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ABSTRACT

A hybrid finite element cum T-matrix technique is introduced for the
analysis of problems involving acoustic wave scattering by shells of revo-
lution immersed in water. The concept of a mechanical impedance or recep-
tance is used from the theory of vibrations to provide a relationship
between the velocity of the shell surface and the pressure acting upon it.
This relationship is introduced in the Helmholtz integral relations for the
incident and scattered fields and a T-matrix for the scattering problem is
derived. The mechanical impedance is calculated by a conventional FEM
technique. Numerical results are obtained for spherical shells as a check
on the numerical procedure and also for a finite capped cylindrical shell
for waves incident along the rotational axes of symmetry. The comparison
with the experimental results of Dr. S.Numrich and Dr. L. Dragonette of

the Naval Research Laboratory is excellent.
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INTRODUCT ION

In this report a hybrid method employing the T-matrix approachl'2
along with a finite element formulation is introduced for the analysis
of problems involving the scattering of sound waves by elastic shells
immersed in water. It is shown that by using the concept of a mechanical
impedance, we can avoid the use of integral representations in the interior
of the scatterer or the use of fluid elements in the exterior and 3-D
elements in the interior of the shell. In other words, this method ex-
ploits the best features of both the T-matrix method and the FEM. The
latter of course can successfully handle several geometries of practical
interest.

The impedance of the shell is calculated and it provides the necessary

relationship between the velocity on the shell surface and the pressure

acting on it. Thus the number of unknowns in the scattering problem is S

reduced by one. The integral representation of the scattered field and
the extincting theorem are then used in the conventional manner to yield
a T-matrix for the problem. Another byproduct of the receptance calcula-
tion is that the free vibration frequencies of the shell are also generated
many of which can be identified with the maxima and minima of the spectrum
of the scattered pressure field.

Previous calculations for acoustic wave scattering from elastic shells

of revolutionl experienced numerical difficulties as the shell thickness

decreased and the frequency increased. Moreover the formulation used i

invoked integral representations in the interior of the shell region, this
resulted in very complicated expressions for the T-matrix which depended

on 5 or 6 different matrices. Some of these matrices are quite ill condi-
tioned. With the present scheme, the scattering problem is a purely scalar

one and hence much better conditioned numerically.
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FORMULATION OF THE SCATTERING PROBLEM

Consider a shell of revolution bounded by the surface S with a
plecewise continuous outward normal n that is immersed in water. The
acoustic field in water is described by the scalar potential ¢. We con-
sider a time harmonic plane wave of frequency w incident on the shell.
Without loss of generality, the plane of incidence can be considered to
be the x-z plane. Further the time dependence of all fields is exp(-iwt)
and this is suppressed for brevity. The total field outside the shell
is given by

o) = o (D +o (D 5T eV eh)
where @o and ¢s are the 1ncident'and scattered fields respectively.

The free space Green's function in the fluid is given by
g(£,z') = expikf|;-;'|/l;-;'] (2)
where kf = w/cf is the wavenumber in the fluid, cg is the sound speed
-> -
in the fluid and r and r' are respectively the field and source points.
The scalar potential satisfies a homogeneous wave equation in V and

so also does g except at T=1'. The integral representation for such

a system is known to be

= s{ {oJn"-V'g(F,E" - g(F,r")n'+73s}ds"
-, (0) ;T AV
- > &)
¢ (p) 5t eV
The first form of Eq. (3) for T4 V, is known as the extinction theorem

and the second form of Eq. (3) for T ¢ V is the integral representation

of the scattered field. The surface quantity ¢ = (1wof)~1p+, where

P+ is the surface pressure and og is the mass density of the fluid. The

N . -
surface quantity n-7+3 = n-V+ where V. is the fluid particle velocity on S.




Both these quantities are unknown.

In the T-matrix approach, ¢°, ¢s and g are all expanded in a set
of spherical functions that are given by

Ou hgl) (kft) ’

Yimg D) = ‘ Y, (8,9) )

Re jl(kft)
where hgl) are spherical Hankel functions of the first kind, jl are the
spherical Bessel functions and Ylmc are normalized spherical harmonics.
The index £ € {0,=], m € [0,2] and o denotes the angular parity - even or

odd. The incident plane wave

. ikok ¥ X N
9,(x) = e = ] ag (k)Res, () (5)
imo
where
3me Anilynnc(ko) (6)

A

and ko is the direction of propagation of the incident wave.

The scattered field satisfies radiation conditions at infinity and

hence is expanded in outgoing functions

>, ->
to(x) = Q‘EQ £ img OV gno(E) M

where the expansion coefficients fzmo are to be determined.

The expansion of g is known to be

> >y > >
g5 = 1k, ] | oub g rmen g @y IE IR ©
Sl R LI
Substituting Eqs. (5), (7) and (8) in the two forms of Eq. (3) and using
the orthogonality of the angular parts of the spherical basis functions

we have

ik
f -~ a
"3 ms " Wr [ 1 byn-V0uY - Ouy -7 91 dS ®
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and

1k
f P A
fomo = T [ (44n-TReV - Rev,, -7 0 1ds (10)

The surface pressure and normal component of the particle velocity are
related through the mechanical receptance of the shell as follows.
We expand the normal component of the velocity on the shell
surface
n.9v¢= ch 9, (1D
n
where q, are any set of basis functions associated with the shell. In
the next section, we shall identify 9 with the eigenvectors of the shell.

The pressure on the surface of the shell is expanded as shown below

Yo" an n (12)

" The mechanical receptance of the shell is the ratio of the surface ve-

locity to the surface pressure and in the next section we show that
c, = E' R+ B (13)

where R is the receptance matrix. Substituting Eqs. (11)-(13) in (9) and

(10) we have
a =~ -1]Q (0w q 0B, (14)

n'
£~ 1 E'an.(aewn.qn.)nn. (15)

where the superindex n -~ (2,m,0) and

k, 0
i ~ Ol.l
Ut OV g0 qr? = 75 gn .g {(nVpq ¥ing
Ou
'Sntnu - annnkew mo }q“nds (16)




Equations (14) and (15) can now be formally solved to yield
£ E' T ot 3 n

where

T = - Q(Re¥,q) [Q(Ouv,q) 17" (18)

is the T-matrix of the scatterer.

The following properties of the T-matrix resulting from reciprocity

and the conservation of energy can be shown

T = '1'c (symmetry) (19)

TT* = - Real(T) (20)

The above propettieé can be used as a check of the numerical computations.




CALCULATION OF MECHANICAL RECEPTANCE

To calculate the receptance the shell theory of elasticity is used
in conjunction with a finite element approximation. Consider a shell of
revolution of thickness 2h. The variable s {s a length coordinate
measured on the mid-surface oi the shell (see Fig. 1). Let u and w be the

normal and tangential displacements of the shell surface and 8 is a meridi-
2,3

onal deflection. According to the assumptions of shell theory”'~, the
strains and displacements are related as follows
- - -
r X u | w
s s + R
€, (weosd + using)/r
Xs - -2y Lwm (21)
X _ - sin¢(8-u/R)/r
dw
Y == -8
[ | s |

where R is the principal radius of curvature in the u-w plane and r and
$ are measured as shown in Fig. l. 1In Eq. (21), € and €, are membrane
strains, Xg and Xy are bending strains and vy is a transverse shear strain.

The strain energy of the shell can be written as

t = 3/ peas- [l uas (22)

>~ u
u = { w } (23)
3

is the displacement vector and E is the vector of the external force and

D 13 the elastic matrix

. :
D = D, (24)




where for linear, isotropic materials

En |1V En>
D) =—3 i Dy = ———
1-v v 1 12(1-v°)

In Eq. (25), E is the Young's modulus and v is the Poisson's ratio.
Through the usual finite element approximation processl‘, the dis-

placements at any point on the surface of the shell are written as

> > - -> -
U(r) = NU, + Ny Uy 50T

where Ni are shape functions and i refers to the i-th node and Ei is the
i-th element. Ui and Ui+l are the nodal values at the edges of the element

Ei' We note that for axisymmetric problems, there is no dependence of the

fields on the azimuthal angle.

Using Eq. (26) in (21) and (22), the element stiffness matrix can

be written as

where

- 1l-n - 1+n
Ny == and Ny =55

where 'n' is measured along the curved length of the element.

The matrix B is given by
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The element mass matrix can be derived from the expression for the

kinetic energy which after integration in the thickness direction and

the azimuthal direction can be written as

2

2
T= %’-(oh) [+ 11\‘2' 82¢12ncds (29)

where ¢ is the mass density of the shell. The last term in the integrand
of Eq. (29) is the rotary inertia term.

The minimization of the Lagrangian leads to the following matrix
equation

K(Q} + M{Q} = O (30)

where {Q} is the nodal vector of modal values of the displacement and M
is the mass matrix that results when Eq. (26) 1is substituted in (29) and
the Lagrangian is minimized. If one assumes that the time dependence of
{Q} is of the form
iunt
{Q} = q.e (31)

then

Klq } = -wnzM{qn} (32)

where w_ is the n-th eigenvalue and {qn} is the corresponding mode shape.
Since the eigenvectors are arbitrary up to a multiplicative factor, it
is convenient to make use of the fact that {qn} are orthogonal with

respect to the mass matrix and normalize the (qn} such that
(q 1 Mlq .} =6 (33)
In 94 nn'

Once the eigenvalues and eigenvectors are determined for the free
vibration of the shell, now the forced Qibration problem is considered.
The boundary condition on the shell-fluid interface is that the pressure
and the normal component of the velocity are continuous. The surface

value of the pressure is related to ‘e and the equivalent nodal forces




can be written as
{F} = (£)e7 1% « § B (£ }e it (34)
n o a
n
where the {fn} are derived from Eq. (12). The vibration problem now is

K{Q} + M{Q} = (F} (35)

The nodal displacements are expanded in terms of the eigenmodes as

Q= Jc lq} (36)
n

Substituting Eqs. (34) and (36) in (35), we obtain

T :
. {qn,} {fn}

~~
3

This is the form of R used in the definition of the Q-matrix in Eq. (16)
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RCSULTS AND DISCUSSION

The first check of this method was done by performing calculations for
a spherical shell. The top hemisphere of the shell was successively divided
into 10 and then 20 elements. Both symmetric and anti-symmetric boundary
conditions were applied at the equator and the eigenvalues and eigenvectors
were generated by the usual finite element procedure. It was judged that
20 elements were sufficient to assure convergence. The eigenmodes of the
sphere fall into two broad classes, the so-called bending and membrane nodes.
In Table I, the natural frequencies for the spherical shell computed with
10 and 20 elements are compared with analytical results.

For thevspherical capped cylinder where length (21) to diameter (2a)
ratio is 1.6, (see Fig. °), 35 elements were used for the upper half of the
shell. In Table II the natural frequencies of the capped cylinder are tabu-

lated. For the scattering problem a frequency range 0<§§

<15.0 was considered
f 3
and 44 eigenmodes were used in the calculation of the receptance. Out of

these, 25 can be ldentified to be predominantly bending modes. The symmetry
of the T-matrix was better than 1/2% in the entire frequency range

0 <« kfllz < 15.0. Only the case of waves incident along the rotational
axes of symmetry was considered. The frequency response of the scactared
pressure field at distances far from the shell are plotted in Figs. 3, 4

and 5 for 3 different angles of observation. In Fig. 3, a portion of the

calculated back scattered spectrum is compared with the experimental

results provided to us by Dr. S. Numrich and Dr. L. Dragonette of the

Naval Research Laboratory, Washington, D.C. The agreement is excellent.

The experiment, which was of the pulse-echo type had a sampling interval

of Ak_.a = 0.1 and hence the sharp resonance at kfa = 9.3 which is seen

£

in the calculation was missed while performing an FFT from the time to the
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frequency domain, The experiment is very well calibrated and the maxi-
mum difference in the amplitude is less than 3db.
In conclusion, we have demonstrated a practical technique for the

study of acoustic wave scattering by thin elastic shells of revolution.

- Y
O Sy

i

Due to the use of the finite element method for the calculation of the
shell receptance, practical shapes and features such as stiffeners can
be taken into consideration. The results from this new technique are
far superior to that resulting from the use of a full elasticity solution
for the shell. The approach is better conditioned numerically and is ex-
pected to yield stable results for aspect ratios greater than that by b
the conventional solution. It now remains to extend the calculation to

oblique angles of incidence with respect to the rotational axes of symmetry.
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TABLE I

Natural Frequencics ) of Spherical Shell
in Nondimensional Units @ = vIRZWZ/E

10 elements 20 elements Analytical
b,  0.2905 x 1073 0.6774 x 107 0.0
b, 0.7221 0.7245 0.7259
by 0.8756 0.8814 0.8855
b, 0.9786 0.9858 0.9939
by 1.107 1.108 1.212
bg 1.295 1.274 1.296
b 1.561 1.495 1.528
bg 1.915 1.771 1.818 ;
by 2.364 2.100 2.167 '
by 2.9 2.479 _ 2.570 |
by, 3.574 2.904 3.026 :
b, 4.351 3.374 3.532 i
a, 1.78713 1.78713 1.78713 ., |
a, 2.187 2.188 2.189 y
a, 2.990 2.988 2.989
ay 3.981 3.966 3.963 |
a, 5.056 5.004 4.993
ag 6.158 6.070 6.044
a 7.312 7.154 7.105
a, 8.510 8.253 8.172
ag 9.757 9.167 9.242
ag 10.50 10.31
a0 11.64 11.39
a); 12.80 12.46
aj, 13.98 13.54 :




TABLE II

Natural Frequencies 2 of Finite Capped Cylinder,
2/2a=1.6 in Non-dimensional Units (9= VT YN

Bending Modes
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0.0
2.639
3.213
3.696
3.854
4.038
4.331
4.731
5.207
5.893
6.53
7.343
8.257
9.243
10.29
11.48
12.71
14.01
15.4
16.84
18.36
19.8
21.55
22.24

Membrane modes

5.387
7.522
8.904
11.45
14.33
17.08
20.13
23.11
26.09
32.23
35.31
41.55
44.7

/E)




Fig. 1.

Shell coordinates and d

isplacements.
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FINITE CYLINDRICAL SHELL IN WATER
FORM FUNCTION vs FREQUENCY

Fig. 3. Backscattered form function as a function of non-
dimensional wavenumber for normal incidence (8 =0,
o
8=1809).
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