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ABSTRACT

A hybrid finite element cum T-matrix technique is introduced for the

analysis of problems involving acoustic wave scattering by shells of revo-

lution immersed in water. The concept of a mechanical impedance or recep-

tance is used from the theory of vibrations to provide a relationship

between the velocity of the shell surface and the pressure acting upon it.

This relationship is introduced in the Helmholtz integral relations for the

incident and scattered fields and a T-matrix for the scattering problem is

derived. The mechanical impedance is calculated by a conventional FEM

technique. Numerical results are obtained for spherical shells as a check

on the numerical procedure and also for a finite capped cylindrical shell

for waves incident along the rotational axes of symmetry. The comparison

with the experimental results of Dr. S. Numrich and Dr. L. Dragonette of

the Naval Research Laboratory is excellent.
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INTRODUCTION1

In this report a hybrid method employing the T-matrix approach1'

along with a finite element formulation is introduced for the analysis

of problems involving the scattering of sound waves by elastic shells

immersed in water. It is shown that by using the concept of a mechanical

impedance, we can avoid the use of integral representations in the interior

of the scatterer or the use of fluid elements in the exterior and 3-D

elements in the interior of the shell. In other words, this method ex-

ploits the best features of both the T-iuatrix method and the FEM. The

latter of course can successfully handle several geometries of practical

interest.

The impedance of the shell is calculated and it provides the necessary

relationship between the velocity on the shell surface and the pressure

acting on it. Thus the number of unknowns in the scattering problem is

reduced by one. The integral representation of the scattered field and

the extincting theorem are then used in the conventional manner to yield

a T-matrix for the problem. Another byproduct of the receptance calcula-

tion is that the free vibration frequencies of the shell are also generated

many of which can be identified with the maxima and minima of the spectrum

of the scattered pressure field.

Previous calculations for acoustic wave scattering from elastic shells

of revolution 1experienced numerical difficulties as the shell thickness

decreased and the frequency increased. Moreover the formulation used

invoked integral representations in the interior of the shell region, this

resulted in very complicated expressions for the T-matrix which depended

on 5 or 6 different matrices. Some of these matrices are quite ill condi-

tioned. With the present scheme, the scattering problem is'a purely scalar

one and hence much better conditioned numerically.
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FORMULATION OF THE SCATTERING PROBLEM

Consider a shell of revolution bounded by the surface S with a

piecewise continuous outward normal n that is immersed in water. The

acoustic field in water is described by the scalar potential 0. We con-

sider a time harmonic plane wave of frequency w incident on the shell.

Without loss of generality, the plane of incidence can be considered to

be the x-z plane. Further the time dependence of all fields is exp(-iwt)

and this is suppressed for brevity. The total field outside the shell

is given by

06,) - 00('r) + 0 s(,r) ; 'r e V (1)

where 00 and 0s are the incident and scattered fields respectively.

The free space Green's function in the fluid is given by

0. 4. -0. _.

g(rr)- expikfIr-r'l/lr-r'I (2)

where kf w/cf is the wavenumber in the fluid, c is the sound speed

in the fluid and r and r' are respectively the field and source points.

The scalar potential satisfies a homogeneous wave equation in V and

so also does g except at r = r'. The integral representation for such

a system is known to be

~~~~~ j {(D.'i.V'g( ', ') - g ,")'.€}S
4Tr

' S

S V(3)

;r cV

The first form of Eq. (3) for r V, is known as the extinction theorem

and the second form of Eq. (3) for r E V is the integral representation

of the scattered field. The surface quantity 0+ - (iwof)-lp+,p4,where

P+ is the surface pressure and of is the mass density of the fluid. The

surface quantity n.7+t - n.V+ where V+ is the fluid particle velocity on S.
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Both these quantities are unknown.

In the T-matrix approach, o s and g are all expanded in a set

of spherical functions that are given by

Ou h~l) (kf r )

' o( ) Y R Ymo6* (4)
Re Jit(kfr)

where h(1) are spherical Hankel functions of the first kind, J , are the

spherical Bessel functions and Yt~m are normalized spherical harmonics.

The index Z e (0,-], m e [0,1] and a denotes the angular parity - even or

odd. The incident plane wave

- ik f i .%(r) - e a (k noo)Re*o r)  (5)
tZo

where

a o = 47 il- mG(ko) (6)

and ko is the direction of propagation of the incident wave.

The scattered field satisfies radiation conditions at infinity and

hence is expanded in outgoing functions

,(r')-y f ma. I oua(r) (7)
Zma

where the expansion coefficients ftma are to be determined.

The expansion of g is known to be

g(r i Ou, r('))Re* t 0 (') iklr'> (8)

Substituting Eqs. (5), (7) and (8) in the two forms of Eq. (3) and using

the orthogonality of the angular parts of the spherical basis functions

we have

ikf-a~m " - f { g.ma OLu~Qma.l+ dS (9)



and

k
f - f { 4+n.~R~ -'Me (10)

The surface pressure and normal component of the particle velocity are

related through the mechanical receptance of the shell as follows.

We expand the normal component of the velocity on the shell

surface

n Cn (11)
n

where qn are any set of basis functions associated with the shell. In

the next section, we shall identify qn with the eigenvectors of the shell.

The pressure on the surface of the shell is expanded as shown below

B " n qn (12)
n

The mechanical receptance of the shell is the ratio of the surface ve-

locity to the surface pressure and in the next section we show that

C R , (13)

n nn' n

where R is the receptance matrix. Substituting Eqs. (1l)-(13) in (9) and

(10) we have

an * -J. QnnI On , q )B n ,  (14)
n' n

f = i Qnn'(Renqn')B (15)
n I

where the superindex n - (4,m,a) and

Q (Ouo,, ", E f ((.V unn ma'n')' 4T S Re R ma )

R ou }%n,,dS (16)

t
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Equations (14) and (15) can now be formally solved to yield

f t ,a (17)
n n n

where

T - Q(Ret,,q)[Q(Ou,q)]- 
(18)

is the T-matrix of the scatterer.

The following properties of the T-matrix resulting from reciprocity

and the conservation of energy can be shown

T = T t (symmetry) (19)

TT* - Real(T) (20)

The above properties can be used as a check of the numerical computations.
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CALCULATION OF MECHANICAL RECEPTANCE

To calculate the receptance the shell theory of elasticity is used

in conjunction with a finite element approximation. Consider a shell of

revolution of thickness 2h. The variable s is a length coordinate

measured on the mid-surface o4- the shell (see Fig. 1). Let u and w be the

normal and tangential displacements of the shell surface and 8 is a meridi-

2,3onal deflection. According to the assumptions of shell theory2 '3 , the

strains and displacements are related as follows

au +s s+R

(wcoso + usino)/r

d6s- - + (u/R) (21)

- sin (8-u/R)/r
dw -

Lds

where R is the principal radius of curvature in the u-w plane and r and

P are measured as shown in Fig. 1. In Eq. (21), cs and E, are membrane

strains, Xs and ;1 are bending strains and y is a transverse shear strain.

The strain energy of the shell can be written as

It T D dS - ff T u dS (22)

where

u . w (23)

is the displacement vector and f is the vector of the external force and

D is the elastic matrix

D D (24)
D
3
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where for linear, isotropic materials

Eh= 2 D2 " Vh3 ; D3  Eh (25)
1-V2  V1 2 12(1-v 2)  V 1

In Eq. (25), E is the Young's modulus and v is the Poisson's ratio.

4Through the usual finite element approximation process , the dis-

placements at any point on the surface of the shell are written as

U U + N U ; r E (26)
i+1 i+l i

where Ni are shape functions and i refers to the i-th node and E is the

i-th element. Ui and Ui+1 are the nodal values at the edges of the element

E V We note that for axisymmetric problems, there is no dependence of the

fields on the azimuthal angle.

Using Eq. (26) in (21) and (22), the element stiffness matrix can

be written as

+1

K - f BTDB dS (27)-l i i+l

where

N i  ,, -n a n d N i + I  -n

where 'n' is measured along the curved length of the element.

The matrix B is given by

i N0

7s R

Nisino N icos

r r

Bi (28)
1 dNi dNi
R ds 0ds

N isin0 N isino

rR r

0 dN 1 N
ds
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The element mass matrix can be derived from the expression for the

kinetic energy which after integration in the thickness direction and

the azimuthal direction can be written as

)2 +* 2 + h2

(1h)2 $]27rrds (29)

where p is the mass density of the shell. The last term in the integrand

of Eq. (29) is the rotary inertia term.

The minimization of the Lagrangian leads to the following matrix

equation

K{Q} + M{Q} = 0 (30)

where (Q} is the nodal vector of modal values of the displacement and M

is the mass matrix that results when Eq. (26) is substituted in (29) and

the Lagrangian is minimized. If one assumes that the time dependence of

{Q} is of the form
iWnt

(Q} - qne n (31)

then

2 (32)K(%}) -n M{q n1 32

where wn is the n-th eigenvalue and {q n} is the corresponding mode shape.

Since the eigenvectors are arbitrary up to a multiplicative factor, it

is convenient to make use of the fact that (qn} are orthogonal with

respect to the mass matrix and normalize the (qn} such that

{qnT M(qn,} - 6 n, (33)

Once the eigenvalues and eigenvectors are determined for the free

vibration of the shell, now the forced vibration problem is considered.

The boundary condition on the shell-fluid interface is that the pressure

and the normal component of the velocity are continuous. The surface

value of the pressure is related to t+ and the equivalent nodal forces
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can be written as

(F1 = (f}e- 1 i B nfn}e- it (34)
n

where the f nI are derived from Eq. (12). The vibration problem now is

K{Q} + M(Q} IFl (35)

The nodal displacements are expanded in terms of the eigenmodes as

(Q - Cn(q n }  (36)
ii

Substituting Eqs. (34) and (36) in (35), we obtain

.%, }{f }
n2 (3

n

This is the form of R used in the definition of the Q-matrix in Eq. (16,

I V

I1

I!



RESULTS AND DISCUSSION

The first check of this method was done by performing calculations for

a spherical shell. The top hemisphere of the shell was successively divided

into 10 and then 20 elements. Both symmetric and anti-symmetric boundary

conditions were applied at the equator and the eigenvalues and eigenvectors

were generated by the usual finite element procedure. It was judged that

20 elements were sufficient to assure convergence. The eigenmodes of the

sphere fall into two broad classes, the so-called bending and membrane nodes.

In Table I, the natural frequencies for the spherical shell computed with

10 and 20 elements are compared with analytical results.

For the spherical capped cylinder where length (2z) to diameter (2a)

ratio is 1.6, (see Fig. '), 35 elements were used for the upper half of the

shell. In Table II the natural frequencies of the capped cylinder are tabu-

lated. For the scattering problem a frequency range O<k --<15.0 was considered
f

and 44 eigenmodes were used in the calculation of the receptance. Out of

these, 25 can be identified to be predominantly bending modes. The symmetry

of the T-matrix was better than 1/2% in the entire frequency range

0 < k Z/2 < 15.0. Only the case of waves incident along the rotational
f

axes of symmetry was considered. The frequency response of the scactred

pressure field at distances far from the shell are plotted in Figs. 3, 4

and 5 for 3 different angles of observation. In Fig. 3, a portion of the

calculated back scattered spectrum is compared with the experimental

results provided to us by Dr. S. Numrich and Dr. L. Dragonette of the

Naval Research Laboratory, Washington, D.C. The agreement is excellent.

The experiment, which was of the pulse-echo type had a sampling interval

of Ak a = 0.1 and hence the sharp resonance at kfa = 9.3 which is seen
f f

in the calculation was missed while performing an FET from the time to the
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frequency domain. The experiment is very well calibrated and the maxi-

mum difference in the amplitude is less than 3db.

In conclusion, we have demonstrated a practical technique for the

study of acoustic wave scattering by thin elastic shells of revolution.

Due to the use of the finite element method for the calculation of the

shell receptance, practical shapes and features such as stiffeners can

be taken into consideration. The results from this new technique are

far superior to that resulting from the use of a full elasticity solution

for the shell. The approach is better conditioned numerically and is ex-

pected to yield stable results for aspect ratios greater than that by

the conventional solution. It now remains to extend the calculation to

oblique angles of incidence with respect to the rotational axes of symmetry.
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TABLE I

Natural Frequencies 0 of Spherical Shell

in Nondimensional Units Q - FZR 2w /E

10 elements 20 elements Analytical

b1  0.2905 x 10- 3  0.6774 x 10-4  0.0

b 2  0.7221 0.7245 0.7259

b3  0.8756 0.8814 0.8855

b4  0.9786 0.9858 0.9939

b5  1.107 1.108 1.212

b6  1.295 1.274 1.296

b7  1.561 1.495 1.528

b 1.915 1.771 1.818

b9  2.364 2.100 2.167

b10 2.914 2.479 2.570

b11 3.574 2.904 3.026

b12  4.351 3.374 3.532

a0  1.78713 1.78713 1.78713

a1  2.187 2.188 2.189

a2  2.990 2.988 2.989

a3  3.981 3.966 3.963

a4  5.056 5.004 4.993

a5  6.158 6.070 6.044

a6  7.312 7.154 7.105

a7  8.510 8.253 8.172

a8  9.757 9.367 9.242

a9  10.50 10.31

a10  11.64 11.39

a11  12.80 12.46

a 12 13.98 13.54



TABLE II

Natural Frequencies 0 of Finite Capped Cylinder,

L/2a-l.6 in Non-dimensional Units (Q - .'R2wZ/E)

Bending Modes Membrane modes
b I  0.0 a 5.387

b 2.639 a 7.522
2 1

S 3 = 3.213 a2 8.904

b4 - 3.696 a3  11.45

b5  3.854 a4  14.33

b6  4.038 a5  17.08

b 7 4.331 a6 20.13

b - 4.731 a7  23.11

b 5.207 a8  26.09

b b0o 5.893 a9  32.23

b11 6.53 a10  35.31

b ' 7.343 a1 41.55

S13 8.257 a12 44.7

b14 9.243

b15 ' 10.29

b16 - 11.48

617 - 12.71

b18 - 14.01

b19 = 15.4

b20 - 16.84

b2 1 - 18.36

b22 - 19.8

b23 - 21.55

b24 - 22.24

- . ,. .. . .. . . . -. . . .
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Fig. 1. Shell coordinateS and displacements.



IZI

100

Fig 2. Fnt yidrwt peia n as



.- THEORY
16 - - EXPERIMENT

dB -

4.0 8.0 12.0

kl/2 /.

, I

I

1 I

-16

-32-

FINITE CYLINDRICAL SHELL IN WATER

FORM FUNCTION vs FREQUENCY

Fig. 3. Backscattered form function as a function of non-
dimensional wavenumber for normal incidence (o0,
0-1800).
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