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A. Calculation of Wave Resistance and Sinkage by Rankine-Source Method

1. Introduction

The Rankine source was used first by Gadd [1] for the free-surface
flow problem. Later Dawson derived a more elegant formula and presented many
numerical results which may be considered a milestone in ship hydrodynamics
[2 ,3]0

One of the significant advantages of the method is its generality
and the simple form of the Green function. When the doubdble-hull linearized
free-surface condition is used, it can be extended to the viscous flow problem
(Mori & Nishimoto {4]). Not only the wave resistance but also the moment and
the force acting on a ship hull can be calculated. It enables us to attain
our final goal to calculate the wave resistance of an unrestrained ship form,
including viscous effects.

In the present interim report, calculations are limited to the case
of potential flow under the restrained condition. This is because there are
stil]l several points which should be clarified in the numerical techniques.
The inclusion of viscosity and the iterative calculation to realize the trim-
and sinkage-free condition are left for the second half of the present work.

2. Basic equations

Let ¢ (x,y,z) be the perturbation velocity potential at P(x,y,z)(see
Fig. 1 for definitions). By Green's theorem, ¢ can be expressed in the form

1 1 1
dnp (P) = - “S °H(F + —r—.—)dS - jjs OFF as + & ¢, (1)
H F
where Sy denotes the hull surface, Sg the free surface, oy @ source
distribution over Sy» and op @ source distribution over Sg, (see Appendix).

r2s (x - x)2aly - y)2 4 (2-2')?
(2)
s x-x )y -y (2 v )
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(x,y,z) are the coordinates of a fixed point P, (x',y',z') those of the
integration points. L is the contribution from the integration over the far-
field surface Sy, given by

o)) i i) - e e @

3
In the domain of Vo, which is partially surrounded by S, (see Fig.
1), we can assume that the velocity potential ¢ satisfies the linearized free-
surface condition

K, 2 28 . g, (4)

where K0 = UZ/g, g is the gravity acceleration, and U is the ship speed. By
making use of the Havelock Green function G which satisfies the linearized
free-surface condition, application of Green's formula gives

1 ' '
ok @B e e e Bckis
0 Lo So

where Lo is the intersecton of SO and the free surface.

Because ¢ and 3¢ '/ax should be continuous on S,, the addition of Eq. (5) to
Eq. (3) yields

1 , 96 3¢’ , , oH 3¢ '
LR SR - O AN VRS vl v DI C)
o L S
0 0
where
H=0G+ (%—+ %T). (7)

Due to the exponential decay of H in the depthwise directiion, the integration
over S, may be limited close to the free surface.

Eq. (1) has three unknowns; Oys Of and ¢ '. They can be determined so L
that ¢ satisfies the free-surface condition, the hull-surface condition and an
additional condition on S,. This is accomplished iteratively. Ne write the
velocity in the form

P




q = q* Vo, (8)

where
q,= WU +ve_+q, (9)
and
0o = 11 oyl * pr)es (10)
Sy
1 1
WS SIS L AR (1)
F

Here 1 is the unit vector in the x-direction, and g, a viscous velocity
vector.

At first, we determine oy in order to satisfy the hull-surface
condition for a given LR At the first iteration, OF and ¢ are assumed
zero. Thus q,. at the first iteration, gives the double-hull flow itself.
Then 9 is determined so as to satisfy the free-surface condition and a proper
downstream condition imposed on S,.

The free-surface condition, which is linearized based on the flow
field of 4> is

2
9o et g 1ot Q{900 wxt oytuy) * Byz= - 690> (12)

onz =0

where q, = |q0| 7=0 and subscripts £, x and y imply differentiation with
respect to the indicated variables. Here £ denotes arclength along a
streamline on z = o,

The condition imposed on Sp 1is that ¢' must be matched with a
solution of the Laplace equation which satisfies the linearized free-surface
condition and the radiation condition, In the present calculation,
however, ¢_ is neglected by chocsing the computing domain and the finite-
difference scheme properly according to the pilot computations given in [4].

The transformation of Eq. (12) into a finite-difference equation
provides a set of simultaneous equations for the unknown variable Op- Its
precise expression can be found in [4].




Once the velocity potential is determined, the pressure on the hull
is given by

p=30 (¥ - [af%) - o, (13)

where q is the total velocity vector, p is the density of fluid, and §H the
head loss whose gradient is given by

@WsH = w x q - wWoq, (14)

where w is the vorticity vector and v is the kinematic viscosity. Then., the
pressure resistance, Rp, the sinkage force, Rs’ and the trim-by-stern moment,
M., are given as follows:

t

Rp = - ]jSH pn,ds, Ry =JJ pn,ds,

(15)
Mt = JJSH p{nz(x - xo) - nx(z - zo)}dS,

where (x5, 2,) are the coordinates of the center of buoyancy, and (ny, n,) are
the x- and z-components of the unit outward normal vector on Sy

3. Mumerical calculation and discussions

Two ships are chosen for the present calculation; an Inuid model M-
21 [5] and the Wigley parabolic model whose principal dimensions are shown in
Table 1. The calculations are limited to the inviscid case and the first
iteration is carried out. Because M-21 is a model generated by the streamline
tracing method, oy is exactly known, thus avoiding some numerical errors.

Fig. 2 shows the discretization of the free surface for M-21. For
the present calculation, the computing domain is chosen as - 1.5 < 2x/L < 5.0
and 0 < 2x/L < 4.5, where L is the ship length.

The first derivatives appearing on the 1l.h.s. of Eq. (12) are
approximated by

|
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where h is the grid size, while those on the r.h.s. (knowns) are obtained by a
simple centered difference. Eq. (17) is the form which keeps terms up to the
fourth derivatives in the Taylor expansion but drops the third. It has been
determined in [4] that the finite difference of Eq. (17) is better than other
forms; it avoids downstream reflection and dampens waves, making it possible
to satisfy the radiation condition.

The upstream condition 1is satisfied by requiring that the
perturbation velocity o be zero on the three upstream columns of panels

(shaded in Fig. 2).

Fig. 3 shows the resulting free-surface source distribution .’ong
the 2nd and 3rd rows of panels (j 2,3). For comparison, the results

obtained by changing the computing domain from -1.5 < 2x/L < 5.0 to -1.5 <
2x/L < 3.0, are also shown. The results are quite similar. This does not
always guarantee the exact satisfaction of the radiation condition, but it can
be safely concluded that the truncation of the computing domain does not
affect the results greatly if the selected range extends at least two ship
lengths upstream and downstream from the ship form and the finite difference
procedure is properly chosen.

Fig. 4a shows the comparisons of perturbation velocity components,
u,v and w, in the x-, y- and z-directions respectively. The measurement is
carried out at 2z/L = -0.02 (just beneat the free surface) while the computed
results are on z=0. The values of u are in good agreement except near the bow
and stern. The discrepancies near the bow may be due to the approximation
that ’, does not satisfy the hull-surface condition, while those near the
stern may be attributable to the effects of viscosity. (It is intended to
include the viscous effects in subsequent calculations). The comparisons of
the v- and w-components indicates the need for a slight refinement of the
numerical techniques. As seen in Fig. 4b, however, the comparisons at a
deeper position, 2z/L = -~ 0.1, shows much better agreement.

In Fig. 5 the calculated wave resistance and sinkage are compared

with measured results. The measurement of resistance was carried out under
the sinkage-free condition (trim-fixed). The wave resistance is obtained by
subtracting the viscous resistance from the total resistance. The sinkage,
2s/L, was calculated by means of the static relation, given by

P ey
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2s/L = pOA L’ (17)

w

where AV is the waterplane area.

The calculated wave resistance is smaller than that measured. This
discrepancy may come mainly from the inadequate agreement in velocity
(pressure) observed near the bow, especially in the u-component. Another
possible reason is the neglect of sinkage in the calculation. The neglect of
the viscosity is also a possible reason, for M-21 is an optimized hull and the
inclusion of viscosity may increase the wave resistance.

The disagreement in the sinkage may be due to the same reasons. It
should be remembered that the calculated result shown here is that of only the
first iteration. Therefore, we can expect much better agreement in successive
iterations where the sinkage of ship is taken into account.

In the case of the Wigley model, the hull surface is divided into 24
(lengthwise) x 5 (draftwise) panels. The computing domain is chosen as -1.5 <
2x/L < 3.0 and 0 < 2y/L 0.45, and divided into 318 panels. The calculated
results of wave resistance and sinkage are compared in Fig. 6. Experimental
data are those of a 4.0" model measured at ISR [6]. The wave resistance was
measured with the model restricted in sinkage, but free to trim. Dawson's
results [3] are also shown in the figure.

The discrepancy, observed in the wave resistance curve a* the higher
speed range, may be due to the use of the double-hull linearized free-surface
condition. The difference between the present results and Dawsons's may come
mainly from the numerical method; he solved Eq. (1) directly to satisfy both
the hull-surface condition and the free-surface condition simultaneously.

The predicted sinkage is smaller in this case also. This is
probably due to the same causes as that for M-21.

Several kinds of discretization of the hull surface have been
compared for the integration of pressure over the hull. These do not make any
significant changes if the source distributions, ¢. and Ty are unchanged. A

F
possible improvement may be obtained by making use of the Lagally theorem.




4. Concluding remarks

The Rankine source method is applied to the calculations of the wave
resistance and the sinkage of the Inuid model M-21 and the Wigley model. Some
improvements in numerical schem2s and techniques may be still necessary, e.q.
the inclusion of the far downstream contribution, to carry out a successive
iteration and so on. It can be safely concluded, however, that the method
works well and is useful.

The author plans to carry out extensive additional calculations,
including viscous effects.
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Appendix - Derivation of Equation (1).

We consider three sub-domains of Ve, Ve and V; which are surrounded
by surfaces of S, §6, S S1s Sos §é, Sy» Sy and S¢ (see Fig. 1). P(x.y,z)
is a fix point in Ve.

By applying Green's formula to the drmain of Ve, Ve and Vi, we have

3 _1 _13 2 13
o (P) =I5 4545, (4 557 - 7 3%) ¢+ )5 @ 21 124
3 _ 1 _1a¢
+ JJSH ( amy F T ""H) dS, (A-1)
-3 1 13¢ —3_ 1 13
0=Jle < < @amr-rom) S -Us Gomr-ran) oS
+ S, +8§ E H
0 1 2
- 1
s Gt (a-2)
S H H
0= - (0 57 l-lHa——d"')ds (A-3)
‘” +*S- an, r r nH

where ¢ and ¢, are the veloc1ty potential defined in Ve and Vi respectively.
The definition of the normals of n and ny are shown in Fig. 1.

The integrands over Sy and'§1 vanish when the upstream condition is
imposed on ¢. Then the addition of Egs. (A-1), (A-2) and (A-3) yields

) 1
53;‘(¢ i)} dS 4 ]1 {(6-4) o

= -

s (6y) 5o -

L 3__
. an, -~ (6-0; 0105 .

(A-4)

It can be expected that the contributions from the integrations over S,
and'§2, the third and fourth terms in Eq. (A-4), may cancel each other when Sj
and S2 are taken deep enough. We assume that ¢ is equal to ¢ at symmetric
points; then Eq. (A-4) can be written as follows:

vt §




o (P) = Jfs Lo4y) o (el - G i Gegnes

IQJ

“Uls,

Q

n

Eq. (A-5) can be expressed in terms of source singularities;
& =¢;,3/3n, (4-¢;) = oy and 3/on (4-¢) = op, we obtain Eq. (1).

- as-[fgted Grr)-del) e,
0

A-9

(A-5)

putting
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L (m)
B{m)
d(m)
V(m?)

S (m?)

Fig. 1 Coordinate System and Definition

Table 1

Principal Paticulars

M-21

2.001
0.2368
0.1724

0.0347

0.6686

nsmniatinbe,

¢

Wigley

R e it

3.000
0.300
0.1875
0.075
1.329
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B. Prediction of 2-D Near-Wake Flow by Making Use of Time-Dependent Vorticity
Transport Equation

1. Introduction

This study is an extension of previous work [1] [2] where the flow over a
ship stern is predicted by making use of the vorticity transport equation.

In the first paper [1], an approximation is made for the vorticity
equation which 1is basically the same as the first-order boundary-layer
approximation. In the second paper [2], several approximations are invoked to
predict a significantly separated flow which are then matched with each
other. The full equation 1is applied to a restricted region where a

recirculating flow is significant.

In both papers, the boundary-layer equation is applied up to the position
where the flow is free from separation, beyond which it is replaced by the
vorticity equation. The boundary-layer calculation provides initial or
boundary values for the vorticity equation. The total velocity field in the
wake is given by a sum of the potential velocity and the induced velocity of
vorticity.

An important difference from previous work is that, in the present work,
the vorticity equation is used without any simplifications. This means that
the governing equation for the wake is completely elliptic. The process of
vorticity transportation is solved by the time-marching method. The k-c¢ model
is invoked for the turbulence closure in the present scheme.

Though the vorticity transport equation is exactly identical with the
Navier-Stokes equation, it has several advantages over the N-S equation when
it is applied to the prediction of near-wake flows of shiplike bodies. First,
the velocity field can be obtained by a simple sum of the potential velocity
and the velocity induced by vorticity. This removes the troubiesome
treatments of their interactions, for it is not necessary to distinguish the
viscous region from the inviscid. Another desirable feature is that the
unknown pressure term is eliminated.

The most important advantage is that the computing domain of the

vorticity equation 1is confined to a nonzero vorticity region. It fs more
definite and narrower than that of the case where the N-S equation is used.

) e )
M i e s s pmeidadbu ires
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The boundary values on the downstream and the lateral terminating surfaces are
definitely explicit and zero. These advantages make the numerical calculation
much simpler,

The only, but important, difficulty is that of providing the boundary
values for vorticity on solid bodies. In the present paper, this is treated
by a source distribution and a vortex sheet over the body.

Near wakes of a flat plate and two elliptic cylinders are calculated.

2. Basic equations

Restricting ourselves to 2-D cases, we use Cartesian co-ordinates which
are attached to the body, as shown in Fig. 1. By the curl operation on the
Reynolds equation, we obtain

2 2
_l_). 3 {vw). 8 _ 3 vV , U
{ TR WA TR
+ 2 33 vy - S0,

at'

where t is the time, u,v are velocity components in x- , y-directions, w the
vorticity with axis normal to the x-y plane, defined by

_3v _3u

® 7 9x Ty (2)
and satisfying

ow . dw _

ax * 3y - O (3)

Ve is the equivalent eddy kinematic-viscosity coefficient, related to the
Reynolds stress by
ve=v +vt, (4)
v du
LTt o 5
u'y t(ax y)’ (5)
where v is the kinematic viscosity, and u',v' are turbulence components of u
and v,

The k-¢ equations used for the turbulence closure are

. i i ! i " j




6 = vl2t @07+ Eh% + &4 W (8)

The five model constants are assigned the following values:

¢, = 0.09, C 1.92, 9 = 1.00, o= 1.23.

D 1= 1.44, C =

2

Once the vorticity field is determined, the velocity at P(x,y) is given by

; u(x,y) , - _ L. wlx'yy') _ ly-y') o
: v(x.y) b= - 6 (x-x") +2(y-y‘) -(x X )} dx"dy
u (x,y)
ty (x,y) (9)

where ¥ denotes the nonzero vorticity region. The derivation is given in the
Appendix. The first term is the velocity induced by the vorticity. Although
the solution of Eq. (1) and the integration in Eq. (9) are definitely confined
to ¥, the induced velocity influences the flow beyond ¥. This is the way the
viscid and inviscid interaction is taken into account in the present method,

E The second term on the r.h.s. of Eq. (9) is the potential components
given by

=%%+U1s v =2 * Vi (10) T

u o~ 3y

0

where ¢ is the total velocity potential.




) uy and v, are the velocity components due to the image vorticity which
can be determined in order for u and v to satisfy the hull surface condition;
je€e, u =0, v =0 on the hull, Wu and Thompson [3] criticized the inclusion
| of these terms and they used another expression which does not contain them.

It is true that their expression is simpler, but it is valid only when the
vorticity distribution is obtained such that the velocity satisfies the

norslip condition. As mentioned later, however, this is not possible when |
: Eqs. (1) and (9) are solved iteratively. On the contrary, uy
easily determined, as is shown in the Appendix, by making use of a source and y

vortex distribution. If a constant distribution is assumed along a short

and v1 can be

segment AB, ujand v; at P are given by

7 Y
u, = - g,109 %E - < APB,
1 1 AP n
— (11)
Vi =0 < APB - %l log %E.
m AP

where oland Y, are the strengths of the source and vortex sheet respectively
which are determined so as to satisfy the hull-surface condition.

3. Computing scheme

We assume that, initially, a vorticity region over the surface of a body
is generated by a sudden motion of the body to a constant speed of U. The
flow 1s then irrotational except in the vorticity layer (boundary layer).
Subsequently, a wake--nonzero vorticity region--is formed in the vicinity of
the stern by the diffusion and convection of vorticity. Thus, finally, a
§ steady (or quasi-steady) wake is formed,

This idealization provides the following computing scheme for this
initial and boundary-value problem, First, we carry out the boundary-layer
calculation up to points beyond which the flow is affected by separation.
Then we solve Egs. (4)-(8) and Eq. (1) with given boundary values and a
prescribed velocity field. Next, the velocity field is determined by £qs. (9)
and (10). The latter two calculations are repeated successively in the J
following order until the solution converges;

(n+1)
0!

(n)
= {:

poeae(Me @My )




LRGN PRGOS (13)

3. qVWIL f(wﬁwl)mgml)ﬁ§m1))+v¢, (18)

q
where the superscript (n) refers to values at t = t("). If all the values
at t =t(") are known and necessary boundary values are given, Eqs. (12) and
(13) can be solved in the computing domain -v("+1? The computing domain
expands as time elapses in order to include the region of nonzero vorticity
with zero value on the boundary.

Initial values, at t = 0, are tabulated in Table 1. Bg;, By, By, By,
Bgymy are boundaries surrounding the computing domain ¥ (see Fig. 1). Suffix
BL refers to values obtained by the boundary-layer calculation. Nonzero
initial values for k and € are used partially in ¥(2x/L < 1.2). This is
because the vorticity on BH does not diffuse so much if k and € are zero
everywhere in ¥,

The boundary values are shown in Table 2.

As mentioned already, we cannot have any specified values for vorticity
on the solid body., This is an unavoidable difficulty of the present method
where the vorticity equation is used. In our scheme we supply this with

wsm L g M, (15)
where A is a short distance normal to the hull surface ard q, is the
resultant velocity. Eq. (15) is obtained by making use of the nonslip
condition, but it does not always guarantee the satisfaction of the nonslip
condition at the (n+l)-th step. 9y and Y, are determined for the velocity at
the (n+l)-th step to satisfy the hull-surface condition. At the first time
step, n=0, the potential velocity is used; qé°)= |V¢

As mentioned above, the computing domain must be expanded indefinitely.
In reality, however, it must be truncated. After Bx has arrived at some
position beyond which the computing domain is not extended
further, 32w/3X2 = 0 is imposed as a boundary condition on Bx.




at, in Eqs. (12) and (13), is the time step. In the present scheme,
according to Von-Neumann's analysis [4], it is taken as

1

1 1 u v
ez 7 7) A

Ay

where Min { } refers to the minimum of the arguments defined in the whole
computing domain. Ax and Ay are grid sizes.

fk . and fm are finite-difference expressions of the r.h.s. of Egs. (1),
(6) and (7). The second upwind-differencing method [4] is used for the first
(convection) terms on the r.h.s. of Eqs. (1), (6) and (7). On the other hand,

central differences are used for the diffusion terms.

Boundary-layer calculations are carried out by the integral method, with
Head's entrainment formula used as an auxiliary equation.

4. Numerical results and discussions
4.1 Flat plate

The main purpose of the calculation for a flat plate i5 to examine the
present scheme and numerical techniques., All the computing conditions were
adjusted to those of the experiment of Chevray et al [5]. The overall length
L is 2.4m and the origin is shifted to the leading edge for thi: case. The

Reynolds number based on L is 6,545 x 105.

Results are shown in Figs. 2-5., The positions where comparisons are made
with the measurements do not exactly correspond; the computed results at x/L =
1,025, 1,080, 1,200, 1.600 are compared with experimental data at x/L = 1.020,
1.083, 1.208 and 1.625 respectively (only the former numbers are used later
on). The results are those at t = 0.917 L/U, when the computing domain has
expanded to x = 1.72L and y = 0.032L.

Good agreement with experiment was obtained everywhere except far
downstream at x/L = 1,60, The numerical computations were completely stable.

Needless to say, because the vorticity beyond the terminating surface (x
= 1,72L) is not included, the poor agreement far downstream (x= 1.60L) can be
partially attributed to this exclusion. Furthermore, a possible invalidity of
the use of the k-¢ model far downstream may be mentioned. Recently, through




precise comparisons with experimental data, Ramaprian et al [6] and Patel et
al 7] have pointed out that the basic k-¢ model does not lead to a
theoretically expected asymptotic flow in a far wake due to a different
behavior of the intermittency.

As far as the near wake flow is concerned, however, we can conclude that
the present scheme works well and satisfactory predictions can be obtained.

4.2 Elliptic cylinder

Calculations were performed for two elliptic cylinders designated EM-125
and EM-200, having ratios b of the major and minor axes of 0,125 and 0,200
respectively [8]. The velocity measurements were carried out by making use of
a five-hole pitot tube. An eight-hole pipe, which has eight holes along the
circumference of a circular pipe, was also used to follow reverse flows. The
referred Reynolds numbers of EM-125 and EM-200 are 1.68 x 106 respectively.

The potential velocity components are given by

3 1 +b cosh 2¢ - cosh 2qn - b sinh 2 ¢
ax - Ut 2 2 2 U
2(1 + b%) cosh™ £ - cos™ n
(17)
3¢ . P_(l‘*' b) sin 2Y1_ U
ay 2 2 2
2(1 + b") cosh™t - cos'n

where
x + iy = /1 + % cosh (£ - in). (18)

The boundary-layer calculations were carried out by making use of the
momentum-thickness equation and the entrainment equation. The calculated
momentum thickness, 6, shape factor, H, boundary-layer thickness, &, and
shearing stress, t, are shown in Fig. 6. BBL’ where the governing equation is
changed into the vorticity equation, is chosen at 2x/L = 0.8 in order to have

reliable values for initial and boundary values.

In Figs. 7-9, calculated results of EM-125 are shown.

T DR
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Fig. 7 shows the velocity and the vorticity distributions at 2x/L = 0,905
and 1.10., Calculated results, shown at every 0,1 L/U time step, seem to
converge. Agreement with the measurements is not so good at 2x/L = 1,10 as
that at 2x/L = 0.905.

In our scheme, we imposed the symmetry condition ony = O(BSYM)‘ We
suspect that this boundary condition may be the cause of this disagreement.
As is seen in Fig. 9, a vortex behind the body is predicted. This is growing
steadily and symmetrically. Experimentally, however, it is observed that
vortices are unsteady and moving across the symmetry plane. At 2x/L = 0.905,
flows may not be affected so much by the symmetry condition. It may be
necessary, though the computing time and the storage may increase, to remove
the symmetry condition and to introduce a slight disturbance to obtain a more
realistic flow.

Fig. 8 shows the turbulence quantities. Undesirable changes, observed in
the results at 2x/L = 0,905 around 2y/L = 0.06, are after-effects of Cebeci-
Smith's model which 1is invoked to determine the boundary values of k&

and € on BBL'

Fig. 9 shows the flow patterns at three time steps. Vectors show the
velocity and the flow direction., It is predicted that separation is occurring
around 2x/L = 0.975.

Calculated results of EM-200 are shown in Figs. 10 and 11, Fig. 10 shows
the computed results at 2x/L = 0.95 and 1.10. Here the calculations were
carried out up to t = 0.4L/U. A much longer time than this is needed for the
results to converge, especially far downstream, Indeed, there is a
possibility that the results may not converge, Although some significant
discrepancies from measurements are observed, it can be said that the present
method predicts the near wake flow fairly well.

Fig. 11 depicts the development of the wake; the symmetric vortex becomes
strong and eventually a significant reverse flow is realized. The separation
position is predicted to occur around 2x/L = 0,925,

These calculations for the elliptic cylinders raise doubts as to whether
we can expect a steady or quasi-steady flow in the wake, It appears to be
necessary to remove the symmetric flow condition at least.

et R ik A st o
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5. Concluding remarks

We can conclude that the present scheme, where the time-dependent
vorticity transport equation is wused in its full form together with the
boundary-layer equation, 1is promising., Several modifications in numerical
techniques seem to be required; e.g., the prescribed boundary values of the
vorticity need to be improved. It can be also said that the k-e turbulence

model is applicable for a near wake prediction.

Though it is not our main purpose to discuss experiments, it is highly
necessary to carry out precise velocity measurements in the near wake of blunt
bodies which can provide not only averaged quantities but also time-dependent
quantities. This would give a much better understanding of separated flows
and accelerate development of numerical calculation procedures.
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Appendix

Let qv be a velocity component due to a vorticity distribution w.
Because q, satisfies the continuity equation, it can be expressed in terms of
a vector potential E in the form

q,= VxE, v.E=0 (A-1)
A curl operation applied to Eq. (A-1) then yields
VE=-~uw. (A-3)

Thus the vector function E is a solution of the Poisson equation given by Eg.
(A-3).

By making use of Green's theorem in the domain exterior to the body, we
obtain

¥
m

a_a_l 1
- E o r) as', (A-4)

=5~
w(

4E = ff] v+ [] |
¥ SB+ S,
where ¥ is the nonzero vorticity region surrounded by SB and S_ which are a

n

body surface and a closing surface at infinity respectively; n denotes
distance along the outward normal to SB + sm, r is the distance between the
field point and the integrating point; primes indicate the values at the
latter point.

If w tends to zero at the rate of 1/R3, where R is the distance to S,
since E vanishes as 1/R, the integration over S_ becomes infinitesimally small
when R is chosen large enough. Then we have

an E = [[] ‘:—ldv- +{f (_ng_EL_ E' g—;%)ds'. (A-5)

¥ Sg
Now we assume another vorticity distribution w' inside SB' Similarly to
Eq. (A-3) we have

2
v E1= - wl. (A-G)

By applying Green's theorem to the interior domain of SB‘ we get

W
;
[
!
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w, 3k,
' 1 1 '
0= [ff v -[f (k3 E & D (A-7)
B SB
where B denotes the domain interior to SB’
The addition of Eq. (A-7) to Eq. (A-5) yields
wl ] wll )
4nE = [[] - dv' + jé{ Fr—dv
¥
13 t ] ] ' 3 1 !
] F55 (E'-E)) - (E'-E')) 37 7 dS'.
8
I[f we are concerned with only the exterior flow, we may put
E=E Y s (A-9)
1° Y17 38 (E - Ep) on Sg, -

where Yy is a circulation distribution whose direction is tangential to SB.
Then Eq. (A-8) is written as

b €= fff B 1y Lgw s g Lase (A-10)
¥

tq. (A-10) gives a solution of Eq. (A-3). Because it can be easily
proved that E, given by Eq. (A-10), satisfies Eq. (A-2), the induced velocity

is given by

B
Because the second term on r.h.s. of Eq. (A~11) has a potential in ¥ (this can
be easily proved by taking the curl operation to it), it can be replaced by a

source distribution over SB. Then we have finally

oas [0 xS ae s U xt-:-l-) ) (szr—l-) ds'  (A-11)
v

] 0' 'Y'
- ' 1 ' 1 '
nq,= [ff O x%) aw- @ y =~ ds' + ”s (v x =) ds', (A-12)
¥ B B
where 9 and Y, are determined so as to satisfy the hull surface condition.

The addition of the velocity component given by V¢ gives the expression
of Eq. (9) in the text.




Table 1 Initial Conditions
\" Bg, By
k kg, O Ka 0
!
’ € Es, 0 EoL 0
w 0 wBL wo
q V¢ q AL ]
Table 2 Boundary Conditions
BaL B Bsym By B x
k ' 0 2R/24= 0 0 0
£ o 0 %%y =0 0 0
L3
w Wa Wo 0 0 0, ° %lz =0
q(%,q) — 0 — — —
v yl Boundary Layer
| Calculation
u BY
SIS
Ry e S | B ]
U r777777,»(, BL v i .
BH ! *
L_,._-_u_.__.-- . . BSYM L -
0 (A.P.) X

Fig.l Coordinate System and Definitions




B-13

@3e1d 3Ield 30 3 pue 3y pajerndled z "b1g

i} 00 ¢ J9°2 €o' 9 00 a¢ 00 0

0o
; ' ; , ,
— —] .\JN / A \W T
A*ILT;JWB.I \\ P\ 4\\\4 ay \ i Aﬁ
/ N \A N | \ | X
| /r /f /7# // N __ & s
// /V/ \ m / { w @
| a
> ~ // . y / —+
” \ NAEANAEERY | .
I R R S SN e e
LM NN NN
_m “ |// /r/ ///w ,— / ,..~ m J_’w " —
N\ { + T ® o
A / A_ / N e -+ g
j B T =z
DA NI N B 2
3 - -— oo} =T mNS\m. 20| oc /. M 2

|
!
By

00" %2

neo 8°C 210 9¢0 70




, [
v % an=
coz o 0 5
sl
A1
w,\m
L— -
\\ \ ! //, ' M B
[e] ﬁ ; / <O o]
| \ ! .
© O/ ' L & 1
i !
il N ANIEE \
° | a © | TR R
_ N \ RN \ .
IR L m, ! | :
| _ RN _ m | ﬁ,,_ L 3
! 1 ' i ] ' 1
Au % _ Q/ ! _ JK/ Q/m i /A
“ T r : “ t ~ X \ >
N W N O 4 R e
1 W \ / r —
0971 © ﬂ _ o/ m w/ % =
! ) Y ry W
0 0z} w/ % O/ | m
_ﬂ | | h
paanseaw © o] 80| SZ0| & oo’} =T
t <
pa3eIndTed o . A m. o
o ¢ ¢ ¢ ¢
T ; — 2
| | ! =
, L L ] | __ m >




93eTd 3eTd JO UOT3INGTIISTQ AITOIJIIOAN v -bta b

s

P
12

‘i'\
oo

e —d e
0u°8

0002

M a S
m ! ! _./. \ \ 4/ ”U -
: t ) ! j f ,
] RN A Nk
TR

! i ! . 1 : ; \ 7 o
! i 0 i ; A.0 { D UV
: ] “ J | : ,w 4u w\‘/ 7 =
| H : i > ! o) | 0 m
| L e ek .
‘poansesy O " / o} /O /u /%! o

PIIBIOOTRD  —— 8] /Q M /O o] /
| ‘. _ ,
\d

A v
|t ] f o\l g
, : - + _
i | M §20° gol 0T | , 9 o
i

| . " _ | 1 | b N

1 M ? . : ¢
: _ * ! i m ﬁ ! i A &
! ' ) ; i “l ©

t v " ¢ L




O
—
|

93eTd 3IT4 JO UOTINATIISTQ AJITOOISA g *b1a
ﬁW\% 00| 00! ool 00l st 26 0 e CAA 8r @
B g o AT
A BP0 pae)
i1 f 7§
o/
AT
T rrrey
AN
O

ot
L\Os

rell

paansesay O

pajernoted ——

307

5704

o0’}

©

00

DO H

go et

ca 93t

ne

00°¥v2 co

vl 8

01X /8




jo s3Tnsay

("a:a)
G 0- 0°1-
T L
S
8 . 1
o~
0°Z1
0" ¥
0° 9
o VYse

10°0
{o°1
{02
£,
Sxmam
£ 3
Jo-¢




(STT-WA)

sat1330ad L310078A 3O suostaedwo)

L

"bra

-120 L0

-160. 00

~200.00

al
N

\.h M T — n..
e \F\PL\\\L\\\ . n s
i e
T T Ty
_ _ L:L.-J R SN
= - e— = a
e s IE
h v “ Jl’. o
! ,
. £t 02 Lot 219
5 /42 ‘. BIIJ/WAMN, 2
; 4\\ ﬁ M vf. _
- l * . o
A | H
t P i i x_i. |
L b !
00T © L A — .\.\ M _ 3|
, V Wk
1 ¥
A v (=]
. “ T M
& ﬁ
1 .
M |
. Tid =
c B @
- o
—
-+
%)
c
24 -
+1] o
Q (=)
(1]
-,

‘ 3&3




PSSR S

*b1d
C) ' nsay pa3leindled 8 '
¥ 30 ®3T
(GZ1-Wd) n o pue 3
[+ )
—
@
Ver
7 i
ik 010 goo jo'0 B S |
———pe— eI Y ;
N ///1”// \\l |
i
// / o0
//,
// 900
T I
ot = 1/%Z » w
" 10 .:,eo
2
n/ 3
eon 0 = /11 , ,
\ v A#o.T 560
-
Y3, a
"o o 3y
Qi * /4
(7, 0603 ) 3 - .
4 ——

At s sinles o s idsretovttaaisosibaailh -

4




-

>

e~

. B S B

EIAE 3

CRAEES & e e R

L I S R e e LN SN

-

!

L]

' “ 9
AT N
/77
R

R e

.

e TR

R TYIE R

<+

1

/

A | 2 8's -r‘-

L

-

B RS e e

EPRRe

e

= W

SEeEws

B
-

/

PR

£ae

i

T tseg,

B e e B e e SR
-

S iE e TR

/,

.‘ ¢
1

/A,
.l

”

.
-
4

[

%

v

by 8
-‘

|

W W .

PN Y =

Bl S i e A A

T —

e

TR .

2 Sk B e e B e

b e

- =&

o

— e

W T .

-

BN

R T e o

PN Gttt ol oz

— Ay - o

e e e o

N g - .

i Joi b RN

W TR e

P —y

-

X Ty

T e e S R .

gy gy sy

Calculated Flow Patterns (EM-125)

9

ig.




—
o~
\

(552 -W3)

S811301d A3ro018A 30 suostaedwo)d

B01

“bta

adtd atoy-g &q *ogq - =

agny 30314 3[0Y-§
Aq paanseap

oep o
lce 0

col 0

jol 0 = mf\k

[vd o

S$b0=1YLT

N/n " Ofn




B-22

(...-Wd) S@11301d A31DOT3A 3JO suostieduwo) qo1 -"bta
= pro-
T e~ g
v IR w
912 %0 270
——————— - r .

T/8z

o1l = var

e =TT

e - = - ..«’.\ o

o __ ‘!\\\\\\\\\
—oTTTB/ g




. B-=23
; N
" ' trren "
SRR i DRI
! . PR " ’ , -
SRR e W R R AR ARk it
IR ERER N . | . P e &
T LT
; (lIo‘[f{X” REEEN AR !’ ‘f " lflfif';'rf Trom?
R R R o LI TTTTTHINIE
o o A S AR
SRR RRAR ARt AR A et
TR BERREANA W } f f f HHHH!”H!»V
R R
‘ Jr [ JI f!”””;mmx - ;I? {'r[””l',';'”‘?
SORRAR I //[,H; L
" '[ ‘{ f I T?IT. IHB p[ pi [ [ [[[[rl«”{?’fﬂ'ﬁ* " p~
SRttt iintn-CONN SR ) - ER
SRS S ’f///,/:/f‘fM 3
‘f‘r’};,lfr?f/f'/”r&fy'}r% i RN «///ff, - B
Wi wai
BB A1 i ER L i
R e
/’: ;; ’/r //f»/u%//’f',//;;lf,fff;?,’}:’ﬁ' / / //////:, L N &
Ry 4/,/ //,//c%,/,;;:;afz,e’:é;?‘;{ﬁ? ;' ,, /f,// ’//, /’"-* 3
ol T . Vv =
L 1§ 1 W =
R A e i hi T e B
e /% 3y / / 1‘{;‘/‘?}-’:&'.’1”,“33 / /f« ot ;’ T 3
il A
/‘,f’;//‘,'"/ “ ,% o / / // / //// '”"w .
4 iv,‘/f,'?';/;7"’7?"?%' bt g e .
e /// SE
./”',"92//,// / ””" f/’f/% i
u"/ ffrr,
- R
g 7/7//M7 ',1;, ey 'ﬂ,/’/'///p |
«/f/M ﬂﬂ,/ oy /f/’
u.//c,w/y /7/477& ) f/ M /fa ’f 2
./ /HH/ ] » = ""'1:-!‘-4-/— o L e
. . c g7 av :




(002-nd) suia3zjed mMold pajelnoled qii1-b1a

. -
-— -— - -— e *— e e -
e e e e e e e S NSNS

-— - e

- v
PRSPPI SRR AN oA L
-— . - -— /f//!/‘/h/‘/“/l/lr/l/ﬁ/’ﬁ/ﬂ/ﬂ/ﬂ/f?‘ﬂd.:'co a2

- - s T
— e T T TR

T A sssseehaaahaaiadaaas
B i T R N N Y S8 2 =
i - - '/‘/ﬁ'/ dlm —
EESSS St S P S =

=

S

T . T
— —— /Jf#hﬁwmvwmnwnvu/h%mmwmmwmmmmmmwmw = A
— L T ) . . ~a T :
— — /Jrnmun%u#muwmMwmmw%Ww%mWwﬂMnHv/MWWMHWWMWWWMMMWMWﬁrﬁrﬂﬂ//_ S
-— - - - - 2, P i st f/i;/ TN
— e T - f///f#ﬂ.u.Vv%Uy/ﬁ/ﬁ/ﬁ#@%f«W.ﬁH/'Mu -
~%~ ’/‘/’/ — v

0= N — .
covo-3/, ===t

J//T\
o "3
. - , L G C .
= =iE=E=EE] EFY FHHIN - -
-
D SUSIBEE- SHEN SV S Sl S s i L8 NWH""&.
il e e e e = -t S S SO S 2
i e i e e o = i S SN I STEEE
- - D S A AR N NN NN LB
i e e e —— NN A
—— e e v} /” -Hf fffffff
—— e e e et s e D J/l/'/ N, Y
- — P W S M O A DS l/l/l/‘/ﬂ/klﬂl’i o ~/~/9
* o

MDD PSP S SRS NE OGN Y ;mmmmwww.uv
-— - - e S N NN :
../‘/././/.//./././././/-.//ff/

|
|
I
|
f
|
[
|
|
!
4
/
f%
%

— e e rflr/rtli/‘/ B
FEEERRRRNSSSS f/ﬁ.ﬂ/

T T T T T T R st u/.////../,/.//
/[/
/
- =

/
== =
/

-— e e e~ e - - - - C/I z \n )
BRESESS e e,y oA
.ﬁ//‘/..//Jﬂ//.///.M/M IR
© u A N/ﬂ/v
-
s




C. Free-Surface Boundary Layer and Necklace Vortex Formation

1. Introduction

The existence of a shear layer beneath a wavy free surface has been
experimentally  suggested; e.g., Takahama [1] and Longuet-Higgins [2].
Batchelor [3] gives a theoretical explanation for its development. The shear
Tayer, which we shall call a free-surface boundary layer, develops due to the
zero-shear-stress condition when the free surface has a significant curvature.

Besides the boundary layer on the hull and its accompanying wake, a free-
surface boundary layer may also affect the ship wave resistance. The viscous
effect of the free-surface boundary layer on wave resistance was discussed by
Mori [4], wh.re, by order-of-magnitude analysis, it was concluded that its
effect might be less than those of the boundary layer on the hull and the
wake, and only the latter was included in his calculation.

Recently, however, Kayo [5] has found that the presence of a free-surface
shear layer, which is realized artificially in his researcht significantly
affects the wave resistance.

In the first half of the present report, an attempt is made to give
equations to predict the free-surface boundary layer in the 2-D case.

In the latter part, a theoretical explanation is made for the formation
of the so-called necklace vortex around the bow. It is based on the drift
theory (Lighthill [6]) or the vortex-stretching theory (Batchelor [7]). A
similar idea has been introduced by Baba [8].

Through a simple calculation for the case of a vertical circular
cylinder, it is demonstrated that even a slight vorticity in the incident flow
can become very intense in the vicinity of the bow where flows are retarded,
and that the observed effect of a bulbous bow on inhibiting the formaiton of
this vortex can be explained by the acceleration of the flow near the free
surface due to the presence of the bulb.

The combination of these two studies, which is left for a future
investigation, may throw light on the bow-wave phenomena.
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2. Free surface boundary layer equations

We 1limit ourselves here to the 2-D case. An orthogonal curvilinear
coordinate system (s,n) is used together with the Cartesian coordinate (o-xyz)
system, as shown in Fig. 1. The normal coordinate n consists of straight
lines. u and w are the velocity components in s- and n-directions
respectively,

The momentum equation in the s-direction is given by

<

3u_ u . _12°P g .1 30 3r_

”has+"‘ *KUW"p +p (has+a“ 4'2)(1’), (1)
where h 1is the metric coefficient of the s-coordinate, P the pressure,
p the density, and ¢ and t are the normal stress and the tangential stress in
s-direction respectively, including the Reynolds stresses. « is the curvature

of the s-coordinate defined by

2 32
_oh _dg dz 2
< han T 2 1+ (gt . (2)

The continuity equation is given by
%%",s‘+”—‘+i<w=0. (3)

We assume that the related layer is so thin that the pressure is equal to
the constant atmospheric pressure and that the derivative with respect to s is
smaller than that with respect to n. Then Eq. (1) can be approximated by

3u_ 3u e g .1 @31
Uhss P Wan Y xW = -0 st Gp * 1), (4)

where ¢ is the free surface elevation whose gradient is written in the steady
case as

g9,
9get9g -0 (5)

where g is the potential velocity.

The boundary conditions on the free surface and at the edge of the
boundary layer are as follows;
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n=20 t =0, (6)
n=2a w =0, u-=aq, (7)
where w is the vorticity defined by
= 3y _ AW
=30 T KU st (8)

We assume that the Reynolds stresses are given in exactly the same form
as the stresses due to the molecular viscosity in terms of velocity
gradient. Then 1 is given by

., R

aw
r-uean—nu’rﬁa‘s‘). (9)

where Mo is the equivalent viscosity coefficient.

If the flow is inviscid, the boundary condition of Eq. (6) is
automatically satisfied and no boundary layers develop. If the flow is
viscous, however, Eq. (6) yields an additional free-surface condition

W _u=0 . n=0 (10)

which is the source of a possible development of the free-surface boundary
layer; the substitution of Eq. (10) into Eq. (8) gives the vorticity on the
free surface;

w = 2y , n=0 (11)

which is not zero unless x is zero. This means that the vorticity is not zero
on a curved free surface and a boundary layer possibly exists. It should be
remembered that, if the free surface is flat, the boundary condition of Eq.
(10) is automatically satisfied.

In the present paper, an integral method is used and the ordinary
boundary-layer approximations are invoked, The third terms on 1.h.s's of Egs.
(3) and (4) are omitted, and x is assumed constant across the boundary layer
and equal to the free-surface curvature.
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rS dq . _ ﬁl? T L | tdn, (12)

where 6 and §* are the momentum thickness and the displacement thickness
respectively, defined by
§ 8

u(g-u)dn , Q@* = (g-u)dn. (13)
0 0

2
qe = |
In the derivation of Eq. (12), we have used Eqs. (3) and (5).

After neglecting the third term of Eq. (9), its substitution into Eq.
(12) yields

<
ar
[=d

9_9__+(29+ 5*)%9_&_=_

hds hds |n=6 twe (g - 2qo)}‘ (14)

roleo
5|

q

where % is the velocity on the free surface.

If Eq. (8) can be approximated as
w =i tku=0 (15)
n
at n = 6§, the r.h.s. of Eq. (14) can be simplified to

q
de * dg _ _0
hds* (26 + 6*) hds = 2v x 3 (16)

o

As a second equation, we use the entrainment equation*) which is obtained
by an integration of Eq. (3),

d 1dq _
nas (Hg®) *+ Hgd g pgg = E» (17)
where
§-6*
e =g

(18)

*Jof course, we can use an alternative equation such as the moment of moment
equation., The choice of the best one is left for future work.




The entrainment function E is given apriori as a function of HE'
Now we express the velocity profile in the boundary layer by a polynomial
summation

2 3
ulq = agr ay(g) + ap(§)° + agly) (20)
Then the boundary conditions Eqs. (6) and (7) give
a = kéo,
a, = -ao(zk +3) +k + 3, (21)

ag = (a -1)(k +2),

where k = k8; the approximation of Eq. (15) is also invoked,
Then 8* and ¢ are written in terms of a and k as

§*/6 = - %f {aj (k +6) + (k-6)},
(22)
_ 1 2,2 2
0/6 = - gz { Ba (k™ + 11k + 39) + 2a (6k" + 17k - 102)

+ 8k%+ 18k - 108)}.

Once 8 and HE have been obtained at a certain position by solving Egs.
(16) and (17), then a, and k can be determined from Eqs. (18) and (22).

Thus we can calculate the free-surface boundary-lTayer flow. Further we
can include it as one of the double-hull velocity components in the Rankine
source method (see part A).

Formation of necklace vortex

We assume that the necklac vortex around the bow is formed by an
accumulation of the vorticity generated in the free-surface boundary layer.
As the drift theory suggests [6], because of the stretching of the streamlines
around the bow, even a slight vorticity can form such an intensive vortex as
is observed.




In the inviscid fluid, a vortex tube moves with a fluid particle and its

strength remains constant (Helmholtz's theorem). This theorem gives a

w(t + At) _ 2t +at)
wlt —sz t > (23)

where £ is a material element parallel to the vorticity w [7], and t is time.

retation

To solve Eq. (23) 1is equivalent to solving the vorticity transport
equation with the viscous diffusion term neglected,

If the vorticity can be assumed to be distributed on the z = 0 plane, the
induced velocity is given by

Y
uv‘zwxdg
v :_-1— § (24)
v 2 Ux°
Wom - S s X e (Y -y ) w ) dx! dy!
v 4y r3 wy Y o ¥ ) wy Yo
where rl = (x - x‘)2 + {y - y')z, w, and o are x-, and y- components

of w respectively. § is the nonzero vorticity layer., Here we assume that
the vorticity is constant in the z-direction within the layer,

The velocity given by Eq. (24) can be included in q, in the Rankine
source method (see Part A}, and we can calculate the free-surface elevation
including the effect of a necklace vortex,

By making use of the relation
gvéH = w x q, (25)
we obtain the headloss &H as

Wy, wdx (26)

0

gsH =

> x

In Eq. (26), X, is a far-upstream position where the head loss is zero.




4. A Numerical exasple for a vertical cylinder

When a vertical cylinder is in a uniform flow U, the velocity field is

given by
2 2
u=\U - Uaz .x__:a_-y—_,
r (27)
v = -2Ua2 5%,
r

where a is the radius of the cylinder.

Fig. 2 shows the free-surface elevation along the centerplane (y = 0)
which is approximately obtained by making use of Bernoulli's formula (the
kinematic condition is not satisfied). The measurement was carried out with a
point gauge. Agreement is good except near the bow. Just in front of the
bow, a vortical motion can be observed. Around x/a = -2.1, a sudden increment
in the surface elevation, which seems to form a wave-front line, is seen.

Fig. 3 shows the paths of fluid material particles, obtained by

t
X + iy = x  + iy, + £ (u + iv) dt, (28)
where (xo,yo) is the initial position of a particle along which a vortex tube
is initially assumed. In our present calculation, it is chosen
at x/a = -1.9. The initial value of vorticity is determined by Eq. (11)
as |w | = 1.0.

The solid Tines show streamlines, the broken lines the positions of
particles at the related time, It can be observed that vortex tubes are
greatly stretched in the vicinity of the cylinder.

Fig. 4 shows the equivorticity contours; Fig. 4a and Fig. 4b show those
of wxand my respectively. In front of the cylinder, Wy has increased more
than seven-times its original intensity. This accumulation may explain the
existence of the experimentally observed vortical motion there.

The effect on the generation of the W, component is drastic. Although
the w - component rarely exists along the initial distribution 1line, a
significant vorticity is attained which may form the longitudinal vortex along
the cylinder.




Such accumulations may possibly affect the velocity field. Fig. 5 shows
the induced velocity due to the free-surface vorticity which is obtained from
Eq. (24). & is assigned a constant value of 0.02a over the whole domain which
is roughly equal to 10% of the wave height, Although the values assigned in
the present calculation are quite modest, the induced velocity is
significant. The negative sign of u, indicates that the induced velocity is
backward. As seen in Fig. 5, a stagnation point, where the addition of u, to
u becomes zero, is realized around x/a = - 1.05. This may account for the
observed vortical motion ahead of the bow, and possibly for the occurrence of
wave breaking. An exact calculation of the free-surface elevation, including
the induced velocity, is highly desirable.

In Fig. 5, the head 1loss, obtained from Eq. (26), is also shown.
Although it does not always compensate all the discrepancies observed in Fig.
2, it may be enough to produce an increment in resistance,

It is well known that a bulbous bow reduces resistance even at a low
Froude number. The reason is believed to be that bulbs improve the bow flow
so0 as to inhibit secondary flows or vortex formation but this has not been
clearly demonstrated. A simple attempt will now be made to shed light on this
phenomenon by introducing a point doublet in front of the cylinder. A point
doublet of moment strength 0.125 Uad js submerged at (-1.5a, 0, -0.75a). The
original flow field, given by Eq. (27), does not correspond to that of the
circular cylinder any more; this is ignored.

Fig. 6 shows the paths of material particles. Due to the acceleration by
the point doublet, the stretching of a material tube is greatly moderated.
Fig. 7 shows the equivorticity contours; as observed, the accumulation of
vorticity is much less than that without a doublet. The longitudinal vortex
has been remarkably weakened., The induced velocity, shown in Fig. 5, is also
much less.

These results show that bow bulbs play a role to make the accumulation of
vorticity less. This fact may provide a possible gquideiine to hull-form
design; bulbs should be designed in order for the free-surface flow (not the
entire flow!) to be accelerated so as to avoid the intensification of the
free-surface vorticity.
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TENAET . SR SR POV



g

4. Concluding remarks

The boundary layer equations are derived and it is shown that a free-
surface boundary layer can develop when a free surface has a significant
curvature,

The calculations and experiments, which will provide basic data for this
not-well-known problem, are being performed.

The simple theory of drift is applied to the free-surface vorticity. The
formations of the necklace vortex and the longitudinal vortex along the hull
have been demonstrated. A thorough computation to predict the free-surface
elevation will be undertaken by combining the described procedures with
Rankine source method.
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Fig. 5 Induced Velocity and Head Loss
due to Free Surface Vorticity
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