.J., 1958	
[53]	0.36	4.13	ished and etched 6 Ω -cm germanium;		
	0.40	4.14	optical constants obtained from		
	0.43	4.03	ellipticity of reflected polarized		
	0.46	4.07	light; the polished mirrors were		
	0.49	4.37	boiled in benzene and refluxed over		
	0.52	4.74	acctone for several hours before		
	0.54	5.07	use; the effect of surface films were		
	0.58	5.37	taken into account; data extracted		
	0.60	5.56	from a figure.		
	0.63	5.31		•	
	0.66	5.17			
	0.69	4.84			
14	(T=87	' K)	5° germanium prism mounted against	Cardona, M.,	
[12]	1.743	4.064	a plane mirror; Abbe autocollimation	Paul, W., and	
	1.902	4.041	method applied to measure the devia-	Brooks, H., 1959	
	2.089	4.027	tion angle to within ±1'; data ex-	-	
	2.263	4.014	tracted from a figure.		
	2.422	4.003	-		
	2.552	3.996			
	2.711	3.990			
	2.856	3.986			
	3.059	3.978			
	3.348	3.969			
	3.623	3,966			
	4.116	3,955			
	4.463	3.952			
	4.855	3,952			
	5.318	3.949			
	5.608	3.947			
15	(T=19	90 K)	5° germanium prism mounted against	Cardona, M., et al.,	
[12]	1.831	4.093	a plane mirror; Abbe autocollimation	1959	
	1.888	4.077	method applied to measure the devia-		
	2.091	4.061	tion angle to within ±1'; data ex-		
	2.409	4.040	tracted from a figure.		
	2.553	4.034			
	2.713	4.025			
	2.828	4.021			
	3.378	4.003			
	3.654	3.998			
	3.914	3.994			
	4.117	3.989			
	4.465	3.986			
	4.900	3.986			
	5.320	3,985			
16	(T=29	•	5° germanium prism mounted against	Cardona, M., et al.,	
[12]	1.769	4.138	a plane mirror; Abbe autocollimation	1959	
	1.854	4.127	method applied to measure the devia-		
	1.940	4.119	tion angle to within ±1'; data ex-		
	2.111	4.099	tracted from a figure.		
	2.281	4.080			
	2.439	4.069			
	2.581	4.061			
	2.739	4.056			
	2.882	4.048			

TABLE A-5.EXPERIMENTAL DATA ON THE REFRACTIVE INDEX OF GERMANIUM
(Wavelength Dependence) (continued)

and the second

Data Sct [Ref.]	λ	n	Specifications and Remarks	Author(s), Year
6(cont.)	3.083	4.046		Cardona, M.,
[12]	3.383	4.035		Paul, W., and
	3.656	4.030		Brooks, H., 1959
	3.885	4.024		• •
	4.129	4.024		
	4,445	4.020		
	4.861	4.018		
	5.320	4.015		
	5.578	4.012		
17	(T=3	00 K)	Single crystal; etched surfaces;	Philipp, H.R. and
[54]	0.124	0.821	near normal reflectance spectrum	Taft, E.A., 1959
	0.132	0.779	between 0.1 and 1.8 µm observed,	
	0,138	0,815	above 1.77 µm reflectance calculated	
	0.148	0.812	from available refractive indices;	
	0,156	0.848	phase angle computed from reflectance	
	0.167	0.846	spectrum using the Krammers-Kronig	
	0.178	0.920	relation; optical constants deter-	
	0.178	0.920	mined from the Fresnel formulae:	
	0.190	1.108	data taken from a figure.	
			data taken from a figure.	
	0.211 0.218	1.299		
		1.452		
	0.221	1.490		
	0.227	1.451		
	0.240	1.488		
	0.253	1.602		
	0.263	1.832		
	0.275	2.254		
	0.277	2.600		
	0.285	3.099		
	0.287	3.522		
	0,295	3.868		
	0.309	3.828		
	0.325	3.827		
	0.349	3.980		
	0.369	4.133		
	0.382	4.132		
	0.410	4.054		
	0.450	4.014		
	0.498	4.359		
	0.531	4.666		
	0.549	4.935		
	0.569	5.280		
	0.590	5.434		
	0.612	5.318		
	0.612			
		5.009		
	0.735	4.816		
	0.807	4.623		
	0.921	4.430		
	1.108	4.313		
	1.234	4.236		
	1.452	4.158		
	1.981	4.080		
	2.844	4.041		
	5.041	4.010		
	9.394	4.001		

 TABLE A-5.
 EXPERIMENTAL DATA ON THE REFRACTIVE INDEX OF GERMANIUM (Wavelength Dependence) (continued)

. 2

Data Set [Ref.]	λ	n	Specifications and Remarks	Author(s), Year
18	(T≈-297 K)		Thin film of 1.092 µm thick; deposited	Huldt, L. and
(55)	1.513	4.815	on rotating glass substrate at air	Staflin, T., 1959
	1.607	4.752	pressure of less than 4 x 10 ⁵ mallg	•
	1.725	4.723	and rate of deposition of 30-60 K/sec;	
	1.853	4.651	refractive indice: determined from	
	2.031	4.622	reflection and interference observa-	
	2.228	4.540	tion; data taken from a figure.	
	2.803	4.497		
	2.861	4.539		
	3.334	4.548		
	3.978	4.527		
	4.900	4.450		
	4.900	4.430		
19	(T=297		Thin film of 1.010 µm thick; deposited	Huldt, L. and
[55]	1.409	4.853	on rotating glass substrate at air	Staflin, T., 1959
	1.502	4.812	pressure of less than 4×10^{-5} mmHg	
	1.601	4.740	and rate of deposition of 30-40 Å/sec;	
	1.743	4.721	refractive indices determined from	
	1.887	4.651	reflection and interference observa-	
	2.087	4.620	tion; data taken from a figure.	
	2.309	4.538		
	2.617	4.497		
	2.803	4.548		
	3.029	4.498		
	3.676	4.515		
	4.525	4.438		
	4.625	4.457		
20	(T=297	K)	Thin film on rotating glass substrate	Huldt, L. and
[55]	2.803	4.497	deposited on edg processes substrate	-
[]]]	2.803	4.546	deposited at air pressure of less than 4×10^{-5} mmlig and at rate of	Staflin, T., 1959
	3.041		than 4 x 10 maning and at rate or	
		4.498	30-60 Å/sec; refractive indices	
	4.677	4.457	determined from Brewster angle mea- surement; data taken from a figure.	
21	(7-207	ע	This film of 1 260 ye shield on webselve	thuld be the sed
[55]	(T=297) 1.514	4.498	Thin film of 1.340 µm thick on rotating glass substrate deposited at nitrogen	Huldt, L. and
[]]]	1.602	4.498	pressure of less than 4 x 10 ⁻⁵ mmHg	Staflin, T., 1959
	1.698	4.400	and at rate of 30-60 Å/sec; refractive	
	1.809	4.421	indices determined from reflection	
	1.941	4.361		
	2.105	4.342	and interference measurements; data	
	2.103		taken from a figure.	
		4.261		
	2.523	4.239		
	2.855	4.232		
	3.022	4.239		
	3.248	4.227		
	3.766	4.211		
		4.209		
	4,583	4.148		
22	(T=297		Thin film of 1.364 µm thick on rotating	Huldt, L. and
[55]	1.542	4.513	glass substrate deposited at nitrogen	Staflin, T., 1959
		4.479	pressure of less than 4×10^{-5} mmHg	
		4.438	and at rate of 30-60 Å/sec; refractive	
		4.422	indices determined from reflection	
		4.366	and interference measurements; data	
			マルクシャンクトカルク 明られるがてた間にになく 口名に名	
	2.171	4.350	taken from a figure.	

and a second
<u>م</u>.

TABLE A-5.EXPERIMENTAL DATA ON THE REFRACTIVE INDEX OF GERMANIUM
(Wavelength Dependence) (continued)

бу. 13

.

· ····

Data Set [Ref.]	λ	n	Specifications and Remarks	Author(s), Year
2(cont.)	2.344	4.280 .		Huldt, L. and
[55]	2.611	4.278		Staflin, T., 1959
	2.935	4.268		
	3.339	4.256		
	3.570	4.254		
	3.890	4.257		
	4.581	4.187		
	4.634	4.168		
23	(T=29	97 K)	Thin film of 1.449 µm thick on rotating	lluldt, L. and
[55]	1.539	4.513	glass substrate deposited at nitrogen	Staflin, T., 1959
	1.615	4.441	pressure of less than 4×10^{-5} mmHg	
	1.719	4.438	and at rate of 30-60 Å/sec; refractive	
	1.950	4.371	indices determined from reflection and	
	2.094	4.309	interference measurements; data taken	
	2.267	4.289	from a figure.	
	2.456	4.222	-	
	2.732	4.232		
	3.078	4.237		
	3.555	4.266		
	4.507	4.167		
24	(T-29)7 K)	Thin film on rotating glass substrate	Huldt, L. and
[55]	3.033	4.242	deposited at nitrogen pressure of less	Staflin, T., 1959
()	3.525	4.259	than 4×10^{-5} mmilg and at rate of 30-	• •
	4.583	4.167	60 Å/sec; refractive indices determined from Brewster angle measurements; data taken from a figure.	
25	(T=293 K)		Pure germanium crystal; prism angle =	Lukes, F., 1960
[44]	1.84	4.133	19°55.8'; ρ = 40 Ω -cm; measurements	
	1.88	4.126	made by deviation method; data taken	
	1.97	4.115	from a figure.	
	2.05	4.104		
	2.15	4.094		
	2.18	4.090		
	2.30	4.081		
	2.36	4.077		
	2.41	4.073		
	2.47	4.068		
	3.43	4.034		
	3.82	4.027		
	4.15	4.022		
	4.54	4.020		
	5.43	4.013		
26	(T=293 K)		Pure germanium crystal; prism angle =	Lukes, F., 1960
[44]	1.75	4.150	14°53.0'; $\rho = 1.2 \Omega - cm$; measurements	
-	5.15	4.013	made by deviation method; data taken	
	5.44	4.010	from a figure.	
	5.61	4.007		
27	(T=29	•	Pure germanium crystal; prism angle =	Lukes, F., 1960
[44]	1.79	4.142	14°59.5'; $\rho = 0.016 \ \Omega-cm$; measurements	- •
	1.88	4.128	made by deviation method; data taken	
	2.06	4.102	from a figure.	
	2.15	4.092	-	
	2.18	4.089		

TABLE A-5. EXPERIMENTAL DATA ON THE REFRACTIVE INDEX OF GERMANIUM (Wavelength Dependence) (continued)

í
[Ref.] 27(cont.) [44]	2.24			
		4.085		Lukes, F., 1960
	2.30	4.080		
	2.36	4.076		
	2.41	4.071		
	2.97	4.047		
	3.43	4.034		
	3.82	4.027		
	4.16	4.021		
	4.52	4.018		
	4.85	4.01 6		
	5.43	4.007		
	5.61	4.005		
28	(T=8	Ю К)	High purity germanium; prism cut from	Kornfeld, M.I., 1960
[56]	1.494	4.133	a single crystal; prism angle: 4°21'30";	•
	1.550	4.117	$\rho = 50 \ \Omega$ -cm; index of refraction mea-	
	1.602	4.105	sured by deviation method; data taken	
	1.653	4.086	from a figure.	
	1.698	4.079	-	
	1.748	4.068		
	1.804	4.060		
	1.907	4.042		
	2.000	4.031		
	2.105	4.023		
	2.210	4.013		
29	(T=2)	22 К)	High purity germanium; prism cut from	Kornf eld, M.I., 1960
[56]	1.602	4.159	a single crystal; prism angle: 4°21'30";	
	1.653	4.143	$\rho = 50 \ \Omega$ -cm; index of refraction mea-	
	1.703	4.130	sured by deviation method; data taken	
	1.748	4.123	from a figure,	
	1.794	4.110		
	1.907	4.097		
	1.993	4.081		
	2.105	4.071		
	2.194	4.058		
30	(T=29	1 K)	High purity germanium; prism cut from	Kornfeld, M.I., 1960
[56]	1.648	4.171	a single crystal; prism angle: 4°21'30";	
	1.698	4.161	$\rho = 50 \ \Omega$ -cm; index of refraction mea-	
	1.744	4.148	sured by deviation method; data taken	
	1.799	4.138	from a figure,	
	1.907	4.120		•
	2.000	4.107		
	2.098	4.094		
	2.202	4.084		
31	(T=34	3 K)	High purity germanium; prism cut from	Kornfeld, M.I., 1960
[56]	1.698	4.199	a single crystal; prism angle: 4°21'30";	Notificity (1.1., 1900
· •	1.744	4.192	$\rho = 50 \ \Omega$ -cm; index of refraction mea-	
	1.794	4.174	sured by deviation method; data taken	
	1.907	4.156	from a figure.	
	2.000	4.138	U	
	2.105	4.123		
	2.218	4.112		
32	(T=40	1 K)	High purity germanium; prism cut from	Kornfeld, M.I., 1960
[56]	1.794	4.215	a single crystal; prism angle: 4°21'30";	Nocintere, M.I., 1900

TABLE A-5. EXPERIMENTAL DATA ON THE REFRACTIVE INDEX OF GERMANIUM (Wavelength Dependence) (continued)

÷.,

÷,

Data Set [Ref.]	λ	n	Specifications and Remarks	Author(s), Year
32(cont.)	1.901	4.192	$\rho = 50 \ \Omega$ -cm; index of refraction	Kornfeld, M.I., 1960
[56]	2.000	4.174	measured by deviation method; data	
	2.098	4.159	taken from a figure.	
	2.210	4.148		
33	(T=4	60 K)	High purity germanium; prism cut from	Kornfeld, M.I., 1960
[56]	1.901	4.230	a single crystal; prism angle: 4°21'30";	
	1.993	4.212	$\rho = 50 \ \Omega$ -cm; index of refraction mea-	
	2.098	4.197	sured by deviation method; data taken	
	2.218	4.184	from a figure.	
34	(T=2	98 K)	Thin films of germanium obtained by	Lukes, F., 1960
[45]	0.358	4.001	evaporating very pure germanium in a	
	0.377	4.022	vacuum from molybdenum or tungsten boats	
	0.402	3.880	on to glass plates at a pressure on the	
	0.431	3.717	order of 10 ⁻⁵ mmHg; refractive indices	
	0.471	3.616	determined from the measured values of	
	0.522	4.148	the transmissivity and reflectivity;	
	0.604	4.905	data taken from a figure.	
	0.648	4.987	•	
	0.656	5.008		
	0.677	4.927		
	0.802	4.787		
35	(T=29	98 K)	Thin films of germanium obtained by	Lukes, F., 1960
[45]	0.827	4.95	evaporating very pure germanium in a	
	0.836	5.01	vacuum from a molybdenum or tungsten	
	0.875	4.45	boats on to glass plates at a pressure	
	0.904	4.50	on the order of 10 ⁵ mmHg; refractive	
	0.970	4.88	indices determined from the measured	
	0.973	4.85	values of the transmissivity and re-	
	0.983	4.82	flectivity; data taken from a figure.	
	1.00	4.55		
	1.04	4.69		
	1.20	4.23		
	1.44	4.15		
	1.50	4.00		
	2.21	3.96		
36	(T=298	3 К)	Single crystal; polished specimens of	Kiselevs, N.K. and
[57]	0.43	4.22	7 x 7 mm ² surface; refractive index	Pribytkova, N.N.,
	0.46	4.14	determined from the reflectance data	1961
	0.49	4.10	from the specimen measured in air and	
	0.52	4.06	in an immersing liquid of known refrac-	
	0.54	4.18	tive index; data taken from a figure.	
	0.58	4.42		
	0.60	4.70		
	0.62	4.74		
	0.64	4.74		
	0.66	4.54		
	0.68	4.26		
	0.70	4.15		
	0.73	4.07		
	0.76	3.99		
37	(T=29	8 K)	Calculated data based upon similarities	Hertzberger, M. and
[40]	2.0	4.1083	in several materials; data taken from	Salzberg, C.D., 1962
	2.5	4.0664	a given table.	

TABLE A-5. EXPERIMENTAL DATA ON THE REFRACTIVE INDEX OF GERMANIUM (Wavelength Dependence) (continued)

1.2

1

Ì

Data Set [Ref.]	λ	n	Specifications and Remarks	Autnor(s), Year
7(cont.)	3.0	4.0449		Hertzberger, M. and
[40]	3.5	4.0324		Salzberg, C.D., 1962
•••	4.0	4.0244		
	4.5	4.0190		
	5.0	4.0151		
	5.5	4.0123		
	6.0	4.0102		
	6.5	4.0085		
	7.0	4.0072		
	7.5	4,0062		
	8.0	4.0053		
	8.5	4,0046		
	9.0	4,0040		
	9.5	4,0036		
	10.0	4.0032		
	10.5	4.0029		•
	11.0	4.0026		
	11.5	4.0024		
	12.0	4.0023		
	12.5	4.0022		
	13.0	4.0021	1	
	13.5	4.0021		
38	(T=	:7.5 K)	Single crystal; thin plate specimens	Aronson, J.R.,
[58]	23-40	3.98±0.02	of 0.5 to 2.0 mm thick cut perpendicular	McLinden, H.G., and
	45-67	3.90±0.02	to the <111> axis; refractive index measured using interference method; refractive indices found to be constant in the region between 23 and 67 μ m.	Gielisse, P.J., 1964
39	(T=	297 K)	Single crystal; thin plate specimens	Aronson, J.R., et al.
[58]	83-143	3.98±0.02	of 0.5 to 2.0 mm thick cut perpendicular to the <111> axis; refractive index measured using interference method.	1964
40	(T≈2	98 K)	Amorphous germanium thin film prepared	Tauc, J., Abraham, A.,
[59]	0.695	4.742	by evaporation of very pure germanium	Pajasova, L.,
•	0.743	4.792	in a vacuum better than 10^{-5} mmHg on	Grigorovici, R., and
	0.797	4.735	a fused quartz substrate at room tem-	Vancu, A., 1965
	0.865	4.736	perature; refractive index determined	
	0.952	4.637	from reflection and transmission mea-	
	1.147	4.597	surements; data read from a figure.	
	1.156	4.564		
	1.202	4.506		
	1.263	4.457		
	1.305	4.515		
	1.352	4.424		
	1.403	4.392		
	1.514	4.326		
	1.647	4.260		
	1.742	4.244		
	1.742	4.211		
	1.920	4.162		
	2.105	4.146		
	2.150	4.096		
	2.195	4.076		
	2.195 2.331	4.076 4.014		

TABLE A-5.EXPERIMENTAL DATA ON THE REFRACTIVE INDEX OF CERMANIUM
(Wavelength Dependence) (continued)

•

ł

[Ref.]	λ	n	Specifications and Remarks	Author(s), Year
41	(T=1	20 К)	Intrinsic germanium; electropolished;	Potter, R.F., 1966
[60]	0.443	4.246	the ratio of the reflectances of the	
• •	0.463	4.305	parallel and perpendicular components	
	0.480	4.410	of radiation, and the pseudo-Brewster	
	0.496	4.504	angle measured; the effects of the	
	0.501	4.551	presence of the oxide layer were cor-	
	0.508	4.797	rected; optical constants were reduced	
	0.513	4.984	based on the Fresnel relationships;	
	0.523	5.172	data taken from a figure.	
	0.537	5.324		
	0.548	5.441		
	0.551	5.523		
	0.557	5.664		
		5.723		
	0.563 0.566	5.770		
	0.566	5.781		
	0.578	5.793		
	0.585	5.723		
	0.591	5.594		
	0.594	5.500		
	0.608	5.453		
	0.619	5.324		
	0.638	5.195		
	0.662	5.066		
	0.679	4.996		
	0.697	4.914		
	0.707	4.820		
	0.726	4.727		
	0.775	4.586		
	0.817	4.516		
	0.886	4.387		
	0.925	4.328		
	0.977	4.281		
	1.015	4.270		
	1.055	4.234		
	1.136	4.188		
	1.244	4.164		
	1.357	4.176		
	1.450	4.152		
	1.512	4.117		
42)ок)	Intrinsic germanium; electropolished;	Potter, R.F., 1966
[60]	0.416	4.248	the ratio of the reflectances of the	
	0.446	4.259	parallel and perpendicular components	
	0,461	4.328	of radiation and the pseudo-Brewster	
	0.480	4.478	angle measured; the effects of the	
	0.499	4.663	presence of the oxide layer were cor-	
	0.516	4.835	rected; optical constants were reduced	
	0.532	5.078	based on the Fresnel relations; data	
	0.534	5.239	taken from a figure.	
	0.546	5.389	-	
	0.548	5.504		
	0,566	5.573		
	0.579	5.700		
	0.589	5.816		
	0.598	5.885		
	0.612	5.850		
	0.616	5.746		
	~ · · · · ·	21140		

 TABLE A-5.
 EXPERIMENTAL DATA ON THE REFRACTIVE INDEX OF GERMANIUM (Wavelength Dependence) (continued)

[Ref.]	λ	n	Specifications and Remarks	Author(s), Year
2(cont.)	0.627	5.573		Potter, R.F., 1966
[60]	0.638	5.469		
	0.662	5.296		
	0.679	5.157		
	0.692	5.053		
	0.701	5.007		
	0.721	4.961		
	0.746	4.891		
	0.773	4.764		
	0.841	4.614		
	0.930	4.510		
	1.019	4.417		
	1.082	4.394		
	1.153	4.382		
	1.234	4.313		
	1.361	4.289		
	1.476	4.278		
	1.540	4.266		
	1.586	4.231		
	1.687	4.197		
	2.010	4.139		
43	(T=	94 K)	Good optical grade germanium samples;	Icenogle, H.W.,
[14]	2.554	3.98859	supplied by Exotic Materials, Inc.;	Platt, B.C., and
	2.652	3.98462	prism specimen measured with a modified	Wolfe, W.L., 1976
2. 2.1 2. 3. 4.	2.732	3.98052	minimum deviation method; data taken	
	2.856	3.97720	from a table.	
	2.958	3.97390		
	3.090	3.97100		
	4.120	3.95334		
	5.190	3.94536		
	8.230	3.93720		
	10.270	3.93597		
	12.360	3.94026		
44	(7-	204 К)	Good optical grade germanium samples;	Icenogle, H.W.,
44 [14]	2.554	4.02528	supplied by Exotic Materials, Inc.;	et al., 1976
[14]			prism specimen measured with a modified	ee al., 2000
	2.652	4.01955	minimum deviation method; data taken	
	2.732	4.01511		
	2.856	4.01139	from a table.	
	2.958	4.00796		
	3.090	4.00485		
	4.120	3.98662		
	5.190	3.97820		
	8.230	3.96934		
	10.270	3.96745		
	12.360	3.96625		
45	(T=2	275 K)	Good optical grade germanium samples;	Icenogle, H.W.,
[14]	2.554	4.05659	supplied by Exotic Materials, Inc.;	et al. , 1976
	2.652	4.05201	prism specimen measured with a modified	-
	2.732	4.04725	minimum deviation method; data taken	
	2.856	4.04338	from a table.	
	2.958	4.03957		
	3.090	4.03649		
	4.120	4.01732		
	5.190	4.00853		
	8.230	3.99933		
	10.270	3.99729		
		3127167		

TABLE A-5.	EXPERIMENTAL DATA ON THE	REFRACTIVE INDEX OF GERMANIUM
	(Wavelength Dependence)	(continued)

ata Set [Ref.]	λ	n	Specifications and Remarks	Author(s), Year
46	(T=	297 K)	Good optical grade germanium samples;	Icenogle, H.W.,
[14]	2.554	4.06230	supplied by Exotic Materials, Inc.;	Platt, B.C., and
	2.652	4.05754	prism specimen measured with a modi-	Wolfe, W.L., 1976
	2.732	4.05310	fied minimum deviation method; data	
	2.856	4.04947	taken from a tabla.	
	2.958	4.04595		
	3.090	4.04292		
	4.120	4.02457		
	5.190	4.01617		
	8.230	4.00743		
	10.270	4.00571		
	12.360	4.00627		
				Decisit C.M. and
47		00 K)	Single crystal; obtained from Exotic	Randall, C.M. and
[33]	69.793	4.0065	Materials, Costa Mesa, CA; $\rho > 20 \ \Omega - cm$;	Rawcliffe, R.D., 1967
	72.491	4.0058	plate specimen of $1.93837 \pm 1.3 \times 10^{-4}$	
	75.686	4.0055	mm thick; refractive indices measured	
	77.691	4.0060	using interference method; data taken	
	81.374	4.0057	from a figure.	
	85.075	4.0058		
	88.748	4.0062		
	92.747	4.0062		
	97.584	4.0062		
	101.94	4.0066		
	108.38	4.0065		
	113.77	4.0066		
	121.13	4.0064		
	128.71	4.0066		
	137.30	4.0066		
	148.17	4.0066		
	159.65	4.0063		
	173.06	4.0061		
	199.68	4.0059		
	210.15	4.0058		
	236.70	4.0054		
	267.42	4.0051		
	311.98	4.0049		
	367.59	4.0045		
	447.46	4.0043		
48	(T=30)	•	Single crystal; obtained from Exotic	Randall, C.M. and
[33]	79.470	4.0042	Materials, Costa Mesa, CA; ρ >10 Ω -cm;	Rawcliffe, R.D., 1967
	81.682	4.0045	plate specimen of 6.22931 ± 1.3 x 10 *	
	85.062	4.0049	mm thick; refractive indices measured	
	88.726	4.0047	using interference method; data taken	
	92.729	4.0051	from a figure.	
	97.106	4.0052		
	102.42	4.0055		
	107.79	4.0055		
	113.75	4.0058		
	121.11	4.0059		
	128.68	4.0059		
	137.28	4.0059		
	148.14	4.0059		
	159.63	4.0059		
	173.04	4.0056		
	188.92	4.0057		
	212.29	4.0055		

TABLE A-5. EXPERIMENTAL DATA ON THE REFRACTIVE INDEX OF GERMANIUM (Wavelength Dependence) (continued)

يواليديولية بتنسبه المتحافين وال

....

i

الوجدة والأنا الالجامعي ومهاولا مواليهم

Data Set [Ref.]	λ	n	Specifications and Remarks	Author(s), Year
48(cont.)	233.98	4.0052		Randall, C.M. and
[33]	264.01	4.0053		Rawcliffe, R.D., 1967
	307.37	4.0052		
	361.28	4.0050		
	447.64	4.0048		
	587.95	4.0041		
49	(T≈2	.98 K)	Thin film of 1×10^{-3} mm thick obtained	Gisin, M.A. and
[61]	1.485	4.685	from evaporation of crystal germanium,	Ivanov, V.A., 1967
	1.487	4.572	with $\rho=40 \ \Omega-cm$, from graphite boats in	
	1.536	4.410	a vacuum of $2-5 \times 10^{-5}$ Torr; polished	
	1.633	4.249	plates of barium fluoride served as	
	1.777	4.108	the substrates at temperature of 293-	
	1.873	4.023	303 K during evaporation; optical con-	
	2.039	3.953	stants determined from the transmission	
	2.230	3.897	of the films and the order of inter-	
	2.420	3.855	ference; data taken from a figure.	
	2.634	3.813		
	2.895	3.778		
	3.132	3.764		
	3.441	3.757		
	3.702	3.751		
	3.963	3.744		
	4.224	3.737		
	4.485	3.730		
	4.769	3.717		
	5.007	3.717		
	5.291	3.710		
	5.552	3.703		
	5.837	3.697		
	6.098 6.335	3.683 3.683		
	6.454	3.683		
50	(ng v)		
[61]	1.367	98 K) 4.692	Thin films of 1×10^{-3} mm thick obtained	Gisin, M.A. and
[01]	1.416	4.565	from evaporation of crystal germanium, with ρ =40 Ω -cm, from graphite boats in	Ivanov, V.A., 1967
	1.464	4.303	a vacuum of 2.5 x 10 ⁵ Torr; polished	
	1.561	4.340	plates of barium fluoride scrved as	
	1.681	4.213	the substrates at temperature of 403-	
	1.895	4.101	423 K during evaporation; optical	
	2.158	3.989	constants determined from the trans-	
	2.467	3.904	mission of the films and the order of	
	2.847	3.841	interference; data taken from a figure.	
	3.274	3.807	incertexence, uses caken from a figure.	
	3.725	3.786		
	4.128	3.779		
	4.579	3.773		
	5.053	3.773		
	5.457	3.774		
	5.883	3.767		
	6.334	3.767		
	6,429	3.760		
51	(T=29	8 K)	Thin films of 1 x 10 ⁻³ mm thick obtained	
[61]	1,272	4.678	from evaporation of crystal germanium,	Gisin, N.A. and
/	1.273	4.593	with $\rho=40 \ \Omega$ -cm, from graphite boats in a vacuum of 2.5 x 10^{-5} Torr; polished	Ivanov, V.A., 1967
		~	WALL PAV HELE, LIUM READALCE DOACS 18	

يرد الحارية والمنار والمتحدة فكنين المكال والمناط

 TABLE A-5.
 EXPERIMENTAL DATA ON THE REFRACTIVE INDEX OF GERMANIUM (Wavelength Dependence) (continued)

105

1

E.

ت (الحد الم

Ant.

Data Set [Ref.]	λ	n	Specifications and Romarks	Author(s), Year
51(cont.)	1.371	4.368	plates of barium fluoride served as	Gisin, M.A. and
[61]	1.442	4.305	the substrates at temperatures of 523-	Ivanov, V.A., 1967
()	1.538	4.234	573 K during evaporation; optical con-	
	1.681	4.171	stants determined from the transmission	
	1.848	4.115	of the films and the order of inter-	
	2.109	4.073	ference; data taken from a figure.	
	2.371	4.024		
	2.703	3.989		
	3.130	3.961		
	3.581	3.948	·	
	4.032	3.934		
	4.482	3.935		
		3.928		
	4.909 5.407	3.921		
	5.977	3.915		
	6.309	3.915		
	6.498	3.915		
52		98 K)	Thin film samples of 0.5-5 µm thick	Wales, J.,
[62]	1.464	4.576	prepared by thermal evaporation from	Lovitt, G.J., and
	1.640	4.527	an electron beam heated source on to	H111, R.A., 1967
	1.916	4.468	unheated substrates in a vacuum of	
	2.167	4.428	1×10^{-6} Torr; refractive indices	
	2.493	4.384	determined from the sample thickness	
	2.843	4.344	and interference fringe order obser-	
	3.369	4.310	vations; averaged values read from a	
	3.919	4.296	best fit curve.	
	4.445	4.281		
	4.870	4.276		
	5.220	4.272		
	5.445	4.267		
53	(T=2	98 K)	Thin film samples of 0.5-5 µm thick	Wales, J., et al.,
[62]	1.359	4.788	deposited on unheated substrates from	1967
	1.406	4.724	an electron beam heated source in a	
	1.477	4.551	vacuum of 1×10^{-6} Torr; refractive	
	1.547	4.592	indices determined from the sample	
	1.686	4.533	thickness and interference fringe order	
	1.847	4.483	observations; averaged values read	
	2.009	4.438	from a best fit curve.	
	2.216	4.406		
	2.400	4.379		
	2.653	4.361		
	2.951	4.339		
	3.319	4.317		
	3.755	4.303		
	4.053	4.303		
	4.055	4.294		
	4.283	4.290		
	4.719	4.286		
54	(T=29	(X 8)	Thin film samples of 0.5-5 µm thick	Wales I at al
[62]	1.316	4.543	deposited on unheated substrates from	Walcs, J., et al., 1967
[22]	1.410	4.493	an electron beam heated source in an	1747
	1.503	4.433		
	1.503		atmosphere of oxygen at 1 x 10 ⁻¹ Torr;	
	1.806	4.381	refractive indices determined from the	
	1.806	4.340	sample thickness and interference order	

and the second se

;

TABLE A-5.	EXPERIMENTAL DATA ON THE	REFRACTIVE IN	DEX OF	GERMANIUM
	(Wavelength Dependence)	(continued)		

ata Set [Ref.]	λ	n	Specifications and Remarks	Author(s), Year
4(cont.)	1.992	4.304	observations; averaged values read	Wales, J.,
[62]	2,269	4.264	from a best fit curve.	Lovitt, G.J., and
	2.478	4.242		K111, R.A., 1967
	2.709	4.224		
	2.962	4.211		
	3.285	4.202		
	3.562	4.193		
	3,908	4.185		
	4.277	4.176		
	4.600	4.177		
	5.015	4.168		
	5.314	4.173		
	5.567	4.173		
55	(T=2	98 K)	Thin film samples of 0.5-5 µm thick	Wales, J., et al.,
[62]	1.463	4.679	deposited on unheated substrates from	1967
	1.551	4.606	an electron beam heated source in an	
	1.641	4.560	atmosphere of nitrogen at 1 x 10" Torr;	
	1.776	4.519	refractive indices determined from	
	1.935	4.487	sample thickness and interference	
	2.094	4.455	fringe order observation; averaged	
	2.276	4.432	values read from a best fit curve.	
	2.618	4.390		
	3.006	4.367		
	3.395	4.348		
	3.716	4.333		
	4.082	4.328		
	4.610	4.322		
	5.023	4.321		
	5.436	4.325		
	5.734	4.324	•	
	6.009	4.328		
56	(T=2)	98 K)	Thin film samples of 0.5-5 µm thick	Walcs, J., et al.,
[62]	1.560	4.681	deposited on unheated substrates from	1967
• • • •	1.608	4.640	an electron beam heated source in an	
	1,679	4.595	atmosphere of hydrogen at 1 x 10" Torr;	
	1.773	4.546	refractive indices determined from the	
	1.912	4.501	sample thickness and interference	
	2.006	4.452	fringe order observations; averaged	
	2.191	4.416	values read from a best fit curve.	
	2.445	4.371		
	2.698	4.345		
	2.973	4.323		
	3.293	4.305		
	3.637	4.288		
	4.003	4.280		
	4.391	4.276		
	4.779	4.273		
	5.099	4.278		
	5.418	4.278		
	5.624	4.283		
57	(T=29	98 K)	Thin film samples of 0.5-5 µm thick	Wales, J., et al.,
[62]	1.265	4.605	deposited on cooled substrates at 273 K	1967
-	1.266	4.556	from a carbon boat in a vacuum of 1 x	
	1.336	4.493	10 ⁻⁶ Torr; refractive indices determined	

TABLE A-5. EXPERIMENTAL DATA ON THE REFRACTIVE INDEX OF GERMANIUM (Wavelength Dependence) (continued)

Data Set [Ref.]	λ	n	Specifications and Remarks	• Author(s), Year
57(cont.)	1.498	4.386	fringe order observation; averaged	Wales, J.,
[62]	1.636	4.318	values read from a best fit curve.	Lovitt, G.J., and
	1.728	4.292		H111, R.A., 1967
	1.911	4.256		
	2.140	4.216		
	2.392	4.193		
	2.643	4.176		
	3.100	4.158		
	3.420	4.149		
	3.808 4.219	4.141 4.141		
	4.219	4.141		
	4.859	4.141		
	5.132	4.146		
58	(T=2	98 K)	Thin film samples of 0.5-5 µm thick	Wales, J., et al.,
[62]	1.300	4.570	deposited on substrates at 373-473 K	1967
•	1.425	4.492	from a carbon boat in a vacuum of	
	1.525	4.427	1×10^{-6} Torr; refractive indices	
	1.675	4.373	determined from the sample thickness	
	1.825	4.319	and interference fringe order observa-	
	1.973	4.280	tions; averaged values read from a	
	2.150	4.250	best fit curve.	
	2.325	4.220		
	2.600	4.196		
	2.925	4.186		
	3.300	4.181		
	3.825	4.171		
	4.250	4.166		
	4.650 5.025	4.156 4.156		
	5.325	4.136		
	5.575	4.140		
	5.700	4.142		
59	(T=2	98 K)	Thin film samples of 0.5-5 µm thick	Wales, J., et al.,
[62]	1.256	4.386	deposited on substrates at 673 K from	1967
	1.370	4.314	a carbon boat in a vacuum of 1×10^{-6}	
	1.507	4.250	Torr; refractive indices determined	
	1.644	4.205	from the sample thickness and inter-	
	1.804	4.145	ference fringe observations; averaged	
	1.963	4.100	values read from a best fit curve.	
	2.192	4.059		
	2.420	4.027		
	2.808	4.000		
	3.174	3.995		
	3.539 3.950	3.991		
	3.950 4.498	3.986 3.982		
	4.498	3.982		
	5.114	3.995		
60	(T=29	98 K)	Thin film samples of 0.5-5 µm thick	Vales 1 at at
[62]	1.593	4.381	deposited on substrate at 773-873 K from	Wales, J., et al., 1967
	1.662	4.286	a carbon boat in a vacuum of 1×10^{-6}	1791
	1.845	4.204	Torr; refractive indices determined	
	1.983	4.150	from the sample thickness and inter-	
	2.191	4.104	ference fringe order observations;	

TABLE A-5.EXPERIMENTAL DATA ON THE REFRACTIVE INDEX OF GERMANIUM
(Wavelength Dependence) (continued)

Data Set [Ref.]	λ	n	Specifications and Remarks	Author(s), Year
60(cont.)	2.605	4.063	averaged values read from a best fit	Wales, J.,
[62]	2.974	4.045	curve.	Lovitt, G.J., and
()	3.388	4.031		H111, R.A., 1967
	3.849	4.026		
•	4.264	4.022	•	
	4.702	4.026		
	5.001	4.026		
61	(T=29	8 K)	Film samples deposited from carbon	Walcs, J., et al.,
[62]	1.420	4.530	boat source; refractive indices deter-	1967
	1.512	4.482	mined from the sample thickness and	
	1.667	4.422	interference fringe order observation;	
	1.821	4.385	averaged values read from a best fit	
	2.068	4.336	curve.	
	2.377	4.298		
	2.778	4.277		
	3.148	4.266		
	3.488	4.250		
	3.858	4.239		
	4.259	4.239		
	4.691	4.234		
	5.062	4.234		
	5.278	4.223		
	5.617	4.223		
	5.988	4.234		
62	(T=298	K)	Single crystal; ρ=40 Ω-cm; n-type;	Knausenb erger, W .H.
[63]	0.5461	5.46	specimens with <111> surfaces cleaved by the Gobeli-Allen technique; refrac- tive index determined by ellipsometry method; the average value reported with error ±0.10.	and Vedam, K., 1969
63	(T=298	к)	Amorphous Ge films; vacuum deposited onto	Donovan, T.M.,
[64]	1.0	4.67	rotating substrates of fused quartz,	Spicer, W.E.,
• •	1.1	4.59	fused silica and KCl; evaporation sources	Bennett, J.M., and
	1.2	4.55	of tungsten boat, Al ₂ O ₃ -coated boat and	Ashley, E.J., 1970
	1.3	4.31	electron beam gun; deposition rate 10-	
	1.4	4.34	50 Å/sec; refractive indices determined	
	1.5	4.30	from the reflectance and transmittance	
	1.6	4.24	measurements made in a dry nitrogen	
	1.7	4.22	atmosphere; average values of refractive	
	1.8	4.24	indices of films of thicknesses 0,0816	
	1.9	4.11	µm, 0.2138 µm, 0.3576 µm and 0.5371 µm	
	2.0	4.09	taken from a table.	
	2.1	4.07		
	2.2	4.06		
	2.3	4.06		
	2.4	4.06		
	2.5	4.07		
	2.5	4.05		
	2.8	4.04		
		3.97		
	2.8			
	2.9	4.01		
	3.0	4.00		
	3.1	3.99		
	3.2	4.00		
	3.3	3.99		

TABLE A-5. EXPERIMENTAL DATA ON THE REFRACTIVE INDEX OF CERMANIUM (Wavelength Dependence) (continued)

109

. В

Data Set [Ref.]	λ	n	Specifications and Remarks	Author(s), Year
63(cont.)	3.4	4.00		Donovan, T.N.,
[64]	3.5	3.99		Spicer, W.E.,
	3.6	4.00		Bennett, J.M., and
	3.7	3.99		Ashley, E.J., 1970
	3.8	4.00		
	3.9	3.995		
	4.0	4.00		
64	(T=29		Amorphous Ge film of 0.5371 µm; vacuum	Donovan, T.M., et al.
[64]	4.0	4.02	deposited onto rotating substrate of	1970
	4.4	4.06	KCl; evaporation sources of tungsten	
	4.8	4.01	boat, $A1_2O_3$ -coated boat and electron	
	5.2 5.6	4.01	beam gun; deposition rate 10-50 K/sec;	
		4.01	refractive indices determined from the	
	6.0 6.4	4.01 3.98	reflectance and transmittance measure- ments made in a dry nitrogen atmosphere;	
	6.8	4.11	data taken from a table.	
	7.2	3.99	data taken iton a Ladie.	
	7.6	4.04		
	8.0	3.98		
	8.5	3.98		
	9.0	3.99		
	9.5	3.97		
	10.0	3.98		
	11.0	3.95		
	12.0	3.98		
	13.0	3.98		
	13.5	3.99		
	13.7	4.01		
65	(T=30	0 К)	Single crystal polished and etched;	Jungk, G., 1971
[65]	0.294	3.397	optical constants determined by the	
	0.298	3.437	ellipsometric method; data extracted	
	0.303	3.463	from a figure.	
	0.307	3.437		
	0.309	3.437		
	0.313	3.437		
	0.316	3.424		
	0.321	3.424		
	0.325	3.489		
	0.330	3.489		
	0.335	3.528		
	0.339	3.580		
	0.344	3.632		
	0.349	3.659		
	0.353 0.360	3.659		
	0.368	3.685		
	0.374	3.698 3.737		
	0.380	3.763		
	0.385	3.789		
	0.392	3.776		
	0.397	3.737		
	0.404	3.724		
	0.413	3.698		
	0.426	3.672		
	0.442	3.672		
	0.454	3.711		

-

TABLE A-5. EXPERIMENTAL DATA ON THE REFRACTIVE INDEX OF GERMANIUM (Wavelength Dependence) (continued)

Data Set [Ref.]	λ	n	Specifications and Remarks	Author(s), Year
55(cont.)	0.472	3.802		Jungk, G., 1971
[65]	0.484	3.907		
	0.489	3.972		
	0.494	3.969		
	0.506	4.088		
	0.514	4.236		
	0.519 0.524	4.341 4.445		
	0.530	4.608		
	0.533	4.668		
	0.540	4.757		
	0.547	4,817		
	0.555	4.861		
	0.562	4,980		
	0.566	5.055		
	0.571	5,144		
	0.573	5,233		
	0.579	5.337		
	0.583	5.397		
	0.587	5.456		
	0.589	5.486		
	0.595	5.471		
	0.600	5.426		
	0.605	5,382		
	0.609 0.614	5.337 5.292		
	0.614	5.292		
	0.625	5.188		
	0.638	5.083		
66	(T= ²	100 K)	Amorphous germanium; thin film specimen	Jungk, G., 1971
[65]	0.672	2.911	of about 1 µm thick prepared by thermal	Jungk, U., 1771
1	0.691	3.024	evaporation of germanium from a tungsten	
	0.712	3,137	boat on glass substrate in a vacuum of	
	0.738	3.242	10 ⁻⁶ Torr; substrate held at 293 K during	
	0.765	3.347	evaporation; refractive indices deter-	
	0.794	3.500	mined by ellipsometric method; data	
	0.809	3,557	taken from a figure.	
	0.824	3.605	-	
	0.839	3.686		
	0.860	3.750		
	0.877	3.807		
	0.895	3.871		
	0.913	3.920		
	0.932	3.984		
	0.952	4.049		
	0.972 0.994	4.089		
	1.021	4.154 4.202		
	1.021	4.202		
	1.073	4.299		
67	(****	00 K)	Amorphous serengius, ship file	hunch 0 1671
[65]	0.533	2.033	Amorphous germanium; thin film specimen of about 1 µm thick prepared by thermal	Jungk, G., 1971
	0.555	2.098	evaporation of germanium from a tungsten	
	0.562	2.070	boat on glass substrate in a vacuum of	
			Press oncertars full Ascring Ol	
	0.578	2.308	10 ⁻⁶ Torr; substrate held at 373 K	

TABLE A-5.	EXPERIMENTAL DATA ON THE	REFRACTIVE INDEX OF GERMANIUM
	(Wavelength Dependence)	(continued

¢.

•

	0.615 0.631 0.651 0.669 0.715 0.738 0.765 0.810 0.822 0.843 0.856 0.884 0.898 0.913 0.934 0.955 0.978 0.975 0.978 0.975 0.978	2.583 2.635 2.740 2.923 3.041 3.146 3.238 3.356 3.526 3.591 3.670 3.722 3.775 3.853 3.906 3.971 4.023 4.076 4.154	determined by ellipsometric method; data taken from a table.	Jungk, G., 1971
	0.651 0.669 0.692 0.715 0.738 0.765 0.810 0.822 0.843 0.856 0.884 0.898 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.914 0.915 0.914 0.915 0.914 0.915 0.914 0.915 0.914 0.915 0.914 0.915 0.914 0.915 0.914 0.915 0.914 0.915	2.740 2.923 3.041 3.146 3.238 3.356 3.526 3.591 3.670 3.722 3.775 3.853 3.906 3.971 4.023 4.076		
	0.669 0.692 0.715 0.738 0.765 0.810 0.822 0.843 0.856 0.884 0.898 0.913 0.935 0.934 0.955 0.978 0.995 1.020 1.046	2.923 3.041 3.146 3.238 3.356 3.526 3.591 3.670 3.722 3.775 3.853 3.906 3.971 4.023 4.076		
	0.692 0.715 0.738 0.765 0.810 0.822 0.843 0.856 0.884 0.898 0.913 0.913 0.913 0.913 0.913 0.915 0.913 0.955 0.978 0.995 1.020 1.020	3.041 3.146 3.238 3.356 3.526 3.591 3.670 3.722 3.775 3.853 3.906 3.971 4.023 4.076		
	0.715 0.738 0.765 0.810 0.822 0.843 0.856 0.884 0.898 0.913 0.913 0.935 0.935 0.935 0.978 0.995 1.020 1.020	3.146 3.238 3.356 3.526 3.591 3.670 3.722 3.775 3.853 3.906 3.971 4.023 4.076		
	0.738 0.765 0.810 0.822 0.843 0.856 0.884 0.898 0.913 0.935 0.935 0.955 0.978 0.995 1.020 1.046	3.238 3.356 3.526 3.591 3.670 3.722 3.775 3.853 3.906 3.971 4.023 4.076		
	0.765 0.810 0.822 0.843 0.856 0.884 0.898 0.913 0.913 0.934 0.955 0.978 0.955 1.020 1.020	3.356 3.526 3.591 3.670 3.722 3.775 3.853 3.906 3.971 4.023 4.076		
	0.810 0.822 0.843 0.856 0.884 0.898 0.913 0.913 0.934 0.955 0.978 0.955 1.020 1.020	3.526 3.591 3.670 3.722 3.775 3.853 3.906 3.971 4.023 4.076		
	0.822 0.843 0.856 0.884 0.898 0.913 0.934 0.955 0.978 0.955 1.020 1.020	3.591 3.670 3.722 3.775 3.853 3.906 3.971 4.023 4.076		
	0.843 0.856 0.884 0.913 0.913 0.934 0.955 0.978 0.975 1.020 1.020	3.670 3.722 3.775 3.853 3.906 3.971 4.023 4.076		
	0.856 0.884 0.898 0.913 0.934 0.955 0.978 0.975 1.020 1.020	3.722 3.775 3.853 3.906 3.971 4.023 4.076		
	0.884 0.898 0.913 0.934 0.955 0.978 0.995 1.020 1.020	3.775 3.853 3.906 3.971 4.023 4.076		
	0.898 0.913 0.934 0.955 0.978 0.995 1.020 1.046	3.853 3.906 3.971 4.023 4.076		
	0.913 0.934 0.955 0.978 0.995 1.020 1.046	3.906 3.971 4.023 4.076		
	0.934 0.955 0.978 0.995 1.020 1.046	3.971 4.023 4.076		
	0.955 0.978 0.995 1.020 1.046	4.023 4.076		
0 1 1 1 1 1	0.978 0.995 1.020 1.046	4.076		
0 1 1 1 1	0.995 1.020 1.046			
1 1 1 1 1	1.020 1.046	4.154		
1 1 1	1.046			
1		4.181		
1	1 073	4.233		
		4.272		
	1.132	4.351		
۲	1.198	4.430		
68	(T=30		Amorphous germanium; thin film specimen	Jungk, G., 1971
	0.670	2.791	of about 1 µm thick prepared by thermal	
0	0.691	2.895	evaporation of germanium from a tungsten	
	5.713	2.968	boat on glass substrate in a vacuum of	
0	0.736	3.057	10 ⁻⁶ Torr; substrate held at 473 K	
0	0.763	3.154	during evaporation; refractive indices	
0).795	3.267	determined by ellipsometric method;	
0	.824	3.364	data taken from a figure.	
0	.858	3.477	_	
0).895	3.574		
0).933	3.647		
0).973	3.736		
1	.018	3.809		
1	.066	3.882		
69	(1=30	D K)	Microcrystalline germanium; thin film	Jungk, G., 1971
[65] 0	.535	2.647	specimen of about 1 µm thick prepared	
	. 549	2.599	by thermal evaporation of germanium from	
	.564	2.817	a tungsten boat on glass substrate in a	
	. 580	2.948	vacuum of 10 ⁶ Torr; substrate held at	
	. 594	3.053	573 K during evaporation; refractive	
	.614	3.040	indices determined by ellipsometric	
	.633	3.145	method; data taken from a figure.	
	.650	3.223	-	
	.672	3.302		
	.691	3.329		
	.715	3.368		
	.741	3.395		
	.765	3.447		
	.799	3.565		
	. 806	3.617		
	.826	3.670		
	.843	3.774		

TABLE A-5.EXPFRIMENTAL DATA ON THE REFRACTIVE INDEX OF GERMANIUM
(Wavelength Dependence) (continued)

)

Į

Data Set [Ref.]	λ	n	Specifications and Remarks	Author(s), Year
9(cont.)	0.861	3.866		Jungk, C., 1971
[65]	0.879	3.971		
	0.898	4.114		
	0.913	4.193		
	0.939	4.298		
	0.961	4.389		
	0.977	4.468		
	1.007	4.546		
	1.026	4.599		
	1.052	4.651		
	1.087	4.573		
	1.125	4.129		
70	(T=:	300 K)	Amorphous germanium; thin film specimen	Jungk, G., 1971
[65]	0.497	2.942	of about 1 µm thick prepared by thermal	
	0.501	2.972	evaporation of germanium from a tungsten	
	0.504	3.002	boat on glass substrate in a vacuum of	
	0.508	3.063	10 ⁻⁶ Torr; substrate held at 673 K	
	0.510	3.093	during evaporation; refractive indices	
	0.515	3.138	determined by ellipsometric method;	
	0.517	3.168	data taken from a figure.	
	0.522	3.244	-	
	0.524	3.274		
	0.528	3.334		
	0.533	3.394		
	0.537	3.440		
	0.541	3.470		
	0.546	3.530		
	0.550	3.561		
	0,556	3.635		
	0.559	3.566		
	0.563	3.712		
	0.567	3.787		
	0.572	3.932		
	0.578	3.923		
	0.581	3,968		
	0.585	4.013		
	0.592	4.058		
	0.596	4.074		
	0.600	4.089		
	0.605	4.089		
	0.610	4.074		
	0.616	4.045		
	0.621	3.985		
	0.628	3.910		
	0.638	3.806		
71		93 K)	Single crystal; grown at the Royal	Edwin, R.P.,
[46]	8.00	4.0058	Signals and Radar Establishment, Malvern,	Dudermel, M.T., and
	9.00	4.0043	U.K. using the Czochraski pulling tech-	Lamare, H., 1978
	10,00	4.0032	nique; ρ = 45-53 Ω-cm; prismatic	
	11.25	4.0022	specimen of 10.5 degree apex angle and	
	12.00	4.0017	30 mm x 15 mm faces; refractive index	
	13.00	4.0013	measurements made at the Institut	
	14.00	4.0011	d'Optique, Orsay, France; data teken	
			from a table.	

TABLE A-5. EXPERIMENTAL DATA ON THE REFRACTIVE INDEX OF GERMANIUM (Wavelength Dependence) (continued)

Data Set [Ref.]	λ	n	Specifications and Remarks	Author(s), Year
72	(T=)	293 К)	Single crystal; grown at the Royal	Edwin, R.P.,
[46]	8.00	4.00551	Signals and Radar Establishment, Malvern,	Dudcrmel, M.T., and
	9.00	4.00423	U.K. using the Czochraski pulling tech-	Lamare, M., 1978
	10.00	4.00329	nique; $\rho = 45-53 \Omega - cm$; prismatic	
	11.25	4.00242	specimen of 10.5 degree apex angle and	
	12.00	4.00204	30 mm x 50 mm faces; refractive index	
	13.00	4.00157	measurements made at the National	
	14.00	4.00123	Physical Laboratory, U.K.; data taken from a table.	
73	(T=2	298 K)	Single crystal; grown at the Royal	Edwin, R.P., et al.,
[46]	8.00	4.00748	Signals and Radar Establishment, Malvern,	1978
	9.00	4.00520	U.K. using the Czochraski pulling tech-	
	10.00	4.00525	nique; $\rho = 45-53 \Omega - cm$; prismatic	
	11.25	4.00436	specimen of 10.5 degree apex angle and	
	12.00	4.00398	30 mm x 15 mm faces; refractive index	
	13.00	4.00352	measurements made at the National	
	14.00	4.00315	Physical Laboratory, U.K.; data taken from a table.	

 TABLE A-5.
 EXPERIMENTAL DATA ON THE REFRACTIVE INDEX OF GERMANIUM (Wavelength Dependence) (continued)

[Temperature,	Τ,	K;	Wavelength,	λ,	μm;	Refractive	Index,	n)	
---------------	----	----	-------------	----	-----	------------	--------	----	--

ta Set Ref.]	T	n	Specifications and Remarks	Author(s), Yea
1	(λ=2.	00 µm)	High purity single crystal; prism	Lukes, F., 1958
[66]	113,593	4.025	specimen of about 20 degree apex angle;	
•••	116.291	4.023	accuracy of deviation angle measure-	
	202.919	4.067	ment about 1' corvresponding to an	
	208.329	4.068	error of 0.001 in refractive index;	
	208.338	4.071	average accuracy of temperature mea-	
	211.027	4.067	surement about 0.5 K; data read from	
	228.630	4.078	a figure.	
	258.408	4.093	a ligute.	
		4.093		
	261.111			
	273.295	4.099		
	292.254	4.112		
	309.848	4.120		
	323.383	4.127		
	342.337	4.138		
	354.522	4.144		
	370.764	4.153		
	391.061	4.161		
	392.421	4.163		
	407.312	4.172		
2	(λ ≠2. 0)0 µm.)	High purity single crystal; prism	Lukes, F., 1958
[66]	114.759	4.024	specimen of about 20 degree apex angle;	,,
	117.425	4.024	accuracy of deviation angle measure-	
	205.588	4.067	ment about 1' corresponding to an	
	208.260	4.068	error of 0.001 in refractive index;	
	210.937	4.071	average accuracy of temperature mea-	
	213.593	4.068	surement about 0.5 K; data taken	
	229.634	4.079	from a figure.	
	263.018	4.093		
	263.029	4.095		
	275.044	4.099		
	292.423	4.111		
	309.782	4.118		
	320.479	4.126		
	353.879	4.144		
	369.909	4.152		
	389.940	4.160		
	391.283	4,162		
	408.652	4.172		
	436.693	4.182		•
	44 0107 3	71106		
3 66]	(λ=2.2 113.540	6 μm.) 4.008	High purity single crystal; prism	Lukes, F., 1958
001	115.340		specimen of about 20 degree apex angle;	
		4.004	accuracy of deviation angle measure-	
	117.590	4.007	ment about 1' corresponding to an	
	205.555	4.046	error of 0.001 in refractive index;	
	208.262	4.048	average accuracy of temperature mea-	
	232.617	4.057	surement about 0.5 K; data read from	
	250.216	4.067	a figure.	
	275.927	4.077		
	293.521	4.086		
	308.408	4.092		
	323.290	4.098		
	344.947	4.109		
	354.429	4.116		
	370.667	4.122		
	and the second			

Data Set [Ref.]	T	n	Specifications and Remarks	Author	(s), Year
3(cont.)	390.964	4.131		Lukes, F.	, 1958
[66]	411.269	4.141			
()	438.336	4.154			
4	(λ=2.36	um)	ligh purity single crystal; prism	Lukes, F.	, 1958
[66]	113.349	4.004	specimen of about 20 degree apex angle;		
[001	117.338	4.001	accuracy of deviation angle measure-		
	117.349	4.004	ment about 1' corresponding to an		
	208.168	4.044	error of 0.001 in refractive index;		
	210.835	4.044	average accuracy of temperature mea-		
	212.178	4.047	surement about 0.5 K; data taken		
	234.881	4.056	from a figure.		
	252.250	4.066			
	274.957	4.076			
	290.988	4.084			
	309.680	4,091			
	321.705	4.098			
	343.084	4.110			
	356.428	4.113			
	369.797	4.122			
	391.156	4.129			
	411,196	4.139			
	437.909	4.151			
5	(λ ⇒2.5 1	µm)	High purity single crystal; prism	Lukes, F.	, 1958
[66]	205.502	4.030	specimen of about 20 degree apex angle;		
	213.619	4.032	accuracy of deviation angle measure-		
	216.326	4.034	ment about 1' corresponding to an		
	256.933	4.054	error of 0.001 in refractive index;		•
	275.869	4.060	average accuracy of temperature mea-		
	293.463	4.068	surement about 0.5 K; data read from		
	309.706	4.076	a figure.		
	321.886	4.081			
	346.245	4.092			
	357.074	4.098			
	370.605	4.103			
	393.609	4.113			
	409.856	4.122			
	438.261	4.130			
6	(λ = 2.52	μm)	High purity single crystal; prism	Lukes, F.	, 1958
[66]	208.112	4.029	specimen of about 20 degree apex angle;		
	216.122	4.032	accuracy of deviation angle measure-		
	260.209	4.055	ment about 1' corresponding to an		
	276.234	4.061	error of 0.001 in refractive index;		
	294.931	4.070	average accuracy of temperature mea-		
	309.623	4.076	surement about 0.5 K; data taken from		
	322.977	4.082	a figure.		
	345.685	4.092			
	356.372	4.098			
	368.397	4.104			
	392.438	4.115			
	409.797 437.837	4.122 4.132			
	1201165	7 0 I J G			
7	(λ=1.970		Pure germanium crystal; prism angle:	Lukes, F.	, 1960
[44]	104.591	4.028	14°53'; $p=1.2 \Omega$ -cm; minimum deviation		
	108.842	4.029	method used; data read from a figure.		

TABLE A-6.EXPERIMENTAL DATA ON THE REFRACTIVE INDEX OF GERMANIUM
(Temperature Dependence) (continued)

1

.

Data Set [Ref.]	T	n	Specifications and Remarks	Author(s), Year
7(cont.)	115.943	4.032		Lukes, F., 1960
[44]	134.396	4.038		
	158.571	4.049		
	168.487	4.051		
	179.873	4.058		
	188.399	4.061		
	198.326	4.064		
	208.276	4.068		
	216.791	4.071		
	229.602	4.078		
	236.714	4.082		
	243.826	4.085		
	249.525	4.089		
	252.374	4.091		
	259.486	4.094		
	273.699	4.100		
	282.236	4.105		
	289.348	4.109		
	296.449	4.111		
	302.136	4.114		
	312.109	4.120		
	323.507	4.127		
	332.032	4.131		
	336.284	4.132		
	339.144	4.135		
	344.832	4.137		
	349.117	4.141		
	353.391	4.144		
	366.191	4.150		
	374.716	4.153		
	380.415	4.157		
	386.125	4.161		
	303.249	4.165		
	398.947	4.170		
	408.898	4.174		
	414.630	4.180		
8	(×=2.19	0 µm)	Pure germanium crystal; prism angle:	Lukes, F., 1960
[44]	109.878	4.005	14°53'; ρ =1.2 Ω -cm; minimum deviation	
	115.501	4.006	method used; data read from a figure.	
	142.275	4.017		
	156.364	4,022		
	167.637	4.027		
	180.304	4.030		
	188.770	4.035		
	201.455	4.040		
	208.526	4.046		
	221.193	4.049		
	222.624	4.052		
	233.879	4.055		
	242.335	4.058		
	250.801	4.063		
	255.030	4.065		
	263.486	4.068		
	277.593	4.075		
	284.646	4.07 9		
	297.323	4.083		
	304.385	4.088		

 TABLE A-6.
 EXPERIMENTAL DATA ON THE REFRACTIVE INDEX OF CERMANIUM (Temperature Dependence) (continued)

Y

Data Set [Ref.]	T	n	Specifications and Romarks	Author(s), Year
8(cont.)	312.860	4.093		Lukes, F., 1960
[44]	321.334	4.099		
	332.598	4.102		
	342.485	4.109		
	352.346	4.112		
	360.829	4.118		
	376.331	4.125		
	379.165	4.127		
	390.446	4.133		
	398.921	4.138		
	407.378 421.511	4.142		
		4.152		
	435.609	4.158 4.160		
	439.838 445.487	4.160		
	459.603	4.103		
	468.096	4.179		
	479.378	4.184		
	487.852	4.189		
	499.161	4.197		
	506.205	4.200		
	517.514	4.208		
	525.971	4.212		
	534.464	4.219		
9	(λ=2.4 (Pure germanium crystal; prism angle:	Lukes, F., 1960
[44]	147.914	4.003	14°53'; $\rho=1.2 \Omega-cm$; minimum deviation	
	159.202	4.006	method used; data read from a figure.	
	176.157	4.013		
	198.746	4.021		
	205.815	4.024		
	215.721 224.192	4.030 4.033		
	234.078	4.033		
	236.916	4.037		
	246.808	4.044		
	253.884	4.048		
	263.771	4.052		
	268.009	4.054		
	273.670	4.057		
	282.148	4.061		
	287.802	4.064		
	293.449	4.065		
	301.927	4.069		
	330.210	4.084		
	357.065	4.097		
	376.858	4.107		
	389.581	4.113		
	405.128	4.120		
	416.449	4.128		
	429.179	4.135		
	441.909	4.142		
	448.992	4.147		
	467.356 482.909	4.155		
	482.909	4.163		
	427.037	4.170		

 TABLE A-6.
 EXPERIMENTAL DATA ON THE REFRACTIVE INDEX OF GERMANIUM (Temperature Dependence) (continued)

and the second
Data Set [Ref.]	T	n	Specifications and Remarks	Author(s), Year
10	(λ=3.826	μm)	Pure germanium crystal; prism angle:	Lukes, F., 1960
[44]	306.022	4.030	14°53'; p=1.2 Ω-cm; minimum deviation	
••••	320.151	4.034	method used; data read from a figure.	
	332.917	4.041	•	
	342.821	4.045		
	358.393	4.051		
	369.728	4.056		
	379.654	4.062		
		4.062		
	383.879	4.063		
	383.902	4.065		
	388.150	4.071		
	398.076		· · · ·	
	403.721	4.071		
	419.315	4.079		
	434.898	4.087		
	439.180	4.091		
	456.160	4.097		
	474.593	4.107		
	485.917	4.112		
	497.263	4.118		
	505.7 58	4.121		
	522.761	4.129		
	535.516	4.136		
11	(λ=5.156	μm)	Pure germanium crystal; prism angle:	Lukes, F., 1960
[44]	301.528	4.016	14°53'; p=1.2 Ω-cm; minimum deviation	
•	321,286	4.021	method used; data read from a figure.	
	335.432	4.029	•	
	346.740	4.035		
	363.688	4.041		
	386.311	4.053		
	408.920	4.063		
	424.467	4.070		
		4.075		
	437.184 461 <i>.</i> 208	4.086		
	472.516	4.088		
12	(λ=2.55	4 11m)	Good optical grade germanium samples;	Icenogle, H.W.,
[14]	150	4.00541	supplied by Exotic Materials, Inc.;	Platt, B.C., and
()	158	4.00775		Wolfe, W.L., 1976
	165	4.00997	prism specimen; measured with a modi-	MATE' M.P.' 7310
			fied minimum deviation method; data	
	172	4.01248	taken from a table.	
	177	4.01479		
	186	4.01753		
	192	4.02031		
	199	4.02305		
	203	4.02492		
	208	4.02712		
	212	4.02900		
	216	4.03039		
	221	4.03287		
	227	4.03601		
	231	4.03721		
	236	4.03893		
	240	4.04096		
	243	4.04209		
	247	4.04407		
	254	4.04641		

TABLE A-6.	EXPERIMENTAL	DATA ON THE	REFRACTIVE	INDEX O	F CERMANIUM
	(Temperature	Dependence)	(continued	!)	

d optical grade germanium samples; polied by Exotic Materials Inc.; ism specimen; measured with a modi- ed minimum deviation method; data ken from a table. d optical grade germanium samples; plied by Exotic Materials Inc.; sm specimen; measured with a modi- d minimum deviation method; data en from a table.
d optical grade germanium samples; policd by Exotic Materials Inc.; ism specimen; measured with a modi- ed minimum deviation method; data ken from a table. d optical grade germanium samples; plicd by Exotic Materials Inc.; sm specimen; measured with a modi- d minimum deviation method; data Lecnogle, H.W., et al., 1976 Iccnogle, H.W., et al., 1976
d optical grade germanium samples; pplied by Exotic Materials Inc.; ism specimen; measured with a modi- ed minimum deviation method; data ken from a table. d optical grade germanium samples; plied by Exotic Materials Inc.; sm specimen; measured with a modi- d minimum deviation method; data
d optical grade germanium samples; Icenogle, H.W., et plied by Exotic Materials Inc.; al., 1976 ism specimen; measured with a modi- ed minimum deviation method; data ken from a table. Icenogle, H.W., et plied by Exotic Materials Inc.; al., 1976 sm specimen; measured with a modi- d minimum deviation method; data
d optical grade germanium samples; Icenogle, H.W., et plied by Exotic Materials Inc.; al., 1976 ism specimen; measured with a modi- ed minimum deviation method; data ken from a table. Icenogle, H.W., et plied by Exotic Materials Inc.; al., 1976 sm specimen; measured with a modi- d minimum deviation method; data
d optical grade germanium samples; Icenogle, H.W., et plied by Exotic Materials Inc.; al., 1976 ism specimen; measured with a modi- ed minimum deviation method; data ken from a table. Icenogle, H.W., et plied by Exotic Materials Inc.; al., 1976 sm specimen; measured with a modi- d minimum deviation method; data
d optical grade germanium samples; Icenogle, H.W., et plied by Exotic Materials Inc.; al., 1976 ism specimen; measured with a modi- ed minimum deviation method; data ken from a table. Icenogle, H.W., et plied by Exotic Materials Inc.; al., 1976 sm specimen; measured with a modi- d minimum deviation method; data
d optical grade germanium samples; Icenogle, H.W., et plied by Exotic Materials Inc.; al., 1976 ism specimen; measured with a modi- ed minimum deviation method; data ken from a table. Icenogle, H.W., et plied by Exotic Materials Inc.; al., 1976 sm specimen; measured with a modi- d minimum deviation method; data
d optical grade germanium somples; Icenogle, H.W., et plied by Exotic Materials Inc.; al., 1976 sm specimen; measured with a modi- d minimum deviation method; data
d optical grade germanium somples; Icenogle, H.W., et plied by Exotic Materials Inc.; al., 1976 sm specimen; measured with a modi- d minimum deviation method; data
d optical grade germanium samples; Iccnogle, H.W., et plied by Exotic Materials Inc.; al., 1976 sm specimen; measured with a modi~ d minimum deviation method; data
d optical grade germanium samples; Iccnogle, H.W., et plied by Exotic Materials Inc.; al., 1976 sm specimen; measured with a modi~ d minimum deviation method; data
plied by Exotic Materials Inc.; al., 1976 sm specimen; measured with a modi- d minimum deviation method; data
plied by Exotic Materials Inc.; al., 1976 sm specimen; measured with a modi- d minimum deviation method; data
plied by Exotic Materials Inc.; al., 1976 sm specimen; measured with a modi- d minimum deviation method; data
plied by Exotic Materials Inc.; al., 1976 sm specimen; measured with a modi- d minimum deviation method; data
plied by Exotic Materials Inc.; al., 1976 sm specimen; measured with a modi- d minimum deviation method; data
plied by Exotic Materials Inc.; al., 1976 sm specimen; measured with a modi- d minimum deviation method; data
plied by Exotic Materials Inc.; al., 1976 sm specimen; measured with a modi- d minimum deviation method; data
plied by Exotic Materials Inc.; al., 1976 sm specimen; measured with a modi- d minimum deviation method; data
plied by Exotic Materials Inc.; al., 1976 sm specimen; measured with a modi- d minimum deviation method; data
plied by Exotic Materials Inc.; al., 1976 sm specimen; measured with a modi- d minimum deviation method; data
plied by Exotic Materials Inc.; al., 1976 sm specimen; measured with a modi- d minimum deviation method; data
plied by Exotic Materials Inc.; al., 1976 sm specimen; measured with a modi- d minimum deviation method; data
plied by Exotic Materials Inc.; al., 1976 sm specimen; measured with a modi- d minimum deviation method; data
plied by Exotic Materials Inc.; al., 1976 sm specimen; measured with a modi- d minimum deviation method; data
plied by Exotic Materials Inc.; al., 1976 sm specimen; measured with a modi- d minimum deviation method; data
plied by Exotic Materials Inc.; al., 1976 sm specimen; measured with a modi- d minimum deviation method; data
plied by Exotic Materials Inc.; al., 1976 sm specimen; measured with a modi- d minimum deviation method; data
plied by Exotic Materials Inc.; al., 1976 sm specimen; measured with a modi- d minimum deviation method; data
plied by Exotic Materials Inc.; al., 1976 sm specimen; measured with a modi- d minimum deviation method; data
plied by Exotic Materials Inc.; al., 1976 sm specimen; measured with a modi- d minimum deviation method; data
plied by Exotic Materials Inc.; al., 1976 sm specimen; measured with a modi- d minimum deviation method; data
plied by Exotic Materials Inc.; al., 1976 sm specimen; measured with a modi- d minimum deviation method; data
plied by Exotic Materials Inc.; al., 1976 sm specimen; measured with a modi~ d minimum deviation method; data
d minimum deviation method; data
en from a Cable.

 TABLE A-6.
 EXPERIMENTAL DATA ON THE REFRACTIVE INDEX OF GERMANIUM (Temperature Dependence) (continued)

Data Set [Ref.]	T	n	Specifications and Remarks	Author(s), Year
14(cont.)	249	4.00305		Icenogle, H.W.,
[14]	259	4.00655		Platt, B.C., and
	263	4.00848		Wolfe, W.L., 1976
	269	4.01095		
	274	4.01236		
	278	4.01435		
	283	4.01635		
15	(λ=1	.0.27 µm)	Good optical grade germanium samples;	Icenogle, H.W., et
[14]	95	3.93562	supplied by Exotic Materials, Inc.;	al., 1976
	104	3.93692	prism specimen; measured with a modi-	
	112	3.93909	fied minimum deviation method; data	
	120	3.94088	taken from a table.	
	124	3.94335		
	134	3.94501		
	140	3.94639		
	147	3.94898		
	15 3	3.95075		
	160	3.95295		
	166	3.95497		
	173	3.95754		
	183	3.96090		
	192	3.96390		
	204	3.96808		
	210	3.97028		
	217	3.97296		
	226	3.97587		
	234	3.86896		
	239	3.98113		
	246	3.98387		
	253	3.98633		
	260	3.98923		
	268	3.99203		
	274	3.99458		
	278	3.99634		
	284	3.9985		

TABLE A-6.	EXPERIMENTAL	DATA	ON	THE	REFRACTIVE	INDEX	OF	GERMANIUM
	(Temperature	Deper	nder	ace)	(continued	l)		

TABLE A-7. EXPERIMENTAL DATA ON THE TEMPERATURE DERIVATIVE OF REFRACTIVE INDEX OF CERMANIUM (Wavelength Dependence)

[Temperature, T, K; Wavelength, λ , μ m; Temperature Derivative of Refractive Index, dn/dT, 10⁻⁶K⁻¹]

Data Set [Ref.]	λλ	dn/dT	Specifications and Remarks	Author(s), Year
1	(T=2	97.5 K)	Cormanium crystal; grown at the General	Rank, O.H.,
[43]	1.934	5.919	Electric Co., Electronics Laboratory,	Bennett, H.E., and
	2.174	5.285	Electronic Park, Syracuse, NY; plane	Cronemeyer, D.C.,
	2.246	5.251	parallel plate specimen of 3.0575 mm	1954
	2.401	5.037	thick and 28 mm clear aperture; refrac-	
			tive indices measured by interference	
			method; dn/dT determined; data taken	
			from a table.	
2	(T=116	-440 K)	Single crystal; high purity; prism	Lukes, F., 1957
[66]	1.82	5.36	specimen of about 20 degree apex angle;	• • • • • • •
	1.90	5.10	refractive index for several wavelengths	
	1.98	5.00	measured in the temperature range be-	
	2.07	4.84	tween 116 and 440 K; it was found that	
	2.25	4.60	the refractive index of germanium in-	
	2.34	4.55	creases linearly with the temperature	
	2.51	4.39	in the wavelength region between 1.8	
			and 2.5 µm; dn/dT determined; data	
			taken from a figure.	
3	(T=116	-440 K)	High purity single crystal; prism	Lukes, F., 1958
[67]	0.961	9.352	specimen of 20 degree apex angle:	50xc01 (11 x)50
• • •	0.961	8,929	refractive indices determined in the	
	1.349	6.890	temperature range from 116 to 440 K;	
	1.349	6.819	dn/dT determined; data taken from a	
	1.349	6.608	figure.	
	1.918	5.097	0	
	2.000	4.992		
	2.075	4.852		
	2.260	4.607		
	2.349	4.537		
	2.514	4.432		
4	(T=116	-440 K)	High purity single crystal; prism	Lukes, F., 1958
[67]	0.667	-13.038	specimen of 20 degree apex angle;	
	0.957	10.688	refractive indices determined in the	
			temperature range from 116 to 440 K;	
			dn/dT determined; data taken from a	
			figure.	
5	(T=100-	-540 K)	Pure germanium crystal; prism angle	Lukes, F., 1960
[44]	1.96	5.20	about 20 degrees: ρ=40 Ω-cm; minimum	
	2.17	4.79	deviation method used for refractive	
	3.81	4.09	indices determined; dn/dT determined;	
	5.07	3.99	data taken from a figure.	
6	(T=100-	540 K)	Pure germanium crystal; prism angle	Lukes, F., 1960
[44]	1.96 5.29		about 15 degrees: ρ=1.2 Ω-cm; minimum	
	2.17	4.81	deviation method used for refractive	
	2.39	4.59	indices determination; dn/dT determined	
	3.81	4.24	data taken from a figure.	
	5.06	4.14	94 - 4 -	
7	(T=100-	·540 K)	Pure germanium crystal; prism angle	Lukes, F., 1960
[44]	2.19	4.887	about 15 degree; p=0.016 R-cm; minimum	
	2.40	4.685	deviation method used to determine the	

· · ·

Data Set [Ref.]	λ	dn/dT	Specifications and Remarks	Author(s), Yes
7(cont.)	3.82	3.989	refractive index; dn/dT determined;	Lukes, F., 1960
[44]	5.05	3.952	data taken from a figure.	• • • • •
8 (T=173-298		-298 K)	Good optical grade germanium samples;	Icenogle, H.W.,
[14]	2.554	3.96	supplied by Exotic 'faterials, Inc.;	Platt, B.C., and
	to		prism specimen; measured with a modi-	Wolfe, W.L., 1967
	12.1		ficd minimum deviation method; data taken from a table.	

F

 TABLE A-7.
 EXPERIMENTAL DATA ON THE TEMPERATURE DERIVATIVE OF REFRACTIVE INDEX OF CERMANIUM (Wavelength Dependence) (continued)

TABLE A-8. EXPERIMENTAL DATA ON THE TEMPERATURE DERIVATIVE OF REFRACTIVE INDEX OF GERMANIUM (Temperature Dependence)

Data Set [Ref.]	T	dn/dT	Specifications and Remarks	Author(s), Year
1	(λ=1.9)	70 μm)	Pure germanium crystal; prism angle of	Lukes, F., 1960
[44]	140.663	3.902	14°53.0'; p=1.2 Ω-cm; measurements made	
	170.323	3.982	by minimum deviation method; data taken	
	210.824	4,523	from a figure.	
	251.266	4.502	-	
	297.157	5.143		
	330.895	5.494		
	370.035	5.926		
2	(λ ≈2.1 9	90 μm)	Pure germanium crystal; prism angle of	Lukes, F., 1960
[44]	109.596	3.361	14°53.0'; p=1.2 ?-cm; measurements made	
	139.302	3.794	by minimum deviation method; data taken	
	170.313	3,901	from a figure.	
	210.775	4.143		
	251.255	4.521	;	
	295.771	4.844		
	332.180	5.005		
	371.292	5,220		
	410.410	5.490		
	434.676	5.543		
	471.088	5.731		
	520.970	5.864		
3	(λ=2.40	19 µm)	Pure germanium crystal; prism angle of	Lukes, F., 1960
[44]	140.622	3.576	14°53.0'; p=1.2 Ω-cm; measurements made	
	170.299	3.792	by minimum deviation method; data taken	
	212.141	4.279	from a figure.	
	251.241	4.412	-	
	295.740	4.600		
	332.163	4.870		
	371.246	4.868		
	410.382	5.273		
	435.971	5.136		
	520.890	5,240		
4	(λ=3.82		Pure germanium crystal; prism angle of	Lukes, F., 1960
[44]	326.709	4.381	14°53.0'; p=1.2 Ω-cm; measurements made	· •
	371.201	4.515	by minimum deviation method; data taken	
	421.083	4.648	from a figure.	
	469.611	4.727		
	520.821	4.697		
5	(λ=5.15		Pure germanium crystal; prism angle of	Lukes, F., 1960
[44]	302.419	4.138	14°53.0'; p=1.2 Ω-cm; measurements made	
	326.692	4.245	by minimum deviation method; data taken	
	371.187	4.406	from a figure.	
	421.073	4.566		
	472.279	4.509		

(Temperature, T, K; Wavelength, λ , μ m; Temperature Derivative of Refractive Index, dn/dT, 10^{-4} K⁻¹)

nga tangan ta Antangan tangan tanga

> د. 20- <u>د الانتراكيم (معرو</u>ر)

END DATE FILMED

7-83 DTIC