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A new class of methods for solving systems of nonlinear equations, called
tensor methods, is introduced. Tensor mcthods are general purpose methods
intended especially for problems where the Jacobian matrix at the solution is
singular or ill-conditioned. They base each iteration on a quadratic model of the
nonlinear function, the standard linear model augmented by a simple second
order term. The second order term is selected so that the model interpolates
function values from several previous iterations, as well as the current function
value and Jacobian. The tensor method requires no more function and deriva-
tive information per iteration, and hardly more storage or arithmetic per itera-
tion, than a standard method based on Newton's method. In extensive computa-
tional tests, a tensor algorithm is significantly more efficient than a similar algo-
rithm based on the standard linear model, both on standard nonsingular test

problems and on problems where the Jacobian at the solulion is singular.
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1. Introduction

This paper introduces a new class of methods, tensor methods, for solving

the nonlinear equations problem
given F . K"-»R"™, find zx¢RK™ suchthal F(zy) =0 (1.1)
where 1t is assumed that F(z) is al least once continuously differentiable. The
novel feature of these methods is that they base cach iteration on a quadratic
model of F{x) whose second order term has a special, restricted, form. Tensor
methods are especially intended to improve upon the performance of standard
methods on problems where the Jacobian matrix of F' at z,, F'(z )eR™ ™, is
singular or ill-conditioned. At the same time, they are intended to be at least as
eflicient as standard methods on problems where F'(z,) is nonsingular. Their
storage requirements and arithmetic operations per iteration are not

significantly higher than the requirements of standard methods.

Standard methods for solving (1.1) base each ileration upon a linear model
M(z) of F{z) around the current iterate z, € k™,

M(z +d) = F(z.) + Jod (1.2)
where d€R™, J € R®*® . These methods can be divided into two classes, those
where J, 1s the current Jacoblan matrix F'(z.) or a finite difference approxima-
tion to it. and those where J; is a secant (quasi-Newton) approximation to the
Jacobian. In this paper we proposc extensions to the first type of methods,
those that use analytic or finite difference Jacobians, because this is the most
basic setting in which to study the new ideas of this paper. In subsequent
papers, we intend to extend tensor methods to secant methods for nonlinear

equations, and to unconstrained optimization.

When the analytic Jacobian is available, the linear model (1.2) becomes

Mz +d) = F(z,) + F'(z;)d. (1.3)
The most basic method for nonlinear equations, Newton’s method, is defined
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when F'{z.) 1s nonsingular, and consists of setling the next iterate z, to the

root of {1.3),

T, =1 - F(z )Y 'F(x,). (1.4)
The distinguishing feature of Newton's method is that if F'(x.) is Lipschitz con-

tinuous in a neighborhood containing the root z4 and £ (z,) is nonsingular, then
the sequence of iterates produced by (1.4) converges locally and q-quadratically
to 2. This means that there exist 6>0 and ¢>0 such that thc sequence of
iterates {x, } produced by Newton's method obeys

NZesr — zal < ¢ 2y — z4lf®
if izo — Tall 4. In practice, local q-quadratic convergence means eventual fast
convergence.

Newton's method is not usually quickly locally convergent, however, if
F'(zy) 1s singular. For example when applied to one equation in one unknown
{(n=1) where f'(z,x)=0 but f (z,)#0, Newlon's method is locally g-linearly con-
vergenl with constant converging to %, meaning thal the sequence of iterates
}xx | obeys

[Zevr ~ Zu) = e |Zx —Zul, ,ltm: ce =¥
if {z¢ ~ x4/ is sufliciently small. ¥For systems ol equations, the siluation is more
complex and has been analyzed by many authors, including Decker and Kelley
[ 1980a, 1980b, 1962}, Decker, Keller, and Kelley [1962], Griewank | 1980a, 1980b,
1983]. Griewank and Osborne {1981), Keller {1970]. Kelley and Suresh {1982],
Rall { 1966]. and Reddien {1978, 1980). In summary. their papers show thal from
many starting points, Newton's method for systems ol cquations aiso is locally
g-linearly convergent with constant converging to % although from some start-
ing points arbitrarily close to z,, {1.4) may be repulsive. In practice, Newton's
method usually exhibils local linear convergence with constant 2 ¥% on singular

problems (see Table 8.6), much slower convergence than one would like.
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Several of the above mentioned papers, for example Decker, Keller, and Kel-
ley [1982] and Griewank {1980a, 1983], propose methods that are rapidly conver-
gent on some singular problems. Most of these methods are related to the one
dimensional acceleration technique of taking j times the Newton step if onc has
a j* order singularity. This requires deciding whether the problem is singular,
which probably makes such methods unsuitable for general purpose use. The
major aim of this paper is to provide a genecral purpose method that has rapid
local convergence even when F(z,) is singular. In addition, tensor methods
usually will not experience any special difficulty when F'(z;) is singular or ill-

conditioned, while methods based on (1.3) must be modified in this situation.

Systems of nonlinear equations with F'{z,) singular or ill-conditioned occur
in a number of important practical situations. For example, conservalion laws
in stiff systems of ordinary differential equations sometimes cause Lhe Jacobian
of the associated system of nonlinear equations Lo be very nearly singular for all
z. In curve tracing problems it also is not uncommon to generate systems of
nonlinear equatiéns with nearly singular Jacobians. In unconstrained minimiza-
tion probiems arising from data fitting, the Hessian matrix V3f (z,) usually is
singular if the problem is over-paramecterized, and often V&f (z,) is ill-
conditioned because the data fitting model is far more sensitive to some param-
eters than to others. In all these cases, tt is important to notice that the (near)
rank deficiency in the derivative matrix usually is small. This 1s the case in
which our methods arc intended to improve upon standard methods Our
methods are not intended for problems where the rank of F'(z,) is small in
comparison to its dimension, although somelimes they are effective in Lhis case

in practice.

The other well-known disadvantage of Newlon's method 1s that it may not
converge to any root T, If 1t is started too far from any root. The main remedies

used in practice are augmenting (1.4) by line search or trust region algorithms,
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see for example Fletcher |1980]) Gill, Murray, and Wright {1981}, or Dennis and
Schnabel {1983]. Our new methods use the same strategies when the new local

step is unsatislactory

It is important to consider the costs associated with solving systems of non
linear equation by standard methods These can be divided into three lypes the
arichmetic operattons required by the algorithm (excluding function and deriva-
tive evaluations), the storage required, and the evaluaticns of the nonlinear
function F(z) and the Jacobtan F'{z), 1if it is provided. For algorithms that use
an analytic or finite difference Jacobian, the dominant arithmetic cost is one
matrix factorization per iteration. requiring n®/3 (for 1.U) or 2n%/3 (for QR)
additions and multiphcations per iteration. At lcast n? storage 1s required, for
the Jacobian, and some algorithms store a second nxn matrix. Finally, F(z)
must be evaluated at least once per iteration; in addition, either F'(z) is
evaluated once per iteration, or it is approximated by finile differcnces, requir-
ing up to n additional evaluations of F(z) per iteration. In many practical prob-
lems. the evaluations of F(z) and F'(z) are expensive and dominate the other
costs The main efficiency goal of our new method is to decrease the number of
funclion and derivative evaluations required Lo solve systems of nonlinear equa-
tions; however, no substantial increase in the arithmetic cost per iteration, or in

the storage requirements, will be permitted.

Our new methods are based on expanding the hnear model (1.3) of F{z)
around z. to the quadratic model

Mr(ze+d) = F(z) + F{xc)d + %1 . dd (1.9)

where 7, € R**™™™  The threc dimensional object 7, often is referred to as a ten-

sor, hence we call (! 5) a tensor model, and methods based upon (1.5) tensor

mathods, We define the notation 7, dd used in (1.5) before proceeding.
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Then 7 1s composed of n horizontal faces

Definition 1.1. let TeggnXn*n,

HieR™™ i =1, - n where Hi(j.k]=T[i.j.k] Forv, weR", TvwcR™ with

Towii| = vTHwW = 5 3 T{igkWjlwk]
Jel k=)

Note that Mr{z.+d) is simply the n-vector of n quadratic models of the
component functions of F(z),

(Mp(zc+d))ia] = fi+gld +¥dTHd, i=1, - n
where f, = F(z.)i]. gf = rowi of F'(z.). and /, is the Hessian matrix of the i®

component function of F{z), or an approximation to it.
The obwvious choice of T, 1n {i1.5) is the matrix £ '{z.) of second partial

derivatives of F at z,.; this makes (1 ) the first three terms of the Taylor series

expansion of £ around z. Secveral serious disadvantages, however, make (1.5)

with 7, = I'"{z.) unacceplable for algorithmic use. They include

(1) The n3 second partial derivatives of ' al z, would have to be computed at
each iteration

(2) The model would take more than n3/ 2 locations to store

(3) To find a root of the model, at each iteration one would have to solve a sys-

tem of n quadralic cqualions in n unknowns.

{4) The model might not have a real root.

To use a model of form (1.5) and avoid these disadvantages, our tensor
method uses a very restricted form of 7_.. In particular, our tensor model
requires no additional derivative or function information; the additional costs of
forming and solving our tensor model are small compared to the O{n%) arith-
metic cost per iteralion of standard melhods, and the additional storage
required for our tensor model 1s small compared to the n? storage required for
the Jacobian. The Key contribution of Lhis paper is showing how one may con-

struct a useful quadratic model that salisfies these criteria. Our tensor model




© A mem.

still does not always have a real root, and we will address this issue.

The remainder of the paper is organized as follows. In section 2, we discuss
briefly the specialization of our tensor method to one nonliner equation in one
unknown. Of course, when n=1, many of the disadvantages stated above for a
second order Taylor series model are irrelevant, and indced, various methods
for solving a single nonhinear equation are based on using quadratic modeis. The

material in section 2 is included only to motivate our muliti-variable method.

The heart of the paper. our lechniques lor forming and solving the tensor
model for systems of nonlinear equations, is contained in sections 3 and 4,
respectively. The full tensor algorithm is presented in section  and various
implementation considerations are discussed. In scction 6 we present test
results of our tensor method on the problems of Moré, Garbow, and Hillstrom
':98:]. and on modifications of these problems constructed so that F'(z4) 15
singular. We compare our tensor algorithm to an algerithm that uses the stan-
dard linear model {1 3) but is identical in virtually all other respects. We com-

ment briefly on extensions of our tensor methods in section 7.

Notice that we have denoted members of a sequence of n-vectors z by {z,|
where each z € R™, and components of a vector ve R™ by vji]c K. The conven-
tion of using non-numerical subscripts for replicatior.s and bracket notation {or
scalar components 1s continued throughout the paper In section 4, integer sub-

scripts are used to denote portions of vectors or matrices that are themselves
vectors or matrices; for example, the portions &,(’ K™ P and agc R? of the vector

d<R™. and the portions .},(, RnXn P) and .}2LR""P of the matrix J¢ R™™, are

defined in step 2 of Algornithm 4 1.




2. The tensor method for one equation in onc unknown

In this section, we dvscuss briefly the restriction of our tensor method to
L the case n=} The use of a quadratic model for solving one nonlinear equation
in one unknown i1s well known and « part of some software librarics; an early
reference 1s Muller ;19n6]. We make no attempt to compare the one variable

version of our tensor algorithm to similar algorithms for solving a single non-

linear equation  Rather, the material in this section 15 inciuded solely to
motivale some features of the tensor algorithm for systems of equations that

foliows

The quadratic model {1 d) restrictedton =1 1s
my{zx, +d) = f{z.) + f'(zc)d + Wt d? (21)
where all quantities now are scalars. We satd in section ° that we would not use
second derivatives Then an obvious way to select £, s to emulate the secant
method by asking the model {2 1) to interpolate the valuce of f (z) at the previ-
ous iterate r . This means

flx )= S(xe) + f(ze)s + Wtes*® (2 2a)

where we define
s T —zx, {2.2b)
the step from z, to x The second denivative approximation t. 15 determined
uniquely by (2 2)
The roots of (2 1) are found by solving one quadratic equation in one unk-
! nown Usually, {2 1) wili have either no real roots or lwo real roots If there are
two real roots, then a reasonable way to choose between then 1s to let z, be the

root that 1s closer to x, This 1s written in a numerically stable way as

! 2f (z,)

T, =z — —

e (2.3)

J(x) + sign{f (z)) VS (2 ) - 2t f (z.)




If {2.1) has no real roots ({f(£,))? < 2t. f(z.)). there are two obvious alter-

natives try the Newton step

Y =z - f(z) /7 £z (24)
or try setting z, Lo the critical point of (2.1),

TP Tz - f{z) /b (25)
where the absolute value of the quadratic model is smallest. The latter strategy
defirutely is advantagcous close to a root z, where f{zy) = 0 #f (z4) In this
case, the iterates produced by (2.2, 2 5) converge o z, with q-order {1+V5)/2
= 1.61, as this is just a variant of the secant method for minimizing or maximiz-
ing f{z) The step (22, 23) may or may not be defined in this case, if 1t is
defined 1t 1s also quite satisfactory as the iterates it produces wili converge to z,
with qorder {1 +V3)/2 ¥ 1 37 (Sec c.g. Traub |'984] for very similar proofs.)
On the other hand, we have alrcady staled that the iterates produced by (2.2,

2 4) are g-linearly convergenc to I, with constant converging to % 1n this case

When f'iz,) # 0. the quadratic modef {2 1, 2 2) will have real roots for z,
sufficiently close to z, In general. however, (2.1) may not have real roots, and

¥ or ™" consistently 1s the

aside from the above-mentioned case. neither x
better choice  In Frank | 1982], we implemented a method for solving one non-
iinear equation in one unknown based on (22 - 25) and a hinc search. We found
that when the quadratic model had no real rool, a good strategy for choosing
between the steps to z¥ and z ™" as the initial step in the line search was to
choose the longer step This 15 equivalent to choosing z{™" f and oniy if
imp{z{™") <% f{z:): This strategy always prefers " over z? sufficiently
close to a root x, where f (2,)=0, guaranteeing fast local convergence in this

casc

One case where this strategy 15 notl desirable 1s when the aigorithm cannot

locale a root of f(z) and must converge to a stationary point of f(z) In this

e a—a
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case the step to " 1s shorter bul considerably more desirable than the New-
ton step. The algorithm in Frank 1982) contains a simple strategy to recognize

this situation and uses the step to z[™" instead of the Newlon step in this case.

Several aspects of the algorithm for one nonlinear equation carry over to
systems of equations Thcre we again use the extra [reedom in the quadratic
model to interpolate function values at past iterates. The multi-variable qua-
dratic model again may have multiple real roots or no real roots. In the former
case we .gain hope to find the root closest to x;,  In the lalter case, we again use
either the step to the minimizer (in the {; norm) of the quadratic model or the
Newton step for our line search direction, choosing between the two steps by cri-

teria similar to those described above.

3. Forming the tensor model

We now show' how we select the tensor term 7, ¢ R™™*" in the model
Mplz +d) = Flz )+ Fz.)d + %7 . dd. {3.1)
QOur chotce of T, will cause the second order term 7T.dd n {3.1) to have a simple.
uselul. form
We have already stated that 7, will not contain actual second derivative
information Another way we can use the second order term in (3.1) 1s to ask
the modecl to interpolate additional values of the function F{z) or the Jacobian
F'(z) that have alrcady been computed by the algorithm. In our method, we will
select some set of p not necessarily consecutive past iterates z ,, -~ . _p, and
require the model {3.1) to interpolate the function values F'(z ) at these points.

That 1s. the model should satisfy

F(z ) = Flz) + Fiz)se + %Toses,, k=1, p (3.2a)

S  — e » e N WP oo e~ nees S e e
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where

Sg =T 4 —x.. k=1, - p . {3 2b)
First we describe how the past points z ,, - -~ .z , are sclected. Then we show
how we choose T, to satisfy {(3.2). Alternative ways to select 7, are mentioned

briefly \n section 7.

I'or the equations {3 2) Lo always be consistent, it is clear that the sel of
directions §s; | from z. to the selected past poinls z_, must be linearly indepen-
dent. In fact, our computational experience with other algorithms that interpo-
late information from past iterates has shown that the directions {s,} should be
strongly linear independent, in the sense that each direction s, should make an
angle of at least O degrees with the linear subspacc spanned by the other direc-
tions, values of O between 20 and 45 degrees have proven appropriate in prac-
tice At each iteration, therefore, we choose the past points fxr ,{ that we
include in {3 2) by the following procedure. We consider the past iterates in
order starting with the most recenl We always select the most recent iterate,
and then sclect each preceding past iterate if the step from it to z, makes an
angle of at least ® degreces with the subspace spanned by the steps to the
alrcady selected more recent iterales. This procedure 1s implemented easily

using a modified Gram-Schmidt algorithm.

We also set an upper bound p on the number of past function values inter-
polated by the model al each iteralion. Since Lhe sel §s{ must be linearly
independent, clearly p<n, but we enforce a much smaller bound,

p<vVn (33)
This bound also was motivated by our computational experience with other algo-
rithms that interpolate information from past iterates; we found that using

more than about Vn interpolalion conditions rarely was beneficial {sec eg.

Stordahl {:980)) The bound (3.3) also s crucial to the efliciency 1n storage and
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arithmetic operations of our lensor method  For example, since we also only
conslder a maxunum of Vnu past iterates 1n the above mentioned Gram-Schmidt

algorithm, it requires about n? additions and mulliplications
Now we discuss how we choose T, to satisfy {3 2). Itis convenicent to rewrite
(3.2) as

T.seSp, =2, k=1, - p (3.4a)

where

Zp €K™, 2 =2 1z ) = F{ze) = F(zc)se ). (3.4b)

3 unknowns T, i.j.k],

This 1s a set of np <n'? linear ecguations in the n
i<i.j.k<n. (Actually there are n¥+n?)/ 2 unknowns since each horizontal face
of 7. must be symmelric, this symmetry i1s provided aulomatically by the follow-
ing derivation.) Since (3.4) 1s underdetermined, we follow the standard and suc-

cessful practice in secant methods for nonlinear equations and optimization {see

e.g Dennis and Schnabel { 1979]) and choose the 7, that satisfies

minimize |7, lip (3.5)

Tc (¥ xnxn

subject to T.seSe =2, . k=i, - p

where /1T, Vg, the Frobenius norm of T;, is defined by

, I "\ 7\‘ n‘ 1 :
b= 2 Y L (Teing k]

i) j=1 k=1
The soiution to {3.5) 1s given by Theorem 3.2 Iirst we define a rank one Lensor

Definition 3.1. let u, v, w¢ K™ The tensor 7¢ K™ [or which Tiijk]| =

wir!®vij]®wlk]. '<i,7.k<n s called a rank onc Lensor and denoted 7 = uvw.

Note that the i** horizontal face of the rank one tensor uvw 1s the rank one

matrix u[iJ(vwT). Theorem 3 2 shows that the solutton lo (3.5) is the sum of p

rank one tensors whose horizontal faces are symmetric.
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Theoremn 3.2. [et psn, let s, CK™, k=1, - p with {5:{ linearly independent,
and let 2z,€R™, k=1, --,p. Define MERP* by M{i.j] = (ss,)% 1<ijsp.
Z<R™P by columnk ol 7 =z, k=1, - - p. Then M 1s positive definite, and the
; ' solution to (3.9) is
i T. = }2 Qy Sk S (3.6)

where a; is the k*» column of A€ R™™P, A defined by A =2 * M "

Proof : Problem {3.9) is equivalent to solving independently the n separate prob-

lems over the n horizontal faces H, of T,

nimze N
n}}‘rzlﬁrggc e (3.7)
subject to sTH.sg = 201}, k=1, - p.

because the constraints and the objective function of (3.5) may be decomposed

into these o separate constraints and objective functions cach involving one of

H,'s. and the optimal value of any one H; clearly does not aflect the optimal

value of any other }; Problem (3 7) simply is an underdetermined system of p

' linear equations in n® unknowns To express it in standard form, let
Ry R (3 8)
he = HO) 2L - i) 20 - H2n) - Hindl - Hinml,
SerRP™® rowk of S = sl se. sel21s. L sein]® s,

and z, = row i of Z, that s,

2, 0P, 2, k] =2z ji] 1<i<n, i<k<p.
Then (3 7) 1s equivalent to
miminize ||kl subjectto S hy = Z
h‘gRﬁe {17 tiz ) hy 1 (3.9)
and & has tull row rank because {s,} are lincarly independent. Therefore the

solution to (3.9) is

hy = ST (88T) ' %,
i It is straightforward to verify that 57 = M, which also shows that ¥ is positive

R TS T ¢ SUN Y

TS e e — e e e~ e =t S
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definite. Since by definitionrowi of A = M '*(row i of 7),

h‘ = ,\‘T a;, (310)
where @, = row 7 of 4, that 1s,

&GCRP, @ k] =aqli] I1<i<n, i<k<p
Now note that if the transformation {3 8) that transforms H,€ R**" to h,c " is
apphied lo sgsJ€R™™, the result 1s row k of S. Therefore. since (3.10) is

equivalent to

h":flﬂxik‘]‘rowkofs‘-i:ﬂkLil‘rowkofS. (3.17)
k=1 k=1
transforming (3.1 1) back to the nxn matrix H, yields
H, = i a i) s s (3.12)
k=1
Finally, combining the n horizontal faces H; given by (3.12) to reform 7, gives

(3.6).

Substituting (3.8) into the tensor model {3.1) gives

Mr(ze+d) = F(z) + F(z)d + % 53 (d75,)° (3.13)
The simple form of the second order term in (313) is the Key to being able to
efficiently form. store. and solve the tensor model. The additional storage
required by (3.13) is 2p n-vectors, for {a,{ and {s.{. In addition, the 2p n-
vectors {1z _,{ and !F{z )} must be stored Thus t.ae total cxtra storage
required for our tensor modei 1s 4n'? since p<Vn . The reader can verify that
the entire process described above for forming 7. requires n% + O(np?) mult-
plications and additions. The leading term comes from calculating the p
matrix-vector products F'(z;)sg, k=1, - - ,p, the cost of solving A = Z* M\ is
O{np?). Since p<Vn . the leading term in the cost of forming the tensor model
is at most n%° multiplications and additions per iteration. small compared to

the at least n%/ 3 multiplications and additions per iteration required by stan-
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dard methods that use analytic derivatives. In the next section, we will see that

the extra cost to solve the tensor model also is at most O{n?3).

4. Solving the tensor model

In this section we give an efficient algorithm for finding a root of the tensor

meodel derived in section 3, that is,
find d<R™ such that (£ 1)

Mp{z +d) = F(z;) + F'(z)d + %kfl ae (d7s,)2 = 0.
We show that the solution of (4.1) can be reduced, 1n O(n%p) operations, to the
solution of a system of q quadratic equations in p unknowns, plus the solution of
a system of n—g linear equations 1n n—p unknowns. lere g =p, with g =p
whenever F'(z.) is nonsingular. In addition, if F''(z;) is singular but has rank at
least n—p. we show that g still usually equals p and the aforementioned system
of linear equations still 1s well conditioned. We also show that our algorithm

efTiciently solves the generalization of (4.1),

minimuze  [\Mp(x, +d ). (4.2)
dcR™ :
That 1s, our algorithm will find a mintmizer of the tensor model when the model

has no real root.
Let us define S« K"™P by columnk of & = s;.

The basic idea of the algorithm is that since (4.1) is linear on the n—p
dimensional subspace {d | S7d = 0{, (4.1) really only shouid be quadratic in p
variables and linear in the other n—p. This is accomplished 1n steps 1 and 2 of

Algorithm 4.1 by making a linear transformation of the variable space; an

orthogonal transformation 1s used mainly because it already will be available
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from the Gram-Schimidt process used to sclect {sy]. Then a hnear transforma-
tion of the equations, steps 3 and 4 of Algorithm 4.1, is used to ehmnate the
n—p transformed linear variables from p of the equations. The result usually 1s
a system of p quadratic equations in p unknowns, (4.5b), that is solved in step 5
of Algorithm 4.1, and a system of n—p equations (4.ba) that are linear in the
remalning n—p unknowns and can be used to compute these unknowns once the
system of quadratics is solved. The exceptional case g > p arises when this sys-
tem of linear equations would be singular In this case, the number of linear
equations is decrcased by this rank deficiency and the number of quadratic
equations is increased correspondingly. but the number of variables in each sys-
tem 1s unaflfected. Of course in practice, the mathematical nolion of rank
deficiency 1s replaced by the numerical notion of adequately small condition
number

Algorithm 4 1 gives the method we use for solving (4.2). Theorem 4.2
verifies that it solves this problem, and gives several other important properttes
of the algorithm', After the proof of Theorem 4.2 we discuss the efficiency and
numerical stability of Algorithm 4.1. We also mention several alternative

methods for solving problem {4 2)

We introduce the notation that given ve¢ K™, jv {2 denotes the vector we R™
for which w{i] = vi]% i=i,- -~ .m_ Ths allows us to denote the second order

term of our tensor model below by % 4 {STd {2

Algorithm 4.1. let p<n, Fe R™ JeR™™ A, SCR™P S having full column rank.

Comment : Steps 1-2 transform the system of n equations in n unknowns

F+Jd+$BAISTdZ=0 (4.3)

to the system of n equations in the n unknowns :ilc K™ P and ;LJ RP
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F+Jydy + Jodp + % A §S2d002 = 0. (4.4)

1. Find an orthogonal @€ R™*™ such that QTS = 5 where

P
SeR™P = n n-p
P

and 5‘2 hag the triangular shape shown.

2 Caiculate J = J* & and let J,e R™{" P) and jzah’“"” denote the first n—p and
last p columns of J. respectively.
Also define d = Q7d. and let &,(R" P and &Q& KP denote the first n —p and last

p components of d, respectively.

Comment : Steps 3-4 transform the system of cquations (4.4) to

n-p p D
- = —/ 1= 1 .7T.

n—q + 1 J, Ja + BlA 1S def® = O,

L =1 I I i

that is, to the system of n—g equations in 7. unknowns

- e ~- .
Fy+ Jud, + Jody + B A {Sedu? =0 (4.5a)

and the system of ¢ equations in p unknowns

- ~ - ~ L

Fa+ Jadp + % Az 1S dei® = 0. (4.5b)
3 Find an orthogonal @ /™™ and a permutation matrix PcK™ P p) guch

that

i e = 1 { [ mo

where g=>=p and ]. 1s upper triangular with a non-zero diagonal. Define




1?7
a, = })Tl‘il. alk R™P
4. Calculate
P
QJz =|Je n-q
il

Similarly calculate A= C:JA. and let ZKR”"""Q and /32( KP*9 denote the first
n-g and the last g rows of A, respectively; also calculate F = @F, and let
;',le" 9 and F‘z(h’q denote the first n-g and last 9 components of F, respec-
tively

5 {Solve (4 5b) in the least squares sense.) Solve

- NS
minimize [[Fp + Jadp + % Ap 1S2def®/la. (4.6)
de RP

6 (Backsolve (4 .5a) for &,) Find a d, that solves
Lo -~ ~ - TA
Jidy = ~F) - A {Spdef? (4.7)

7. Calculate &, = P&,. d = Q&

Theorem 4.2 shows that Algorithm 4.1 finds a root or munimizer of the tensor
model, and gives some properties of some malrices used tn Algorithm 4 1 whose
relation to the numerical stability of the algorithm 1s discussed later in this sec-
tion Recall that for any Wc¢ R**™ the rank of ¥ 1s the dimension of the linear

subspace spanned by the rows or columns of ¥, and the nullity of ¥, the dimen-

sion of the linear subspace { y CK™ | Wy = 0}, 1s (m — rank({W)).
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Theorem 4.2. Algorithm 4.\ calculates a solution to

mx;xgmueup +Jd + A (STdy?), (4.8)

J
Furthermore, define Jg¢ R{M*P*n = ey Then
S

g =p + {n - rank(Js)) (4.9)
It rank(Js) =n. then g=p and

K{J,) < K(Js), (4.10)
where K(#) denotes the I, condition number of W. Also

rank{J3) = p - (rank(Js) — rank{J)). (411)

Proof : Substituting Q@7d for d 1n (4.3) and using the definitions in steps ' and 2
transforms (4.3) to (44). and clearly the transformation does not affect the

smallest I norm value of the system of equations. Next, 1t 1s straightforward to

verify that premultiplying (4.4) by Q. substituting PP7d, for d, in (4.4), and using
the defimitions 1n steps 3 and 4 yields (4.5). The minimum {, norm values of

these two systems of equations are equivalent because premuitiplying a vector
by an orthogonal matrix doesn't aller its I, norm. Finally, since j, has full row

rank, given any rlz a E, may be found lhat solves (4.5a). Therefore, the
mimmum value of {4 6) 1s the minimum l; norm value of (4 5), and by the above,
of the original problem (4.8). and the I, minimizer of (4 %) is found by {4.6-4.7).
Step 7 reverses the transformations in variables made in steps 2 and 3 to obtain

the minimizer of (4.6) from the minimuzer of (4 »).
Now let @€ #™*I" P) and @uc K™*P denole the first n—p and last p columns

T
of the ¢ used in step ! of Algorithm 4.1. Then since STQ = § | we have S7Q, = 0

-7 - -
and S7@, = S;. Similarly from step 2 of Algorithm 4.1, J@, = /1. V@2 = J. Thus
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jl jg
Js@ .
0 .
Sz
T

i and since @ and S; are nonsingular,
i ' nullity(Js) = nulhity(Js @) = nullity(J,). (4.12)

From step 3. nullity(J,) = g —p. and by definition, nuility(Js) = n — rank(Js). so
{4.12) implies (4.9). Next, if we use the notation thal for v¢ R™, v, denotes the
first n—p compenents of v and v, the last p components, and let ||-j; denote the
{» vector norm, then

max {JsQuiji/ v

veRD
Y = = — >
k(Js) = KiJs @) min {|JsQw! / jwj
wWERM

1 max Js@ui/ vy max :ijrulli /oy
Lg LA N = K(J\) = K{J))
min iJs@Quw !l / ‘w, A T U= Ay
we RN, w,=0 hes ‘ min  Jywyi/ wy;
~ w,e R™ P
i with the last equality a direct consequence of step 3 of Algorithm 4.1. Also, since
NP [P/ V2
RJ @ P o
U js

where /¢ R™*" is the permutation malrix with /? as the upper n—pxn ~p subma-

trix and the identity otherwise, and since .7, has full row rank, we have

: nullity(/) = nulllty(éJQf’) = nulhty(J,) + nulhty(ja)‘ (4.13)
f Substituting again nulhty(i,) =g-p as well as the definitions nullity(J) =
2 n - rank(J) and nullity( J4) = p - rank(J3) into (4.13) yields (4.11)

) A
‘ The first virtue of Algorithm 4.1 1s its efficiency. l.et us examine the opera-
-

tion counts for multiplications (and divisions); the counts for additions and sub-

tractions are very similar. While Algorithm 4 1 is valid for any p < n, here we
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' reinstate the bound p < Vn from section 3. Then the dominant cost in Algo-
‘ rthi 4 ! is the QR factorization of J, which requires about 2n3/3 - n?p ~ 0(n?)

muitiplications. The next largest cost is the 2n%p + {n?) multiphications for the
matrix multiplication J* @ in step 2 The reader can venfy that all other por-
tions of steps -4 and 6-7 require at most O{n%) multiplications The remaining
cost 1s the solutien of the nonlinecar least squares provlem in step b While {4 8)
musl be solved by an ilerative algorithm, the point s that the total cost of solv-
ing this problem is neghgible In the usual case g =p, cach iteration of the non-
linear least squares algcrithm requres 0{p®) multiphcations, and it is reason-
able to expect at most a small multiple of p iterations to suffice (We use the
bound 8p n our implementation ) Thus solving {4 6) usually can be expected to
cost Op?) < 0{n?) muilipucations 1f g>p, this cost could rise to 0{gpd) <
{n%%  However tn our practical experience. ¢ =p almost all the time and g is
hardly greater than p otherwise, some summary stalistics are given ol the end

of Scction 6 Thus tl 1s reasonable to expect lhat the nonhnear least squares

So the total cost of Algorithm 4 1 1s about 2n3/3 + n®p multiplications, at

most n?? multiplications more than the QR factorization of an nxn matrix For

_ ) |
problem 1n Algorithm 4  requires at most O{n*) multiphcations ?
H

small n, these numbers are inconsequential, for moderately large n, the 2n%/3
dominates and i1s the same cost as a standard method for nonhinear equations
would have if it used the QR faclorization. While some standard algorithms for

nonlinear equations do use a QR factorization (sce e.g scction 8.5 of Denrus and

Sehnabel | 1983]), others use a PLU factorizalion and require only n/ 3 muluiph-
cations per 1iteration 1f F (z.) 1s nonsingular. Algorithm 4.1 also could be

i modified to use n3/3 - O{n®p) multiplications per titeration when J 1S nonsingu-

lar by using a PLU factonzation of j, at step 3 If the resultant pxp system of

quadratics (4 bb) had a solution, no further modification would be necessary. If
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not, the mimimum norm solulion to this new system of quadratics no longer
woutd corrcspond to the solution of {4.8), and steps -6 would have to be com-
bined into the nonlinear least squares solution of Lthe full system (4 5). This stil!
could be accomplished 1n O(n?p) operations when J 1s nonsingular by using an
algerithm that takes advantage of the special structure of this problem. We
prefer the more expensive QR-based algorithm, however. because it 1s simpler

and more stable numerically, especially when the tensor model has no real root

The other virtue of Algorithm 4 1 1s its numerical stabihty, even when the
Jacobian J 1s singular or il-conditioned. This s reflected 1n the conditiorung of
the system of linear equations, {4 7), that 1s solved by Algorithm 4 1 hguations
{4 9) and (4.10) of Theorem 4.2 show thai if the {(n+p)xn malrix Jg formed by
adding the p rows of §7 beneath / has safely linearly independent columns,
then thus Linear system will be square and at least as well conditioned as Jg. In
practice. this means it s likely that the system of guadratics will be pxp and
the linear system will be square and well conditioned whenever J has at most p
zero or small mrfgular values. Notice that {4.10) also implies that the condition-
ing of the linear system solved by the Lensor algorithm always will be as good or

better than the conditioning of the linear system solved by Newton's method.

Of course, if J 1s singular, this singularily does not magically disappear in

Algorithm 4 1 kquation {4 1i) shows that if / 1s rank dcficient but Jg has full

rank {the Likely situation when rank{J)} = n-p), then 53 will have the same rank

deficiency as J/ However the whole point of the lensor algorithm when J s

singular 1s that the singular submatrix .73 ts used in the system of quadratic

equations (4.5b), which also contain a portion of Lthe second order information in

the tensor model. Tlus system is not necessarily ill-conditioned even if .73 is; for
example. one quadratic cquation in one unknown with no linear term s not ill-

conditioned. Furthermore, this system of quadratics has maximal dimension
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Vn, and in our practical experience even this small upper bound is not
appreacned as n becomes large. Thus when the Jacobian is singular. the effect
of the tensor aigorithm usually 15 to 1solate this rank deficiency as the hinear
term 1n a smal! system of quadratic equations that conlains useful second order

information and may be solved accuralely without great cost.

If the tensor algorithm converges to a root x4 where £ {z,) is singular, the

Jacobians of the nonlinear least squares problems {4 6) also will become nearly

singular because .;3 will be nearly singular and the solution &2 will be small.
However the cost of solving Lthese small nearly singular nonlinear least squares
problems sull will be ms.lgmﬁcant So on nonlinear equations problems where
F'{z ) 1s singular, 1t appcars the effect of the tensor algorithm is to transter the
slow convergence of Newton’s method to a series of small quadratic subproblems
where slow convergence does not hurt the overall efficiency of the algorithm.
More importantly. no additional function evalualions are used in solving lhese

small subproblems

5

P

A minor deficiency of Algord 2 11s that it relies upon the QRP decompo-

__/sx_t-kefrtﬁ‘dl;fé‘r;nne rank when J,; does not have full rank {g>p). a singular value

decomposition would be preferable tn this case  We have already mentioned that
this case is very unusual in practice Note that when g >p, Algorithm 4.1 easily

1s modified to find the smallest d, in the {; norm, that minimizes the {3 norm of

the tensor model; all thal is required is Lo find the smallest &. that solves the

system of hnear equations {(4.7) that 1s underdetermined 1n this case

It 1s interesting to consider when our tensor model has a compler root.
Fven though this information is not of practical value Lo our tensor algorithm, it
turns out to give a succinct explanation of how the Jacobian J, past directions

S, and second order information A used in Algorithm 4 1 are interrelated

Clearly a necessary condition for (4 3) to have any root is that / be in the linear
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subspace spanned by the columns of / and A. it 1s casy to show by the tech-
niques of proot of Theorem 4.2 that this is cquivalent to I} being in the lincar

subspace spanned by the columns of .73 and Zg A suffcient condition for (4.3)
to have a complex root, a direct consequence of a result of Garcia and L {1980},

1s given in tTheorem 4.3

Theorem 4.3. let all the notation be the same as in Algorithm 4.1, and let

dys€ Jintpixinip)

J A
st Jo
If J45 1s nonsingular, (4.3) has 2”7 (not necessarily distinct) roots in n dimen-

Jas =

sional complex space

Proofl : 'rom the proof of Theorem 4 2, it is clear thal (4 3) has a complex root if

and only If (4.5b) has a complex root. It follows easily from Theorem 3.4 of Gar-

- LT
cia and L1 [ 1980] that (4 5b) has a complex root if Az and S; are nonsingular. We

show that this is imphied by J¢ nonsingular

Let @, RMm*PI(n+p) be the orthogonal matrix with ¢ as the upper left nxn

submatrix and the identity eisewhere, and let @, c RM*PX*P) he the

corresponding augmentation of é) Then s straightforward to verify from Algo-

rithm 4 | that

~ ~

J| Jz Al
& Jas @y =} 0 '73 22 = '}AS
[4) 1
Sy

If J4s 18 nonsingular then '}AS 15 nonsingular which implies that .7, is square (i e.

AT - ~
g =p) and nonsingular and S; 1s nonsingular Since J,5 and J, are nonsingular,
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R .. 7
the bottom right 2px2p submatrix of J4¢ composed of Jj, Ay, and Sz must be

- .T
nonsingular, which implies that Az s nonsingular because 5, ts nonsingular

The only case in which we can guarantee that our tensor model has a real
root 1s when the tensor algorithm s sufficiently close to a root z, where £ '(z,)
is nonsingular llere one can show that the second order term in the tensor

model becomes small enough that the tensor model must have a real root.

Finally, we mention other approaches for minimizing the {3 norm of the ten-
sor model (4.1). In Frank [1982]. we discuss a method that first tries to find a
root of Lhe tensor model and if 1t 15 unsuccessful finds a minimzer. 1t is related
to the version of Algorithm 4 1 using the PLU faclorization that we discussed
above Another possibility i1s to use Newton's method, with a {ine search on the
{; norm of the tensor model, to solve (4.2) If the Jacobian J is nonsingular, then
by using the Sherman-Morrison-Woodbury formiula each iteration would cost only
O{p?) operations after a start-up cost of the factorization of J plus O{(n’p). We

prefer Algorithm 4 | because of its greater robustness and numerical stability

6. Implementation of the tensor method

In the previous two sections we presented Lhe main new features of our non-
linear equations method, namely, how we form our quadratic ("tensor”} model of
the nonlincar function, and how we calculate a root or minimizer of this model
efficienlly and stably Algorithm 5.1 outlines the complete algorithm we have
implemented to test these ideas. The remainder of this section clarifies various
aspects of this algorithm and its computer implementation. Qur test results are

presented in section 8
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Algorithm 5.1. An Iteration of the Tensor Method

given x,, £{x.)

"

1. Calculate F''(z.) and decide whether to stop. I not .

2. Select the past points to use i1n the tensor model from among the vn most
recent past points.

3. Calculate the second order term of the tensor model, 7;, so thal the tensor
model interpolates F(z) at all the points sclected in step 2.

4 Find the root of the tensor model |, or its mintmizer (in the {; norm) if 1t has

no real root.

v

Select z, = 2, — A d., where d; either 1s the step calculated in step 4 or the
Newton step, using a line scarch to choose A

6. Setz, « z,. F(z;)+ F{z,). gotostep 1.

Sceveral standard sections of our implementation of Algorithm 5.1 use algo-
rithms from Appendix ! of Denms and Schnabel | i983) The Jacobian is approxi-
mated by thetr finite difference algorithm Ab 4.0 The stopping criteria are their
algorithm A7.2.3; the algorithm stops if the relative size of {z, — z.) is less than

10 ? or the relative size of (J/T#) s less than 10°°

Step 2 was described completely in section 3; we set the angle ® mentioned
there to 45 degrees. Step 3 calculates the smallest T, in the Frobenius norm,
tor which the tensor model salisfies the interpolation conditions, using the pro-
cedure of Theorem 32 Before performing these calculations, the steps to the
past points ¢} all are normalized Lo have {; norm one This assures that the
incar systems A = Z*M ! solved in step 3 are well conditioned. The normaliza-
tion does not alter the tensor algorithm in exact arithmetic; each a, simply is

multiplied by |isg ¥ and 7, 1s unchanged.
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Step 4 of Algorithm b 1, the solulion of the lensor model, 1s accornplished
by Algorithm 4.1. The QR decomposition of S in step 1 of Algorithm 4 1 1s avail-

able from the modified Gram-Schrmidt algorithm used to select Lhe past points.

The QRP decomposition of j, 1s the standard QR with column pivoting (see e.g
Dongarra et al [1979]). a column s considered zero if its {; norm is less than
10 Vmuchineps iF (z.)i;, The subproblem (4.6), finding the mirumum !, norm
value of a system of g quadratic equations in p unknowns, is solved using a stan-
dard algorithm and analylic derivatives since they are easily available. The algo-
rithm terminates when a root or minimizer of the system of equations is found,
or after 8p iterations When p=g =1 the problem is solved analytically. The one
difficuity with solving this system of quadratics is that 1t 1s likely to have multi-
ple roots or minimizers. Among these. it seems sensible to try to find the root
closest to the Newton step  We attempt this by making the starting guess for
the small system of quadratics the component of the Newton step in this sub-

space,

or the linear least squares solution to this system if g>p When Jy1sn't well con-

ditioned, a different procedure s used

Step 5 of Algorithm 5 @ usually consists of a hine search in the direction to
the root or minimizer of the tensor model obtained in step 4 We use the hine
search algorithm A6 3 | from Dennis and Schnabel, requiring suflicient decrease
on  F{z), In some cases. aline search in the Newton direction is used instead
{The Newton direction s obtained in (Xn?) operations as a byproduct of the algo-
rithin for solving the tensor model ) These cases are when Algorithm 4.1 finds a
rool of the tensor model that isn’t a descent direction for ||[F(z)li;, a very rare

occurrence in practice but not precluded 1n theory; when Algorithm 4.1 fails to

find a root or minimizer of the tensor mode!l; and sometimes when Algorithm 4.1




L B LR

T

LR I e

27

finds @ minimizer of the tensor model that 1s not a rool The complete strategy
for determining the search direction is given in Algorithm 5.2 below. The cri-
terion for choosing between the Newton direction and a minimizer of the tensor

model s an extension of our strategy for one dimensional problems discussed in

section 2.

Algorithm 5.2. Step Selection, Step b of Algorithm 5.1

Let J, = approximation ta /'(zr,.).
dy = root or mininuzer of the tensor model,
dy = Newton step —J. 'F(z) if Jo 1s sufficiently well conditioned,

levenberg-Marquardt step —(JJJ. + ¢/) ' JIF{(z.) otherwise, where ¢

= vn * machineps 'J]J. 1, (see Denmis and Schnabel | 1983])

IF' {no root or nunimizer of the tensor model was found) OR ((minimizer of ten-
sor mode! that 1s not a root was found) AND ((iMr{z. + dr)ile > % (¥ {z)iie)
THEN
r, ¢« 7, + Aody, A« (0.1] selected by line search
LSk
I, I, +dy
IF z, 15 not acceptabie THEN
1F d7 15 a sufficient descent direction
THEN 2, ¢z, + A dp, A, ¢ {0.,1] seleeted by tine search

FISE z,¢z, + Acdy, Ac ¢ (0.1] selected by line search
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6. Test Resuits

We tested our tensor algorithm on a vartety of nonsingular and singular
problems. We compared il to an algorithm that is tdenlical excepl that the
second order term 7, always Is zero That 15, the comparison algorithm is finite
difference Newton's method with a line search, except that the Newlon step
-J.'F(z.) 1s modified to the approximation to the pseudo-inverse step
(Sl + el) VITF(z.) given i Algorithm 52 when J. = £ {z,) is singular or
sufficiently tll-conditioned In this section we summarize our test results. Prob-

lem by problem data i1s provided in the appendix.

All our computation was performed on the DEC VAX 117780 of the University

of Colorado Department of Computer Science, using double precision arithmetic.

First we tested our algorithms on the set of nonlinear equations problems in
Voré, Garbow, and Hillstrom [ :98:] All these problems have F''(z,) nonsingular,
with the exception of Powell's Singular Function where n=4 and
rank{F (za)) = 2. Our results are given 1n Table A1 1n the appendix, and sum-

marized in Tables 6 | and 6.2 below

Several comments aboul the test set are necessary. The 100z case is
cxcluded for three problems, Brown Almost linear, Rosenbrock, and Wood,
because the objective function overflowed at the starting point or during the
first iteration (The largest real number on the VAX is about 10%) We ran many
of the variable dimension problems for n = 10, 20, 30, 40, 50, and inciude here
the n = 30 resuits, which are representative The discrete boundary problem is
very easy tn all cases, we include n = 10 because it is slightly harder than n =
30 The Chebyquad problems also had overflow problems when the dimension
and starting point were large, so we include the casesn =7 and 9 from zgand n
= 4 from :0xy which secmed representative. Our Variable Dimension problem is

a slight alteration of the problem in Moré, Garbow, and Hillstrom, which has n +2

. »n
O YR
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b

equations 1n n unknowns, we simply eliminate their n —'* and n* equations.

{The first n equations in the standard problem are lincar.) Our Wood function 1s

the gradient of the standard Wood funclion for minumization.

The three columns in Tables 6.1 - 6 5 labelled "Average ratio, Tensor method
/ Standard method,” contain the uverages of the ratios for each problem of the ;

' number of iterations, Jacobian evaluations, and function evaluations {excluding

. those used for finite difference Jacobians), respectively, used by the tensor

method versus the standard method. For example, If the test set contained two

problems for which the tensor method required 3 and 5 i1terations, respectively,

and the standard method 3 and .0 iterations. respectively, then the average ]

1teration ratio would be %(9—+ %—) = 0.75. Thus each problem is given equal

weight  Since some of the problems are very easy, a second line in each table
contains the same statisties using only those problems where the siower method
required at least 10 iterations. The three columns labelled “Tensor better --
Standard better -- Tie” are based on a compositc consideration of iterations and
function evaluations, there were no problems where one method used more
function evaluations but fewer ilerations. For both algorithms, the number of

Jacobian evaluations per problem always is one more than the number of itera-

tions

The most striking aspect of the test results on nonsingular problems is that
the tensor method virtually never 1s less efficient than the standard method,
and almost always is more efficient In fact, on problems requiring ten or more
iterations of the standard method. it is always more cflicient. The gains In

efficiency are considerable’ an average of 21-23% improvement (depending on

P
3

which measure 1s used) if all Lest problems, including some very easy problems

4,
? where no gains are iikely, are considered. and an average of 36-39% improve-
¥
¥ ment on the harder problems This combination of consistency with reasonable
¢
¢

St




Table 6.1 -- Summary for Problems with £ (z,) Nonsmgular

Problem I\umbor oﬂ Average Raltio, neo tandar ie
Set 'Probloms, ensor Method / Standard Methoc‘ etter' Better ; |

! .

! herauonq Jacobian ~ Function ! (

! i ‘vva]uatnons evaluatlons ' ‘

i ! ' , |
All problems 28, 0770 0781 - 0793 g 21 | i g
Harder problems only * 4 i 0812 ' 0636 ¢+ 085 ' 14 ' 0 190
Additional problems solved by standard method only : 2

by tensor method only i

Table 6 2 -- Summary for Powcll's Singular Function
Stopping Tolerance 10 2 3 . 044 04B9 | 0510 a0 .0
Stopping Tolerance 10 % 3 0 0343 1 038y 0403 3 0 ‘0
Table 6.3 -- Summuary for First Singular Test Set with Rank (£ (z4)) = n—1
All Problems |17 4 0b7 . 0609 . 0603 I I o J 2
Harder P’roblems Only * 9 i 0392 ' 0429 | 0434 0 9 i 0 0
Table 6.4 -- Summary for Singular Test Set with Rank (£ (zs)) = n~2

All Problems ‘3 0631, 0664 ' 0729 ! 11 . =2 |0
Harder Problems Only * 700499 . 053 . 052 W 7 .« 0 10
Additional problems solved by standard method only

by tensor method only b

Table 6 9 -- Summary for Second Singular Test Sct with Rank (/' {z,)) = n-1

All Problems .16 ! 0801 ' 0806 , 089 i1 [ 2 I3
Harder Problems Only * ;v 0w 0 o7t b oy f 0 1 Q0

Additional problems solved by standard method only : &
by tensor method only * 5

* Problems where slower method required at least 10 iterations
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improvement in efficiency indicates that tensor methods may be preferable to

standard methods for solving nonsingular systems of nonlinear equations.

Three nonsingular problems were solved by one method and not the other.
(We discount the Watson [unction because the standard method never really
found roots and the two methods always went to different regions.) The standard
method solved the 0zy Biggs Exp8 problem in 119 iterations while the tensor
method didn't solve il in 150, the tensor melhod solved the Chebyquad n =9
problem in 33 1terations while the standard method didn't solve 1t in 150; the
standard method solved the 10xy Wood problem in 60 iterations while the tensor
method didn't solve it in 150 This last problem illustrates an occasional
difficulty when testing on pathological functions : the tensor method made
belter progress than the standard method during the first twelve iterations, but
reached a point from which neither the tensor method nor the standard method
could make reasonable progress. Overall, we noticed no large difference in the
success rates of the standard and tensor methods, although the tensor method

did have appreciably more successes on two of the three singular test sets.

Table 6.1 also excludes four problems (Box 3D from 10z and 100z and
Watson from zy and 100z,) where the two methods converged to different solu-
tions. Th: tensor method required fewer ilerations and function evaluations
than the standard method in two of these cascs, and the same number in the

other two.

On Powell's Singular Function, Table 6.2 shows that the tensor method was
49-567 less expensive, on the average, than the standard method. The stopping
tolerance we use, that the relative size of F'(z)TF(z) must be less than 1079, is
a fairly loose stopping criterion that we believe is typical of tolerances used in
practice. Table 6.2 shows that if this stopping tolerance is tightened to 10°®

(about the best one can achieve on a VAX using finite difference Jacobians), the
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average cost of the tensor method oh Powell's Singular Function is 60-66% less
than the corresponding cost of the standard method Presumably this 1s a
reflection of faster local convergence by the tensor micthod on singular prob-
lems. an issue we comment upon later. All our subsequent tests on singular

problems use the looser stopping tolerance, !0 ®; the improvements by the len-

sor method over the standard method generally would be more dramatic with a

tighter tolerance.

The only other singufar noniinear equations test problems in the literature
that we are aware of are the small family proposed by Griewank | 1980a]. These
four problems all have n=3, either a one or two dimensional nullspace for
F{z,). and either a first or second order singularity. Our results on these prob-
lems are given in Table A2 in the appendix, bul they don't appear very meaning-
{ful, because the standard method failed on 6 of the 12 runs and once converged
to a different root than the tensor method. The tensor method was successful in

all cases and always was more efficient than the standard metlhod.

We crealed élngulur test problems by modifying the nonsingular test prob-
lems of Moré, Garbow, and Hillstrom in two different ways. The first is Lo create
problems of the form

Rz) = F(z) - F{z,) A(ATA) AT (z~z,) (6.1)
where F{z) 13 the standard nonsingular test function, z, is its root, and A€ #™**

has full column rank with i<k<n. Clearly f(z,) = 0 and
Fl(za) = Fizy) ] — A(ATA) 'AT)

has rank n~k. A disadvantage of this problem class is that )E‘(z) may have roots

that are not roots of f'(z) There is hikely to be a manifold of singular Jacobians

of ﬁ(z) in a neighborhood of z,. but this 1s nol guaranteed. A manifold of singu-

larities 13 considered desirable because it makes the problems harder and

b -
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because we believe it is reflective of most practical singular problems.

We used {6 1) to create two sets of singular problems, with lj"(z) having
rank n—1 and n -2 respectively, by using
ACR™ AT = (10, 1)
and

P SN i
A(’R"xz AT -

-ty -1

respectively We tested our method on the singular versions of all the nonsingu-
lar problems except Watson's function, which we excluded because it was quite
expensive to run and the two methods never converged to the same root. Qur
results are given in Tables A3 and A4 in the appendia and summarized 1n Tables

63and 6.4

The improvement by the tensor method over the standard method on the
problems with rank{F {z,)) = n~! 1s substantial an average of 40-43% improve-
ment on all problems and 57-61% on Lhe harder probicms We speculate this is
due in part to theAtensor method achieving superlinear convergence 1n this case,
and comment further on this at the end of this section In 9 cases the two
methods converged Lo different roots, in 6 more cases they converged to the
same root but not the singular root x,. These problems are excluded from the

summary statistics in Table 6 3; they point out a deficiency of the test set

On the test set with rank(# (z,)) = n-2, the improvement by the tensor
method over the standard method was 27-37% on all problems and 46-50% on the
harder problems These are still substantial gains but not as large as when
rank{¥ (z,)) = n~1 We speculate in section 7 that our tensor method is not
necessarily superlinearly convergent in this case, and mention some

modifications that might make it superlinearly convergent when the rank of

F'{z,)is less than n—1 The tensor method also solved 5 of the rank n -2 prob-




34

lems that the standard method didn't, the standard niethod soived one that the

tensor method didn’t

Our second method for generating singular test functions from standard

nonsingular problems has the desirable property that ze is a root of the new

singular function I?‘(z) if and only if 1t1s a root of the original nonsingular func-
tion F{z) This class of functions is described in Theorem 6 i The functions we
generated using this method turned out to be less useful test problems than the
singular functions already described. for reasons we will discuss. However they

may be a useful class of singular preblems for future testing

Theorem 8.1. Let F(z) K" »R"™ and x40 R® with F{z,) = 0 and £ (z,) nonsingu-
tar Define Dpx{z)e K™ " by

Dealz) = diaglf (2 [z
where f,(z) denotes the i*® component function of F{z) let Ae ™™, i<k<n.

have full column rank. and let v< R™ have the property with 4 that (4w)(i] =0

only if rowi of A = 0 Define F{z) K™ +R™ by

F(z) = 1~ A(ATA) 'AT|F(z) + % Dpylz) Av. (62)

Then F’(r) = 01f and oniyif /'{z) = 0, and I?"(z:.) has rank n—k

Proof : It 1s obv.. .- that F’(z) = 0.1f F{x) = 0 Now suppose l?‘(z':) = 0, and con-
sider first the case when 4 has no nonzero rows Then by defimtion w=Av has
no nonzero components. and
0= uTATFiz) = BuT AT Dplz) v = % 3 (2 )wi])?
=1
which implies that F(z) = 0 Now consider tiie case when A has some zero rows,

and assume without loss of gencrality that AT = | B7 | 0 ] where BC R™™ m>k

has full column rank lLet G(z) K™ ™ and H{z) K" ->R™ ™ denote the first m




i

and last n —m components of F(x) respectively, and similarly let (Xz) and H(z)

denote the first m and last n —m components of /4"’\1:)‘ Then

~ N
Gz) = 1 - BBTBYBT Gz) + % Deplx)

[fzx) = H{x)

where

Deolz) = diaghf ()2 fm(2)

It follows by the same argument as we used above that ((z) = 01f (Xz) = 0. and
since ﬁ(z) and H{z) arc idcntical, F(z) =0 if /7'(2') =0
Finally, 1t 1s straightforward to verify that
- b )
Fluz) =01 ~AATAAT] + Dplz) 1y, )+ {x) (63)
where

Due(z) = diaghf iz). - . fatx)) D = diaglw | Lwin|f
Thus

Fzy) = = A(ATAs-'ATJ [‘"(I,)

has rank n -k

F x) given by {8 3) almost always has a manifold of singularities around z,
tor example, if A 1s the first & columns of the idenlity matrix, then f,(:z:) =

vii) foz)i=1. &k so F(x)issingular whenever any f(z) =0.i=1, - - k

More generally. it follows from {6 3) that F'(z) 1s singular whenever F(z) has

{(n+i-k) zero components, this usually implies a manifold of singularities

around r, whenever £>2  Finally. it is easy to show that ;"(x) is singular when-

cver

i
3
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z{i]+ f(x)wii] (2 1]+ (A4y)i]) =0, i=1. .m (6.4)
where z« K™ 1s any vector in the null space of AT and y 1s any veclor in R*, for

small 2. {6 4) 15 likely Lo have solutions

Wwe used (B2) lo generate two sets of singular test problems with

rank{} {z4)) = n—-' by setung k=i, v=i, and 4 = (1.1 - 1) and A =
; (*.0.0. - .0.1) respectively. Neither was a very illuminating test set. The prob-
lems with A = (10 .} were Loo hard for either algorithm, each sotved only

30-707 of the probiems In addition, there were numerous overflows due to the
squares of the original component functions appearing in the new problems, and
the small expenent range of the VAX. The standard method solved 9 problems,
overflowed on 7, and failed on 19, the tensor method solved 11, overflowed on 8,

and faided on 18 On the few problems solved by both methods, the tensor

method was always at least as eflicient as the standard melhod, with improve-

ments ranging from 0 to 62% The preolems with A = (1.0.0, .0.7) werce casier !
although there stili was a considerable number of overflows and failures The 1
rosults are given' in Table AS and summarized in Table 6 5 The stondard method {

goived 20 problems, overflowed on b, and f{ailed on 9. the tensor method solved

24. overflowed on 4. and failled on 6 The average 'mprovement oy the tensor

]

method was 15-207. 2.-307 on Lhe problems that required ol ieast ter e
tions  Phese improvements are lower than on the first o0 of onoe e e

lems but do not reflect the higher success rate of the tensor ne ' g

Taken together our Lest resulls seem to indicale trat the ey v 0o
consistently more eflicient than standard mothads in solving protoer o wie
F'iza) has a small rank deficiency  We speculate that when # “r.) has rane
n—., the tensor mcthod 1s superlincarly convergent in most cases o check
whether this is a reasonable possibitity, we examined the sequence of ratios

Ty —ZTu / Ty Tl

produced by the standard and tensor methods on problems with rank{F {z,)) =

7 R PR ARL
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- e — A P e e W o
e e = e e —— s




a7

n~1. Ratios for a typical problem are given in Table 6.6. In almost all cases, the

standard method exhibited local linear convergence with constant very nearly

0.5, as the analysis of various authors mentioned in Section ! would predict. The
] local convergence of the tensor method clearly is faster; the final ratio of about
0.01 is typical and might be smaller if analytic Jacobians or tighter stopping
tolerances were used. Whether thus 1s superlincar convergence remains Lo be

determined.

Table 6.6 -- Speed of convergence on a typical problem with rank F (zy) =n~1

{Broyden Banded, n = 30, as modificd by (6.1), started from 10z;)

Iteration (k) i R SR A
Tensor Method i Standard Methou
: : 0 638 j 0.638
' 2 0.511 i 0.626
3 0.502 08610
4 0426 0.591
5 , 0.330 0.570
6 0204 0.549
7 00916 0532
8 0.0106 g 0.520
9 : 0511
10 0.508
11 0.503
12 0.501
13 0.5007
i4 0.5003
. 15 ! 0.5002
’ 16 0.50009
4 17 0.50005
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It is important to comment that on the test problems where either method
had difficulty, 1t appeared to us that a trust region method that biased short
steps towards the steepest descent direction often would have helped. We used
a line search algorithm in our tests because we did not want to introduce the
unresolved questions about trust region strategies for nonlinear equations into
our comparison of the standard and tensor models. It will be important to inves-
tigate whether the compulational comparison between methods using these two

nird2!s 1s similar 1n a trust region setting.

Finally, we make some comments on details of the tensor algorithm we
observed 1n our testing The linear independence requirement usually limited
the number of past points interpolated at each itcration to a smaller number
than the upper bound Vn . For example on the 100z, Broyden banded problem
where n = 30, Lthe algorithm used one past point in 837 of the iterations and two
past points in the remaining 17%, although 1t could have used up to six past
points, similarly on the xg Trigonometric problem where n also is 30, 1t used
one, two, and three pastl points on 20%, 60%, and 20% of the iterations, respec-
tively. Thus the tensor method seems to obtain surprisingly large improvement
from a comparatively small amount of additional informmation. We tested the
algorithm onh the nonsingular problems with the linear independence angie
reduced to 22.5° {from 40°). there was some fluctuation in the resulls on indiw-
dual problems but no overall improvement or deterioration in efficiency, and the
number of past poinls interpolated at cach iteration increased somewhat but
not dramatically. From past experience, a very small angle, sav 'ess than 10°,
would give inferior results. The system of linear equations that is solved as part
of solving the system of quadratics at each iteration was square and reasonably
well conditioned (i.e. g =p) almost all of the time; g was greater than p at about
717 of the iterations on the singular and nonsingular Biggs funclions, and at

about 3% of the iterations on all the other test problems. While the step to the

SR NI R
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root of the tensor model 1s not guaranteed to be in a descent direction, on the
noasingular problems this only occurred on 5 of the 44 problems, and there only

about 25% of the Lime, mostly when the method got stuck in one place.

7. Future research on tensor models

The computational resulls in section 6 indivate that tensor methods may be
preferable to standard methods for solving general systems of nonlinear equa-
Lions where analytic or finite difference Jacobians are available, and that they
may have a substantial advantage on problems where the Jacobian at the solu-
tion has a small rank defictency. To firmly estabhish such a conclusion, addi-
tional testing 15 required, including tests comparing trust region versions of
standard and tensor methods for nonlinear equations. Our inclination is to use

dogleg-like methods 1n these trust region tests

It would be ;lery helpful to obtain local convergence results for our tensor
algorithm applied to singular problems. Hopefully, the algorithm can be shown
to converge faster than linearly to a root x, where F(z,) has rank n—1 and
F'{z,) obeys appropriate conditions. Kelated results of this type recently have
born obtained by Griewank [ 1983]. Griewank shows that an algorithm that also
bases its itecration on a quadratic model with a simple second order term is
locally 2-step q-superlinearly convergent in the above case. His algorithm, how-
cver, forms the second order term in the quadratic model using information
about the singularity in F'(z,) that would not be available to general purpose

nonlinear equations soivers.

We believe that the tensor method presented in this paper may not always

achieve faster than linear convergence on problems where the rank of F'(z,) is
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n -2 or less. To justify this remark, suppose z,, - .z, 1S a basis for the nuil
space Z of F'(z,). where m>1. For a method based on a quadratic mode! to
achieve fast convergence, Il seems necessary that the second order term in the
model be a good approximauon to F''(x,) acung on 7 This seems to require
({(m%+m)/2) n-vectors of information. to characterize F''(z,)z:z;. 1<isjsm.
Our method, however, may not contain thus much information even if the past
points are in the desired directions, for example, if all the past directions were
in 7. our method would interpolate at most m function values. Thus our method
does nol seem Lo interpolate enough information Lo always achieve fast conver-
gence on problems where the dumension of the null space of F'(z,) is greater
than one. This speculation 1s not well supported by our computational results,
however, our tensor melhod seems Lo perform almost as well on problems where

F{z,) has rank n~2 as where ¥ '{z,) has rank n —1.

There are several ways to incorporate more information into our tensor
model and eliminate the objection raised in the previous paragraph. One is to
interpolate values of F{z, +5;) at a set of points for which the steps {sy{ may not
meet the linear independence criterion of section 3, requiring instead that the
matrix SCK™™P used in Theorem 3.1 meets this criterion. It is easy to show
that this procedure would allow choosing up to ((m*+m)/ 2) directions from an
m dimensional subspace while leaving the calculation of the second order term
7. well condilioned. A second alternative is to choose 7, using information from

Jacobians al past iterations. We intend to investigate these alternatives.

The methods proposed in this paper can be adapted easily to remain
eflicient on large, sparse systems of nonlinear equations. In particular, the main
additional computational costs of our method are Jacobian-vector products, and
presumably these can be performed efficiently when the Jacobian is sparse. Two

modifications required would be Lo select the maximum number of past points
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small enough that the cost of solving pxp hnear and quadratic subproblems
remains acceptably small, and to use an efficient sparse factorization in the

algorithm for solving the tensor model

' The methods discussed in this paper also could be applied with very little

modification to nonlinear least squares problems. Nonlincar least squares algo-

rithms virtually always use analytic or finite diffcrence Jacobians so the require-
ments of the tensor m'ethods presented in this paper are no restriction in this
case The augmentation of the hinear model by a second order term would lead
to natural extensions of Gauss-Newton or Levenberg-Marquardt methoeds, and

tensor methods might require fewer iterations and function valuations than

these methods, especially on problems where the Jacobian at the solution is
rank deficient. It 1s not clear how Lensor methods for nonhinear least squarces
would perform on large residual problems, and whether there is any reason Lo
prefer them to guasi-Newlon methods like those of Dennis, Gay, and Welsch

[198:] in this case.

We are currently developing extensions of our tensor methods to secant

methods for nonlinear equations, and to unconstrained minimization. Neither

extension 15 straightforward. In secant methods for nonlincar equations, ana-
% lytic or finite difference Jacobians are not available, but it 1s possible to interpo-
: late all the function values F(z; +s,) used in section 3 with a linear model (see
e g Cay and Schnabel | 1978]). To create a useful second order term it is neces-

sary to interpolate function values in (nearly) dependent directions. The pri-

e

v

mary difficulty in extending tensor methods to unconstrained minimization is

- e

that for problems where the Hessian matrix at the minimizer is singular, an
approximation not to the third but to the fourth derivative matrix is necessary
to speed convergence. This i1s because the projection of the third derivative
onto the null space of the Hessian must be zero at such a minimizer. In addi-

tion, all derivative approximations for nmunimization must be symmetric. Our

ol i ihaauie c
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solutions to these difficuities will be reported in future papers
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Appendix

Tables Al - AS contain the results of the tests described in Section 6. The
problems in Table Al are from Moré, Garbow, and Hillstrom [1981). The prob-
lems in Tables A3 - A5 are singular modificalions, described in Section 6, of the
problems in Moré, Garbow, and Ihlistrom. The starting points used for all these
problems are the ones suggested by Moré, Garbow, and Hillstrom, the third
columri of each table designates whether the starting point i1s z¢, 10xg, or 100z,
where zg 1s the point histed 1n Moré, Garbow, and Hillstrom. The problems in

Table A2 are taken from Griewank | 1980a].

The two columns In each table labelled "W/ {(z, )% give half the sum of
squares of the component functions values at the final iterate for the standard
methoed and tensor method, respectively, using abbreviated notation : e.g. .43-12
means 0 43x:0°'2 If the methed failled on a problem, this column instead con-
tains one of the following alphabetic codes :

OF -- method overflowed
D -- divergence detected (b conseculive very long steps)
F -- method failed to find a root in 150 iterations

S -~ method stalled at non-root

The rightmost column in each table, labelled "same z, ? ", contains a Y
{yes) if the two methods converged to the same point on this problem, a N {no)
otherwise. Only problems thatl converged to the same root are included in the

statistics in Tables 6.1 - 6.5

In Tables A3 - A5, the Lwo columns labelled "n.s. z, ?" (short for "nonsingu-
lar z,?"), contain a Y {yes) if the method converged lo the same root as the
corresponding nonsingular problem in Table A1, a N (no) otherwise. Only prob-
lems were both methods converged to the same root and the same root as in the

nonsingular case are included in the statistics in Tables 6.3 - 6.5.

Y T ey




N Y 4 AT LSS A e e 4 a s

48
Table A1 - Results on More’, Garbow, and Hillstrom Test Set
Function ' n ' z¢ . Standard Method E! Tensor Method ;l

| " Fen | Itns | ¥k (xy)8 12 Fen | Itns | WiF(za)iid jl same

— ! vals | e {l vals 'r ’; Zzy?

! Biggs [ 6. 1,209 104[ 9718 i 157 . 70 | 1312 :1 Y
i Expé D 072289 225200 L1500 B -
: . .00, 306 150 F 30550 ¥ -
| Box 3D S3, 'l 5 44 10-16 4 3 1011 Y

! 1100 20 34| 8619 | 2| B 1812 [ N )

(300 4 3, 168 4. 3 4B30 ;N

Brown Alm. , 10, 1| !5 1I 5712 10} 7. 3811 Y

lanear .0 W i1y 9 2915 i0 Yy 40-13 i\ Y

Broyden ' 30. 1, 61 5. 1215 { 5[ 4| .21 1 ¥

Banded P10 1R 11 1622 ‘ 9 B! 9213 . Y

400 7o 9214 1 14, 13, 7120 Y

Broyden 30 1 5 4! 568 i ol 4, 2012 Y

{ Tridiag. . | 0% 8., 7' 4713 |8 | L9320 Y
L 00 11 0 8410 6] 5 8716 4 Y

Chebyquad ; 7; 1., iy 7, .3816 ' 8 6; 6318 . Y
L9, 332 50 i 63 ' 33, 685 -

. | 4 20, 5l 35, 9020 . 45 @& Liii Y
Discrete ;0 1y 8 2 4816 0 3 2 2316 Y

Boundary 0 4, 3, b7 4 3, a3y

\ 00, 9. 8, 2033 . 8. 7, 30 | Y

. Discrete 30 1. 3 2, 182 | 3., 2 2114 | Y
Integral ! P10y 4 3 4%t o 40 3 2716 Y

i L4100y 9' B} 403 y 9. B 7016 | Y
Helical a3t i o121 9l 1v20 ¢ i1 8, 7818 | Y

Valley | o+ 10, 17 131 2321 16, 1. 1618 | Y

i 11000 2, 16 2214 ¢ (6, i 1222 | Y

Powell bog tro9l 81 187 i 4 31 2515 4 Y

Smgular 1 10, i3] 12§ 438 1 6, b = 316 | Y

| 100y 6 loy 107 ¢ 10, 8. 2616 | Y

. Rosen- Fet 1y 27! 14 107 {1 12, 7! 1420 Y

1 brock_ | 10 5! 3° 0 L6, 4l 1714 oy Y

: Trigono- | 300 i 31 16 1912 1, 200 51 144 4 Y
. metric [ 101326 150 | ¥ i 145 64 1 S 1! -
{ [ 1100334 | 150 | P 102, 82 S .-

* Variable 10| 14 14| 13| 249 ¢ 6] 5| 2013 | Y
Dimension | P10y 18 14! 10-8 4“ 5 4 5518 I Y
) (Altered) 00 19{ 18| 108 . 14 | 11, 22i2 Y ]

o Watson 31 11 5 4] .10-6 5! 4] .4B-15 N
’ 10( 41 25 .25-6 378 | 150 F -

| 100 45| 28! 3586 27 17 80-11 N

Wood I 4] 11 24) 17| 23-28 1l 9| 2717 Y
Gradient | 104 105 i 81 .30-24 366 | 150 F -
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‘Table A2 -- Results on Griewank’s Singular lMunctions
Function ‘n ., o ;‘ Standard Method }% Tensor Method I
P v { . I
Lo i Fen ’ Itns - BiF(ze)lE [ Fon !itns | BiF(z )8 i? same
C b vals | i ! vals | ! i,
Dimensionof {3’ 1) 9 B 210 el ol 110 | v
Nultspace =1 | 1 10} b 14 10 7t 61 918 | N
Urder of L4100 21 9 1100 F 18 140 700 0 Y
Sigulanity =4 0 ‘ | ‘ | ; 3
Dimensionof 3} 14§ 11 8 o310 | | 6, 511 A ¢ g '
Nullspace = 1 | i 10,33210( B 1109 3-11 ll - i
Order of ;1100297 | 100 F 1 A N T < T S O B W H
Singularity =2 — . B L
Dimensionof 3¢ ' 11 9! 310 | i 6 1 51y by
Nullspace =2 | 10V 3321 150 ¥ 1 r 8 811 -
Order of : 100 297 | 150 3 f17 13, e -
Sipgularpty = . il . ' ! i
NDimension of 31 RS IR 310 . 7 ‘ 6 ! 5 ; Y i
Nullspace =2 ' 10" 332 150 F 11, 9 3 - )
Order of ©rip00 2971150, F  f 173 e 0 - »
Singularny =2 ' | ‘ | . i ! ; f 1
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Table A3 -- Resuilts on First Singular Test Set with Rank (F(z,)) = n—1

Tensor Method il

Function } n' g 1 Standard Mcthod
] h

vals' . Ze2!l T4?

i
il
}) Fen } tns j YIF(zy)liZins H same

. —

!

{ " .

! l‘: Fen| ltns 1 ¥k ix )2 ? ns.
i [vals % [Za?

i Biggs 6 ip 7ar 520 1210 N Gati)is0l F O T NTON

i Exp6 | 10" 33, 19, L6177 N 69 38, 146 P NN

; lioo, 8! 5, D, NU30601500 ¥ I N N

Box3D ;3. if 10- 9; 9613 ;Y 6 b5, b5 | Y Y

Cooop b oF -0y a2 N

- L 00, ¢ 3 465 N oF |- -

BrownAlm 10" @ 70 6; 337 [y ol 4 a7 Y[y

lipear ' | 10f 22l 21 517 LY L 9 7. 399 (Y Y

Broyden  30° % 12' 11: 881 Jr Y 6 &5 8514 'Y Y

Banded L0l osB 7hot10 Y B0l 9 aas LY Y

L1007 24 23, 871t Y4 34 i3) 4BA1 [ Y Y

Broyden 130; 1, 9. 81 159 [ Y 6; 5! 8012 [ Y ! Y

Tridiag 00 4 13, 09 Y ' 8, 5, 1513 | Y Y

. -200, v 18, 329 Y | b, 4, 1612 Y | Y

Chebyquad ' 7" 1) 11° 71 386 , Y . Bl 6, 9814 Y Y

9+ 17 e’ 33 2913 | N [294'103 8013 | NI N

5. 10,200 06, 90-i6 | N 78 43, 1917 | N . N

screte 0 3, 2 16-9 Y .o 3. 2 149 Y .Y

: Boundary =+ 10/ 5 4 3610 ! Y ' bl &. 2013 Y| Y

) | 1100, 9 8, 1316 [ N 7| 6! 1043 ! N| Y

' Discrete 30, 1! 5! 4: 229 Y. 4. 3' 2011 | YU v

integral 100 6 b 829 LY 5 i) 6812 X H Y

.__|100) {0, 9! 6518 | N| 9 B, 3223 | NJ Y

Heical | 3 i 8 7. 76 | Nj 7| 6 .6414 I NI Y

Valley | !0l 7' 6% 3814 !Ny 7, 6; 2013 | NI Y

L 100, 7. 6, 1034 Ny 7. 6. 7082 ! N| Y

Rosen- | 21 ij 1o 4! 163 LY el 3] arma LY Y

t brock L1007, (6. w13 (Y 5. 4, 2228 LY Y

: Trigono- }7304 Yol 1ty 010 | N 24" 137 6210 | N N
_metric | L A N L

Variable 10 i1 14} 13, 269 1Y 10] 9, 4615 | N| N

Dimension; | 10, 15, 14) 6312 N 12,11 1813 N | N

(Altered) . 100, B 7. 415 | N 11 9 185 (Nl Y

Wood Va4l thoRiloR0v 2215 LY o12] 11] 4118 Y ¢ Y

Gradient |« 0% 261 251 9415 'Y Il 150 14+ 1520 I NN
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Table A4 -- Results on Singular Test Set with Rank (F'(z,)) =n-2
Functior. , n | Zg \' Standard Method ‘» Tensor Method
N k .
b E;P’cn:ltns!%ﬂﬁ‘(z.){iftn.s.i: P‘cn{ltnsj%{;ﬁ“(z,)]lgin.s. same
y o vals ! Zx2 vals ; |2,2] 2,7
Biggs i 6 .27 17 56 | Ny 32 18 410 [N N
. Exp8 . i0]306! 150, I3 | - (390 150 ¥ [ - -
j I 400, 8. o) D - 6l o, D |- -
Box 3D hT T s 7 a0 S Y G2y 7 7R Y Y
b 105 i 0, 2 Y i 22 Y 4 N
Jrown Alm 0. i, 7 6 -0 N By 41 913 LN !
Lincar L. 10,19 16, D21b [N 37, 17 817 [ N§ N
Broyden 30, 1 :9:' 99  #:2 Y & B8] 7 o113 [ NI N
Banded ‘0,304 150 F b 210 8 iR by B
L 1100. 25 20 959 N[ 64 3> -8 'Y ! N
Broyden 30 : 0. 9 .92 Y  14; 100 113 ;Y ! Y
Tridiag 10298 100 Feooooo- 0 7i 60 713 N -
100 19 B, 31 Y. 8. 7 239 [N LN
Chebyquad ; 7 1 10 8, 911 Y. 8 7. 413 Y'Y
§, 133,150 F -2 9, -1 N -
| 4. 3073000500 kL - %53t 32 420 | NG -
Discrete 10 1. &' 4 220 'Y 4, 3 6311 Y'Y
Boundary | | 100 9, 8, 310 Y/ b, 4! 80 ’ Y| Y
| 1100, 12 ij; =13 ! N 33061150 @ F o
; Discrete 1300 10 B' 7. 310 'Y 5 4l 610 [ Y} Y
Integral | | 10 11, 10, 610 [ Y, 8 7, =29 Y Y
L 100 9 8! 518 (Nl o16; 14l 310 [ Y! N
Helical P30 1, 15, a2 Y| sl 7| .81 Y Y
Valley . . 104 b, 14 613 | Y 7, B[ .13 Y| Y
, 1300% oy 4y 613 | Y v 6, 633 [ Y L Y
Kosen- ' 2. if 1) 0. .18 Y. 4| 3 .49 Yy
brock 3100 13, 120 o8 N b 4? il N Y
Trlgino- 30 13801500  F - 012, 70 34 0N, -
metric o ‘ i : 3 i ; ’
Variable (10 . 4 3, 29 Y. 8 7, 615 | Y Y
Dimcnsion' 10, 16, '5' 60 | N :2 B 28 |N| Y
1 : (Altered) | ;00" 20, j9, 410 N . ii. B 433 | N Y
' Wood P40 i.200 20 116 Y[ 14, 12 416 | Y[ Y
g “radient 00 270 200 296 Y I 491 281 45 I N N
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Table A5 -- Results on Second Singular Test Set with Kank {(F(z,)) = n -1

Tensor Method

; N I N ; i
, Feniltns | ¥ii(z)iFins iFentltns ' Yk (z4)"% 1 n.s Vsame

107292 150

o
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Lyl oo™

o
=

’—TT 11
11239123
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)
TSI AV BV ]

e o |t
o = s

N e Sk

JS R SUN VNN S U

10322 i90 ]
e :

Dimenston!

‘Altered) | 100, 37, 36

b< ¢ <

{292 150

3 JS SR

v =l 2
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v
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