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ABSTRACT

The asymptotic behavior of the maxim likelihood estimator of a Para-

meter in the drift term of a stationary orgodic diffusion process Is studied

under conditions in which the true drift function and true noise function

do not coincide with those specified by the parametric model._
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I. Introduction.

Consider the problem of estimating the drift function b(x) of a sta-

tionary diffusion process (Xt) given by

dXt - b(Xt)dt * o(Xt)dWt, t a 0,

whore the process is observed over [0, T]. The method of maximum likelihood

can be used if b(x) is assumed to have a parametric form f(x, 0), 6 8.

Brown and Hewitt (1975), Kutoyants (1977), Lanska (1979) and Prakasa Rao and

Rubin (1981) have shown that the maximum likelihood estimator of 0 is con-

sistent and asymptotically normal. Nonparametric methods of estimating b

have been developed by Banon (1978) and Geman (1980).

Suppose that a parametric model for the process (Xt) is given by

dXt a f(Xt, e)dt + y(Xt)dWt. t z 0.

This paper studies the asymptotic behavior of the maximum likelihood estimator

of 6 under departures of the true drift function b(x) or true noise function

o(x) from those specified by the parametric model.

The need for such analysis stems from the desirability of using esti-

mators that are robust under small departnres from the underlying model.

This kind of analysis is familiar in other settings, for example Huber (1967),

White (1981) and Berger and Langberg (1981).

In Section 2 it is shown that the maximum likelihood estimator converges

almost surely to a parameter 0* such that f(x, 0*) minimizes an L2 distance

of the parametric family from the true drift function. The L2 distance is

defined with respect to the measure y2 (x)dv(x), where v is the stationary

distribution of the process. Asymptotic normality is also established. In

Section 3 we discuss a way of estimating the difference in goodness of fit

of two separate parametric families to the true drift function. Examples

are given at the end of each section.



2. ?Muximim likelihood estimation under misspecified models.

Let (Xt. t z 0) be a stationary, ergodic process which is assumed to be

the unique solution of the stochastic differential equation

(2.1) dXt - b(xt)dt + a(Xt)dWt, t a: 0

where X0is distributed according to the stationary distribution of the

process, b and a are unknown measurable functions and (NWt, t k 0) Is a stanaard

Wiener process. Assume that (X d has inaccessible boundaries on the state

space (, m.Using the notation of Mandl (1968), let

X biC
B(x) - 2 f (L dy, p(x) .Jf exp(-B(y))dy,

0Oo(y) 0

m(x) -2 f ex BY dy,

where the integrals are assumed to exist. Provided that m(+-) < - and

a(--m) > --, the stationary distribution, denoted v, has distribution function

M 1m(x) where M4 s m(+.) - m-)

Suppose a parametric model is used to estimate the drift function b(x)

by the method of maximm likelihood. Let e denote a closed bounded interval.

A family of measurable drift functions (f(x,8), ec e) and a measurable noise

function y(x) > 0 are provided and inference is based on the model

(2.2) dX t a f(X t, O)dt + y(X t)dW t, t a 0.

The process (Xt is observed over [0, T]. Lot uT and PTdenote the measures

induced on C[O, TJ by process satisfying (2.2) and the process

dY t y(Yt)dWt, t z 0

YO 2,X
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respectively. Under conditions given In Liptser and Shiryayvv (1977,

Theorem 7.19) it follows that v << UT for all 0 e e and the log likelihood

function ItT(B) _ log[duT/duT T(X) is given by

2
T f(xt,0) T T(xt 0)l

*(t (3) f()*f --- dXt - 41J f b dt, a.e. (vi)
0 y (e 0

A maximum likelihood estimator calculated from ZT(e) is denoted T

Assume thatE[ w x0. j for all e c 0 and, as a function of

i, has a unique minimum at e* e 0. The following results describe the

asymptotic behavior of 6T when the observed process satisfies (2.1). The

conditions are stated later. g', g" denote first and second partial deri-

vatives of a function g(x, e) with respect to 0.

Theorem 2.1. Under conditions (C1)-(C3), 9T * e" a.s. as T

Theorem 2.2. Under conditions (Cl)-(C7), Tk( T-e*) * N(0, Z) where

W 0 s

2M I g'(y,e*) I f g'(z,8*)dm(z)dp(s)dm(y)
(2.4) E y -00 2.

{" gl"(xe*)dm(x)}

(2.5) g(x, e) + a x

Theorem 2.3. In the special case that the drift function has been correctly

specified, i.e. b(x) = f(x, O ) for some 00 e 0, then (whether or not the

noise function has been correctly specified)

T 6T * 80 a.s. as T - - under conditions (C1)-(C3);
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(ii) T%(OT-O) * N(O, V) under conditions (Cl)-(C9), where

f'Cyeo)1 2 )2

(2.6) V F*~~ L - 2

{J L yCx) jdv(x)}

Remarks.

(a) The parameter 0" can often be determined from the moments of the

stationary distribution. In general it is difficult to evaluate E unless

the drift function has been correctly specified (as in Theorem 2.3). Some

examples in which e* and E are explicitly calculated are given at the end

of this section.

(b) When both drift and noise functions have been correctly specified

V reduces to the previously known formula

V0  
% m .) d0u •W I

The Cauchy-Schwarz inequality yields V a V0 .

(c) Theorem 2.3 (i) can be interpreted as a robustness result for the

maximua likelihood estimator; eT remains consistent under misspecifications

of the noise function.

(d) Lanska (1979) introduced a minim contrast estimator 0' which

* minimizes

T
I h(Xt, O)dt
0

where
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h 8 ) *~h I 2 1)3-

If h satisfies the conditions (C1)-(C7) in place of g and the function

Eh(Xo, 8) has a unique minimum at 0l, then using similar proofs to
Thres'IT l N(0, E1), where Z1 i
Theorems 2.1 and 2.2, -T + 0 a.s, and T (eT-0l) -. (,ZI) h"ZIi

given by (2.4) with g replaced by h. Even when the drift function is cor-

rectly specified, it is possible for I  8 00 when the noise function is

misspecified, so that eT can fail to be a consistent estimator of B0 while

eT remains consistent.

Conditions.

(Cl) If(x,el)-f(x,e2)1 I J(x)0(8 1-02), x e R, e1, e2 e 0, where
pc)2

El E x °and 'li *( a )a0.

(C2)~ ~ E -O~ and If(x,e)t K(x), x c R. 8 e6, where

FX(Xo~j 2

(CS) f(x, 0) is continuous in (x, 0) and differentiable with respect

to e. There exists a > 0 such that jf'(Xe9I)-f' (xe2)1 S c(x)le 1-e21GO

cRa_ )c(Xo)
2

x1Ro, 82 e e, where E. -2'"
LY (Xo) J

(C4) f(x, e)y2 (x) has a continuous first partial derivative with

respect to x for each 6 8 0.

(CS) lim f(x, O)y 2(x)exp B(x) - 0, V 6 C 0.
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(C6) The partial derivatives g', g", G', G" exist and are continuous

in (x, 0), where G(x. 0) is defined by

(2.7) G(x, e). f MJ&2 dy.
0 Y (y)

(C7) ,g"(x,ez)-g"(x,02)J S U(x)f(e-0 2), x E R, e, *2 c 0, where

E U(X0) < - and lim $(c) * 0.

(C)lm lx )- 2 X-2
S(CS) liza f'(Xo)v'(x)[exp 3(x)] J f'(s8e0)y (s)ds -0.

Wot- 0

(C9) lur t"(xe 0 )Y 2(x)exp B(x) W 0.
X-P-

(CIO) Condition (C7) with g' in place of g".

Proof of Theorem 2.1. The proof of strong consistency of AT in the correctly

specified case given by Prakasa Rao and Rubin (1981, Theorem 4.1) needs only

inor modifications to show that 8T . B. a.s. as T - in the misspecified

case. The details are given here for completeness. From (2.1) and (2.3)

ITe() can be written

T (Xt,0)- 2 T (X ) 2 T f(Xt,O)o(Xt)

(2.6) ZT8 - (X)b~) dt . dt * f t) dt 2 1L dW .
o t 0 2 (Xt)

a' TR,") "8oL(xt) 2 dt. Fo,0, 0 d 0e.
Denote Z~* TM 1 . .d . Fr8 2

1T *(xtel)-e(xt J 2)(t (lK(xt(,)Ilfot0 2) IT T82)0 S 2(X)

T Ib(x t ),l lext,o l)-fcXt'82) I
0 Y (xt)

T J(ct)(KcXt).bcxt))
S 2#(8e1-e92) " -, dt,0o (xt} '
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using conditions (Cl) and (Q2). By the ergodic theorem

T J(X t) (K (Xt)+b (Xt)) ____0.____________(X

as T -$-, Using conditions (Cl) and (C2) again. Thus, there exists a r.v.

C', which is finite as. and does not depend on 69 such that

T (e I)-I T (a2)1 'S CTV(01-82), for all 0,, 02 e e, T Z 0.

Similarly, using condition (C2) again, it follows that there exists a r.v.

D*, which is finite a.s. and does not depend an 6, such that IT()S D*T,

for all 6 e G, T a 0. Thus, (I e) T Z 0) is equicontinuous and uniformly

bounded a.s. as a family of functions of 6. By the Arzela-Ascoli theorem

this family is relatively compact (a.s.) in the space of continuous functions

on a provided with the suprenum norm. Therefore, by the ergodic theorem

1r y e( ) a( o e -bj.

uniformly in 6 e e as T *

Now consider the second term in (2.6). By condition (C2) and the

ergodic theorem

j1 -T" dt '-EIO as T 1

Next, using Lma 4.3 of Prakasa Rao and Rubin (1981) it follows that,

under conditions (CI)-(C3),

1 2(~O~(t dW ta!*$* 0, uniformly inSeee as T.

T0  Y (X)

4.t



Thus

22

a. 1E(Xo, )-b(X0) 
2  b(X0 )j 2

(2.) ~ L.~(6)* ~mEL Y(XO) j 4' X0)J

uniformly in e 0 e as T . -. Since the r.h.s. of (2.7) has a unique maximum

at e' c e and maximizes TI iT(8), it is easily proved that eT -0* a.s.

as T -. 0

Proof of Theorem 2.2. The approach used by Prakasa Rao and Rubin (1981)

to find the asymptotic distribution of 6T in the correctly specified case

does not extend to the misspecified case. Rather, the proof of this theorem

uses the technique, introduced by Lanska (1979), of expressing t T(e) in

terms of Lebesgue integrals.

The function G(x, e) defined in (2.7) has a continuous second partial

derivative with respect to x for each e e 0 by condition (C4). Applying

It's formula, it follows that

T CXtfCXe) 2G(XT, e) - G(XO . e) + 1| 2 ha2(X t)G"(X t ' dt

0 -Y (t)

T a °(xt~f xt'e3)
0 Y2(at) dt

Then, using (2.1) and (2.3),

T f(XtO)b(Xt) T fX,)a(Xt) Tr(Xt,8) 2

o1 t dWt f (xtt 0 dt

(2.8)
T

a G(XT,.) - G(Xo,8) - %fg(Xte)dt,
0

__________________ T z
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where g is defined in (2.S). Expand LI(e) about 6Tv

e*) -Y TCr) + (0*-Tr)qCT~r), Where IT-e* I : 14T-o*I

Consider

T'Lf(0) * T' (GI(XT.O*) - G'(Xo,e*)) * T' If g'(XtO*)dt.
0

Using the stationarity of (X).,

T'G(G'(XTe*) -G'(Xo e*)) 0  as T..

Using integration by parts and condition (CS) it can be shown that

(XoO)-b Xo12 b(Xo)l2
(2.9) E g(X6)a )E O E[FYX 0

and since the right hand side of this expression is minimized at 0* e 0,

it follows that E g(X0 , 8) is minimized at e* e 0 and E g'(XO, 0*) a 0.

Then, by Mandl (1968, p. 94)

T J g' (xt, 8*) * N(O, 6),
0

wheo

A I g(y.') f I g'(z,O)dm(z)dp(s)dm(y).

Thus T'A(eO) * N(O, A). By the ergodic theorem and condition (C6)

Y0") . 9,(XO. 8').
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Next, using conditions (M6), (C7) and the fact that T -0. P a.s.

1T

Thus TYT) - Lj (O*)) 0, as T

I j(e~ E g"(XOR0, 8)

as T . .We conclude that

D
T"(8T- 6') + N(0. E).

where E is given in (2.4).0

Proof of Theorem 2.3. Suppose that b(x) a f(x, eo~ where e~ 0 e . Then

e*'a 8 0 and (a) follows directly from Theorem 2.1. The proof of (b) consists

in showing that E in (2.4) reduces to V given in (2.6). Note that

gl~x, a 2b(x)f'(x,6%)y 2(x) * 02 Wx -(f'(X,6 0)Y- (xj.

Using integration by parts,

a(z) ('ze ) Y- (z)ldm(z)

-2 -2
=2f'(s.8 0 )y- (s)exp B(s) -2 fb(z)f (ze)Y' (z)dm(z).

so that

s -2
f g'(Z,80 )dm(z) -2f'(s%)Oh (s)exp B(s).

and



0Os 0 -2
I I g'(:,80)da(z)dp(s) *2 J ft(S,0 0)y (s)ds.
y-4M y

Using integration by parts with condition (C8),

1 02(Y) ±[tf,(Y9 60 )y- (y)] f ft(Se)y 2 (5)ds du~y)
am y y

a-2 fl(y6 0 o)y 2 (y) f.J f,(s,e )Y-2 (s)ds exp ( d

- c'Y,eo la 2 2 -2

- .L1fI dm(y)- 2iJb(y)f'(y,e0 )W (y) 1ff(s,O%)y (s)ds du(y).

It follows that the numerator of Z reduces to

_ Ff (y. 8 O) 2 l(i2

Now consider the denominator of Z.

g",(X, e0) a 21LY(x)O I 2f(x~e0)f"OCx,6 0)y )* 02  x t.((x.%)y (x)].

Using integration by parts and condition (C9)

2 -2 -2
7 (x r.[f"(x,e 0 )y (x)Jdm(x) *-2 f f(x,8 0 )f"(x.00 )Y- (x)dm(x)

and it follows that

I W'l(xe)dm(x) a2 ' F x dm(x).

This completes the proof of the theorem.0
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1.* This example presents a uisspecified. drift function but correctly

specified noise function. Suppose that the observed process satisfies

dXt - -Xdt +4cflf

where X0has a N(O, 1) distribution, the stationary distribution of X.

Estimates are calculated from the parametric model

*~ -O. 3 dt * rdt
tt

The parameter e* which minimizes E(X0-8Xj) 2 is given by

4

EX;

2.12 6 22
By Theorem 2.,0T a.s. as T -#,. We also have g(x. 8) - RO x -38x

so that g'(x, 6') x 16 Usn repeated integration by parts

f~ ~ ~ ,lzG)mz (t z -3z )e 'dz 3 1 +S, )e~'

so that

f I g' (z0e)dm(z)dp(s) a y

and

g'(y8e) fJ g'(z,O')dm(z)dp(s)dv(y) ( y y+ y)vy

wIgU HXj 16EXj0  -roEX - 4 T X

-94.8.
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Also

fg"l(xeO)dv(x) aEX 6 15.

Thus E = (2)(94.8) 84, and by Theorem 2.2 we have (T .-) - N(O, .84).

The asymptotic variance of 6T is less than in the correctly specified case

for which T (eT-1) -* N(O, 1).

2. Our second example has a correctly specified drift function and

a misspecified noise function. The observed process is the same as in the

first example but the parametric model is given by

dXt  -eXdt +(;2 dWt
t

Theorem 2.3 yields T(T -1) N(O, 2.75). The asymptotic variance of 5T

has almost tripled due to the misspecified noise.

3. Discriminatingbetween separate families of drift functions.

Let (Xt) satisfy (2.1) and assume throughout this section o(x) 1.

Suppose that two parametric models for this process have been suggested.

It is required to decide in favor of the model which best fits the observed

trajectory {Xt , 0 S t S T).

Let {fI(x,e): e C e), (f2 (x,#): 0) c } be distinct families of drift

functions, where 0, 0 are closed bounded intervals. A reasonable way to

compare the goodness of fit of these families to the true drift function

b(x) is to estimate the parameter

4. . :- ... . .. . .,.__ _
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A - E[f 2 (XO,*)-bC0[)] 2 - E2fX,.*)-b(Xo)]

In this section we introduce an estimator for A. The noise function is

assumed to be correctly specified; that is y(x) a 1.

4et 4l)(e). 42)CL denote the log likelihoods for the two models.

Define

.2 I'(l) (2) c

AT [YT ("T)

Given that fil f2 satisfy conditions (Cl)-(C3), it follows from (2.7) in

the proof of Theorem 2.1 that AT 4 A a.s. as T -. The following result

shows that & is asymptotically normal. Conditions from section 2 are used

interchangeably between the two families of drift functions indexed by e

and *.

Theorem 3.1. Suppose that fl, f2 satisfy conditions (Cl)-(C6) and (CIO),

where g, g2 are given by (2.5) with f a fl. f2 respectively, y(x) - 1.

Then T(CA.-A) N(O, £ 2), where

E . e)& 0 s

£2 N [Ig2 (y,#*)-g 1(y, -A] f I (g2(z,#*)-g(z,(*)-Alda(z)dp(s)dm(y).

Proof. From (2.8)

TA
T"(^ A) a T-" #)g(t6)a

* (3.1)
"GI(XT-.T) - Gl(XO.iT)G 2 (Xr.T)c 2(XO .4 )].

The second term on the right hand side of (3.1) converges to 0 in probability.

The first term is written

7 -____ ____ ____ ___



T' I [g2(Xt*) - gi(Xte) - aJdt
0

f "J [g2(Xt,;.T) - X.*d
0 -1

0

AT O T *CT

From (2.9),

E (g2(X094* - gl(X 0,8) - a] - 0

S0D by ?Mndl (1968, p. 94), AT O N(O, E 2). Next, consider C2.. ePAanding

9in a neighborhood around e',

g1(x.8) = g1(z,e8) + (9-9*)g'(z B),

where I6.e'I 1 10-eel. This gives

CT a T (OT.0') - "T ty t
T0

But,

fi gj(Xt,.2.)dt ~f g i(Xt,e8)dt

(3.2)0

T iC(Xt,9gt~to)Idt.
0

by the proof of Theorem 2.2, E g'(X016') - 0, so by the ergodic theorem the

first term in (3.2) converges to 0 as. as T F rom condition (cdo),
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the second term in (3.2) is bounded above by

T- T f U(Xt)dt,
0

which converges to 0 a.s. since 1; T-0*I S I&T891 'T 8 T a.s. and

IT a(tdt E(Osa Thus CT --O a.s. and similarly BT 0Oa.s..

0

This completes the proof of the theorem. 0

Example.

Consider the two models

(3.3) dXt = -OX tdt + dwts

(3.4) dX = -*X 3dt +d

and suppose that the observed process satisfies (3.3) with 8 = 0 ' 0. Some

involved but routine calculations give that A a .28o and r .640 + 9. 369-
0 2 00

Note that E 2 as 8 0 *o 0. The poor performance of ATfor small 8 0 is to

be expected since, as e80 -, 0, the drift function has less effect on the

dynamics of the process so it is harder to discriminate between the two

model1s.
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