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A. Calculation of Wave Resistance and Sinkage by Rankine-Source Nethod

1. Introduction

The Rankine source was used first by Gadd [1] for the free-surface
flow problem. Later Dawson derived a more elegant formula and presented many

numerical results which may be considered a milestone in ship hydrodynamics
[2,3].

One of the significant advantages of the method is its generality

and the simple form of the Green function. When the double-hull linearized

free-surface condition is used, it can be extended to the viscous flow problem

(Mori & Nishimoto [4]). Not only the wave resistance but also the moment and

the force acting on a ship hull can be calculated. It enables us to attain

our final goal to calculate the wave resistance of an unrestrained ship form,

including viscous effects.

In the present interim report, calculations are limited to the case

of potential flow under the restrained condition. This is because there are

still several points which should be clarified in the numerical techniques.
The inclusion of viscosity and the iterative calculation to realize the trim-

and sinkage-free condition are left for the second half of the present work.

2. Basic equations

Let *(x,y,z) be the perturbation velocity potential at P(x,y,z)(see
Fig. I for definitions). By Green's theorem, * can be expressed in the form

4ir) - JJ H(- + -LI)d - S F F- dS + 4w *,, (1)

where S denotes the hull surface, SF the free surface, 0H a source
distribution over SH, and aF a source distribution over SF. (see Appendix).

r2= (x- x') +(y y)2 + (z-z')2

(2)

r2 (x - x') 2 + (y _ y')2 + (z + z')

Lii
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(xy,z) are the coordinates of a fixed point P, (x',y',z') those of the

integration points. *= is the contribution from the integration over the far-

field surface So , given by

4ir* a (L + ,) - (L + 1 )dS. (3)
£3

In the domain of Vo l which is partially surrounded by So (see Fig.

1), we can assume that the velocity potential f satisfies the linearized free-

surface condition

Ko -az + 1 - 0, (4)

0 a 2'
ax

where Ko = U
2/g, g is the gravity acceleration, and U is the ship speed. By

making use of the Havelock Green function G which satisfies the linearized

free-surface condition, application of Green's formula gives

1 3~' G
0O= -- X- I (+' ax' G J7 ('aj ax-) dS, (5)

o L So

where L is the intersecton of S and the free surface.
0 0

Because #' and ao'/ax should be continuous on SO, the addition of Eq. (5) to

Eq. (3) yields

4w* 10 lGo ' - G b-) dy' ax' 3H- Hx dS, (6)

where

H = G + (+ +- (7)

Due to the exponential decay of H in the depthwise directiion, the integration

over So may be limited close to the free surface.

Eq. (1) has three unknowns; OH' OF and €'. They can be determined so

that # satisfies the free-surface condition, the hull-surface condition and an

additional condition on So . This is accomplished iteratively. We write the

velocity in the form
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q = qo + V ,  (8)

where
qo= iU + V o + q (9)

and

€o- 4 JS OH(r + -LF)dS (10)
1 1

iw=- 0 -J F dS + (11)
SF

Here i is the unit vector in the x-direction, and q. a viscous velocity

vector.

At first, we determine oH in order to satisfy the hull-surface

condition for a given *w" At the first iteration, aF and €= are assumed

zero. Thus qo, at the first iteration, gives the double-hull flow itself.

Then OF is determined so as to satisfy the free-surface condition and a proper

downstream condition imposed on So .

The free-surface condition, which is linearized based on the flow

field of qo, is

qo(q 0 w)j+ qo(qoxwx qywy) + qwz= - q (12)
on z = o

where qo= qoj z=o, and subscripts z, x and y imply differentiation with

respect to the indicated variables. Here i denotes arclength along a

streamline on z = o.

The condition imposed on So is that 0' must be matched with a

solution of the Laplace equation which satisfies the linearized free-surface

condition and the radiation condition. In the present calculation,

however, *,= is neglected by choosing the computing domain and the finite-

difference scheme properly according to the pilot computations given in [4].

The transformation of Eq. (12) into a finite-difference equation

provides a set of simultaneous equations for the unknown variable aF* Its

precise expression can be found in [4].

mail"
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Once the velocity potential is determined, the pressure on the hull

is given by

p = (U' - 1q1 2)- pg6H, (13)

where q is the total velocity vector, p is the density of fluid, and SH the

head loss whose gradient is given by

gv6H = w x q - vV2q, (14)

where a is the vorticity vector and v is the kinematic viscosity. Then, the

pressure resistance, Rp. the sinkage force, Rs, and the trim-by-stern moment,

Mt, are given as follows:

R - IJSH PnxdS ,  Rs =J pnzdS,
(15)

Mt =]IS H P0nz(X - Xo nx(Z - 0o)}dS,

where (xo , zo) are the coordinates of the center of buoyancy, and (nx, nz) are

the x- and z-components of the unit outward normal vector on SH.

3. Nmaerlcal calculation and discussions

Two ships are chosen for the present calculation; an Inuid model M-

21 [5] and the Wigley parabolic model whose principal dimensions are shown in

Table 1. The calculations are limited to the inviscid case and the first
iteration is carried out. Because M-21 is a model generated by the streamline

tracing method, aH is exactly known, thus avoiding some numerical errors.

Fig. 2 shows the discretization of the free surface for M-21. For

the present calculation, the computing domain is chosen as - 1.5 < 2x/L < 5.0

and 0 < 2x/L < 4.5, where L is the ship length.

The first derivatives appearing on the l.h.s. of Eq. (12) are

approximated by

1
= - ( F1-3 + 6% _2-15F i-1+ 10%i), (16)



A- 5

where h is the grid size, while those on the r.h.s. (knowns) are obtained by a

simple centered difference. Eq. (17) is the form which keeps terms up to the
fourth derivatives in the Taylor expansion but drops the third. It has been

determined in [4] that the finite difference of Eq. (17) is better than other

forms; it avoids downstream reflection and dampens waves, making it possible

to satisfy the radiation condition.

The upstream condition is satisfied by requiring that the

perturbation velocity * be zero on the three upstream columns of panels

(shaded in Fig. 2).

Fig. 3 shows the resulting free-surface source distribution LJong

the 2nd and 3rd rows of panels (j = 2,3). For comparison, the results

obtained by changing the computing domain from -1.5 < 2x/L < 5.0 to -1.5 <

2x/L < 3.0, are also shown. The results are quite similar. This does not

always guarantee the exact satisfaction of the radiation condition, but it can

be safely concluded that the truncation of the computing domain does not

affect the results greatly if the selected range extends at least two ship
lengths upstream and downstream from the ship form and the finite difference

procedure is properly chosen.

Fig. 4a shows the comparisons of perturbation velocity components,

u,v and w, in the x-, y- and z-directions respectively. The measurement is

carried out at 2z/L = -0.02 (just beneat the free surface) while the computed

results are on z=o. The values of u are in good agreement except near the bow

and stern. The discrepancies near the bow may be due to the approximation

that *w does not satisfy the hull-surface condition, while those near the

stern may be attributable to the effects of viscosity. (It is intended to
include the viscous effects in subsequent calculations). The comparisons of

the v- and w-components indicates the need for a slight refinement of the

numerical techniques. As seen in Fig. 4b, however, the comparisons at a

deeper position, 2z/L = - 0.1, shows much better agreement.

In Fig. 5 the calculated wave resistance and sinkage are compared

with measured results. The measurement of resistance was carried out under
the sinkage-free condition (trim-fixed). The wave resistance is obtained by

subtracting the viscous resistance from the total resistance. The sinkage,

2s/L, was calculated by means of the static relation, given by
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2R

2s/L = g-U (17)
w

where A. is the waterplane area.

The calculated wave resistance is smaller than that measured. This

discrepancy may come mainly from the inadequate agreement in velocity

(pressure) observed near the bow, especially in the u-component. Another

possible reason is the neglect of sinkage in the calculation. The neglect of

the viscosity is also a possible reason, for M-21 is an optimized hull and the

inclusion of viscosity may increase the wave resistance.

The disagreement in the sinkage may be due to the same reasons. It

should be remembered that the calculated result shown here is that of only the

first iteration. Therefore, we can expect much better agreement in successive

iterations where the sinkage of ship is taken into account.

In the case of the Wigley model, the hull surface is divided into 24

(lengthwise) x 5 (draftwise) panels. The computing domain is chosen as -1.5 <

2x/L < 3.0 and 0 < 2y/L 0.45, and divided into 318 panels. The calculated

results of wave resistance and sinkage are compared in Fig. 6. Experimental

data are those of a 4.0m model measured at ISR [6]. The wave resistance was

measured with the model restricted in sinkage, but free to trim. Dawson's

results [3] are also shown in the figure.

The discrepancy, observed in the wave resistance curve a' the higher

speed range, may be due to the use of the double-hull linearized free-surface

condition. The difference between the present results and Dawsons's may come
mainly from the numerical method; he solved Eq. (1) directly to satisfy both

the hull-surface condition and the free-surface condition simultaneously.

The predicted sinkage is smaller in this case also. This is

probably ue to the same causes as that for M-21.

Several kinds of discretization of the hull surface have been

compared for the integration of pressure over the hull. These do not make any

significant changes if the source distributions, aF and are unchanged. A

possible improvement may be obtained by making use of the Lagally theorem.



A-7

4. Concluding remarks

The Rankine source method is applied to the calculations of the wave

resistance and the sinkage of the Inuid model M-21 and the Wigley model. Some

improvements in numerical schemes and techniques may be still necessary, e.g.

the inclusion of the far downstream contribution, to carry out a successive

iteration and so on. It can be safely concluded, however, that the method

works well and is useful.

The author plans to carry out extensive additional calculations,

including viscous effects.
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Appendix - Derivation of Equation (1).

We consider three sub-domains of Ve, Ve and Vi which are surrounded

by surfaces of S So, S1, 1' $2' 2SH' SH and SF (see Fig. 1). P(x,y,z)

is a fix point in Ve.

By applying Green's formula to the drmain of Ve, Ve and Vi, we have

4%f(p) = a 1 --1 it) dS +JjS ( _- -1 ) dS

an r r an JJSF ( nr ran ) dS

+s 4 a r-adS, (A-i)
H H r r anH

0=a- a _ ?dS --a 1 L dS_n r an dS - a ra
0~ + F H

+J a r - - )dS, (A-2)
s an H ran H

0 a j~-~ n1 dS (A-3)
SH + H 1 a nH r r anH

where *-and €i are the velocity potential defined in Ve and Vi respectively.

The definition of the normals of n and nH are shown in Fig. 1.

The integrands over S1 and- 1 vanish when the upstream condition is

imposed on *. Then the addition of Eqs. (A-i), (A-2) and (A-3) yields

4ir€(P) S n r r ) dS + _@an r ran dS

an - a 1 1a a r)
0

+ (j f 1 dS + jJ
Jj2 4 n r ran - r ran

]Is F 4 n - -r)n dS

JJSH{(o-.i)n H a l Ia n a 1 1 a --

ananH r r +n ( -Oi )}dS(H-is) dS + -{(--i) i ........

(A-4)

It can be expected that the contributions from the integrations over S2

and S2, the third and fourth terms in Eq. (A-4), may cancel each other when S2

andS 2 are taken deep enough. We assume that * is equal to * at symmetric

points; then Eq. (A-4) can be written as follows:
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41r*(P) J2 {(0 -4i 11danS r r r + - ) (*i) S
-J@3( 1 1 1 1 @._(-F r - -) dS - J i- +r x (A-5)

Eq. (A-5) can be expressed in terms of source singularities; putting

S= ~,i lanH (*-i) --oH and a/an (f--) --F, we obtain Eq. (1).

0 0 /a . j H an a / n O
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Table 1 Principal Paticulars

M-21 Wigley

L(m) 2.001 3.000

B(m) 0.2368 0.300

d(m) 0.1724 0.1875

v(m3) 0.0347 0.075

S(M1 .) 0.6686 1.329

z

Tn

Ve - 0 SF

S 2  vL

Fig 1 ooint SytmadDfiio
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B. Prediction of 2-0 Near-Make Flow by Making Use of Time-Dependent Vorticity
Transport Equation

1. Introduction

This study is an extension of previous work [1] [2] where the flow over a

ship stern is predicted by making use of the vorticity transport equation.

In the first paper [1], an approximation is made for the vorticity

equation which is basically the same as the first-order boundary-layer

approximation. In the second paper [2], several approximations are invoked to

predict a significantly separated flow which are then matched with each

other. The full equation is applied to a restricted region where a

recirculating flow is significant.

In both papers, the boundary-layer equation is applied up to the position

where the flow is free from separation, beyond which it is replaced by the

vorticity equation. The boundary-layer calculation provides initial or

boundary values for the vorticity equation. The total velocity field in the

wake is given by a sum of the potential velocity and the induced velocity of

vorticity.

An important difference from previous work is that, in the present work,

the vorticity equation is used without any simplifications. This means that

the governing equation for the wake is completely elliptic. The process of

vorticity transportation is solved by the time-marching method. The k-E model

is invoked for the turbulence closure in the present scheme.

Though the vorticity transport equation is exactly identical with the

Navier-Stokes equation, it has several advantages over the N-S equation when

it is applied to the prediction of near-wake flows of shiplike bodies. First,

the velocity field can be obtained by a simple sum of the potential velocity

and the velocity induced by vorticity. This removes the troublesome

treatments of their interactions, for it is not necessary to distinguish the

viscous region from the inviscid. Another desirable feature is that the

unknown pressure term is eliminated.

The most important advantage is that the computing domain of the

vorticity equation is confined to a nonzero vorticity region. It is more

definite and narrower than that of the case where the N-S equation is used.

____________________________
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The boundary values on the downstream and the lateral terminating surfaces are

definitely explicit and zero. These advantages make the numerical calculation

much simpler.

The only, but important, difficulty is that of providing the boundary

values for vorticity on solid bodies. In the present paper, this is treated

by a source distribution and a vortex sheet over the body.

Near wakes of a flat plate and two elliptic cylinders are calculated.

2. Basic equations

Restricting ourselves to 2-D cases, we use Cartesian co-ordinates which

are attached to the body, as shown in Fig. 1. By the curl operation on the

Reynolds equation, we obtain

aw (uW _ + a (vw) + (a , + auat "ax ay " a 2  y2 e a-x + a-y}

a2- {v (av au
a x y eay ax

where t is the time, u,v are velocity components in x- , y-directions, w the

vorticity with axis normal to the x-y plane, defined by

av au (2)

W ax ay

and satisfying

ax +L-: 0. (3)

v is the equivalent eddy kinematic-viscosity coefficient, related to thee
Reynolds stress by

Ve= V + Vt ,  (4)

av au

- = vt(Lv + i-), (5)
a y

where v is the kinematic viscosity, and u',v' are turbulence components of u

and v.

The k-e equations used for the turbulence closure are
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3k 3(uk) + 3(vk)1 + e ak @ e k
3x ~~ ~_ 3k)X kX 3t a x ay ax ok ax) ay ( ay

+ G' - E, (6)
e

[ 3(E a (vc) +j_ Va Ve
_a t a x ay ax a C ) ax a ( )a

2
+ C1Ge  '- C2  (7)1 k * C

where

a u 2 av 2 + av au(8G' = Ve[2{(t x) + ( -y ) I (-x + y) (8)

The five model constants are assigned the following values:

C =0.09, C 1.44, C2= 1.92, Gk  1.00, G

Once the vorticity field is determined, the velocity at P(x,y) is given by

u(x,y) I W(x',y) (Y-Y') ,
v(x.y) w - 2x-x') +2(yy) 2 -(x-x') dy'

Uo X,Y)
+ { 0(X,y) (9)

where I' denotes the nonzero vorticity region. The derivation is given in the

Appendix. The first term is the velocity induced by the vorticity. Although

the solution of Eq. (1) and the integration in Eq. (9) are definitely confined

to V, the induced velocity influences the flow beyond 1. This is the way the

viscid and inviscid interaction is taken into account in the present method.

The second term on the r.h.s. of Eq. (9) is the potential components

given by

V + V,

Uo= A+ uI , vo y 1' (10)

where is the total velocity potential.
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u and v1 are the velocity components due to the image vorticity which

can be determined in order for u and v to satisfy the hull surface condition;

i.e., u = 0, v = 0 on the hull. Wu and Thompson [3] criticized the inclusion

of these terms and they used another expression which does not contain them.

It is true that their expression is simpler, but it is valid only when the

vorticity distribution is obtained such that the velocity satisfies the

norslip condition. As mentioned later, however, this is not possible when

Eqs. (1) and (9) are solved iteratively. On the contrary, u1 and v can be

easily determined, as is shown in the Appendix, by making use of a source and

vortex distribution. If a constant distribution is assumed along a short

segment ATB, u1and v1 at P are given by

= log 9 -_ < APB,

YI

V 01 < APB - T log (
AP

where oland Y, are the strengths of the source and vortex sheet respectively

which are determined so as to satisfy the hull-surface condition.

3. Computing scheme

We assume that, initially, a vorticity region over the surface of a body

is generated by a sudden motion of the body to a constant speed of U. The

flow is then irrotational except in the vorticity layer (boundary layer).

Subsequently, a wake--nonzero vorticity region--is formed in the vicinity of

the stern by the diffusion and convection of vorticity. Thus, finally, a

steady (or quasi-steady) wake is formed.

This idealization provides the following computing scheme for this

initial and boundary-value problem. First, we carry out the boundary-layer

calculation up to points beyond which the flow is affected by separation.

Then we solve Eqs. (4)-(8) and Eq. (1) with given boundary values and a

prescribed velocity field. Next, the velocity field is determined by Eqs. (9)

and (10). The latter two calculations are repeated successively in the

following order until the solution converges;

k (n+1) k (n)+ At nf (q(n),k(n),(n) n) (12)

1. = {€ , ,y ) (1
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2. w (n+l)= W(n)+ At(n)f (.(n)'q(n)'(n+1) )' (13)

3. q(n+l)= f(W(n+l), (n+l),y (n+1) + V,, (14)

where the superscript (n) refers to values at t = t ( n ) . If all the values

at t =t(n) are known and necessary boundary values are given, Eqs. (12) and

(13) can be solved in the computing domain _V(n+1) The computing domain

expands as time elapses in order to include the region of nonzero vorticity

with zero value on the boundary.

Initial values, at t = 0, are tabulated in Table 1. BBL, BH, Bx, By,

BSyM are boundaries surrounding the computing domain V (see Fig. 1). Suffix

BL refe's to values obtained by the boundary-layer calculation. Nonzero

initial values for k and E are used partially in V(2x/L < 1.2). This is

because the vorticity on BH does not diffuse so much if k and c are zero

everywhere in V.

The boundary values are shown in Table 2.

As mentioned already, we cannot have any specified values for vorticity

on the solid body. This is an unavoidable difficulty of the present method

where the vorticity equation is used. In our scheme we supply this with

(n+l) (n)/(5Wo qt /A,(15)

where A is a short distance normal to the hull surface and qt is the

resultant velocity. Eq. (15) is obtained by making use of the nonslip

condition, but it does not always guarantee the satisfaction of the nonslip

condition at the (n+l)-th step. a1 and y, are determined for the velocity at

the (n+l)-th step to satisfy the hull-surface condition. At the first time

step, n=O, the potential velocity is used; qtO)= v~j"

As mentioned above, the computing domain must be expanded indefinitely.

In reality, however, it must be truncated. After Bx has arrived at some

position beyond which the computing domain is not extended

further, / 2 = 0 is imposed as a boundary condition on Bx.
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At, in Eqs. (12) and (13), is the time step. In the present scheme,

according to Von-Neumann's analysis [4], it is taken as

At =Minm 1 1 1 1, (16)

eAx2 Ay Ax Ay

where Min { refers to the minimum of the arguments defined in the whole

computing domain. Ax and Ay are grid sizes.

f and f are finite-difference expressions of the r.h.s. of Eqs. (1),

(6) and (7). The second upwind-differencing method [4] is used for the first

(convection) terms on the r.h.s. of Eqs. (1), (6) and (7). On the other hand,

central differences are used for the diffusion terms.

Boundary-layer calculations are carried out by the integral method, with

Head's entrainment formula used as an auxiliary equation.

4. Numerical results and discussions

4.1 Flat plate

The main purpose of the calculation for a flat plate is to examine the

present scheme and numerical techniques. All the computing conditions were

adjusted to those of the experiment of Chevray et al [5]. The overall length

L is 2.4m and the origin is shifted to the leading edge for thi: case. The
5Reynolds number based on L is 6.545 x 10

Results are shown in Figs. 2-5. The positions where comparisons are made

with the measurements do not exactly correspond; the computed results at x/L =

1.025, 1.080, 1.200, 1.600 are compared with experimental data at x/L = 1.020,

1.083, 1.208 and 1.625 respectively (only the former numbers are used later

on). The results are those at t = 0.917 L/U, when the computing domain has

expanded to x = 1.72L and y = 0.032L.

Good agreement with experiment was obtained everywhere except far

downstream at x/L = 1.60. The numerical computations were completely stable.

Needless to say, because the vorticity beyond the terminating surface (x

= 1.72L) is not included, the poor agreement far downstream (x= 1.60L) can be

partially attributed to this exclusion. Furthermore, a possible invalidity of

the use of the k-c model far downstream may be mentioned. Recently, through



B-7

precise comparisons with experimental data, Ramaprian et al [6] and Patel et

al [7] have pointed out that the basic k-c model does not lead to a

theoretically expected asymptotic flow in a far wake due to a different

behavior of the intermittency.

As far as the near wake flow is concerned, however, we can conclude that

the present scheme works well and satisfactory predictions can be obtained.

4.2 Elliptic cylinder

Calculations were performed for two elliptic cylinders designated EM-125

and EM-200, having ratios b of the major and minor axes of 0.125 and 0.200

respectively [8]. The velocity measurements were carried out by making use of

a five-hole pitot tube. An eight-hole pipe, which has eight holes along the

circumference of a circular pipe, was also used to follow reverse flows. The

referred Reynolds numbers of EM-125 and EM-200 are 1.68 x 106 respectively.

The potential velocity components are given by

U + I + b cosh 2E - cosh 2i - b sinh 2 U

ax 2(1 + b2) cosh 2 E cos 2 n

(17)

_ b(1 + b) sin 2
ay 2 U,2(1 + b) cosh2{ - cos n

where

x + iy =/ + b2  cosh (E - in). (18)

The boundary-layer calculations were carried out by making use of the

momentum-thickness equation and the entrainment equation. The calculated

momentum thickness, e, shape factor, H, boundary-layer thickness, 6, and

shearing stress, -r, are shown in Fig. 6. B BL where the governing equation is

changed into the vorticity equation, is chosen at 2xfL = 0.8 in order to have

reliable values for initial and boundary values.

In Figs. 7-9, calculated results of EM-125 are shown.



B-8

Fig. 7 shows the velocity and the vorticity distributions at 2x/L = 0.905

and 1.10. Calculated results, shown at every 0.1 L/U time step, seem to

converge. Agreement with the measurements is not so good at 2x/L = 1.10 as

that at 2x/L = 0.905.

In our scheme, we imposed the symmetry condition on y = O(BSYM). We

suspect that this boundary condition may be the cause of this disagreement.

As is seen in Fig. 9, a vortex behind the body is predicted. This is growing

steadily and symmetrically. Experimentally, however, it is observed that

vortices are unsteady and moving across the symmetry plane. At 2x/L = 0.905,

flows may not be affected so much by the symmetry condition. It may be

necessary, though the conuting time and the storage may increase, to remove

the symmetry condition and to introduce a slight disturbance to obtain a more

realistic flow.

Fig. 8 shows the turbulence quantities. Undesirable changes, observed in

the results at 2x/L = 0.905 around 2y/L = 0.06, are after-effects of Cebeci-

Smith's model which is invoked to determine the boundary values of k

and e on BBL.

Fig. 9 shows the flow patterns at three time steps. Vectors show the

velocity and the flow direction. It is predicted that separation is occurring

around 2x/L = 0.975.

Calculated results of EM-200 are shown in Figs. 10 and 11. Fig. 10 shows

the computed results at 2x/L = 0.95 and 1.10. Here the calculations were

carried out up to t = 0.4L/U. A much longer time than this is needed for the

results to converge, especially far downstream. Indeed, there is a

possibility that the results may not converge. Although some significant

discrepancies from measurements are observed, it can be said that the present

method predicts the near wake flow fairly well.

Fig. 11 depicts the development of the wake; the symmetric vortex becomes

strong and eventually a significant reverse flow is realized. The separation

position is predicted to occur around 2x/L = 0.925.

These calculations for the elliptic cylinders raise doubts as to whether

we can expect a steady or quasi-steady flow in the wake. It appears to be

necessary to remove the symmetric flow condition at least.
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5. Concluding remarks

We can conclude that the present scheme, where the time-dependent

vorticity transport equation is used in its full fom together with the

boundary-layer equation, is promising. Several modifications in numerical

techniques seem to be required; e.g., the prescribed boundary values of the

vorticity need to be improved. It can be also said that the k-c turbulence

model is applicable for a near wake prediction.

Though it is not our main purpose to discuss experiments, it is highly

necessary to carry out precise velocity measurements in the near wake of blunt

bodies which can provide not only averaged quantities but also time-dependent

quantities. This would give a much better understanding of separated flows

and accelerate development of numerical calculation procedures.
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Appendix
Let qv be a velocity component due to a vorticity distribution w.

Because qv satisfies the continuity equation, it can be expressed in terms of

a vector potential E in the form

qv = vxE, V.E = 0 (A-i)

A curl operation applied to Eq. (A-i) then yields

V 2E = - w. (A-3)

Thus the vector function E is a solution of the Poisson equation given by Eq.

(A-3).

By making use of Green's theorem in the domain exterior to the body, we

obtain

4E = fff - - dS', (A-4)

where V is the nonzero vorticity region surrounded by SB and S which are a

body surface and a closing surface at infinity respectively; n denotes

distance along the outward normal to SB + S, r is the distance between the

field point and the integrating point; primes indicate the values at the

latter point.

If w tends to zero at the rate of 1/R3 , where R is the distance to S.,,

since E vanishes as 1/R, the integration over S becomes infinitesimally small

when R is chosen large enough. Then we have

la1 E'E' a 1

4w E = fff T dV' + ff (L n - E r dS'. (A-5)
V SB

Now we assume another vorticity distribution w' inside SB. Similarly to

Eq. (A-3) we have

V2EC - W1i. (A-6)

By applying Green's theoren to the interior domain of S we getl B'
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(A)1 aE' l

0= JfJ - d ' - ff (-!i. ---- -E - )dS' (A-7)
B r SB ran 1anr

where B denotes the domain interior to SB .

The addition of Eq. (A-7) to Eq. (A-5) yields

41rE =fff -dv' + fff '

V B

+ ff {-L (E'-Ei) - (E'-') - dS'.

If we are concerned with only the exterior flow, we may put

E (E - E1 ) on SB,  (A-9)

where y1 is a circulation distribution whose direction is tangential to SB.

Then Eq. (A-8) is written as

4,, E = fff ' d' ff f r + ff r- dS (A-10)
V r r

Eq. (A-1O) gives a solution of Eq. (A-3). Because it can be easily

proved that E, given by Eq. (A-1O), satisfies Eq. (A-2), the induced velocity

is given by

4w qv= fff (V x--) d'' + fff (v x i) + ff (Vx ) dS (A-11)

V rB 
SB

Because the second term on r.h.s. of Eq. (A-I) has a potential in V (this can

be easily proved by taking the curl operation to it), it can be replaced by a

source distribution over SB. Then we have finally

41rqv fff (V x W,) ft'-v -dS' + ff (V x ) dS', (A-12)

VrB 
SB

where 01 and Y, are determined so as to satisfy the hull surface condition.

The addition of the velocity component given by V* gives the expression

of Eq. (9) in the text.
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Table 1 Initial Conditions

V BBL B H

k kBl, 0 ko 0

0 , 0 0

:-4)0 WOL Wo

q 4q eL 0

Table 2 Boundary Conditions

BBL BH BsyH By By

k k L 0 0 0

£ EL 0 0V 0 0

0 0 0 0.

q(a.,[) - 0 - -

V y1  Boundary Layer

LCalculation
u B ByL-1B1
U B BL'"V Bx

B
- .B SYM

0 (A.P.) x

Fig.1 Coordinate System and Definitions
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C. Free-Surface Boundary Layer and Necklace Vortex Formation

1. Introduction

The existence of a shear layer beneath a wavy free surface has been

experimentally suggested; e.g., Takahama [1] and Longuet-Higgins [2].

Batchelor [3] gives a theoretical explanation for it- development. The shear

layer, which we shall call a free-surface boundary layer, develops due to the

zero-shear-stress condition when the free surface has a significant curvature.

Besides the boundary layer on the hull and its accompanying wake, a free-

surface boundary layer may also affect the ship wave resistance. The viscous

effect of the free-surface boundary layer on wave resistance was discussed by

Mori [4], wh re, by order-of-magnitude analysis, it was concluded that its

effect might be less than those of the boundary layer on the hull and the

wake, and only the latter was included in his calculation.

Recently, however, Kayo [5] has found that the presence of a free-surface

shear layer, which is realized artificially in his research significantly

affects the wave resistance.

In the first half of the present report, an attempt is made to give

equations to predict the free-surface boundary layer in the 2-D case.

In the latter part, a theoretical explanation is made for the formation

of the so-called necklace vortex around the bow. It is based on the drift

theory (Lighthill [6]) or the vortex-stretching theory (Batchelor [7]). A

similar idea has been introduced by Baba [8].

Through a simple calculation for the case of a vertical circular

cjlinder, it is demonstrated that even a slight vorticity in the incident flow

can become very intense in the vicinity of the bow where flows are retarded,

and that the observed effect of a bulbous bow on inhibiting the formaiton of

this vortex can be explained by the acceleration of the flow near the free

surface due to the presence of the bulb.

The combination of these two studies, which is left for a future

investigation, may throw light on the bow-wave phenomena.

_ _ _ _ _ _ _ *
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2. Free surface boundary layer equations

We limit ourselves here to the 2-D case. An orthogonal curvilinear

coordinate system (s,n) is used together with the Cartesian coordinate (o-xyz)

system, as shown in Fig. 1. The normal coordinate n consists of straight

lines. u and w are the velocity components in s- and n-directions

respectively.

The momentum equation in the s-direction is given by

u L + w - + Kuw =- p hs g h s- + n + 2K1*), (I)
ha s an -p has- has+ p a an

where h is the metric coefficient of the s-coordinate, P the pressure,

p the density, and a and T are the normal stress and the tangential stress in

s-direction respectively, including the Reynolds stresses. K is the curvature

of the s-coordinate defined by

h 2 2-3/2
han dx2  d(

The continuity equation is given by

au + w + Kw = 0. (3)
has an

We assume that the related layer is so thin that the pressure is equal to

the constant atmospheric pressure and that the derivative with respect to s is

smaller than that with respect to n. Then Eq. (1) can be approximated by

au au - g- i )Tau + w - + Kuw = -g s;+ p- (a- + 2KT), (4)

has an uw- has p 'an LT,(

where C is the free surface elevation whose gradient is written in the steady

case as

ds ds 0 5

where q is the potential velocity.

The boundary conditions on the free surface and at the edge of the

boundary layer are as follows;
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n =0 T O, (6)

n = 0 0, u = q, (7)

where w is the vorticity defined by

u + KU w (8)
= -n has*

We assume that the Reynolds stresses are given in exactly the same form

as the stresses due to the molecular viscosity in terms of velocity

gradient. Then T is given by

3u 3w

T = e (- - U + a-- ) (9)

where p e is the equivalent viscosity coefficient.

If the flow is inviscid, the boundary condition of Eq. (6) is

automatically satisfied and no boundary layers develop. If the flow is

viscous, however, Eq. (6) yields an additional free-surface condition

auan- Ku = 0 , n 0 (10)

which is the source of a possible development of the free-surface boundary

layer; the substitution of Eq. (10) into Eq. (8) gives the vorticity on the

free surface;

= 2Ku n =0 (11)

which is not zero unless K is zero. This means that the vorticity is not zero

on a curved free surface and a boundary layer possibly exists. It should be

remembered that, if the free surface is flat, the boundary condition of Eq.

(10) is automatically satisfied.

In the present paper, an integral method is used and the ordinary

boundary-layer approximations are invoked. The third terms on l.h.s's of Eqs.

(3) and (4) are omitted, and K is assumed constant across the boundary layer

and equal to the free-surface curvature.
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The integration of Eq. (4) with respect to n yields

do + (2o + 6 ) 1 4 = - 1ln= -K Tdn, (12)
hds q hds pq2 pq2  o

where 0 and 6* are the momentum thickness and the displacement thickness

respectively, defined by

26 =

q 2 u(q-u)dn , q6* = J (q-u)dn. (13)
0 0

In the derivation of Eq. (12), we have used Eqs. (3) and (5).

After neglecting the third term of Eq. (9), its substitution into Eq.

(12) yields

do + (2e + 6*) 1 dq 2 t nu + K (q 2q0 ) (14)
hds q hds 2 n=6

q

where q0 is the velocity on the free surface.

If Eq. (8) can be approximated as

Du
W 6 + Ku = 0 (15)

at n = 6, the r.h.s. of Eq. (14) can be simplified to

qo

do + (2e + 6*) 1 dq = 2vK (16)
fs ( q hds -e q"

As a second equation, we use the entrainment equation*) which is obtained

by an integration of Eq. (3),

d (H E) + HEO 1 E, (17)hd-SE q hds E,17

where
HE : O '

d6 1
E - q w16.

*)Of course, we can use an alternative equation such as the moment of moment
equation. The choice of the best one is left for future work.
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The entrainment function E is given apriori as a function of HE.

Now we express the velocity profile in the boundary layer by a polynomial

summation

u/q = ao+ al(- )+ an2 + a3 3 (20)

0 + 2 (6) a3(K)

Then the boundary conditions Eqs. (6) and (7) give

aI = kao,

a2 = -a (2k + 3) + k + 3, (21)

a= (a-1)(k + 2),

where k K
6
; the approximation of Eq. (15) is also invoked.

Then S* and 0 are written in terms of a and k as
0

1
6*/6 = - [2 {ao (k + 6) + (k-6)1,

(22)e/ = -1 2 2 26k
6= 8a(k + 11k + 39) + + 17k - 102)

+ 8k2+ 18k - 108)}.

Once e and HE have been obtained at a certain position by solving Eqs.
(16) and (17), then a and k can be determined from Eqs. (18) and (22).

Thus we can calculate the free-surface boundary-layer flow. Further we

can include it as one of the double-hull velocity components in the Rankine

source method (see part A).

Foruation of necklace vortex

We assume that the necklac vortex around the bow is formed by an

accumulation of the vorticity generated in the free-surface boundary layer.

As the drift theory suggests r6l, because of the stretching of the streamlines

around the bow, even a slight vorticity can form such an intensive vortex as

is observed.



C-6

In the inviscid fluid, a vortex tube moves with a fluid particle and its

strength remains constant (Helmholtz's theorem). This theorem gives a

relation

Wt + =X(t +At (23)

where I is a material element parallel to the vorticity w [7], and t is time.

To solve Eq. (23) is equivalent to solving the vorticity transport

equation with the viscous diffusion term neglected.

If the vorticity can be assumed to be distributed on the z = 0 plane, the

induced velocity is given by

uv= W wx6 ,

1 1

v i X (24)

W=- JJ {x - x')W - (y - y) W I dx' dy',
r

where r 2 = (x - x.) 2 + (y _ y.) 2 , wX and w are x-, and y- components
of m respectively. 6 is the nonzero vorticity layer. Here we assume that

the vorticity is constant in the z-direction within the layer.

The velocity given by Eq. (24) can be included in q in the Rankine

source method (see Part A), and we can calculate the free-surface elevation

including the effect of a necklace vortex.

By making use of the relation

gV6H = w x q, (25)

we obtain the headloss 6H as

x
g6H = w Wy wdx (26)

x0

In Eq. (26), x 0is a far-upstream position where the head loss is zero.
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4. A Numerical example for a vertical cylinder

When a vertical cylinder is in a uniform flow U, the velocity field is

given by

2 2
u= U -U2 x2 -y_2

r (27)2x y
v = -2Ua 2 xy

r

where a is the radius of the cylinder.

Fig. 2 shows the free-surface elevation along the centerplane (y 0)

which is approximately obtained by making use of Bernoulli's formula (the

kinematic condition is not satisfied). The measurement was carried out with a

point gauge. Agreement is good except near the bow. Just in front of the

bow, a vortical motion can be observed. Around x/a = -2.1, a sudden increment

in the surface elevation, which seems to form a wave-front line, is seen.

Fig. 3 shows the paths of fluid material particles, obtained by

t

x + iy = x0 + iy o0 + J (U + iv) dr, (28)
0

where (xoyo) is the initial position of a particle along which a vortex tube

is initially assumed. In our present calculation, it is chosen

at x/a -1.9. The initial value of vorticity is determined by Eq. (11)

as I wo 1.0.

The solid lines show streamlines, the broken lines the positions of

particles at the related time. It can be observed that vortex tubes are

greatly stretched in the vicinity of the cylinder.

Fig. 4 shows the equivorticity contours; Fig. 4a and Fig. 4b show those

of w and w respectively. In front of the cylinder, w has increased more
x y y

than seven-times its original intensity. This accumulation may explain the

existence of the experimentally observed vortical motion there.

The effect on the generation of the w x- component is drastic. Although

the w x- component rarely exists along the initial distribution line, a

significant vorticity is attained which may form the longitudinal vortex along

the cylinder.
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Such accumulations may possibly affect the velocity field. Fig. 5 shows

the induced velocity due to the free-surface vorticity which is obtained from

Eq. (24). & is assigned a constant value of 0.02a over the whole domain which

is roughly equal to 10% of the wave height. Although the values assigned in

the present calculation are quite modest, the induced velocity is

significant. The negative sign of uv indicates that the induced velocity is

backward. As seen in Fig. 5, a stagnation point, where the addition of uv to

u becomes zero, is realized around x/a = - 1.05. This may account for the

observed vortical motion ahead of the bow, and possibly for the occurrence of

wave breaking. An exact calculation of the free-surface elevation, including

the induced velocity, is highly desirable.

In Fig. 5, the head loss, obtained from Eq. (26), is also shown.

Although it does not always compensate all the discrepancies observed in Fig.

2, it may be enough to produce an increment in resistance.

It is well known that a bulbous bow reduces resistance even at a low

Froude number. The reason is believed to be that bulbs improve the bow flow

so as to inhibit secondary flows or vortex formation but this has not been

clearly demonstrated. A simple attempt will now be made to shed light on this

phenomenon by introducing a point doublet in front of the cylinder. A point

doublet of moment strength 0.125 Ua3 is submerged at (-1.5a, 0, -0.75a). The

original flow field, given by Eq. (27), does not correspond to that of the

circular cylinder any more; this is ignored.

Fig. 6 shows the paths of material particles. Due to the acceleration by

the point doublet, the stretching of a material tube is greatly moderated.

Fig. 7 shows the equivorticity contours; as observed, the accumulation of

vorticity is much less than that without a doublet. The longitudinal vortex

has been remarkably weakened. The induced velocity, shown in Fig. 5, is also

much less.

These results show that bow bulbs play a role to make the accumulation of

vorticity less. This fact may provide a possible guideline to hull-form

design; bulbs should be designed in order for the free-surface flow (not the

entire flow!) to be accelerated so as to avoid the intensification of the

free-surface vorticity.

.............. ' ........ "~~--- --- --- --- ------------ .. ...... ,... .. ..... .... . ... ..
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4. Concluding remarks

The boundary layer equations are derived and it is shown that a free-

surface boundary layer can develop when a free surface has a significant

curvature.

The calculations and experiments, which will provide basic data for this

not-well-known problem, are being performed.

The simple theory of drift is applied to the free-surface vorticity. The

formations of the necklace vortex and the longitudinal vortex along the hull

have been demonstrated. A thorough computation to predict the free-surface

elevation will be undertaken by combining the described procedures with

Rankine source method.
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