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Abetract

A new class of methods for solving systems of nonlinear equations, called

tensor methods, is introduced. Tensor methods are general purpose methods

intended especially for problems where the Jacobian matrix at the solution is

singular or ill-conditioned. They base each iteration on a quadratic model of the

nonlinear function, the standard linear model augmented by a simple second

order term. The second order term is selected so that the model interpolates

function values from several previous iterations, as well as the current function

value and Jacobian. The tensor method requires no more function and deriva-

tive information per iteration, and hardly more storage or arithmetic per itera-

tion, than a standard method based on Newton's method. In extensive computa-

tional tests, a tensor algorithm is significantly more efficient than a similar algo-

rithm based on the standard linear model, both on standard nonsingular test

problems and on problems where the Jacobian at the solution is singular.
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1. InLroduction

This paper introduces a new class of methods, tensor methods, for solving

the nonlinear equations problem

given F: R" -R", find z, cW such that F(x.) = 0 (1.1)

where it is assumed that F(x) is at least once continuously differentiablc. The

novel feature of these methods is that they base cach iteration on a quadratic

model of F(x) whose second order term has a special, restricted, form. Tensor

methods are especially intended to improve upon the performance of standard

methods on problems where the Jacobian matrix of F at xv, '"(z.)CRn"1, Is

singular or ill-conditioned. At the same time, they are intended to be at least as

efficient as standard methods on problems where F'(z.) is nonsingular. Their

storage requirements and arithmetic operations per iteration are not

significantly higher than the requirements of standard methods

Standard methods for solving (1. 1) base each iteration upon a linear model

M(z) of F(z) around the current Iterate x, cRn,

M(z, + d) = +F(x) (1.2)

* where dEW'R, JcRn1 ". These methods can be divided into two classes, those

where J. is the current Jacobian matrix F'(x ) or a finite difference approxima-

tion to it, and those where J, is a secant (quasi-Newton) approximation to the

Jacobian. In this paper we propose extensions to the first type of methods,

those that use analytic or finite difference Jacobians, because this is the most

basic setting in which to study the new ideas of this paper. In subsequent

papers, we intend to extend tensor methods to secant methods for nonlinear

equations, and to unconstrained optimization.

When the analytic Jacobian is available, the linear model (1.2) becomes

M(z, +d) = F'(x,) + F (z)d. (.3)

The most basic method for nonlinear equations, Newton's method, is defined



when F'(x,) is nonsingular, and consists of setting the next iterate x, to the

root of (I.e),

i~X = - ,

The distinguishing feature of Newton's method is that if FP(z,) is Lipschitz con-

Linuous in a neighborhood containing the root z and F' (x,) is nonsingular, then

the sequence of iterates produced by (1.4) converges locally and q-quadratically

to x.. This means that there exist 6>0 and c0 such that the sequence of

iterates jxk produced by Newton's method obeys

llx*,i - MI! C llxt - X.11,
if 0o - <6. In practice, local q-quadratic convergence means eventual fast

convergence.

Newton's method is not usually quickly locally convergent, however, if

F(x) is singular. For example when applied to one equation in one unknown

(n= I) where f'(x.)=0 but f"(x,) 0, Newton's method is locally q-hinearly con-

vergent with constant converging to ), meaning that the sequence of iterates

Ixt obeys

- #I - xm =c:k IZk - . . lim =t

if Jzc - x. I is suficiently small. For systems of equations, the situation is more

complex and has been analyzed by many authors, including Decker and Kelley

11913 a 1980b. 19621, Decker, Keller, and Kelley 11962], Griewank L1960a, 19g0b,

19833, Griewank and Osborne [i961], Keller [1970]. Kelley and Suresh [1982].

Rail :19661, and Reddien ,197tB, 1960]. In summary, their papers show that from

many starting points. Newton's method for systems of equations also is locally

q-linearly convergent with constant converging to 4, although from some start-

ing points arbitrarily close to z,, (1.4) may be repulsive. In practice, Newton's

method usually exhibits local linear convergence with constant t! % on singular

problems (see Table 6.6), much slower convergence than one would like.

m .4,



3

Several of the above mentioned papers. for example Decker, Keller. and Kel-

ley 1982] and Griewank 1980a, 19831, propose methods that are rapidly conver-

gent on some singular problems Most of these methods are related to the one

dimensional acceleration technique of taking j times the Newton step if one has

a jA order singularity. This requires deciding whether the problem is singular,

which probably makes such methods unsuitable for general purpose use. The

major aim of this paper is to provide a general purpose method that has rapid

local convergence even when F'(z.) is singular. In addition, tensor methods

usually will not experience any special difficulty when F'(x) is singular or ill-

conditioned, while methods based on (1.3) must be modified in this situation.

Systems of nonlinear equations with F'(x,) singular or ill-conditioned occur

in a number or important practical situations. For example, conservation laws

in stiff systems of ordinary differential equations sometimes cause the Jacobian

of the associated system of nonlinear equations to be very nearly singular for all

z. In curve tracing problems it also is not uncommon to generate systems of

nonlinear equations with nearly singular Jacobians In unconstrained minimiza-

tion problems arising from data fitting, the Hessian matrix V2f(x,) usually is

singular if the problem is over-parameterized, and often VYf (XV) is ill-

conditioned because the data fitting model is far more sensitive to some param-

eters than to others. In all these cases, it is important to notice that the (near)

rank deficiency m the derivative matrix usually is small This is the case in

which our methods are intended to improve upon standard methods Our

methods are not intended for problems where the rank of ,"(zx,) is small in

comparison to its dimension, although someLimes they are effective in this case

in practice.

The other well-known disadvantage of Newton's method is that it may not

converge to any root x, if it is started too far from any root. The main remedies

used in practice are augmenting (1.4) by line search or trust region algorithms,
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see for example Fletcher 1l980), Gill, Murray, and Wright [19811, or Dennis and

Schnabel 1983. Our new methods use the same strategies when the new local

step is unsatisfactory

It is important to consider the costs associated with solving systems of non-

linear equation by standard methods These can be divided into three types the

dariLhMntic operations reqUired by the algorithm (excluding function and deriva-

tive evaluations), the storage required, and the evaluations of the nonlinear

function F(z) and the Jacobian F (x), if it is provided For algorithms that use

an analytic or finite difTrence Jacobian, the dominant aritihmetic cost is one

matrix factorization per iteration. requiring n"3/3 (for I,U) or 2n3/3 (for QR)

additions and muluplications per iteration. At least n 2 storage is required, for

the Jacobian, and sonic algorithms store a second nxn matrix Finally, F(z)

must be evaluated at least once per iteration; in addition, either t'(x) is

evaluated once per iteration, or it is approximated by finite differences, requir-

ing up to n additional evaluations of F(z) per iteration. In many practical prob-

lems, the evaluations of F(z) and F'(x) are expensive and dominate the other

costs The main efficiency goal of our new method is to decrease the number of

function and derivative evaluations required to solve systems of nonlinear equa-

Lions; however, no substantial increase in the arithmetic cost per iteration, or in

the storage requirements, will be permitted.

Our new methods are based on expanding the linear model (1.3) of F(z)

around z, to the quadratic model

M7r.(x+d) = I;'(z,) + P"(Ix)d + T, dd 5)

where T cRnxnx?". The three dimensional object T, often is referred to as a ten-

sor, hence we call (, h) a tensor model, and methods based upon (1.5) te sor

methods, We define the notation T, dd used in (1 .5) before proceeding-

S..
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DefirnUon 1.1. Iet TERl~' "n. Then 7 is composed of n horizontal faces

JlERn x", i = 1 .. where i/ [j.k] = T[ij,k]. Forv,w,cR", 7uwcR n with

7VWnLil = vTHu, = E ETiJ,klvjjwL[k].

Note that Mr(x +d) is simply the n-vector of n quadratic models of the

component functions of F(z),

(MT(X +d))L I f+ g1 d + yWTrl ,d. i 1.

where f, = F(x,)'i], g" = row i of I"(x). and 1I, is the Hessian matrix of the i uh

component function of F(x), or an approximation to it.

The obvious choice of T, in (.5) is the niatrix F'(zc) of second partial

derivatives of F at x,, this makes ( b) the first three terms of the Taylor series

expansion of F around x, Several serious disadvantages, however, make (1.5)

with 7 = IF'(x,) unacceptable for algorithmio iise. They include

(1) The n' second partial derivatives of F at x, would have to be computed at

each iteration

(2) The model would take more than n3/ 2 locations to store

(3) To find a root of the model, at each iteration one would have to solve a sys-

Lem of n quadratic equations in n unknowns.

(4) The model might not have a real root.

To use a model of form (1.5) and avoid these disadvantages, our tensor

method uses a very restricted form of T,. In particular, our tensor model

requires no additional derivative or function information, the additional costs of

forming and solving our tensor model are small compared to the 0(n3) arith-

meLic cost per iteration of standard methods and the additional storage

required for our tensor model is small compared to the n z storage required for

the Jacobian. The key contribution of this paper is showing how one may con-

struct a useful quadratic model that satisfics these criteria. Our tensor model
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still does not always have a real root, and we will address this issue.

The remainder of the paper is organized as follows, In section 2, we discuss

briefly the specialization of our tensor method to one nonliner equation in one

unknown Of course, when n=l, many of the disadvantages stated above for a

second order Taylor series model are irrelevant, and indeed, various methods

for solving a single nonlinear equation are based on using quadratic models. The

material in section 2 is included only to motivate our multLi-variable method.

The heart of the paper, our techniques for forming and solving the tensor

model for systems of nonlinear equations, is contained in sections 3 and 4.

respectively. The full tensor algorithm is presented in section h and various

implementation considerations are discussed. In section 6 we present test

results of our tensor method on the problems of Mot6, Garbow, and lilistrom

'9B'], and on modifications of these problems constructed so that F'(z.) is

singular. We compare our tensor algorithm to an algorithm that uses the stan-

dard linear model (1 3) but is identical in virtually all other respects. We com-

ment briefly on extensions of our tensor methods in section 7.

INotice that we have denoted members of a sequence of n-vectors x by xt

where each zx, CR", and components of a vector vERI by v>i.cJ The conven-

Lion of using non-numerical subscripts for repllcatior.s and bracket notation for

scalar components is continued throughout the paper In section 4. integer sub-

scripts are used to denote portions of vectors or matrices that are themselves

vectors or matrices; for example, the portions d, c ' -P and dr.cR P of the vector

dcR n , and the portions J1C R,",n P) and J 2 0R " P of the matrix 1CR"', are

defined in step 2 of Algorithm 4 1.
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2. The tensor method for one equation in one unknown

In this section, we di.cu-ss briefly the restriction Of our tensor method to

hw caxse n =IThe tise of a quadrat-ic miodel for solving one nonli near equation

in one unknown is well known anid d part of some software libraries: an early

reference iq Muller ,96J. Ne make no atLtempt to compare the one varkable

version of our tenisor algorithni to similar algorithmrs for solving a single noni-

linear equation Rather, thIA material in this section is inciuded -,olely to

motivate somne features of the tcnsor algorithm for systcmns of equations that

follows

The quadratic model ( )rest ricted to n =1is

mrT z, +d) =f lkx) + f'(zc )d + YjC:d2 (2 1)

where all quantities now are scalars We said in section 'that we would not use

second derivatives Then an obvious way to select t,; is to emulate the secant

method bN, asking~ the miodel \2 I) to interpolate the value of fJ(x) at the previ-

ous iterate r . This means

f (x )f (z)+ f 'x,)., + t,:s ( a
where we define

s ~x-r~,(22b)
the step fromn z, to x ThL' second derivative approximation t, is3 determined

uniqlCy by (2 2

The roots of 2 ') irv found by solving one quadratic equation in one unk-

nown Usually, k2 11) will have either no real roots or two real roots If there are

two real roots, then a reasonable way to choose between then is to let x, be the

root that is closer to x, This is written in a numeirically stable way as

2f (x.) ____

'x)+ sign~f lx,)) 'I(f z)- 2~~~ (2.3)
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If (2. ,) has no real roots ((f'(X,.)) 2 < 2tcf (,X,)), there are two obvious alter-

natives try the Newton step

x - - f (Z)/ f'(z) (21)

or try setting x, to the critical point of (2 1),

x X.' , -f =, X , . (2.5)

where the absolute value of the quadratic model is smallest. The latter strategy

definitely is advantageous close to a root x. where f'(zx) = 0 of"(z,) In this

case, the iterates produced by (2 2, 2 5) converge to z. with q-order (I+V'5)/2

1.6., as this is just a variant of the secant method for minimizing or maximiz-

ing f (x). The step (2 2, 2 3) may or may not be defined in this case. if it is

defined it is also quite satisfactory as the iterates it produces wdil converge to x,

With q order (. +v3)/ 2 c2 " 37 "See e.g. Traub 96/i ] for very similar proofs.)

On the other hand, we have already stated that the iterates produced by (2.2,

2 4) ire q-linearly convergent to z, with constint converging to in this case

When f'1z.) 0 0. the quadratic model '2 1, 2 '1) will have real roots for z.

sufficiently close to x, In general. however, (2.1) may not have real roots, and

astde from the above-mentioned case, neither zx' or zxm n consistently is the

better choice In lrank 119b32], we implemented a method for solving one non-

linear equation in one unknown based on (2 2 - 2 t) and a line search. We found

that when the quadratic model had no real root, a good strategy for choosing

between the steps to z and x," ' as the initial step in the line search was to

choose the longer step. 'his is equivalent to choosing z"' if and only if
ir(zfr) < f (zr): This strategy always prefers x" over i4 sufficiently

close to a root z, where f (x,)=O, guaranteeing fast local convergence in this

One case where this strategy is not desirable is when the algorithm cannot

locale a root of f (z) and must converge to a stationary point of f (z) In this

'. ~ - . - - ,.. --,. . - -,
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case the step to xr in is shorter but considerably more desirable than the New-

ton step. The algorithm in Frank t -982] contains a simple strategy to recognize

this siLuaLtion and uses the step to xmin instead of the Newton step in this case.

Several aspects of the algorithm for one nonlinear equation carry over to

systems of equations There we again use the extra freedom in the quadratic

model to interpolate function values at past iterates. The multi-variable qua-

dratic model again may have multiple real roots or no real roots. In the former

case we ..gain hope to find the root closest to x, In the latter ease, we again use

either the step to the minimizer (in the L2 norm) of the quadratic model or the

Newton step for our line search direction, choosing between the two steps by cri-

teria similar to those described above.

3. Forming the tensor model

We now show how we select the tensor term T, E Hc ' in the model

MT(X,+d) = F(z,) + F'(r )d + ),'/' . (Td1)

Our choice of T; will cause the second order term Tdd in (3.1) to have a simple,

useful. form

We have already stated that T, will not contain actual second derivative

information Another way we can use the second order term in (3.1) is to ask

the model to interpolate additional values of the function P'(x) or the Jacobian

F'(x) that have already been computed by the algorithm. In our method, we will

select some set of p not necessarily consecutive past iterates x i, ,xp, and

require the model (3.1) to interpolate the function values f(z -k) at these points.

That is, the model should satisfy

F( A:) = r(X,) + k'(X.)s + )P'xsk,, k=, p (3.2a)

C



where

s, x -x, k=l., p (32b)

.'irst we describe how the past points z ,. ,z p are selected. Then we show

how we choose T, to satisfy (3.2). Alternative ways to select T, are mentioned

briefly in section 7

For the equations (32) to always be consistent, it is clear that the set of

directions jst from z to the selected past points xt must be linearly indepen-

dent. In fact, our computational experience with other algorithms that interpo-

late information from past iterates has shown that the directions stj should be

strongly linear independent, in the sense that each direction sk should make an

angle of at least 0 degrees with the linear subspacc spanned by the other direc-

tions, values of 0 between 20 and 4b degrees have proven appropriate in prac-

tice At each iteration, therefore, we choose the past points z k that we

include in ,1 2) by the following procedure. We consider the past iterates in

order stdrting with the most recent We always select the most recent iterate,

and then select each preceding past iterate if the step from it to z makes an

angle of at least 0 degrees with the subspace spanned by the steps to the

already selected more recent iterates. This procedure is implemented easily

using a modified Gram-Schmidt algorithm.

We also set an upper bound p on the number of past function values inter-

polated by the model at each iteration. Since the set skj must be linearly

independent, clearly p<n, but we enforce a much smaller bound,

p (3 3)

This bound also was motivated by our computational experience with other algo-

rithms that interpolate information from past iterates; we found that using

more than about v'n interpolatLion conditions rarely war beneficial (see e.g.

Stordahl 1:980)) The bound (3.3) also is crucial to the efficiency in storage and

- - -..-- ----------.-. '- -.
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arithmetic operations of our tensor method For example, sin:e we also only

considvi: a maximum of . past iterates in the above nientioncd Gram-Schmidt

algorithm, it requires about n 2 additions and multiphcations

Now we discuss how we choose T, to satisfy ,3 2) IL is cnnvenient to rewrite

(3.2) as

TCsk s = k=1,, (3.4 a)

where

Z kI '-, zk = 2 ( t"'z k) - F(zX) - ."(2)s: ). (3 4b)

This is a set of np - n o linear equations in the ni unknowns Tc t i,j,k 1,

i"iJ.k<n (Actually there are (n 3 +n)/2 unknowns since each horizontal face

of 7; must be symmetric, this symmetry is provided automatically by the follow-

ing derivation.) Since (3.4) is underdetermined, we follow the standard and suc-

cessful practice in secant methods for nonlinear equatLions and optimization (see

e.g Dennis and Schnabel [ !9791) and choose the T'I that satisfies

minimize 1T7'C IF (3.5)T, C Rn xnxn

subject.to TCsksk = zk k. p

where T, I 4., the Frobenus norm of T , is defined by

n n I n

i. ~ ( i j(7~j.k 1)2
i=i j=l k=1

T1he soiutLion to (3,5) is given by Theorem 3.2. First we define i rank one tensor

Defimition 3.1. Let U, V, w( R n  The tensor '( R""I for which T i.j,k j =

ujvI ouij} " wk . "i,j,k-,n is called a rank one tensor and denoted T' = F 1m

Note that the i"' horizontal face of the rank one tensor uvw is the rank one

matrix uji](vw). Theorem 3 2 shows that the solution to (3,5) is the sum or p

rank one tensors whose horizontal faces are symmetric.
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Theorem 3.2. Let p ,n let stcIR1, k =, • p with JsAJ linearly independent,

and let zkCR ' , k=.., p. Define MCRP xP by M[i. 3 ] = (ss,)Y, 1,sis p,

ZCR'nP by columnk ofZ = zk, k=-. ,p. Then Mis positive definite, and the

solution to (3 t)) is

T, = Z ak sk (36)

where at is the kt" column of Aiz R"P, A defined by A = Z IM

Proof : Problem (3.5) is equvalent to solving independently the n separate prob-

lems over the n horizontal faces H, of T,

minimize IillpI, (3.7)

Subject to s 7t',,s= Zkii], k=J, p.

because the constraints and the objective function of (3.5) may be decomposed

into these nt separate constraints and objective functions each involving one of

Il's. and the optimal value of any one Hi clearly does not affect the optimal

value of any other i, Problem (3 7) simply is an underdetermined system olp

linear equations in nZ unknowns To express it in standard form, let

k C. Mn
2, (38)

, 11,'.:3,t .21, ] . 1,-n 1. 11,'2 , 1. " l1[2,n]., H,',r, 1 , ].., ,n1,

Si R 12row k of S = k1 stf lsj2 , - st InlPsk

and z, = row i. of Z, that is,

t E RP. k z k = zt[i), 1-i--, 1<k-p.

Then (3 7) is equivalent to

miminize ljh,12 subject to ' h, = , (39)

and S has lull row rank because jst are linearly independent. Therefore the

solution to (3.9) is

-. s" (i' 5 T) .

It is straightforward to verify that S 8 r M, which also shows that Al is positive

AAM
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definite. Since by definition row i of A = M *'(row i of Z),

, (3.10)

where a row i of A. that is,

d,cRP. d,,,k = qt ], 1- -i.n, l<k<p.

Now note that if the transformation '3 B) that transforms H,1ERn xn to hAcR n 2 Is

applied to sksrE:Rn xn, the result is row k of S. Therefore. since (3.10) is

equivalent to

= c .,ki row k of S - J1 i -}. row k of S. (3.
It=I kc=1

transforming (3 1 ) back to the nxn matrix 1Hi yields

k = I . (3:2)
kr=i

Finally, combining the n horizontal faces fit given by (3.12) to reform T, gives

(3.6)

Substituting (3.6) into the tensor model (3 1) gives

MT(xC+d) = F(x,) + F'(x )d + r ( , (sk )2
. (3.13)ltk=1

The simple form of the second order term in (3 13) is the key to being able to

efficiently form, store, and solve the tensor model. The additional storage

required by (3.3) is 2p n-vectors, for aj, and sk . In addition, the 2p n-

vectors IX-0 and F(x_ . I must be stored. Thus tLie total extra storage

required for our tensor model is 4n) 5 since p-/ . The reader can verify that

the entire process described above for forming 7, requires n2p O(np2 ) multi-

plicathons and additions. The leading term comes from calculating the p

matrix-vector products 1"(z0 )sk, kp, ,p, the cost of solving A = Z* M -' is

O(np 2 ) Since p!-N/W, the leading term in the cost of forming the tensor model

is at most .OD multiplications and additions per iteration, small compared to

the at least n3/ 3 multiplications and additions per iteration required by stan-

4.-,,~ - loe #
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dard methods that use analytic derivatives. In the next section, we will see that

the extra cost to solve the tensor model also is at most On 2 5).

4. Sdolving the tensor model

In this section we give an efficient algorithm for finding a root of the tensor

model derived in section 3, that is,

find dcRa such that (A l)

MT(Xz+d) = F(x,) + b"(x,)d + at (drs)2 = 0.
k=!

We show that the solution of ('1.1) can be reduced, in O(n 2p) operations, to the

solution of a system of q quadratic equations inp unknowns, plus the solution of

a system of n -q linear equations in n-p unknowns. Hlere q - p, with q = p

whenever F*(zc) is nonsingular. In addition, if P'(x,) is singular but has rank at

ledst n-p. we show that q still usually equals p and the aforementioned system

of linear equations still is well conditioned. We also show that our algorithm

efficiently solves the generalization of (4 1),

minimize Mr.(x, +d)2)dCRT"z + I ),,.,2.

That is, our algorithm will find a minimizer of the tensor model when the model

has no real root.

Let us define S' ,nxP by column k of S =

The basic idea of the algorithm is that since (4.1) is linear on the n-p

dimensional subspace Id ! STd = 0j, (4.1) really only should be quadratic in p

variables and linear in the other n-p This is accomplished in steps 1 and 2 of

Algorithm 4,1 by making a linear transformation of the variable space; an

orthogonal transformation is used mainly because it already will be available

______________ ~.j



from the Gram-Schmidt process used to select isti. Then a linear Lransforma-

tion of the equations, steps 3 and 4 of Algorithm 4, 1, is used to eliminate the

n -p transformed linear variables from p of the equations. The result usually is

a system of p quadratic equations in p unknowns, (4,5b), that is solved in step 5

of Algorithm 4.1. and a system of n--p equations (4 ba) that are linear in the

remaining n-p unknowns and can be used to compute these unknowns once the

system of quadratics is solved. The exceptional case q > p arises when this sys-

tem of linear equations would he singular In this cwe. the number of linear

equations is decreased by this rink deficiency and the number of quadratic

equations is increased correspondingly, but the number of variables in each sys-

tem is unaffected Of course in practice, the mathematical notion of rank

deficiency is replaced by the numerical notLion of adequately small condition

number

Algorithm 4 ' gives the method we use for solving (4 2). Theorem 4.2

verifies that it solves this problem, and gives several other important properties

of the algorithm. After the proof of Theorem 4.2 we discuss the efficiency and

numerical stability of Algorithm 4.1. We also mention several alternative

methods for solving problem 14 2)

We introduce the notation that given v R' . jv12 denotes the vector w cR '

for which wJ = vt 12. i= , ,n This allows us to denote the second order

term of our tensor model below by A ISrdj2.

Algorithm 4.1. Let p-:n, FE Rn, Jc R'n", A, Si R"' P , S having full column rank.

Comment ' Steps 1-2 transform the system of n equations in n unknowns

V + Jd + h A ISd2 = (4.3)

to the system of n equations in the n unknowns dic Rn P and ctacNP
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F +- J1 a) + J2d.2 + h A S24J 0. (4.4)

1. Find an orthogonal QcR" such that QTS = 5', where

p

R " P  0 n -p

and S2 has the triangular shape shown.

2 Caiculate J = n Q nd let JI( Rnx(n P) and j;-R n'P denote the first n-p and

last p columns of J, respectively.

Also define d = Qrd, and let a,(- H" P and d(- RP denote the first n -p and last

p components of d, respectively.

Comment : Steps 3-4 transform the system of equations (4.4) to

n-'p p p

n- + + IS2d = 0.

that is, to the system of n-q equations in n unknowns

F, + J id, + J2d., + 3 A, 2 dzl = 0 (4.5a)

and the system of q equations in p unknowns

T_

+ :32 + Y = 1s2e2 (4.5b)

3 Find an orthogonal Q¢Rn", and a permutation matrix Pdk [ 't ,)x(, p) such

that

where q-p and J is upper triangular with a non-zero diagonal, Define
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4. Calculate

P

QJ2 ~ z -q

Similarly calculate A Q QA, and let AC-Rp n - and A2 C P*p q denote the first

n-9 and the last q rows of A, respectively: also calculate T= QF, and let

VC I?'-q and F'2(. 1 denote the first n-q and last q components of V, respec-

tively

5 (Solve (4 5b) in the least squares sense.) Solve

T,

minimize i F2 + J~d2 + A 2  "2&"2 (Al 6)i2t RP

6 (Backsolve (4.5a) for a,.) Find a a1 that solves

J, A = 4 - j (4.7)

7 Calculate a, = Pa, d = i

Theorem 4,2 shows that Algorithm 4 1finds a root or rrunimizer of the tensor

model, and gives some properties of some matrices used in Algorithm 4.1 whose

relation to the numerical stability of the algorithm is discussed later in this sec-

tion Recall that for any Wi' I n m, the rank of W is the dimension of the linear

subspace spanned by the rows or columns of W, and the nullity of W, the dimen-

sion of the linear subspace y cH-' Wy = O[ is (m - rank(W)).
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Theorem 4.2. Algorithm 4.. calculates a solution to

mirimizej!F + Jd + A Jr 4)2j

Furthermore, define J,CR(n p)xn = Then

r = p + (n - rank(Js)) (49)

If rank(Js) = n, then g zp and

Klk Jl)!!- K(Js., 4 0

where K(W) denotes the 1,, condition number of W. Also

rank(J 3) = p - (rank(Js) - rank(J)). (4 1:)

Proof : Substituting QQTd for d in (4.3) and using the definitions in steps and 2

transforms (4.3) to (4 4), and clearly the transformation does not affect the

smallest 12 norm value of the system of equations Next, it is straightforward to

verify that premultiplying (4.4) by , substituting PPTri for dj in (4.4), and using

the definitions in steps 3 and 4 yields (4.5). The minimum L2 norm values of

these two systems of equations are equivalent because premultiplying a vector

by an orthogonal matrix doesn't alter its 12 norm. Finally, since J) has full row

rank, given any ie, a d1 may be found that solves (,.t5a) Therefore, the

minimum value of (4 6) is the minimum L norm value of (f 5), and by the above,

of the original problem (4.8), and the L2 minimizer of (4 5) is found by (4.6-4.7).

Step 7 reverses the transformations in variables made in steps 2 and 3 to obtain

the minimizer of (4 8 ) from the minimizer of (4 I).

Now let Q C h"'" P) and Q ( R 'fXP denote the first n -p and last p columns

of the Q used in step 1 of Algorithm 4.1. Then sinceeTQ= S ,we have STQi 0

and SrQ2 = S^. Similarly from step 2 of Algorithm 4 1, JQ= JI, JQ2 = J2. Thus
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Js Q

_T

and since Q and S 2 are nonsingular,

nulhity(Js) = nulity(JsQ) = nullity(J 2 ). (4.12)

From step 3, nullity(Jj) = q -p, and by definition, nullty(Js) = n - rank(Js), so

(4.12) implies (49). Next, if we use the notation that for vC R n , v I denotes the

first n-p components of v and v 2 the last p components, and let J 11 denote the

L2 vector norm, then

max lJsQvii/ !IV,

K(Js) = K(JsQ) - Rf >mm llJsQu,,</ ,lw,
1*3 E R'

a

max iJsQui / ,,vl max :ilvil / .Vi1'

C,'". va=C - l R A -
- K(J,) : KY',

mm i:JsQw/ iwv
Uc ,,,. a~o mmn iJ~wiv;/ Jl,:

with the last equalhty d direct consequece of step 3 of Algorithm 4.1. Also, since

4Wd Q,=

where /'c" :R '  is the permutation matrix with I' as the upper n-p xnt-p subma-i

trix and the identity othcrwisc, and since J1 has full row rank, we have

nullity(J) = nuhy, = nulhity(J,) -nulhty(J 3 ). (4.13)

J Substituting again nulhity(1 1)=q"p as well as the definitions nullity(J)=

n - rank(J) and nullity(Jai) = p - rank(.q) into (4.13) yields (4.1 i)

The first virtue of Algorithm 4 1 is its efficiency. Let us examine the opera-

tion counts for multiplications (and divisions): the counts for additions and sub-

,{ tract ions are very similar. 'While Algorithmn 41 is valid for any p <nf, here we

t

m 1-
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reinstate the bound p -< v from section 3 Then the dominant cost in Aigo-

rithn 4 is the QR factorization of 51 which requires about 2n 3 /3 - n 2 p - 0(n 2 )

muitiplications 'Me next largest cost is the 2np 0 (n 2 ) multiplications for the

matrix multiplication J* Q in step 2 The reader can verify that all other por-

tions of steps '-, and 6-7 require at most O(n 2 ) multiplications The remaining

cost is thL solution of the nonlinear least squares protlem in step b While (4 6)

must be solved by an iterative algorithm, the point is that the total cost of solv-

in g this problem is negligible In thu usual case q =). each iteration of the non-

lancar least squares algorithm requires Op') multiplicAtions, and it Is reason-

,ibic to expect at most a small multiple of p itertbons to suffice (We use the

bound bp in our implementation ) Thus solving (4 6) usually can be expected to

cost O p') < 0(n 2 ) multiplications If q>p, this cost could rise to O(qp') <

U(n 2  However in our practical experience q= ) almost all the time and q is

hardly greater tham p otherwise, some summary statistics are given at the end

of Section 6 Thus it is reasonable to expect that the nonhnear least squares

problem in Algorithm " requires at most 0(n 2 ) multiplications

S 5o the total cost of Algorithm 4 1 is about 2n3/3 - np multiplications, at

most n 2 ' multiplications more than the QR factorization of an n xn matrix For

small n, these numbers are inconsequential, for moderately large n, the 2n 3/3

dominates and is the s..me cost as a standard method for nonlinear equations

would have if it used the QR factorization While some standard algorithms for

nonlinear equations do use a QR factorization (see e. section 6.b of Dennis and

Sr'hnabel 983]), others use a PIlJ factorization and require only n:/ 3 multph-

cations per iteration it V (z) is nonsingular. Algorithm 4.1 also could be

modified to use 71
3 / 3 - 0 (n 2 p) multiplications per iteration when J is nonsingu-

lar by using a PLU factonzation of J, at step 3 If the resultant pxp system of

quadratics (4 bb) had a solution, no further modification would be necessary. If
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not, the minimum norm solution to this new system of quadratics no longer

would correspond to the solution of (,.8), and steps 5-6 would have to be com-

bined into the nonlinear least squares solution of the full system (4 5). This still

could be aceomplished in O(n2p) operations when J is nonsingular by using an

algorithm that takes advantage of the special structure of this problem. We

prefer the more expensive Ql -ba~ed algorithm, however, because iL is simpler

and more stable numerically, e-pecially when the tensor model has no real root

The other virtue of Algorithm .1, is its numerical s:tabihlty, even when the

Jacoblan J Is slng'ular or fll-conditioned This is reflected in the conditioning of

the system of linear equations, (4 7). that is solved by Algorithm ,I Equations

9) and (4.10) of Theorem 4.2 show that if the (n+p)xn matrix Js formed by

adding the p rows of S7 beneath J has safely linearly independent columns,

then thLis linear system will be square and at least as well conditioned as Js. In

practice. this means it is likely that the system of quadratics will be pxp and

the linear system will be square and well conditioned whenever J has at mostp

zero or small singular values. Notice that (4.10) also implies that the condition-

ing,, of the linear system solved by the tensor algorithm always will be as good or

better than the conditioning of the linear system solved by Newton's method.

Of course, if J is singular, this singularity does not magically disappear in

Algorithm 4 ' Equation (,; I ) shows that if . is rank deficent but JS has full

rank (the likely situation when rank'J) > n -p), then J 3 will have the same rank

deficiency as J However the whole point of the tensor algorithm when J is

singular is that the singular submatrix J3 is used in the system of quadratic

equations (4.)b). which also contain a portion of the second order information in

the tensor model. This system is not necessarily ill-conditioned even if J3 is, for

example, one quadratic equation in one unknown with no linear term is not ill-

conditioned Furthermore, this system of quadratics has maximal dimension
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\-, ind in our practical experience even this small upper bound is not

apprcacned as n becones large. Thus when the Jacobian is singular. the effect

of the tensor algorithm usually is to isolate this rank deficiency as the linear

term in a small -ystcni of quadratic equations that conLains useful second order

information and may be solved accura iy without great cost.

If the tensor algorithm converges to a root xy where F (x.) is singular, the

Jacobians of the nonlinear least squares problems (4 6) also will become nearly

singular because J 3 will be nearly singular and the solution 2 will be small.

lowever the cost of solving these small nearly singular nonlinear least squares

problems still Will w or insignificant So on nonlinear equations problems where

F* z,) is singular, it appears the effect of the tensor algorithm is to transfer the

slow convergence of Ncwton's method to a series of small quadratic subproblems

where slow convergence does not tiurt the overall efficiency of the algorithm.

More importantly. no addiLional function cvaluations are used in solving these

small subproblems

A minor deficiency of Al 4 i is that it rehes upon the QRP decompo-

-d--i-ermine rank when J, does not have full rank (q>p). a singular value

decomposition would be preferable in this case We have already mentioned that

this case is very unusual in practice Note that when q>p, Algorithm 4.2 easily

is modified to find the smallest d, in the 12 norm, that mirunimzes the 12 norm of

the tensor model; all that is required is to find the smallest d, that solves the

system of linear equations (4 7) that is underdetermined in this case

It is interesting to consider when our tensor model has a complex root

Even though this inforniation is not of practical value to our tensor algorithm, it

turns out to give a succinct explanation of how the Jacobian J, past directions

S. and second order information .4 used in Algorithm 4 1 are interrelated

Clearly a necessary condition for (4 3) to have any root is that F be in the linear

16, --
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subspace spanned by the columns of J and A, it is easy to show by the tech-

niques of proof of Theorem 4.2 that this is equivalent to T'? being in the linear

subspace spanned by the columns of J3 and A2 A sufficient condition for (4.3)

to have a complex root, a direct consequence of a result of GdrcIa and Li [9BOI,

is given in Theorem 4.3

Theorem 4.3. let all the notation be the same as in Algorithm 4 1, and let

JS

If J . is nonsingular. 4, 3) has 2P (not necessarily distinct) roots in n dimen-

sional complex space

Proof : Prom the proof of Theorem "1 2, it is clear that (4 3) has a complex root if

and only if (4.bb) has a complex root. It follows easily from Theorem 3., of Gar-

ca and Li -L19BO]that (4 5b) has a complex root if A-2 and S'; are nonsingular. We

show that this is implied by JA.S nonsingular

Let Q,(R(,P)x'(,'P) be the orthogonal matrix with Q as the upper left nxn

submatrix and the identity elsewhere, and let QcH (n+p)x(n+P) be the

corresponding augmentation of 4. Then it is straightforward to verify from Algo-

rilthm 4 1 that

JA 3

Q+ JA , : 0 J3 A2 JAS

If JAS is nonsingular then jAS is nonsingular which implies that J1 is square (i e.
T

q =p) and nonsingular and 52 is nonsmngular. Since JAS and J1 are nonsingular.

- -- . .-
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the bottom right 4px2p submatrix of JAs composed of J3, Ak, and S2 must be

nonsingllar, which implies that A2 is nonsingular because i' is nonsingular

The only case in which we can guarantee that our tensor model has a real

root is when the tensor algorithm is sufticiently close to a root z, where FV(xw)

is nonsingular Here one can show that the second order term in the Lensor

model becomes small enough that the tensor model must have a real root.

Fnally, we mention other approaches for minimizing the 12 norm of the ten-

sor model (4.1). In Frank [19B21, we discuss a method that first tries to find a

root of the tensor model and if it is unsuccessful finds a minimizer. It is related

to the version of Algorithm 4 1 using the PIU factorization that we discussed

above Another possibiliLty is to use Newton's method, with a line search on the

12 norm of the tensor model, to solve (4 2) If the Jacobian J is nonsingular, then

by using the Sherm an-Morrison-Woodbury formula each iteration would cost only

O(fr') operations after a start-up cost of the factorization of J plus O(n 2p). We

prefer Algorithm ' 1 because of its greater robustness and numerical stability

b. Implementation of the tensor method

In the previous two sections we presented the main new features of our non-

linear equations method, namely, how we form our quadratic ("tensor") model of

the nonlinear function, and how we calculate a root or minimizer of this model

effTiciently and stably Algorithm ). outlines the complete algorithm we have

implemented to test these ideas. The remainder of this section clarifies various

aspects of this algorithm and its computer implementation. Our test results are

presented in section 6
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Algorithm b.l. An Iteration of the Tensor Method

given x,. F'x,)

I Calculate K"(z,) and decide whether to stop. If not

2 Select the past points to use in the tensor model from among the Vii most

recent past points.

3. Calculate the second order term of the tensor model, To, so that the tensor

model interpolates F(z) at all the points selected in step 2.

4 Find the root of the tensor model , or its minimizer (in the 12 norm) if it has

no real root.

5. Select x, = x,- d , where d, either is the step calculated in step 4 or the

Newton step, using a line search to choose A.

6. Set z 4- x,. F(zx) -- F(x,), go to step 1.

Several standard scctlons of our implementatLion of AJgoriLthn 5.1 use algo-

rithms from Appendix 1 of l)ennis and Schnabel 19 31 The Jacobian is approxi-

mated by their finite diflerence algorithm Ab 4. The stopping criteria are their

algorithm A7.2.3; the algorithm stops it the relative size of (x, - x,) is less than

10 9or the relative size of (jrP) is less than 10 0

Step 2 was described completely in section 3; we set the angle 0 mentioned

there to 45 degrees. Step 3 calculates the smallest T, in the Frobenius norm,

for which Lhe tensor model satisfies the interpolation conditions, using the pro-

cedure of Theorem 3 2 Before performing these calculations, the steps to the

past points Jst all are normalized to have L norm one This assures that the

linear systems A = Z',f 1 solved in step 3 are well conditioned. The normaliza-

tion does not alter the tensor algorithm in exact arithmetic; each ak simply is

- multiplied by jski! and '' is unchanged.

----------------------------..

- ---- -. - - - - -
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Step 4 of Algorithm h, the solution of the tensor mode, is aucormphlshed

by Algorithm 4 1. The QR decomposition of S in step I of Algorithm 4 1 is avail-

able from the modified Gram-Schmidt algorithm used to select Lhr, past. poinLs

The QIl decomposition of Jl is the standard QR with column pivoting (see e.g

)ongarra et al [19791): a column is considered zero if its 11 norm is less than

0 V/ 'Th. hThps :;F'1kzx)ij, The subproblem (4.6), finding the minimum 12 norm

value of a system of q quadratic equations in p unknowns, is solved using a stan-

dard algorithm and analytic derivatives since they are easily available. The algo-

rithm terminates when a root or minimizer of the system of equations is found,

or after Bp iterations Whenp=q =.. the problem is solved analytically. The one

difficulty with solving this system of quadratics is that it is likely to have multi-

ple roots or minimizers. Among these, it seems sensible to try to find the root

closest to the Newton step We attempt this by making the starting guess for

the small system of quadratics the component of the Newton step in this sub-

space.

i42 JS Fe,

or the linear least squares solution to this system fr q >p When J:, isn't well con-

diLtioned, a different procedure is used

Step 5 of Algorithm b ' usually consists. of - line search in the direction to

the root or minimizcr of the tensor model obtained i step ' We use the line

search algorithm A6 3 ' from l)ennis and Schnabel, requiring sufficient decrease

on P'()"a. In some cases a line search in the Newton direction is used instead

(The Newton direction is obtained in O(n2) operations as a byproduct of the algo-

riltln for solving the tensor model ) These cases are when Algorithm 4.1 finds a

root of the tensor model that isn't a descent direction for ]'(z)I2 , a very rare

occurrence in practice but not precluded in theory; when Algorithm 4.1 fails to

find a root or minimizer of the tensor model, and sometimes when Algorithm 4. 1
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finds a minimizer of the tensor rmodel that is not a root The complete trategy

for deternuning the search direction is given in Algonthm b.2 below. The cri-

terion for choosing between the Newton direction and a minimizer of the tensor

model is an extension of our strategy for one dimensional problems discussed in

section 2.

Algorithm b.2. Step Selection, Step h of Algorithm 5 1

Let J, = approximation to !," x.).

dT = root or minimizer of the tensor model,

dN = Newton step -J, 1 t(x,) if J, is sufficiently well conditioned,

lcvenberg-MVarquardt step -(JJC7 + ii) i Jt'l(zc) otherwise, where t

= 'dn " rmachin~eps : J,.'.i (see Dennis and Schnabel 98f])

IF (no root or ninimizer of the tensor model was found) OR1 ((minimizer of ten-

sor model that is not a root was found) AND (i!MT(ZC + d'r)2 > Y

TI-EN

X , + Xods, d%,, t_ OI] selected by line search

ELSE

x, *x + d7"

IFx, is not icceptdblv TlEN

IF dT is a sufficient descent direction

H'IiEN x,4 x, + Xd r . (0, I selected by line search

* EUSE x4zx, + XdN., X , (0.l selected by line search

I
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6. Test Results

We tested our tensor algorithm on a variety of nonsingular and singular

problems. We compared it to an algorithm that is identical except that the

second order term T, always is zero That is. the comparison algorithm is finite

difTerence Newton's methLod with a line search, except that the Newton step

-JC I"(z,) is rmodified to the approximation to the pseudo-inverse step

-(JC"J, + fi) IJd2t"(z) given in Algorithm 5 2 when J, = F (x,) is singular or

sufficientlv ill-conditioned In this section we summarize our test results. Prob-

lem by problem data is provided in the appendix.

All our computation was performed on the DI.C VAX 11 /780 of the University

of Colorado Department of Computer Science, using double precision arithmetic.

First we tested our algorithms on the set of nonlinear equations problems in

IMor6, Garbow, and lHillstrom 198, All these problems have F(z.) nonsingular,

with the exception of Powell's Singular Function where n=4 and

rank(F' (z)) = Z. Our results are given in Table A-! in the appendix, and sum-

marized in Tables 6 1 and 6.2 below

Several comments about the test set are necessary. The 100Oz0 case is

excluded for three problems. Brown Almost Linear, Rosenbrock, and Wood,

because the objective function overflowed at the starting point or during the

first iteration (The largest real number on the VAX is about 1018.) We ran many

of the variable dimension problems for n = 10, 20, ,30, 40, 50, and include here

* the n = 30 results, which are representative The discrete boundary problem is

very easy in all cases, we include n = 10 because it is slightly harder than n =

30 The Chcbyquad problems also had overflow problems when the dimension

and starting point were large, so we include the cases n = 7 and 9 from x 0 and n

= 4 from 'Oro, which seemed representative Our Variable Dimension problem is

a slight alteration of the problem in Mor4, Garbow, and Ihllstrom, which has n+2

I. - , .q * .:- 4 .. ,
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equations in n unknowns, we simply eliminate their n -. 8 and nth equations.

(The first n equations in the standard problem are linear) Our Wood function is

the gradient of the standard Wood function for minimization

The three columns in Tables 6.1 - 6 5 labelled "Average ratio, Tensor method

/ Standard method," contain the averages of the ratios for each problem of the

number of iterations, Jacobian evaluations, and function evaluations (excluding

those used for finite difference Jacobians), respectively, used by the tensor

method versus the standard method For example, if the test set contained two

problems for which the tensor method required 3 and 5 iterations, respectively,

and the standard method 3 and 10 iterations, respectively, then the average

iteration ratio would be (-+ 7_- = 0.?b. Thus each problem is given equal
3 10

weight Since some of the problems are very easy, a second line in each table

contains the same statistics using only those problems where the slower method

required at least 10 iterations. The three columns labelled "Tensor better --

Standard better -- Fie" are based on a composite consideration of iterations and

function evaluations, there were no problems where one method used more

function evaluations but fewer iterations. For both algorithms, the number or

Jacobian evaluations per problem always is one more than the number of itera-

tions

The most striking aspect of the test results on nonsingular problems is that

the tensor method virtually never is less e(Ticient than the standard method,

and lmost always is more efficient In fact, on problems requiring ten or more

iterations of the standard method, it is always more efticient The gains in

efficiency are considerable' an average of 21-23% improvement (depending on

wh-ch measure is used) if all test problems, including some very easy problems

where no gains are likely, are considered, and an average of 36-39% improve-

ment on the harder problems This combination of consistency with reasonable

ft... J . .
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Table 6.1 -- Summary for Problems with (z) Nonsirgular

Problem Number oil Average Ratio, jrensor~tandardTie
Set Problemslensor Method / Standard Metho etter Better

iterat on,4 Jacobian Function
evaluations evaluations,;

All problems 2B 0 770 0.781 0.793 21 6
Harder problems only '4 it 0.612 0 636 6 0 0

Additional problems solved by standard method only 2
by tensor method only

Table 6 2 -- Summary for Powell's Singular Function

Stopping Tolerance !0 ' 3 0 442 0 4139 0 blO '1 0 0
Stopping Tolerance -0 t 3 0 343 0 3635 0.403 3 0 0

Table 6.3 -- Summary for First Singular Test Set with Rank (V(z )) = n-

All Problems 17 0 ')'76 0609 0.603 1i 5 0 2Harder Problems Only 9 90 0.434 il 9 i 0 0

Table 6.4 -- Summary for Singular Test Set with Rank (F(z)) =-

All Problems 13 0631 0664 0.729 I1 2 0
Harder Problems Only * 7 0 99 0 535 0 542 7 0 0

Additional problems solved by standard method only
by tensor method only c

Table 6 S -- "ummary for Second Singular Test Set with Rank (/'(z)) n-I

All Problems ;6f 0 801 0.806 0.849 ii 2 3
Harder Problems Only* Q 701 0.711 0.787 ,0 1 0

Additional problems solved by standard method only •
by tensor method only 5

* Problems where slower method required at least 10 iterations

T -Nw
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improvement in efficiency indicates that tensor methods may be preferable to

standard methods for solving nonsingular systems of nonhnear equations.

Three nonsingular problems were solved by one method and not the other.

(We discount the Watson function because the standard method never really

found roots and the two methods always went to different regions.) The standard

method solved the IOz 0 Biggs FExp6 problem in 119 iterations while the tensor

method didn't solve it in IbO, the tensor method solved the Chebyquad n=9

problem in 33 iterations while the standard method didn't solve it in 150; the

standard method solved the 10z 0 Wood problem in 60 iterations while the tensor

method didn't solve it in ibO This last problem illustrates an occasional

difficulLy when testing on pathological functions • the tensor method made

better progress than the staridard method during the first twelve iterations, but

rtaehed a point from which neither the tensor method nor the standard method

could make reasonable progress. Overall, we noticed no large difference in the

success rates of the standard and tensor methods, although the tensor method

did have appreciably more successes on two of the three singular test sets.

Table 61 also excludes four problems (Box 31) from 10z o and 100x o, and

Watson from x0 and 100x 0 ) where the two methods converged to different solu-

tions. Th' tensor method required fewer iterations and function evaluations

than the standard method in two of these cases, and the same number in the

other two.

On Powell's Singular Function, Table 6.2 shows that the tensor method was

49-56% less expensive, on the average, than the standard method. The stopping

tolerance we use, that the relative size of F'(x)TF(z) must be less than 10- , is

a fairly loose stopping criterion that we believe is typical of tolerances used in

practice. Table 6.2 shows that if this stopping tolerance is tightened to i0-

(about the best one can achieve on a VAX using finite difference Jacobians), the

, .1' ,.- ,.• . . ,
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average cost of the tensor method on Powell's ,ingular Function is 60-66% less

than the corresponding cost of the standard method Presumably this is a

re(lection of faster local convergence by the tensor method on singular prob-

lems, an issue we comment upon later. All our subsequent tests on singular

problems use the looser stopping tolerance, '0 ". the improvements by the ten-

sor method over the standard method generally would be more dramatic with a

tighter tolerance.

The only other singular nonlinear equations test problems in the literature

that we are aware of are the small family proposed by Griewank 11980al. These

four problems all have n=3, either a one or two dimensional nullspace for

P"(z), and either a first or second order singularity. Our results on these prob-

lems are given in Table A2 in the appendix, but they don't appear very meanrng-

ful, because the standard method failed on 6 of the 12 runs and once converged

to a di ferent root than the tensor method. The tensor method was successful in

all cases and always was more efficient than the standard method.

We created singular test problems by modifying the nonsingular test prob-

lems of Mor6, Garbow, and lillstrom in two different ways The first is to create

problems of the form

Ijx) = Flz) - f'(x,) A(ATA)-AT (x-z,) (6.1)

where F1(z) is the standard nonsingular test function, z is its root, and AcRnxk

has full column rank with '<k;. Clearly 1/(z,) = 0 and

F , (=,) l="x3,) I -A(ATA) 'AT

has rank n-k A disadvantage of this problem class is that ilz) may have roots

that are not roots of F(z) There is likely to be a manifold of singular Jacobians

of Fkx) in a neighborhood of z,. but this is not guaranteed. A manifold of singu-

larities is considered desirable because it makes the problems harder and
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because we believe it is reflective of most practical singular problems.

We used (6 1) to create two sets of singuJar problems, with ;'(x) having

rank n-I and n -2 respectively, by using

IC 1x Xi AT = '

and

AIV7 kX, AT
I' -:

respectively We tested our method on the singular versions of all the nonsingu-

lar problems except Watson's fMction, which we excluded because It was quite

expensive to run and the two methods never convergei to the same root, Our

results are given in Tables A3 and A4 in the appendix an summarized in Tables

6 3 and 6 4

The improvement by the tensor method over the standard method on the

problems with rank(F x.)) = n -1 is substantial an average of 40-43% improve-

ment on all problems and b7-6i% on the harder probiems We speculate this is

due in part to the tensor method achieving superlinear convergence in this case,

and comment further on this at the end of this section In 9 cases the two

methods converged to different roots, in 6 more cases they converged to the

same root but not the singular root x.. These problems are excluded from the

summary statistics in Table 6 3; they point out a deficiency of the test set

On the test set with rank(F'X,)) = n-2, the improvement by the tensor

method over the standard method was 27-37% on all problems and 46-50% on the

harder problems These are still substantial gains but not as large as when

ronk(F1z)) = n-1 We speculate in section 7 that our tensor method is not

* necessarily superlinearly convergent in this case, and mention some

modifIcatLions that might make it superlinearly convergent when the rank of

F (z.) is less than n-I. The tensor method also solved b of the rank n -2 prob-

*1
at
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lems that the standard method didn't, the standard method solved one that the

tensor method didn't

Our second method for generating singular test functions from standard

nonsingular problems has the desirable property that x, is a root of the new

sinular function P"z) if and only if it is a root of the original nonsingular func-

tion F'Cx) This class of functions is described in Theorem 6 1. The functions we

generated using this method turned out to be less useful test problems than the

singular functions already described, for reisons we will discuss. However they

may be a useful class of singular problems for future testing

Theorem 6.1. Let P'(x) R" .R" and zx R" with F'(z.) : 0 and F(z.) nonsingu-

lar Define ,142()t RH' bV

I)A,2(z) - d i if I(x)'. f., (x):?

%here f,1 .) denotes the 1A component function of F',x) let A( ctf "l, !-k-n,

have full column rank, and let v c' have the property with A that (Av) i = 0

only if row i of A 0 l)efine F'(z) R, -'0?' by

F(x) A iTIF(x) (A V,.X) Av. (6 2)

Then F(±-) = 0 if and only if '(z) = 0, and P"(z.) has rank n-k

Proof • It is obv, - that P'z) = 0 if Ft.) = 0 Now suppose F(±) = 0, and -on-

sider first the case when A has no nonzero rows Then by definition w=Av has

no nonzero components and

0 = V TAT i'K:) v vIA i4. 2 (X)AV = M (f,i )2

which implies that k'z) 0 Now consider the case when A has some zero rows,

and assume without loss of generality that AT O ' U 0 1 where Hc R"A", m >k,

has full column rank Let G(z) n" -l"' and 11(x) R'-. R ' denote the first m



and 1cst -rn coinponnts of F(x) respcctvely, and similarly let x) and /1(z)

denote the first m and last 7 -rm components of .z). Ther

;(r) Z - y(3 T 1 ) (;(B ) + ? I)62 (x) Ihv

and

ix) = 1(X)

where

t)c 2(x) diagf! (x) 2 ,  , (x 2

It follows by the same argument as we used above that G('x) 0 if ,,(x) = 0, and

since 11(x) and 1t(x) arc identical. F(z) = 0 if 1"(z) = 0

Y-inally. it is straightforward to verify that

P'(x) (I -A(ArA)Aij + !),.(x) 1), ) f (x) (63)

where

i D~~~~1 ., ,(x ) d ia g ) / 1, x ) , . f ( x ) i , 2, , -- d ia l u t ; , , ; t l

l'h us

(i(.) = / - A(ATA)AT] "(x,)

haF rank n -k

"(x) given by (6 3) almost always has a manifold of singularities around x.

For example, it A is the first k columns of the identity matrix, then f1 (x) =

i/f (x)2.i=, ,k so P(x) is singular whenever any f,(z) =0. i, k

More generally, it follows trom (6 3) that '(x) is singular whenever F(x) has

(n+!-k) zero components. this usually implies a manifold of singularities

around x, whenever k>2 Finally, it is easy to show that F (x) is singular when-

ever

. . . . . . .... . . . .. . .. ---- _ - - --- - -- -, .. ---.. .
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zi I + f,(x) W'wiI (Z I + (Ay):i 0. i:1 .. (6.4)

where z It" is any vector in the null space of A r and y is any vector in ?k. for

small z, l6 4) is likely to have solutions

'e used ',62) to generate two sets of singular test problems with

rankl fx.)) = n-' by setting k=1, v=1, and A (>. 7) and A =

(..0,. .3.~0,) respectively. Neither was a very illuminating test set The prob-

lems w.th A z(- . ,') were too hard for either algorithm, each solved only

30-10i' of the problems In addition, there were numerous overflows due to the

squiares of the original component functions appearing in the new problems, and

the sn il exponent range of the VAX The standard method solved 9 problems.

overflowed on '/. and failed on 19, the tensor method solved I I, overflowed on 6,

and failed on 18 On the few problems solved by both methods, the tensor

method was always at lo-is! as efficient as the standard method, with inprove-

ments ranging from 0 to 627 The prrolems wiLh A (:'.0.0 0, i) were easier

although there still was a considerable number of oerflows and failures The

results are given in Table At and sunimarizc_' in Table T The .t-,idard method

solved 20 problems, overflowed on n, and failed on 9 the tensor nifthod solved

24. overflowed on ;. ind raled on 6 "lh" avr,tge !riprovenwit o\ tI t, en,)r

method was , 2"-0>o. -30 on the problems !h,t req;:r , , .1 t I

ions These nimprovements arc lower thin o!i the, fi1, ,

lems but do not reflect the higher success ratt of the termor ri, 7 00

Taken together, our test results seem to ind .t( tl idi ( r , I

consistently more efficient than standard m !.1 r. il , rl p',-" -

I'z,) has a small rank deficiency AI' ;peculitf' that when 23) h.- rien

n-" the tensor nethod is superliriearl, convw -gent in most (*,I,( i i -ie( k

whether this is a reasonable possibiliy we examined the seqienrv of reitios

;ijz - , / Zxk i -- r

produced by the standard and tensor methods on problems with rank( (zx,))

' i nL~~ ."* ""..". L
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n-1. Ratios for a typical problem are given in Table 6.6. In almost all cases, the

standard method exibited local linear convergence with constant very nearly

0.5, as the analysis of various authors mentioned in Section 1 would predict. The

local convergence of the tensor method clearly is faster; the final ratio of about

0.01 is typical and might be smaller if analytic Jacobians or tighter stopping

tolerances were used. Whether tlus is superlinear convergence remains to be

determined.

Table 6 6 -- Speed of convergence on a typical problem with rank ' '(z,) = n-I

(Broyden Banded, n = 30, as modified by (6.1), started from 10xz)

Iteration (k) ,iXk - z,. / X - -

Tensor Method Standard Methoo

0 6313 0.638
2 0.511 0.626
3 0.502 0610
4 0426 0.591
5 0330 0570
6 0204 0.549
7 00916 0,)32
8 0.0106 0.520
9 05i1

10 0.506
I I 0 503
12 0.501
13 0 5007
4 0.5003

15 0.5002
16 0.50009
17 0.50005
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It is important to comment that on the test problems where either method

had difficulty, it appeared to us that a trust region method that biased short

steps towards the steepest descent direction often would have helped. We used

a line search algorithm in our tests because we did not want to introduce the

unresolved questions about trust region strategies for nonlinear equations into

our comparison of the standard and tensor models. It will be important to inves-

tigate whether the computational comparison between methods using these two

mnicls is similar in a trust region setting.

Finally. we make some comments on details of the tensor algorithm we

observed in our testing The linear independence requirement usually limited

the number of past points interpolated at each iteration to a smaller number

than the upper bound V-n-, For example on the 100z 0 l royden banded problem

where n = 30. the algorithm used one past point in 83% of the iterations and two

past points in the remaining 17%, although it could have used up to six past

points, similarly on the x0 Trigonometric problem where n also is 30, it used

one, two, and three past points on 20%, 60%, and 20% of the iterations, respec-

tively. Thus the tensor method seems to obtain surprisingly large improvement

from a comparatively small amount of additional information. We tested the

algorithm on the nonsingular problems with the linear independence angle

reduced to 22.5C (from 4Y). there was some fluctuation in the results on indivi-

dual problems but no overall improvement or deterioration in efficiency, and the

number of past points interpolated at each iteration increased somewhat but

not dramatically. From past experience, a very small angle, sav Tess than 100,

would give inferior results. The system of linear equations that is solved as part

of solving the system of quadratics at each iteration was square and reasonably

well conditioned (i.e q =p) almost all of the time; q was greaterthan p at about

71% of the iterations on the singular and nonsingular Biggs functions, and at

about 3% of the iterations on all the other test problems. While the step to the

• :
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root of the tensor model is not guaranteed to be in a descent direction, on the

nonsingular problems this only occurred on 5 of the 44 problems, and there only

about 25% of the time, mostly when the method got stuck in one place.

7. Future research on tensor models

The conputational results in section 6 inditcate that tensor methods may be

preferable to standard methods for solving general systems of nonlinear equa-

tions where analytic or finite difference Jacobians are available, and that they

miy have a substantial advantage on problems where the Jacobian at the solu-

tion has a small rank deficiency. To firmly establish such a conclusion, addi-

tional testing is required, including tests comparing trust region versions of

standard and tensor methods for nonlinear equations Our inclination is to use

dogleg-like methods in these trust region tests

A It would be very helpful to obtain local convergence results for our tensor

algorithm applied to singular problems. Hopefully, the algorithm can be shown

to converge faster than linearly to a root x, where F'(z,) has rank n-I and

F"[xz) obeys appropriate conditions. Related results of this type recently have

boen obtained by Griewank i 19631. Griewank shows that an algorithm that also

bases its iteration on a quadratic model with a simple second order term is

locally 2-step q-superlinearly convergent in the above case. His algorithm, how-

ever, forms the second order term in the quadratic model using information

about the singularity in F'(x.) that would not be available to general purpose

nonlinear equations solvers.

We believe that the tensor method presented in this paper may not always

achieve faster than linear convergence on problems where the rank of F'(zl) is

j!
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n-2 or less. Io justify this remark, suppose z1 , ,zm is a basis for the null

space Z of F (z.), where m.>1. For a method based on a quadratic model to

achieve last convergence, it seems necessary that the second order term in the

model be a good approximauLon to P"'(zn) actng on / This seems to require

((Tm+,)/2) n-vectors of iformation, to characterize F'(z,)zjzj. i , j .

Our method, however, may not contain this much information even if the past

points are in the desired directions, for example, if all the past directions were

in Z. our method would interpolate at most m function values. Thus our method

does not seem to interpolate enough information to always achieve fast conver-

gprnce on problems where the dimension of the null space of F'(z.) is greater

than one. This speculation is not well supported by our computational results,

however, our tensor method seems Lo perform almost as well on problems where

F'(z,) has rank n-2 as where F'(x,) has rank n

There are several ways to incorporate more information into our tensor

model and eliminate the objection raised in the previous paragraph. One is to

interpolate values of P'(z +st) at a set of points for which the steps JskI may not

meet the linear independence criterion of section 3, requiring instead that the

matrix SC , ' P used in Theorem 3.1 meets this criterion. It is easy to show

that this procedure would allow choosing up to ((m 2 +M)/2) directions from an

in dimensional subspace while leaving the calculation of the second order term

7 well conditioned. A second alternative is to choose T using information from

Jacobians at past iterations. We intend to investigate these alternatives.

The methods proposed in this paper can be adapted easily to remain

efTirient on large, sparse systems of nonlinear equations. In particular, the main

additional computational costs of our method are Jacobian-vector products, and

presumably these can be performed efficiently when the Jacobian is sparse. Two

modifications reqwred would be to select the maximum number of past points

•i , _ _ __ _ __ _ __

I B k4... .-
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small enough that the cost of solving pxp linear and quadratic subproblems

remains acceptably small, and to use an eficient sparse factorization in the

algorithm for solving the tensor model

The methods discussed in this paper also Could ba applied with very little

modification to nonlinear least squares problems Nonlinear least squares algo-

rithms virtually always use analytic or finite difterence Jacobians so the require-

ments of the tensor methods presented in this paper are no restriction in this

case The augmentation of the linear model by a second order term would lead

to natural extensions of Gauss-Newton or Levenberg-Marquardt methods, and

tensor methods might require fewer iterations and function valuations than

these methods, especially on problems where the Jacobian at the solution is

rank deficient It is not clear how tensor methods for nonlinear least squares

would perform on large residual problems, and whether there is any reason to

prefer them to quasi-Newton methods like those of l)ennis. Gay, and Welsch

198] in this case.

We are currently developing extensions of our tensor methods to secant

methods for nonlinear equations, and to unconstrained minimization. Neither

extension is straightforward. In secant methods for nonlinear equations, ana-

lytic or finite difference Jacobians are not available, but it is possible to interpo-

late all the function values F(zC+s,) used in section 3 with a linear model (see

e g Gay and Schnabel 1 19781) To create a useful second order term it is neces-

sary to interpolate function values in (nearly) dependent directions. The pri-

mary difficulty in extending tensor methods to unconstrained minimization is

that. for problems where the Hessian matrix at the minimizer is singular, an

approximation not to the third but to the fourth derivative matrix is necessary

to speed convergence. This is because the projection of the third derivative

onto the null space of the Hessian must be zero at such a minimizer. In addi-

jLion, all derivative approximations for minimization must be symmetric. Our

*



42

solutions to these difficultios will be reported in Future papers
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Appendix

Tables A! - A5 contain the results of the tests described in Section 6. The

problems in Table Al are from Mor6, Garbow, and Hillstrom 129811. The prob-

lems In Tables A3 - Ab are singular modifications, described in Section 6, of the

problems in Mor6, Garbow, and lillstrom. The starting points used for all these

problems are the ones suggested by Mor&, Garbow, and Hillstrom, the third

eolimi of each table designates whether the starting point is X(,, !Oxo, or 100x 0 .

where x 0 is the point listed in Mort, Garbow, and lhilstrom The problems in

Table A2 are taken from Griewank " 1980a].

The two columns in each table labelled "X]/"(x,)j!3" give half the sum of

squares of the component functions values at the final iterate for the standard

method and tensor method, respectively, using abbreviated notation • e.g .43-12

means 0 43x,0 11 If the method failed on a problem, this column instead con-

tains one of the following alphabetic codes:

OF -- method overflowed

D -- divergence detected (b consecutive very long steps)

IIF -- method failed to find a root in 150 iterations

S - method stalled at non-root

The rightmost column in each table, labelled "same x ? " contains a Y

(yes) if the two methods converged to the same point on this problem, a N (no)

otherwise. Only problems that converged to the same root are included in the

statistics in Tables 6. 1 - 6.5I

In Tables A3 - A5, the two columns labelled "n.s. ?* " (short for "nonsingu-

lar x,?"), contain a Y (yes) if the method converged to the same root as the

corresponding nonsingular problem in Table Al, a N (no) otherwise. Only prob-

lems were both methods converged to the same root and the same root as in the

nonsingular case are included in the statistics in Tables 6.3 - 6.5.

__ _ __ __,_ *-.-,Ij
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Table Al -- Results on More', Garbow, and lillstrom Test Set

Function n xc Standard Method Tensor Method

'c Fn it ns l n tns
_____ _vals 'vals X.?

iggs6 209 104 97-18 157 70 13-12 Y

Exp6 0 228 19 22-5 200 150 F: : o i a 6 , ]i, -

'0031 30 5 F 130b 15 0 F-
Box 3D 3 5 4 .10-16 4 '3 .Y0'

10 0 14 .56-19 121 8 18-12 N
00 4 -83 N

BrownAlm. 10 i 1 b11 .57-12 10" 7 .38-11 j Y
Ltntar 10 11 9 .25-15 10 7 Y40-11 Y

Hroyden 30 6 5 12-15 5 4 .121 1 Y
Handed 0 12 11 16-22 9: 8 923 Y

3 00 7 :5 6 .95-14 14 '

Broyden 30 A, , 6 .4 '8 20-12 Y
Tridiag. 0 7 .47-13 6 5 93-20 Y

100 1 61 4-!0 6 5 67-16

Chebyquad 7 ,: 7 ? .31-16 8 6 .63-18 Y
9 332 "O I' P 63 33 68-a5
4 -0 b 35 o.90-20 .4 '" 2' .1 1

Discrete I0 3 2 .48-15 3 2 3-6 Y
Houndary 10 4i 4t 3 ,1b-17 4 3 3 Y

100 9 8 ,0-13 8 7 , 3-0
Discrete 2 .i-2 3 2 21 1 Y
iunctea :30 1. 3
Integral i 0:.i 3' 49-15 4 .3 2"7,-16 Y

i00 9 8 .40- 1 9 13 .70-1b Y

Helical 3 1 iI 12 9 17-20 7818 Y
Valley 0 1 13 .23-21 16 1 11 16-18 Y

0 2. ; .22-14 6 : :-2 Y
Powell 1 9 L9 19-7 4 ' . 2,-!5 Y

Sigua 10. 13 ! 12 ..43-8 . 6 , : 3-16
Sllua" I 1 0 16 ID0 .10-7 11 10 6 .26-16 Y

Rosen- 2 1 27 14 .10-7 112 7 .14-20 Y

brock : 0, s 3. .0 8 6 7-14
Trgono- 30 31 16 .19-12 ' 21 11 i 144 Y

metric 10 326 1501 F 14' 64 Si i 0 0 1. 334 1 150 t i'3 62 :1
'__ _ __ _ _ ioo

Vaial 1 1 '31 .24-9 6 .13 .20-13 Y
Dimension 10 10 5 4 .55
r(Altered) 1 001 19 1 '4 10-8 14 11 .22-12 Y

Watson 31 4 .10-6 1 4 .46-1 N
Waso 3 10 41 25 25-6 11378 0 F

1 45 28 3 .60-11 NWood 4 4 171 .23-26 11 9 .27-17 Y

Gradient 1 1 I 105 61 .30-24 366 1bO F
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Table A2 -- Results on Griewank's Singular Functions

Function n x0 Standard Method Tensor Method
S nItns flF(z.)[j Fen Itns tF(z)ll$ same

l__ __ _ _ vats-r I X.

Dimension of 3 9! B .2-10 6 b .,-10 Y

Nullspace = . -10 7 8 9-16 N
Order of L<00 2, "9 .1-10 18 14 .7-10 Y

Dimension of ,13 11 9 3-10 7 6 .-- y
Nullspace D 332 " *., F 11 9 3-lIXullspaee = i I , O0 297 !,)0 F 1 ' -I

Order of " 29 0 F 17 1 1
Singularity 2

Dimension of !3 " 9' .3-10 !7 6 -l y
Nullspace = 2 :0V 332 IbO F 11 9 .3-Il -

Urder of O0 297 5O F 117 13 !1
Sir~ularitt = " I ,: , , 7 6 .- :Y

Dimension of 3 1. 1 9 3-10 7 e6 Y
N llspace = 2 10' 332 O F 1 9 .3-1: -

Orderof ,00 297; 150 F 17 73 1 -1 1
Singularity = 2 h2I'

i
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Table A3 -- Results on First Singular Test Set with Rank (F'(z)) n-I

Function n Standard Method Tensor Method

F ltns n.s lfen tns j jF(x,)Iij n.s, sameyak',b x.,' ya ,. z.

Biggs 6 7/1 1 2-1,0 N ;,I !501 F N N
Exp6 10' 33 :9 .6- 17 N 69 38 .14-6 IN; N

Q00o 6D N C30550' F N N
13ox31) 3 1 10 9 96-13 Y 61 b .b7-1 b Y Y

" 0 iO; -10 42-7 N
O = 3 .46-l. N O 0' -OF

Bron Atni. 0 71 61 .33-7 Y b 4 .41-7 ' ,
Linear I ,01 22 1 3-7 Y y 9b 7 39-9- Y y

Brovdcn 30 2 1. ' 88- Y 6' 5 .65-14 Y Y
banded 0': 1 7 :1-0 Y 1 9 .4-15 y., y

.'0 24 23 37-7 Y 4 1 i Y " Y
fir . - 0 3 61 5! .80-12 r Y YIBroaden .30. 9 , Y -

Tridiag 10 :4 '3 '0-9 6 5 .5-13 Y Y
"0 01' 1.6 32-9 Y .6

Chebyquad 7 1 71 38-16 Y 8 6! .98-14 Y  Y

9' i 66, 33 29-'3 N '29i 0 .9-14 Y N13 N 4103 .60-13 N
__ _.1 "., 200 0 90-16 1 N, 73 4 97 19-. N

Discrete 0' 1" 3 .2 6-9 Y 3. 2 .14-9 Y Y
Boundary 101 t 4' 36-,0 Y ' 4 .20-13 Y I Y

100; 9 8 ,:3-0 i 6 .10-13

Discrete 130 1!! 5I 4 .22-9 Y, 4 3 .20-11 , Y
Integral 62 Y 5..6B- 2 Y Y100 0 9 82 N 8 .32-23 N Y
Helical 13' B 7 .6 N 7 .64-14 N Y

Valley 10' 7! 6 38-14 N 7i 61 .27-13 N Y
100i . 6 D 4 16 .70-22 tN Y00 °i 7, 6i :0-;4 N ., 6

Rosen- 2 14 :63 Y 4. 3i .47-14 Y Y
brock t73

rigono- 30 :9 i1 .10-10 N 24' 13i .62-10 N N
metric .

Variable &0 ' -249 Y 101 91 .46-15 N NDi e sin 14 .6-125 12 16,' 9 -i13 N N y
(Alte00 8 17 11- 15 N 9' 15 N

Wood 41 . 2. 20 .22-1. . -b
Gradient I0' 26' 2:)l .94-15 y lb 14 .15-20 NI N
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Table A4 -- Results on Smnular Test Set with Rank (F'(x.)) = n -2

Functior n zo Standard Method Tensor Method
Fcn ilns 1 P(xg)fl n.s.i Fcn Iltns {IF(z.)l}i n s same

xv.?s ; vals .. ?
Biggs 61 27' 7! .- 6 N 32 8' 4-10 N N

Exp6 i: 306J15O: - 39001 b F
,oo__ 1) 6 0- 6  ' 1) -

tox 3D .3 8 7. 2-0 1 2 1  
7 .7-,2 Y~ Y

10, 1 '0 : - '2 Y 12 ?-2 Y N
,1o , , o - OF __-

13ro iiAlm 10 '1 7 '-. 0 N 6 .9-3 , N N
0 9- 6 2 - . 37N 17 6-17

Broyden 301 ."9 99* 8-12 Y B ? , , N N
Banded '0. 304 1b0' F 21 3 i-2 ' g

I,10' 2t5 21 9-19 N 68 3:' 3 Y' N

Broyden 30 q0 9 9- 2 Y :0 1 .13 Y Y
'Frid g 10 296 10 f 7 6, .7-13 N

00 !9 ; .31 Y 8: 7 .2-2 N
Chebyquad 7' 1 1O 9 9-' Y 8, 7, .4- 3 Y Y

9 i 33, :O ' - !2 9 .:-19 N -4[ 1,0o 301 : 1, I _- ;h 1 3 i  •4
Azsrc _ 0 30: :3 32' A-20 N

. ,scrctc :0 0 .2-:0 ' Y K < 3 .6-11 Y y
Boundary 10"' 9: 6 3-10 i Y , 4' 8-10 Y y

_00_ 12 1 -13 N u6 50 F
Discrete 30 1 8' 7 3-10 ' Y 5 4 .6-10 T Y Y
Integral 10 11 10: .6-10 Y 8i 7 .2-9 Y Y

_______ 00 9' .6-18 N 16i 1.1 3-10 y N

Helical 3 ' 1) 1 ., :-12 Y i 8I 7 .6-21 Y Y
allev .0 1 4 6-13 Y ' 7' 6{ .1-13 y Y

o00 1 0 6-13 Y 6: .6- 3 Y
Rosen- 2, 1 " 1, 0; .1-6 Y i 41 3 A-9 Y Y

brock 10: O, ' : 1 N 4_ 1-11 N I
T rig o n o- 130 1 3 :6 1 ] 0 , -,'2 ' - 4

Variable 10 " 3 i  .2-9 y 8 7 .6-15 ' Y "
Dimensionl . ;) 6: '5 .6-'0 a' N . B .- 9 I
(Altered) i  100" 20 1i 4-'0 N ' : 8 .4 -3 N 1Ii Y

qradient 10 27 26! .2-16 Y 491 28; 4-5 I N N

... . .. . . . .. ... .. r - I . .. r .. . . .I I " . ... .. ' -" ; '
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Table A5 -- Results on Sec'ond Singular Test Set with hank (F'(zx)) =

Function n X0  Standard Methodensor Method

Flen Itns /,) nsl.'cnItn sj nsn.s ' same
___ 's x ? val X.?

6' Of' 3b 50 F " - -

.xp6 :0' 292 :b0 t" F OF
O00i304 :50, F j - f303 '5

Box 31) 3 Fj OF - 01"
' 10 Vf.OF

DO0 OF " ' ' .2- 10
Brown Aim. :0' OF (.

Linear. 10 '10 9 -10 1 ' ' 3'- 0 N N
Brovden '30 i  '3 12' 2-10 Y 0 9 21 Y y
Banded ' 303 .. 0 F 1b' '7 3<2 Y '

, 00 302 ,1,0 F 37 2 1-5 Y ,
Broyden 301 "2! 4-9 Y 10 9. >15 Y Y
Tridiag. . 10i 28' 21 .8-9 Y 12t 11 .4-1 ! Y Y

_00 25 24,. - . IY _ __B _- _

Chcbyquad 71 ' 7 4-16 Y 8 6 6-18 Y Y
9 i30b "0. F 1 :92 71 5-12 Y i!-
4 10 293 10 ,' VOF ,

Discrete 10 4 3 7-9 , 4 :3 2-10 Y, YC0 ) 4 2-Bl Y 'i b 4-11 Y 1 Y

Boundary 0 24
S00' :2, 6-8 Y 2, y (

Discret, 130 1t 3; 2: 2 -I0 y 31 :2 .5-10 y I! y
Integrai :: 1? t -? 4-15 Yy1 iO; ') ,2 i 1, 4,

lih~ '7 31ia 1
I I ii 2.99 123 7-13 Y I .3-13 Y ' ya0le 1 -12 Y II 16 2 4 -1 Y

__ _ _ '00;;' 22, 2, -i2 'Y. 21! 6' .4- 17 1 y
Roscn- 2i 3i :'.3 F 45 23; .1-1! y -
brock 0 ii _h322_ _ _0i F 31 1 Q .1-17 Y 11

Trigono- 30. 49 ' 2. 1-9 N 2< 123 3-10 N N

Variable : o , 2B 27' 6-10 Y 17 16 .- 10 Y Y
Dimension 10, 32 31, .- '0 Y 0 9 .2-9 ; Y Y
'Altered 100. 37, 361 .3-10 Y 37; 27 .(-9 Y Y

Wood I , 292 io F - 329 j "0 - I
Gradicnt i 10' 40 261 2-12 ' N 4521 150 F '

= , ____.. . .. _ -.. ........... ... . ---,r- -.-- .-- -.--.--- "I - - - .--. '-
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