AD-A128 857 A DIANA-DRIVEN PRETTY-PRINTER FOR ADA(U) TARTAN LABS 1/;,
INC PITTSBURGH PA K J BUTLER ET AL. 22 FEB 83 TL-83-3
' MDA903-82-C-0148
UNCLASSIFIED F/G 9/2 NL

' m“ES ;

eerefFEEEE

EEEE

EEE

= ™ b

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

YiAYs: LANDORATORIES INCORPORATED

A Diana-DriveN PReTTy-PRINTER FOR ADA

Kenneth J. Butier
Arthur Evans Jr.

Prepared for

801 North Randoiph Street

i . Ada Joint Program Office
Arlington Virginla 22203

AT v NI AR con AR A

Contract Number MDA903~-82-C-0148

I

Prepared by

L e

TARTAN Laboratories incorporated
477 Meiwood A ' I
Pittsburgh PA lv:;:‘a. D lc
ELECTE
1983 February 22 JUN2 1983

TL 83-3 f B

The effort which Is reported nerein was performed by Tartan Laboratories Iinc.
for the Ada Joint Program Office of the Department of Defense under contract
number MDAS03-82-C~0148 (expiration date: 28 February 1983). The Project
Director for Tartan Laboratories is Arthur Evans. Jr.

DTIC FILE CopY

. The views, opinions, and findings contained in this report are those of the
) authors and should not be construed as an officlal Department of Defense
’ position. policy, or decision. unless designated by other official documentation.

DISTRIBUTION STATEMENT A

-? A for public release; " - v VUV -
E ppeoved nlic _u_qi w ~ v

SECURITY CLASSIFICATION OF THIS PAGE (When Dete Entered)

REPORT DOCUMENTATION PAGE - ’

INSTRU

READ CTIONS
BEFORE COMPLETING FORM

WZT A D-: ‘cc?{m“ NO, 7

3. RECIPIENT'S CATALOG NUMBER

& TITLE (end Subtitfe)

A DIANA-DRIVEN PRETTY PRINTER FOR ADA

S. TYPE OF REPORT & PERIOD COVERED

P ——————————
7. AUTHOR(s)

Kenneth J. Butler, Arthur Evans Jr.

8. CONTRACT OR GRANT NUMBER(e)

MDA903-82-C-0148

9. PERFORMING ORGANIZATION NAME AND ADORESS
Tartan Laboratories Inc.
477 Melwood Ave.
Pittsburgh PA 15213

10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

i, CONYR?LLING OFFICE NAME AND ADORESS
Ada Joint Program Office

801 North Randolph Street
Arlington VA 22203

12. REPORT DATE

1083 Feb 22 |

13. NUMBER OF PAGES
viii + 108

DCASMA Pittsburgh
1610-S Federal Building
1000 Liberty Avenue
Pittsburgh PA 15222

12, MONITORING AGENCY NAME & ADODRESS(If different {rom Controlling Oftice)

1S. SECURITY CLASS. {of this report)

Unclassified

1Se. DECLASSIFICATION/ DOWNGRADING -
EDULE

SCH

s ——————————————
16. DISTRIBUTION STATEMENT (of this Report)

DISTRIBUTION STATEMENT A

Approved for public release;

Distzibution Unlimited

17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, i different (rom Report)

18. SUPPLEMENTARY NOTES

Diana, Ada, programming language, pretty-printer

19. XEY WORDS (Continue on reverse side if necessary and identily by block mamber)

id fy by block b

20. ABSTRACT (Continue on reverse side if

programs is described.
of an Ada program.

The design of a program PrettyPr1nt whose function is to pretty-print Ada
PrettyPrint takes as input a Diana representation
The intent of the design was to stress the Diana design.

FORM
JAN T3

oD, 73

EOITION OF ! NOV 63 1S OUSOLETE

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Dete Enterer

Contract deliverable 0002AD
6. PERFORMING ORG. REPORT NUMBER

SECURITY CLASSIFICATION OF THIS PAGEWhen Dats Entered) [

St o 2

Fd

)

t
l
)
{ 4 SECUMTY CLASSIFICATION OF THIS PAGE(When Date Bntered)

Table of Contents

TABLE OF CONTENTS

Abstract
Preface

1. Introduction
1.

1. Goals of the Design of PRETTYPRINT
1.1.1. Non-Compiler Application
1.1.2. Exercise the DWNA Package

1.2. Design Overview
1.2.1. The Main Program

1.2.2. The DIANA Structure
1.2.2.1. The Package Diana
1.2.2.2. {0L and Refinements
1.2.2.3. The Package PP_Dlana

. The Package WALK!?

. The Package WALK2

. The Package FORMAT

bservations about ODIANA

. Handling ADA Comments
DIANA Normalizations

. Diana Problem Areas

1
2
8
ments about the Design
1
2

O-‘—l—.
oMM
(L)

1.4.
. Formatting Decisions

. Assumptions Made in the Design
.3. Missing Parts of the Design

1.4.4. ADA as a Program Design Language

1.5. Comments about this Oocument

2. Source Reconstruction

2.1. General Treatment of Nodes
2.1.1. Simple Example
2.2. Anomalies
2.2.1. Label identifiers
2.2.2. Task Types
2.2.3. 8Subprogram Declarations

-t et wd () b b b
. o : -

2.2.4. Blocks
2.3. Comments
8. Formatting
3. 1. Ciassical Formatting Problema
3. 1. 1. Indentation
3.1.2. Line Breaks
3.1.3. Lists and Sequences
3.1.4, Comments
3. 1.5. Whitespace
3.1.6. Page Layout

Page |

-—

g—‘-ﬂ i omd aad ot b
AN AW DBOUNOCOIN OO OO W

N
-

NN
SSNNN

NN
~N s

83

S8&8R

& 8

s33528

49

et

ST y——

S g e

U

Page Il A Pretty-Printer for ADA

-t
b d

Use of Fonts

s
Solving indentation

Solving Line breaks

Solving Lists and Sequences

Solving Comments

Soiving WhiteSpace and Page Layout
Solving Use of Fonts

9 "FORMAT"

Output Su rt Operations
. }pl. Pr‘:ae:‘:durop AddText

®n
o
[
=
o
3

3.2

Eoonron-

3.3. Pa

-

W PPOPPN
WOWW" WOOLWW:

PP VLW 0

e

Procedure ResForm

3. Procedure |dentForm

4. Procedure ComForm

S. Procedure NewlLine

6. Function Remaining and Function Position
1.

2.

3.

.3
.3
3.1,
.3
.3
.3

.
.
.

bt
ot
)

1
1
1
1
ndentation Stack Operations

12,. Procedure Setincrement
2

2

: . Procedure Indent
Procedure Undent

.2, 4. Procedure Setindent
Format Operations

4. Recrsating Formatted Source

4.1. DL Refinement of DIANA
4.1.1. Operations on PP_Dilana
4.2. The First Tree Walk -- WALK}
4.2.1. Subunit Waik1

4.2.2. Nest:. Nesting Constant Array
4.2.2.1. Practical Considerations in Nest

4.2.3. Char: ths Character Count Constant Array
4.2.3.1. Practical Considerations in Char

4.2.4. Nodewalk
4.2.5. Uistwalk

4.3. Second Tree Walk to Generate Formatted Text
4.3.1. Use of DIaNA Operators

4.3.2. Eumrlo WALK2 Subunits
4.3.2.1. Labe! identifiers
4.3.2.2. Task Types

A. First Traversal

A.1. Package Specitication

A.2. Package Body
A.3. Subunits

.3
.3
.3
.3

-

3.4, Use o

8. Second Traversal
8.1. Package Specification

C

Table of Contents Page i

8.2. Package Body 87
8.3. Subunits 96
C. 0L Refinement of DWNA for Pretty Printing 97
D. Format Control : 107
D.1. Package Specification 107

Accession For
NTIS GRARI g
DTIC TAB

Unannounced]
Justification e — 3

Distribution/

T |Avall and/or
‘Dist Special

-i

Avallability Codes

PP e S

Page v A Pretty-Printer for ADA f
1
C
1
|
4
»
L
|
“ﬁ
L

List of Figures Page v

[; UST OF FIGURES
Figure 1-1: Top Level ADA Modules 8
Figure 1-2: Sketch of the OWNA Package 1
Figure 1-3: Qutline of Package Body WALK? 14
Figure 1-4: Package FORAMAT Specification 16
Figure 2-1: Procedures To Reconstruct id_s Node 34
Figure 2-2: Procedure To Recreate Type Declarations 35
Figure 2-3: Procedures To Recreate A Subprogram Declaration 37
Figure 2-4: Procedures for Reconstructing Blocks 40
Figure 3-1: FORMAT Package Specification 55
Figure 4-1: Example of IDL Refinement 65
Filgure 4-2: IDL Process Specification of PrettyPrint 67
Figure 4-3: PP_DIANA Operations 87
Figure 4~4: Package Walkl Specification And 8ody 69
Figure 4-5: Walkl Subunit 70
Figure 4-6: Procedure Nodewalk 75
Figure 4-~7: Procedure Listwalk 77

e L .

Abstract Abstract / Page 1

ABSTRACT

The design of a program PRETTYPRINT whose function is to pretty-print ADA
programs Iis described. PRETTYPRINT takes as input a DIANA representation of an
ADA program. The Intent of the design was to stress the DIANA design.

A~
i'

L 9)
.

Preface / Page 2

A Pretty-Printer for ADA

e e R

Preface ' Preface / Page 3

PREFACE

As part of its efforts In support of the ADA' programming language. the ADA
Joint Program Office (AJPO) is deeply involved with the production of tools that
will support ADA programmers. An ADA Programming Support Environment
(APSE) is Intended to Include a rich collection of tools such as compilers.
editors, pretty-printers. cross-reference genaerators, verifiers. and so on. to
assist the programmer using the APSE and to ease the difficuit task of creating
the complex software required for DoD applications.

Early In the design of ADA compllers, the contractors involved chose DIANA as
the notation to be used for communication between the components of the
compliers they were buliding. DIANA is an abstract data type. designed with the
intention that any object of the type represents al/l the Information in an ADA

. source program. along with the results of lexical analysis. syntax analysis., and

static semantic analysis. Further., AJPO has fong realized that ADA is not the
proper lingua franca to be used as a means of communication between the tools
in an APSE and that DIANA Is In fact an excellent notation for the purpose.

DaNA. lltke ADA, did not spring forth perfect from the pens of its creators.
ADA has had the beneflt of a long process of Informed feedback from interested
computer specialists to bring to its present state of excellence: DIANA requires
similar nurturing and care for it to grow into a mature tool that properly meets
the widely varying needs of its user community. AJPO has therefore contracted
with TARTAN Laboratories to maintain DIANA and to improve it.

One issue which we at TART—AN have addressed In this effort has been to
determine DIANA’s suitability for an application other than a compller. Although
DwuNA’s original design contemplated such non-complier applications., essentlally
all of the existing experience has been with compilers. so only compiier applica-
tions have had the opportunity to influence ODIANA’S continual development. Thus
we have designed a program named PRETTYPRINT which is a pretty-printer for ADA
that uses as input a DIANA representation of an ADA program. It is the design of
PRETTYPRINT that is described in this document.

‘mqurmummmmmmo«m.upmmuma. United
States Government.

N

Pretace / Page 4 N A Pretty-Printer for ADA
.\ . ,

A pretty-printer. a tool that belongs in the tool chest of any group writing
large amounts of code. enforces standards of layout on the page of programs
written in the language. In the usual case. the pretty-printer reads one version
of the program to be formatted and writes a new version. properly formatted.
However, in an environmant such as an APSE. it is more appropriate for the
pretty-printer to take as its input a DIANA repfesentatlon of an ADA program.
rather than textual ADA.

it is important for the reader to keep Iin mind that the purpose of the design
has been to exercise various aspects of DIANA, and not to bulld a better
pretty-printer. This point is addressed more fully in Section 1.1 of this docu-
ment.

This document assumes that the reader is famiilar with the programming
language ADA. as it is defined in Draft Revised MIL-STD 1815, the ADA Language
Reference Manual dated July 1982 [2]. It also assumes knowiedge of DIANA as
defined in the DIANA Reference Manual (hereafter referred to as the DRM) dated
February. 1983 (1].

The work reported herein has been supported by the ADA Joint Program Office
under contract MOA903-82-C-0148. We thank AJPO for supporting the ODIANA
revision effort of which the the design of PRETTYPRINT Is a part. We thank In
particular Lt. Colonel Larry Druffel. the director of AJPO. Valuable assistance as
Contracting Officer’'s Technical Representative was provided first by
Lt. Commander Jack Kramer and later by Lt. Commander Brian Schaar. we are
pleased to acknowledge them.

Introduction Chapter 1 / Page 5

CHAPTER 1
INTRODUCTION

This report presents the design of PRETTYPRINT., a program designed to accept
as Input a DIANA representation of an ADA program and to produce as output a
properly formatted textual version of the same ADA program.

This introductory chapter contains in succeeding sections the goals of the
PRETTYPRINT design project. an overview of the desigh. some comments about
DIANA., some comments about the design of PRETTYPRINY, and an overview of the
rest of the document.

1.1. Goals of the Design of PRETTYPRINT

As stated in the Preface., the purpose of this design exercise has not been to
investigate pretty—printers as such but rather to test and stress various aspects of
the design ot DIANA. Thus the design has been strongly influenced by the two
goais of investigating OWANA’s suitabliity for a non-compiler application and of
stressing the design of the DIANA interface package. We have regarded these
goals as being so important that we have sacrificed considerations of elegance of
design and of efficiency and compactness in order to achieve them. They are
considered in detail in the next two subsections.

1.1. 1. Non-Compiler Application

The primary purpose for this design has been t0 exercise DIANA In an
appiication domain other than a compiler. Most current users of DIANA employ it
in compller writing. However, inasmuch as DIANA was Intended ailso to be a
useful intermediate form for many of the tools to be found In an APSE. it is
imperative that its design be stressed by using It in such an application.
PRETTYPRINT (s ciearly one non-compiler tool that uses DIANA,

Crucial to the use of DIANA for driving any tool such as PRETTYPRINT is the
OWNA design principle (presented in Section 1.1.1 of the DAMY) that DIANA must
praserve the structure of the originai source program. Our success in designing

Tas stated in the Prefeace, we use DRM to refer to the Diana Reference Manuai.

Section 1.1.1 /7 Page 6 A Pretty-Printer for ADA

PRETTYPRINT has made it adequately clear that the source structure is preserved.

1.1.2. Exercise the DIANA Package

PRETTYPRINT should exercise the DIANA package. Since DIANA is an abstract
data type. for which many possible concrete representations can be dem.ed in
any reasonable programming {anguage. defining a specific concrete represen-
tation in ADA Is a practical Idea. in ADA such a definition would consist of a
package whose specification contains

* the relevant type definitions (some private). and

» specifications of subprograms to access objects of the type.

The body of the package would contain the bodies of those subprograms and,
likely. other types and subprograms.

Chapter 4 of the DRM contains the public part of a specification for such a
package. named Diana. the private part of the specification and the package
body are missing. The design of PRETTYPRINT described herein is specified by
using ADA as a Program Design Language.2 with the intention that the impiemen-
tation will be written in ADA using that package.

The designers of the Diana package provided two distinct methods for travers-—
ing DIANA structures. As a deliberate policy, this design uses both such ways so
as to Insure that both are properly designed and adequate for the purpose.

e The first tree walk, WALK!. uses the general tree traversing opera-
tions: ARITY, SONT1., eftc. The function ARITY applied to a DaNA
node returns the structure of the node. which is (essentially) the
number of offspring of the node. The SON, subprograms then
pravide access to the relevant offspring. These operations permit a
program to traverse a tree structure without taking specific cognizance
of the nature (other than number of offspring) of each node
traversed.

e The second tree walk, WALK2, uses the attribute-specific operations
such as AS_ACTUAL., AS_ALIGNMENT., etc. In this method. on
reaching a node one must determine (with function KIND) the nature
of the node. and then use the appropriate attribute—accessing func-~
tions to explore the chiidren.

The intent has been to test the adequacy of the design of package ODlana.

zmcunofm”ai’rogumwunwm (PDL) is discussed in Section 1.4.4 on page 23,

introduction Section 1.1.2 / Page 7

As it turns out. we found It appropriate for this project to augment DIANA. In a
manner anticipated in the DRM. Thus the package used here Is PP_Diana.
rather than Diana of Chapter 4 ot the DRM. See Section 1.2.2.3 on page
12 of this document for detalls of what was done and why.

1.2. Design Overview

We have found it convenient to think separately about two aspects of pretty—
printing: reconstruction, and formatting. The first aspect invoives reconstructing
the characters that make up the source text, without concern for how the
characters are to be laid out on the page. the second aspect involves making all
decisions concerning page layout and then carrying them out. Aithough this
distinction is often useful |n‘the discussions in this document., it turns out that it
is not very apparent in the code itself. whose modularity is designed from a
different viewpoint.

All of PRETTYPRINT'S work is performed by the three major modules of the
program: WALK?!, WALK2. and FORMAT., described briefly in the following sub-
sections and then In more detail in the rest of this report. Part of the structure
of the so-called "main program® and the specification parts of modules WALK1
and WALK2 are shown in Figure 1-1 on page 8. the specification of FOAMAT is
in Figure 1-4 on page 16. The modules are flisted in the order in which they
are discussed In this chapter: of course. they would have to be presented to an
ADA compiler in a different order.

Entries In the package PP_Diana are used tor all accessing of the DIANA
structure: this package is described in Section 1.2.2 on page 9.

1.2.1. The Main Program

For the sake of convenlence, we have assumed a main program., here the
procedure Main, which is called somehow by "the operating system®. a concept
not further discussed. We show only that part of Main that caliis the routines
that perform pretty-printing.

We assume that a specific instance of a DIANA structure Is specified as being
the one to be pretty-printed. again via some means not here discussed. The
otherwise-unspecified function Get_PP_Tree returns this structure. It is important
to note that the program as written assumes that the tree returned is one whose

-

Section 1.2.1 / Page 8 A Pretty—Printer for ADA

-— Main program. Assume that this is called by "the operating system”.

with Get_PP_Tree; use Get_PP_Tree; — function that reads PP_Diama
with PP_Diana; use PP_Diana; = DIANA package, for pretty printing
with WALK)1, WALK2; — routines to walk the trees

procedure Main is ~— main program
T: TREE; == DIANA tree to be pretty-printed

— Negotiate with user to determine specific tree to be printed.
T 1= Gat_PP_Tree(...); — The tree to be printed is in 7.

WALK1 (MALK1(T): — perform first walk
WAALK2 . MALK2(T); — perform second walk
end Main;

-— Package to perform the first walk over the tree.
with PP_Diana; use PP_Diana; — DIANA package, for pretty printing

package WALK1 is
procedure WALKL(T: in out TREE);
end WALK);

-— Ppackage to perform the second walk over the tree.
with PP_Diana; use PP_Diana; — DIANA package, for pretty printing
package WALK2 is

procsdure WALK2(T: in TREE);
ond WALK2;

Figure 1-1: Top Level ADA Modules

D

IO P S ey

R s e

introduction 8Section 1.2.1 / Page 9

type I8 PP_Diana.Tree. and not Diana. Tru’. There are of course other pos-
sibilities for acquiring the program’s input, such as the following:
e The program could acquire (somehow) a structure of type Diana.Tree

rather than PP_Diana.Tree. and then invoke a suitable subprogram 1o
transform It 10 the desired type.

e It the DIANA structure to be prefty-printed exists in DIANA external form.
the DNA reader that transforms external DWNA into internal might be
modified to create the additional attributes. though without values.

* WALKI could be reformulated to take an In argument of type
Diana.Tree and produce an out argument of type PP_Diana. Tres.

We do not pursue this point further as it is not relevant to the purpose of thu
project.

Procedure WALK! Is called with one argument: a tree of type PP_Diana.Tree.
it walks over that structure and modifies it. caiculating and storing values for
certain attributes specific to pretty-printing.

Next procedure WALK2 walks over the resuiting tree. emitting the desired
output as it goes. it calis entrles in package FORMAT to perform storing of
output. Ail formatting decisions are made In WALK2. '

1.2.2. The DIANA Structure

As suggested above. the Input to the program Is not an object of type
Diana.Tree but rather one of type PP_Diana.Tree. The distinction between these
is now presented. Section 1.2.2.1 describes first the ADA package Di/ana. the
package described in Chapter 4 of the DRM. Next Section 1.2.2.2 addresses
the issues invoived in using (OL to describe a new structure In terms of one
already defined. Finally, in Section 1.2.2.3 the special version of DIANA
relevant to pretty-printing is presented.

1.2.2.1. The Package Diana

Chapter 4 of the DRM provides the specification part of an ADA package that
provides access to a concrete representation of DINA. Omitting most detalls. a

3nie distinetion i claritted in Section 1.2.2

Section 1.2.2.1 / Page 10 A Pretty~Printer for ADA

{ sketch of the package is shown in Figure 1-2 on page ne. it deflnes and
* makes available the following names:
type TREE An object of this private type is a node of the DiIANA
structure.

type SEQ_TYPE An object of this private type is a sequence of nodes of the
same class.

type NODE_NAME This Is an enumeration type providing an enumeration literal
for each kind of DIANA node.

function MAKE This function creates and returns a DWANA node of the kind
which is its argument. Note that it is overloaded so as
also to be able to create an empty list.

procedure DESTROY
This procedure indicates that a node is no longer required.

function KIND Glven a node. this function returns its node-kind.

type ARITIES This enumeration type provides a literal for each number of
structural children a node might have.

function SON, For k = 1. 2. 3. each such function returns the K™
offspring of a node.

procedure SON, For k = 1, 2, 3, each such procedure stores a new K"
ofispring of the node.

fist processing A collection of functions and procedures implement the
usual list-processing primitives.

attributes For each possible attribute, there Iis a function to return the
value of that attribute at a node. and a procedure to store
a new vaiue for the attribute.

Aithough subprograms MAKE and DESTROY just listed and gsubprograms INSEAT
and APPEND mentioned In Figure 1-2 are not used by program PRETIYPRINT, for
completeness they are listed in this discussion.

“tor the sehe of completenses, the lists seversl subprograme thet are not used by
Prettyfrint. Such subprograme are MAKE (appears twice, overioaded), DESTROY, INSERT, and

-

’.‘b.

Introduction Section 1.2.2.2 / Page 11

pachkage Diana is
type Tree is priwate; — a Diana node
type SEQ_TYPE is private; — sequence of nodes

type NODE_NAME is enumeration class for node names
(.. about 160 different node types
)

— Tree constructors.
function MAKE (¢: in NODE_NAME) return TREE;
proocsdure DESTROY (t: in TREE);

function KIND (t: in TREE) return NODE_NAME;
-— Tree traversers from the Ada Formal Definition.

type ARITIES is (nullary, unary, binary, ternary, arbitrary);

function ARITY (t: in TREE) return ARITIES;
function SON1 (t: in TREE) yeturn TREE;
procedure SON1 (t: in out TREE; v: in TREE);
function SON2 (t: in TREE) return TREE;
procedure 30N2 (t: in out TREE; v: in TREE);
function SON3 (t: in TREE) return TREE;
procedure SON3 (t: in out TREE; v: in TREE);
-~ Bandling of list constructs.
function HEAD (1: in SEQ _TYPE) return TREE; -— LISP CAR
function TAIL (1: in SEQ_TYPE) return SEQ TYPE; - LISP CDR
function MAKE return SEQ_TYPE,;
— return empty list

function IS_EMPTY (1l: in SEQ TYPE) return BOOLEAN;
function INSERT (1: in out SEQ TYPE,;

i: in TREE) return SEQ TYPE;

— inserts i at start of 1
function APPEND (1l: in out SEQ TYPE;
i: in TREE) return SEQ TYPE;
~ inserts { at end of 1

— Bandling of LIST attribute of list constructs.
proosdure LIST (t: in out TREE; v: in SEQ TYPE);
function LIST (t: in TREE) return SEQ TYPE;
— Structural Attributes.

procsdure AS_ACTUAL (t: in out TREE; v: in TREE);
function AS_ACTUAL (t: in TREE) return TREE ; — aseoc

" followed by functions and procedures for about 100 attributes
private

— 7To be filled in...
end Diana;

Figure 1-2: Sketch of the DANA Package

o g e

Section 1.2.2.2 / Page 12 A Pretty-Printer for ADA

1.2.2.2. DL and Refinements

DWNA is defined in a notation called IDL [4]. a notation designed expressly for
describing structures to be used as Interfaces between software components.
The designers of (DL foresaw that users of an abstract type (such as DIANA)
might require another abstract type that was a/most the same as the first. but
slightly different. IDL therefore provides the concepts of refinement and deriva-
tion. methods for defining such a structure by listing only the differences from
some already defined IDL structure.

Details about refinements and derivations are to be found In Section 2.3 of
the IDL Reference Manual [4]. However. enough Information about the concept
for present purposes may be found in Appendix Il of the DRM. in which the
Abstract Parse Tree (APT) Is defined by derivation from the DWNA structure.
Oerivation is a more general process than the refinement used here. as derive-
tion permits both additions and deletions whereas refinement permits only
additions.

1.2.2.3. The Package PP_Diana

For the purposes of the design of PRETTYPRINT, It is useful to have three
additional attributes at some of the nodes. These provide a place to record
data gathered during the first tree walk so that they are available during the
second.

in the present case. we define a new abstraction. PP_Dlana. by refinement
of DIANA. This new type is like D/IANA but has added to it three new attributes.
listed below. Then the ADA package PP_Dlana is just like the ADA package Diana
except that the enumeration type NODE_NAME contains three new names and
there are three new functions and three new procedures to deal with the new
attributes.

The three new attributes are as follows:

pp_chars This attribute holds the number of characters required to
print the complete ADA structure at the node and its des-
cendants. The computation ignores ail considerations of
formatting. assuming that ail the code fits on one line and
that lexemes are separated (when necessary) by a single
space.

pp_mex_chars Present on any node that is a list. this attribute hoids the
maximum number of characters required to print any ele-
ment of the list. The caiculation follows the same conven-

Introduction Section 1.2.2.3 / Page 13 ;

t tions as for pp_chars.
pp_Jndent This attribute hoids the total number of extra Indentation
levels required to print this node. For all leals the value Is
zero. For a procedure body, for example. It Is one

greater than the maximum required for any declaration,
statement. or exception In the body.

A complete listing of the retinement that specifies PP_Diana is in Appendix C.

1.2.3. The Package WALK1

Note from Figure 1-1 on page 8 that the package WALK! makes available
externally only a single procedure, aiso named WALK!. This procedurs waiks
over the structure that is Iita input., caiculating and storing values for the three
attributes that are needed by PRETTYPRINT. as described In the preceding section.
The process is described in detail in Section 4.2 on page 68.

it computes and stores at each node the Indentation level required to print
that node, based (essentially) on the nesting depth of such ADA control struc-
tures as packages and procedures and compound statements whose bodies are
Indented from the surrounding text.

it computes and stores at each node the number of characters required to
print the node., ignoring formatting requirements. These data are needed for the
second pass over the tree producing output.

For each sequence node (/.e.. a DIANA °Seq of" node). it computes and
stores the maximum number of characters required by any element of the
sequence.

The body of WALK1., considered in detail in Section 4.2 on page 88, consists
of first some declarations of Inter>st., then functions and procedures to do the
work, and finally the body of procedure WALK?. A sketch of the package body
for WALK! is in Figure 1-3 on page 14. The pass walks the tree using the
general iree traversing operations of the package PP_DIANA.

1.2.4. The Package WALK2

Package WALK2, like package WALKS, exports only a single procedure.
{ Again. it Is a procedure that performs a single walk over the structure. Proce-
dure WALK2 walks over the tree. calling entries in package FOAMAT to perform

Section 1.2.4 / Page 14 A Pretty-Printer for ADA

— package to perform the first walk over the tree.
package body WAIX1 is
Son_Count : ARITIES range unary .. ternary;

Nast: constant array (NODE_NAME,Son_Count) of NATURAL
!.(see)’

Char : constant arxay (NODE_NAME) of NATURAL
= .. 1

function Max(X: im NATURAL; Y: in NATURAL)
returns NATURAL is separate;

procedure Listwalk(Node : in out TREE;
Depth : out NATURAL;
Length : out NATURAL;
Maxtength : out NATURAL);

procedure NodeWalk(Node : in out TREE;
Depth : out NATURAL;
Length : out NATURAL);

proceadure Walkl(T: im out TREE) is separate;

procedure Listwalk(Node : in out TREE;
Depth : out NATURAL;
Length : out NATURAL;
Maxiength : out NATURAL) is separate;

procedure NodeWalk(Node : in out TREE;

Depth : out NA'IMIRAL;
Length : out NATURAL) is separate;

Figure 1-3: Outline of Package Body WALK1?

output. All formatting decisions are made in WALK2.

The structure of WALK2 is similar to that of WALKY, although there are many
more functions and routines. It includes the line

with FORMAT; use FORMAT;

to provide access to the subprograms in package FOARMAT that interface to the
output. This pass. uniike the previous one., uses the specific attribute accessing
operations from package PP_DIANA to traverse the tree.

Details about this process are found in Section 4.3 on page 78.

Introduction Section 1.2.5 / Page 15

1.2.5. The Package FORMAT

The formatting decisions made in WALK2 are implemented by calling entries in
package FORMAT. The specification of package FORMAT Is In Figure 1-4 on
page 18. Typical formatting decisions include when to break a line. how many
spaces 10 indent a new line, and so on.

FORMAT maintains a buffer into which to collect together a line of characters
for outputting.

Because line indentation is such an important concept in pretty-printing.

FORMAT provides considerable services for it. it maintains a stack of inden~

tations, and at any moment each line produced is indented by the number of
spaces shown at the top of the stack. Entering & program area (such as a
procedure body) requiring additional indentation implies pushing a new entry onto
the stack, using the procedure /ndent. leaving such a scope requires calling
Undent to pop the stack.

The indentation stack is used aiso to deal with overflow lines. For exampie.
suppose a statement Is about to be printed which cannot fit on the line. (Code
in WALK2 knows how much space is required to print the statement from the
pp_chars attribute on the statement node. and it knows how much space remains
on the line by calling function Remaining In FORMAT.) In such a case the
FORMAT entry Setindent is cailed to set indentation as appropriate for the extra
characters of the statement.

With this background In mind. here is a brief description of each external
entry into package FORMAT. The term Indentation constant refers to the fixed
amount each nested region of text is indented beyund the surrounding region.

constant LineLength
This Is the number of characters in the output line.

type Column An object of this type is an integer between 2zero and
Linelength.

function Position This function returns the position on the line of the next
character to be stored.

function Remaining
This function returns the number of avaliable characters on
the line. (it is always LinelLength - Position.)

Section 1.2.5 /7 Page 18 A Pretty-Printer for ADA

— Package that provides operations to format reconstructed Ada source
package FORMAT is

3
constant POSITIVE := 120; — length of the output line
type Column is)
range O..Linelength; -—~ position on the line :

— There are four procedures to append text to the output buffer
proocsdure AddText(Text: in String);

procedure ResForm — add Ada reserved words
1 (Text: in String);
' ComFfform ' — add comments
i (Text: in String);
l procedure IdentPorm — add program identifiers

(Text: in String);
— There are two function to return status of the output buffer

function Remaining returm Column; — unused characters in buffer
function Position returm Column; — used characters in buffer

— this procedure creates a line break

procedure NewLine;

-— this procedure sets the indentation increment

procedure SetIncrement(Depth: in POSITIVE);

-— three procedures provide indentation operations

procedure Indent; —~— increment Erom last indentation
procedure Undent; -— revert to previous indentation

procedure SetIndent(Pos: in Column);
— got indentation to Pos

end FORMAT;

Figure 1-4: Package FORMAT Specification

Introduction Section 1.2.5 / Page 17

procedure Indent
This procedure pushes onto the Indentation stack the next
standard indentation. That Is, it pushes a number that
exceeds the last entry by the indentation constant.

procedure Setindent
This procedure pushes its argument onto the indentation
stack.

procedure Undent
This procedure pops the indentation stack, restoring the
indentation to the previous value.

procedure NewlLine
This procedure finishes the current line and outputs it. and
then stores the indentation for the next line.

procedure AddText
This procedure is used to store text into the output.

procedure ResForm
This procedure is used to store a reserved word into the
output. It formats the word as appropriate. For example,
rgserved words might (as in this document) be printed with
boldface type.

procedure ComForm
This procedure Is used to store comments Into the output,
formatting words as appropriate. For example. comments
might be printed with italic type.

procedure |dentForm

This procedure is used to store a programmer identifier into
the output.

1.3. Observations about DWNA

in this sectlon we record some observations we have made about DIANA during
the course of this design. It is these comments that are the principal output
from this study. With the exception of the point raised Iin the next subsection
concerning DIANA’S handling of ADA comments. we have concluded that DIANA’s
design, as stressed by the design of PRETTYPRINT, |s adequate.

PRF

Section 1.3.1 / Page 18 A Pretty-Printer for ADA

1.8.1. Handling ADA Commaents

The design of PRETTYPRINT has revealed a serious problem in DIANA'S handling
of comments in the ADA text. Obviously this probiem (s of no concern to writers
of compilers and most other tools In APSE, since it aftfects only tools which are
concerned with the exact placement of comments In ADA source text. Nonethe-
less. it Is a problem which requires a solution.

The problem is that there is not an adequate way to determine the correct
pilece of ADA source text with which to associate a comment. It Is Instructive to
note how this problem arose (n our design effort. As outlined Iin Section
3.1.4 on page 47. PRETTYPRINT'S handling of comments is rather poor. At first
we telt that we were doing poorly because we had given the problam inadequate
anemlons. However, on further reflection we realized that PRETTYPRINT cannot
possibly put the comments ‘where they belong’ because it has no way of
knowing where in fact they do belong.

To a first approximation, the problem is that PRETYYPRINT has no way to know
how the creator of the DIANA placed the comments. However. the real probiem
is that there exist no comment-placement standards to be obeyed by DIANA
creators. Even more seriously, there are sensible places in ADA text at which to
place comments for which there is no DIANA node to which to attach the
comment.

To see these problems, consider the following example of ADA code. The
ADA code was copled directly from one of the examples In Section 6.1 of the
ADA LRM and then reformatted and commented to make several points:

— (1] Print a header.

PRINT_HEADER (2] 1t is called whenever ...
(-—— [3] Its paramsters are ...
PAGES : in NATURAL; — (4] number of pages
HEADER: in LINE — (5] the line to print
1m (1, LINELAST = = »);
CENTER: in BOOLEAN — (6] center it?
1= TRUE

)

(The numbers In [..)] serve to Identify the comments In the following
discussion.) Ideally. it shouid be possible for the compiler Front End (or other
DiaNA creator) to leave enough information In the tree so that it would be

slt ls completely consistent with our design goals as described In Section 1.1 on page 5 to give iittle
attention to such a problem.

Introduction Section 1.3.1 / Page 19

possible ftor a program Ilike PRETTYPRINT to recreate this program as here
displayed. For some of the comments, such as [4). [S] and [6], there is no
problem In doing so--the comment couid be the value of the ix_comment at-
tribute on the In node that is the formal parameter. However. it does not
appear possibie to find two different places In the structure for comments (2] and
[3]. Also. PRETTYPRINT could not possibly know how to place comment (1] uniess
it was aware of the conventions used In creating the DIANA.

Aithough this example is perhaps slightly contrived. it suggests a real
problem. First, there exist programmers who might well write comments in the
style suggested here. Such a programmer who went to the trouble to insert
these comments would be properly dismayed to discover that they were unsatis-
factorily rearranged by tools In an APSE. Second. however, and much more
serious, tools are coming into existence which care very much how comments
are arranged.

One such tool is ANNA (3]. a tool which permits a user to decorate an ADA
program with annotations which are recognized by an ANNA processor. Syntac-
tically, all such annotations are ADA comments and would be Ignored by any
conforming ADA compiler. However. an ANNA processor takes cognizance of
comments starting with *--:° or °“-=1’, Interpreting them as input for certain
kinds of program analysis. Further detalls are not relevant here.

Aithough one could design an ANNA processor to take ADA text as its Input,
such an approach is Inconsistent with AJPO’s Intent for tools in an APSE. |t is
much more appropriate for the tool to use Instead a DIANA representation of an
ADA program. However, because the placement of the special comments has
semantic implications for ANNA. it could do sc only if it were possible to derive
from the DWNA the originai piacement of ADA comments in the source program.
For such a tool to be transportable from one APSE to anothar with a different
ADA-to-DIANA transformer., it IS necessary that the DRM specity adequately the
detaills of placement of ADA comments in the DIANA tree.

Although our analysis of this problem in connection with buillding PRETTYPRINT
suggests that further DIANA design in connection with ADA comments |s desirable.
the problems faced by the buiider of a tool such as ANNA suggest that such
redesign Is required. As ADA matures and sophisticated tools of the type
suggested by ANNA become available for inclusion in APSEs. it will become more
and more necessary to address and solve this problem.

an

- vy -

Section 1.3.2 / Page 20 A Pretty-Printer for ADA

1.3.2. DIANA Normatizations

The DIANA Reference Manual, following the lead of the ADA Formal Definition.
uses the term normalization o refer !0 certain arbitrary declisions made In
constructing the DIANA representation that are. in effect, losses of information.
For example, one may elect to ignore cage distinctions In the apelling of
reserved words and program identiflers. Some of these normalizations have an
impact on source reconstruction. In the DRM, this topic Is introduced In Section
3.1.3 and then discussed at greater length in Appendix lil. Section 3. The
present discussion is keyed to the latter.

ADA permits an optional ldentifier following the reserved word end In certain
contexts., such as a block body. subprogram body. and so on: if the identifier is
present. it must match an identifier at the beginning of tiie context. As there is
no provision in DIANA for recording whether or not this identifler is present. a
program such as PRETTYPRINT that does source reconstruction must either aiways
Include the labels or always omit them. We have chosen to include them.

In formal parameter declarations for subprograms. the mode in is optional
and Is not recorded in the DIANA. We have chosen aiways to include it.

OWNA does not require that extra spaces between lexical tokens be preserved.

Variant spelling of an Identifier. as for example "FOO® and °"fFoo" and “foo".
need not be recorded in DIANA.

Alternate writings of numeric constants need not be preserved. For example,
In

2 002 0.0.2
2%1111_1111% 16#FP# OLl6HOFTH 259
12e1 l.2e2 O0.12e+3 0Ol1.2e02

all the values on each line are represented identically In the DWANA and so are
reconstructed Iidentically. This Issue Iis essentially the same as the variant
spelling of identiflers: DIANA does not require that variations be preserved.

One normalization present in ADA-80 (s absent in ADA-82. the distinction
between an Infix and prefix form of an operator. For example. in the earlier
version of DIANA based on ADA-80, each of

LI) A+B e o0
sse "+°(A, B) ...

Is represented by the same structure. However, the conformance rules of

AR5 e s W s L~

e i

introduction Section 1.3.2 / Page 21

ADA-82 as expressed In Section 8.3.1 of the ADA LRM require that the distinction
be preserved. For this reason., DIANA now has the boolean attribute sm_prefix o
record which was used. See Section 3.3.4 of the DRM.

1.8.3. Diana Problem Areas

Although DIANA was designed to preserve the structure of the original source
program. and indeed the design of PRETTYPRINT shows that the structure Is in fact
preserved., we discovered that there are some DIANA nodes that present special
problems. Generally, these are nodes where the source to be reconstructed
cannot be determined without knowing the context in which the node appears.

Attribute When an attrlbutes appears as the description of the range
in a range constraint, the attribute should be preceded by
the ADA reserved word ‘range”. I(n all other cases the
attribute appears by itself.

id_s When a sequence of identifiers is the list of labels before a
statement, each identifier should be surrounded by the spe-
clal brackets ‘<< »’ and commas should not appear between
the Iidentifiers; in all other cases the identifiers appear
without any bracketing and are separated by commas.

Task Type When a type deciaration defilnes a task type, the ADA
reserved word ‘type® shouid be preceded by the ADA
reserved word “task": in aill other cases there is no text
precoding it.

Header When constructing the text for nodes in the class HEADER.
which corresponds to the header part of a function or
procedure declaration. it is necessary to have the name of
the subprogram., so that it can be printed in the decla-
ration. The identifier must be passed down from the parent
node.

Loop and Block When loop or block appear as the chiid of a named_stm
node (that is. a loop_identifler or block_identifier has been
specified) . then the identifisr must appear again after the
ADA reserved word "end" and before the semicolon. The
identifler must be passed down from the parent node. In
all other cases no Identifier appears after "end’. and there
is no identifier to be passed from a parent node.

%mm.mmmmmbmmmm(Mum.wmm.mm
a node in Dians.

ot

Section 1.3.3 / Page 22 A Pretty-Printer for ADA

_ Note that In all cases just discussed, Information needed for source

< reconstruction is not found exactly where it is needed. However, In all cases it
is easy to code WALK2 so as to provide the information. Alternatively, additional
attributes could have been defined where needed and calculated In WALKT.
However. the essential adequacy of DIANA s shown In that there are two
straightforward ways to deal with the problem.

1.4. Comments about the Design

Here are some observations of Interest about the design.

1.4.1. Formatting Decisions

All decisions about how the ADA text Is to be formatted are. iIn effect.
“hard-wired” into the code of WALK2. L(argely. we have followed the lead of the
ADA LRM In daciding how to display ADA code.

Were our purpose to design a production pretty-printer. for example for
inclusion in an APSE, we would have provided an interface to let the user (or at
least the local system maintainer) to parameterize the layout, However, such
functionality, though clearly desirable, I8 not relevant to the goals of the project
as described in Section 1.1 on page 5.

1.4.2. Assumptions Made in the Design

We have made certain assumptions In the design of PRETTYPRINT, assumptions
that the reader shouid be aware of.

We have consistently assumed that the DIANA structure supplied is correct.
An impiementation might be made more robust by the addition of suitable
checking.

We have assumed that no token is longer than the output line. It is not
clear in any case what to do if this assumption fails.

-

We have assumed that the nesting of the underlying program Iis not “too
deep". In the sense that excessive Indentation would leave not enough space on
a line for meaningful amounts of text. (Aithough the program does not fail in
any unpleasant way, Its treatment of the situation would not be suitable for a
production environment. See the discussion of procedure iIndent in Section
3.3.2 on page 58.)

Introduction Section 1.4.2 / Page 23

We have assumed that cnaracters are all of the same width,

We have assumed the existence of a function Leagth that determines of any
token (symbol. number or operator) the number of characters required to print
it. it the values of attributes Ix_symrep and Ix_numrep are strings. of course.
then the implementation of Length Is quite simple.

1.4.3. Missing Parts of the Design

Certain parts of a complete pretty-printer design are missing from this docu-
ment. These omissions are ail consistent with our limited goals as described In
Section 1.1 and are recorded here mersly for completeness.

A proper pretty-printer should encapsulate all the formatting decisions so as
to permit the user (or at least the system maintainer) to change the formatting
decisions. In the present design. all such decisions are embedded in the code
In WALK!. See Section 1.4.1 on page 22.

PREMTYPRINT’S handling of comments Is quite weak. This fact reveais a
probiem area in the design of DIANA, discussed Iin Section 1.3.1 on page 18.

It would be appropriate to recognize certain pragmas that control listing. such
as
pragea list) — turn listing on or off

pragma page; — eject paper
and perhaps others of our own design.

Page layout I8 quite weak. Certain structures (such as subprograms) shouid
have surrounding white space. and there should be some control of where page
breaks occur.

1.4.4. ADA as a Program Design Language

An interesting recent development in the ADA world has been the use of ADA
as a Program Design Language (PDL). We have followed the lead of others in
doing so. As the technique Is not yet well specified. it seems In order to
explain just what we have chosen to do.

ADA by the nature of its design separates the specification of a program from
its definition (which In ADA terms (s the body). Taking advantage of this

!
!
¥
H
¢

Section 1.4.4 / Page 24 A Pretty-Printer for ADA

separation, we have provided complete package specifications tor the various
modules of PRETTYPRINT. in addition. we have sketched the code that would go
Into the package bodies. with no attempt to provide aill detalls. OQur goal has
been to provide adequate detall to permit an intelligent implementor to complete
the impiementation.

1.5. Comments about this Document

The remainder of this document specifies Iin detalli the design (but not the
implementation) of PRETTYPRINT. The major thrust of the technical presentation is
in the next three chapters. Chapter 2 presents In detall the issues Iinvolved In
source reconstruction, ignoring temporarily the problem of formatting: and then
Chapter 3 addresses the Iissues involved Iin implementing pleasing formatting
decisions. Finally. Chapter 4 shows how the solutions to these two problems
are Implemented.

Four appendices present details of the modules that carry out the work.
Appendices A and B discuss the two tree traverses. which are carried out in
packages WALK! and WALK2, respectively. Appendix C discusses the changes
required in the DIANA structure to accommodate the needs of the pretty-printing
process. Appendix D discusses the ADA package FORMAT which implemants the
formatting processes.

To aid the reader. consistent typographic conventions are adhered to in
referring to objects and syntactic types in ADA and DIANA. The conventions are
as follows:

Entity Convention
ADA reserved word in end
ADA identifler FORMAT TREEWALK
DIANA claasses OBJECT_PDEF TYPE
. DIANA nodes constant record
DIANA attributes Ix_srcpos as_object_def

Note the distinction between DIANA., the name of the abstract data type. and
Diana. the name of the ADA package.

Because we cite frequently certain literature relevant to ADA and DIANA., we
use consistently foliowing abbreviations:

ORM The DWANA Reference Manual. (1).

ADA LRM The ADA Language Reference Manual, (2.

introduction Section 1.5 / Page 25

oL The IDL Formal Description, [4).

Note that the version of the DRM cited is the latest revision. There are changes
from earlier revisions that are significant to this document.

Section 2 / Page 26

A Pretty-Printer for ADA

Source Reconstruction Section 2 / Page 27

in presenting the PRETIYPRINT design. we consider separately two aspects of
pretty-printing: source reconstruction and formatting of the reconstructed source.
Although we make a clear-cut distinction In the discussions in this document, the
dichotomy is blurred in the completed design., but is nonetheless present. For
the purposes of analyzing DIANA In a new application domain. source reconstruc~
tion is the more important of the two aspects.

in this chapter we consider only the requirements for reproducing unformatted
ADA source. The formatting lssues involved are discussed separately, in Chapter
38 on page 43. The complete PRETTYPRINT design. Incorporating formatting Into
the source reconstruction, is elaborated in Chapter 4 on page 63.

One of the goals of the DIANA design Is the abllity to reconstruct the ADA
source used to create an instance of DIANA, This chapter (llustrates that this
goal Is met. with a small number of exceptions. The exceptions are normallza-
tions that are necessary during reconstruction. These are described In Section
1.8.2 on page 20.

We make the foliowing claim: unformatted ADA source can be reconstructed in
one pass over the ODWNA tree. Furthermore., with one exception, the only
attributes necessary to reconstruct the source are the lexical (/x_) attributes.
which describe the representation of identifiers, operators., and numeric literais.
and the structural (as_) attributes. which describe the structure of the DIANA
tree.

The single semantic attribute. sm_prefix, is required to differentiate between
Infix and prefix uses of operators. This distinction is required by the semantics
of ADA‘. WIthout. this requirement., the form of all operators could be normalized
and source could be reconstructed without any semantic attributes.

The reconstruction pass can be performed with a simple recursive descent
tree walk. ‘In general the text at a node is generated independently of its

1‘mo conformence rules for default formal parameters, Ada LRM Saction 8.3.1 in perticular, require
this distinction.

Chapter 2 / Page 28 A Pretty-Printer for ADA

parents, and includes the text for each of its descendants in order (the few
exceptions. most notably subprogram_decis and task types are described in
Section 2.2 on page 32 below).

2.1. General Treatment of Nodes

in this section we show how pretty-printing might be done for some simpler
language. Our purpose is to Illustrate the techniques used in PRETTYPRINT to
pretty-print ADA. Suppose the internal form of this simple language (analogous
to DIANA) has two types of nodes:

inner nodes with structural attributes: In DIANA the only lexical
attributes associated with these nodes are Ix_srcpos. source
position. and Ix_comments, the comment associated with
this node.

leat nodes with no structural attributes: these nodes may have a
lexical attribute of interest. In DIANA a leal node may have
the attribute Ix_symrep or Ix_numrep. or may have no at-
tributes at all.

The canonical inner node has one, two. or three descendants., accessed as
structural atiributes. The IDL representation of a node with three otfspring is

inner =» child1 : TYPEl,
child2 : TYPE2,
child3 : TYPE3;

To further the analogy. we assume the existence of a package similar to
package Diana that defines a type TREE such that leaf and inner nodes belong
to the type. In additlion, this package provides functions (“operations® on type
TREE) that provide access to the structural attributes. For convenience we
name the functions in this package CHILD1, CHILD2. and CHILDS3. Each of
these functions takes one argument. a node of type TREE., and returns a node
of type TREE that Is the corresponding structural attribute of the node. Using
the ADA package TEXT_/O. as described in Section 14.3 of the ADA LRM. the
canonical procedure for creating the source associated with this node would then
be:

Source Reconstruction Section 2.1 / Page 29

— the string "Text/™ represents an arbitrary text string
proosdure dp_inner(Node: in TREE) is
begin

PUT("Texto");
dp_TYPE1(CHILD1(Node));
PUT("Textl"),
dp_TYPE2(CHILD2(Node));
PUT("Text2");
dp_TYPE3(CHILD3(Node));
PUT("Text3"),
end 4dp_inner;

The procedures dp_TYPE!I, dp_TYPE2. and dp_TYPE3 are procedures that
produce the text for nodes of the IDL type TYPEl, TYPE2, and TYPE3 respec-
tively.

in other words. the source text corresponding to any node is merely the
correctly ordered concatenation of some text strings inherent to the node
("Text0®, "Text1l®. °Text2", and °Text3") and the source text for its descendants
(the text produced by dp_TYPE!, dp_TYPE2. and dp_TYPE3). Concatenation Is
achieved by correctly ordering the output operations. When we say that proce-
dure dp_TYPE! produces text. we mean that the procedure uses the function PUT
to output text in the same manner that dp_J/nner does.

In practice. some of the text strings Inherent to a node are null,

it the IDL type denotes an IDL class., then It is reasonable to expect the
procedure that the ciass to simply dispatch processing depending on the kind of
node it receives. For example. if the IDL class TYPE! is defined as
TYPEL 1= inner | leaf ;

and there is a discriminating function. KIND, that operates on nodes of the
class. then the procoduré dp_TYPE! can be written.

procedure dp_TYPEL(Node: in TREE) is

case KIND(Nods) is
when inner => dp_inner(Node);
when leaf => dp_leaf(Node);
end case;
end 4p_TYPEL;

The procedure to handle nodes of a class can be optimized to do processing
for the nodes in that class if the nodes are sufficiently similar. /.e., they share
similar attributes or generate the same text strings. For example., In DIANA the
ciass /D contains only nodes that represent Identifiers and all |dentifiers are
reconstructed from the /x_symrep attribute. We use this to advantage in Pret-

Lo A

Section 2.1 / Page 30 A Pretty-Printer tor ADA

tyPrint by processing all nodes in the class /D with a single procedure.

For nodes without descendants, the leaf nodes. a procedure similar to the
procedure for inner nodes is used. Aithough there are no structural attributes,
we assume a lexical attribute. /x_text. that contains text assoclated with the leaf.
Again, the existence of an accessing function, (X_TEXT that returns the value of
the attribute is assumed.

procedure Ap_leaf(Node: in TREE) is
begin

PUT("Texto"),
PUT(LX_TEXT(Node))»
PUT("Textl");

end dp_leaf;

2.1.1. Simple Example

We now apply this technique to the reconstruction of ADA trom DIANA. As an
example consider the DIANA node constant. which represents the declaration of a
constant object. The syntax for the declaration of a constant object in ADA
follows.

constant_object_declaration 1:=
identifier_list : constant subtype_indication := expression ;
! identifier_list : constant constrained_array_definition
1= expression ;

The DWNA node. constant, ropresents a constant object deciaration.

constant => as_/d_s : ID_S,
as_type_spec : TYPE_SPEC,
as_object_def 1 OBJECT_DEF;

Using the package D/ana described In Chapter 4 of the DRM. which provides
the operations on the DWANA data type. we write the foliowing procedure to
reconstruct the source for a constant declaration.

proosdure dp_constant(Node: in TREE) is

dp_ID_S(AS_ID_S(Node)); — print identifier 1list
Put(”: constant ");

dp_TYPE_SPEC(AS_TYPE_SPEC(Node)); - print subtype
dp_OBJECT_DEF(AS_OBJECT_DEF(Node)); — print ':=' expression
Put(";") ,

end 4dp_constant;

Source Reconstruction Section 2. 1.1 / Page 31

in other words, reconstructing the text for a constant object declaration
requires the following pleces of text to be concatenated:

e the Identifier_list; the text for the Identitier list is created by a
procedure similar to dp_constant. one that operates on Id_s nodes.

e a colon and the ADA keyword °“constant” (note this includes a spacs
after the word “constant®),

» the subtype_indication. the text Iis created by a procedure that
processes the as_type_spec child.

* the expression. the procedure processing the as_object_def child
produces the text for the “:=" as well as the expression. and finally

e a semicolon 10 end the declaration.

For some level of completeness we consider the procedures to reconstruct the
source for two of the children of the node constant: as_/d_s. the Identifier list;
and as_ob/_def. the object definition expressian.

The Identifler list is a sequence of identifiers.
ID_S ty= iad_se;

id_s =y as_J/ist : Seq Of ID;

Sequences are handied using the DIANA operations LIST, HEAD, and TAIL. LIST
returns a value of type SEQ_TYPE that is a sequence of |DL nodes. HEAD
returns the first node In the sequence and TAIL returns the sequence. possibly
empty, that remains after the first node Is removed. IS_EMPTY returns a
boolean value True when the sequence Is empty. (The procedure does not
begin with a check for an empty sequence as the ADA syntax does not permit an
empty list).

procedure dp_id_g(Node: in TREEZ) is

L: SEQ _TYPE; — ho.ds list not processed
L := LIST(Node);
dp_ID(HEAD(L); — print the first id
L 1= TAIL(L); - process the remaining
vhile not IS_EMPTY(L)
loop
PU(","); — separate id‘'s with *,”"
dp_ID{HEAD(L); — print next id
L 1= TAIL(L); -— process the remaining
end loop;
end 4dp_1id_s;

The procedure dp_id_s iterates over the sequence of nodes. For each node

Section 2.1.1 / Page 32 A Pretty-Printer for ADA

the procedure dp_ID is called to process the leaf nodes that are the identifiers.
Belore each node (except the first) a comma is Introduced. thereby separating
each identifier In the list with commas.

In presenting the procedure for dp_id_s we have simplified the treatment of
Identifier lists. In actuality the process is complicated by the fact the identifiers
could be label_Iids. Sequences of label_ids should not be separated by commas
(see Section 2.2.1 on page 33).

The object definition is represented by a node In the class OBJ_DEF. The
nodes in this class are the nodes of the class EXP and the node wvold. Void
indicates that no object definition appears in the declaration. Although the
cbject definition for a constant declaration may never be void., the node constant
's also used to represent deferred constants. Deferred constant declarations
have no object definition expression and DIANA represents this with a voild node
as the as_ob/_def child. The procedure to reconstruct the texi must account for
this fact. In particular. it must assure that the “:=" is not generated when the
cbject declaration Is absent.

The procedure to process the class OBJ_DEF is an example of processing for
an DL class. The function K/IND is used to discriminate between nodes within
the class.

procedure dp_OBJ_DEPF(Node: in TREE) is
case KIND(Node) of
dn_void =3 null; -~- no object definition
others = Put(®:="); ~— all object defs begin with ":="
dp_EXP(Node);
end case;
end dp_OBJ_"EF;

2.2. Anomalles

The procadures needed to describe the remaining DIANA nodes are generally
straightforward. The steps required to reconstruct most nodes can be deduced
from Chapter 2 of the ORM. However, there are some DIANA nodes for which
obvious solutions do not exist. In this section we discuss the implication of
these nodes and describe the processing necessary in order !0 reconstruct the
source for these nodes.

That we must treat certain nodes delicately to recreate the source does not
imply that DIANA In some way destroys the original source. On the contrary, the

Source Reconstruction Section 2.2 / Page 33

source Is reconstructable. We are merely pointing out the reconstructions that
may not be obvious to the casual observer.

2.2.1. Label Identifiers

The defining occurrence of a label identifler is represented by the DIANA node
label_i\d. The defining occurrence of a loop_name or biock_name is also
represented by label_id. Not only is there a semantic difference between the
two. there Is a textual difference in how the identifiers are represented. The
label identifier should be enclosed Iin double brackets ("<« >»*°) while the
block_name should appear without the brackets. To soive this requires upmerg-
iIng the processing of the label_ld into the nodes that can be its parent. As
there are only two such nodes. there is no great difficulty in doing this.

The node named_stm is used to represent named bilocks and named loops.
The as_id son of this node will be a label_id representing the name of the block
or loop. In this situation the processing of labei_Id is no ditferent that any
other identifler.

The node id_s represents an identifier list. It is also used !o represent the
sequence of label identifiers preceding a statement. In the majority of contexts
the source Is the concatenation of all the ideritiflers in the sequence, separated
by commas. However, when id_s represents a sequence of label identiflers. the
source is the concatenation of the Iidentifiers without commas and with each
identifier bracketed.

Since brackets around the labeis occur only in the context of an identifier
list, it is logical to place decision logic for handling labels into the routine
processing the identifier list. The solution requires that :he routine reconstruct-
ing the identifier list know which type of identifier appears in the list. The type
of an identifier can be determined by using the Diana function KIND. Figure
2-1 on page 34 presents the two procedures needed to recreate the text for the
node Id_s. The first procedure recreates the text for all identifiers. both used
and defining occurrences. and the second handies the sequence itseif.

Procedure dp_J/d_s begins by printing the first identitier in the sequence.
Because correct DIANA is assumed. there is no test for an empty identifler list.
The procedure dp_[D is calied to print the identifier. If the type of identifier is
label_id then the Identiiier is bracketed. After producing the first ldentlifier,
dp_ld_s enters a loop to process the remaining identifiers. A comma is inserted

S Py

s h s a4

OO

Section 2.2. 1 / Page 34 A Pretty-Printer for ADA

— procedurs for all nodes in cml.lD

pxrocedure 4dp_ID(Node: in TREE) is
— Node should be in the IDL class ID

-— All identifiers treated the same,
— lx_symrep contains the representation

Put(LX_SYMREP(Node));
end ID;
procedure dp_Label_id(Node: in TREE) is
begin 4
Put("<<”); — label ids bracketed by "<< >>"
Ap_ID(Node);
Put(">>");
end dp_Label_id;
- procedure for node id_s
procedure dp_Id_s(Node: in TREE) is
— Node is an id_s node

Seq: SEQ _TYPE; — local variable to hold the sequence
begin
Seq := LIST(Node); — get the list of id nodes
if KIND(HEAD(Seq)) = dn_label_id then
dp_label id(HEAD(Seq));
else
dp_ID(HEAD(Seq));
end if;

Seq := TAIL(Node);
while not IS_EMPTY(Seq)
loop

if KIND(HEAD(Seq)) = dn_label_id then
dp_Label iA(HEAD(Seq));
else
Put(","); — reqular ids separated by ","
dp_ID(HEAD(Seq));
end if;
Seq := TAIL(Node);
end loop;
end dp_Id_s;

Figure 2-1: Procedures To Reconstruct id_s Node

Source Reconstruction Section 2.2.1 / Page 35

before each of the remaining Identitiers it the ldentiflers are not labels. If the
identifler is a label no comma is Inserted and the identifier is bracketed.

2.2.2. Task Types

An ADA task type specification is represented in DIANA by a type node whose
as_type_spec child I1s a task_spec node. The node task_spec s the only node
In the class TYPE_SPEC requiring text to be generated before the ADA reserved
word “type". The text generated for a task type declaration includes the reserved
word “task”.

task type <typsname> is ctask_specification>;

Every other type declaration begins with “type°.

type <typename> is <type_specification>;

This problem requires that the procedure reconstructing the source for a type
node must inspect the as_type_spec. The procedure dp_type |s shown in Figure
2-2.

procsdure 4dp_Type(Node: in TREE) is
begin

if KIND({AS_TYPE_SPEC(Node)) = dn_task_spec then
Put("task ");
end if;
Put("type”),
dp_ID({AS_ID(Node)); ~— task identifier
dp_Vars(AS_VAR_S(Node)); ~— discriminants
Put(” is *),
dp_TYPE_SPEC(AS_TYPE_SPEC(Node));
Put(”;");
end dp_Type;

Figure 2-2: Procedure To Recreate Type Declarations

2.2.3. Subprogram Declarations

ADA subprogram declarations are represented by the node subprogram_decl.
This node has three attributes. The first, as_designator is the subprogram
identifier. The second. as_header is the subprogram header. The third is used
for renaming and generics, the as_subprogram_def attribute.

Section 2.2.3 / Page 36 A Pretty-Printer for ADA

The second attribute references a node In the iDL class HEADER. The nodes
function and procedure belong to this cilass. Both nodes have an attribute,
as_param_s which references the formal part of the subprogram declaration. In
addition, function has a as_name_vold attribute which references the return type
of the function.

The nature of the subprogram_decl and HEADER nodes make it difficuit to
reconstruct the source In one pass. Consider the reconstruction of the following
subprogram declaration.

procadure ProcID (paraml: in TREE);

The deciaration is represented by a subprogram_decl node. Knowledge of the
as_header child of this node Is needed to determine that the subprogram Iis a
procedure. Then the as_jd child is needed to recreate the subprogram iden-—
titliar. Following the Identifier., the as_header child is needed again to recreate
the formal part of the declaration.

There are several methods for solving this problem. One Iis to use KIND to
determine the type of the as_header child. Another method requires the routine
reconstructing the declaration to pass the identifler to the routine processing the
header. We illustrate the latter technique. Figure 2-3 on page 37 presents the
procedures needed to reconstruct & subprogram declaration. Procedure
dp_Subprogram_dec! processes the node subprogram_decl, procedure dp HEADER
dispatches processing for nodes In the class HEADER, and dp_Procedure
processes the node procedure.

Note that this treatment applies to subprogram bodies as well. The routine
reconstructing the text for the subprogram body must pass the Identifier to the
procedure processing the as_header attribute.

2.2.4. Blocks

The node block is used In three different ADA contexts. it represents a block
statement. |t aiso represents the block of a named statement. Lastly. block
represents the body of a subprogram. task. or package.

The block node has three structural attributes.

block =» as_jtem_s t ITEM_S, — declarations
as_stm_s t STM_S, -— statements
as_alternative _s : ALTERNATIVE_S; — exceptions

The most straightforward block is a simple block statement. The text

Source Reconstruction Section 2.2.4 / Page 37

— process the node subprogram_decl
procedure dp_subprogram_decl(Node: in TREE) is
begin

— pass the header and id to the routine for the header
— LX_SYMREP returns the text for the identifier
dp_HEADER(AS_HEADER(Node), LX_SYMREP({ AS_DESIGNATOR(Node)));
— process the subprogram def chilad
dp_SUBPROGRAM_DEPF(AS_SUBPROGRAM_DEF(Node));
Put(";")

end dp_subprogram_decl;

- process nodes in the class HEADER; it receives as input the
— node and the text for the identifierxr

procedure dp _HEADER(Node: im TREE; Ident: in String) is
begin

case KIND(Node) is |
when dn_function =»> dp_Eunction(Node, Ident); ‘
when dn_procedure => dp_procedure(Node, Ident);
when dn_entry =» dp_entry(Node, Ident);
end case;
end dp_HEADER;

— process the node procedure; receives the node and the identifier
procedure Adp_procedure(Node: in TREE; Ident: in String) is
begin

Put("procedure ");

Put(Ident);

dp_param _s(AS_PARAM_S(Node)); — formal part
end 4dp_procedure;

Figure 2-3: Procedures To Recreate A Subprogram Declaration

-

Section 2.2.4 / Page 38 A Pretty-Printer for ADA

generated by this node follows.

declare
<as_item_s»>

begin
<as_stm_s>

<as_alternative_s>
end;

Note that “deciare” Iis only recreated when as_jtem_s is not empty and
"exception” Is only recreated when as_ailternative_s is not empty.

The situation is complicated slightly when the block statement is name«!z .
The named block Is represented by the node named_stm with a child, as_stm,
that is a block node. In this case the text for the block differs by the identifier
after the block end.

<identiFfier>:
declare
<as_jitem s>
begin
<ag_stm_s>

<as_alternative_s>
and <identifier>;

In the final Iinstance. block is used to represent the body of a subprogram,
package., or task. in this case the text associated with the block does not
Include the ADA reserved word ‘declare” and the Iidentifier following the “end" Is
optional (we have consistently chosen to include It).

<subprogram, package, or task specification»
<as_item_s>

begin
<as_stm_s>

exception
<as_alternative_s>

oend cidentifier>;

We consider the processing for these three cases to be sufficiently different
to warrant treatment by three separate procedures.

— this handles block statements; it is passed the node block
procsdure dp_block(Node: in TREE);

— this handles the named blocks; it is passed block and an
-— the identifier that should follow the end

2Ammmwmmmm. The solution is analogous to the solution used for named
blooks

mome ek -

Source Reconstruction Section 2.2.4 / Page 39

procedure dp_block(Node: in TREE; Ident: in String);
-— this handles the subprogram, package, and task bodies.
procedure dp_block_stub(Node: in TREE);

The first two procedures are overloaded with the name dp_block. The first
procedure has as its argument the block node. This creates the text for a block
statement. It Is typically called by the routine that processes the STM class.

The second procedure receives two arguments: the block node and the
ldentifier that names the statement. This procedure Is called only from the
routine that processes the node named_stm. it will generate the text for the
block and place the identifler after the reserved word "end".

The last procedure actuaily handies the class BLOCK_STUB. There are only
two nodes in the class: block and stub. When the node Is stub the procedure
will generate the text “is separate”. When the node Iis block it will generate the
text for the block without generating the reserved word "declare".

The bodles of the three procedures are shown in Figure 2-4 on page 40.

2.3. Comments

PRETTYPRINT uses the simplest of commenting strategies. The algorithm used
prints the comment associated with a node after the text for the node has been
reconstructed. When creating comments in an unformatted text string the only
constraints are that the comment be preceded by "--" and foilowed by an end of
ine. (f the comment extends over one line, each additional line must begin with
-, This issue is addressed In Section 3.2.4 on page 52 along with a
discussion of other constraints for producing comments in formatted source text.

All OIANA nodes related to the ADA source have the attribute /x_comments.
This attribute records a comment. The type of the attribute is the IDL private
type “comments’. We assume this type is implemented such that the function
Void wiil return the boolean True If the comment is empty. The treatment of
coamments for all nodes is the same. We create a single procedure to process
all comments.

|

Section 2.3 / Page 40 A Pretty-Printer for ADA

procedure dp_block(Node: in TREE) is
begin

if not IS_EMPTY(LIST(AS_ITEM_S(Node))) then
Put("declare");
Ap_Item_s(AS_ITEMS_S(Node));

end if;

Put("begin”");

dp_stm_s(AS_STM_S);

if not IS_EMPTY(LIST(AS_ALTERNATIVE_S(Node))) then
Put("exception”);
4p_Alternative_s(AS_ALTERNATIVE_S(Node));

end if;

Put("end;");

end dp_block;

procedure dp_block(Node: im TREE; Ident: in String) is
begin
if not IS_EMPTY(LIST(AS_ITEM_S(Node))) then
Put("declare”);
dp_Item_s(AS_ITEMS_S(Node));
end if;
Put("begin”);
dp_stm_s(AS_STM_S);
if not IS_EMPTY(LIST(AS_ALTERNATIVE_S(Node))) then
Put("exception”);
dp_Alternative_s(AS_ALTERNATIVE_S(Node));
end 1if;
Put("end”); — named block: identifier follows emd
Put(Ident);
Put(”;");
end dp_block;

procedure dp_block_stub(Node: in TREE) is
begin
if KIND(Node) = dn_stub then
put ("is separate”);

— "declare” not printed

ap_ltem_s(AS_ITEMS_S(Node));

Put(~begin”);

dp_stm_s(AS_ST™ _S);

if not IS_EMPTY(LIST(AS_ALTERNATIVE_S(Node))) then
Put("exception”);
dp_Alternative_s(AS_ALTERNATIVE_S(Node));

end if;

Put("end; "),

end if;
end dp_block;

Figure 2-4: Procedures for Reconstructing Blocks

Source Reconstruction Section 2.3 / Page 41

procedure dp_comments(Node: in TREE) is

begin
if not Void(LX_COMMENTS(Ncde)) then
P\lt([ey)),
Put(LX_COMMENTS(Node));
Put(cx & 1f), — end of line terminators
end if,

end Adp_comments;

To include comments in the source reconstructed from a constant node. the
example from Section 2.1.1 on page 30. we simply add a statement to call
dp_Comments at the end of the procedure.

procedure dp_constant{Node: in TREE) is

begin

dp_ID_S(AS_ID_S(Node));

Put(": constant "),

4p_TYPE_SPEC(AS_TYPE_SPEC(Node));

dp_OBJECT_DEF(AS_OBJECT_DEF(Node));

Put(™;");

dp._comments(Node); — print comment if present
end 4p_constant;

The source reconstruction aigorithm appends the comment to the text tor the
node it is attached to. Thus., the effect on the reconstruction of a constant
object declaration varies. Consider the ADA statement

ID1l, ID2: constant SUBTYPE := EXP; -— comment text

If the comment text is attached to the id_s node the statement is reconstructed
as

ID1l, IN2 ~— comment text
: constant SUBTYPE := EXP;

If the comment Is attached to the OBJ_TYPE_SPEC the statement is reconstructed
as

ID1, ID2: constant SUBTYPE ~— comment text
1= EXP;

Of course. a responsible pretty-printer will indent the continuation of the
statement on the next line. In this chapter we have only presented the design
for a pretty-printer to produce unformatted text. Formatling Issues are discussed
in Chapter 3.

—

Section 3 / Page 42

A Pretty-Printer for ADA

JEPNRORS: mal SRV

Formatting Section 3 / Page 43

CHAPTER 3
FORMATTING

In this chapter we discuss the formatting of source text and the formatting of
ADA source text in particular. PRETTYPRINT formats reconstructed source text by
calling entries In FOAMAT. an ADA package which provides an Interface to the
output medium, assistance in placement of line breaks, and support for inden-
tation.

This chapter begins with a discussion of the classical formatting problems,
followed by a general discussion of our design for solving the set of classical
problems. The chapter cioses with the presentation of the package FOARMAT.

3. 1. Classical Formatting Problems

A proper understanding of the problems assoctated with pretty-printing re~
qQuires an appreciation of the goal of a pretty-printer. In a word, the goai of
every pretty-printer is to produce °readable” source. Readability is that quality
that makes a program easy to understand. debug, modify, test. and maintain.
insofar as programming is an art, what makes a program readable is a question
of aesthetics and is often debated. Indeed. some aspects of pretty-printing that
we present as facts are actually our own opinions.

There are some generally accepted tenets of pretty-printing: the formatting of
the source should help the reader visualize the syntax: the nesting of the
program shouid apparent at a glance: and individual statements, declarations,
and expressions should be discernible.

Consistency is another benefit accrued by pretty-printing. Programs formatted
by the same pretty-printer are consistently arranged. A pride of programmers
that are sharing code can use the output of a pretty-printer as the de facto
standard of readability. The pretty-printed programs thus share a homogeneous
style and another programmer’s code does not ook foreign.

The ADA LRM uses an implicit formatting style for its programming exampies.
The pretty-printer we have designed formats in this style. The examples
presented in this section also are formatted In this style.

Section 3.1.1 / Page 44 A Pretty-Printer for ADA

3.1.1. Indentation

Indentation is the single most Important aspect of program formatting. . Proper
Indentation can be used to indicate program nesting. and to dlagram control
constructs, In the idyllic situation where all programs are terse and compact
enough that each statement can exist on its own line iIndentation is easy. One
example of the use of Indentation for ADA |s to show nested scopes. 1

procedure Nest is

Number : constant :1= 42; — declarations indented
Object : INTEGER;
begin
Object 1= Number; — statements indented
ond Nest; |

The declarations and statements within the procedure body are distinguishable
from the syntax defining the body by their Indentation. The °begin® and ‘end®
are not indented and clearly demarcate the bounds of the body.

Simtarly., Indentation can make the conditional clauses of an ADA °“if* state-
ment more visible.

procedure Nest is

Number : constant :=~ 42, -— declarations indented
Object : INTEGER;
begin
Object := Number; — gtatements indented
if Object = Number thea
Object := Number; — each comditional clause indented
else
Object := Number;
end 1if;
end Nest;

The effect of the indentation is additive. Each construct that uses indentation
indents In from the current level. The Iincreasing indentation is the first probiem
a pretty-printer has to solve. The number of spaces for each increment ot
indentation must be small enough that at the maximum excursion the space
remaining on the line is usable. The obvious solution I3 to base the indentation

increment on the maximum Iindentation depth. Of course, the quantum nature of
; the output medium (/.e., the minimum indentation is at least one space) may
force the maximum excursion to exceed a reasonable bound for even the smallest
increment. Indentation beyond this point should be prevented.

It should be noted that a program with control structure nesting so deep that
further indentation is prevented is probably too complex to be readable anyway.
The program should be analyzed to see where complexity can be removed. most
likely by dividing it into less complex modules, thereby making each moduie more

L » . _

Formatting Section 3.1.1 / Page 45

readable and the whole more understandable.

3.1.2. Line Breaks

The programs that a pretty-printer has to format are not ideal. Simply
choosing to indent based on control structures will not gain readability by itself if
statements exteand beyond the length of the line. ' Consider the formatting of an
It statement.

if condition then
objectl := expressionl + expression2;
procedure_call;
else
abject2 := expressionl + expression2;
end if;

As long as the line width is large enough. this formatting is very readable. The
situation is less sanguine when fewer columns are avaiiable. The following
example is unreadable because the Indentation is lost when the statement Is
continued on the next line. '

if condition then
objectl := expressionl +
expression2;
procedure_call;

else
object2 := expressaionl +

expression2;
omd if;

Using the current level of indentation for the continuation of the statements
increases the readability but stili leaves room for improvement.

if condition then
objectl := expressionl +

expression2;
proceture_call,;
else
object2 := expressionl +
expression2;
end if;
At first glance, the continuation of the broken fine. the text "expression2°., iooks
like a separate statement. It has the same visual importance as the call 1o
procedure “procedure_call®. Indenting the continuation of lines will avoid this
confusion. The following Is much more readable.
if comdition then
objectl := expressionl +
expressionz;
procedure_call;
else

object2 1= expressionl +
axpression2;

Section 3.1.2 / Page 46 A Pretty-Printer for ADA

end if;

Choosing where to break a line can be as Important as choosing which
column to start the continuation of a broken line. Consider the following
statement.

objectl :~ expressionl + expression2 + function_call(paraml,param2);

e et

On a shorter line this statement would have to be broken and continued on the
next line. A truly awful bresk wcould be within the function call.

objectl :~ expressionl + expression2 + function_call(paraml,
parame);
An Improvement can be made by not breaking up syntactic elements. The
tunction call is an expression that should not be brol_(en up unless absolutely
necessary. Further improvement can be made by moving the operator to the
next line. This move makes it obvious that the continuation Is indeed part of the
expression on the previous line.

objectl := expressionl + expression2
+ function_call(paraml, param2);

A final improvement can be made by indenting the continuation of the broken
statement to illustrate some of the semantics. in this case the function call is
part of the expression on the right hand side of the assignment stalement.
Beginning the continuation so it lines up to the right of the assignment operator

i can help to show this relationship and ald in the reader’'s understanding.

objectl := expressionl + expression2
+ function_call(paraml, param2);

Choosing not to break a line can be as important as choosing where to break
a line. For example, an If statement that will fit on one line should most likely
be placed on one line. The terseness of

if condition then statement; end 1if;
recommends it above the sprawling

if condition then
statement;
end if;

it Is aiso advantageous to include more that one statement on a line when
the statements are brief.

X t= y; z = X

The statements above are sufficiently terse to be Inciuded on the same line
without loss of readabiiity.

Formatting Section 3.1.3 / Page 47

3.1.3. Lists and Sequences

Certain ADA syntactic constructs are lists of items. When breaking a con-
struct over several lines lists should recelve special consideration. If a list must
be broken up to fit on a ilne. then placing each item in the list on a separate
ling is often the most readable. A procedure specification is the most illustrative
exampie of this situation.

procsdure Proc(X: in T1; ¥Y: in T2; Z: in T3);

Suppose only the first two parameter specifications tit on the line. Simply
breaking the line so that parameter specifications are unbroken is reasonable.
The continuation should be Indented to show it is part of the list of actuals.

procedure Proc(X: in T1; ¥Y: in T2;
Z: in T3);

One possible Improvement is to treat each parameter specification with equai
importance. Thus., if one parameter specification has to appear on a separate
line, all specifications should be on separate lines. The example is reformatted
to show this.

procedure Proc(X: in T1;
¥Y: in T2;
Z: in T3);

In declaring the last example superior to the one immediately preceding it we
are treading lightly. Like any aesthetic pronouncement it has a subjective basis.
Nonetheless, this formatting style is used throughout the PRETTYPRINT deslgn’.

3.1.4. Comments

The consideration of comments during text formatting is a poorly understood
issue. In many cases the Introduction of comments into the source text,
especlally comments which, like ADA, are terminated by a line break. will force
formatting decisions. For example. an if statement that can be placed on one
line.

if condition then statement; end if;

may be forced by comments to exist on three lines.

if condition then -— the condition checks Poo
statement; — the statement sets Foo
end 1if; — PFPoo now usable

1!! doesn't weaken our case to add that this is the way long procedure specitications are formatted in
the ADA LAM,

Section 3.1.4 / Page 48 A Pretty-Printer for ADA

One of the biggest Issues is how to decide where comments should be broken
it there is Insufficlent room on a line. Unlike ADA source, where the syntax (s
defined. there is no way to determine the context of the comment. One such
dilemma exists when considering the formatting of a statement with a comment
when the statement does not fit on the line. Consider the following statement.

object ;= expressionl + expression2 + func(x,y); -— expression2 is real

it the statement is printed on a line that is narrower. then the question of how
to break the line Is unsoivabie. [t may be possible to break the comment over
several lines.

object :=» expressionl + expression2 + func(x,y); -— expression2
- is real

The comment may be more readable as a complete line and it may be possible
to tit the statement on one line, and the comment on the next.

object := expressionl + expression2 + func(x,y);
— expression2 is real

It can be argued that the statement should be broken. even If it fits, so the
comment has some of the proper context.

object :~ expressionl + expression2
+ func(x,y); — expression2 is real

Of course. In our example the context Is losi because the comment refers to
expression2.

An omniscient pretty~printer would recognize when a comment is best
represented by breaking the statement [t describes.

object := expressionl + expressionz - expression2 is real
+ func(x,y):

The problems related to comments are compounded when recreating com-
ments from an internal representation such as DIANA. In this case the comments
are in some manner attached to the nodes of a parse tree. The pretty-printer
operating from this tree must then recreate the source and intelligently re-insert
the comments into the source. To be effective. the comments must be intel-
ligently associated with the nodes in the internal representation. and the pretty~
printer must understand this association. To a first approximation this associa-
tion can be done with a simple strategy. In the design of PRETTYPRINT we have
assumed that a comment associated with a node should be printed after the text
for the node is printed. However, it is sasy to imagine comments that may be
ruined by anything iess than an omniscient pretty-printer. The most insidious,
though unlikely, exampie is the following piece of ADA text:

Formatting Section 3.1.4 / Page 49

object 1= expressionl + expression2;

| | |
| — expression2 is column number
|

expressionl is the line number

trrtn

the object is returned to caller

3.1.5. Whitespace

One way to make a program more readable is to make its components easily
distinguishable. Towards this end whitespace. blank lines on the page. can be
used as a visual separator. Controlling whitespace is something a programmer
can do better than a pretty-printer because the programmer has an under-
standing of the logical mapping of the program to the problem the programmer s
solving. However, because ADA provides machanisms for dividing up a program
(packages. subprograms, tasks. etc.). most loglcal divisions wili also be syn-
tactic divisions. PRETTYPRINT does add whitespace before packages., sub-
programs. and tasks.

3.1.6. Page Layout

Equally as Important as the consideration of the placement of source text on
individuai lines is the layout of the lines on the page. It is desirable to place
single ideas on a single page. This allows the reader of the program to focus
on a single concept at a time. Just as it Is undesirable for a syntactic element
to be broken over a line, it Is undesirable for a program component to be
broken over a page. Aithough the problem is not considered in the design of
PRENIYPRINT, the principles used in formatting statements and declarations on
Individual lines can be applied to the layout of subprograms and packages on the

page.

3.1.7. Use of Fonts

Using fonts to distinguish different lexical entities can be an effective way to
imprave the readability of a program. In this document we have consistently
used a bold typeface when writing ADA reserved words. The reserved words are
then set apart from the identiflers of the program, and the syntactic structure
can be easlly recognized. Another possible use of fonts is an italic font for
comments. A pretty-printer that is reconstructing the source text can use fonts

effectively Iin this way.

|

Section 3.1.7 / Page 50 A Pretty-Printer for ADA

Another way to improve readability Is to use consistent representations for
identifiers. ADA aliows several representations of an Identifier to be used. Case
consistency can aid in recognizing user defined identifiers. A pretty-printer can
normaiize all occurrences of identifiers so that all representations are identical.

3.2. Solutions

Iin this section we discuss the ways PRETTYPRINT soilves the classical formatting
problems. This discussion serves as an Introduction to the operations of
FORMAT. Section 3.3 provides a more complete description of the formatting
operations and Chapter 4 contains the discussion of all the issues related to
recreation of source.

Before considering cases. we review the basic operation of PRETTYPRINT.
PRETTYPRINT makes two passes (tree walks) over the DWANA structure. In the first
pass it computes the number of characters needed to print each node. the
largest element in each sequence. and the maximum nesting depth of the
program. In the second pass the source is reconstructed and the values
computed during the first pass are used to make decisions concerning line
breaks and indentation.

3.2.1. Solving Indentation

Section 3.1.1 on page 44 describes the classic use of Iindentation to
represent program block nesting. and syntax structure. PRETTYPRINT uses inden-
tation In the classical way. Support for indentation Is provided by the package
FORMAT through the two entries /ndent and Undent. Indent causes the next line
to be Indented by an increment from the previous line. Undent reverts the
indentation to that Iin force before the current Indentation. The complete
functionailty of these procedures is provided In Section 3.3 on page 54.

The increment used for Indentation is vased on the depth of control structure
nesting. In the first pass over the DWANA structure the maximum nesting level for
the program is computed. This value is used to choose the increment for
nesting. The Indentation Increment must balance the need for distinguishable
indentation against the need for usable space after Indentation. The FORMAT
function Setincrement computes the indentation increment based on the nesting
depth of the program.

R —

Formatting Section 3.2.2 / Page 51

3.2.2. Solving Line breaks

The procedure NewlLine can force the insertion of a line break in the
recreated source. Forcing a line break can be used to shape the source to
show the syntactic structure. For example. NewlLine |Is called after the keywords
‘then". “else’. “elseif". and “end H" when displaying an If statement. NewLline
will automatically indent the next line to the current indentation level.

PRETTYPRINT also needs to be able to Inteliigently decide where to break long
source lines. For this reason the number of characters needed to print the text
for a node is recorded with the node. For example consider the following
statement.

cbjectl := expressionl + expression2 + function_call(paraml,param2);

Recorded with the node functlon_cait Is the number of characters needed to print
the function call. Before printing the function call the number of characters
required can be compared with the number of characters remaining on the line.
Insufficient space can be detected and a line break can be forced before the
printing of the function calil. in fact. this Inquiry can be made prior to the
printing of the °+" operator.

objectl := expressionl + expression2
+ function_call(paraml,param2);

The function Remaining returns the number of spaces remaining on the
current iine.

FORMAT provides support for controiling at which column the continuation of a
line begins. The function Position returns the current position on the line. and
the procedure Setindent will set the current indentation to a specific column. It
Is possible in the example above to force the continuation of the assignment
statement to be to the right of the assignment operator. After printing the
assignment operator Position can be called to return the current position and this
value can be used as the argument to Set/ndent.

objectl := expressionl + expression2
+ function_call(paraml,param2);

The indentation caused by Set/ndent is canceled with a call to Undent.

PRt

Section 3.2.3 / Page 52 A Pretty-Printer for ADA

3.2.3. Solving Lists and Sequences

The support provided by the subprograms Position and Setindent aid in the
processing of lists of syntactic eiements. For example. i the parameter
specifications of a subprogram spacification will not fit on one line. the Inden-
tation can be set so that ail of the parameter specifications line up underneath
the first one. Again. the most illustrative example is the procedure specifica-
tion.

procedure Proc(X: in T1;
Y: in T2;
Z: in T3);

Recorded with the nodes representing lists of items is the number of charac-
ters needed to print the entire list, and the size of the largest element in the
list. Using the former., PRETTYPRINT can determine If a list will fit on the current
line. Using the latter. it can choose an indentation such that ail elements in
the list can appear on a singia line. By comparing the space remaining with
the size of the largest element in the list, the foilowing situation can be
detected.

procedure Proc(X: in T1;
Y_is_a_long_name: in
T2,
Z: in T3);

The indentation can be selected so that the largest parameter specification will fit
on one line. The resuiting format is clearer.

procedure Proc
(X: in T1,
Y_is_a_long_name: in T2,
Z: in T3),

3.2.4. Solving Comments

There is little support for comments In PRETTYPRINT. One of the Inherent
problems with formatting comments from an Internal representation is a lack of
understanding of how comments are associated with the nodes. in particular
OuNA does not specify this assoclation. For this design we have assumed that
the comment attached to the node is the commant that appeared after the node
in the original source. When recreating the source. any comments are piaced
in the recreated source after the text for the node has been created.

PRETTYPRINT does not account for the length of comments In determining
whether text will fit on the line. This is a conscious decision on the part of the

Formatting Section 3.2.4 / Page 53

designers. The reason for this decision is that it is impossible to distinguish
between the following cases.

objectl := expressionl + expression2; — first example

objectl := expressionl +
expression2; — a second example with a longer comment

objectl := expressionl + expression2;

— The third example has a comment the length of three lines,
— The entire comment is associated with the statement above,
— although the content may indeed refer to a statement below.

Without a way to interpret the meaning of a comment, which is beyond the
scope of a pretty-printer. there Is no way to intelligently associate comments.

Instead of basing formatting decisions on questionabie input, we have chosen to
ignore comments while making formatting decisions. |

3.2.5. Solving WhiteSpace and Page Layout

PRETTYPRINT adds whitespace to the reconstructed source by calling Newl/ne ‘
muitiple times. Whitespace Is produced as a buffer for subprogram and package !

specifications and bodies. It is also produced between every compilation unit.

PRETTYPRINT does not address the question of page layout. The solution to
the problem is not very difficuit. The second pass over the DIANA structure can
be used to produce a tree attributed with the number of lines needed to print
each node. Then a third pass can pass over the tree creating formatted source
while determining page breaks. The types of decisions necessary are analogous
to the decisions needed for line breaks. |If a program body contains more lines
than remain on a page. a page break can be inserted before the body so it

remains intact.

3.2.6. Solving Use of Fonts

FOAMAT provides a mechanism to ditferentiate between different lexical items
in ADA. ReservedForm. IdentForm. and ComForm are used to append reserved
words, identifiers. and comments respectively. No commitment is made as to
how they are represented. 4

Section 3.3 / Page 54 A Pretty-Printer for ADA

3.8. Package “FORMAT"

The formatting operations supplied by FORMAT were casually introduced in the
previous section. in this section we describe the complete functionality of the
ADA package FORAMAT. Figure 3-1 shows the FORMAT package specification.
The package body is not specified in this document.

The package FORMAT provides functional support In two Iimportant ways.
Firstly. FORMAT handles all of the output of the recreated source. and secondly.
FORMAT provides support for proper indentation.

The output of source is handled by operations that append text to the
previously generated source text. The package hides any device dependency
(particularly if boldface and italics are to be used). It buffering of output is
required. the buffering witl be transparent to the the programs that call the
FORMAT routines.

The principle reason that buffering of output may be desired is for creating
special print effects. When text Is appended. the text is qualifiled as either an
ADA reserved word, Iidentifler, comment, or other lexeme. FORMAT can use
output device characteristics such as boldface type. italic fonts, and underlining
to visuaily distinguish these classes of text. Depending on the output device.
und.. .ing and boldface may require printing two output lines without a linefeed
to achieve the desired effect. In such an instance buffering the line before
printing is absolutely necessary.

Buffering also eases some formatting problems. Consider the problem of
printing a lexeme larger than the space remaining after indentation. iIn such a
case the |- dantation should be reduced to allow enough space for the lexeme to
be printed If the spacing for indentation is output directly to an output device it
Is Impossible 10 reclaim that space. A new line would have to be started with
less Indentation to accommodate the lexeme. leaving a blank line In the output.
However, If the output is buffered., the space used for the Iindentation can be
reciaimed from the buffer.

Whether the output is buffered or not is transparent to the subprograms
traversing the DwNA tree constructing the source. The reconstruction routines
are only concerned with the current output line. The operations provided append
text to the current line and query FORMAT regarding the status of the line (such
as the number of characters remaining, or the current position on the iine).
The traversal routines aiso may force a line break into the output either ex-

Formatting Section 3.3 / Page 55

— Package that provides operations to format reconstructed Ada source
package FORMAT is

LineLength :

constant POSITIVE := 120; — length of the output line
type Column is ,

range O, .LineLength; ~— position on the line

— There are four procedures to append text to the output buffer
procedure AddText(Text: in String);

procedure ResForm ~— add Ada reserved words
(Text: in String);

procedure ComForm -—~ 3dd comments
(Text: in String);

procedure IdentPorm — 3add program identifiers

(Text: in String);
— There are two function to return Btatus of the output buffer

function Remaining return Column; — unused characters in bulfer
function Position returm Column; — used characters in buffer

~— this procedure creates a line break -

procadure NewLine;

-~ this procedure sets the indentation increment

proosdure SetIncrement(Depth: in POSITIVE),

~— three procedures provide indentation operations

proocsdure Indent; — increment from last indentation
proosdure Undent; - ravert to previous indentation

proosdure SetIndent({Po#: in Column);
— get indentation to Pos

end FPORMAT;

Figure 3-1: FORMAT Package Specification

Section 3.3 / Page 56 A Pretty-Printer for ADA

plicitly, by Invoking the function NewlLine, or implicitly by appending text beyond
the end of the line. At each line break a nevs (ine is started by moving the
position to the current indentation level (whether this (s done by actuaily produc-
ing the required number of spaces or by using tabs is device dependent and not
considered) .

The indentation support automatically indents each new line of output. The
interface provided by FORMAT allows the indentation to be Incremented. for
typical nesting level Indentation, or to be set to a specific column. The model
we use to describe the operations is a LIFO stack. The actual implementation of
the operations is hidden.

3.3.1. Output Support Operations

The ADA program source program has four classes of lexical items. The first
class consists of operators and delimiters. Lexical items in this class, such as
semicolons, are appended to the buffer using the procedure Addtext.

The other classes are ADA reserved words, ADA Identifiers, and comments.
FORMAT accounts for these by providing three additional procedures for append-
ing text to the output stream. These procedures receive the text as input and
append a formatted form of text to the created source (the implementation of
how the text is formatted Is device dependent and not considered here). The
three procedures are ResForm (to format reserved words), ComForm (1o format
comments), and /dentForm (to format identifiers). By using a separate proce-
dure for each class., the representation of the ciass in the output text can be
hidden from the routines recreating the source.

Two functions. Remaining and Position, are provided to allow Inquiry into the
status of the current output line.

3.3.1.1. Procedure AddText

The simplest formatting operations are the procedures that append text to the
output stream. The most straightforward of these procedures is AddText. This
procedure appends the text it receives to the output stream and updates the
status of the current line.

There are two cases to consider when the text to be appended is larger than
the space remaining on the current line. if this is the first iexeme after the
indentation then the indentation is reduced to accommodate the lexeme. (The

Formetting Section 3.3.1.1 / Page 57

lexeme will always be less than the iine width so this is possibie - see the
assumptions listed in Section 1.4.2 on page 22). Otherwise. a line break Is
Inseried into the output stream and a new line is begun. Inserting the line
break and beginning the new line is achieved by calling the procedure NewLine.
The text is then appended to the new line. (Newline causes the line to be
Indented properly).

After the text has been appended to the line the line status (current position
on the line and number of spaces remaining) will be updated.

3.8.1.2. Procedure ResForm

Procedure ResForm appends an ADA reserved word to the output stream.
Functionally it is identical to AddText. it calls Newline if the current line is
exceeded and will update the status of the current line after the text is ap-
pended.

The representation of reserved words is not specitied. The way in which
FORMAT records the formatting Is also not specified. |f the output is buffered.
it is possible to modify the buffer so that each character can be given an
attribute which indicates if the character is to be printed as bold. italics. or
underlined.

3.3.1.3. Procedure identForm

Procedure /dentForm appends an ADA identlfier to the output stream. Func-~
tionally it is identical to AddText and ResForm. It calis Newline if the current
fine is exceeded and wilil update the status of the current line after the text is
appended.

The representation of identiflers is not specified. The way In which FORMAT
records the formatting is also not specified. It the output is buffered. It is
possidie to modity the buffer so that each character can be given an attribute
that indicates if the character is to be printed as bold, italics, or underlined.

IdentForm can be used to represent identifiers consistently. For example, all
Identifiers can be normalized such that the first letter is in upper case and the
remaining characters are in lower case. The representation of Identifiers in
DwNA I8 not specified. The DIANA prm:luctar2 that creates the DIANA structure is

200 the discussion of Diana vsers in Section 1.1.3 of the DRAM

R e ey T

Section 3.3.1.3 / Page 58 A Pretty-Printer for ADA

not required to preserve the case of identiflers.

3.3. 1.4, Procedure ComForm

Procedure ComForm appends a comment to the output stream. Functionally it
is identical to AddText and ResForm. However, since a comment is terminated
by the end of the line. ComForm calls Newline to Insert a line break after the
comment has been appended. Of course. the status of the current line is
updated after the comment is appended.

The procedure ComForm recelves as input an ADA comment. The comment
Is simply an ADA text string. ComForm appends the characters °"--° to the
output buffer followed by the comment. Some care (s needed when adding
commaents. It an Insufficient amount of space remains on the line a new line
must be started. If the comment extends over several lines the comment is
broken at the space nearest the end of the line and is continued on the next

line. again beginning the iine with the comment delimiter *--*.

3.3.1.5. Procedure NewlLine

The procedure Newline Iinserts a line break into the output stream and
creates the proper indentation on the next line. Tre indentation (s determined
by the Indentation operations listed below in Section 3.3.2. Using the stack
model, each time a new line Is created the indentation at the top of the stack is
read. This value is the number of bilank spaces needed at the beginning of the
new line. The way Newline creates the indentation is possibly device-dependent
and thus not specified here (e.g., a device that supports tabs may use tabs).

3.3.1.6. Function Remaining and Function Position

The functions Remaining and Position provide a means of inquiry as to the
status of the current line. Remaining returns the number of unused characters
at the end of the current line and Position returns the current position on the
iilne. The sum of the two values will add up to the length of the output line.
LinelLength.

3.3.2. Indentation Stack Operations

The model we use to describe the operation of the indentation support is a
LIFO stack. All Indentation of the source program is properly nested. When
there is a new indentation, the new value replaces the old value. When the

_is

Formatting Section 3.3.2 / Page 59

scope of the indentation is ended the text is 'undented'a. that is the Indentation
reverts back to the Indentation In effect before the current indentation. This
proper nesting is well modeled by a stack. Although we are not specifying the
implementation of the indentation. we will refer to the operations In terms of a
stack.

The FOARMAT entries related to indentation are Setincrement, Indent. Undent,
and Setindent.

3.3.2.1. Procedure Setincrement

Setincrement receives as its argument the maximum nesting depth of the
program. It then chooses an indentation increment based on this number. |t
tries to maximize the Increment, to make each Indentation more distinctive, while
keeping the maximum excursion small (the choice of how far across the line the
maximum excursion should go Is not specified).

3.3.2.2. Procedure Indent

Indent increases the current indentation level by a computed increment (up to
a predetined maximum indentation). and pushes that value onto the stack. For
example, it the current line Is indented ten spaces and the Indentation increment
Is five spaces. then the value flfteen would be saved on the stack as the value
tor the next indentation.

it {s possibie that the program Iis so deeply nested that even with a minimum
increment the indentation becoii.«s too large. A maximum Iindentation is en-
forced to ensure that there (s reasonable space available after Indentation.
When the maximum Is reached. an additional call to /ndent does not Increment
the indentation: it pushes another copy of the current vaiue onto the stack.

3.3.2.3. Procedure Undent

Undent pops the last Indentation value off of the stack. This operation
reverts the indentation to the value previously in effect.

Note that setting a new Iindentation level (or removing It through Undent) has
no immedliate effect on the output. Indentation occurs at the next line break.
When the line break occurs the value at the top of the stack is used to

we use the neclogism undent for convenience

Section 3.3.2.3 / Page 60 A Pretty-Printer tor ADA

determine the indentation for the next line. Line breaks are inserted when
appending text that exceeds the remaining space on a line. or when Newline is
called. Thus an Indent operation followed by Undent before a line break can be
inserted has no effect on the reconstructed source.

3.3.2.4. Procedure Setindent

Setindent is another operation on the Indentation stack. It allows the inden-
tation to be set to a specified column. Unlike Indent which increments the
Indentation by a fixed increment, Set/ndent pushes the column it receives as its
actual parameter onto the stack. The procedure Undent is used to remove this
Indentation and revert to the previous Indentation.

Setindent is useful for aligning lexical items. This has been illustrated in
Section 3.2.3 on page 52

3.4. Use of Format Operations

To Itlustrate the use of the operations of the package FORMAT. we consider
how the following plece of ADA source could be formatted.

pProcedure foobar(paraml: in typel; param2: in
type2) is

begin statementl; -— commentl

statement2; end foobar;

The procedure ResForm appends reserved words 1o the output text. In this
exampie the reserved words are °“procedure”, “in", ris", “begin". and “end".
The Iidentiflers (°foobar®, "paraml®, ‘“param2®, “typel"., and “type2) are ap-
pended using the procedure /dentForm. ComForm is used for adding the
comment. We assume the two statements are short enough to be appended
using AddText. The following lists In order the successive calls to entries in

FORMAT that are needed to format the source code In the example.

e e maee -

Formatting

(...)

Resform("procedure ");
IdentPorm(" foobar”),
AAText("(");
SetIndent(Position);
IdentForm("paraml*");
(...)

NewLine;

IdentForm("param2”);
(...)

Addtext(")");
Undent;

ResPorm("is");
NewLine;

ResPorm(“beqin®);
Indent;

NewLine;

MdAText("statementl;");

ComForm("commentl”);
AddQText("statement2”);
Undent;

NewLine;

ResPorm("end ");
IdentPorm(" foobar");
AddText(";:");

(...)

Section 3.4 / Page 61

includes space after “procedure”

set indent to line up parameters

here ": in typel;" is output
new line gets indentation

here ": in type2" is output
remove indentation
new line gets no indentation

indent by increment for block
new line gets indentation

"—* jig added by ComPorm

undent - end of block
new line gets no indentation

The resultant formatted program |Is more readable.

procedure foobar(paraml: in typel;

param2: in type2) is
begin

statementl;
statement2;
end foobar;

-— commentt

R R

s
|
!‘
:
i

Section 4 / Page 82 A Pretty-Printer for ADA

Recreating Formatted Source Section 4 / Page 63

CHAPTER 4
RECREATING FORMATTED SOURCE

This chapter presents the complete design of the DIANA to ADA pretty-printer.
PRETTYPRINT. It s a blend of the simple source reconstruction described In
Chapter 2 with the formatting operations outlined in Chapter 3.

The formatted source Is constructed In two passes over the DiaNA-like struc-
ture (it Iis In fact PP_DIANA. a refinemaent of DIANA) . The first pass. WALKIY,
computes the maximum nesting depth of the program and the number of charac-
ters in the recreated source disregarding indentation an~rd comments. The
second pass. WALK2, reconstructs the source using the formatfling operations of
package FORMAT. The second pass uses the character count Information
computed in the first pass to make formatting decisions about indentation and
where to break lines.

This chapter begins with the definition of the refinement of DWNA that defines
PP_Diana., a structure with attributes to record the resuits of the first pass.
Subsequent sections describe the two passes in detail.

4.1. I0L Refinement of DIANA

The IDL design provides two methods for defining an IDL structure in terms of
a previously defined IOL structure. ODerivation is one method: Appendix iI of the
DRM describes the ADA abstract parse tree as a derivation of the OWNA defini~
tion. Derivation allows the deletion and addition of iDL type. node. and class
definitions.

Refinement is the other means of defining a new IDL structure in terms of an
existing structure. In refinement. only IDL additions are permitted: deletions are
not. DaNA_Concrete. defined at the end of Chapter 2 of the DRM, is a
refinement of ODIANA, For a complete discussion of the semantics of these
features of IDL. refer to the °IDL - Interface Description Language Format
Description® (4].

We use DL refinement to define a structure that is DIANA augmented with
attributes for pretty-printing. We add three attributes to the structure.

pp_chars All nodes have this attribute. It represents the number of

- st .

mmmaen e

Section 4.1 / Page 84 A Pretty—Printer for ADA

characters needed to print the text for the node. ignoring
indentation and comments.

pp_max_chars This Is an attribute of only nodes with the as_/ist attribute.
The value of pp_max_chars is the maximum of pp_chars for
each node in the sequence that Is the as_/ist attribute.

pp_indent This Is an attribute of the root node. compliation. The
value of this attribute is the maximum nesting depth below
this node. it measures Indentation only for block and

control structure nesting.

The refinement of a structure is specified with the following IDL syntax.

Structure AnotherName Refines SomeName Is

-~ AMditjional IDL statements to define further the
structure SomeName, such as a specification of the
internal and external representations for private
types in the abstract structure Somename.
New nodes may he defined,
New attributes may be defined.
End

1

Consider the definition of the IDL structure SomeName described in Section
Section 1.4 of the DAM and repeated in Figure 4-1 on page 65. Following the
definition of SomeName In the same figure is an DL definition of the IDL
structure. RefinedName. RefinedName is a refinement of the IDL structure
SomeName that adds the attributes pp_chars to the nodes tree and leaf.

The effect of the refinement is that in the IDL structure RefinedName. the
node tree now has the attributes op and src defined in the IDL specification of
SomeName. and the attribute pp_chars as defined Iin the refinement. The effect
is as if the node had been defined with three attributes originally.

We define a refinement of DIANA, PP_DIANA. that is the structure necessary
for PRETMYPRINT. The entire IDL refinement is included as Appendix C.

The input to PRETTYPRINT Is DIANA. The structure that WALK! modifies and
WALK2 uses is PP_DIANA. The process by which DIANA is modified into PP_DIANA
is not specified in this design. It is an assumption of the design that the
operation that reads the DIANA, the procedure Get _PP_Tree of package MAIN.
returns to MAIN a PP_DIANA tree.

An IDL processor can be used to create the Interface programs for Pret-
tyPrint. An IDL processor can generate both a reader. to read an ASCI
representation of DIANA and return a PP_DIANA tree. and an interface program

Recreating Formatted Source Sectlon 4.1 / Page 65

Structure ExpressionTree Root EXP Is
— Pirst we define a private type.

Type Source_Position;

— Next we define the notion of an expression, EXP.

EXP :1:= leaf | tree ;

— Next we define the nodes and their attributes.

=> op: OPERATOR, left: EXP, right: EXP ;
=y 8rc: Source_Position ;

=> name: String ;

=) 8r¢: Source_Position ;

131

Pinally we define the notion of an OPERATOR as the
union of a collection of nodes; the null =» productions
are needed to define the node types since

node type names are never implicitly defined.
OPERATOR ::= plus | minus | times | divide ;

pPlus => ; minus =>» ,; times => ; divide => ;

— Define a new structure by refinement of the old
Structure RefinedName Refines SomeName Is

— add the attribute pp_chars to
— leaf and tree

tree -y pp_chars: Integer;
leaf -y pp_chars: Integer;

Figure 4-1: Example of IDL Refinement

Section 4.1 / Page 66 A Pretty-Printer for ADA

that recelves as Input the internal form of DIANA and returns a PP_ODIANA tree.
To automatically generate the interface. the IDL processor needs a specification
of the process.

An IDL process specification describes the structure of the input data. output
data, and the Internally used data structure. Process specifications are
described In the IDL manual. A simple process specification is shown below.
In the example. the process SomeProcess Is defined as a process. The Input
port declaration (begun with the IDL keyword °Pre®) names the Input port,
‘Inport®, and states the data will be the IDL structure “SomeName". Likewise the
output declaration names the port “Outport® and defines the output as a
*RefinodName" structure.

Process SomeProcess Is

-— define the input structure
Pre Inport : SomeName;

— define the output structure
Post Outport : RefinedName;

nd

Many processes, Including PRETTYPRINT, use a different data structure inter-
nally. The (DL definitlon of the process PRENMYPRINT, Figure 4-2, has an
invariant clause ("Inv PP_Dlana") to show that PRETTYPRINT uses PP_DIANA Inter-
nally. The process specification for PRETTYPRINT does not specify any output.
The output of PRETTYPRINT I3 a text flle which I8 not an IDL structure and is not
considered in the DL process specification.

The process specification for PRETTYPRINT, shown In Figure 4-2, defines the
necessary Interface for PRETTYPRINT. An IDL processor can take this specifica—
tion, along with the definition of DiIaNA and PP_DIANA, and create the Interface
programs for PRETTYPRINT.

4.1.1. Operations on PP_Dilana

PP_DWuNA, like DIANA, s an abstract data type. In Chapter 4 of the DRAM the
ODIANA operations are defined. In this chapter we define additional operations that
access the attributes deflned in the refinement.

Chapter 4 of the DRM provides the specification of the ADA package Diana.

Lo o e

Recreating Formatted Source Section 4.1.1 / Page 67

Process PrettyPrint Inv PP_Diana Is
— PrettyPrint uses PP_Diana internally
— the only input is Diana
Pre Inport: Diana;

End

Flgure 4-2: IDL Process Specification of PrettyPrint

The package Is also discussed in Section 1.2.2.1 on page 9 of this document.
The package Dlana provides operations on the DIANA data type. We here define
the package PP_Diana that provides the operations on the data type PP_DIANA.

Because PP_DIANA is a refinement of DIANA, the packaga must contain ail of
the operations in the package Diana. In addition, the package must contain
operations on the three pp_ attributes that have been added. Figure 4-3 shows
the package that defines the operations. This package adds six new opaerations.
For each attribute there are two new subprograms: a procedure used to set the
value of the atiribute and a function used to read the value of the attribute.

with USERPK; use USERPK;

package PP_Diana is

(...)

— the package contains every operation in package DIANA

procedure PP_CHARS(t: in out TREE; v: in INTEGER);
function PP_CHARS(t: in TREE) return INTEGER;

procedure PP_MAXCHARS(t: in out TREE; v: in INTEGER);
function PP_MAXCHARS(t: in TREE) return INTEGER;

procedure PP_NEST(t: in out TREE; v: in INTEGER);
function PP_NEST(t: in TREE) return INTEGER;

private
(...) — not considered here
end PP_Diana;

Figure 4-3: PP_DWNA Operations

JRRSERERES

Section 4.2 / Page 68 A Pretty-Printer for ADA

4.2. The First Tree Walk — WALK1

In the first walk over the PP_DIANA tree the values of the pp_ attributes are
computed. The tree walk is designed to use the general tree traversal opera-
tions of the package Diana described in Chapter 4 of the DRM.

in essence. during the first pass over the tree the number of characters
required to print each node. and the level of nesting at the root are passed up
the tree. The number of characters needed to print a node is related (through
the addition of a constant) to the number of characters needed to print the
nades that are its structural descendants. The number of characters needed to
print a leaf of the tree is related to the length of its lexical (/x_symrep or
Ix_numrep) attribute.

Similarly. the nesting depth below a node is related to the nasting depth of
its structural offspring. in particular each offspring is indented some amount
(possibly zero) from the parent node. This amount is added to the nesting
depth of the child and compared to the values for the other offspring. The
maximum determines the nesting depth at the node. The nesting depth for each
leaf is zero.

The number of characters required to print a node is needed during the
second walk over the tree and is recorded at each node as the pp_chars
attribute. The nesting depth is only needed at the root so compilation is the
only node with the attribute pp_nest. (in the IDL refinement that defines
PP_Diana. in Appendix C. pp_nest appears in only one place).

Nodes with as_Jist attributes have the attribute pp_maxchars. This attribute
stores the maximum of the pp_chars attributes of the nodes in the the as_Jist
sequence. This value Is recorded for use in the second pass aiso.

The package WALK! specification and body is shown In Figure 4-4 on page
9. The package specification shows that one procedure s exported, also
named WALK!, and this procedure operates on an object of type
PP_Diana. TREE. TREE is a type defined in the package PP_Dlana. All nodes
in PP_Diana are of type TREE. When WALK! is called it expects to be passed
the root node of a PP_DIANA structure.

The package body shows that. 'n addition to WALK!, there are two mutuaily
recursive subprograms, Listwalk and Nodewalk. needed to traverse the tree. In

addition there are two constant arrays available: Nest and Char. The following

Recreating Formatted Source Section 4.2 / Page 69

~— Package to perform the first walk over the tree.

with PP_Diana; use PP_Diana; — DIANA package, for pretty printing

package WALK) is
procedure WAIK1(T: in out TREE);
end WALK1;

— Package to perform the first walk over the tree.

package body WALX1 is
Son_Count : ARITIES range unary .. ternary;

Nest: constant array (NODE_NAME,Son_Count) of NATURAL
te (..)3

Char : constant array (NODE_NAME) of NATURAL
t= { .. P

function Max(X: in NATURAL; Y: in NATURAL)
returns NATURAL is separate;

Procedure ListWalk(Node : in out TREE;
Depth : out NATURAL;
Length : out NATURAL;
Maxiength : out NATURAL);

procedure NodeWalk(Node : in out TREE;
Depth : out NATURAL;
Length : out NATURAL);

procedure Walkl(T: in out TREE) is separate;

procedure ListWalk(Node : in out TREE;
Depth : out NATURAL;
Length : out NATURAL;
Maxtength : out NATURAL) is separate;

procedure NodeWalk(Node : in out TREE;
Depth 1 out NATURAL;
Length : out NATURAL) is separate;

Figure 4-4: Package Waikl Specification And Body

Section 4.2 / Page 70 A Pretty-Printer for ADA

sections define Nest. Char. Listwalk and Nodewalk in detall.

4.2.1. Subunit Waikl

The subunit that defines procedure WALK! Is shown In Figure 4-5 on page
70.

separate (WALK1)
procedure Walkl(T: in out TREE) is

Depth: NATURAL;

~— the root is a compilation node, to be treated as a list
~— Listwalk returns the nesting depth => Depth

-— the number of chars => Length

— and the size of largest comp _unit => MaxLength

Listwalk (T, Depth,Length,MaxLength);

PP_CHARS(T, Length);
PP_MAXCHARS(T, MaxLength);
PP_INDENT(T,Depth);

end WALK1;

Figure 4-5: Walk1l Subunit

WALK! receives as input the node that Is the root of the source program, a
compilation node. The node has one structural attribute. as_list that is a
sequence of comp_unit nodes. The function LIST returns the sequence. WALKY
calls the procedure Listwalk to walk down the sequence computing the values for
the number of characters (Length). the maximum number of characters in any
compiiation unit (MaxLength)., and the maximum nesting depth in any compilation
unit (Depth). WALK?! then uses the PP_Dl/ana operations to set the value of the
pp_chars. pp_maxchars and pp_nest. Compilation is the only node with all three
pp__ attributes.

Recreating Formatted Source Section 4.2.2 / Page 71

4.2.2. Nest: Nesting Constant Array

The constant array Nest is a doubly-subscripted array. The first subscript is
for indexing by node type. the second subscript for indexing by the structural
oftspring of a node. For example. the entry Nest(dn_block.2) returns the
amount the second child of the block node is Iindented. Nodes with iess than
three offspring have the value zero in entries for non-existent children. Nodes
with no offspring. the leafs. have the value zero for all entries. Nodes with the
atiribute as_/ist only are considered to have one child. the child being the
sequence of nodes.

As an example we consider the node accept. used to denote an accept
L}
statement. The ADA syntax for the accept statement ‘s

accept_statement ::=

accept entry_name(formal part) do
sequence_of_statements
end entry_name;

The IDL description of the DIANA node accept Is

accept = as_name : NAME,
as_param_assoc_s :+ PARAM_ASSOC_S,
as_stm_s t STM_S)

The first and second children of the node. as_name and as_param_assoc_s
do not generate text that is indented. (The attributes represent the entry_name
and the formal_part respectively). The third child., as_stm_s does represent text
that Is indented. the sequence of statements. The value of Naest for this node
conveys this Information.

Nest: constant array (NODE_NAME, Son_Count) of NATURAL
s= (dn_accept =» (0,0,1), — only indent the third son
cee)2

Nest Is used to compute the nesting depth. For each node foo. the nesting
depth fur the /th child Is the nesting depth for the node that is the child, plus
the value of Nest(dn_Foo./). The nesting depth for the node Iis the maximum of
the nesting depths for each child.

Note that the nesting depth represented in Nest is only an approximation of
the indentation. It is possible for the indentation to be affected by other
factors. For Instance. a statement that continues beyond the end of a line may
be indented on the next line.

Section 4.2.2.1 / Page 72 A Pretty-Printer for ADA

4.2.2.1. Practical Considerations in Nest

The value of Nest for the node record accounts for the nesting of its chilidren
and the fact It Is nested within its parent. The ADA syntax for a record type
specification is

type_declaration ::=
type Identifler is type_definition;

record_type_definition ::=
record
component_list
end record

in general the type definition of a type declaration Is not Indented. However,
when the type definition is a record type definition the keyword °record® should
be Indented. This information cannot be stored with the node type so it is
added to the record. The value of Nest for record would ordinarily represent
the fact the component list {8 indented once from the record definition. To
compensate this value Is changed to two to account for the indantation of the
record definition.

Nest: constant array (NODE_NAME, Son_Count) of Integer
1= (dn_record =» (2,0,0), ...)

This entry Indicates that the text for the first child. the component ilst of the
record declaration. should be indented two levels from the rest of the text of the E
node. in reality, the record node Is Indented once and the component list is ‘
indented once again.

4.2.3. Char: the Character Count Constant Array

The constant array Char defines the numbaer of characters necessary. In
addition to the structural offspring., the print the node. We use the axampie of
a record type specification.

The number of characters to print the record definition is the number of
characters for the component list plus the number of characters needed to print
‘record ". and “end record" (note the spaces after "record” needed to saparate
the text from the component_list). The entry In Char for the node record
reflects this knowiedge.

Char : constant array (NODE_NAME) of Integer
1= (dn_record => 17, ...);

- y

Recreating Formatted Source Section 4.2.3 / Page 73

The value seventeen indicates that printing a record type specification requires
seventeen characters In addition to what is required to print the component_list.
Specifically, the seventeen characters are ‘record ° (seven characters
-- Including the space) and “end record” (ten character3).

Note that Char does not account for Indentation. In the case of the record
definition the character count assumes that all of the text appears on the same
line.

4.2.3.1. Practical Considerations in Char

There are some character counts that Char cannot represent. The most
notabie is the number of characters for variabie object declarations (and constant
and in parameter declarations) . It the variable object declaration has a defining
expression the characters ":=" must be accounted for. If the exoression if
absent that characters will not appear. The value in Char includes the count for
the °“:=". Although this affects the vailue of the pp_chars attribute for the node.
the effect can be accounted for in WALK2. When processing a var node with a
vold as_object_def, WALK2 can subtract two characters from the totai represented
in pp_chars.

There are other Instances of small inaccuracies in the generated character
count. None are serious. Although the global total, pp_chars at the
compliation node. s only approximate, the Ilocal totals needed for formatting
decisions are accurate. For example in block nodes the ADA keyword °‘declare”
appears only when the node represants a block statement with a non-empty list
of declarations. This situation is not serious becsuse WALKZ2 uses the character
counts to determine line breaks. In a block statement °“declare” is preceded and
followed by line breaks and does not influence the line break decisions for the
list of declarations.

The computation of the fength of lists Is tricky. Consider the formal part of
a subprogram declaration. it is a list of parameter specifications, separated by
semicolons. enclosed by parentheses. The number of semicolons is dependent
on the size of the list; when there are three parameters there are two semi-
colons. WALK! does not count the number of items in any lists. Char
accounts for this by adding one to the character counts of each parameter
specification (they only occur in this context), and accounts for the extra
semicolon In the iist by subtracting one from the character count for the formal

part. This method is also used for Identifier lists.

Section 4.2.4 / Page 74 A Pretty-Printer for ADA

4.2.4. Nodewalk

The subunit for the procedure Nodewalk is shown in Figure 4-6 on page 75.
The procedure NodeWalk s used to walk down the structural children of nodes.
For a node it produces two out parameters:

Depth the nesting depth bel-w this node, and

Length the number of characters needed to print the node.

The procedure Nodewalk traverses the tree using the general tree traversal
operations supplied by the package Dlana. The function ARITY returns a value
of type ARITIES that Indicates the structure of the node. /.e.. the number of
offspring the node has:

nullary Indlcates no offspring (a leaf),

unary indicates one offspring.

binary Indicates two offspring.
ternary Indicates three, and
arbitrary Indicates the nocde has as its descendant a sequence of

nodes (/.e., has an as_/ist attribute).

The functions SON?!, SON2, and SON3 are used to access the structural .

attributes. The functior SON1 returns the node that is the first child. The
subprograms SON2 and SON3 simitarly return the second an third offspring.

The function KIND returns a value Indicating the type of node. This vaiue
can be used to Index Into Char and Nest.

Nodewalk processes the node based on its structure. using the value returned
by ARITY to discriminate between nodes. When the node is unary, blnary, or
ternary. Nodewalk |Is recursively called to compute the values of nesting depth
and character count for the descendants. it returns the nesting depth for the
node. and the character count (the sum of the character counts of the children
and the value of Char for the node).

When the node Iis nullary, a feaf, a further discrimination must be done.
The node may have no attributes of Interest (such as null_statement). only the
Ix_symrep atitribute, or only the I/x_numrep attribute. IDL private types symboi_rep
and number_rap are implemented so the function Length returns the number of

i v A~ e L

Recreating Formatted Source

separate (WALK1)

procedure NodeWalk
(Node : in out TREE;
Depth : out NATURAL;
Length : out NATURAL) is

LocalDepth, ReturnedDepth: NATURAL := O;
Locallength, ReturnedlLength: NATURAL := 0;
LocalMaxlength : NATURAL := 0;

whichson : TREE;

begin
case ARITY(r.de) is

when nullary =»
Depth := 0; — leaf nodes have zero nesting
case KIND(ncde) is
when dn_and_then | (...) =»
Locallength := Char(KIND(Node));
when dn_numeric_literal =»
LocalLength :=~ Length(LX _NUMREP{node)) +
Char(KIND(Node));
when others =»
Locallength := Length(LX_SYMREP(Node)) +
Char(KIND(Node));
end case;
when unary | binary | ternary =>
for Son in unary .. ARITY(Node)
loop
case Scon is
when unary =»
whichSon := SONl(node);
when binary =>
whichSon := SON2(node);
when ternary =»
whichson := SON3(node);
end case;
Nodewalk(WhichSon, ReturnedDepth, Returnedlength);
Depth := Max(LocalDepth, ReturnedDepth +Nest(KIND(node),Son));
Locallength := LocalLength + ReturnedLength;
end loop;
when arbitrary =>
Listwalk(Node, ReturnedDepth, ReturnedLength, Localmaxlength);
Depth := ReturnedDepth + Neat(XIND(Node),l1>:
Length := ReturnedLength + Char(KIND(Node));
— set value of pp_maxchars
PP_MAXCHARS(Node, LocalMaxlength);
end case;
PP_CHARS(Node, Length); — pet value of pp_chars attribute
Tength := Locallength;
end Nodewalk;

Figure 4-8: Procedure Nodewalk

Section 4.2.4 / Page 75

Section 4.2.4 / Page 78 A Pretty-Printer for ADA

characters In their representation.

When the node Is arbitrary (its descendant is a sequence) the procedure
Listwalk is called to process the node. The value of the pp_maxchars attribute
is set to the value returned by MaxChar of Listwalk.

The last statement of the procedure sets the value of the attribute pp_chars.
This attribute Is recorded with all nodes In the tree.

Note that when Nodewalk computes the number of characters needed to print
a node It considers neither the comment for the node nor the indentation of the
node. The value of pp_chars represents the number of characters needed to
print the source. without comments, on an arbitrarily long line.

4.2.5. Listwalk

The subunit for the procedure Listwalk is shown in Figure 4-7 on page 77.
The procedure walks down a sequence, of type SEQ_TYPE. and produces values
for three out parameters:

Depth the maximum nesting depth of all nodes in the sequence:
Length the number of characters needed to print the sequence

-- this Is the sum of the number of characters needed to
print each node in the sequence: and

Maxlength

the maximum number of characters needed to print any one
node from the list.

l.e., a node with an

Listwalk receives as input a node of type ‘arbitrary’.

as_Jist attribute. The PP_Dlana function LIST returns the sequence for the node. .
HEAD returns the node at the head of the list. TA/L returns the sequence that '
remains after removing the head. The function IS_EMPTY returns true if the |
sequence has no nodes. Thus the inner loop is executed once for every node
in the sequence. During each Iteration the depth is computed to be the
maximum of the previously computed depth and the nesting depth for the current
noda: maxlength is computed analogously. The length of the sequence is

computed by as an accumulated sum.

Listwalk does not set the value of any attributes directly —— it returns values
through it8 out parameters. The attributes are set In Nodewalk or WALKY.

Recreating Formatted Source Section 4.3 / Page 77

separate (WALK1)
procedure ListWalk(Node : in out TREE;
Depth : out NATURAL;
Length : out NATURAL;
Maxlength : out NATURAL) is
Locallength, ReturnedlLength : NATURAL := O;
LocalMaxlength : NATURAL := 0O;
LocalDepth, ReturnedDepth : NATURAL := 0;
Seq: SEQ TYPE;
H4: 'I'REE;

begin

Seq:= LIST(Node); ,

LocalDepth := 0; Locallength := 0; LocalMaxlength :=0;

while not IS_EMPTY(Seq)

loop
HQ := HEAD(Seq);
Nodewalk(Hd, ReturnedDepth, Returnedlength);
LocalMaxlength :=~ Maximum(LocalMaxlength, ReturnedlLength);
Locallength := Locallength + ReturnedlLength;
LocalDepth := Maximum(LocalDepth,ReturnedDepth);
Seq t= TAIL{Seq);

end loop;

Depth := LocalDepth;

Length := Locallength;

MaxLength := LocalMaxlength;
end ListWalk;

ey e W ——

Figure 4-7: Procedure Listwalk

Sectlon 4.3 / Page 78 A Pretty-Printer for ADA

4.3. Second Tree Walk to Generate Formatted Text

WALK2 walks over the PP_DIANA structure producing formatted source. This
pass is simllar in structure to the tree walk described in Chapter 2 in that It
creates the source as It walks the PP_DIANA structure. It is difterent in that It 1

uses the operations suppllad in FORMAT to make formati'ng decisions as it !
proceeds.

The package specification for the second traversal is repeated below.

— Package to perform the second walk over the tree. /
with PP_Diana; use PP_Diana; — DIANA package, for pretty printing /

package WAILK2 is
procedure WAILK2(T: in TREE);
end WALKZ2;

The package body for this package is very large. There are approximately
180 mutually recursive procedures used to traverse the tree. The package body
Is provided In Appendix B.

There Is a procedure for nearly every DIANA node. and procedures for many

of the ODIANA classes. in particular, not every DIANA class is represented by a
separate procedure. Classes consisting of one node do not appear:. instead the :
procedure tor the node Is used. (These cases are easily recognized Iin DIANA 1
-~ the class that contains only the node "too® is named °FOO"). Further, the)
nodes in the classes /D and OP do not have separate procedures. These nodes
can be processed by the procedure for the class DESIGNATOR since all nodes in
this class have the /x_symrep attribute and the only text assoclated with the node
is the lexeme contained in Ix_symrep.

Appendix B contains the package body for WALK2. Also., a few of the
subunits for the stubs In the body are included in this appendix.

The naming of the procedures In the package Is straightforward. The
procedure that produces formatted source for the node foo Is preceded by the
prefix “dp_" to produce the name of the procedure: “dp_foo". Procedures for

IDL classes derive their name simllarly from the class name. Class FQO is
processed by procedure “dk_FOO".

Recreating Formatted Source Section 4.3.1 / Page 79

4.3.1. Use of DIANA Gperators

The ge
over

] node operations (SON1. SON2, etc.) are used for the first pass
tree. During the second pass the tree walking procedures are more
cific and consequently the specific DIANA node operations, operations that
address attributes by name (e.g.. AS_EXP), are used. (The use of both
traversal methods Is driven by the design goal of stressing the package Diana as
stated in Section 1.1 on page S5.)

In generai. there are two operations tor each attribute, that s two sub-
programs defined in the package PP_Dlana. The operations are named as the
attribute. so there are two subprograms assoclated with atiribute foo.

procedure FOO (t: in out TREE; v: in TREE);
~— This procedure sets the foo attribute in the node ~t”
— with the value "v”

function FOO (t: in TREE) return TREE;
~— This function returns the value of the foo attribute of
— node "t~

The atiribute as_Jist Is a speclal case. The function LIST returns the value,
a sequence. of type (SEQ_TYPE. Sequence 1types are handled using the
operations HEAD. TAIL, and IS_EMPTY as previously described in Section 4.2.

The pp__ attributes are accessed using similar operations. described in
Section 4.1.

4.3.2. Example WALK2 Subunits

In this section we present two sample subunits from WALK2. For purposes of
comparison we reconsider the reconstruction of label I|dentiflers and task types
that were first introduced In Chapter 2

4.3.2.1. Label ldentifiers

All identiflers are processed by a common routine.
procedure dk_ID(Node: in TREE) is

— dak_ID is used for all identifier nodes, including DEF_ID, and USED_ID
— since all elements in the class have only one attribute of interest,
— they are all processed by a single procedure

begin
IdentPorm({ LX_SYMREP(Node));
end dk_ID;

Section 4.3.2.1 / Page 80 A Pretty-Printer for ADA

in the final design. the treatment of the labeis is merged Into the procedure
that handles sequences of identifiers. Here a check for the type of the node

determines If the Identifier is to be bracketed. In addition. some formatting
decisions are made. The length of the sequence is compared with the remain-
ing space on the line. it there isn’t enough space for the entire sequence,

then each identifier is placed on a separate line.

procedure dp_ I3 _s(Node: in TREE) is
Toolong : Boolean;
Seq : SEQ_TYPE;
- when Toolong is true put each identifier on a separate line.
— Checks for labels, and brackets labels.
begin
Toolong :~ Max_IQ Width < PP_CHARS(Node);
Seq :~ LIST(node);
if XIND(HEAD(Seq)) = dn_label_id then
AMdText("<<");
dk_ID(HEAD(Seq));
AAText(">>");
else
Adk_ID(HEAD(Seq));
end if;
Seq := TAIL(Seq);
while not IS_EMPTY(Seq)
loop

if KIND(HEAD(Seq)) = dn_label_id then
if ToolLong then NewLine end if;
AddText("<<");
dk_ID({ HEAD(Seq));
AddText(">>");
else
AddText(”,");
if TooLong then NewLine end if;
dk_ID({ HEAD(Seq) };
end if;
ond loop;
end dp_ID_S;

4.3,2.2. Task Types

The procedure that prints all type declaration must determine if the type
specification is a task declaration. it it is. then the keyword "task® must be
printed. The procedure below Is very similar to the procedure In Section
2.2.2 on page 35. The difterence is that the specialized output routines
ResForm and AddText are used to create the output iine.

Recreating Formatted Source Section 4.3.2.2 / Page 81

procedure dp_Typs(Node: in TREE) is ’ ‘

begin

if KIND(AS_TYPE_SPEC(Node)) = dn_task_spec then !
ResPorm(“task ");

end 1if;
ResPorm("type ");
dk_ID(AS_ID(Node));
dp_vax_s(AS_VAR_S(Node))
ResPorm(" is ")
dk_TYPE,_SPEC(AS_TYPE_SPEC(Node));
AdQText(";")s

end dp_Type;

Appendix A / Page 82 A Pretty-Printer for ADA

R

First Traversal Appendix A / Page 83

APPENDIX A
FIRST TRAVERSAL

This appendix lists the ADA package WALK! that contains the procedures to
pertform the first tree-walk of the DIANA tree. The discussion of this package is
in Section 4.2.

A. 1. Package Specification

- Package to perform the first walk over the tree.

with PP_Diana; use PP_Diana; ~— DIANA package, for pretty printing

package WAIX] is
procedure WAILK1(T: in out TREE);
end WALK1;

T

Section A.2 / Page 84 A Pretty—Printer tor ADA
A.2. Package Body

~— Package to perform the first walk over the tree.
package body WAIKX1 is

Son_Count : range 1..3;
Nest: constant array (NODE_NAME, Son_Count) of Natural

t= (dn_record = (1,0,0),
dn_variant_part = (0,1,0),
dn_cond_clause = (0,1,0),
dn_alternative_ s = (1,0,0),
dn_alternative =5 (0,1,0),
dn_loop =3 (0,1,0),
dn_block =) (1,1,1),
dn_package_spec = (1,1,0),
dn_task_spec = (1,0,0),
dn—a'ccept -> (01011)1 !
dn_select =3 (0,1,0),
dn_select_clause =5 (0,1,0),
dn_cond_entry =, (1,1,0),
dn_timed_entry = (1,1,0), 1
others =, (0,0,0));

Char : constant array (NODE_NAME) of Natural

t= (dn_pragma =5 8,
dn_param_assoc_8 = 1,
dn_constant > 14,
dn_var = 4,
dn_code = 0);

procedure ListWalk(Node : in out SEQ _TYPE;
Depth : out Natural;
Length : out Natural;
Maxtength : out Natural);

procedure NodeWalk(Node : in out TREE;
Depth : out Natural;
Length : out Natural);

1
.
]
}
F
¢

procedure Walkl(T: in out TREE) is separate;

procedure ListWalk(Node : in out SEQ _TYPE;
Depth : out Natural;
Length 1 out Matural;
MaxLength : out Natural) is separate;

procedure NodeWalk(Node : in out TREE;
Depth : out Natural,
Length : out Natural) is separate;

First Traversai Section A.3 / Page 85

A.3. Subunits

separate (WALKL)
procedure Walki(T: in out TR:.) is

Depth: NATURAL;

Length: NATURAL)

Maxlength: NATURAL;
begin

— the root is a compilation node, to be treated as a list
ListWalk returns the nesting depth => Depth

the number of chars => Length

and the size of largest comp_unit =» Maxlength

ListWwalk (T,Depth,Length,MaxLength);

PP_CHARS(T, Length);
PP_MAXCHARS(T, MaxLength),
PP_INDENT(T,Depth);

end WALK1;

separate (WALK1)
procedure Listwalk(Node : in out TREE;
Depth : out NATURAL;
Length : out NATURAL;
Maxiength : out NATURAL) is
Locallength, Returnedlength : NATURAL := O;
LocalMaxlength : NATURAL := O;
LocalDepth, ReturnedDepth : NATURAL := O;

Seq: SEQ TYPE;
Hd: 'TREE;
begin

Seq:= LIST(Node);

LocalDepth := 0; Locallength := 0; LocalMaxlength :=Q;

while not IS_EMPTY(Seq)

loop
HA := HEAD(Seq);
Nodewalk(Hd, ReturnedDepth, Returnedlength);
LocalMaxlength := Maximum(LocalMaxlength, ReturnedLength);
Locallength := LocallLength + ReturnedLength;
LocalDepth := Maximum(LocalDepth, ReturnedDepth);
Seq :=~ TAIL(Seq);

end loop;

Depth := LocalDepth;

Length := LocallLangth;

Maxtength := LocalMaxlength;
ond Listwalk;

g e M

Section A.3 / Page 86 A Pretty-Printer for ADA

LocalDepth, Ret..nedDepth: NATURAL := 0;
Locallength, ReturnedLength: NATURAL := O;
LocalMaxlength : NATURAL := 0;

WhichSon : TREE;

begin
case ARITY(node) is

when nullary =»
Depth := 0; — leaf nodes huve zero nesting
case KIND(node) is
when dn_and_then | (...) =
Locallength := Char(KIND(Node));
when dn_numeric_literal =»
Locallength := Length(LX_NUMREP(node)) +
Char(KIND(Node));
when others =»
Locallength :~ Length(LX_SYMREP({Node)) +
Charx(KIND(Node));

end case;

when unary | binary | ternary =»
for Son in unary .. ARITY(Node)

case Son is
when unary =» N |
whichSon :=« SON1(node);
when binary =
whichSon 1= SON2(node);
when ternary =»
WhichSon := SON3(node);
end case;
NodeWalk(WhichSon, ReturnedDepth, Returnedlength);
Depth := Max(LocalDepth, ReturnedDepth +Nest(XIND(node),Son));
Locallength 1= LocalLength + RetvvnedLength; '
end locp; f
when arbitrary =» f
Listwalk(Node, ReturnedDepth, ReturnedLength, Localmaxlength); 3
Depth := ReturnedDepth + Nest(KIND(Node),1l); i
Length ;= ReturnedLength + Char(KIND(Node));
— set value of pp _maxchars
PP_MAXCHARS(Node, LocalMaxliength);
ond case; !
PP_CHARS(Node, Length); — set value of pp chars attribute ;
Length := Locallength;
ond NodeWalk;

Second Traversal Sectlon B / Page 87

APPENDIX 8
SECOND TRAVERSAL

This appendix lists the ADA package WALK2 that contains the procedures to
perform the second tree-waik of the DIANA tree. The discussion of this package
Is In Section 4.3.

B. 1. Package Specification

- Package to perform the second walk over the tree.
with PP_Diana; use PP_Diana; -— DIANA package, for pretty printing
package WALK2 isg

procedure WALK2(T: in TREE);
end WALK2;

B.2. Package Body

— Package to perform the second walk over the tree.
package body WALK2 is
Procedure Walk2(T: in TREE) is separate;

— procedure stubs for the second traversal
— organized by Ada LRM chapter

— 2. Lexical Elements

procedure dp_void (Node: in TREE) is separate;

—~ 2,3 Identifiers, 2.4 Numeric Literals, 2.6 String Literals
procedure dk_ODESIGNATOR (Node: in TREE);

— 2.8 Pragmas

procedure dp_pragma (Node: in TREE) is separate;

procedure dp_param_assoc_g (Node: in TREE) is separate;

-- 3. Declarations and Types

-— 3.1 Declarations

procedure dk_DECL (Node: in TREE);

— 3.2 Objects and Named Numbers

Section B.2 / Page 88

procedure dx_OBJECT _DEP (Node: in TREE);
procedure dk_EXP_VOID (Node: in TREE);

procedure dp_constant (Node: in TREE) is separate;
procedure dp_var (Node: in TREE) is separate;
procedure dp number (Node: in TREE) is separate;
procedure dp_id_s (Node: in TREE) is separate;

— 3.3 Types and Subtypes
— 3.3.1 Type Declarations

procedure dp_type (Node: in TREE) is separate;
procedure dk_TYPE_SPEC (Node: in TREE);

— 3.3.2 Subtype Declarations

procedure dp_subtype (Node: in TREE) is separate;
procedure dk_subtype_indication (Node: in TREE);
procedure dp_constrained (Node: in TREE) is separate;
procedure dk_constraint (Node: in TREE);

-—— 3.4 Derived Type Definitions

procedure dp_derived (Node: in TREE) is separate;
— 3.5 Scalar Types

procedure dk_RANGE (Node: in TREE);

procedure dp_range (Node: in TREE) is separate;
— 3.5.1 Enumeration Types

procedure dp_enum_literal s (Node: in TREE) is separate;
procedure dk_ENUM_LITERAL (Node: in TREE);
procedure dp_def_ char (Node: in TREE) is separate;
— 3.5.4 Integer Types

procedure dp_integer (Node: in TREE) is separate;
—- 3,5.6 Real Types

-— 3.5.7 Ploating Point Types

procedure dk_RANGE_VOID (Node: in TREE);
procedure dp_float (Node: in TREE) is separate;

A Pretty-Printer for ADA

Ea

AD-A128 857 A DIANA-DRIVEN PRETTY-PRINTER FOR ADA{(U) TARTAN LABS 2/3-
INC PITTSBURGH PA K J BUTLER ET AL. 22 FEB B3 TL-83-3
MDA903-82-C-0148 .

UNCLASSIFIED F/G 9/2

| END
oart
et

2

I
fl25

FPFFEREE
EEEE

IFERE

dd3ddd o

[4
er

1N

B

8

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

Second Traversal Section B.2 / Page 89

(\ — 3.5.9 Pixed Point Types

: g procedure dp_fixed (Node: in TREE) is separate;

‘ % — 3 % Axxay Types

{ proosture 4dp_array (Node: in TREE) is separate;
procsdure dp_dscrt_range_s (Node: in TREE) is separate;
procsdure dk_DSCRT_RANGE (Node: in TREE);

procedure dp_index (Node: in TREE) is separatse;

— 3.7 Record Types

procedure dp_record (Node: in TREE) is separats;
procedure dk_COMP (Node: in TREE);

procedure dp_null _comp (Node: in TREE) is separats;
— 3,7.1 Discriminants

procedure dk_VAR S (Node: in TREE);

procedure dp_var_s (Node: in TREE) is separate;

— 3.7.2 Discriminant Constraints

procedure dp_dscrmt_aqgregate (Node: in TREE) is separate;
— 3.7.3 vVariant pParts

procedure dp_variant_part (Node: in TREE) is separate;
procsdure dp_variant_s (Node: in TREE) is separate;
procedure dp_choice_s (Node: in TREE) is separate;
procedure dp_variant (Node: in TREE) is separate;
procedure dp_inner_record (Mode: in TREE) is separate;
procedure dk_CHOICE (Node: in TREE);

procesdure dp_others (Node: in TREE) is separate;

— 3.8 Access Types

procedure dp_access (Node: in TREE) is separate;

— 3.8.1 Incomplete Type Declarations

procsdure dk_TYPE_SPEC (Node: im TREE))

-— 3.9 Declarative Parts

procedure dk_ITEM (Node: in TREE))

Section B.2 / Page 90

Proocedure dp_item s (Node: in TREE) is ssparate)
— 4. Names and Expressions

: 4.1 MNames

procedure dk_NAME (Mode: in TREE);

proosdure dp_used_char (Node: in TREE) is separate;

— 4.1.1 Indexsd Components

procedure dk_EXP_S (Node: in TREE);

proocsdure dp_exp_s (Node: in TREE) is separate;
procedure dp_indexsd (Node: in TREE) is separate;

— 4,1.2 Slices

procedure dp_slice (Node: in TREE) is separate;

-— 4.1.3 Selected Components

procedure dp_selected (Node: in TREE) is separate;
procedure dp_all (Node: in TREE) is separate;

-— 4.1.4 Attributes |

proocedure dp_attribute (Node: in TREE) is separate;
procedure dp_attribute_call (Node: in TREE) is separate)

-— 4,2 Literals

~— Refer to 4.4.C for numeric_literal, string literal,
~— and null_access.

~— Refer to 4.1 for character_ literal

— 4.3 Aggregates

procedure dk_EXP (Node: in TREE);

proocsdure dp_aggregate (MNodea: in TREE) is separate;
proocadure dk_COMP_ASS0C (Node: in TREE),

proocsdure dp_named (Node: in TREE) is separate;

— 4.4 Expressions

proocsdure dp_binary (Node: in TREE) is seperate;
procedure dk_BIMARY_OP (Mode: im TREE)

proosdure dp_and_then (Node: in TREE) is separate;
proocsdure dp_or_else (Node: in TRER) is separate;

A Pretty-Printer for ADA

Second Traversai

procsdure dk_TYPE_RANGE (Mode: in TREE);

procsdure dp_membership (Node: in TREE) is separate;
procedure dk_MEMBERSHIP_OP (Node: in TREE);

proocsdure dp_in_op (Node: in TREE) is separate)
proosdure dp_not_in (Node: in TREE) is separate;
procsdure dp_parenthesized (Node: in TREE) is separate;
procedure dp_numeric_literal (Node: in TREE) is sepearate;
procsdure dp_string_literal (Node: in TREE) is separate;
procedure dp_null_access (Node: in TREE) is separate;

— 4.5 Operators and Expression Evaluation

— 4.6 Type Conversions

Procedure dp_conversion (Node: in TREE) is separate;
— 4.7 Qualified Expressions '
procedure dp_qualified (Node: in TREE) is separate;
— 4.8 Allocators

proocedure dp_allocator (Node: in TREE) is separate;
— 5. Statements

-— 5.1 Simple and Compound Statements - Sequences of Statements

pxoocedure dp_stm_s (Node: in TREE) is separate;
proosdure dk_STH (Mode: in TREE);

procsdure dp_labeled (Node: in TRER) is ssparate;
procadure dp_null_sta (Mode: u TREE) is separate;
-— 5.2 Assigrment Statemant

proosdure dp_assign (Mode: in TREE) is separate;
- 5.3 If Statessnts

proceaduze dp_if (Node: in TREE) is separate;
Proosdure dp_cond_clause (Node: in TREE) is ssparate;
— 3.4 Case Statamnts

prooaduze dp_case (Node: in TRER) is separate;

Section B.2 / Page 9

Yl D T e -

et b S S B,

Section B.2 / Page 92 A Pretty-Printer for ADA

proceduxe dp_alternative_s (Node: in TREE) is sepaxute;
procedure 4p_alternative (Node: in TREE) is sspaxate;
-— 5.5 Loop Statemsnts

procadure dp_named_stm (Mode: in TREE) is sepaxate;
procedure Ak_ITERATION (Node: in TREE);

Ppzocsdure A&p_loop (Node: in TREE) is separate;
procadure dp_for (Node: in TREE) is separate)
procedure Ap_reverse (Node: in TREE) is separate;
procadure ap_while (Mode: in TREE) is separate;

— 5.6 Block Statements

przocsdure Adp_block (Node: in TREE) is ssparate;

— 5.7 Exit Statements

procedure Ak_MAME_VOID (Node: in TRER);

Procadure Ap_exit (Mode: in TREE) is ssparmte; - i3 no name given
— 5.8 Return Statemssnts

procedure Ap_return (Mode: in TREE) is separate;

— 5.9 Goto Statements

pzocedure Ap_goto (Mode: in TREE) is separate;

-— §. Subprograms

— 6.1 Subprogram Declarations
procedure dk_SUBPROGRAM_DEF (MNode: in TREE))

proceduxe Ap subprogram decl (Rode: in TREE) is sepaxate;

peocadure dk_SUBP_BODY_DESC (Node: in TREE))

— ‘pragma_id’' and ‘argument_id’ only occur in the predefined enviromment
procedure AX_MEADER (Node: in TRER);

poocsfure dp_procedure (Mode: in TREE) is sesparute;

provefuxe dp_function (Node: in TREE) is separate;

puoceduze dp_param. s (Node: in TREE) is separate;

procaiuxe Gx_PANAM (Node: in TRER);

puoceduxe dp_in (Node: in TREE) is separste)

Second Traversal /

procsdure dp_in _out (Node: in TREE) is separate;
proosdure dp _out (Mode: im TREE) is separuts;

-— 6.3 Subprogram Bodies

procedure dk_BLOCK_STUB (Node: in TREE),

Pprocedure dp_subprogram body (Node: in TREE) is separate;
— 6.4 Subprogram Calls

procedure dp_procedure_call (Node: in TREE) is separate;
proocsdure dp_function_call (Node: in TREE) is separate;
procedure dk_PARAM_ASSOC (Node: in TREE);

procedure dp_assoc (Node: in TREE) is separate;
proosdure dk_ACTUAL (Node: in TREE),

-— 7. Packages

: 7.1 Package Structure

procedure dp_package_decl (Node: in TREE) is separate;
proocedure dk_PACKAGE_DEF (Node: in TREE);

Procedurs dp_package_spec (Node: in TREE) is separate;
procedure dp_decl_s (Node: in TREE) is separate;
procedure dp_package_body (Node: in TREE) is separate;
-— 7.4 Private Type and Deferred Constant Declarations
Procedure dp_private (Node: in TREE) is separate;
procedure dp_l_private (Node: in TREE) is separate;

— 8. Visibility Rules
:'.4 Use Clauses

proocsdure dp_name_s (Node: in YREE) is separate;
procedure dp_use (Node: in TRER) is separate;
— 8.5 Renaming Declarations

proocsdure dp_rename (Node: in TRER) is ssparate;
-— 9. Tasks

——

- 9.1 Task Specifications and Task Bodies

Section B.2 / Page 93

Section 8.2 / Page 94 A Pretty-Printer for ADA

procedure Ak_TASK_DEP (Node: in TRER))

procedure dp_task_decl (Mode: in TREE) is separate)
Procadure dp_task_spec (Mode: in TREE) is separate)
Peoosdure dx_BLOCK_STUR_VOID (Node: in TREE),;
Procedure dp_task_body (Mode: in TREE) is separate)
- 9.5 Entries, Entry Calls and Accept Statements
procedure AK_DSCRT_RANGE_VOID (Node: in TREE);
procedure dp_entry (Node: in TREE) is separate;
procedure dp_entry_call (Node: in TREE) is separatse;
procsure dp_accept (MNode: in TREE) is separate;

-~— 9.6 Delay Statements, Duration and Time
proocsdure 4dp_delay (Node: in TREE) is separate;

— 9.7 Select Statements

-— 9.7.1 Selective Waits

procedure dp_select (Node: in TREE) is separate;
pzocsdure 4dp_select_clause_s (Node: in TREE) is separats;
proocsduxe 4p. _select_clause (Node: in TREE) is separate;
procsdure dk_STH (Node: in TREE);

poocsiure dp_terminate (Node: in TREE) is separate;
— 9,7.2 Conditiomal Entxy Calls

procsdure dp_cond_entry (Node: in TREE) is separate;
— 9.7.3 Timed Entry Calls

proocsdure dp_timed_entry (Node: in TRER) is separats;
— 9.10 Abort Statsments

proceduxe 4p_abort (MNode: im TREE) is sesparate;

- 10. Program Structurs and Cospilation Issues

— 10.1 Compilation Units - Library Units
Feocedure dp_compilation (Mode: in TRER) is separate;
puocedure aK_UNTT_BODY (Mode: in TREE))

puocedure dp_pragma_s (Node: in TRER) is separste;

i
§
i
!

8econd Traversal Section B.2 / Page 95

procsdure dp_comp_unit (NMode: in TRER) is separate;
— Context Clauses - With Clauses

proocsdure dk_CONTEXT_ELEM (Mode: in TREE),
prooadure dp_context (Node: in TRER) is separate;
peoosdure dp_with (MNode: in TREE) is ssparate;

— 10.2 Subunits of Compilation Units

procedure dp_subunit (Node: in TREE) is separate;
procsdure dk_SUBUNIT _BODY (Node: in TREE);
procedure dp_stub (Node: in TREE) is separats;

-— 11. Exceptions

- 11.1 Exception Declarations

procedure dk_EXCEPTION_DEP (Node: in TREE);
proocedure dp_exception (Node: in TREE) is separate;
— 11.2 Exception Handlers

-~ 11.3 Raise Statements

procedure dp_raise (Node: in TREE) is separate;
— 12. Generic Program Units

: 12.1 Generic D.chrttiol:

procedure dk_GENERIC_HEADER (Mode: in TREE)

procedure dp_gensric (Node: in TREE) is separate;
procsdure dp_generic_param s (Mode: in TREE) is separate;
procedure dk_GEMERIC_PARAM (Node: in TREE);

procesdure dk_FORML_SUBPROG_DEP (Mode: in TREE),
procedure dp box (Node: in TREER) is separate;

procedure dp_no_default (Node: in TREE) is separate;
procedure dk_FORMAL_TYPE_SPEC (Node: ia TREE)

provedure dp_formal_dscrt (Node: in TRER) is separate;
procesurs dp_formal_fized (Wode: in TRER) is separate;
provedure dp_formal_float (Node: im TRER) is ssparate)

; provedure dp_formal_integer (Node: inm TREX) i3 separate;

Section B.2 / Page 96 A Pretty-Printer for ADA

t | — 12.3 Generic Instantiation ‘
) proocsture dp_generic_assoc_s (Node: in TREE) is separate;
procedure dp_instantiation (Node: in TREE) is separats,
procsdure dk_GENERIC_ASSOC (Node: in TREE),
13. Representation Clauses and

— Implementation Dependent Features
- 13.1 lﬁptoantation Clauses
procedurs dk_REP (Node: in TREE);

- 13.2 Langth Clause
— 13.3 Enumeration Representation Clauses

procedure dp_simple_rep (Node: in TREE) is separats;
— 13.4 Recoxd Representation Clauses

procedure dp_aligmment (Node: in TREE) is separate;
procedure dp_comp_rep_s (Node: in TREE) is separate;
procedure dp_comp_rep (Node: in TREE) is separate;
— 13.5 Address Clauses

procedure dp_address (Node: in TREE) is separate; A
— 13.8 Machine Code Insertions i
procedure Ap_code (Node: in TREE) is separate; .

end WALK2;

B.3. Subunits 1

separate (WALK2)
procedure Walk2(Node: in out TREE) is 1

-— The root node must be a compilation node

dp_compilation(Node);
ond Walk2;

T e W

gt S e

IDL Refinement of DIANA for Pretty Printing

APPENDIX C
iDL REFINEMENT OF DWA FOR PRETTY PRINTING

Section C / Page 97

This appendix lists the refinement of DIANA that is used for the pretty printer.
The refinement adds three attributes to DIANA that are usefui for formatting the
recreated ADA source. The attributes are discussed in Section 4.1 on page 63.

Structure PP_Diana Refines Diana Is

Pretty Printer Refinement

Version of 1983 PFebruary 22

2. Llaxical Elements

PAXAm_ASSOC_S =>

3. Declarations and Types

3.1 Declarations

2.3 Idsntifiers, 2.4 Numeric Literals, 2.6 String Literals

pp_chars: Integer;

pp_chars:

Integer,

pp_maxchars: Integer;

- 3.2 Objects and Named Numbers

constant =>

var =

var_id =»

const_id =>

mmber =»

naber_1id =

id_s =
— 3.3 Types and Subtypes
-— 3,3.1 Type Declarations

type =>

pp_chars:
pp_chars:
pp_chars:
pp_chars:
pp_chars:
pp_chars:
pp_chars:

Integer;
Integer;
Integer;
Integer;
Integer;
Integer;
Inkeger,

pp_maxchars: Integer;

pp_chars:

Integer;

I

i etish

Appendix C / Page 98 A Pretty-Printer for ADA
ft type_id =» pp_chars: Integer;
g — 3.3.2 Subtype Declarations
subtype => pp._chars: Integer; r
subtype_id => pp_chars: Integer; :
constrained => pp_chars: Integer; :

- 3.4 Derived Type Definitions
derived =» pPp_chars: Integer;
— 3,5 Scalar Types

Tange => pp_chars: Integer;
-— 3.5.1 Enumeration Types

enum_literxral g => pp_chars: Integer,
pp_maxchars: Integer;
onum_iq =» pp_chars;: Integer;
def_char =»> pPp_chars: Integer;

— 3.5.4 Integer Types

integexr = pp_chars: Integer;
~— 3.5.6 Real Types
— 3.5.7 Ploating Point Types

float => pp_chars: Integer;
— 3.5.9 Pixed Point Types

fixed => pp_chars: Integer;

- 3.6 Array Types

axxay =» pp_chars: Integer)

dscrt_range_s = pp_chars: Integer,
pp_maxchars: Integer;

index => pp.chars: Integer;

- 3,7 Racord Types

record =» pp_chars: Integer,
ppmaxchars: Integer;
(mll_comp => pp.chars: Integer;

coap_id => pp_chars: Integer;

iDL Refinement of DIANA for Pretty Printing Appendix C / Page 99

— 3.7.1 Discriminants

var. s =» pp_chars: Integer,
pp. maxchars: Integer;
dscrmt_id => pp_chars: Integer;

— 3.7.2 Discriminant Constraints

dscrat_aggregate =» pp_chars: Integer,

pp_maxchars: Integer;
— 3.7.3 Variant Parts

variant_part => pp_chars: Integer;
variant_s =» pp_chars: Integer,
pp_maxchars: Integer;
choice_s =» pp_chars: Integer,
pp_maxchars: Integer;
variant =» pp_chars: Integer;
inner_record => pp_chars: Integer,

pp_maxchars: Integer;
others => pp_chars: Inkeger;
~— 3.8 Access Types |
access => pp_chars: Integer;
- 3.9.1 Incomplete Type Declarations

-— 3.9 Declarative Parts

item s = pp_chars: Integer,
© pp.maxchars: Integer;

4. Names and Expressions

4.1 NFames

used_object_id => pp_chars: Integer;
used_name_1i4 => pe.chars: Integer;
used_bltn_id =» pp_chars: Integer;
used_op = pp_chars: Integer)
used_bltn_op = pp_chars: Integer);
used_char =» pp_chars: Integer;

- 4.1.1 Indexed Components

i
i)

e 2 e o o -

Appendix C / Page 100 A Pretty-Printer for ADA

. exp_s = pp_chars: Integer,
pp_maxchars: Integer;

indexed => pp_chars: Integer;
-~ 4.1.2 3lices

slice = pp_chars: Integer;
~— 4.1.3 Selected Components

selacted =» pp.chars: Integer;

all = pp._chars: Integer;

~— 4,1.4 Attributes

attribute => pp_chars: Integer;
attribute_call = pp_chars: Integer;
~~— 4,2 Literals
— Refexr to 4.4.C for numeric_literal, string literal,
~— and nul) _access.
~— Refer to 4.1 for character_literal

— 4.3 MAggreqates

aggregate =» pp_chars: Integer,
pp_maxchars: Integex;

named => pp_chars: Integer;

— 4.4 Expressions

binary =» pp.chars: Integer;
and_then = pp._chars: Integer;
mewbership => . pp._chars: Integer;
in_op => pp_chars: Integer;
parenthesized => pp_chars: Integer;
numeric_literal = pp_chars: Integer;
string literal =» pp_chars: Integer)
E null_access => pp_chars: Integer;

} — 4,5 Operators and Expression Evaluation
-— 4,6 Type Conversions

oconversion =» pp._chars: Integer;

IDL Refingment of DIANA for Pretty Printing

— 4.7 Qualified Expressions
qualified =>

-~ 4.9 Allocators
allocator =»

S. Statemsnts

stm_8 =

labeled =>
label_id =»>

— 5.2 Assignment Statement
assign =>

— 5.3 If Statements

if =

cond_clause =>
— 5.4 Case Statements
case =>

alternative_s =>

alternative =»

-— 5,5 Loop Statements
named_stm =>
loop =>
for =>
reverse =
iteration_id =»
vhile =>

— 5.6 Block Statements

block =>

Pp_chars:

pp_chars:

pp_chars:

Appendix C / Page 101

Integer;

Integer;

S.1 Simple and Compound Statements - Sequences of Statements

I nt‘qet;

pp_maxchars: Integer;

pp_chars;

pp_chars:

pp_chars:

pp_chars:

Integer;

Integer;

Integer;

Integet ’

pp_maxchars: Integer;

pp_chars:

pp_chars:

pp_chars:

Integer;

Integer;

Integer,

pp_maxchars: Integer;

pp_chars:

pp_chars:
pp_chars:
pp_chars:
pp_chars:
pp_chars:

pp_chars:

pp_chars:

Integer;

Integer;
Integer;
Integer;
Integer;
Integer;
Integer;

Integer;

amenn

- e oo cuaamE S -

P

Appendix C

/ Page 102

5.7 Exit Statements
eaxit =

5.8 Raturn Statements

6.1 Subprogram Declarations

subprogram_decl =>
proc_id =»
function_id =
def_op =
procedure =>
function =»

param_s =>

in =

in_out =»
out =»

in _i4 =
in_out_id =
out_id =»

6.3 Subprogram Bodies
subprogram_body =>
6.4 Subprogram Calls
procedure_call =»
function_call =»>

Assoc =>

7. Packages
7.1 Package Structure

pp_chars:

pp_chars:

pp_chars:

pp_chars:
pp_chars:
pp_chars:
pp_chars:
pp_chars:
pp_chars:

pp_chars:

A Pretty-Printer for ADA

Integer;

Integer;

Integer;

Integer;
Integer;
Integer;
Integer;
Integer;
Integer;

Integer,

pp_maxchars: Integer;

pp_chars:
pp_chars:
pp_chars:
pp.chars:
pp_chars:

pp.chars:

pp.chars:

pp._chars:

pp.chars:

pp_chars:

Integer;
Integer;
Integer;
Integer;
Integer;

Intege:r;

Integer;

Integer;

Integer;
Integer;

IDL Reflnement of DiaNA for Pretty Printing Appendix C / Page 103

: ‘ package_decl => pp_chars: Integer;

‘ package_id => Pp_chars: Integer;
package_spec => pp_chars: Integer;
decl_s = pp_chars: Integer,

pp_maxchars: Integer;
package_body => pp_chars: Integer;
~— 7.4 Private Type and Deferred Constant Declarations
private =» pp_chars: Integer;
1l _private => pp_chars: Integer;
private_type_id => pp.chars: Integer;
1_private_type_id => pp.chars: Integer;

8. Visibility Rules

8.4 Use Clauses

nams_gs => pp._chars: Integer,
pp_maxchars: Integer;

use =» pp_chars: Integer,
pp_maxchars: Integer;

— 8.5 Renaming Declarations
rename => pp_chars: Integer;
9. Taaks

9.1 Task Specifications and Task Bodies

task_decl => pp_chars: Integer;

task_spec => . pp_chars: Intager;

task_body => pp_chars: Integerx;

task_body_id =» pp_chars: Integer;

— 9.5 Entries, Entry Calls and Accept Statements

entyy => pp_chars: Integer;

ontry_1id => pp_chaxrs: Integer;

entry_call = pp_chars: Integer;

{ aocept => pp_chars: Integer;

— 9.6 Delay Statewments, Duration and Time

Appendix C / Page 104

dealay =>
— 9.7 Select Statements
-~ 9.7.1 Selective Waits
select =»
select_clause_s =>

select_clause =>
terminate =>

~— 9.7.2 Conditional Entry Calls

cond_entry =»

~—~ 9.7.3 Timed Entry Calls

timed_entry =»

— 9.10 Abort Statemsnts

abort =»>

— 10. Program Structure and Compilation Issues

A Pretty-Printer for Aba

pp_chars: Integer;

pp.chars: Integer;

pp_chars: Integer,
Ppmaxchars: Integer,;

pp_chars: Integer;

pp_chars;: Integer;

pp.chars: Integer;

pp_chars: Integer;

pp._chars: Integer;

— 10.1 Compilation Units - Library Units

compilation =»
compilation =»

pragma_s =>

comp_unit =>

-= Context Clauses - With Clauses

context =»

with =>

pp.nest: Integer; -— maximum nesting

pp_chars: Integer,
pp_maxchars: Integer;

pp_chars: Integer,
PP_maxchars: Integer;

pp.chars: Integer;

Pp_Chars: Integer,
Pp_maxchars: Integer;

po_chars: Integer, i
pp_maxchars: Integer; {

— 10.2 Subunits of Compilation Units i

subunit =>
stud =>
— 11. Exceptions

o e il -m a i PRRPR P W7 T ;‘&__m*_——_)

pp.chars: Integer;
pp_chars: Integer;

?
|
A

IOL Refinement of DNA for Pretty Printing

- 11.1 Exception Declarations

exception =»
exoeption_iq =»
— 11.2 Exception Handlers
== 11.3 Raise Statements
raise =>

12. Generic Program Units

12.1 Generic Declarations
genexic =»>

generic_id =>
generic_param_ s =>

box =>
formal_dscrt =»
formal_fixed =>
formal_float =>
formal_integer =»

- 12.3 Generic Instantiation

generic_assoc_s =»>

instantiation =>

pp._chars:
pp_chars:

pp_chars:

pp_chars:
pp_chars:
pp_chars:

Appendix C / Page 108

Integer;
Integer;

Integer;

Integer;
Integer;
Integer,

pPp_maxchars: Integer;

pp_chars:
pp_chars:

pp_chars:

Integer;

Integer;
Integer;
Integer;
Integer;

Integer,

pp_maxchars: Integer;

pe_chars:

— 13. Representation Clauses and

— Implemsntation Dependent Peatures

= 13.1 Representation Clauses

- 13.2 Length Clause

Integer;

-~ 13.3 Enumeration Representation Clauses

simple_xep =»

pp_chars:

— ;3.4 Record Representation Clauses

aligmnment =»
record_xep =»
ocoEp_rep._s =»

comp_xep =

pp_chars:
pp_chars:
pp_charse:

Integer;

Integer;
Integer;
Integer,

ppaxchars: Integer;

pp_chars:

Integer;

ok k 2

L‘\..

Appendix C / Page 108 A Pretty-Printer for ADA

{ . — 13.5 Mdress Clauses
address = pp_chars: Integer;
— 13.8 Machine Code Insertions
code => pp_chars: Integer;

- 14.0 Input-Output

— I/0 procedure calls are not specially handled. They are
— represented by procedure or function calls (see 6.4).

Predefined Diana Environment

NN

atty_id = pp_chars: Integer;

pragme_id => pp_chars: Integer,
Pp_maxchars: Integer;

e
R s N e

Format Control

Appendix D /7 Page 107

APPENDIX D
FORMAT CONTROL

In this appendix we present the ADA pcckage that contains the subprograms to
do the formatting of the reconstructed source.

D.1. Package Specification

— Package that provides operations to

package FORMAT is
LineLength:
constant POSITIVE := 120;
tyre Column is
range O..LineLength;

AddText(Text: in String);
ResPorm(Text: in String);
ComPform(Text: in String);

IdentForm(Text: in String);
function return Column;
function Position return Column;
procedure NewLine;
procedure Indent;
procsdure Undent;

procedure SetIndent(Pos: in Column)

end FORMAT;

Fformat reconstructed Ada source

1= 11

length of the ocutput line
position on the line

store Text into the output
store an Ada reserved word
store a comment

store a program identifier
unused characters in buffer
used characters in buffer
output new line with indentation
increment from last indentation
revert to previous indentation

set indentation to Pos

e p———ir R b < r s

Page 108 A Pretty-Printer for ADA

{

&4

(41

A. Evans. K. Butler.
Diana Relerence Manuel.

Technical Report TL-83-4, Tarian Laboratories Inc.. February. 1983.
Revision 3.

J.D. Iichbiah. B. Krieg-Brueckner, B.A. Wichmann. H.F. Ledgard. J.C.

Heliard. J.R. Abrial, J.G.P. Barnes. M. Woodger. O. Roubine. P.N.

Hilfinger, R, Firth.

Reference Manual for the Ada Programming Language

Oraft revised MIL-STD 1815, July 1982 edition, Honeywell. inc.. and
Cli-Honeywell Bull, 1982. ‘

B. Krieg-Brueckner. D.C. Luckham. F.W. von Henke. O. Owe.
ANNA: Language for Annotating Ades Programs.
Technical Report., Computer Systems Laboratory. Stanford University. 1982.

J.R. Nestor, W.A. Wulf, D.A. Lamb.

IDL ~ Interface Description Language: Formal Description.

Technical Report CMU-C8-81-139, Carnegie-Mellon University, Computer
Science partment., June, 1982.

Revision 2.0.

