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Multivariate Dependent Renewal Processes

1. Introduction. The standard place of renewal point-processes

in Reliability theory is in the analysis of repair-vs-replace

decisions and of the costs associated with various maintenance

policies (cf. Barlow and Proschan, 1975, Chapter 6). However,

even when attention centers on a single device, a realistic

model of reliability would require description of dependent

components which affect each other's failure rates but fail

and are replaced separately. The simplest case of such a model

would be a system of independent components in which failure

of one component places an extra load or shock on the others,

with the effect of permanently multiplying their hazard rates

(by a fixed function of time). Freund (1961) introduced this

model for two component lifetimes TI,T 2 , defining conditional

hazard functions (cf. the definitions in Cox and Lewis, 1967)

lim A-1PT i t+A min(TT) > a for i =1

18-+0 p for i 2

-a' for i1= , jz=2

lim A- P(T f t+A I T s < t T ==

A-0 P' for i = 2, j= 1

In the context of dependence between death and censoring

times in survival data analysis, Slud and Rubinstein (1983)

generalized the case : of the Freund model to allow a,

p, and a to be arbitrary hazard functions depending on t.

In the present paper, we define a general model of dependence
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between a finite number k of component lifetimes, including the

Freund and generalized Freund models as special cases. The

form of dependence - involving the current life-lengths of the

components in a regression model like Cox's (1972) for the con-

ditional hazards - allows the instantaneous replacement of

failed components by independent new ones, leading to a class

of dependent failure point-processes generalizing the renewal

point-processes.

In Section 2 we define our model, formulate the vector

process of current component lifetimes as a Markov process and

study the behavior of stationary distributions. Some explicit

calculations for asymptotic joint distributions of component

current-lives are given in Section 3 for a special model with

one-way dependence. Also for two generalizations of Freund's

(1961) shock model, we discuss in Section 3 the qualitative

behavior of stationary distributions. Finally, statistical

inference procedures for the regression coefficients in our

model are derived both from full and partial likelihood score

statistics, and we compute asymptotic relative efficiency of

the two approaches in a bivariate example.

2. Model assumptions. Analysis of Markov process. We suppose

the right-continuous counting processes N (t), j= 1,...,k are

defined on [0,-) and have unit jumps with probability 1. It

is natural to interpret N.(t) as the number of failures (with

instantaneous replacement by an independent component) up to



time t of the jth component of an assembly. Our main model

assumption, given in terms of conditional hazard functions as

defined by Cox and Lewis (1972), is

() lim h -1p(N.(s+h)-N.(s) =11 N {N(u): 0 ufis, 1in ik})

h-J 3

(= kj (s))'-exp(t 1 ij(Iij (T(s))) gj(-V(s))

where for s >0

Y~s) s - min{u: s: N.(u) =N.(s)}

T(s) (T 1l(S),...,- k(S)),

the X.(*) are hazard functions and lim means limit in the mean.

The random variable Yr(s) is the current life at time s of com-

ponent j, and has been a principal focus of Reliability theory.

The model assumption (*), like the regression models of Cox

(1972) which inspired it, can be given a more general form -

the log-linear form of regression is especially tractable for

statistical inference, but by no means necessary for the Markov

process formulations of the present Section. The important

feature of (*) is that the dependence between components in-

volves only their current ages and no past history. (For a

model where past cumulative lifetimes of components, from the

time the assembly was placed in service, affect current hazards,

see Slud and Winnicki (1982).) We remark at once that in the

simple case of (*) where all ij are constants, it is clear
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that the N.() are k independent (delayed unless T(O),O)

renewal counting-processes.

In the present Section, we adopt the simpler notations

g.(x) = X.(xj)exp( ijoij W(x)), gj(x).

The regularity conditions on these functions needed for further

work are contained in the following Theorem, which summarizes

for general gj(') the information available from standard Mar-

kov process theory. Some additional notations required for the

Theorem are:

Ti(s) = inf{t > s: N(t) = N(s) + i

for i l

8i (s) = for which N.(Ti(s)) -N.(Ti(s)-) = 1

N(.) = t N (.), N(-) =  (N(-),...,NkC)), 1= (,..., i) k

j=l

t = ( ... , ,.-. O) = the jth canonical 
basis vector in )Rk

x =x- xj ej for x E IRk

Theorem 2.1. Assume that (N are right-continuous

counting processes on [0,-) without fixed discontinuities,

defined on some probability space (Q,F,P) and satisfying (*)

with functions gj(.) which are Borel measurable, non-negative,

and such that for all x

(A) _

(A < for sufficiently small e- (x) > 0

Win-
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for j =1,...,k, where e(x) is such that there exist

6,e0 >0 with e(x) e0 whenever min{xj: lj k} 8.

i) Then {_(s): s ?!0} is a stationary-transition Markov

process (with piecewise-constant right-continuous paths)

essentially determined by the joint conditional density given

Fs e ({N(u): O_u-!s}) of T1 (s) and Al(s):

f U
(2.1) f(u ,j IF ) gj((s) +ul)exp[- g(-(s) +vl)dv].

Moreover, all stationary distributions for the process

{T(s): s?0} have densities n(-) which satisfy for Lebesgue

almost all x

(2.2) k 1 f'+Xe)dy' = - n~x)g~y)dy + k Yygjyd
j=l [y i <xi, i~j I [Y i<Xilli<_k]  j=l [yi<xi~i~j]

(ii) If for each j and almost all x, g.(x) > h .(x.) O for
T

measurable h.(•) with fT g(x + ul)du < for all T< ,
3 0

p.. =J exp(-Hj(u))du < -, where Hj(u) hi(z)dz, llj(+-) , and

g(x_+ul)-g(x! +ul) ?! h(x+u) -h iu) for xE[O,.o), u>O,

then the laws of -(s) converge exponentially fast in total

variation to a probability law with density v(') uniquely

characterized by (2.2).



6

Remark. The assumptions (A) turn out to guarantee that the

random variables Ti(s) for all i !l, s >0, and arbitrary

T(O), are almost surely strictly positive and finite.

Proof of Theorem. For each M :O, s < u I < u2 < ... < UM ft,

and im (jl,...,M) E (1,...,k} M , we define M (ul'. ...'UM)

and

(2.3) cM(t,2,j I Fs ) lim .6M p{N(s) N(ul-61 ),
6i,...,6 M -0+

H(u i+Si)-N(ui-6i Ji',1 i -n M, N(t) = N(UM+6M) IF S}

where existence in the mean of the limits will be established

inductively in what follows. Here N(.) is almost surely right

continuous without fixed discontinuities on [s,-) given F5 , so

that if the limit in (2.3) exists then the random function

CM(.,uM,jM) I Fs ) is a.s. continuous on [UM,-). In particular,

c0 (tJFs ) = P{N(t) zN(s) IFs} exists and is a.s. continuous

in t for t >s. Moreover, if we denote differentiation from

the right in t by D+, then for M !O and t >s, existence of

(2.3) together with (*) implies

(2.4) D+CM(t,uM,1M I Fs ) -g(-(t))cM(t,jM,I M I Fs )

where T(t) is uniquely determined from the conditions

Ti(S) = ui' Ai( s) ii for 1 < i M; TM+l(S) >t

by the formulas

Wi
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(2.5) -(Ti(s)) = -r(Ti 1 (s)) + (Ti(s) -Til(s))l

- (rj i(Ti_(s)) +Ti(s) -Ti_l(s))e j , 2 fifM

C(t) = _(T q(s)) + (t -TM(S)).

From (2.4) it follows (Yosida, 1980, p. 239) that a.s. for

t > s

t-s
c0 (tIFs) = exp[- J g(-r(s) +vl)dv]

0
(2.6)

CM(t,j!,jal Fs ) = exp[- t~Mg(-r(uM) + vl)dv]%M(u,*,jt vs )
fo

while a direct application of (*) to (2.4) implies, assuming

the existence of (2.3) for given M,

(2.7) CM+ 1 (t, (UM, t ), (jM, Z) Fs) = g (.(t) M t,j4, M)Fs)•

Now (2.6) and (2.7) show, by a simple induction on M, that all

the limits (2.3) exist and a.s. for M_O (taking u0 = s)

t M
(2.8) cM(t, Ij 4Fs) exp[- f g(T(v))dv].l T g.i(T(ui))

t-um M rui-u i-1

exp[-0 g((uM)+vl)dv] F {expI.Tf u )+vl)dvgTui))}.
0 =lg 0i1 ) +d i

The factored form of the functions cM together, with the formu-

las (2.5) determining (') on [s,t] readily implies that

{tC(s) , s > 0l is a stationary-transition (Strong-) Markov

kprocess on [0,-)



theNow we need to make some technical comments regarding

the transition functions

P(t,x,A) PT-r(t) EA I _(0) = x)

Pn (t,x,A) P Jr (t) E A , N(t) n _r(0) = xj

where AEB([0,-) k ) is a Borel set and n= (nlln 2,...,nk)

is a vector of nonnegative integers. First, since the exis-
k

tence of limits in (2.3) implies with s=0, r((0) , M n.,

3=l

(2.9) P (t,x,A) ZMt f, qdu
i :nj=.{i:l.i.1, ji11 [ U.urt .

(where # denotes cardinality of a set), it is easy to check

by (2.8) that for each n, x, T

ri.> 1k Pn(s %,dy)g (y)ds = P{N(T) > 1 :E(O) = x}n : n -_>O, l j k 0

hence

Z fPn(t,x,dy)g(Y) < - for a.e. t E [0,o).n:n 0O, l_ -jk -!5 k

Secondly, from formula (2.9) it is clear that if n. >1 for

j l,...,k, then P n(t,x,.) is absolutely continuous with re-

kspect to Lebesgue measure on [0,o)k. Next, if n. >2 for

=j 1,...,k, (2.9) implies

k(2.10) Pn--t'x,[0,Zl)×'x.. 0loZk))- - ] = - Pn(t,x,[0,Zl)X...x0 )

- ) Pn(txdy)g(y) + - Pne(t,xdy)g.(y)

[o,zl)X...[O,zk) =i1 - -1Zk[Y i <zi," i*j]

%=""-l M . -'"-
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and the same formula holds with Pn replaced by P n

Since 
1

f g(x + ul)du for all x implies

kP n(t,x,[O,) ) 0 as t +o

n: nj<2 for somej -

the last statement of i) follows easily.

Finally, in part (ii) of the Theorem, if we define ran-

dom functions CM as in (2.8) with all gj(x) replaced by hj(xj),

and define Qn from M just as Pn was defined from cM in (2.9),

it follows inductively from assumptions in (ii), for fixed M,

0<u <U2< ... <uM<t, and if -(') is given on [0,t]
1 2 -

by (2.5) with s =0, that
t t

(g(x + vl) -g(T(v)))dv (,i(x+vl) -h((,)))dv

0 0

k
where h(x) E Y h.(x.). Therefure (putting s =_0 and writing

- jl -i

c M(-) for cM(-IFO))

t ,t

exp[f g(x+vl)dv]C(t,,M) exp[0 h(x+vl)dV]M(t 'j-)

and by (2.9) we have

k(2.11) P n(t,x,A)expf0 g(x+ul)du] _ Qn(t,_,A)exp[ (H (t +X.)-H.(X)]

- - 0-i

However, Q n(t,x,A) are precisely the transition functions

P{TH(t) E A NH(t) =n I T ( O) = x} for a process (CH(s),t{H(s): s >0)

_ _ -H
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satisfying (*) with gj(x) replaced by h.(x.), that is, for the

current-life and counting processes associated with k inde-

pendent renewal processes with renewal hazards hi(-). The

assumption tj <a implies these renewal current-life processes

are positive-recurrent with (Karlin and Taylor, 1975, p. 193)

f exp[-t Ht(yj)]dy

(2.12) Q(t,x,A) Qn (t,x,A) - A =- Q-(A)
n>O - l*'"2' "'k

k k'

as t -, uniformly in x E [0,-) , A 8 ([0,-) ). But

k

(2.13) P(t,x,Ac ) > Q(t,x,AC)exp[A (11 (t+x.)-H.( - g(x+ul)du]

implies, since P(t,x,.) and Q(t,x,.) are probability measures,

(2.14) P(t,x,A) -

k t

1-exp[ - (H.(t+x5 ) -H1 (x)) -f g(x+ul)du]'(i-Q (t,x,A)).

Fix 1 > 6 > 0. By comparison with the independent renewal

processes with hazards hi, one can find t0 so large that

(2.15) P{N.(t 0 1 for j =1,...,k I T(0) 
= x} 1-6

kuniformly in x ([0,.) Then (2.12) ,;ays that for, t I large

enough, for all x and A,

(2.16) JQ(t 1-t 0 ,x,A)- Q(A) II 6.
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On the event [N (t0 ) _>1 for j 1,... ,k], by local integrabil-

ity of g, there exis- 6 1 >0 such that, for the fixed t 1

in (2.16)
k

(2.17) inf exp[K (Hi (t 1 -t 0 +j (to) H (Tj (tC)
(O):xj[O,-) j=l

rtl-to

-) g r((t0 ) +ul)du] _ 81.
00

Therefore by (2.14)- (2.17), for all x E [0,-) k and all A

(2.18) P(tlX,A) f P(t 0 ,x,dy)Pctl-t0 ,y,A)

6 + (1-8)[l - 51 + 81(6 + Q(A))]

S1 - 61 (1-6)[l - 6 - Q(A)]

so that, with e - min((l-6)/2, 51(1-6) 2/2))

(2.19) if Q(A) 5 e, then P(tl,x,A) t- 1-e.

This is Doeblin's condition (D) (Doob, 1953, p. 256) and by a

Theorem proved in Doob (1953) our Theorem is established.

By the method of characteristics (Courant, Hilbert, 1962,

pp. 170 ff.) it follows immediately from (2.2) in Theorem 2.1 i)

that for x E [0,-)
k

T(x) : , (x- xjl)" exp[- g(x + (u-xj)l)du]

(2.20) when xj =mi xi.

T(N-Xil : t(x-xjl+yij)gj(x-xjl+yei)dy
-- - 3 . . - - -
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The system (2.20) of integral equations is already a non-

trivial generalization of the renewal equations which determine

the current-life asymptotic density v(.) in case all ij = 0

(see Karlin and Taylor, 1975, pp. 192-3). Theorem 2.1 contains

useful information on existence and uniqueness of solutions of

systems of the general form (2.20).

To apply these asymptotic results in reliability theory,

one would want also to know the asymptotic distributions of the

times between successive jumps for each of the counting processes
k

Nj(.) and for the superposition counting-process j N.() N().
J=1

These are easy to derive by ergodicity of the process {T(s)}

with initial density n('), using a well-known generalization

(e.g., see Rolski, 1981, Ch. 1) of a Strong Law technique given

by Karlin and Taylor (1975). We state only the result for den-

sities of single times between replacements, although corre-

sponding asymptotic joint densities of successive times between

replacements can also be readily expressed in terms of n(.).

Proposition 2.2. Under the hypotheses of Theorem 2.1 ensuring

the validity of (2.2), if (2.2) has a unique solution and we

define

W m) s min{t - 0: N (t) =m} - min{t 7 0: N(t) =m-l}

W(m) min{t 0: N(t) = m) - min{t > 0: N(t) =m-l}

then as m - the asymptotic densities f(-) of W(m) and f.C.)

of W m) on [0,-) are

JJ
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f W(x d T('+xe)dy! /)ddx f k-i - [ I3k-i
10,40) [0,M-

(2.21)
-kf(x) _ k [(.+xe )My Ify : j)dy.dx lw) k-11 k-)k-I

Corollary 2.3. The asymptotic marginal densities (under (ii)

of Theorem 2.1) as s -h-

'F U +xe. j for T (S)
[ 0 , )k-i

and

f Tr(+xej)dyj for min{'r(s),... k(S))

are non-increasing functions of x.

3. Examples. Consider the model of the previous Section in

the case k = 2, 2 1 (") - =l i 22 P0 12 = i - 2

constant, and (p12(xy) -ln h(x). Then gl(x,y) =xl(X),

x

g2 (x,y) =h(x)X2 , and we define H(x) =f h(z)dz, Al (x)

S (Z)dz Since gl ( ') depends on x alone, the counting

process N1 (') will marginally be an ordinary (delayed) re-

newal counting process with interoccurrence distribution func-

rx
tion F(X) = 1 - exp(-) XlZ)dz), while N2 (.) will be a0
"doubly stochastic Poisson" process. We will calculate for

this example an explicit form for the asymptotic joint density

r(') of current lives Tl(S), 2(s).

__
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First, we observe that the renewal counting process NI

has corresponding stationary distribution if and only if

(3.1) Li J exp(-Al(t))dt <
0

Then the condition P{N(t) <-) = 1 for, all t is equivalent to

P{N1 (t) 0 , N2 (t) <-} = exp(-A 1(t)) for all t >0

which says that with probability 1 there are finitely many jumps

in N2C.) between successive zeroes of Ti(). But between zeroes

of -uI1 ), N2 (.) is the counting process for a nonhomogeneous

Poisson process with rate X 2h('). Therefore

(3.2) P{N(t) -) = 1 for all t if and only if

H(t)<- for all finite t with A 1 (t)< -.

Under assumptions (3.1) and (3.2), it is easy to check that the

hypothesis of Theorem 2.1 (ii) is equivalent to a - ess.inf.h(-)

> 0, together with A1(0) = WS A1 (x) +H(x) <- when x<**.

Rather than impose these last hypotheses, we calculate directly

the unique solution n(x,y) of (2.20). Theorem 2.1 i) then

implies, by standard arguments, that {(s): s >0} is ergodic

and for all initial distributions, as s - the distributions

2
of T(s) converge weakly to the measure with density , on [0,-)
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Equations (2.20) can be rewritten in our example to give

(3.3) n(x,y)z {T(x-y ,0)exp[-AI(x) +A1
(x-y) -X2(H(x)-H

(x-y)) ] if x>y

(0,y-x)exp[-A1(x) - X2H(x) ] if x<y

X~,0 jXh(x)ir(x,y)dy, T(' X (x)ii(x,y)dx.

0 *0

Since NI(') is a renewal counting process with interoccurrence

time distribution function l-exp(-Al(x)), standard renewal

theory implies

' Tv(x,y)dy 1- 1lexp(-Al(X))
0

and by (3.3),

ff(x,0) = l1X2h(x)exp(~Al(x))

(3.4) y

r(Oy) = fo Xl(x)(0,y-x)exp[-Al(x) -)x2H(x)]dx

+ f X2 (1 X1(x)h(x-y)e:,p[-Al(x) -k 2(H(x) -H(x-y))]dx.
y

From the second of these equations follows

(3.5) q(t) J exp(-ty).(0,y)dy

0

[i W- l (x)x 2 H(x)t),x X h(z)e d ].dzdx

0

Then the known Laplace transform q(t) determines v(0,y), and

(3.3), (3.4) give the exact a3ymptotic joint density n(x,y).

In particular, the form of (3.3) immediately implies that

t]
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under the model of this Section as s -- , for any initial

distribution ,0(XY),

Vl(S) and T - -rl(s) are asymptotically conditionally

independent given sgn(T2 (s) -r l(s)).

There are two generalizations of Freund's (1961) bivariate

shock model which may be of interest in Reliability. Let k = 2,

I = P22 = 0, and P12 = 21 =1 in (*). Then the two general

models are given by

I 12 (xY) = I[x<Y] in h1 (Y)

(F 1)

w2 1 (x,y) = I[y-x] in h2 (x)

and

f 1 2(xY) 
= I[x<Y] In hl(y-X)

CP2 1 (x,y) = I(y<x] in h2 (x-y)
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where I denotes indicator function. In these models, com-

ponent 1 acquires the multiplicative factor h2 (.) in its

hazard the instant that component 2 fails; however, further

failures of the replacements of component 2 during the life

of the same component 1 do not further change the hazard.

Model (F1 ) says essentially that failure of one component in-

stantaneously shifts the other component to a new survival

curve, while (F2 ) says that the proportionality factor for

hazard due to shock can vary with time only as measured from

the instant of shock. The bivariate model of Slud and Rubin-

stein (1983) is a special case of (F1 ).

Under model (F1 ), (2.20) easily implies the asymptotic

density for T has the form

n(0,y-x)exp[-AI(X) - I h (Y-X+U)k2 (y-x+u)du] if x< y
(3.6) n(x,y) y 0

Ln(x-y,0)exp[- j h2 (x-y+u)xl(x-y+u)du -A2(y)] if x >y

so that under (F1 )

(3.7) min(r1 (S),-r2(s)) and max(TI (S),- 2 (s))-min(t1 (s),-r2 (s))

are asymptotically conditionally independent given

sgn 1 (S)-r 2(s)) as s-.

Although no such appealing property can hold for f(-) under

(F2 ), except in Freund's case with X. and h. constant, it seems

to be physically the more reasonable of the two models and
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should, together with the statistical procedures of the follow-

ing Section, find applications in Reliability. It is interest-

ing also to remark that if in (F2 ) one has hi(') sharply peaked

at 0 with values rapidly decaying to 1, then model (F 2 ) mimics

the behavior of the well-known model of Marshall and Olkin for

dependent failure times (see Barlow and Proschan, 1981, Chap-

ter 5).

4. Statistical inference for dependent renewal processes.

Until now, we have made no use of the special regression form

for gj(.) in (*). We recall

gj(x) = X (x.)exp( = Wii())

which for convenience (and identifiability of parameters 3..)

we rewrite

g(x) =j(x)exp( Y ij-ij(x)).

Now suppose that data on the process {t(s) , 0 - s <t} is avail-

able in the following form:

T(0) and {T,At: I =l,...,N(t)} are observed

where

Tt = inf{s > 0: N(s) t}, A : iff ti(T) = 0.

The full likelihood L = L(O(0),(T tAP);(Pij)) conditional on

T(0) for this data is

N(t) k I j] t
L IT 7- [g.((Te-))] exp(- g(T(u))du)£:i j~l J "0

. ."
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which makes sense because for all 1 > 0 (with To =0)

:_(Ti-+I) =_ (Tt) + (Tt l -Td 1.

The score statistic Sij for Pij is given by

(4.1) a- logL I [ (T - ij((u))gj(_(u))duaij I- .0-

from which the identifiability of Pij for each j and i * j is

seen to be assured if the known measurable functions pij for

i E {l,...,kl\{i} are linearly independent on a subset with

positive Lebesgue measure of {x: X.(x) >0}. The log-concavity

of L follows from

2-t(4.2) a lo 1 :-lj,=j] J(4-2) logL -I (ij (Wu))Div j (T(u))gj (-c(u) )du.
aPijapi Ij , -f

If we assume that (2.2) has a unique solution n, so that

{T(s), s _> 0} is an ergodic Markov process by Theorem 2.1(i), then

for (ij: i,j =l,...,k, i *j) in an open region D c k(k-l)

as t-

- alogLJtI pij (x)(i'j (x)gj (x)r (x)dx
aija ijJ [0,)k

Moreover, for large t the maximum-likelihood estimates (ij)

for which Sij =0 are unique, strongly consistent, and asymp-

totically jointly normal with asymptotic variance-covariance

matrix VF the inverse of the matrix tIF with ij,i'j' component

equal to the right-hand side of (4.3) (see for example Basawa

and Prakasa Rao, 1980).

.1 .. ., .
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Another framework for the consistent estimation of (pij)

is given by the recent generalization by Andersen and Gill

(1982) of the partial likelihood methods of inference due to

Cox (1972, 1975). Following Cox and Andersen and Gill, we de-

fine the partial likelihood for (Pij) based on the data

{Te,Ae, t =1,...,N(t)}

N(t) ( k I[A =j]
(4.4) L Tr ( g j(T(T C-)) ((T -

leading to the "partial-likelihood score statistic for Pij"

N(t){ ((T) }

.--- g (P ) = l j] ij(i(Te )) - tij(-(Tapij (: -(T-- T(

all linear combinations of which are martingales in the con-

tinuous parameter t. As in the maximum-likelihood theory, an

argument exactly analogous to that in Andersen and Gill (1982)

shows that for large t the maximum partial likelihood estimates

(0ij,P) where (4.5) equals 0 are unique, strongly consistent,

and asymptotically jointly normally distributed with asymptotic

variance the inverse of the matrix with ij,i'j' entry

(4.6) - a logL (
P )

ap.. api~, I

l[ t] ( Wij(-C(Te-))Wi'j(t(Tt-)) g (r(T ) g ((T

The right-hand side of (4.6) is asymptotic in probability as

t-+- to a quantity t.(IP)ij i'j, which can be explicitly calcu-

lated in terms of n in special cases.
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We mention the partial likelihood methods of estimation

so prominently for several reasons. First, with their most

recent justification by Andersen and Gill (1982), they provide

easily constructed consistent estimates in many cases where

ordinary maximum likelihood methods are not available: for

example, where all gj(x) contain a common but unknown "nui-

sance" factor (x), or where data-collection is subject to

independent random censoring with unknown distribution. (We

give no detailed discussion of either of these situations.)

Another reason for introducing partial likelihood methods

here is the broad exposure they have been given in the recent

literature on statistical analysis of failure time data (see

for example Kalbfleisch and Prentice, 1980, Miller, 1981).

That literature showed for independent failure times the

considerable theoretical and practical efficiency of partial

likelihood methods relative to maximum likelihood. In the

present context of dependent failure times, we show by calcu-

lations along the line of Slud (1982) in an example that par-

tial likelihood estimation may typically be quite inefficient

in ignoring the lengths of intervals between events.

Consider the model (*) with k = 2, X1Cx) general,

2 (x) = X 2 constant, Pii = 022 = 021 = 0, P12 =P, and p1 2(xy)

I x<y3 . Again the condition

J exp(-Al(x))dx 
<

0
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guarantees that N (.) is the counting process for positive-

recurrent renewals. By (2.5) we find the unique solution of

(2.3) satisfies

i(x,y;P) = n(O,y-x;p)exp[- f (X1 (u) + eX 2 )du] for x<y.

By the known asymptotic marginal behavior of Tl(s),

J i(x,z;p)dz = llexp(-AlW), x >0.
F

Therefore the quantity I from (4.3) is given in the present

example by

(4.7) 1F = fJ ePX 2 .(x,y;P)dx dy
P [x<y]

PLy ePX 2v(O,y-x;)-exp(-A 1(x) -ePX 2x)dy dx

= eX 2 P)j f expt-Al(x) - epX 2 dx JX ( (Oz;)dz
20 f0

=e P -i211 exp[-A l ( x ) - ep X2x'dx'
0

From (4.6) we find that I P is given by

NX l(,T(Tt- ) ) X2 e

P .lim t - I  1[ ( 2) ( )
t1 ( l( 2(MT9-)) + X2e#

Now a failure with t-:> 2 can have TI (Te-) < T2 (Tt
- )

only if it follows a failure with A 1. Moreover, immedi-

ately following the failure at T,_ 1 with A -i =1 the con-

ditional hazard for N2 (-) is the constant X2 exp(P), so that

the time from T,_1 until the next jump in N2 (-) is exponential

& i .i i" i ll I 1 ' 1 i I I I l. .. . . . . ..



23

with parameter x2exp(p), and the time T -Te_ has condi-

tional survival function exp(-X 2 ep -A 1 (x)). Since the number

N1 (t) of failures with At_ 1 = 1 is asymptotic to t/J1 by the

elementary renewal theorem, we conclude

(4.8) 1 -= ell 9l(Y)f+ 1 _e_ exp(-X ep -A (y))dy.
2e 1l 0 X X1(y) +X 2 ep

From (4.7) and (4.8), it is apparent that I < I for all
P P

X, k25 X1(.), with the interpretation for X.(') uniformly

bounded by a constant X1 that the asymptotic relative effi-

ciency of maximum partial likelihood to maximum likelihood

estimation of P in this example is at best X /(Kl +X ev)
1 1 2

and I /IF can be nearly 1 only when Xl(.) is very large.
P P1

The special forms of the estimators may also be of interest

here:

NN)
exp( ) = _Ae ] [Al]( - T2 [Al '2 , i A i-

ez

where A0 = 1 iff r (0)< 2 (0), while Op is the unique solu-

tion p of

N(t) X 2[ p

0 '[Ae- 'e- 1 ~ A1 = X2eP + Xl(T,(T -))
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