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ESTIMATION POR DIFFUSION PROCESSES
UNDER MISSPECIFIED MODELS

by

Ian W. McKeague
Florida State University

ABSTRACT

’ The asymptotic behavior of the maximm likelihood estimator of a para-
meter in the drift term of a stationary ergodic diffusion process is studied
under conditions in which the true drift function and true noise function

do not coincide with those specified by the parametric model.
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1. Introduction.

Consider the problem of estimating the drift function b(x) of a sta-

tionary diffusion process (xt) given by
dxt = b(xt)dt . o(xt)dw , t20,

where the process is observed over [0, T]. The method of maximum likelihood
can be used if b(x) is assumed to have a parametric form f(x, 6), © € O.
Brown and Hewitt (1975), Kutoyants (1977), Lanska (1979) and Prakasa Rso and
Rubin (1981) have shown that the maximum likelihood estiwmator of 6 is con-
sistent and asymptotically normal. Nonparametric methods of estimating b
have been developed by Banon (1978) and Geman (1980).

Suppose that a parametric model for the process (xt) is given by

dxt n f(xt, 6)dt « Y(Xt]dﬁ » t 20,

This paper studies the asymptotic behavior of the maximum likelihood estimator
of 6 under departures of the true drift function b(x) or true noise function:
a(x) from those specified by the parametric model.

The need for such analysis stems from the desirability of using esti-
mators that are robust under small departnres from the underlying model.
This kind of analysis is familiar in other settings, for example Huber (1967),
White (1981) and Berger and Langberg (1981).

In Section 2 it is shown that the maximum likelihood estimator converges

2

almost surely to a parameter 6* such that f(x, 0*) minimizes an L” distance

of the parametric family from the true drift function. The L2 distance is
defined with respect to the measure v'z(x)dv(x). where v is the stationary
distribution of the process. Asymptotic normality is also established. In
Section 3 we discuss a way of estimating the difference in goodness of fit

of two separate parametric families to the true drift function. Examples

are given at the end of each section.
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2. Maximm likelihood estimation under misspecified models.

Let (xt. t20) be a stationary, ergodic process which is assumed to be
the unique solution of the stochastic differential equation

(2.1) dxt = b(xt)dt . o(xt)dl' , t20

where xo is distributed according to the stationary distribution of the
process, b and o are unknown measurable functions and (Wt, t20) is a stancard
Wiener process. Assume that (xt) has inaccessible boundaries on the state

space (-, =), Using the notation of Mandl (1968), let

B(x) = 2 —;m—dy. p(x) = | exp(-B(y))dy,
g o (y) tll

X
mn(x) = 2 ]9522_11‘2)_4),,
0

o (y)

where the integrals are assumed to exist. Provided that m(+=) < » and
m(-») > -=, the stationary distribution, denoted v, has distribution function
M"lm(x) where M = m(ew) - m(-=).

Suppose a parametric model is used to estimate the drift function b(x)
by the method of maximum likelihood. Let © denote a closed bounded interval.

A family of measurable drift functions {£(x,0), 9¢ ©} and a measurable noise 7
function v(x) > 0 are provided and inference is based on the model

2.2) dxt = f(xt, 0)dt + y(xt)dwt, t20.

The process (xt) is observed over [0, T]. Let u: and uT denote the measures

induced on C[0, T] by process satisfying (2.2) and the process

dYt = v(Yt)th, t20

Yo = Xoo
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respectively. Under conditions given in Liptser and Shiryayev (1977,

T T

Theorem 7.19) it follows that Mg <<U for all 6 ¢ © and the log likelihood

function r..l.(e) = log[du'g/du'r] (X) is given by

o ( © }‘ £(X,,9) ! (X, e)‘J
; 2.3) 6) = ax, - % at, a.e. (1.
: “r y’(x ) )

A maximum likelihood estimator calculated from z.r(e) is denoted a.l..

{ As hat E i u]-f(xo’e) f 11 d functi £
i sume that < = for a 6 € 6. and, as a ction O
; Y(X,)

6, has a unique minimum at 6* ¢ 0. The following results describe the
asymptotic behavior of 6’1’ when the observed process satisfies (2.1). The
! conditions are stated later. g', g" denote first and second partial deri-

vatives of a function g(x, 6) with respect to 0.
Theorem 2.1. Under conditions (C1)-(C3), GT +06*a.s. as T+,

Theorem 2.2. Under conditions (C1)-(C7), -r"(éT-e*) 9 N(0, I) where

2 ! g' (y,6%) I f g’ (z,0*)dm(2)dp(s)dn(y)
(2.4) L= Y == ,

{_L g"(x,0%)dm(x) }2

(2.5) g(x, ©) = %2 + a2 (x) %E%EH
b ¢

Theorem 2.3. In the special case that the drift function has been correctly

specified, i.e. b(x) = £(x, ao) for some 0, ¢ 6, then (whether or not the

0
noise function has been correctly specified)

(1) é-r + 8, 8.5. as T + = under conditions (C1)-(C3);
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(ii) TH(GT-eo) 2 N0, V) under conditions (Cl)-(C9), where

I [f (y‘°°)] [}{Z{] av(y)

{l lzf;:%re)] dv(x)}2

(2.6) Vs

Remarks.

(a) The parameter 0* can often be determined from the moments of the
stationary distribution. In general it is difficult to evaluate I unless
the drift function has been correctly specified (as in Theorem 2.3). Some
examples in which 6* and I are explicitly calculated are given at the end
of this section.

(b) When both drift and noise functions have been correctly specified

V reduces to the previously known formula

o [P o]

The Cauchy-Schwarz inequality yields V 2 Vo.

(¢c) Theorem 2.3 (i) can be interpreted as a robustness reosult for the
maximum likelihood estimator; 51. remains consistent under misspecifications
of the noise function.

(d) Lanska (1979) introduced a minimum contrast estimator 51. which

ninimizes

T
[ hex,, e)de
0

where
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h(x, 0) = [Y"-(T;glzl +y (x) 3,[‘;‘5::))'}

If h satisfies the conditions (C1)-(C7) in place of g and the function
Eh(xo 6) has a unique minimum at 91, then using similar proofs to
Theorems 2.1 and 2.2, 5 + 6, a.s. and T (e.r-el) -» N(0, I,), where L, is
given by (2.4) with g replaced by h. Even when the drift function is cor-
rectly specified, it is possible for 8, * 8 when the noise function is

misspecified, so that 57 can fail to be a consistent estimator of 89 while

51. remains consistent.

Conditions.

(c1) If(x,ell-f(x,ez)l S J(x)¥(8,-6,), x € R, 8,, 0, € O, where

(%312
Em-o—)- <¢andclligw(a)'0.

2
(x,)
(C2) E[-n—)-z] < o and lf(x,e)l S K(x), x ¢ R, 6 ¢ 6, where

B[t(xo) 2
oy <
(C3) £(x, 6) is continuous in (x, 6) and differentiable with respect

to 6. There exists a > O such that |f' (x,ol)-f' (x,ez)l 3 c(x)lel-ezlu,

(XO)C(XOT
T <=

¢
x e R, el. ezee. where E|:
vy (X,)

(C4) f£(x, 6)1‘2(1) has a continuous first partial derivative with

respect to x for each 6 ¢ ©.

(C5) 1im £(x, 8)y 2(x)exp B(x) = 0, V 0 ¢ ©.
Xt

i g 3
s R S vy S RS RO,



(C6) The partial derivatives g', g", G', G" exist and are continuous

in (x, 0), where G(x, 8) is defined by

(2.7 6(x, &) = | £0.9) 4,

0y~ (y)

()] |g"(x,91)-g"(x,02)| S U(x)¢(8,-0,), x € R, 8, 8, ¢ 6, where
E U(xo) < » and 1lim ¢(a) = O,
a0
X

() 1n £ (x,00v () [exp B [ £1(5.00)7"(8)ds = 0.

x>t
(C9) 1lim f"(x, 80)7 (x)exy B(x) = 0.

X+tw

(C10) Condition (C7) with g' in place of g".

Proof of Theorem 2.1. The proof of strong consistency of G.r in the correctly

specified case given by Prakasa Rao and Rubin (1981, Theorem 4.1) needs only
minor modifications to show that 31. + 06" a.s. as T + = in the misspecified

case. The details are given here for completeness. From (2.1) and (2.3)

Lr(e) can be written

T2(X,,0)-b(X 5] (x ) T f(x 18)0(X,)
(2.6) t(e) = -kg Y(xt) dt « 5] at + ; (x dw,.

(X, 8)-b(x ]’
Denote 1..(0) = g Te dt. For 0, 0, € O,

T J£(x,,0,)-£(X,,8,) [ (I£0X;.8,) [+]£(X;,0) ) .

|1.(0.)-1-(8.)| s |

T (901 = 0 v(x,)

T |b(x,) | I£(X,,0,)-£(X,,0,) |
02[ 3
0 v (Xy)
T J(X)(K(X, Jeb(X.))
< 29(8,-8,) [ t de,
1727 o v’(x)
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using conditions (Cl) and (C2). By the ergodic theorem

J(X.) (K(X,)*b(X J K b(X
(92;90(9)“‘8ru@(g@¢(@ﬂ s
Y (x) L Yo

© ey

L
T

as T + =, using conditions (Cl) and (C2) again. Thus, there exists a r.v.
C*, which is finite a.s. and does not depend on 6, such that

“{r“’x)“r“z)' < C*TV(8,-8,), for all e, 8,0, T20,

Similarly, using condition (C2) again, it follows that there exists a r.v.
D*, which is finite a.s. and does not depend on 6, such that I.r(e) < D*T,
for all 6 ¢ 6, T 2 0. Thus, {%— I.r(-), T 2 0} is equicontinuous and uniformly
bounded a.s. as a family of functions of 8. By the Arzela-Ascoli theorem
this family is relatively compact (a.s.) in the space of continuous functions

on © provided with the supremum norm. Therefore, by the ergodic theorem

£(X,,0)-b(X)]°
F o B[ ey °] :

Y%

uniformly in 6 e 0 as T+ =,
Now consider the second term in (2.6). By condition (C2) and the

ergodic theorem

2 2
%z[;%-yz)] de 23 EE(—T:—:;] as T » &,

Next, using Lemma 4.3 of Prakasa Rao and Rubin (1981) it follows that,
under conditions (C1)-(C3),

T £(X,_,0)0(X.)
,-},- ——-!'-i-——-!’—dw 8.8 0, uniformly in 6 € © as T + =,
t
0 yT(X)

B S T P VI T
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Thus
£(X,,0)-b(X.) b(X,.)

uniformly in © ¢ © as T + «», Since the r.h.s. of (2.7) has a unique maximum
at 6% ¢ © and &, maximizes £ %.(6), it is easily proved that b + 6% a.s.

as T + =, a

Proof of Theorem 2.2. The approach used by Prakasa Rao and Rubin (1981)

to find the asymptotic distribution of . in the correctly specified case

T
does not extend to the misspecified case. Rather, the proof of this theorem
uses the technique, introduced by Lanska (1979), of expressing zT(e) in
terms of Lebesgue integrals.

The function G(x, 6) defined in (2.7) has a continuous second partial
derivative with respect to x for each 8 ¢ © by condition (C4). Applying

Ito's formula, it follows that

TIb(X ) £(X,,8)
G(Xys 8) = G(X,, 6) « ({"‘T"'—

2
+ %" (X )G (X,_,0)|dt
vo(x) et ]

T o(xt)f(xt,e)

0]——-2——-——dw.
o Yy f

; Then, using (2.1) and (2.3),

T £(X,,6)b(X, ) TR0k, ) T[E(X,,0) 2
= ! v’(x) I v’(x) "{: v(X) *

(2.8)

T
" G(Xp®) - 6(Xp,0) - B[ g(x,,0)et,

A s
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where g is defined in (2.5). Expand 21(e) sbout &,

£3(6%) = £1(8) + (0*-8)0(B,), where [B.-0%| 5 [§-00].

Consider
Y -3 R
T 20(6%) = T7'(G' (X[,0%) - G'(X,,0%) + T ({ g' (X, ,0%)dt.

Using the stationarity of (xt),
2 PP * ' » 2
T (6 (XT,O }-G (XO,G 1) >0 as T+ =,

Using integration by parts and condition (C5) it can be shown that

B(Xp,0)-b0)]%  [Bexi]?
(2.9) E g(X,, 8) = E --—;Tiay—-— - E ;?y;y .

and since the right hand side of this expression is minimized at 6* ¢ O,
it follows that E g(xo, 0) is minimized at 6* ¢ © and E g'(xo, 6*) = 0.
Then, by Mandl (1968, p. 94)

T
T [ g, e 2neo, 0,
0

where

[ 0 s
aed [ 80,07 [ [ g'(z,0%dn(2)dp(s)da(y).

-t® y -

Thus T‘*z*(e') ? N(O, 4). By the ergodic theorem and condition (C6)

}uen D e gixg, 00,
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Next, using conditions (C6), (C7) and the fact that ET + 0* a.s.
-.lf(z:r'(éT) - 15(6%)) Bo, as T+
Thus
Tudn beewg, o - i }: 2" (x,0%)dn(x),
as T + ». We conclude that
16,00 N0, ),
where I is given in (2.4). 0

Proof of Theorem 2.3. Suppose that b(x) = f(x, 60), where 8. ¢ 6. Then

0
o* = eo and (a) follows directly from Theorem 2.1. The proof of (b) consists

in showing that £ in (2.4) reduces to V given in (2.6). Note that
g'(x, 0,) = 2b(x)£' (x,0,)Y 2(x) + 02(x) ~=[£'(x,8,)Y 2(x)]
' 70 ] 9x 70 ‘
Using integration by parts,
s 2 3 -2
| o) 55 [£'(2,00)v “(2) 1dm(2)
\ -2 ? . -2
= 2£'(s,00)y “(s)exp B(s) - 2 [ b(2)f'(2,8)y “(z)dn(z),

so that

S
[ g (z.0pdm(z) = 26 (s,807 2 (s)exp B(s),

and
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0s 0 -2
I ] g'(2.89dn(2)dp(s) = 2 [ €'(s,80)v " (s)ds.
y == 4

Using integration by parts with condition (C8),

2 2, 3. 2,07 % e -2
[ o) 5HIE (.87 ] [ £1(s,89)v “(s)ds da(y)
-t y

o 0
=-2/f (y,eo)v'z(v) -%Lf £ (S.Oo)v'z(sus exp B(Y)]d)'

= ? o) E sz(y) - 2}b(y)f' (y,® )Y'z(y)?f' (5,8, )v 2(s)ds dm(y)
A BEZ2) (r o *"o ¥ 70 )

It follows that the numerator of I reduces to

w] S ] ESIE

Now consider the denominator of I.
2
' £'(x,8,) : -2 2,0 e -2
g'(x, 8g) = 2|—prw—| *+ 2£(x,80)€"(x,89)y “(x) ¢ o"(x) FAE'(x,8p)y “(x)].

Using integration by parts and condition (C9)

| 0 gple ey ) = 2 [ 0,00 (x,89)7 () dn(x)

and it follows that

© [ ] fl(x,eo) 2
.L 8"(3-90)@(1) -2 .{' & dm(x).

This completes the proof of the theorem. 0
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Examples.
1. This example presents a misspecified drift function but correctly

specified noise function. Suppose that the observed process satisfies
dX, = -X.dt + J!‘dwt,

where xo has a N(0, 1) distribution, the stationary distribution of (xt).

Estimates are calculated from the parametric model
dx, = -0X3dt + VZaN, .
The parameter 0* which minimizes E()(o-e)(g)2 is given by

BXO

1
0% & —r = =,
6 S
sxo
B 2 1 2.6 2
y Theorem 2.1, e.r + g a.s. as T+ =, We also have g(x, 8) = 46“x - 36x",
so that g'(x, 6*) = -1- 6 3x2. Using repeated integration by parts
s s 2 2
[ g'(z,0%)dm(z) = [ (%- 28 - 32972 /24, o -(é— ssoss)e°s /2
so that
0 s
; [ ] g(z,00dn(2)dp(s) = g5 v° ¢ 37*
y -l
and
T eoom | l g' (2,0%)dn(z)dp(s)dv(y) » !( -3 g5 v e 3 vhem
-~ y -
12 10 1 8 3 .6
- 155 By * 35 EXy. - 15 EXp - 7 EXg

= 9‘.8.




Also

| g"(x,0%)dv(x) = Exg = 15.

Thus L = .(3219.‘.5_3). = .84, and by Theorem 2.2 we have 'r"(é.r-é-) gN(O, .84).
(15)

The asymptotic variance of é'l‘ is less than in the correctly specified case
for which T*(8;-1) 2 neo, 1.

2. Our second example has a correctly specified drift function and
a misspecified noise function. The observed process is the same as in the
first example but the parametric model is given by
4
2 ] an, .

2 t
l#Xt

dxt = -extdt + [

Theorem 2.3 yields T"(&r-n g N(0, 2.75). The asymptotic variance of 5‘!’

has almost tripled due to the misspecified noise.

3. Discriminating between separate families of drift functions.

Let (xt) satisfy (2.1) and assume throughout this section o(x) = 1.
Suppose that two parametric models for this process have been suggested.
It is required to decide in favor of the model which best fits the observed
trajectory {Xt. 0stsT)

Let {fl(x,o): 0 € 0}, {fz(x.¢): ¢ ¢ ¢) be distinct families of drift
functions, where 0, ¢ are closed bounded intervals. A reasonable way to

compare the goodness of fit of these families to the true drift function

b(x) is to estimate the parameter
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8 = E£,(X),4%)-b(X]? - EI£, (X5,09)-b(x]2.

In this section we introduce an estimator for A. The noise fumction is
assumed to be correctly specified; that is y(x) = 1.

Let z%l)(e). 2;?)(¢) denote the log likelihoods for the two models.
Define

e e o e e -

b = 2P ép - 1P 1.

Given that f_, £, satisfy conditions (C1)-(C3), it follows from (2.7) in

1° 72
the proof of Theorem 2.1 that A, + 4 a.s. as T + «=. The following result
shows that KT is asymptotically normal. Conditions from section 2 are used

interchangeably between the two families of drift functions indexed by ©

and 9.

Theorem 3.1. Suppose that fl’ fz satisfy conditions (C1)-(C6) and (C10),

where g;» &, are given by (2.5) with £ = fl’ f2 respectively, y(x) = 1.
Then TH(KT-A) g N(O, 22), where

- 0 s
L, _%L (8, (y,9*)-g, (y,8%)-8] £ _L (8,(z,4*)-g,(2,8%)-2]dm(z)dp(s)dm(y).

Proof. From (2.8)

T L
-0 = T [12 % 1p)-8, (X, 0)-8)de
(3.1)

-
L L I SRR oy Gy

+ 20706, (X )-6; Xy ) -6, (X, 80246, (X ).

The second term on the right hand side of (3.1) converges to 0 in probability.

The first tera is written

N T R he e © e
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-l T
T [ 18,000.0%) - £y (X, 0%) - alae
7T R
+T g (85 (X,,6p) - 85(X, ,¢°]de

-4

+ T [ [8;(X,,6%) - g, (X, ,8)]dt

[~ LN |

- AT » BT * CT.
From (2.9),
5[82(x0.0') - g].(x De.) - A] =0

D
so, by Mandl (1968, p. 94), I\.r -+ N(O, tz). Next, consider CT Expanding
g in a neighborhood around 6°*,

gl(xne) = gl(xle.) * (9'9')gi(xv6):

where |8-0*| < |o-6*]. This gives

c, = T3 e-)-l} (X ,B

T %% 7§ 81 0pdt.
But,

T T
%—g 8} (x,.8)dt = -}-({ g} (X, ,8%)dt
(3.2)
1 T
* 5 g (8} (X, B7) - g} (X, ,0%) ]dt.

By the proof of Theorem 2.2, E gi(x »8*) = 0, so by the ergodic theorem the

first term in (3.2) converges to 0 a.s. as T + ». From condition (C10),
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the second term in (3.2) is bounded above by
3 1 T
-0%) o =
$(8-0%) - 3 g u(x,)de,

which converges to 0 a.s. since [8,-6*| s [8,-0%|, 8, + 0* a.s, and
T
%{) U(X)dt ®3F° BU(X) as T+ =. Thus Gy + 0 a.s. and similarly B, + 0 a.s..

This completes the proof of the theorem. 0

Example.
Consider the two models

(3.3) dxt = -extdt + th,

3
(3.9) dX, = -¢X_dt + dW,,

and suppose that the observed process satisfies (3.3) with 6 = eo > 0. Some
involved but routine calculations give that 4 = .20, and I, = .646, + 9.36883.
Note that 22 + ® as 00 + 0. The poor performance of KT for small 60 is to

be expected since, as 8y * 0, the drift function has less effect on the
dynamics of the process so it is harder to discriminate between the two

models.
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