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THEORY OF LASER-STIMULATED SURFACE PROCESSES

Thomas F. George*, Jui-teng Lin*, A. C. Berit and william c. Murphy+
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Rochester, New York 14627

*Laser Physics Branch, Optical Sciences Division, Naval Research Laboratory
Washington, D.C. 20375

3.

Abstract

Theoretical techniques for describing laser-stimulated surface processes in

a vacuum and at a gas-surface interface are presented. For adspecies-surface
systems, the laser excitation of vibrational degrees of freedom is considered,
and quantum-mechanical and classical models and also an "almost first-prin-
ciples" treatment of the competition between multiphoton absorption and multi-
phonon relaxation are discussed. The laser excitation of electronic degrees
of freedom is considered with respect to surface states of semiconductors and
metals, for the predissociation of diatomic adspecies on metal substrates,

for ionization, and for resonance fluorescence of a gaseous atom near a met-
al. In connection with gas-surface interactions, the influence of laser ra-
diation on diffraction patterns and energy transfer in atom-surface scattering
is explored. Collisional ionization and ion neutralization in the presence
of laser radiation are discussed. The roles of partial pressure and surface
coverage in laser-stimulated surface processes are analyzed. Finally, some
ideas on surface waves and annealing are presented.
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IR Infrared
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1. Introduction

While the field of laser-induced chemical and physical processes in the gas
phase can now be regarded as well established.l_s the situation with respect to
condensed phases, particularly interfaces, is still in its early stagas.l However,
a number of pioneering experiments and theoretical developments have indicated
that laser-induced molecular rate processes at a solid surface or at gas-solid or
liquid-solid interfaces contain a wealth of new and exciting phenomena. The most
visible use of lasers in this regard has come from experiments which suggest new
processes in microeloctronicl.6 Lasers have been demonstrated to be efficient in
the annealing of scmiconductors7 and in stimulating deposition and etching on the
dimensions of a nicron-tcr.s_lo Since the basic mechanisms underlying the obser-
vations of the experiments on deposition and etching are associated with molecular

dynamics, including energy transfer and reactions, this represents a frontier in
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the general area of laser-induced chemistry and physics as well as in micro-
electronics.

Perhaps the first type of dynamical process to be seriously considered in a

laser-surface experiment was clescn':pt:ion.11"15

wWhile the laser is generally
believed to stimulate desorption through heating effects, it is possible that
selective, nonthermal mechanisms play an important role in some instances, which
will be explored further in this article. Experimental work has also been carried

out in connection with laser-stimulated migration, decomposition and chemical

6-20
roactions.l

Theoretical developments of laser-stimulated surface processes (LSSP) have
occurred at Rochester and elsewhere.21-27 In this review article we shall focus

on our own theoretical work at Rochester, touching on other work as it might re-
late to ours. Our work so far has considered dynamical rate processes where the
laser plays the role of a stimulator rather than a probe. We shall therefore be
ignoring a host of spectroscopic processes which generally give information on the
static properties of surface systems. We include in such processes surface-~
enhanced Raman scattering (SERS), although one should bear in mind that some of

25.28 We should also

the mechanisms responsible for SERS may play a role in LSSP.
emphasize that our theoretical analyses always assume the stimulator to be laser
radiation, rather than an incoherent source such as electrons or ions. However,
much of our formalism would be readily applicable to processes resembling LSSP,
such as electron-stimulated desorption.

A review of our work on LSSP was written about three years ago,29 and thi§
present review article will incorporate aspects of that review with our progress
made during the past three years. We shall restrict ourselves to surface
processes occurring either in a vacuum or at a gas-solid interface. Our presen-
tation is organized as follows: In Sec. 2 we consider adspecies-surface systems,
first discussing the excitation of vibrational degrees of freedom by IR laser
radiation. We develop both quantum-mechanical and classical models and also an
*almost first-principles™ treatment to describe the competition and interplay
between multiphoton absorption and multiphonon relaxation. We then explore how
laser-excited vibrations can lead to desorption and migration. Proceeding to the
excitation of electronic degrees of freedom by near-IR, visible or UV laser radia-
tion, we analyze how the promotion of electrons into surface states in semiconduc-
tors and metals can enhance the charge distribution at the surface, leading to
desorption or other dynamical processes. We then present a semiclassical theory
of laser-induced predissociation of a diatomic adspecies on a metal, where we
include the effects of the surface magnetic field along with the phonon

“continuum®. We also look at laser-induced ionization of an adspecies and
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competing roles of thermionic and photoelectric effects. Finally, we examine
resonance fluorescence of an atom near a2 metal surface.

In Sec. 3 we turn to gas-surface interactions, considering first the influence
of laser radiation on the diffraction patterns of atoms scattering off a surface,
and then treating the energy transfer between an atom and a surface as mediated by
the laser excitation of a surface phonon. We present models of both collisional
ionization and ion neutralization at a surface as influenced by laser radiation,
where the latter is an extension of the discussion in Sec. 2 on the laser excita-
tion of electronic surface states. The roles of partial pressure and surface
coverage in LSSP are also analyzed. We end the review artitcle with some ideas

asgsociated with surface waves and annealing.

2. Adspecies-Surface Systems

Laser photochemistry has the unique capability of providing us the means to
very selectively control chemical reactions. In particular, in conjunction with a
solid surface, catalytic reactions can be channeled along specific pathways by
utilizing the coherence and monochromaticity of laser radiation to resonantly (or
quasiresonantly) excitc specific degrees of freedom while leaving others unaffect-
ed. In Fig. 1 we present a variety of situations which illustrate selective LSSP,
each briefly described in the caption.

BEach figure represents the degree of freedom selectively chosen by the laser
frequency which we call the active, A, wmode. Other degrees of freedom will be
involved in the chemical process #it" . as direct competitors for the laser energy
or indirectly as an snergy sink, and are referred to as bath, B, modes. The over-
all energy ¢ . ¥ car be described in terms of the couplings between the laser
field, the A mode and the B wmodes.

The processes in Fig. 1 can be classified as involving vibrational and/or
electronic degrees of freedom. The former include IR LSSP and form the subject of
Sec. 2.A, while the latter includes visible or UV LSSP and are treated in Sec. 2.B.

A. Vibrational degrees of freedom

For processes involving vibrational degrees of freedom of the adspecies-surface
system one needs laser radiation in the infrared range. The overall dynamics
consists of resonant or near-resonant absorption of laser photons by IR-active
modes of the system and relaxation to other available channels, leading to exci-
tation, desorption, migration and subsequent chemical reactions. We begin by
discussing the general process of excitation accompanied by relaxation from a
quantum and classical model point of view, as well as from a first-principles
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Fig. 1. Schematic representations of a potpourri of laser~stimulated surface

processes. The energy E of the adspecies~solid system is shown along the vert-
' ical axes as a function of distance from the surface in (A)-(E) & (G) and as a

function of position along the surface in (F).

(A) A typical case of molecular adsorption. The shallow well admits a pre-

cursor physisorbed state, with the molecule retaining its original identity.

i ; The deeper well corresponds to chemisorption with major chemical changes in
' ‘ structure and bonding. Possible selective excitations by laser photons are
; suggested.

(B) A case of desorption. Resonant adsorption of one laser photon is followed

by passage to the continuum C of the adspecies-surface potential by anothez
photon. .

(C) Dissociative adsorption. This is a specific case of (A) for a diatomic
species AB. Laser pumping of the internal modes of AB or the adsorptive bond

in the physisorbed state P promotes penetration of the barrier to the chem-
isorbed state C, where the system can be stabilized by energy transfer to vi-
brational or electronic degrees of freedom of the solid. Note that in the chem-
isorbed state the adspecies looks more like individual atoms than a diatomic mole-

cule.
(D) Rotational excitation of an adspecies. While rotation is often hindered by

adsorption, certain situations allow high rotational excitations.
(E) The intense surface magnetic field at a metal surface can break the spin

p . degeneracy of the electronic states of an adspecies. Here the upper triplet
state of H, is split into three states labeled 2, 3 and 4. The ground singlet
and its "photon-dressed” representation are labeled 1 and 1'. The avoided
crossings generated by the intersections of 1' with 2, 3 and 4 lead to enhance-
ment of the predissociation rate relative to the laser-induced gas-phase rate.

. ! (F) Selective migration on a surface. For the case of different barriers to
migration t§> along the surface, migration rates can be selectively enhanced
in the x~- or y-direction by a judicious choice of radiation frequency.

(G) Laser~induced curve switching leading to adsorption. Transition from an
initial unbound state i by stimulated emission to a bound state n is followed
by a phonon-stimulated (stabilizing) transition to a lower bound state f.
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purely quantum viewpoint in Sec. 2.A.i. The models developed are used in a de-

scription of the dynamics of adsorption and migration in Sec. 2.A.ii.

(i) Excitation and relaxation with multiphoton-multiphonon effects.

(a) Quantum-mechanical models. We first study the dynamics of excitation and re-

laxation of an adspecies-surface system by means of quantum-mechanical models in

which microscopic Hamiltonians for both single-phonon relaxation and multiphonon
relaxation are investigated within the Heisenberg p:'wt:m:re.zg—31 The photon energy
population is studied via a master equation. The selective nature of laser-stim-

ulated surface processes is studied numerically for a multilevel system within the

32,33 Finally, the isotopic separation of adsorbed species is

34,35

Schrodinger picture.
studied via the Heisenberg equation of motion.

Laser excitation with single-phonon relaxation. Consider a heterogeneous system

of atoms or molecules adsorbed on a uniform solid surface and subjected to
infrared laser radiation. The vibrational degrees of freedom of the adspecies-
surface system can be divided into two groups, namely, the pump-mode (resonant
infrargd-active vibrational mode of the selectively drivenadspecies) and the
bath-mode (all other modes including adspecies inactive modes and the surface
phonon modes). The radiation feeds energy into the pump-mode, and the heat bath
provides a relaxation mechanism. The microscopic model Hamiltonian describing

this relaxation dynamics can be written in the following second-quantized

form.29-31
B = HA + HB + HAB + H'(t) , (2.1a)
+ + .p
H =Hw.a'a + Z HR (a +a)* , (2.1b)
A A P
p=3
fw.b, 2.1
HB = § wjbj bj , (2.1c)
+ + 4 (2.14)
H = (K. b.+K.ab. ) ’
AB g’ﬁ 32 2375%%5
H'(t) -<ﬁv(t)(a++a) ’ (2.1le)
vit) = (2fmw) 7 U (0)E cos(8) cos(ut) . (2.1£)

HA and HB are the unperturbed Hamiltonian (vibrational energy) of the pump-mode

and the bath-mode respectively; H is the interaction Hamiltonian coupling the

AB
pump-mode and the bath-mode; and H'(t) is the adspecies-field effective inter-
action Hamiltonian. The operators a+,a and b+,b are the usual harmonic vibra-

tional ladder operators (with fundamental frequencies w, and wj) of the pump-mode

and the bath-mode respectively. Bp is the anharmonicity of the nonlinear quantum
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oscillator (pump-mode); u'(0) is the derivative of the effective dipole moment of

the pump-mode evaluated at the equilibrium point; E is the electric field of the

——————

radiation with frequency , linearly polarized at an angle € with respect to the
effective dipole moment ; and mA is the reduced mass associatad with the active
mode. In Eg. (2.14), Kj represents the coupling between the active mode and the
jith bath mode.
The equation of motion for an operator a(t) in the Heisenberg picture,
0(t) = exp(iHt/f) Oexp(-iHt/h) , (2.2)

where the time-independent operator O is defined in the Schrodinger picture, is

2L - 2 Bl (2.3)
Employing the operator algebra36

(att) ] = 3m/3a’ (v) , (2.4a)

[b(t) ,H] = aH/8b+(t) ' (2.4b)

We obtain the following set of coupled equations:

a(t) = dw_calt) - i Z Kb (€) -iv(t) , (2.5a)
J
b.(t) = -iw.b, (t) -iK’b_ (t) , (2.50)
J 33 J3
where weff is the effective frequency obtained by the contact transformation,3o
including anharmonicity up to fourth order, Eq. (2.1lb),

= o —oe*aT
weff(t) = W, 2€ a (t)a(t) , (2.6a)

* 2
€ = 3083/(»A - 684 . (2.6b)

We solve for the phonon operators bj(t) by formally integrating Eg. (2.5b) to

obtain

bj(t) = bj(O) exp(-iwjt) —iK; atc' a(rx') exp[-iwj(t—t')]. (2.7)
0

Substituting Eq. (2.7)in Eq. (2.5a), we get
a(t) = -iweff(t)a(t) + Al(t) + Az(t) - iV cos{wt) (2.8a)
where

A (t) = -1 JK'b, (0)exp(-iw_ t) , (2.8b)
1 £55% 3

t

Az(t) = - ZIKj|2J at a(t-r)exp(-iij) . (2.8¢c)
3
0
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]

V= (2mw,) " u'(0) E cos(8) , (2.84)
Note that Az(t) contains the kernel fivnction which will be investigated by the
following two techniques.

We first use a Markoff approximation in which the characteristic time of the
phonon operators is much smaller than the time over which significant phase and
amplitude modulation of a(t) take place.36 Hence we may use the phonon-free
solution of Eq. (2.8a), a(t-1) = a(t)exp(-iwhr), to evaluate thg integral Az(t),
extending the upper limit t to «,

(]

A, (t) = - a(t)J ar § |1<j|2 expli (wy~w,)T] = = (y,/2+idw) a(t) , (2.9)
0 j

where the damping factor, Yl' and the frequency shift, 6w, are given by

2

Y, = 2rKk(w) [ plw,) (2.10a)

Sw =P[2 K. ]2/ -m.)] ' (2.10b)
5 3 A3

where P stands for "principal part.” 1In deriving Eq. (2.10), we assumed a
continuum spectrum for the phonon modes with a density of states p. Note that
both K and p are evaluated at the active mode frequency u)A since

dTexp[i(mA-wj)T] = ﬂG(wA-wj) + iP[l/(mA—wj)] . (2.11)
(o}

For an alternate method to decouple the many-mode equations of motion, we can
evaluate Az(t) by assuming a continuum phonon spectrum, without using a Markoff
approximation, to obtain

Ay(t) = =| ar a(e-1) dwjlx(wj)lzo(w ) . (2.12)
0 0

) exp[i(wA-w

3 3

This yields the same result as Eg. (9) if we assume that lx(mj)|2p(w ) =

3

IK(wA)Izp(wA), i.e., a slowly varying function of wj peaked at wj-wA' This can be
easily seen by recalling that
Qo
dwj exp[i(wA-wj)'t] = 18 (1) + iP(1/7) . (2.13)

1]
Substituting Eq. (2.9) into Eq. (2.8a) we obtain the decoupled equation




a(t) = -i(weff+6w-iY1/2)a(t) + Al(t) - iV cos(wt) . (2.14)

The effects of the phonon modes have thus been incorporated into a damping factor,

Yl’ and a frequency shift, 8w, of the active mode. There are some other alternate
techniques to treat the multimode phonon effects, e.g., the Wigner-Weisskoff
single-pole approximation which we shall discuss later when dealing with
multiphonon relaxation processes.

We now calculate the ensemble-averaged excitation of the active mode,
<n(t)> = <<a+(t)a(t)>>, where <<...>> denotes an ensemble average over the phonon
(bath) modes and the active mode coordinate. 1In order to use the rotating-wave
approximation (RWA), i.e., neglecting highly oscillating terms [exp(f2iwt)], we

transform the operator into a rotating frame defined by
<a(t)> = <a(t)> exp(iwt) , (2.15)

which, combined with a "white noise" assumption for the phonon modes, <A1(t)>=0,

transforms Eq. (2.14) into
- %+ ~
<(r)> = - [i(d-2e"<a’ (Bra(e)>) + v /7] <d(t)>-iv/2 , (2.16a)

.« ® .+ - —
<n(t)> = —(iV/2)<<a'(t)-a(t)>>-Y1(<n(t)>-n) . (2.16b)

where A = wA + Sw-w is the detuning and where n is the steady-state occupation

numbe: given by the Bose function

n= (exp[-ﬁmh/k'r]—l)—1 . (2.16c¢)

*
The above equations are coupled via the anharmonic term 2¢ <a+(t)a(t)> and cannot
be solved analytically. However, for low excitation, we may ignore the anharmon-
icity and solve Eq. (2.16) to obtain the average excitation for the harmonic case

with €*=0,

(v/2)° Vit oM e/2 TVt

<n(t)> = 14e -2 1 cos(At) |+ mli-e . (2.17)

A2+(Y1/2)2

In this case the steady-state excitation is linearly proportional to the laser
intensity (or (v)z) and is characterized by a Lorentzian with FwHM-Yl. For A=0,
the transient excitation oscillates between the two exponential curves [l+exp
(-Y1/2)] and [l-exp(-Y1/2)]- For Yl=0, <n(t)>¢sin2(At/2)/A2 which has the same
functional form as that of the excited-state population for a two-level system
obtained from perturbation theory. For high excitations, the average excitation

+
requires numerical integration due to the nonlinear coupling 2e*<a’ (t)a(t)>.

However, the steady-state excitation x5<n(t)>s s is given by a cubic equation




X = AL ' (2.18)

(A-ZE*X)2+(Y1/2)2

where A = (ﬂ/2mAwA)(V/2ﬁ)2(8n/c) and I is the laser intensity I = Ez/(en/c) in
cgs units.

So far we have discussed only the situation where the damping, or level width
of the excitation is governed by the so-called Tl(energy) relaxation rate, Yl' To
include the effects of Tz(phase) relaxation on the excitation, we investigate the
ensemble average (over the phonon bath coordinates) equation of motion for the

active mode operator, 6(t)=a(t) or a+(t)a(t), in the Heisenberg-Markoff picture

(ump) , 36
a<d(t)> . 0(t) aa(e)‘l 30 (t)
a2 - rivie) /A) - - (v, /2 [EE aqe)
dat 3a+(t) aa(tl da(t)
~ 2/\
+ gt +y,R 2oce) éou;> ) (2.19)
da (t) da(t)sa (t) T2

The last term involving the dephasing (T2 processes) is characterized by the

dephasing-induced broadening factor Y, as follows:

<?°> <Ex (t)a(t) O(t)-‘a (tlalt) - a (t)a(t) [a (t)a(t) ,O(t)] . (2.20)

which is mathematxcally constructed such that, for O(t)sa(t) and a (t)a(t),

+
da(t) dla (t)al(t))
at > = = Yza(t). —a =0 . (2.21)
T2 TZ

This assures that the T2 dephasing changes only the phase of the active mode

without changing its vibrational energy. By analogy with the above phenomena, in

collisional phenomena the T. and T_ relaxation correspond to inelastic and elastic

1l 2
scattering, respectively, and the overall collisional broadening is then given by
Y1+Y2-
By using Egq. (19) and RWA, the ensemble-averaged equations of motion in HMP are
found to be
<§(t)> = - [i(A—2E*<a+(t)a(t)>)4-(Y1+Yz)/2] <;(t)>-iV/2 ’ (2.22a)
<AUE)> = (1v/2) << (8)-E(£)>> = v, (<n(e)>-R) (2.22b)

3%
For the harmonic case, € -0 .the exact solution for the average excitation is

which are different from Eq. (2.16) by the total broadening (y1+y2) in BEq. (2.22a).




e - —
14
r -Y,t r T /2 Y.t -T t/2 -Y,t
<n(t)> = L(A) Y—+ l-e 1 + —;-———3 e 1 - T cospt) | +n(1-e 1)(2.23a)
1 A"+ (T./2)
L) = w2 ’snla, 2%, (2.23b)
My =YY, ., (2.23¢)

which reduces to Eq. (2.17) for yz-o as it should. For fast dephasing Y2>>Y1,
Eq. (2.23) becomes

-Ylt -yztlz _ -Ylt
<n(t)> = L(A)[Yzlvl}[l-e ]+2e cos(At,| + n[l-e ] . (2.24)

The transient excitation profiles of Eq. (2.23) and (2.24) are shown in Figs.
2{A) and (B), respectively. We see that the excitation profile for the YZ-O case
is quite different from the Y1-0 case.

Fig. 2. Excitation profiles in (y,,t,<n(t)>) space for (A,V) = (5,5) and the
ratio Y,/y; = (A)O and (B) 10. The values of the points P; and P, are (0.05,0,0)
and (4.25,6,X), respectively, where X is the steady-state excitation.

For high excitations with €*20, the coupled equations can only be solved numer-
ically, and the results for the transient average excitations are shown in Fig. 3.
We note that the saturation of the average excitation is due to the energy relax-
ation as well as the anharmonicity of the active mode.29 In order to reach high
excitation, one requires a higher pumping rate compared to the energy relaxation
rate. We shall come back to this feature when we discuss the selectivity of these
processes.

The steady-state average excitation, X, for a cold surface (i.e., n negligible)

can be easily found by setting a(t)=<i(t)>=0 in Eq. (2.22), which gives the cubic
equation
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Fig. 3. The average excitation as a function of time with y,=10 cm~1 ang I=10

W/cm2. The solid-dashed curve represents €*=A=0 and lifetime T=yY,-1=10"" sec.
1 for (a) }ossless system

The solid curves correspond to €*=2 cm™! and A=24.9 cm™
with very long lifetime, (B) T=10-3 sec, (C) T=1.5 x 10~% sec, (D) T=1.2 x 10~
sec, (E) 1=10~4 sec, and (F) T=9.5 x 10~° sec.

The optimal detuning then occurs at the maximum (dX/dA = 0) and is given by A* =

2e*x* (note - the single asterisk which was already attached to € does not signify

an optimal condition as it does for A and X). At the other extreme where dAX/dA+»,

we obtain a quadratic equation for the detuning, whose two roots correspond to a

*bistability” in X as a function of A. By equating the two roots, we obtain the
critical pumping rate [v.I2 - Ylfi/(ze*), implying that the existence of the
bistability is a consequence of the condition V > v*. For a fixed laser intensity,
which is proportional to V2 (or the pumping rate), the bistability criterion may

also be stated in terms of the anharmonicity as €* > ¢** = (v,/2) (T /V). This
It is

"bistability” feature of the steady-state excitation is shown in Fig. 4.
L 1]
, the

seen that when the anharmonicity e is larger than the critical value, €

excitation profile shows the bistable transition from P to Q as the detuning

increases, and from R to S as the detuning decreases. We note that the maximum

excitation is red-shifted to A" > 0, which is a general property of any nonlinear
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oscillator with €* > 0. A classical analogy of this nonlinear quantum oscillator

has been known for some time.37

4 v

[ (A (8 ’
P

.
4

=20 =IO o 10 20
DETUNING A(cm?)

Fig. 4. Anharmonic steady-state excitations showing the bistability feature for
{(¥Y1,Y2,V) = (4,4,10) and (A) at the critical value of e* = e* = 1.28 and (B)

above the critical value, €* = 2.56 > €**, fThe bistable points are shown by P, Q,
R, and S. The harmonic steady-state excitation (dotted curve) is a Lorentzian.3%

Laser excitation with multiphonon relaxation. We have derived the single phonon

relaxation rate given by Eq. (2.10) which is proportional to the coupling strength
and the phonon density of states, both evaluated at the active mode frequency, a
result of integration over a delta function, Eq. (2.11). It is easy to see that
if wA>wj the single phonon rate is zero and the only contribution to the energy
relaxation is that due to multiphonon coupling. This is not strictly true if one
includes the finite lifetime of the phonon mode due to intramode anharmonic
coupling. Mathematically, this implies that the delta function in Egq. (2.11)
should be replaced by a Lorentzian with FWHM-ZYB, where YB is the phonon decay
rate. The corrected single-phonon relaxation rate including the effects of finite

phonon lifetime is then found to be

2
= aw, K
. Y j| (wj)l o (w
0

3 ) 4t exp [-i (w j-wA) -YB/2] T
0

2 2 3
- dwjl(wj)l D(wj)(Yslz/[(mj-wA) *‘Ys’”]' (2.26)
0

- wvhere Re is the real part. The rate, 61, is significant even if wA-mj does not
exceed YB by an order of magnitude. Therefore the finite-lifetime phonon always
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gives a large single-phonon rate even for a system with frequency spectrum wA>wj

while the infinite-lifetime model (YB-O) gives a zero single-phonon rate. However,

for an IR active adspecies-surface system the active mode frequency usually is
much higher than that of the phonon modes, i.e., we have the situation (w -w )>>Y
(e.g., for CO/Ni wy ~1000 cm 1, w3~300 cm -1 and Y ~50 cm ) which results in a very
small single phonon rate. For sgystems with a bxg energy gap between the active
and phonon modes we shall go beyond the single-phonon relaxation model and study
the multiphonon rate.

The microscopic Hamiltonian describing an adspecies surface system with w_>>w

A j
subjected to infrared radiation accompanied by multiphonon relaxation may be ex-
pressed a331

= ]

H HA +H o+ HAB + H'(t) , (2.27)
which is the same as that of the single phonon except that the interaction
Hamiltonian HAB describing multiphonon relaxation is now given by

*
Hyp= 1 [hG. . b.b_ b a G Seeed rfr bl -.-bl a
e TE FUCERUE SN G DEEPYARAEE V= I PR ¥ 1732 N 132
1-2 N
=] e B’ +fG.E ) | (2.28)
\Y
where we define a multiphonon operator
B = I b. b, °°*b. , (2.29)

v i veeq 93 ]

Jpedgeredy 172 N

and Gv is the coupling strength. It is seen that HAB reduces to Eq. (2.1d) and
describes single phonon relaxation when N=1 and Gv'xj’ The Heisenberg equations

of motion are

a(t) = i[weff(t)+w(t)]a(t) -1 g Gva(t)-iV cos (wt), (2.30a)
- t
Bv(t) - —iQVBv(t)-iNvaa(t) ’ (2.30b)
where

jN
Q, = (B (t) 1] = ] wy . (2.31a)

j'jl

o Forpt

Nv - [Bv(t)'HAB] = [ (Bv(t)Bv(t)-Bv(t)Bv(t))' (2.31b)

3=3,

and w(t) is a stochastic frequency modulation which accounts for dephasing effects.

R
AT - - A=
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By employing the Markoff approximation as used in the single phonon case, Eq.
{2.30) is decoupled and results in the ensemble-averaged equations of motion in
the HMP31'36

< +
<a(t)> = -[i(A-2e*<a (t)a(t)>) + (y1+y2)/21<5(t)>-iv/2 (2.32a)

’

SR(E)> = -(iV/2)<<a ' (£)-3(£)>> - Y, (<n(6)>-]) (2.32b)

which have the same structure as that for the single phonon case [Eq. (2.22)]

except that here the multiphonon equilibrium occupation N = ITﬂ5 and the relax-

ation factor is given by, ]
2—
Y, =27 g 'le N & (w,-0 ) , (2.33a)
where . .
N = 1 (n+1) - 0 n. . (2.33b)
\Y s 3 .3
J-Jl J-Jl

In deriving Eq. (2.33), the phonon-induced frequency shift is neglected and we
assume that the stochastic frequency obeys the simple correlation <®K(t)d(t')> =
YZG(t-t'). We note that the significant difference between single-phonon and
multiphonon processes lies in the nature of the relaxation factor, yl' which is
temperature independent [Eq. (2.10)] Ffor single-phonon relaxation but is
strongly temperature dependent for multiphonon relaxation. For example, for an
Einstein spectrum with o(wj)=6(wj-wz) and Qv=pwE (p-phonon processes), we find

that

2
=2n ||6w.)]| &P exp [phw_/kT] -1 (2.34)
3 3w = E
i E

Yy

Multiphonon processes with a multimode laser. 1In the previous discussion clas-

sical single-mode laser radiation was considered. We now investigate the effects
of a multimode laser with finite bandwidth YO on the average excitation of the
active mode, <n(t)>, by means of a second-quantized laser field such that, instead
of Eq. (2.le), we have '

+
H' =4 E v (e, te,) (2.35)

where c* and ¢, are the harmonic ladder operators for the k-th mode of the

k k
quantized field and Vk is proportional to the electric field due to radiation and

may be referred to as the Rabi frequency of the excitation. The Heisenberg

equations of motion, previously given by, Eq. (2.30), now become




a(t) =-iw_ . (t)a(t) - i g G B (t) - i E Ve, (t) (2.36)
. *

Bv(t) = - 1Qv5v(t’ - 1Nvaa(t) , (2.37)

ck(t) = -iwkck(t)-ivka(t) . (2.38)

The above coupled equations can be solved by using the Markoff approximation to
include the many-body effects due to the phonon modes and the laser modes as
developed in the previous sections. Here we shall present an alternative
technique.
Taking the Laplace transform of Eq. (2.35), we get
a(s) = U(s)a(s) + ] V (s)B (s) + | W (s)c, (s) , (2.39)
v k
where a(s), Bv(S) and ck(s) are the Laplace transforms of a(t), Bv(t) and ck(t),

respectively, and
-1

U(s) = (s+iwA + fl(s)+f2(s)] ’ (2.40)
-1
Vv(s) --iGV[(s+iQ\)){s+iwA + fl(s) + fz(s)]] (2.41)
-1
wk(s) = -ivk [(s+iwk)[s+iwA + fl(s) + fz(s)]] ' (2.42)
2 .
fl(s)-\z) lel Nv/(sﬂ.ﬂv) ’ (2.43a)
2 .
£,08) =} [V |°/(s+iw) . (2.43b)

k
Employing the Wigner-Weisskopf single-pole approximation, i.e., s30 in Eq. (2.39),

we obtain the inverse Laplace transforms of Eqs. (2.40)-(2.42) leading to

a(t) = U(t)a(0) + [ V (£)B (0) + ] W (t)c, (O) , (2.44)
v k

which readily gives us the average excitation
<n(t)> = <<a' (t)a(t)>>
2— 2 _+ 2+
= |u(t)[“n(o) + { lv,(e) [<<B_(0)B (0)>> + £|wk(t)| <<e, (0)¢, (0)>>

2e-rt/2c08(Avt) s, (0)
v A +(F/2) j 3




2

v -
) El'hl"'i [1+e-rt-2e-rt/2cos(Ak€ﬂnk(0) ' (2.45)
A +T/2)7 -

where n(0), ;5(0) and Ek(c) are the initial occupation numbers of the active,

phonon and photon modes, respectively, defined by a Bose function with the same
temperature but at a different fregquency. The detunings are defined by Av=wA—Qv

‘ and Ak=wA-wk, where Qv is the multiphonon frequency and wk is the k-th mode laser
frequency. Finally F-Yltyo is the total damping factor describing the effects of
the parallel nonradiative (phonon) and radiative (photon) relaxation of the
quantum oscillator into two independent, noninteracting multimode baths. We note

that the multiphonon rate Y, has a temperature dependence given by Eq. (2.33) or

(2.34), while Y2 is indepen;ent of temperature since we consider dipole transi-
tions of the active mode, i.e., the interaction Hamiltonian H', Eq. (2.35) con-
tains only linear coupling terms in the resonance excitation with fregquence wkzwA.
For an Einstein spectrum, Y122"|GEIZOEﬁ£ and YO:ZWIVF|20F, and the average exci-

! tation at resonance, Av=Ak=o' becomes a simple exponential decaying function
2
2 2 = 2 - -Tt/2
< D> = | e + - .
n(t) {nl‘z”lGE| PENE IVFI QFnF][l e ] , (2.46)

which is characterized by the incoherent phonon field and the coherent laser field

with initial occupation pgﬁé and DFEE’ respectively.

Energy feedback effects on the laser excitation. The above discussion assumed no

direct phonon excitation via laser radiation and, that during the excitation of the
active mode, the phonon modes are assumed to be still cold enough that there is no
significant energy feedback from the laser-heated substrate. For the case of
strong phonon coupling, i.e., a short lifetime for the active mode, the laser
photon energy absorbed by the active mode may be rapidly transferred to the phonon
modes and these thermal phonons may provide significant feedback energy to ther-
mally perturb the active mode.38 A rigorous calculation to include energy feed-
back effects due to the heated substrate involves the numerical solution of a non-
equilibrium system in which, instead of assuming a constant equilibrium occupation

number of the phonon modes, ;5(t)=n (0), one studies the transient occupation ;5(6

3

by solving the heat diffusion equation35
aT )
1 i V.(DVT) + Cv Yl(t) . (2.47)

T is the laser-heated temperature of the system with diffusivity D and heat
capacity Cv, and heat (excitation of the active mode) diffuses according to the
gradient, V, in the direction of energy flow. 6 is a coverage factor obtained

B ittt itk .




from the knowledge of the numbé} of active modes and the total absorption cross

section. The above equation is highly nonlinear because of the complicated tem-
perature dependence of the relaxation rate, Yl(t), which is now also time depen-
dent via the transient phonon occupation nj(t).

To demonstrate the feedback effects of the thermal phonons on the excitation of
the active mode, we analyze a simplified situation based on the microscopic
coupled Heisenberg equations rather than attempting a numerical solution of the
heat diffusion equation, which is a macroscopic description. We investigate the
multiphonon system where Eqgs. (2.36)-(2.38) are iteratively solved to second order
in the active mode operator, a(t). The average excitation of the active mode
including the feedback energy from the thermal phonons is found to be

(1) (2)

<n(t)> = <n(t)> + <n(t)> ' (2.48a)

where the first-order excitation <n(t)>(1)

(2)

is given by Eg. (2.39) and the second-

order excitation <n{t)> at resonance, Av-Ak-O, is given by s
2 -y.t “f”zj
(2) 2 2 |4t Y1 1-e ,
<n(e)>'" = ] |67 3mn. (v, /2) t-|=|]1-e + | ———— (2.48b)
v 1Y 3 1 Y, Y,/2

which is proportional to the time~dependent quantity IGvIG(HESt)Z and provides the
feedback energy.
Master equation and energy population. The master equation describing the photon

energy population in the energy (n) space can be written as29

dP

'EE" -(Io Aw) [P -(g /g )P .1+ (X0 /ﬁw)[Pn_l-(gn_I/gn)Pn] . (2.49)

Pn is the population (adspecies/cmz) of the level of energy nfiuw (i.e., absorbing
n laser quanta, and 9, is the degeneracy of the n-th level, related to the number

of vibrational modes S participating in the processes by
s-1
g, = qo(n+1) . (2.50)

c is the quantal absorption cross section of the adspecies (as a whole) for a
ttansition from energy level n to n + 1. By investigating the structure of the
absorption cross section given by Eq. (2.49), we may in general express the cross
section in the form

o, = (n+1)%w , (2.51)

where O* and a are correlated parameters depending on the relative magnitudes of
the anharmonicity and the bandwidth. For example, by Eq. (2.51): a=1 and O*=
Bl /[A +F ], for s*-o (harmonic oscillator) and F -T (constant bandwidth);

a--1 and o*-sr’ /(2e*) , for anharmonic osci .llator, Tn-IE)«ze'(nu/z) and Am-c*;
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a=0 and o*-B/Fo for £*=A=0 and T;-(n+lffo; B depends on the dipole derivative,2?
The exact solution of the quantal master equation for general forms of on and 9,
is not available. However, we shall discuss two limiting cases which are
physically interesting and can be analytically solved.
(1) a=sS=1 (single-mode harmonic oscillator). The master equation, Eq. (2.49),

for this case becomes

ap
=N .. * -
i 3 - (Io /hm)[(n+1)Pn+1 + "Pn-l (2n+1)pn] . (2.52)
i !
By using the initial condition
P (t=0) = NOG(n) ’ (2.53)
and the normalization
[- <]
z Pn = NO ’ (2.54)
n=0

where No is the total number of adspecies/cmz,the solution of Eq. (2.52) gives the
population function

; p_(t) = N (6)/(1ew(e) 1, (2.55a)
\
W(t) = 0*¢/Hhw (2.55b)
) t 2
' ¢ = J dtI = laser fluence (J/cm”) . (2.55¢)
0
’ The corresponding average excitation (quanta/adspecies) is
1
<n(t)> = " ZnPn =W« ¢ . (2.56)

(o]
y (2) a=D {(constant cross section), S=1. For this case the master equation,
Eq. (2.49), becomes
dp

.. (10*/fw) (2P _-P

an 1. (2.57)

n+l-Pn-1

With the same initial condition Eq. (2.53) and by using the recurrence relation of
the modified Bessel function, we obtain the population function

Pn(t) = NN exp(-ZW)In(ZW) ' (2.58)

0
where N is the normalization constant given by Eq. (2.54), In is the modified
Bessel function, and W is again given by Eq. (2.55).

The corresponding average excitation for this population is

<n(e)> = 200/m/% « ¢1/2 (2.59)

We note that the average excitation is linearly proportional to the laser fluence,

T

CAFE
- s IR




<n(t)><¢, in case (1), while <n(t)>¢¢1/2 in case (2). For the general expression
of 0 = (n+1)a0*, we shall find a general form for the average excitation given by
<n(t)>¢¢1/(2.a) by using the diffusion approximation as follows. As mentioned
previously, the exact solutions of the quantal master equation are not available
for the general forms of on and gn. We shall now assume that the population Pn'
the degeneracy gn and the cross section On are smooth functions in the n-space.
The quantal master equation, under this quasicontinuum assumption, is then con-
verted into the classical diffusion equation

9P

2Ll 2 3 (2.60)

ot _ fw an [Gngngﬁ(Pn/qn)] :
Substituting Egs. (2.50) and (2.51) into Egq. (2.60), a particular solution of Eq.

(2.60) consistent with the initial condition, Eg. (2.53) is

_ B,, .2
Pn(t) = NNognexp[n /(8w , (2.61a)
N = (B/go)(Bzw)’S/B/F(s/B) . (2.61b)
B=2-a, (2.61c)

where W is again given by Eg. (2.55b) and N is the normalization factor. The
average excitation (quanta/adspecies) for this classical population function can

then be calculated as

<n(t)> = Nal f”annn = (Bzw)l/sr[(s~l)/3]F(S/B) ’ (2.62)
0
1/8

which is proportional to O (since Wxd) and consistent with the quantal results

Eqs. (2.56) and (2.59), for 8 = 1 (a=1) and B = 2 (a=0). It is worth noting that

1/3 in this classical diffusion model,

« {173

for a = -1 (anharmonic oscillator) <n(t)>«¢

whereas the steady-state excitation <n(t)>S in the quantal Heisenberg-

Markoff model [Eq. (2.18)]. Combining Egqs. (2.50 and (2.51), we may express the

population function in terms of the average excitation

NOB

..o F(s) ,ss-1 . nF(S) g
P F(s)(<n(t)>) n~ “expl (<n(t)>) | (2.63a)

For a comparison with the above classical diffusion model, we now consider a
Boltzmann thermal distribution P;(t) which is characterized by the effective

temperature T and the quantal degeneracy g; [qn in Eq. (2.50) is a classical

eff
degeneracy] as follows:

* - * - .64
Pn(t) NNognexp[ nﬁw/kTeff] ' (2.64)
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S

_ v * -1 - -
N I BN [1-exp (Buw/kT_ )1° , (2.65a)

n=0 £

gy = (n+S-1)1/[nt(s-1)1] , (2.65b)

and the effective temperature T is defined as the average excitation energy per

eff
vibrational mode and is governed by energy conservation as
fun = Kw<n(t)>/S , (2.66a)
- -1
n = [exp(hw/kTeff) -1 . (2.66b)

For a multiphoton process €Kn(t)> >>1), we obtain the high effective temperature
limit (kT » #w), and for n >>s, Egs. (2.65) and (2.66) reduce to

eff
n = kTeff/hm, kTeff = fiw<n(t)>/S , (2.67a)
- s
N (kTeff/ﬁw) , (2.67b)
* 2 05l st = (2.67¢)
g, = t=g - .67c

The population functién reduces to

s-1
Non

ns
exp (—_} . (2.68)
(s-1) ! (<n(t)>/8)° <n{e)>

P*(t) =
n

which is identical to the result of the classical diffusion equation, Eq. (2.63a)
for the case o = 1 (harmonic oscillator).

The distribution function given by Eq. (2.68) is shown in Fig. 5 with a Poisson
function which is obtained from a Schrodinger equation as follows. Denoting the

time-dependent wave function by

o0
lwe)> ] c (trexp(-iE t/n) {m> , (2.69)
n=0

the probability amplitudes Cn(t) satisfy the RWA Schrodinger equation

dac_(t)

n
o v (E)C L (E) + v

dt n, - n,n+1(t)cn+l(t) ' (2.70)

where v (t) and v (t) are the matrix elements of the interaction
n,n-1 n,n+l

Hamiltonian H(t), Eq. (2.le), given by

= U - = i
vn,n~l(t) <n|Vcos(wt)(a +a)|n 1>exp(iwn’n_1t) /n VCos(wt)exp(an’n_lt), (2.71)
vn,n+1(t) = /n+l Vcos(wt)exp(an'n+1t) ’ (2.72)

b — ———— e m—— e - =
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Fig. 5. The distribution functions of four-photon excitations (<n(t)>= 4), for
Poisson population (--), diffusion model population with S=1 (--~) and S=6 (s....),
Boltzmann populatigg with §=1 (~..-~) and $=6 (—), and quantal populaticn with
S=0a=1 (~---=).

wn,n-l = (En‘En_l)/ﬁ ’ (2.73)

® .
En —'ﬁ(wA-e n-1y1/2)n ' (2.74)

and V is proportional to the Rabi frequency given in Eq. (2.1f).
The analytic solution of Eq. (2.70) with the initial condition |¥(0)> = |0>,
{i.e., for cold surface, the adspecies is initially in the ground state) for the

harmonic case (e* = 0) can be shown to be

/

c_(t) = L-iw) /11 2exp (-w/2) (2.75)

Al -Ylt -y, t/2

, where W is the energy absorbed by the active-mode given by
1 +e -2e cos(At)] . (2.76)

W=

! A% 4 (71/2)2

namely, a Lorentzian form. The probability of finding the active mode in the

level |n> is given by a Poisson distributionao

P (t) = lcn(c)l2 = (W*/n1)exp(-W). (2.77)

The average excitation (for €* = 0) is then given by

<n(t)>, = ] nP_=W, (2.78)
n
n=0

which is identical to the energy absorbed by the active mode for each adspecies

(0]

W and is equal to the average number of photons absorbed per adspecies.
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Selective versus nonselective excitation. From the steady-state excitation of the

active mode [Eq. (2.25)], we see that in order to achieve a higher excitation the
laser field detuning should be red-shifted to the optimal value, A=2¢*X, which is
due to the nonlinearity of the cubic equation. We also notice that the active-
mode excitation is characterized by the pumping rate, V, the energy relaxation

rate, Yl' and the phase relaxation rate, Y At optimal detuning, the steady-

2?
state excitation [Eg. (2.25)] reduces to the simple expression

Xx= 40 (2.79a)
Y1
1v?

R = . (2.79b)
Y 4,

From the above expression we readily see that the excitation is governed by the
ratio between the pumping rate and the overall relaxation rate, R, for a fixed
surface temperature which defines the occupation number at thermal equilibrium,,;.
For a large ratio, R, we shall expect a high active-mode excitation which means a
highly selective excitation process. For a small ratio, which is the strong -
phonon coupling case with the energy relaxation rate, Yl' characterized by a
single phonon or a few phonons, nonselective thermal heating of the system is
expected.

To investigate the above selective and nonselective features of laser-stimulated
processes more rigorously, we study a multilevel system with the vibrational
frequency spectrum shown in Fig. 6 and the energy level diagrams shown in Fig. 7.

The total Hamiltonian of the multilevel system (N levels in the A mode, M levels

in each B mode and L levels in each C mode) can be written as follows:33
H= Ho + HAB + HBC + HAF ’ (2.80)
H -S‘ﬁwafa +SSMb+b + S. S A c+c (2.81a)
o T N Yi%i% M5 05050 Lk %%k .
- + +
HAB = SNSMsfﬁgijaibj + stMsﬁﬁgijai.jig bj + he , (2.81b)
1
- + +
HBC = SMSLSjsijkbjck + SMSLS:‘Sk‘ﬁK:.,kbjk-ﬂk c * he , (2.81c¢c)
b
+
Hyp () = _2 fv,  (aa +he , (2.814)
i=f
S's denote the summations
; ; ; N
S = S = S = S = S = (2.82)
N [ H ’ L r j f k e’
j-l jl’jz""'jm kllkzo---lkn j-jl k-kl
~ TTTE T e e . —
—————— ———— - - ~ . T o b I PN - - -—
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Fig. 6, (A) Schematic diagram of energy transfer processes among the laser photon,
the active mode (A) and the phonon modes (B and C); (B) Schematic diagram of the
density of states of the system.
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Fig. 7. Schematic energy level diagrams for the A, B and C modes, where V. are the
pumping rates between the i-th and the (i+l)-th vibrational level of the Active
mode, coupled to the B mode via multiphonon coupling with the coupling factor

g.; Y. denotes the energy relaxation of the m~th level of the B mode due to

its coupling to the C modes which are condensed modes with density of states p.
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+ + +
= - w* = - * = - *
wy wA sA aiai R wj wB EB bj bj, Wy uc ec ckck ’ (2.83)

where wA, wB

e;,eg and 66) of the A, B and C modes, respectively; vif(t) is the pumping rate

for a transition from state i to the state f of the pumped A mode; ;, K and g, K

and wC are the fundamental frequencies (with anharmonicities

are the coupling factors of A-B modes and B-C modes for single-phonon and

multiphonon processes, respectively; and hc stands for Hermitian conjugate.

The equations of motion of the Bose operators for the system are found to be

dai(t)
i—75 = wiai(t) + Z.vif(t)af(t) + zgiva(t) ' (2.84a)
£f#i Y
dB (t) N
v
i —r— = QB (t) + 121 9,3, (B) + <[Bv(t) 'HBC]> , (2.84b)
dc_ (t)
. Vv =
i —— =8¢, + {tc 1) (2.84c)
where
Q,=1 wy Q=1 w (2.85a)
Jj k
v v
Nv = I (n.+1) - I n. , (2.85b)
j=1 I j=1
- Hwj /KT -1
nj = |e - 1] ’ (2.85¢)

and the multiphonon operators are given by

Vv AY)
B,(t) = rJr by(e) , C(t) = gck(t) ) (2.86)

The above coupled equations (Eq. (2.84)]), describing a multilevel system subjected
to laser radiation with the accompanying multiphonon relaxations, are not
analytically solvable not only due to the many-body effects of the interaction

Hamiltonian, H but also due to the large number of couplings when several

v
energy levels :ge considered. To overcome the difficulty caused by the many-body
effects, we shall use the Markoff approximation and treat the C modes as condensed
states where the summation over all the C modes may be replaced by an integral
over the associated density of states. These procedures enable us to approximate
the many-level system as a few-level system.

Td demonstrate the selectivity for different pumping rates and multiphonon

relaxation rates, we examine a multiphonon process in which the A mode is
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described by a three-level system and is coupled to the m~th and the 2m-th level
of a decaying B mode via m-phonon coupling. Using Eq. (2.84) for the system
operators for the two-photon multiphonon process and employing the Markoff and

rotating-wave approximations, we obtain

él(c) = - iv) a (t) exp(~-iAt) , (2.87a)

éz(t) = -1V, a, (t) exp(il,t) - ig, B, (t) exp(-idjt) - iV, a () exp(-iA,t),(2.87b)
53(t) = - 1V, a,(t) exp(-iA,t) - ig, B_(t) exp(-ifjt) , (2.87¢)

él(t) = -121; az(t) exp(iAit) - (Yllz) Bl(t) ‘ (2.874)

éz(c) = - ig} a (t) exp(idjt) - (v,/2) B,(t) , (2.87e)

- - - * ' = - ! = * . *
where A1 Wy = W, A2 = A1 2e* , A1 My = Wy, Az oy + 2¢ Wpr € is the
anharmonicity of the A mode and V, g, Yy are the pumping rates, coupling factors and
the damping rates for the related levels, respectively. The above coupled

equations are again numerically solved to obtain the level populations:
2 2 2 2 2
P Ial(t)l P Py = laz(t)l + |a3(t)| and P, = lBl(t)l + |Bz(t)| .

Therefore PA and PB describe the population dynamics of the photon energy

deposited in the A and B modes, respectively, while PC =] - (Pl+PA+PB) describes
the population loss of the (A+B) modes and represents thermal heating, i.e., the
portion of the photon energy randomized in the phonon bath C modes. The energy
populations are shown in Fig. 8(A) for selective excitation of the A mode with
(V,9,Y) = (4,0.1,0.4) and in Fig 8(B) for nonselective heating of the C modes

with (V,g9,Y) = (4,1,1). We see that for fixed laser pumping rates, V -v2-v, the

selective excitation of the active mode (A) requires a small multipho;on coupling
factor, g, and small energy leakage rates, YI-YZ-Y, out of the B mode, while
appreciable nonselective thermal heating of the bath modes (C) is achieved when
the coupling factor and the damping rate are comparable to the pumping rate.
Isotope separation of adspecies.35 Isotope separation of species in the gas
phase has been successfully studied both experimentally and theoretically. How-

ever, for a heterogeneous system, the separation of isotopic species adsorbed on a

solid surface has not baen experimentally investigated extensively due to the com-
plexity of the technique, involving as it does a combination of surface physics,
molecular dynamics and laser optics. We illustrate some possible mechanisms for
isotope separation of adspecies using a model based on previously developed theory.
The ensemble-averaged equations of motion in HMP for a system consisting of a
mixture of two isotopic adspecies may be obtained by extending those for the
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single-species case (Eq. (2.22)] as follows:

. A '
a(t) = Eﬂeff(t)-({la(t) + VA/2 + Db(t) , (2.88a)
o B

b(t) = E%eff(t)-4]b(t) + Vé/z + Da(t) , (2.88b)

<6A(t)> = —VA<<Im[a(t)]>>~ 20<<Im[a(t)b+(t)]>> - yi [<"A(t)>-nc/2] , (2.88c)

<ﬁB(t)> = -VB<<Im[b(t)]>>+2D<<Im[a(t)b+(t)]>>- y§(<nB(t)>-nC/2] . (2.884)

.

where VA and VB are the pumping rates for the A and B modes, nC is the Bose-

Einstein distribution for the C modes, Im denotes the imaginary part and D is the

coupling strength between the isotopic adspecies A and B with the effective fre-

quencies w:ff and w:ff, respectively, whose ensemble averages are given by
A,B * .
<< >> = - < >- .
weff wA,B ZEA,B nA,B(t) er,B/z ’ (2.89a)
_ A,B A,B
FA'B = Yl + Yz . (2.89b)

A}

We note that both of the isotopic frequencies w_, and wB are nearly resonant with

A

the laser frequency. <nA B(t)> denote the average excitations of the A and B
’

species, respectively.

18 1.8
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Fig. 8. Energy populations of A, B and C modes of two-photon multiphonon
processes, given by Pp, Pgp and Pa, respectively, for (pumping rate, coupling
factor, damping rate) = (V,g, Y) = (A) (4,0.1,0.4): selective excitation; (B)
(4,1,1): nonselective thermal heating.3
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The coupled equations [Eg. (2.88)], which are highly nonlinear due to the
anharmonic corrections 2€*<nA B(t)> and the isotope coupling strength D, can only
’
be solved numerically. However,one can obtain the steady-state excitations for

the weak-coupling case, Dz0,

2
A,B
<ny g(t)> = BB A,B_1 , (2.90)

’ 2 2
A,B
< b
[ W pe>> w] + [FA,B/z}

which show that one of the adspecies may be selectively excitated without sig-

nificant excitation of the other when the laser frequency, W, is tuned to one of

A,B _ A,B
= <<y

eff eff

To demonstrate the effect of the coupling strength, D, on the dynamics and the

the optimal value, i.e., A >> - = 0, for either adspecies A or B,
steady-state excitations, we plot the numerical solutions of Eg. (2.88) for the
harmonic case (' _=0) in Fig. 9. It is seen that <nA(t)> is higher than <nB(t)>

A,B

for AA < AB' where A -w, with D=0 (Fig. 9(A)]. As D increases, both

aB - Ya,B
excitations decrease [Fig. 9(B)]. 1Increasing the coupling strength to the tran-
sition value, i.e., D = D*= (AB+AA)/2, causes the steady-state excitations to
become identical [Fig. 9(C)]. For large coupling strength, D>D*, both excitations
are low and <nB(t)>is higher than <nA(t)> [Fig. 9(D)]. These numerical results
for the steady-~state excitations are seen to be in accord with analytical results.
Defining the "difference excitation” N.Z X - Y, where X and Y are the steady-state
excitations of the adspecies A and B, respectively, we obtain, from Egq. (2.88),

for A'B=0, V. =V _=V, Yl Yl Yl and FA FB r,

2~
N = VT (@ -2D) /| 4y, | 22422 (2.91a)
+ Y1]21%2,01 - .
2 2
z, = AAAB -Dp° - (I'/2)" , (2.91b)
z, =1Q7/2 (2.91c)
Q =8t (2.914)

A = W -—w (2.91e)

The above expression for the steady-state "difference excitation" N. displays the
following important features: (i) isotopic selectivity increases with decreasing
coupling strength; (ii) when the coupling strength reaches the transition value
D= p' = Q+, there is zero selectivity, i.e., N. = O as shown in Fig. 2(C).

(b) Classical models. In the previous sections we have treated the adspecies-

surface system as a quantum-mechanical system subject to laser radiation




either as a classical field or as a quantized multimode field. We shall now con-

sider fully classical models, starting with a single-body system39 and then extend-

ing the treatments to a many-body system.4°-43 The energy-transfer dynamics is
reexamined via the generalized Langevin equation where the memory effects, repre-

40,41

sented by a damping kernel and a dephasing kernel, are discussed. Multiphonon

relaxation processes and possible selective excitation of a specific bond are in-

vestigated in terms of the internal resonance condition.41

Cooperative excitations
using several lasers with optimum detunings are investigated. Finally, the results
of fully classical models are compared to those of the quantum-mechanical models.

Single-body system. Considering the active-mode of the adspecies as a classical

anharmonic oscillator and the remaining modes (inactive modes plus surface phonon
modes) as the heat bath, the normal-mode coordinate of the damped nonlinear

oscillator, x, satisfies the classical equation of motion39

X + 2yx + wix + Xlxz + )‘2"3 = £(t)/m , (2.92)

where Y is the generalized damping factor (the overall absorption line broadening),
\1 and Xz are the small anharmonic coefficients, m is the reduced mass of the

adspecies, and the driving radiation field f(t) is given by

f(t) = eE cos{@)cos (wt). (2.93)

3k 3
i
2P .

| 4
TIME (IN UNITS OF vY)

Fig. 9. Time-dependent excitations <np g(t)> of the active modes for the harmonic
case, i.e., € = 0 with (V,Y,83,89) = (10,1,4,8) and D = (a)0, (B)2, (C)D*, ana
(D)10. D" = (Ap+Ag)/2 = 6 is the transition value where N_ = 0.3 !
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Here, e is the classical effective charge and Ois the angle between the linearly
polarized electric field, E, and the direction of the pumped normal-mode coordi-~
nate. The laser frequency wis tuned to be near resonant to the active-mode
frequency Wa -

By the harmonic balance method, Eq. (2.92) can be linearized to second order in

Al and first order in kzz
. - 2
X + 2Yx + weffx = f(t)/m , (2.94)
i where the effective frequency weff is related to the amplitude of the classical

oscillator A and the classical anharmonicity x* by

weff = wA - K*Az R (2.95a)

* 2 3
K = 5%1/120)A - 3\2/8(»A . (2.95b)

The steady-state solution of Eg. (2.95) is straightforward:

| X, o(t) = A sin(wt) + A,cos(uwt) , (2.96a)
where
F A, = 2(eE/m) (yw/Z)cos(8), (2.96b)
A = (eE/m) |w?, . ~w’|/Z cos(® (2.96¢)
2 eE/m weff-m cos(9) , . 96¢C
zZ = mz -w2 2 + (2wY)2 (2.96d)
eff ! °
and
2 2 2
A = Al + Az . (2.96e)

Combining Eq. (2.93) and the time derivative of Eq. (2.96) we obtain the instan-

taneous steady-state power absorption of the oscillator

B(t) = £(t)k_ _ (t) = eRwA cos (wt) - (eBuA,/2) sin (2ut) . (2.97)

.8 1

Since the second term of Eq. (2.97) vanishes as a result of time averaging, we
obtain the time-averaged steady-state power absorption for near-resonant

excitations,

2.2
P(E) = [‘43 X cos2(8) . (2.98)
m ( . 2 2 2
A-K'A ] + Y

\

The classical steady-state excitation energy defined by £ = mwilz = p(t)/y results

in a cubic equation for the square of the amplitude, X = Az,




2
leEl 2
—_— /w
X = 2m A

. (2.99)
(A-k*x)% + Yz

Generalized Langevin equation.41 Equation (2.92), describing the motion of a

forced anharmonic oscillator, contains only the energy relaxation rate Yy and hence
cannot completely describe the overall energy~transfer dynamics which, in general,
should be characterized by both the energy and the phase relaxation factors as we
have shown in the quantum models. As an extension of Eq. (2.92), we investigate
the generalized Langevin equation {GLE):

2

ae t . t .
x(t)+fodt' xl(t-t') x(t')meffjgt' Kz(t-t') X(t') = [f(t)+fR(t.) /m (2.100)

where f£(t) and fR(t) are the driving force due to the laser field and the sub- 4

strate~induced random force, respectively; Kl and K2 are the kernal functions for
the energy and phase relaxation, respectively. The major mechanisms which cause
the Tl and 'r2 relaxations are: (i) vibration-induced lattice-site transition
(migration) of the adspecies; (ii) anharmonic coupling of the phonon bazth modes;
(iii) the inter~ and intraspecies interactions; (iv) the substrate-induced
thermal fluctuations of the effective dipole of the adspecies and the effective
electric field at the adspecies; and (v} charge transfer and coupling among vi-
brational degrees of freedom and other degrees of freedom, e.g., librations of

the adspecies.30'31’40"u

We note that the damping kernel (Kl) characterizes the
dynamics of the energy relaxation of the excited adspecies while the dephasing
kernel (K2) only governs the phasing information without causing any change of the
energy population.

Employing linear response theory and time-dependent perturbation theory, we may

express the averaced energy absorption rate as follows:41
2
ag, (eE)
= S (l1-exp(-Bhw)] (ReF[w]) , (2.101)
with B-(kTo)-l and Re denoting the real part of the Laplace-Fourier transform of
the velocity correlation function,44
Flw] = I” dat exp(iwt)F(t) , (2.102a)
0
F(t) = <X(t) X(0)> , (2.102b)

where the velocity autocorrelation function, F(t), is governed by the GLE in the
absence of the laser field. Multiplying both sides of Eq. (2.100) by X(0) and
performing the ensemble average over the initial conditions, we obtain the




equation of motion for the velocity autocorrelation function

t t

e ' ' ' 2 ’ —t? 'y = .
F(t) + | 4t Kl(t—t JF(t') + w dt Kz(t t')F(t") <X(0)fR(ti>/m . (2.103)

eff
0 0

Taking the Laplace-Fourier transform of Eq. {(2.103), we find

kT
Flw] = [}—‘)] 1 - , (2.104)
iw + Kllw] + weffxz[w]

where Kltw] and Kzlw] are the Laplace-Fourier transforms of the kernel functions.
In obtaining Eq. (2.104), we have used the initial equilibrium average, F(0) =

<X(0)X(0)> = kTo/m, and the convolution theorem for the Laplace-Fourier transform,
® t

- * = € "iwt
A foiafe| oo
0

For given forms of the kernel functions Kl(t) and Kz(t), we can find the as-

dat! gl(t-t')gz(t')= :f(gl)i(gz) . (2.105)
0

sociated Laplace-Fourier transforms Kl 2[w] and compute the average energy
’
absorption rate from the real part of F[w]. In using the convolution theorem, the
j ' kernel functions Kl 2(t) and the velocity autocorrelation function F(t) must be
’

i well behaved, i.e., K, .{t), F(t)*0, as t*o. Keeping this in mind, we consider a

1,2
b Markoff process where the damping kernel is given by a Dirac delta function,

’ xl(t) = 2Y15(t) R (2.106)

i where Yl is a constant damping factor. Furthermore, the Tzdephasing kernel, Rz(tL
[’ which destroys the coherent nature of the excitation phase but does not change the
]

energy population of the excited adspecies, is chosen to be an exponential form,
! 4 K,(t) = exp(=2Y,t) (2.107)

where Yz is a constant dephasing rate related to the phase correlation time by
2Y2 - T;l‘ Working out the Laplace-Fourier transform of the kernel functions
Kl'ztm] from Eqs. (2.106) and (2.107) and substituting the results into Eq.

| (2.104), we obtain, from the real part of F(w) and Eq. (2.101), the averaged

energy absorption rate

Y.C + wD
, .' <§>- (eE)? P(T) | =53 ' (2.108a)
/ C 4D
P(T) = (20w "H (kT /m) (1-exp(-T/KT)) (2.108b)

A

- T S
B SR NIRRT
i o e e e e




rm—

2 2
C = Wege ~ w o+ Y1Y2 ’ {2.108¢)
D= w(Y1 + Y2) . {2.1084)

The important features of the above equation are: (i) for low temperature

(kTo<<ﬂw), P(To)‘!TO,
temperature-dependent (for single-phonon relaxation processes), Eq. (2.108)

and when the overall broadening (Y1+Y2) is weakly

reduces to <d$/dt><rTo; however, for multiphonon processes and/or high temperature

temperatures, P(To)¢ Toexp(ﬁm/kTo), <dg/dt> 18 strongly temperature-dependent;
(ii) for A=weff-w<<w and Y1Y2<< w2, Eg. (2.108) reduces to a Lorentzian with

FWHM = 2(Y1+Y2) '

, 2 (Y #Y,)
& - {e—f] B(Ty) | 5——2— | | (2.109)
a4ty +y)

which, except for the temperature-dependent factor, reduces to Eq. (2.98) when
Y2=0.
Stochastic processes. In the previous stochastic quantum model, the many-body

effects of the phonon bath were accounted for by defining an effective Hamiltonian
in which the ecrive-m;de frequency had a complex stochastic component [Eq.
(..74d)]. The |litter was obtained as a result of an ensemble average over the
stochastic process.30 We shall now investigate the stochastic effects of the

laser field,
£(t) = eE coslut + ®(t)], (2.110)

where &(t) is a stochastic random phase factor. For a Markoff process with the
phase correlation function <$(t)$(t')> = Zyod(t-t'), the ensemble average of the
field Eq. (2.110) becomes

-Yot

<£(t)> = eE cos(wtle ' (2.111)

namely a Lorentzian electric field for which YO is the frequency bandwidth and
Y;l describes the exponential decay of the field envelope at a point in space.
Employing the exponentially decaying laser field f(t) in Eq. (2.94), we obtain
the average energy stored in the pumped adspecies,

-Yot  _ (v, +v)t/2
[; 0 + e Ye_ 2e 0 cos(At;] R (2.112a)

<£(t)> = 8°

2.2 1

€ = {e«i ] -F_ K.A2]2 N [Y N Yo]z cos (6)

(2.112b)
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A novel feature of the above result is that due to the frequency width of the
decaying electric field, YO' the ensemble-averaged energy absorption of the
adspecies is governed by a total decay rate, Y0+Y, but the width of the steady-
state energy absorption profile is reduced, i.e., FWHM = YO-Y. The time that it
takes the system to absorb the photon energy is determined by YO or Y, depending
on which is larger.

Many-body system. We consider a model system (as shown in Fig. 10) with a

diatomic molecule adsorbed on a solid surface and subjected to infrared radiation.

The classical Lagrangian may be written as43

£=i0 + E x, £.(6) (2.113a)

——
.
Laifl N}
|
£
N
»
N
e e
1
™
»
w
1
m
>
N

2 22 1
Yom, [x5-wixS| + 5 ) A x.x, 4+
j=3 U3 373 2 i

(p) &L +
. ’ 2.113
pgz 123 (p + 1)! 13 x4 3 (2.113b)

where m e Xie W (ix1,2,3....) are the mass, the displacement, and the frequency
of the ith atoms, respectively, and the interaction terms with coupling constants

Aij and Aig) (between the ith and jth atoms) are referred to as the single-phonon

(linear) coupling and the p-phonon (nonlinear) coupling, respectively. Here the
admolecule is treated as an anharmonic oscillator (up to the quartic terms) while

the surface atoms are treated harmonically. The anharmonicities el ’ Ez and the

coupling constant ) are related to the derivatives of the potential energies ang,

12
e.g., for a Morse potential

0 2
Vix,,x,) = De]:exp[}a(xl—xz-x ﬂ (2.114)

4

we have € a3D , € a D , and A = 2azD . Similarly, the coupling

= L
1 ( } 12
constants Ai' and A are related to the palr potent1a1 energy betweenr the Lth and

;ph atoms by

2 p+l
9 V(x..x.) ] v(x-'X-)
i PN 2 R S M (2.115)

A, ’
ij x,0x 13
%5 Jo axiaxf; o
where the subscript zero means evaluation a the minimum of V(xl,xz). The second
term in Eq. (2.113a) is the interaction energy between the admolecule-surface

system and the laser field,

fi(t) = qiEi cos (wt) cos(ei) , (2.116)

where qy is the classical effective charge of the atoms, and 91 is the angle
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Fig. 10. Diatomic molecule chemisorbed on a solid surface. The coupling constants
between adatoms 1 and 2 and among the adatoms and the surface atoms are given
by x12’ Alj' and ij, respectively. 42

between the linearly polarized electric field Ei (with frequency w) and the

coordinate vector for the optical active mode(s) of the system. Direct numerical
analysis of the equation of motion is not tractable due to the complicated many-
body effects of the surface atoms. To obtain analytical results, we shall con-

‘ar a less general Lagrangian, namely one where no explicit interactions are
-.-.sumed between the surface atoms. Furthermore, the interactions between the
admolecule and the surface atoms will be taken into account by introducing
damping factors. As an example, we consider CO adsorbed on a nickel surface and
subject to IR laser radiation with field frequency near resonance to the stretching
frequency of CO. Restricting ourselves to a truncated five-atom chain

0~C~Ni-Ni-Ni, with the oxygen atom labeled 1 and so on, the coupled Newton's

equation of 1 _ion describing this system are42
mliil = -k, (x %)) - yx, = £(8) (2.117a)
m¥, = =ky, (k%)) = ko (xymx,) - yiz + £(8) , (2.117b)
ms§3 = —k23(x3-x2) - ks(x3-x4) - Yi3 ' (2.117¢c)
m83i4 = -k _(x,=x3) - k_(x-x;) - y§4 , (2.117Q)
m ¥, = -k_(x.~x,) - yis , (2.117e)

where k and Y are the force constant and damping factor, and f(t) = gE sin(wt) is
= 16.8, k23 = 2.6
= 16, m_ = 12, and

the laser driving force. The force constants used here are: k12

and ks = 0.24 (in units of mdyne/i), and the atom masses are m,

2
m = 58.71 (amu), where ks = k34 = k45, and m,=m,=m, = mg .
These five coupled second-order differential equations are equivalent to a set

of ten coupled first-order differential equations, which were numerically solved




39

by the Runge~Kutta method. In addition to the amplitudes of the chain atoms, we

can compute the energies

i 2
1 .2 1 2
By = 1.3 m%Xp + 3 kpolxmx,)" (2.118a)
i=]l
1 2 1 2
Ep = 3 mxy + 3 k23(x2-x3) / (2.118b)
J ? 21 2 .1 2 2 :
’ Ec = 124 3 m X + 3 ks[(x3—x4) + (x4-x5 ] ’ (2.118c)

where EA represents the energy of the adsorbed CO molecule, EB is the "energy" of
the surface, namely the outermost nickel atom, and EC is the energy of the rest of
the solid {(chain nickel atoms, 4 and 5).

The numerical results for the amplitudes of the atoms and the energy profiles
EA' EB and EC are plotted in Fig. 11 for different sets of values of the damping
factor Y and the detuning A=wo—w. Fig. 11(A) shows the exact resonance case
(A=0) with Yy=100 cm-l. The near-resonance cases are shown in Fig. 11(B) with
Y=100 cm™> and A=20 cm ™}, Fig. 11(C) with y=A=10 cm 1, and Fig. 11(D) with y=A%0.

It is seen that the decaying and oscillating features of the energy profiles are

characterized by the damping factor and the detuning, respectively. We note that
the amplitudes of the excited CO molecule are much higl.er than those of the Ni
atoms due to the mass differences {atom-2 has the highest amplitude). The energy
profiles shown in Fig. 11 are generated for a high-power laser with intensity

I=1012 W/¢m2 (hence short computation times, in contrast to the situation of a

i low-power laser). Due to the high frequency of the field wa‘lo14 sec-l, we
require time steps on the order of 10.15 sec in using the Runge Kutta method.

For an actual system of low-power excitation LSSP (with laser intensity

3 I=10-100 W/cmz), we expect similar energy profiles as shown in the high-power
’ cases. This stems from the fact that the energy profiles shown in Fig. ‘11 are
F "universal" for any range of laser power, provided the proper time scales (in
units of the reciprocal of the pumping rate) are chosen.

For a long-lived adspecies excited by low-power laser radiation, the time
scales of the energy profiles lie in the range 10_3 to 10-6 sec, which are much
longer than the time period of the field (w-1~10-14 sec). The necessity of
using a mesh size of the order of the latter makes for very large computation
times for this case. To overcome these difficulties, particularly for low-power
excitation processes, we present a method which utilizes the concept of the
rotating-wave approximation borrowed from quantum mechanics.36 Consider a model

system consisting of adatoms 1 and 2 chemisorbed on a solid surface and subject to
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Fig. 11. Amplitudes of atoms and energy profiles for different bonds of_ the
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different sets of the damping factor (Yy) and the detuning (4): (A) vy = 100 cm~1
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an external field [V sin(wt)], described by a set of coupled equations (for

nearest neighbor xnteractions) 43
" Vi (%) %)) .
m ¥ = - % - myx, 4 vlsin(wt) ’ (2.119a)
ov. _(x,,x v _(x._,x
n 1271772 237273
mi, = - 8x2 - 8x2 2Y2x + stln(wt) ' (2.118b)
av (x ) av, . x..x,. )

N 3 .
. o= p I S RS, P 5.2 Sl R 5.2
-3 | ij 3xj

- mstxj + vjsin(mt) , 323 ,(2.1¥¢c)

where xi(i-1,2,3,...,) is the coordinate of the ith atom for the longitudinal
motion, and the damping terms miYiii are included to take into account the lateral
interactions between the atoms of one row with those of another. The damping
factors Yi(isl,Z) for the adatoms simulate the surface effects of the solid
crystal, and the damping factors Yj(j23) of the solid atoms simulate the effect of
the bulk of the lattice in representing the free translational motion of the one-
dimensional linear chain. This is the significant difference of Eq. ,(2.119) from
that of the usual one-dimensional chain model, where the latter loses all the
many-body surface effects of the adatoms and the many-body bulk effects of the
solid atoms. By using the rotating frame

yi(t) = xi(t) exp(iwot) '

where wo is the frequency of the optically-active mode of the adspecies-surface
system, we shall consider the near-resonant excitation with the detuning
A= Wy ~ W= 0 (for the harmonic model) or A = wo - K*Az - w = 0 [for the

anharmonic model — see Eq. (2.95)]. The coupled equations of motion Egq. (2.119)
become

oV
. V12 . 1y ot
my, == 5—— + mlwoy - lel(Y1+inY1) +3V,e ’ (2.120a)
v v i
== 12 23+mwy - my, (p Huy) + v it (2.120p)
5 5 0" 2 2272 0°2 2 2

oV
-1, 1 -iAt j23 , (2.120c)
-—g-y—j—i —g—-i—i-mwy my(yj+im )+2Vje

where A = Wy=w is the detuning. In obtaining Eq . (2.120) we have used the RWA,
that is, we have neglected the fast oscillating terms exp[ti(wo+w)t]. The
important features of the new equations of motion are: (i) due to the complex

a N




coefficients, the j coupled equations are in fact 2j real equations (equivalent to
4j first-order differential equations which must be numerically solved); (ii) the
time-dependent field with the very fast sinusoidal function sin(wt) is eliminated
in the rotating frame by the RWA,and the coupled equations are characterized by
the detuning A which leads to a much slower oscillating function, exp(-ilt),
compared to the driving force Vlsin(wt) shown in the original equations of motion
{Eq. (2.119)].

Reduction of the many-body problem and universal energy profiles. For tractable

results, we shall reduce the many-body problem described by Eq. (2.113) to a few-

body problem. For this purpose, we employ the orthogonal transform43

xl = 2_?-—;()\1]Q2 + AZ]QI) ’ (2.121a)
[Alj + Azj]
— 1 -
x, = - i (Az Q, xljgl) , (2.121b)
[xlj * A23']
.2 Q. , j 23 . (2.121
. xJ QJ j c)

The Lagrangian of the model system becomes, in the transformed normal mode

coordinates Qi (i=1,2,3,...),

i(Ql’Qz'...Qj'..') t 3 )

1 -2 2.2 =(p)
= . =~ Q.00 A ALQ. + Al "+
2 M jZ3[QJ JQJ] + 19,0, +Q, j£3 32 * 9 jZ3 922‘ j Q?

o, ¥ ¥ 2PPiwpo +Yf0 (2.122)

2 . 3 172 “ Titi
j=3 p=2 i

where the transformed frequencies are given by

32w emad Wl e

m . .

Qi , " 129,151 2 1j,2322 1271323 , (2.123a)

’
Ml,zkj
Q. Zw, , j23 , (2.123b)
] h)
the transformed masses by
2 2 2 ]
= 2.12
M1,2 Lmlxlj,Zj + mZAZj,lj] /Aj . ( 4a)
M ZEm, , je23 , (2.124b)




- 2
M = lekzj(m1 - mz)/kj , (2.124c)

the transformed new anharmonicities by

e, 23, zend ) ea®oo 02 502
11725,13 * "12713,2j j715 §723
X, , = i R SN F (2.125a)
1,2 23
3
4 4
€. A + €A
24 15 .
k! = 2223.10  221).2 (2.125b)
1,2 X
3
and the transformed generalized forces by
£, 2(8) = (xzj,ljpl 3 xlj’zjrz)/xj . (2.126a)
fj(t) = Fj(t), jz3 . (2.126b)

The new coupling constants (note - these are sur! ace-atom site dependent) are

defined by

A 2A. A
12 2 2 13" 23 2 2
A = (xzj Alj) -—xi;-l (mlwz - mzwl) . (2.127a)
3
A= (02 4 )\2.)i , (2.127b)
j 13 2j
(p) (p)
LA M3 Mgt Ray Yoy (2.127¢)
3 (p+1)! ' )
(p) _ ()
3 My Moy~ Moy tay (2.1274)
J (p+l)!

In deriving Eq. (2.122), we have neglected the high-order anharmonic terms (Q:,

n > 4) and considered the linear coupling terms between Ql and Q2 while keeping
the high-order couplings among the adatoms and the surface atoms. Moreover, the
couplings among the surface atoms (Qin, i, > 2), which gives rise to an infinite
number of coupled equations of motion, are effectively absorbed into the site-

dependent coupling constants (A ) and the frequency dispersion of the

ij'x2j
surface-phonon modes.

The corresponding equations of motion in the transformed normal coordinates are

4 |3&| _ 3k

at 55; - 56; =0, i=]),2,3, ... . (2.128)
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Substituting from Eq. (2.122), we obtain equations of motion, which are complicated
and will not be shown here.‘3 We shall consider the situation m1=m2<<Ms and near-

resonance excitation w:Ql’z, namely no direct laser excitation of the substrate

atoms. Under these conditions and employing the asymptotic (or harmonic balance)
method,37'39
(2.128) with no multiphonon coupling terms,ri.e., neglecting ngk;p)Qg for j23,

p22,

we obtain the linearized equation of motion, from Eg . (2.122) or

. =2
G+ o = E\Qz + fl“"’]’“l , (2.129a)
. 2
g, + 52 0, = |Ae, +j§3xjgj +E0)|/M, (2.129b)
. 2 .
Qj + Qij = XjQzlns , 323 . (2.129¢c)

We have introduced the effective frequencies Ql and 92 which are approximately
related to the anharmonicities (Ki,K;) and the steady-state amplitudes of the
modes (AI,AZ) by

= - K%
91'2 91'2 K1,2A1,2 ’ (2.130a)
where
SK 3K!
Kt = §'2 - BQILZ (2.130b)
’ 12Q 1,2
1,2

To further reduce the above many-body system, we shall use an iterative scheme

starting with the homogenous zero-order solution of Eq. (2.129b)

(0)

Q, "(t) =B cos(ta) . (2.131)

(o)

From Eq. (2.131) we obtain the first-order solution of Eg. (2.129c) which results
in the ensemble-averaged equation of motion for the first-order solution of Qz(t),

Q> + Y<f22> + [ﬁg - &n] Q> = [A<Q1> *E () + <fs(t)>] m, (2.132)

where < * - - > denotes the ensemble average over the surface temperature, and

<fs> is the surface fluctuation force given by

<E_(£)> = <j§3)\jhj cos(th)> . (2.133)

Y and Sw, the damping factor and frequency shift, respectively, are related to the
and the phonon density of states p by

coupling constant A

3
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2
2la
Y=1§T J _2_2 p(Qz] , (2.134a)
MM D
2's 2
lr 22lq. p(Q.l
Sw = — | 4q. . (2.134b)
Mg Jo 3 M, Q§-§§

In deriving Egs. (2.132) - (2.134), we have used a Wigner-Weisskopf-type approxi-
| mation and replaced the sum over the phonon modes by an integral over the associ-
ated phonon mode density of states p(Qj). The above classical results [Eq.(2.134))
are in exact agreement with our previous quantum-mechanical results where
the level broadening and the level shift correspond to the damping factor and the
frequency shift, respectively. It is important to note that, in Eg. (2.134), both
the coupling constant Xj(ﬁé) and the phonon mode density p(ﬁé) are evaluated at
the frequency of the 92 mode which is coupled to the surface phonon modes. For a
Debye model spectrum D(Qj) = 3Q§/QD with the cutoff frequency QD' we obtain

2(= 3
Y = 3nkj[92]/{2M2MsQD] . (2.135a)
P[] Q o+ 0
i Sw = 2 11 - 52 1 e (2.135b)
MM S D Q) -9,

So far, we have reduced the many-body problem to a two-body problem described by
the equations of motion (2.132) and (2.129b), where the surface-induced damping
factor and frequency shift of the Qz mode are introduced through the Langevin
equation. We shall now further reduce the two-body system to a single~body system
where the energy absorption profile may be exactly calculated. For this purpose,
we consider the situation where only one of the normal modes is nearly resonant

] with the field and is strongly excited, namely ﬁézw. We further assume that mode

: 2 (with frequency ﬁ&) is weakly coupled to mode 1 (with frequency §f>§é) but is
strongly coupled to the surface phonon modes via the single-phonon relaxation
factor Y. The langevin equation [Eq. (2.129)) reduces to a single-body equation

of motion

G,) +v Q) + a7 @) = v, costwr) (2.136)

where we have assumed a "white noise" such that the surface fluctuating force has

a zero ensemble average, i.e., <£s(t)> = 0, and the pumping rate v2 is defined by

the generalized laser driving force fz(t) - sz cos(wt). The complete solution of
Eq. (2.136) is found to be

2




<Qz(t)> = A__ sin(uwt) + Ae cos (wt) + e_Yt/zl_—Ao cos(wit) + Bo sin(wét):] (2.137)

ab 1

with the initial values

A, = (2,000 . (2.138a)
B, = [Q,00) + v, 0]/ . (2.138b)
where 3
w) = [ﬁ; - (iv)%] ' (2.138¢c)
Ay = yﬁzvz/z , (2.1384)
2 2
A, = [ﬁz -w ]vz/z , (2.138e)
z = (ﬁ; - wz]z + (ywl (2.138¢)
2 =2
§2 =0 -t . (2.138q)

The constants A . and Ae are referred to as the absorptive and the elastic

ab 1
amplitudes because tlie time-averaged power absorption is entirely due to the

out-of-phase displacement A . sin(wt) [which leads to an in-phase velocity with

ab

respect to the driving field V, cos(wt)]. The corresponding stored energy in the

2
pumped mode is

S = Eo[l v e Yt L 272 g [(wi - w)t]] (2.139a)
where EO is the steady-state energy given by
e2 2 Y ?
Eo = Siﬁ; Beff Az " (§Y)2 . (2.139b)
opt

Here we have introduced an effective electric field acting on the mode 2 (see Eq.
(2.126a)], for the classical effective charge e = qy =~y

Angz cos(92) - Xij?l cos(el)

Epgee = CIPRCAL ' (2.140a)
15 23
and the optimum detuning
2 2
Aopt = A - x*z' (Aab + Ael] (2.140b)

which is laser intensity dependent [see Eq. (2.138)]. By writing the laser in-
tensity I as E:ffl(sﬂ/c), the steady-state energy may be expressed in a

.- S, 1./ i~ il
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conventional form

2 Y 2
-7
E = (2_5 x 10 ) e Y\ ___ , (2.141)
° 20182 . + ap?
opt Y

where the units used are Eo(eV), I(W/cmz), Mz(amu), e(4.8 x lo-loesu), and both

' the detuning and damping factor are in units of cm-l.
To demonstrate the analogy between the quantum and the classical results, we
investigate some of the limiting features of (Qz(t)) and &Xt) for Y=0 and A=0.
For the free-oscillator case, i.e., y=0, the solution of Eq. (2.132) becomes

2e 1 f .,
<QZ (t)) = i'gA_op_t Eeff cos (-Z-Aoptt] cos [5(“’2 + w]f;] v (2.142)

and the energy absorption of the pumped mode is given by

1 -cosjA .t

- 2 2 ( opt ]

£ ) [Zﬂe /oM, [Eq e 5 , (2.143)
opt

which is an oscillatory function since the available energy, for the isoclated B
mode, will be necessarily transferred back and forth between the pumped mode and
the laser field (via absorption and stimulated emission, in quantum-mechanical
language). Note that Eq. (2.143) reduces to

) = [nez/cuzlxtz (2.144)

which is proportional to tz for the exact resonance case, i.e., Aopt = 0.

The energy absorption given by Eg. (2.139) is shown in Fig. 12 for different

sets of the optimum detuning Aop and the damping factor y. It is important to

t
note that these energy absorption profiles are universal for all ranges of the
, laser intensity (I =1 - 1012 w/cmz) if the associated time scales are in units of

'i Y-l. For a comparison of the energy absorption profiles given by the reduced

single~-body Langevin equation [Eq. (2.131)] and those of a set of coupled
i equations for a many-body system [Egq. (2.118)], one may compare Fig. 11(C) with
Fig. 12 and also Fig. 11(D) with the results shown in Eqs. (2.143) and (2.144).

Excitation witn several lasers. We now extend the excitation of a single-body

system by a single laser to the situation where several lasers of different
frequencies are used. Recent experiments have demonstrated the advantage of using
two lasers for the excitation of species in the gas phase,and recent quantum

theoretical calculations support the experimental rosultn.‘s We shall show that

the results of the following classical treatment are identical to that of the
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Fig. 12. Universal energy absorption profiles of the pumped mode for dlfffrent
sets of the optimum detuning A, ,+ and the damplng factor (in units of cm

curve A - Ao pt = 0, Y =2 x 107 g curve B - 2 = 0.5y = 5 x 10~4; curve C - Agpe
= Y = 1073; curve D - lopt = 2.5y = 2.5 x 10~ The laser power is I = 100 W/cml.
Note that the time scales are shown in units of Y~

quantum treatment.
Consider the equation of motion for an anharmonic oscillator subjected to two

lasers at different frequencies [see Eq. (2.94)]

X + 2YX + w?

effx = [%l(t) + fz(ti]/m ’ (2.145)

where the driving radiation fields are given by

- {
fl(t) eE1 cos\wlt} R

fz(t) - eE2 cos[wzt] .

The steady-~state solution of Eq. (2.145) is modulated by the two laser frequencies:
X (t) = z A sin[m t] + B cos[w t] '
s.8. i=1,2 [ i i i i

which yields the steady-state power absorption averaged over the period of the
field [cf. Eq. (2.98)]
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P(E) = plt) + i=§’2 o “A. - K*A2]2 T ' (2.146)
i ii

where Ai = w,-w, are the detunings of the radiations, and the interference term
PI(t) is given by

e (8o g = (]

- R* - ]t
i KAJ]SLnﬂml w,]

i=1,2 - K*A ] + 72

The interference term proportional to E1 2 is likely to be negligible, since the

magnitudes of the time-averaged quantities cos[(wl-wz)t] and sin[(w,-w,)t] are

much smaller than those of the direct terms which involve cos(Zwit) and

EIETiﬁ_ET for Wy 20, - Therefore the absorption power p(t) is mainly due to the
second terms in Eq. (2.146). Two important features of this two-laser excitation
are: (i) due to the anharmonicity K;Af there is an optimal detuning for which one
gets maximum excitation for a fixed laser intensity; (ii) excitation via a single
laser whose intensity equals (V1+V2) is less efficient than that obtained using
two lasers at different frequencies. The latter can be understood as follows:
In the initial stage of the excitations, the adspecies is excited mainly by the
action of the first laser with w1<wA. After the adspecies is highly excited, the
second laser with w2<a& satisfies the near-resonance conditicn for the excitation

of the anharmonic oscillator whose frequency is lower for higher energy. We note

that this cooperative effect in utilizing several lasers for the excitation of

anharmonic adspecies is due to nonlinear features of the system. The above

classical results are consistent with those of a quantum mode1.45.

Classical versus quantum models. We can compare the above classical results with
39

those of the quantum models using the following quasiquantum arguments:
e = ' (0) ’
*mghz = <nmﬂo ’

where e is a classical charge, u'(0) is the matrix element of the derivative

of the dipole moment A is the amplitude and <n> is the quantum average

excitation. This correspondence allows us to relate the results of the classical

treatment to those of the quantum treatments as follows:

o)




Quantities Classical Quantum
Steady-state

excitation Eg. (2.99) Eg. (2.18),(2.25)
Transient energy Eq. (2.139a) Eq. (2.17),(2.76)
Many-body

effects Eq. (2.134) Eg. (2.10),(2.33)
Equations of

motion Eq. (2.129) Eg. (2.5) , (2.84)
Rotating frame Eq. (2.120) Eq. (2.16),(2.32)

{c) “"Almost first-principles" treatment. 1In the model calculations discussed

earlier, the vibrational dynamics of IR LSSP were treated in terms of a variety of
system parameters, including the laser-adpsecies interaction strength V, the
energy and phase-relaxation rates, Yl and Yz, respectively, the anharmonicity of
the absorptive potential, €*, and the frequency mismatch between the laser and the
active mode, A. From a first-principles point of view, the problem cannot, in
general, be reduced to that of an adatom moving in a Morse-type one~dimensional
potential. 1In fact, as will become clear later, the potential can at best be

written as

(o) »

. -*>

v @ = v @ Fz) = § v @e?CX
->
G

(z)e (2.147)
G

> -+
where G represents a two~dimensional reciprocal lattice vector, r is the position

> -
vector of the adatom, r = (x,y,z) = (X,z) and VIO)(z) is the Fourier component of

the potential V(O)

G
(;) with respect to the x and y coordinates representing the
) (0)
o]

type potential, but components with E*O will in general be nonnegligible and con-

surface plane. The Fourier component V (z) may look like an anharmonic Morse-
tain important physical information.46 This makes it impractical to define actual
frequency mismatch and anharmonicity parameters for the system. Furthermore,
since the solutions of a potential with two-dimensional periodicity along the
xy-plane are broad bands separated by energy gaps which vary as a function of the
two~-dimensional wave vector,47 it is also difficult to conceive of a single active
mode with a fixed enerqgy difference. The problems of phonon~stimulated desorption
and inelastic scattering of atoms from solid surfaces have recently received con-

48,49

siderable attention. The literature has been reviewed, and we shall only

make brief comments for the sake of perspective. Treatments of these problems

have ranged from classical and semiclassical to quantum mechanical. The latter
have been mainly confined to linear-chain models with a Morse-type potential
between the outermost lattice atom and the adatom. The few three-dimensional

50
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treatments of these problemsso-'52

have given rise to some controversy. For example,
5 . .

Bendow and Ying 0 use a three-dimensional treatment to obtain a value of the pre-

exponential factor Tozlo-ss for C/Xe-Ne in Frenkel's formula for the desorption

time

E,/kpTg

T=1,€ (2.148)

where E; is an effective well-depth of the adsorptive potential, kB is
Boltzmann's constant and T, the surface temperature. However, Goodman and
Romero®! obtain a value of 10:10-128 using both one- and three-dimensicnal model
treatments. This work and that of Kreuzer gg_gl.sz further suggest that there is
little difference between the results of one- and three-dimensional treatments of
the desorption problem. The flash-desorption experiments of Cohen and King53,on

the other hand, seem to confirm the kind of trends obtained by Bendow and Ying,

and emphasize the need for a deeper analysis of the theory.

In a series of papers, Adelman, Doll and coworkersS4_57 have developed the
generalized Langevin equation (GLE) approach to both scattering and desorption.
This p;imarily classical approach combines the standard techniques of gas-phase
scattering theory and that of generalized Brownian motion developed by Mori.58

xubo44 and Zwanzig.59

Projection operators are used to separate out the degrees of
freedom associated with a 'primary' zone (the ‘gas' atom and one or more surface
atoms) and those associated with a 'secondary’ zone (the rest of the atoms of the
solid). The resulting equations of motion include the effects of the motion of
the lattice atoms and the projectile as independent random forces with the coup-
ling constants most effectively treated as phenomenological constants. While the
Markoff or Brownian limit may not be justified for scattering off pure solids,
the theory is appropriate for the treatment of slow processes such as desorption,
migration or adsorption of heavy particles, or processes involving a strongly
localized interaction between the 'gas' atom and the solid. In related work
involving Monte Carlo sampling of classical stochastic trajectories for the in-

corporation of lattice many-body effects, Tully‘gg‘gl.so'él

suggest a technique
which may be better suited for treatments of some types of dissociation, de-

sorption and reactions than the Adelman model.

An alternative approach to the problems
treatment of Wolken et 53.62, who utilize
Eyring-Polanyi-Sato, LEPS, potential) to
as a guantum mechanical three-dimensional
transfer63 in which internal modes of the
solid are included. Both treatments give

is represented by the close~coupling
an empirical potential (the London-
compute classical trajectories, as well
treatment of molecule-solid energy
molecule and one-phonon states of the

results in qualitative agreemant with

experiment. For hydrogen recombination on W(00l), for example, the angular




distributions of desorbed species are found to be substantially noncosine in form
and peaked toward the surface normal, in qualitative agreement with experiment.
In another study of the dissociative adsorption of a diatom on a solid surface
using the generalized Langevin method with a LEPS potential, Diebold and wOlken64
find that energy accommodation and dissociative adsorption depend on the Debye
temperature TD of the solid, with an increase in TD drastically lowering both
energy transfer and the amount of dissociative adsorption.

The inelastic effects in the studies discussed so far have been due to phonon
modes of the solid (and, to some extent, internal modes of the incident particle).

However, band structure effects,46’47'65

which can also give rise to deviations
from purely elastic scattering, were not included. By band structure effects we
mean the trapping of particles whose wave vectors match those corresponding to
bound states of the two-dimensionally periodic potential at the solid surface.
This leads to the so-called selective adsorption. Identified in the past with
minima in the intensity of specular reflections of atomic beams, selective-
adsorption transitions have also been experimentally shown to give rise to
maxima,66 an observation recently confirmed theoretically by Weare and coworkers?7
Very aécurate quantum mechanical calculations have established these effects for a
variety of systems with He/LiF being a prototype.68

In a comparative study of some of the current techniques for treating atomic
scattering from surfaces, Masel gglil.sg discuss the CCGM, quasiclassical,
Kirchoff and semiclassical approximations. CCGM is an extensively used procedure
based on a weak-coupling formalism with a unitarization step whose justification
lies mainly in the computational convenience it affords; the Kirchoff approxi-
mation is an adaptation of the Eikonal approximation well-known in the field of
optics; the semiclassical approximation consists of a description of states of
the system in terms of sets of claséical trajectories; and the quasiclassical
method differs from the semiclassical in that phase interference is ignored and
only angle-averaged intensities are computed. The conclusions of Masel et al. can
be summarized as follows: CCGM is appropriate only for the case of weak coupling;
the quasiclassical approximation gives gqualitatively correct rainbow scattering
but is incapable of reproducing the detailed structures due to quantum inter-
ference effects; the Kirchoff and semiclassical approximations provide the best
quantitative agreement for scattering off sinusoidal hard walls except at low
incident energies, a problem that can be overcome by employing a renormalization
procedure.

The many-body aspects of phonon-stimulated migration, desorption and scattering
of atoms or molecules at solid surfaces have been treated within a quantum-

statistical framework by Metiu and coworkers.m‘?4 2wanzig's projection operator




technique39 is used to separate out particular degrees of freedom (phonons,
migration, desorption) from the overall density matrix, and solutions of
Liouville's equation involving correlation functions of the appropriate operators
lead to probabilities of finding the particle in given states and at given sites
as a function of time. Physical observables such as the mean square displacement
can then be computed.72 An important facet of this work is the treatment of the
case of strong interaction between the adspecies and the surface atoms.71 The
induced distortion of the surface and the resulting change in the interaction
potential between the adspecies and the surface are accounted for by renormalizing
the Hamiltonian via a canonical transformation. The transformed degrees of
freedom correspond to the motion of a pseudomolecule, consisting of the adspecies
and the distorted atoms, with a renormalized mass. The other interactions can be
treated perturbatively. For the migration problem,71 contributions to the mean
square displacement <R2>tcan be due to coherent or incoherent hopping or incoherent
excitation. It is found that for low temperatures, <R2>t¢t2, i.e., free-particle-
like. For high temperatures, on the other hand, <R2§:¢t, namely diffusional for
short times. In an extension of the above calculation,72 horizontal, vertical -and
oblique transitions were included, namely transitions involving change of state
but not site, change of site but not enerqgy, and change of both site and energy,
respectively. It is concluded that if tunnelling is minimal and migration is
possible only when the particle is excited to a level above the potential barrier
along the xy-plane via phonon excitation, the diffusion coefficient has an
Arrhenius temperature dependence. 1If tunnelling is important, non-Arrhenius-type
behavior may result.

A one-dimensional model has been used to numerically obtain the rate of thermal

73,74 With the atom~-solid interaction

desorption of an atom from a solid surface.
simulated by a Morse potential between the adatom and the nearest surface atom,
energy transfer takes place via a perturbation which is the difference between
the instantaneous potential and its thermal average over the lattice atom
positions. The transition rates computed with this perturbation and Fermi's
golden rule are used in a master equation to obtain the probability of finding

the atom in a given state as a function of time. This ignores memory effects
which are important only if the relaxation time of the correlation function of the
perturbation is of the same order as or larger than the time scale over which the
probability changes appreciably. The results show again that the desorption rate
does not fit the Arrhenius form except in a small temperature range. Since the
potential is not expanded in normal coordinates, all multiphonon transitions are
included. Detailed analysis of individual contributions shows that if the

vibrational frequency of the chemisorptive bond is larger than the Debye frequency,
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multiphonon processes to all orders must be included.74

Kreuzer et gl.75~77 have also presented a quantum-statistical theory of ad-
sorption, flash desorption and isothermal desorption. Among the major conclusions
of their work are: (i) a confirmation that Frenkel's formula for the desorption
time, Eq. (2.148), is valid only for a small temperature range; (ii) the constant
Ea can be up to 25% larger than the actual binding energy of the adparticle in
the surface potential; (iii) one-dimensional and three-dimensional theories give
similar results for the desorption times and the latter can be quite large
(*10-53) as shown by experiment.

To summarize the results of the above survey, we note that, in general, multi-
phonon processes are important for a correct description of the energetics of
surface processes. Physisorption and chemisorption must be treated quite differ-
ently, because a straightforward application of perturbation theory is not valid
for the latter due to the strong chemical bonds between the adspecies and the
surface. Band-structure effects resulting from the two-dimensional perodicity of
the surface contain important physical information, but the similarity of results

32,53 stresses the need

for desorption times from one- and three-~dimensional models
fov more first-principles analyses of this aspect of the problem. Most of
these studies are effective in providing qualitative pictures of the dynamical
processes taking place at the surface, but the dearth of information such as mi-
gration or relaxation rates limits their ability toquantitatively describe surface
phenomena. Some of the necessary parameters can be obtained theoretically, but

they are subject to uncertainties arising from the need to use empirical po-

tentials, low dimensionality and assumptions such as simple additivity of tran-
sition rates due to different perturbations.

Let us pass on now to the problem of vibrational degrees of freedom involved in
surface processes in the presence of laser radiation. Experimentally the problem

has not been studied extensively. One of the earlier experiments involved dehy-

droxylation and reactions between amino groups and hydroxyl groups on a silica

surface:ll
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As a result of irradiation by a 10 W/cm”~ CO_, laser, these reactions occurred at

rates much higher than those for the corres;ondinq thermal reactions; furthermore,
these increased rates were only observed for laser frequencies close to the ab-
sorption peaks in the IR spectrum of the adsorbed molecules. While these are
clear examples of selective LSSP, the exact mechanism responsible for the selec-
tivity is not obvious. One possibility is the selective laser pumping of a par-
ticular vibrational mode of the adsorbed molecules, followed by enhanced migration,
dissociation and desorption.11 Alternatively, a mechanism involving electron
transfer between adsorption sites has been suggested.17 Rough estimates of the
lifetime of the vibrationally-excited states of the Si-N bond (T = 10-118) tend
to argue in favor of the electron~hopping mechanism, but there is no conclusive
evidence for the validity of the latter. There are other instances of this type
of LSSP12-14,16,20,78 as well as of the type where radiation is absorbed by the
molecules in the gas phase, with subsequent reaction taking place at the solid
surface.8-1°'18'79'8° Again, it is difficult to describe the exact mechanism for
the selective reactions, especially insofar as the rate-determining step is
concerned.

There has been a steady growth in the theoretical literature on LSSP over the

last five years, as reviewed and referred to in this article. However, not much
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of this work is of a "first-principles" nature. In what follows we present an

"almost first-principles" treatment of laser-stimulated excitation of vibrational

degrees of freedom of an adspecies-solid system, as recently developed by Beri

i et gl.el This theory is free of phenomenological parameters (except those used to
‘ define an effective pair potential between the adatom and lattice atoms) and is
therefore capable of providing a quantitative description of LSSP. The formalism
attempts to describe the absorption of low-power infrared laser radiation by an

adatom vibrating in an effective potential due to the atoms of the solid. This
potential has the two-dimensional periodicity of the surface, which gives rise to
stationary states with a band structure. At the present stage of the calculation,
electronic degrees of freedom of the solid, which provide an i-portant energy re-
laxation channel in metals, are not being considered. Preliminary theoretical
study of such effects have been made by us (éee Sec. 2.B) and Metiu gg_gl.27'82
The temporal evolution of the system can be described as follows. At time t=—x,

L the adatom gets adsorbed on the surface of the solid in a potential which neglects

all lattice vibrations. The stationary states of such a potential correspond to a
! set of bands which reflect the translational symmetry along the xy-plane. Between
t=-© and t=0 the lattice vibrations are "turned on”, modifying the original
occupation state of the bands to a new average steady-state configquration at
i Eemperature TB. At t=0, a low-power CW IR laser, described by a vector potential
A and frequency wL close to the energy gaps in important occupied regions of
k-space, is turned on. It is further assumed that the laser frequency is far
removed from important IR absorption bands of the solid. Energy from the electro-
magnetic field will then be absorbed primarily by the adatom-surface bond (the
"adbond "}. Since the latter is coupled to the solid, there will be an interchange
of energy between the adbond and phonons. This energy interchange is the prc:ess
of primary interest.

The potential function for an atom or molecule adsorbed on a solid can probably

be computed from first-principles. This would involve the solution of a multi-
center many-electron problem, necessitating the calculation of a very large number
of complicated Coulomb and nonlocal exchange integrals for many positions of the
adatom. Such a task is formidable and, to our knowledge, has not been attempted
for any real system. Fortunately, knowledge of the detailed potential function is
not necessary for a reasonable description of the dynamics of vibrational LSSP.

| Infrared spectra of diatomic molecules can be fitted quite well by assuming that
the atoms interact via simple anharmonic potentials, such as the Morse or Lennard-
Jones potential, involving two or three parameters.83 We assume the potential be-
tween the atoms of the adparticle and each atom in the lattice to be such a pair
potential. The effective potential obtained by summing these up should provide a
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good semiquantitative description of the overall interaction — smooth periodic

behavior along the xy-plane, a nearly infinite wall at z=0, minima for small

values of z (~2i), and a tail approaching the zero of energy asymptotically. 1In

the case of periodic systems it is convenient to transform the problem into

Fourier space, where the smoothness of the potential allows a good representation

with only the lowest few components.
There are two distinct vaﬂtage points for viewing the energy interchange
mentioned earlier. In the thermodynamic point of view, the two subsystems, namely
f the adbond and the phonon bath, are each assigned average temperatures TA and T_,

respectively (TA>TB)' so that energy flow is unidirectional and time evolution of

the states of the subsystems is not studied. In the microscopic, more determin-

istic approach, time evolution of the states of the subsystems is followed in

detai.. Energy transfer in this case can be bidirectional, since upward tran-

sitions can take place in the adbond as a result of destruction of high-energy

phonons and creation of lower energy ones in the solid. The rest of this section

is devoted to a formulation based on the second approach.

The Hamiltonian for an adatom of mass m under the of an effective
->
potential V(o)(r) due to the solid at equilibrium can be written as

2
(0) _AT L2 (0) >
w—a - -5 V.; +V (r)y , (2.149)

(0)

where V 0 (0)) between the adatom at position

; and lattice particles at equilibrium positions 5;0):

-+ A > >
(r) is a sum of pair potentials v(r-R

vi? @ = § v@r") . (2.150)
g

v(;-iéo)) can be chosen to be a Morse, Lennard-Jones or other convenient form of

pair potential. Wwhile isotropic (angle-independent) forms are most convenient,

f ; those with anqular dependence provide a better representation of band-structure
46,84 The actual instantaneous potential is obtained by replacing the

effects.
+(0) >
Rl by the instantaneous positions Rl'

V@) = ] vr-Ry) (2.151)
g

and the difference

Ax=vE - v® @

is the perturbation responsible for energy interchange between the adbond and the

lattice vibrations.
The complete Hamiltonian for the adatom-solid system contains, in addition to
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,(0 , , . . X
H; ) and A%, the Hamiltonian for the harmonic lattice Wéo); the interaction of the

laser field with the adbond provides another perturbation %}. Thus the total

Hamiltonian is

'y (0) (0) ,
LA et N +A9‘/+7"/r (2.152)

; = %O L A 5 (2.153)

where we have defined #0) to be the sum of 174(0) and ”(O) . The solutions for the
| harmonic 1attice85 and those for the adbond46?47'65'84Y85 in the potential

( )(r) can be obtained by well-known techniques which will be briefly reviewed
for completeness. Overall solutions of'ﬂ(O) are then just products of solutions
of H(O) and -#(0)

The transformatlon of the real coordinates Réo) of the lattice particles to
normal (phonon) coordinates qb(k), where b represents a branch in the phonon band
structure and k is a wave vectorin the first Brillouin zone (FBZ) of the reciprocal

lattice, gives rise to a Hamiltonian for the harmonic lattice of the form

(O) 2 > 2.2 2 >
W o= (1/2) Z[qb(k) + wp (k) qb(k)] : (2.154)

->

kb

i where ub(i) is the frequency. The transformation is based on a Born-Oppenheimer
approximation and the inclusion of only harmonic terms in the interatomic poten-
’ tial ¢., = being a particular electronic state of the crystal. The crystal is
; thereb; reduced to a set of 3BN noninteracting one-dimensional harmonic
oscillators, where 8 is the number of atoms in a unit cell and N is the number of
unit cells in the crystal.
The Schrodinger equation for the crystal is

za2

;b 3qb(k)

is the total wave function for the crystal in a state I{v (k)})

+ w2 (k) g2 () y{® -€:°’ y (2.155)

where V(o)

described by the set of phonon occupation numbers {v (k)} Since the phonons
represent noninteracting harmonic oscillators, W( ) can be written as a product of

single-oscillator wave functions w(oiﬁ)'
b

! AR A qb(t\“ ) (2.156)
v . |
w o -

The Schrédinger equation, Eq. (2.155), then reduces to 38N single-oscillator
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equations
(0) (

0) (© (0
(t) (k .157
LN wvb(i) E;b Eb(k v &) [q, )] (2.157)

where 1# )¢ is the expression within the braces in Eq. (2.155). The solutions of
Eq. (2. lg7) are well known,

(2.158)

where Hv is the‘Qﬁh-order Hermite polynomial, and we have used the abbreviated
forms vo,qoandtﬁsfor Yy (k), qb(ﬁ) and wb(ﬁ), respectively. The total lattice
vibrational energy of the solid in a state '{Vb}> described by the set of phonon
occupation numbers {v;} is then given by

(0) 8(0
(2.159)
2: b (K)
> 1
= i[vb(k) + 5] o, ® . (2.160)
ﬁb .
It is useful to define phonon creation and annihilation operators az and ay,
respectively,
¥ 1 i .
a=-=— |V gy - ~—=—aqg| , (2.161)
(o]
° /& [ Vg ]
1 i .
ag = — |Vg q + — . (2.162)
/2 [ 0% T o
in terms of which
(0) + 1
‘#v = z mo[aoao + 5] . (2.163)
[+]
Use of the relations
+
ag [vyivy e e ivgivg o) VAT v v, vt ), v e (2.164)
and
BG|V1,V21“"volvo+lr"'> = 1/ Vo. |V11V21"'l(v°'1) 'va+1v"') (2.165)

greatly simplifies the calculation of matrix elements of operators which are
functions of phonon coordinates or momenta, q, or éo, between multiphonon states
{vq}) . Of particular importance is the lattice displacement operator
§]
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3 ik-
> _x >0 _ [+ b 2 _ +
up = Ry=Ry [—'nm] z —7 © a;b + a_;b ' (2.166)
kb {;b(k;]

M being the mass of the lattice atoms (assuming one atom per unit cell), and
;b(ﬁ) a phonon polarization vector.
Let us now examine the nature of the solutions for the adbond, represented by
the Schrodinger equation
(0)  (0) (0), (0)
W, VY, =& ¥, (2.167)

»

(

with #io) given by Eq. (2.149). The potential V 0)(-r’) is periodic along the plane

of the surface, i.e.,

vl G&éo)) - v @) (2.168)
for all two-dimensional (2D) lattice vectors *EO) given by
(0) (0) (0) -+ >
xl - [xlﬂ ¢ Xpp } = nla1 + n,a, ‘ (2.169)

E
1’ 2, primitive surface lattice vectors. The periodicity
allows a partial Fourier expansion of V(o)(;) in the 2D real space represented by

-
nl,n2 being integers and a

the plan2 of the surface with Au the area of a 2D unit cell on the surface,

-+ N
v @) 2 v® x,z) = ] vi® (2)eiC X , (2.170)
pre
> ¢
Vg(z) = A;lf i v Fz o iCE (2.171)

the summation running over all 2D reciprocal lattice vectors (RLV) E given by

¢ = “‘131 + mzﬁz , (2.172)
2 (’ x g
2 - ma,xz) (2.173)
1

3‘1-(32 x 2)

2m (2 xxl)

. (2.174)

b
2 -+ A
a; (32 x )

Here Z is an arbitrary vector in the z-direction and m1 and m, are integers. Thus,

for any planeparallel to the surface plane, the 2D RLV are completely specified by

two integers ml and m,, and we can write
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= (@
(z) = (z) . (2.175)
“‘1“‘2

ViO)
G
The Fourier series in Eq. (2.170) converges quite rapidly, and often the function

vig; (z) becomes negligible for mjm,22 as compared to its values for my ,M,<2.

f There is evidence for this in recent calculations using summed pair poten-

tials46'47'68 and in the gqualitative success of modelssg'87 using pure sinusoidal 1

(0)(r)

The stationary states for a single particle in a periodic potential are

functions for Vv

characterized by a quasicontinuum of quantum numbers, namely 2D wave vectors

v \Y
-> l > 2 >
N=~—Db +=—0D>b i (2.176)
H Nl 1 N2 2
' vy and v, are integers, and N, and N2 signify the large number of unit cells along
the a,- and a,-directions, respectively, beyond which the crystal surface is

repeated. The single-particle states w( ) must then satisfy the Born-von Karman

boundary conditions on a surface,

0) -+

WO % e map = P@ w3 =00 (2.177)

leading to Bloch functions

(0) @ =7 $(® ia-ieﬁ‘-i
a:m z ajﬁﬁ

] (2.178)

a and j being quantum numbers representing a band index and quantization of motion
in the z-direction, respectively. The summation over all 2D RLV & in Eq. (2.178)

allows us to restrict 1 = ﬁl+ﬁz to the 2D FBZ, namely the area defined by

b b b b

1 1l 2 2

- - —_ , - =< -
3 s n, s > 7 S n2 s 3 . (2.179)

(0)

(0)(r) and ot

Using the expansions of V + (%) in the Schrodinger equation, Eq.

(2.167), we get
£ 2, ¢ 0 & o] (0 > + >
V + (z) e (z) exp(iG-X) exp(in-X) = 0.  (2.180)
% m E gajn ¢aj}§+§

Because of symmetry associated with translation of the reciprocal lattice by RLV's,
this reduces to

2 2
22 A5 22 (0] ,(0) ¢(@® (0) ¥
SR e B2 - (2)0 " 4 &l 1(+§)-x“-o,
% m Tt m™O - g ¢ajﬂ+§(') + 225 PR e z) {exp| 1 (M+6) -X|

(2.181)
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(0)

; which in turn leads to a set of coupled differential equations for the ¢ ++§(z)
‘ ajn+G
wave functions,
2 .2 2
A° a A"+ > 2 (0) (0) (0)
- 5= == + >=(N+G)" ~§ ¢ (z) + ) V, 5 (2) ¢ (z) =0 . (2.182)
2m dzz 2m Qj-ﬁ G.J-Y;'O'E %' E‘G' G.j-'f; '

The functions w(ol(?) are constructed from solutions of Eq. (2.182).
s

Let us now congider the terms A# and #r’ ‘The simplest situation is one where
A# and ﬁi are small independent perturbations which can be assumed to act se-
quentially but not simultaneously. However, that is seldom the case, and it is
necessary to define the limitations of such an approach and available alternatives

The phenomenological studies described earlier provide some insight into these
problems. They suggest that the applicability of a perturbative approach can be
based on quantities such as the relative time scales of the adbond vibration and
the phonons, the associated energy gap and the effective coupling between the two.
Thus, for high temperatures, large optical pumping rates, very strong bonding
between the adatom and the surface, or a very small energy difference between the
adbond vibrational frequency and the Debye frequency of the solid, a perturbative
approach is inadequate. In the case of strong interaction, for example, the sep-
aration of adbond degrees of freedom and vibrational degrees of freedom of the sol
id is inappropriate, and it becomes necessary to define a new basis set which is
a combination of the two.71 A simila:r situation prevails when the "fundamental®
of the adbond vibration is very close to the Debye frequency of the solid. This
is analogous to the case where an adatom has valence electrons in a level whose
energy is the same as that of one of the valence electronic states of the solid;
the resulting strong interaction broadens the electronic level of the adatom and
splits it into effective bonding and antibonding levels, completely changing its
original form.88 The Magnus approximation89 is another alternative that has been
suggested when dealing with situations involving near-degeneracy or strong
interactions. For the case of very intense laser fields, multiphoton processes
become important, and processes such as surface damage and melting need to be
considered. Such effects are beyond the scope of this review,and we restrict
ourselves to low or moderate laser powers. .

There are two well-known approaches for dealing with multiphonon effects. The
first involves a Taylor expansion of the perturbation potential about the
equilibrium configuration of lattice atoms, namely

\ o = vid) - v @

> > > > 2
- ‘Z"ﬁl. [V!LV(;)_ + ] @3, .):[?ﬁvvﬁ)]-r ) (“9.“!.'“2")Eﬁlvl'vl"wg):lo"
0

22 NIL

(2.183)
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4 The first term leads to one~phonon transitions, the second term to two-phonon
transitions and so on, with higher-order terms getting successively more compli-
cated. While the one-phonon term describes the situation where the Debye frequency

wy is larger than the "active-mode" frequency Wy of the adbond quite we11,74 one

really needs multiphonon terms to all orders for the case where Wy < Wy The

, latter is impractical within the framework of the Taylor expansion of Eq. (2.183).

An alternative method, in which AW is not expanded in terms of lattice displace-

(0)

[ ' ments, employs instead a Fourier expansion of V(;) and Vv (¥) which converges

very quickly because of the smoothness of the potential. It can be shown that,

with
A )
vy vuljd; vpye T (2.184)

Vu being the volume of a unit cell over which the integration is done and 3 a wave

vector in the FBZ, one can write

O 10}
| v @) =] T, fTEFRD) (2.185)
| 2% q
{ and ' -
v =7 ] Y i3 (E-Ry) (2.186)
g
a
i so that
. (0)
> > -id.R -ig-R
2@ =7 |v, e*°F Jle Lo e L . (2.187)
i 9 L

Phonon opérators to all orders are now included in the lattice sum of exponentials
involving ﬁl’ and this form is retained throughout most of the calculation of the
4. transition rates. A Taylor expansion is still possible in the last stages of the
computation if one wishes to analyze the results in terms of contributions due to
one, two, three or more phonon processes.

The last term in the Hamiltonian ﬂ; represents the interaction energy of the
laser field with the effective dipole moment of the adbond. If P is the momentum

of the adatom, e. a residual effective charge residing on it, x(;,t) the vector

0

> potential at the position of the adatom at time t. € a unit polarization vector,

¥ the wave vector and W the frequeacy of the laser field, we can write
« > 5 - -+ >
p A(r,t) = AO € expli(k-r-w;t)] + c. c. (2.188)
! |
. e() > > > -+
i 7“: == (p-A + A-p) . (2.189)

8L 1f the incoming flux of photons is large enough for absorption to dominate
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emission, the complex conjugate part (c.c.) of Eg. (2.188) can be neglected.

Having set up the total Hamiltonian, the temporal evolution of the system can
now be described in terms of occupation probabilities and transition rates for

the stationary states of %50). When the laser field is turned on (t=0), the system

(0)

is in a state described by the Hamiltonian W + A% for all subsequent times,

the Hamiltonain is ¥ = #(0) + AW + #r Writing the composite zero-order state

{0), the zero-order

laj® > |{vg} > as |X >, and the corresponding energy as €
Schrddinger equation becomes

w(o)lb =£{°)IA> . (2.190)

In the presence of A7% we write the state of the system as a linear combination

of the states |[A\>:
. ~(0)

-ig, t/x

¥=Jc ) [A>e . (2.191)
A
Using this expansion in the equation

WO 4 AWy = ix gl: , (2.192)

we obtain

d

{°’-£{?)]t/ﬁ
at

o e
¢, (¥) = (i) 1 ) ¢y (£) <|A¥ N> e . (2.193)
Al

Assuming the system to be initially in the state I75,we obtain the amplitude for

finding the system in the state |A> as an infinite time-ordered serie590

o I_(e)] ]
ety = I Q=3 ' (2.194)
s=0 s
t ot *
: -S o
I_(t) = (if) ngcl Ldtz Jo<1t;$A‘lllﬂ:1)A‘fv‘(tz)---mf\‘(ts) . (2.195)

5’being the Dyson chronological operator which orders products of time-dependent
operators from left to right, with successively decreasing times. For example,
Q (t1) g:(tz), ty>t,
JQ () Eb(tz) =4 N (2.196)
P(tz) 0 (tl)' t2>t1 .
Also Io(t) = 1, and A¥(t) is the perturbation operator in the interaction

representation,

(0) (0)
AWe) = it iV T TeA (2.197)

We retain only the s = 1 term in Eq. (2.194) to obtain the probability of
finding the system in the state [A\> for t + =, namely,
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P)(\O)E C;‘(t)'z = |<>\|I1(t)|1'>|2 =572 | atr A|af|Toe » X (2.198)
0
= (2ne/8) |<A a2 ck)‘f’-g;m] ) (2.199)

This expression is based on assumptions inherent in a Fermi Golden rule-type
treatment, namely negligible back-transition from the excited states |k> to lower-
lying states and a finite small duration T of the weak perturbation, but one that
is larger than the lifetimes of the states |A\>. For the case of A% which does
not have a small T associated with it, the back-transitions need to be considered,
so that one uses a formula for the actual probability P, of finding the system

in a state |A\> of the type

(0)

ap
; 0y, ) _ (0, (0)
= ; [w Ar=d) By - W (ved) By ] . (2.200)

w(o)(A'*k) are transition rates that may be obtained, for example, from Eq. (2.199),

where the probability is linear in time, leading to w(o)'s which are constants.

With a configuration described by the set of values {PiO)}, we now consider the
effects of the perturbation

W' = A\ﬁ,.,.w,r . (2.201)

If w’z represents CW laser radiation, then AW and ‘vtr must be considered as acting
simuitaneously. For the sake of simplic;ty we assume that the probability PiO)
can be factored into one referring to the phonons and another referring to the
adbond,

(0) (0) _(0)

PA = Pajﬁ P{VO} . (2.202)
An expression for the total transition rate w(k'*k) can then be obtained in
analogy with Eq. (2.199):
2
. - |27 (0) _ (0) . (0) _g(0)
W(AT+A) [h] Pai? Plugl = Parye p{v&}] <A!A¥HA> 6[5)‘ g ] . (2.203)

Here Pa ﬁ is the probability of finding the adbond state |ajﬁ> after the laser

3
field‘ﬁ} is turned on and can in turn be obtained by a procedure similar to that

used in deriving P;O).
For the sake of simplicity, we make the following notational substitutions:

lujﬁ> — |e> ('excited' adbond state)




latj > —» |g> (‘ground' adbond state)
[{vgl> — li> (*initial®' phonon state)
j [{vg}> — |£> (*final' phonon state)
|
|

Dropping all superscript zeros, Eq. (2.203) then becomes

W(fg«ie) = [2%’-‘] {pipe-pfpg]l (ielmlfg) lz s[gi+£e-£f-£g] (2.204)

Since the quantities of interest are the rates of transition between adbond states,
a summation over all initial and final phonon states |i> and |f> can be performed

to give a rate denoted by W(g«e). The probabilities Pi and P can be written as

ZBe-Bei and zBe-BEf, respectively, where BE(kBTs)'1 and zB = (Z e-Bei]'l. The term
involving the probabilities can then be written as *
-Bﬁi -BG-f
PP - P_P = 2 e P -e P (2.205)
i"e fgqg 8 e g
-BE. -BAE
= 1 - eg
= Z8 e [Pe P e } ’ (2.206)
where
Aeeg =E - £g = Wy - (2.207)

In writing Eq. (2.206) we have used the fact that, because of the delta function,

we must have

€ - € = ﬁe -69 . (2.208)

Finally, we make the substitution

(2.209)

to obtain

272z
B

-BE, 2
Wigre) = —— Z ; e Peg (ielAﬂlfg)l G[Aieg - [ef'Ei]] . (2.210)
1

Using the Fourier expansion of AW, Eq. (2.187), in Eq. (2.210), we have

2nz '
W(g+e) = % z g Peg % %. (elvaeia'flq> <q’v§'ae-i§ .?|e>

>

- >(0)
iﬁ-ﬁl -iq-Rl
e - e

ia. 'ﬁg‘v
e

..j_&-ﬁ*‘?l
e L li> S (8Eqg-[€£-E;)) (2.211)
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Explicit time dependence can now be introduced by utilizing the delta-function
representation
[- -}
- i[Aa -[Ef-Ei]]t/‘ﬁ
G(Aeeg - (€¢-&51) = (2mh) 1 [ at e eg . (2.212)
-0

Incorporating the phonon energy difference portion of the integrand into the first

phonon matrix element, one obtains

T t/ﬁ 12 RY. % m - e
<l |f> <| Qe lf . (2.213)
Exploiting completeness of the phonon states,
) |f> (¢) =1, (2.214)
£
and the definitions
- 2(0) -
-Kl *u (2.215)
: -+
fa'egE<e|ela'rlg> , (2.216)
the transition rate can be written as
2§ . * i [2.%00) &, x(0)] ]
W(g“'e) h ZZVﬁ Vo, fa’eg fa| ,eq Peg %g' exp[x[ﬁ ﬁz -a' .ﬁz, ]
qq -

-3

-B€.
X |dt exp(iwggt) zBZe 1<1 exp[-iﬁ'ﬁl(t)-ll exp[iﬁ"'ﬁz,(O)-)l i> . (2.217)
i

-0

Of the four terms in the phonon operator, only the product of exponentials con-
tributes to the diagonal matrix element. The constant terms lead to a delta
function with argument weg when the Fourier transform is taken, and do not corre-
spond to a transition. The individual exponentials involve operators which, on the
whole, create or annihilate at least one phonon, as seen from the form of ﬁl' Eq.
(2.166) , and therefore have no diagonal matrix elements. The weighted mean of the
surviving phonon operators, from the last term within square brackets, represents

an ensemble average

zﬁ{e.&€i <i exp[-iﬁ-ﬁl(t)]exp[iﬁ“ﬁl,(0)]|i> z <<exp[-i§°'ﬁl(t)]exp[iﬁ'-32,(OB>> '
i (2.218)

whose evaluation has been discussed extensively in the 11terature.91 From the

linearity of the operators 32 with respect to the creation and annihilation
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+ . A A . A A
ag and agy it follows that [(A,B] is a c-number, where A and B are the exponents
’

in the ensemble average, i.e.,

A=z-gg,w (2.219)
B=a-8,wm . (2.220)
| Thus, .
! exp(A) exp(B) = exp(A+8) exp{(1/2) (4,81} (2.221)
; and '
(( DE <<exp[-iq-ﬁz(t)+i§' 5, w)] » (2.222)

~
For operators @ linear in harmonic oscillator creation/annihilation operators, we

92
have
(exp @) = expl=(1/2)<<&>>q] (2.223)
T being the temperature. Use of the above leads to the rtaS\:lt:s.so"7o'93
! K Mmemfu, @i it 0a] (2.220)
E where
W @AM = /2) (@82 + @'-%,,)2)) (2.225)

is a Debye-Waller-~like factor, and

5 ) = (@, (v)4,, (0) (2.226)
%) L 2

is a correlation function involving the atomic displacements at sites £,%' at times

t and 0. The transition rate, Eq. (2.217), then becomes

W = -2 * f* P i ”.E(o) - '."(0)
(gte) A -Z-zva Vg f§reg q',eg eg %gl exp|-i{q R a Rg"
99
o«
X | at exp[imeqt - wu,(a,ii-) + a-*u,(t)-q-] . (2.227)
- CO

The clear factorization of the rate expression into two components, one depending
on the properties of the adbond and the other on those of the solid, is an

attractive feature of this formalism. The basis of this separation lies in the
: treatment of momentum transfer and energy transfer as independent variables94 via
\ the Fourier expansion of AW,

The correlation function can be written in terms of specific collective

i properties of the phonons by using Eq. (2.166):
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& (03 )
<<ﬁl(t)-‘;2'(°)>> = (f/2NM) Z re b expEl.-l:- [52-52,]] [ﬁtb-bl]exp[-iwb(.l:)t]
kb Wy (k)

+ fipy exp iub(‘i)t] , (2.228)

where ﬁﬁb is the Bose function

-1
Bﬁw] (k)
ﬁﬁ = le -1 . : (2.229)

One can utilize the quasicontinuous nature of the phonon band structure to replace

the summation over wave vectors in Eqg. (2.228) with an integration over -lz-space.

NV
lim JP(K) = — | ak F(O) (2.230)
vee 2 ar’

where V is the volume of the crystal, to obtain

»> AY 2 ()& (%)
¢ ) = —N z ak b b exp ix- (R,-R exp imb(f)t
24 16T°M b 3 i

Yy

+ 2ﬁﬁb cosl:mb(-l:)tj {2.231)

From Eq. (2.227), W(g+ve) is seen to involve the time Fourier transform of

exp‘%u. (t)l If a cumulants-type expansion is reasonable, the first-order term
will dominate. For this case, a convenient expression can be obtained for the
Fourier transform, namely, 85

-4

4m'M

o X exp ﬁE ] [weg mb(k)]} (2.232)
n

Higher-order terms involve Fourier transforms of [%u-] with n>1. Clearly, the
one-phonon term (n=1) dominates when I :(,t“. | / a” <<y where a is a typical lattice
parameter. Evaluation of individual higher-order terms can be simplified by ex-
pressing W(g+e) as a Taylor expansion in Eu, (t). One proceeds by writing

3 fqu = > > %>
dt[exp[iwegt]] Cogr(t) = {—2] fi(weg)+l ¢ sgnlueq) Z dk {zb(k)eb(k)

v )2
W(gee) = 5!;’[19] dt exp[iuegt] 22' Fopn [:8“,(1:)] (2.233)
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and
- oF a%F
- e | 1,2 28!
Fzz-[%zz-‘t;] Foar© + 1 1€ 005 |50 * 30| T
- EE ' 200EL! ’ Coprger
o do &',
°F
1 ,.n Le’
*o i Chger [~ +oe b, (2.234)
21:55‘ o
85

(£,£') being Cartesian indices (x,y,z). The transition rate becomes

’

v 2 @ BnF ]
W(g+ee) = 0 2 (1’1!)-1 P Vot (Wag) A (2.235)
£ am1 noAREE T daen ] '
B 22,88
0
where P is the Fourier transform of C;E. ’
- -]
1ot
-1 eg” .n
) -
Use of the relationship
T dw F (£1)F _ (£3) = F (f1-f3) (2.237)
-5 1 1
where F  (f) is the Fourier transform of f(t) at w,
x©
F (6) = (2m”t Idt £e) e, (2.238)
-0
gives a useful recursion relation between the p's:
©
pn+1,19,:§£'(“’eg) --l dw pn'u.'gg-(w) °1,zz:gg'(weg'“’) . (2.239)

In developing Eq. (2.227) for the transition rate, the two-dimensional
periodicity along the xy-plans has not been explicitly exploited. Important
physical effects and simplifications of the formalism are associated with this

periodicity, some of which we now examine.

The potential. The nature of the potentials V(O)(?) and V(¥) in Eqs. (2.150),

(2.151), (2.185) and (2.186) is very different along the z-~direction as compared
to that along the xy-plane. Both must approach a constant for large z and be

{mm— mam——— e — e e e - A
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essentially oscillatory on the xy-plane near the surface. It may also be
necessary to allow for different contributions to the potentials due to ions at or
near the surface and those deep in the bulk. Formally, the latter is accomplished
by affixing an extra index to the pair potentials in Eqs. (2.150) and (2.151),
namely, '

v =T, [f-if’} . (2.240)
L L .

V@) =] v, [}‘-‘152} . (2.241)
LR

Inclusion of these effects is probably most practical for purposes of a

phenomenological description of LSSP. Writing Egs. (2.185) and (2.186) in the

forms

. (0) (0)
-1§-§ -iq =z .
vO@ ] T4T fTe T T )t (2.242)
q, 6 zéO) ;éo)
and
i9-X,| -i
-iQ- -iq z cox
V(.;) = z 2 Z z e 2 e 2R Vo elq ? . (2.243)
9 5 ( z| * q
z Q L Xl

the summation over féo) in Eq. (2.242) reduces to 6(5;3), with § = (ﬁ.qz) and & a
primitive 2D reciprocal lattice vector in the plane of the surface. Such a re-
duction does not take place in Eq. (2.243) because the *2 are not fixed vectors.
Because of the smallness of the atomic displacements from equilibrium, it 3
reasonable to use a sharply peaked (Gaussian or Lorentzian) function 03(6)' with
the peak at 6 = E, to replace the summation over il in Eq. (2.243). Eqgs. (2.242)
and (2.243) may therefore be written as

(0) > 'iqzz;. i3.2
v (@) =) Z ) §(3-G)e vel o (2.244)
qu 22(lO)
and ‘
-iq z .

vy =] [ I 40@e * thu,| oT (2.245)
9 3 |z q
z Q L

The term Q*(a) represents the "inelasticity" of the transition process viewed as a
lcattcringgevent, namely the departure from purely diffractive scattering described
by §(8-8) in Eq. (2.244). The averaging procedure implied in the use of ﬁé(a)is
not always appropriate. In particular, if the characteristic time scale of the

! o R Rt o R B~
- : L .

.ot

71




overall relaxation process is comparable to or smaller than a typical period of
vibration of the atoms in the solid, no such averaging is possible. Examination of
Egs. (2.211) - (2.217) with the aim of applying the forms (2.244) and (2.245) of
the potential reveals a substantial simplification by allowing a reduction of the
summations over §2 and 32, to those over only zy and Zg,- This is an important
step in establishing the connection between three-dimensional and one-dimensional
treatments of LSSP.

-1/2:1: @) RIS )

components of the eigenvectors of the dynamical matrix in the harmonic approxi-

Polarization eigenvectors. The terms N in Eqg. (2.166) represent

mation.85 The z-component of % fust clearly be complex in order for the displace-
ment function to damp out for z>>0. The displacement operator may then be written
as

ikzzl -+

->

iKk-x

e L [a.. + a++-| . (2.246)
kb

- POt e [kz,i]e
o las] | Ao

Assuming a knowledge of the form of wb(ﬁ), the expression in curly brackets

depends only on b, R ana 2o, all dependence on kz having been absorbed in the
summation. This represents another point at which a phenomological approach could
be applied effectively, since a model for qb(ﬁ) could be introduced along with

assumptions regarding the range of values for kz.

Models for dispersion. In addition to 35(?), a knowledge of mb(ﬁ) is necessary for

actual evaluation of W{g+e). Detailed information on the form of mb(i) is avail-
able from experimental and theoretical studies of a number of systems, but for the
present semiquantitative study, a model such as the Einstein or Debye model may
suffice. In the former, phonon dispersion is entirely suppressed by assuming the
form

mb(;) = wO . a constant, (2.247)

which neglects all correlations between displacements of different lattice atoms,
and by ascribing a single vibrational frequency to all points I on all branches b.
This model precludes energy transfer over a range of energies but does provide the
simplest picture of phonon band structure. The Debye model, on the other hand,
assumes a linear dispersion

w (%) = v x (2.248)

independently of branch index, and thereby allows for energy transfer over a
(quasi-) continuous range. The use of Eq. (2.248) in conjunction with assumptions
of isotropy and simple cubic structure reduces the expression for 22"t) and the

e o Rt i
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Fourier transforms of |%22,(t)] to computationally convenient forms,

(ii) Desorption and migration. The theory of laser-stimulated excitation can be

applied to the dynamics of desorption and migration by specifying appropriate
variables such as the mean square displacement <R2> or a threshold energy beyond
which the adspecies shall be considered desorbed (or 'free'). There have been only
a few attempts to apply theoretical methods to these problems due to the inherent
difficulty associated with the many-body nature of the heterogeneous system. We
shall review some of the quantum statistical techniques applied to these problems.
In an early attempt, Slutsky and George95 modeled the adbond as a truncated
harmonic oscillator at the end of a linear chain, and considered the adatom de-
sorbed when it reached the uppermost level. Couplings to acoustic phonon modes of
the surface lattice and to the external coherent radiation field were represented
in a second quantized form of the Hamiltonian. With a+,a the creation/annihilation

operators for the adbond, the thermal average of the mean number of quanta at time

t,
<n(t)> = <<at(t)a(r)>> , (2.249)

was obtained in a simple form. Since the anharmonicity of an actual potential will

cause saturation for higher occupation states, the model of a harmonic oscillator

overestimates the efficiency of the laser stimulation.
some of these limitations were dealt with in the work of Lin and Georqe,3o where

multiphoton effects, multiphonon effects and anharmonicity were considered within

a quantum-gtochastic treatment. A variety of line-broadening mechanisms were in-

voked to account for low~level excitation where anharmonicity and laser-adbond

frequency mismatch have to be compensated for. In an associated calculation31 not
directly applied to desorption, feedback between the phonon modes and the adbond

was studied, and selective energy absorption was seen to peak at the same time for

a range of values of the energy relaxation rate Y;. For some values of Yy,
selective excitation was seen to initially drop and later pick up, suggesting a
feedback mechanism in operation.

Other calculations of laser-stimulated desorption
Morse potentia125'96 or a square-well potential.z‘ Up to this stage, numerical
calculations of LSSP which provide agreement with experiment to within one, two or

24,25,96

have employed either a

even three orders of magnitude are considered acceptable! Details of the

potentials therefore do not have a profound influence on the relative accuracy of
the results. In the model of Jedrzejek 23,51.,25 the adatom is considered desorbed
if it occupies one of the continuum states »f the Morse potential between the

adatom and the outermost atom of a linear chain. The occupation probability




P for a state |n> is obtained by solving a master equation

9P '
T: = Z [w(m-m) Pm(t) - W(M)Pn(t)] ' (2.250)
m

where W{n*m) is the total transition rate taken to be a simple sum of the rates
due to phonons and the laser field as independent driving forces,

wphonon laser

W(ndm) = (nem) + W (nem) . (2.251)

Evaluation of the former has been discussed previ.ously.74 A golden rule form is

used for Wl’ser(n+m) and as in most other calculations, a linewidth an is

. ascribed to the transition. Estimates of the first mean passage time®7 to the
continuum states as a function of laser power lead to the conclusion that, for CO/
Cu, laser intensities of the order of 1010 W/cm2 are needed. Similarly, in a
purely classical calculation of laser-induced desorption of O from Si and H from
Pb, threshold intensities greater than 108 W/cm2 were obtained.98 These results
are fundamentally different from those of Lin et 31.30 An important physical
mechanism which must be considered in laser-induced desorption is laser heating
of the phonon modes and a feedback of energy to the adbond. This is manifested
through the addition of an interference term in Eq. (2.251), and a first step in

this direction to include the synergistic¢ photon-phonon effect has been
i 35,99,100

taken.
In dealing with the problem of laser-stimulated migration of excited adspecies,

we begin with the dynamical Hamiltonian42

B(E) = H(Q,0,,°Q,) + ka'v Q49,0 j)ckck, +E (6, (2.252)

vhere H is the unperturbed Hamiltonian of the system (with normal coordinates Q.),
(Q ) is the lattice-site-dependent interaction potential of the system, and
c+ and c,, are the site-operators of the Bloch states |k> and <k'|, respectively,

k k!
which can be expressed in terms of Wannier functions in the site-representation as

Yo p o KR
¢, = =—1Je |n> (2.253)
/N n
ik -R
= 1 m
Cpr = <Kk'| == ‘)‘:‘ e a| . (2.254)

' Taylor expansion of the interaction potential, namely

' : ' : : yf»ywﬁw&ﬁwﬁﬁ
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v ¥V P
Vi (@) 1950 Q) =V* % [59 ] Ot eet I e Qi Qyu e e (2.255)
0

y=1 1,5 P 139 (30y0)P
gives us the general forms for the intramoclecular couplings, p being the order of
the multiphonon processes. Using the second-quantization expression of Eq. (2.255)
and the Wannier site representation in Egs. (2.253) and (2.254), we obtain, from
! Eq. (2.252), the microscopic model Hamiltonian as follows:

pooo 0. .0, .0 _°
H(t) = Hy + Ho + H + H, +H +H, + Hy + Hy + nn(t) ’ (2.256a)
i o _ + - bt o _ +
H, = fuwa'la, Z‘ﬁwj ibyr He = By E cc . (2.256b)
. t t
H, = X_xnjcncn(b *b,) + Z Yo c (aT+a) + jg 2 4%nCn (a' +a) (by+b,), (2.256c)
Ho= )3 cle (2.256d)
n®m nm nm
- H, = 2 K_ cle (a++a) (2.256e)
i 2 mn nm !
. m, =3 § & cm(b;+b Y . (2.256€)
3 n#m nm
3 t
= Z Z W ¢ c (a +a)(b +b ) + [higher-order terms], (2.256q9)
4 mn n
j nem
‘ H _(t) = § v(e) ete (at+a) (2.256h)
. AF nm n m :
; n=m
L j 3

J
The coupling parameters xnj' Yn' znj, J ’ th, Gnm and an are related to the

derivatives of the interaction potent1a1 V(Qj) by

3 - v
Gnm = an an an [56;] aj , (2.257a)
0
,
K =F Y =F_ g%i o, (2.257b)
.Y P
3 [ 32y
wnm = an nj - an 56;36- 2%y ¢ (2.257¢)
J (]
Jnm - an Vo ’ an =5° R {2.2574)
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a, = [ﬁ/(zmhwh]-r ' aj -E’x/{ijwj]:r . (2.257e)

The last term,HAF-Eq. (2.256h) , describes the active~-mode/laser-field interaction
in which

]
vVit) = E‘t/[ZmAwA]] (u(')E) cos (wt) . (2.257%)

Important features of H(t) are: (i) the ground state site energy of the adspecies
EO is perturbed by Hé,which includes changes in site n due to direct interactions
with the lattice and due to active-mode excitation, as well as an indirect
interaction with the phonons via the active mode; (ii) the terms Hg and Hl repre-
sent parallel motion of the adspecies, IJnmlz in H1 being related to the intersite
transition probability from site n to site m due to coherent motion; (iii) the
terms H2 and H3 represent the perpendicular vibrational-motion-~induced intersite
transitions due to the active mode A and the bath modes B of the adspecies/surface
system, respectively; (iv) H, is the A and B mode coupling~induced intersite
transition; (v) finally, the excitation of the active mode, governed by HAF(t),
provides the dominant driving force for intersite migration of the adspecies.

For the case of chemisorption on a lattice site, the equilibrium position of
the adspecies is shifted due to the distortion of the lattice. 1In this case the
adspecies-phonon interaction is very strong and perturbation theory cannot be used.
It is possible, however, to use a canonical transformation to go to lattice-dressed

+
operators A:, An' Bi, B, and C:Cn which take into account the shifted equilibrium

3
position of the adspecies and the lattice distortion.71 By employing the cancnical
transformation

o=e ge , (2.258)

where Q stands for the dressed operator of q (q may be a:, a s b;, bj' cn or c:),

the generator of the transformation is given by

1-

t u
S = n{j CnCn [dnfa -2) + By [bj-bj] ' (2.259)

where o, and an are chosen as functions of the coupling constants, x: and Yn' so

that the total energy of the system is minimized, i.e., Bulaan = 3H/8an = 0.

The transformed total Hamiltonian of Eq. (2.256) in general is very complicated and
will not be presented here. Instead, we investigate a simple case in which only
the single-phonon coupling is included. The following model Hamiltonian written

in terms of dressed operators is considered:

- - oy -
H{t) = Ho + HAB + HC + HAr(t) ' {2.260a)

)
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t t+ +
0 0 E C.C, =fu AR+ }ﬁmjsjaj , (2.260Db)
- =5t oty ot
H_ = £ cle (A s.ma.] , .
- n:z,"j - m SnCa R (2.260¢c)
[ o~ + +t t
i, = “Xj LI (A Bj+ABj] , (2.2604)
Bo(t) = § V(1) clc (A*wm] ‘(2 260e)
AF nm nn ' *
nxm

w -w - 2¢* afa (2.260f)
eff A ' *

= . . X ~5 ~
where Eo is the distortion energy, th and znj

constants of wim and znj' respectively, and V(t) is the transformed lager-adspecies
coupling constant of V(t)Knm. Employing the many-body technique described in the

are the transformed coupling

previous sections, we obtain the equation of motion for the ensemble average
<<<++->>> (over the A and B modes and the lattice site coordinates) of the active
(d) mode and the lattice site transition probability:

a<a> ,
S = - i<wegg(t)> <A> - iv(t) - [[Y1+Y2+YM) /2] <>, (2.261a)

«::» - i Qven” v - [ (@) (2.2610)

- -zyn[ (o)1) + (7] «nA>):] [z((p - €D ‘«Pn-l»] . (2.261¢)

Here Y, is a dephasing factor and Yy is the phonon-coupling-induced damping

4L
at

factor given bleO,lOl
=) lzjlz 2%+ [y _s2]? (2.262a)
Yy L Yp 3 B ' .
Ay = (o) - Wy (2.262b)

where YB is the decay factor of the phonon (B) modes due to anharmonic coupling.
In Eq. (2.262a) and in what follows we assume only nearest-neighbor contributions,

3 p) b -
namely, zmn = zn,ntl = 2°, etc. The migration-induced damping factor YM is given

101
by )
1y = g “}”2 (Ys/2)508  N4) - Ajsin[dxﬂ ' 2,269
3 2 2
8 *[ve?)

where kj and 4 are the wavelength of the B-mode vibration and the lattice spacing

|
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of the substrate. We note that both Yl and Y are given by a Lorentzian form
which is due to the finite lifetime of the phonon modes, YB ,and thus give us a

nonzero relaxation rate even for w A simplified model which assumes an

ff j
infinite phonon lifetime, i.e., YB=0, results in delta functions for both Yl and
Y™ :
Wef £y .

From the coupled equations {Eq. (2.261)]1, we can calculate the lattice site

, i.e., Yl M ZF(wJ)G(wJ-weff), which are zero for single-phonon processes when

occupation probability ((Pn(t)>>, which in turn gives us the mean-square displace-
ment of the adspecies

R e))= a® E n? (e ())) . (2.264)

and the diffusion (migration) coefficient
2
&2 )
[ ot ] . (2.265)

The site probability function <KPn(tJ>) is in general not analytically available

D= lim
troo

due to the time-dependent excitation <(nA(tﬁ» which is nonlinearly coupled
(Eq. (2.260e)]. For tractable results, we investigate the large damping case,
Yl 2>>Y , such that the adspecies reaches its steady-state excitation
(‘n (tﬁ» which is governed by a cubic equation [Eq. (2.25)]. Using this
steady-state exc1tation, we may solve Eq. (2.261c) to obtain the quasi-steady-state
site probability
(e, () =1 (4Wt)e dwt (2.266)

where In is a modified Bessel function and

W= [ZﬁBX + X + nB)YM . (2.267)

Thus, from Eq. (2.264) and using the recursion relation for the modified Bessel
functions, we obtain the mean-square displacement, which in turn yields the
migration coefficient

D= 4Wd2 . (2.268)

This is related to the laser intensity by a power law, 1P, 15ps3, since W=IP; p=1
for low excitations for the harmonic case, €*=0, and p=1/3 for high excitations.

We note that the above laser-enhanced migration constant, D=W, is governed by an

Arrhenius form for the high-temperature limit, kT>>hwj,

D = D exp [-EA/Kr] , (2.269)
where

« [lﬁﬂz + Iijlzl*‘wa (2.270)
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is the "activation energy" for migration. We finally note that the above
Arrhenius form for the migration coefficient resulting from single-phonon

processes is not necessarily true for multiphonon processes.loo'101

B. Electronic degrees of freedom

(i) Excitation to surface states and charge transfer. 1In a crystalline solid, the

energy levels associated with the electrons form a number of quasicontinuous
valence and conduction bands. For a metal the upper valence band and lower con-
duction band overlap; in a semiconductor, these two bands are separated by an
energy gap. The electron charge density associated with these energy bands is
more or less uniformly distributed throughout the crystal. With the addition of a
surface, however, a number of additional bands and local states are formed.102
These surface bands correspond to a charge density localized in the surface region.
By using a laser to excite electrons to or from these surface bands, the surface

charge density could be increased or decreased.lo3 The subsequent Coulombic inter-

action with an adspecies could enhance various surface processes.104

Experimental studieslo5 of synchrotron radiation on metal surfaces have already
demonstrated that photon-stimulated desorption can occur through surface electronic
excitation. This desorption process involves the excitation of a core electron of
the adspecies, which is localized in the surface region, to the bulk energy bands
of the solid. The resultant Coulombic repulsion is the cause of the desorption.l06

Studie31°7 have also been conducted on the effects of laser radiation on the bulk
electronic states. Using experimental band structures and time-dependent pertur-
bation theory, the photon absorption rate for electronic states has been calculated
for a variety of semiconductors. This rate can be quite appreciable for resonant
laser frequencies.

In the following two sections, we will extend these time~dependent perturbation
studies of the photon absorption processes to include surface states. Using a
simple one-dimensional (1D) model, we will first examine the bulk electronic
structure of a semiconductor. From this starting point, we will then show the
origin of the surface states and calculate the photon absorption rate for exci-
tation to these states. The effect on adspecies interaction will then be address-
ed. Finally, in the second section we will extend the theory developed in the
first section for semiconductors to the case of a metal. This discussion will

center around the effect of lattice vibrations on the photon absorption process.

(a) Semiconductors. For 1D wide-band semiconductors of infinite extent, the

valence electron wave function can be written in terms of plane waves:




b (z) = § A e , (2.271)
G

where k is the electron wave number, G is a re¢iproca1 lattice wave vector, a is
the lattice constant, and z is the direction parallel to the chain. Atoms are
positioned at integer values of z/a. The plaue waves with G#0 represent the
lattice scattering of the electron.

If¥ the semiconductor chain is now truncated at z = a/2, the surface can reflect
the plane waves; subsequently, the wave function within the semiconductor can now
be written A

. a . a
l(k-G)[z—E] —1(k—G)[z-5}

Y (z) = LA e +B e (2.272)
G
or in trigonometric representation
= ' e - _a
b (2) = Z A; sin}(k G)[z 2} + ek_G ' (2.273)

G

with the phase factor ek-G being obtained by matching with the wave function ex-

rernal to the semiconductor:

a
) k~G 2
v (2) = (Z; c, e . (2.274)

Eqs. :2.273) and (2.274) can be written in compact form as

¥ (2) = cf; o ¢ o @ (2.275)
where ¢k_G(z) are the solutions to the particle in a square well potential:

¢ ()-3*1<k-c>z-2 + 0 (2.276)

k-G 'Z L) s 2 k-G .

for 2 < a/2 and

} -q, _ [z-é]
¢k_G(z) - (%] sinek_G e k-G 2 (2.277)

for z > a/2, with

B = V¥~ k-G (2.278)

G-k
tan®, = SK , (2.279)
k-G qk—G

where L is the length of the crystal and W is the sum of the work function and the




Fermi energy. If we assume

Ll

lek-GI =0 — 3 (2.280)

our basis state will be odd in k; on the other hand, if
8 =07 5o (2.281)
k=G 2 *

our basis state will be even in k.
In principle, the sum in Eq. (2.275) is over an infinite number of terms; how-
ever, the coefficients become very small as G increases. Consequently, within the

nearly-free-electron (NFE) approximation,m8 we need only consider the lowest~
order terms in G. Eq. (2.275) will now become
¢

wk(z) = ak ¢k(z) +Q (z) (2.282)

k-g "k-g
where g = 2r/a. To obtain the parameters in Eq. (2.282), we must solve the

Schrddinger equation:

1 a°
3 3 tV@\Y (2) =E Y (2) : (2.283)
dz
with
N
V(z) = ) v(z+fa) , (2.284)
2=0

where N is the number of ions in the chain and v(2+Ra) is the screened potential
for the ion at lattice site fa. Inserting Eq. (2.282) into (2.283) yields the

secular equations:

2
ogkl;? “E |t v =0 (2.285a)
(k-g)*
o Vot Oy & -g|=0 (2.285b)
where
Vg " <k-g|viz)|x> . (2.286)

We will assume that the matrix element, Vg, is independent of all k but the Fermi
wavenumber kF (on-Fermi-gurface approximation).m9

To have a non-zero solution for the parameters in Eq. (2.285), the energy must
be

2
1 2 2 2 21 2
E, =3 l:k +(k-g)] t \/Ec -(k-9)7| + 4 Eg , (2.287)

where the energy gap is given by
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E, = 2|vgl . (2.288)

After normalization the wave function is now

. (2.289)

Eqs. {(2.287) and (2.289) constitute the solutions for the energies and wave
functions for the bulk electrons in a 1D semiconductor. 1In our model we assume
that vg > 0. If the wave function, Eq. (2.289), is not to vanish at the top or
hottom of the energy range, the basis states should be odd in k for the lower
branch and even for the upper branch of the energy. The range of the phase
factors, Eqs. (2.280) and (2.281), will be chosen accordingly.

The energy dispersion relation for this system is depicted in Fig. 13. The
valence band (V) and the conduction band (C) are, respectively, the minus and plus
} branch solutions to Eq. (2.287). If the system is unexcited, the electronic
;states are completely occupied up to the top of the valence band and all other
states are emptied.

) In addition to this discussion of the bulk states, we are also interested in the
’ surface electronic states.lo3 To find these surface states the energy expression,
Eq. (2.287), is analyzed for other solutions.lo2 It can be seen that real energies

can be obtained if the electron wave number is

k=§+i'< . (2.290)

Fig. 13. Dispersion relationship in complex crystal momentum space (k+ik) for a
finite linear chain. The valence, surface and conduction bands are labeled V, S
and C, respectively.
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Inserting this into Eq. (2.287) we obtain

2
1l(g 2 2 22
E 2[(2] Kot \Eg Kg] ' (2.291)

where the range in values are for

E
k| = 0 —> -5‘3 . (2.292)

To obtain the wave function for the surface states on the inside of the semi-
conductor, we insert Eq. (2.290) into our bulk wave function expansion, Eq.
(2.273):

- 9. ; -2
wK(z) g AG Sin[tz G + ;K][z 2} + o+ iB| , (2.293)

where we have assumed that since k is complex it is reasonable by Eq. (2.279) that

the phase factor is also complex:

eK,G =0 + iR . (2.294)

i
If we now put Eq. (2.293) into exponential form and separate the real and {
imaginary components, we get

é i [g.c] (4] - K[z-g]+s -4 (ge] [2}«1 K{z-g]m

¥ (2) = ) A, |e e -e e , (2.295)
G

where a factor of 2i was absorbed into the coefficients.

Since there is no preferred surface, we expect

tele=d

For this to be valid, the wave function, Eq. (2.295), placed in this expression
will yield terms like

2 2 i
- Isz [z-g-L] I ) (2.296) j

cosh(2B8) - cos(2a) = cosh[2(B~kL)] - cos|(G~g)L+2a) . (2.297)
But g and G are reciprocal lattice vectors; therefore,
{G-g) L = n2m , (2.298)
where n is an integer. Consequently, Eq. (2.297) becomes

cosh(28) = cosh(28-2kL) . (2.299)

1
&
g

This condition only holds if
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B =5

(2.300)

Following Lundqvist-sloz lead, we will alsc assume
K<0 . (2.301)

Using Eqs. (2.300) and (2.301) in Eq. (2.297), we note that near the surface
at z = a/2 the first term in our wave function is large and the second term is
very small. Near the other surface at z = a/2-L, the reverse is true. Thus the
first term of Eq. (2.295) yields information on the surface electronic charge
near z = a/2 and the second term, near z = L-a/2. Since we are only interested in
the surface at z = a/2'and we assume L is very large, our surface wave function

becomes

P (2) = ) A, e e . (2.302)
G

where the exponentials depending on L have been absorbed into the coefficients.
It should be noted that, unlike the bulk wave function expansion, Eq. (2.273),
the terms in this expression are not solutions to the particle in the square well
since they would produce imaginary energies. Furthermore, the wave functions
given by Eq. (2.302) are not acceptable bulk wave functions since they cannot be

put into the Bloch form:102

wk(z) = elkzuk(z) ' (2.303)

where uk(z) has the periodicity of the lattice. The previously obtained bulk
solutions, Eq. (2.282) with Eq. (2.277), can be cased into a form similar to this
by adding the complex conjugate to the right side of Eq. (2.303).

To complete our solution we need to obtain the coefficients of Eq. (2.302).
First, as for the bulk series, we truncate the surface series to two terms via the
NFE approximation.lo8 Then we insert our wave function into the Schrodinger
equation to obtain our surface secular equation. This gives us an internal wave
function similar in form to Eq. (2.289):

(] o] ABA] o) e

WK(z) = Cs e -

~Ee

Q

where Cs is the normalization constant. Using Eqs. (2.288) and (2.291), the co-

efficient of the second term can be written

e
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Inserting this into Eq. (2.304) and factoring, the wave function becomes

0] )
wK(z) = Cs sin [g][z—i}+6K e R (2.306)

where

eK =a+ 68 (2.307)

and we have absorbed all factored constants into Cs.
To obtain the solution external to the semiconductor, we assume that the surface
electrons feel a constant potential for z > g. Consequently,

<[+

wK<z) = C, sine'< e . (2.308)
where
q. = ,2 (W=Ey) (2.309)
and

it
tan BK = T (2.310)
To be consistent with our bulk wave functions which are odd in k for the valence

band and even for the conduction band, the surface phase factor has the range

v
IBKI =0 — 3 (2.311)
for the lower surface
™
|eKI =z = (2.312)

for the upper surface energy branch.
The normalization constant may be obtained by assuming the charge density is

¢

symmetric about the center of the semiconductor chain:

2
az l“’r"’l -% ) (2.313)

L a

“3+3

Using the surface wave function in this expression, we obtain
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N =

-1 2xcos (28,) - g sin(26,)
c_= +

s 2K q,

1-(-1) e

eKL sin26
. { . (2.314)

N KL}
2¢)% + &

For our purposes, L is considered very large (infinite) and ¥ is non-zero and

negative, Eq. (2.301). Therefore 1

’ 2
sinzeK 2xcos (20,) - g sin(29K;]
- =+

. (2.315)
s A %S (2K)2 + g2 ]

The surface states are completely determined by Eqs. (2.306), (2.309) and
(2.315). The dispersion relation for the surface band(s) is illustrated in Fig.
13. Note that the surface band extends into the complex plane. Also, there is no
surface state at the branch point which occurs near the center of the band:

2
2 [E
= 219 - (2
E 2[2] [g] . (2.316)

If we now shine a laser on our 1D semiconductor, we can induce electronic
transitions from the bulk valence band to the surface states. To determine the

transition rate, an integral of the following form must be evaluated:
B, () = <« |R-Blx> , (2.317)

where X is the vector potential of the laser radiation and P is the momentum
operator of the electron. Under the dipole approximation and assuming the laser

is polarized parallel to the chain, HKk(t) becomes

1
2 -iwt)
(27T e d
HKk(t) = - l[ﬁ?] [TJ <I< i k> ’ (2.318)

where I is the laser intensity and w is the angular frequency.
The bulk wave function, Eq. (2.289), and the surface wave function, Eq. (2.306),

can be written in the form

ik ikz

Y (2) = e z u (z) - e ut(z) (2.319)
and
-K(z-%] i[g]z
WK(z) =@ e uK(z) (2.320)

where
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2
-ik2 X
2 ig -— i
u (z) = e e X4 Ekvl’ e X9 (2.321)
2 g
E -k /2
(2L) |1+ Vg
L - -
and
i -i g 2 |
- gi1,-2 (2]
uK(z) Cs sin {2] {z 2}4— SK]e . (2.322)
L.

Both uk(z) and uK(z) have the periodicity of the lattice. Using Egs. (2.319) and i
(2.320), the integral in Eq. (2.318) now becomes ’

Iy

(51}

a
Ll 4
x|z ildle K|z
%lk)- dz e 2)e \2 u;(z)‘% [eikz\.k(z)] ~ldaz e 2
a
2L

a
E-L
_i{g]z _
X e 2 u:(z) diz "eikzu;(z)] . (2.323)

where we have assumed that for large L the contribution of the exponential tails,
Eq. (2.289) with Eq. (2.277) and Eg. (2.308), to the integral will be negligible.
The integration in Eq. (2.323) can be rewvitten

a a_
3 N-1 | 37t
dz ¢+ = E dg c-- (2.324)
a 20 a
-Z--L --2--£a

If we change the variable of integration to z+la and exploit the periodicity of
uk(z) and uK(z), we obtain

N-1 1(9-k]1a xLa N-1 i[k-g}ﬂ.a (2.325)
M-Zez e B-Ze 2 eKhB* '
=0 £=0
where
a
2 a
K [z-i] -3 [g]z a ike
B=]|az e e u:(z)& e uk(z) . (2.326)
a

The transition probability is related to the square of Eq. (2.325):

. I &7 S TR .
Py " meietho gl s, o Cf e . . . -
- - i, ey -




88
N-1 N-1 i[s-k][l-m]a N-1 N-1 i[k-g){2+mqa K (L+m)a
M2 = e 2 ex(2+m)a BB - Z Z e 2 e 8'2 + c.c.
m=0 =0 m=0 =0 (2.327)

where c.c. indicates the complex conjugate. If we change the range of summation,

the sums in front of the first integral become

k(N-1)a i[g-k][z-mja A
e 2 Kllma (2.328)

Changing the summation variables to s = +m and d = %-m, we get

N-1 i[g-k]da N-17]d]
s, = eK(N 1l)a 7 e 2 ! RS (2.329)
d=1-N s=1-N+|a|

where the prime signifies a count with an increment of 2. If N is very large, the
sum over s will be only significantly affected by large values of d. Therefore

for large N, we can approximate this function by

N-1 i[g-k]da N-1 g
N-1 - - il
Sl - eK( )a 2 e 2 eKsa- eK(N-l)a eKNa_eK(l N)a|N-1 el 3 k |da
d=1-N =]- )
s=1-N eZKa_l de1-N
(2.330)
Taking the limit as N goes to infinity, the function takes the fomm
§lk-
27m 2
s1 7 I Sca ‘ (2.331)
where G{R-g] is the Dirac delta function.
The sums in front of the second integral of Eq. (2.327) are
N~1 N-1 1[k-9][z+ma]
sz - 2 z e 2 ex(l+m)a . (2.332)
m=0 =0

-g and falls off rapidly as you
move from this point. Since for k=g terms containing the sum of Eq. (2.332) are
the only contribution to Eq. (2.327), the total must be much smaller than the

value for k-g. Furthermore, it should be noted that when k-g or k=0, the first

The maximum value for this expression occurs at k

sum and the second are equal. Therefore, we will assume

S2 x 51 . (2.333)

Combining Eqs. (2.323), (2.325), (2.327), (2.331) and (2.333), we obtain
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where the subscript zero indicates integration over the first unit cell. From Eq.
(2.334), we see that the transition from a bulk to a surface state is only permit-
ted if the real part of the crystal momentum, k, remains unchanged. This selectim
rule is not too surprising since it is an exact restriction on laser-induced
| transitions between bulk bands.llo Furthermore, for our model, it confines us to
the top of the valence band where the density of states is a maximum (infinite)
and the laser frequency needed for a transition is a minimum.

To first order, the transition rate from the valence band to the surface band is

2
; t fw  (e')
T - 2?" ) at' B (t') e Kk ' (2.335)
K k 0
where
Wk = EK - Ek . (2.336)
Converting the sums to integrals, we get
g (~E_/9{ (t . )2
i 2 (L) (2g g ' . xw‘(k(t )
: T = * I31E dk| dx dt HKk(t e . (2.337)
: 9

o JO 0

Using Eq. (2.318), we can perform the integration over t' and take the limit as

t goes to infinity

v g —Eg/ 2
; | QLA .- R R TN P 2 x>| 8 (wey-w) - (2.338)
. 137 E w2 2

S Jo Jo

Using the selection rule, Eq. (2.334), along with Eq. (2.323), this can be
simplified to

. 2
. Br Ig°L dzj2/0 (2.339)
» W w— dK G(Q)K-k-w) . -

5 137 ¢ 2 L - 2%
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After evaluating the integral over X, the expression reduces to




d g 2
2 K dz 2 0 a
= ST IgL €
T 137 2 - 2Ka dEK (2.340)

EWw l1-e
g

where K in Eq. (2.340) refers to the state obeying the resonance condition:

2 22

$
1 2
w=2>E =K ¢ [E ~K . 2.341
3| [ g g ] . (2.341)

We now define the absorption cross section, O:
o = wr/I . (2.342)

Using the wave functions, Egs. (2.289) and (2.306), in Eg. (2.340) and taking the

limit as L goes to infinity, the cross section becomes

2 2
K_cos(0 40 | + 2” 8inB _ cos®_ + g" sin|6 -6
am gd 1-e® 2 |ax 7 [ ) 9] ) g [ “ 9]
Rl B SRl oy 4 2
ngK l+e s K 6° + g

(2.343)

With Eq. (2.291) we can also readily evaluate the derivative:

EZ _ 2K2 H
| J2 15g” "

dE K ) 2
K 2[33 _ gsz] tg

(2.344)

Eqs. (2.343) and (2.344) constitute the cross section for electronic transitions
from the valence band to the surface band. Although this cross section is quite
complicated, we can readily deduce its behavior by analyzing the expressions at
various limits.

If the exciting laser radiation is at a frequency near %Eg [Eq. (2.216)], where
K = -Eg/g, Eq. (2.344) will vanish, and thus

= (2.345

omsE /2 o . )
g

This is exactly what one would expect since this mid-gap energy is a branch

point at which no surface states exist.
If the laser is near a frequency of 0 or Eg, the cross section becomes

g = .“— ag6 3
2 1
g -4 |
2 g
2

w0 = 137 (2.346)
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At both extremes, x+0 and Egs. (2.346) and (2.347) diverge. This occurs because

1
z . (2.347)

at the surface band edges the charge associated with the surface states becomes
more and more delocalized throughout the lattice until at k=0, the charge is com-
pletely delocalized. At this point the surface states become bulk states, and
instead of cross sections, one should consider absorption coefficients.

Fig. 14 depicts the behavior of the cross section cover the entire frequency
range. The values for the lattice constant, a=2.35 ﬁ, and the energy gap,
Eg = 1.17 eV, were taken to be those of silicon.11

To illustrate what laser power is required for a certain surface absorption

rate, we will consider exciting a surface state at 0.4 Eg. This corresponds to a

laser frequency of about 1015 Hz which falls in the IR. From Fig. 14, the cross
section is about 3 32. If we assume our laser intensity is 1 W/cmz, the
transition rate is about 4 x 10‘-5 photons absorbed per second. Since an electron

is excited for each photon absorbed and the effective charge depth, |1/2K|
[see Eq. (2.306)], is about 8 atomic layers, the transition rate is about 5 x 10-'6
electrons per surface atom per second. To obtain the transition rate per unit

surface area, we divide by the surface area of the end atom, whereby we obtain

1010 photons absorbed per cm2 per sec. This figure is quite large considering the

T ESE——— - A———

low power of the laser. Consequently, using such a laser can lead to appreciable
charge excitation in the surface region.
f Since our ultimate goal is to use the laser to charge the surface, we wish to
excite states with the smallest charge depth and consequently the largest K.

W,

Fig. 14. Absorption cross section for surface states, O, in &2 versus the fre-
quency of the exciting laser radiation.




For silicon at maximum value of xk the surface charge depth is about 3 lattice
constants. Since the charge depth increases as we move away from this mid-gap
region, we are mostly interested in laser frequencies near 0.5 Eg. As seen in
fFig 14, the cross section is quite substantial near the mid-gap region, and
subsequently, we could readily increase the surface charge by using a laser of
moderate intensity. Even at w = 0.4 Eg we have seen that the charge depth is
only about 8 lattice parameters, and we could excite this state with a very low
power laser. Consequently, we would expect a laser tuned to a frequency around
0.5 Eg to be an effective controller of surface charge.

To examine the effect of this excitation on the surface charge, we can readily
obtain the electron density profile of our excited system.lo4 To obtain this

density, we must sum the individual densities of all occupied states:

n(z) =) |wk(z)|2 . (2.348)
k

where the wave functions were previously given in Egs. (2.289) and (2.306).

Changing to an integral we obtain

8L 2

(2m?

n{z) = ’ (2.349)

ax lwk(z)

where we have assumed that the wave function had plane wave components parallel to
the surface. 1f we now convert to cylindrical coordinates, we can readily write
the electron charge density for the ground state:
2 [
no(z) = T-?- dk [BF-Ek] Iwk(z)

0

2

’ (2.350)

where the subscript 0 indicates ground state and kF is the Fermi crystal momentum
with energy EF' In our model for a semiconductor, this corresponds to the state

at the top of the valence band where

-s
kF 3 (2.351)
illg 2
EF =3 [2] - Eg . (2.352)
A 111,112
Using Eq. (2.289) in Eq. (2.350) with parameters typical of silicon, we

have calculated the ground state electron density profile and have shown our
results by the solid line in Fig. 15. The oscillation of the charge as one goes
into the bulk of the crystal is due to the concentration of the electron charge
around the ions at the lattice points (£ = na; n = 0,~1-2---). The exponential




tail on the vacuum side is typical of electron density profiles for a truncated

system.

If the semiconductor is now exposed to a laser with an energy less than the
band gap, the ground state electron density profile will be altered due to excited
surface states. Using the definition of the charge density, Egq. (2.348), we can

readily write down an expression for our new charge density:

2
+

2
wK(z)

n(z) = no(z) - wk(z) ’ (2.353)

where no(z) refers to the previously calculated ground state density, Eq. (2.350).
We have assumed that our laser excited an electron from valence band state k to
surface state K. From our previous cross section calculation, we have discovered
the selection rule that requires the conservation of the real part of the crystal
momentum in surface state excitations. Consequently the valence state that will
be excited lies at the top of the valence band with k = g. From Eq. (2.289) we

can determine the density of this bulk state:

2 4 2 a
ws(z) =z sin g[z—i] + 69 (2.354a)
2 2
for the internal density, and
a
R -2qg[z-§]
i 4 2 2
wg(z) -7 sin Gg e (2.354b)
2 2

for outsiée the crystal. From this equation we see that the charge of the bulk

Fig. 15. Electron density distribution at the surface. The solid line
represents the ground electronic state, and the dashed line represents the system
with the excited surface state K = -0.5(2vg/g) in the lower branch.
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state that is being excited goes as 1/L. Therefore, for a very large system we
would in effect be taking only an infinitesimal amount of charge from everywhere in
the semiconductor to populate the surface state. Consequently, for a large
system, the charge of one bulk state is negligible in Bgq. (2.353). The total
density of the excited state then becomes

2
n(z) = n (z) + wa(z)l . (2.355)

Using Eq. (2.308) we can obtain the density contribution from surface state «:

-Zk(z-g]
IwK(z) 2. cz sin?[[g] [z-‘z-'] +8 e 2 (2.356a)
for z < g and
—2 [z-e]
Y _(2) 2. c? sing e w2 (2.356b)
K s K *

for z < g. Inserting Eq. (2.356) into Eq. (2.355) along with the results for the

ground state, Eq. (2.350), one obtains the solution for the charge density of the

excited state of the_semiconductor. We have calculated this density for
K = =0.5 Eg/g in the lower branch surface and depicted the results by the dashed
- line in Fig. 15. As can be seen by this plot, the charge in the excited surface
state produces a total electronic charge in the surface region that is twice as
great as the bulk averaée. 1f one excites surface states closer to the branch
point near the gap center [see Eq. (2.316)], the charge concentration in the
first few layers of the surface will increase up to about thrice the average
density.

P

If there is a charged adspecies above the surface, this excess charge in the

surface region can produce a very large effect on the adspecies-surface inter-

WP

action. This interactica can be written classically as

5 U(zy) = -I a¥ n(z) v(r) (2.357a)
with 1
5 2 2 712
4 r-'-x +y +(z-zI):| , (2.357b)
T where v(r) is the electron-ion potential of the adspecies at zy. We will assume
: that v(r) is Coulombic in nature with Thomas-Fermi screening:93
. z e-Ar
vir) = - (2.358a)

where A is the screening parameter,
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G- (2.358b)

and 2 is the charge on the adspecies. A more appropriate screening function would
be similar to those developed for finite metals,113 but this simple model,
Eq. (2.358), should serve to give us the magnitude of the interaction of the
surface with the adspecies. Since the Thomas-Fermi screening parameter depends on
the average bulk electron density, fi, we would expect this parameter to be much
larger than one calculated based on the average charge density between an adatom
and the surface. Consequently, the use of a screening parameter based on the bulk
electron density would underestimate the actual interaction.

Bearing this limitation in mind, Egs. (2.357) and (2.358) are combined and the

integration is performed in the x and y directions to give

U(ZI) = = DY

- 00

© -A|z-21]
2z J dz n(z) e . (2.359)

Inserting the excited state density, Eq. (2.355), into this expression, we obtain

-)‘lz-zII
Ulzp) = - 5= | 4z n (2) e - Su(zp) . (2.360)

-0
The first term in this equation represents the interaction of the adspecies with

the semiconductor in the ground state and will not be considered here. The second
term is the change in the potential induced by the excited surface state and is

given by

2 -A|z-zg]
Suizp) = 3E rdz IwK(z)| e . (2.361)

'-00

Inserting the expression for the density contribution from the surface state, Eg.
(2.356), we get
2 a
s 2mzc_ 2|g(. a -ZK[z-E]-X|z-zI|
U(II) - dz sin 2(2--2-]4'9'( e
- 0D

) -ZqK[z-g]-Alz-zII
+ gin GK dz e . (2.362)

After much algebra, this equation can be reduced to yield an interaction of the
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sU(zI) -XzI -2q_zy
Z =@ Alk) - e B(x) (2.363)
where
a
c*ne 2 |sin’e (2k-)) cos (26, ) ~gsin (26
s " 1 -A)cos (28,)-gs )
AlK) = - + R (2.364)
A A 2K=\ 2 2
-3 (2k=\)" + g
and

2 2
Cs 47 sin GK q.a
e . (2.365)

B(k) =
(ZqK)z-l2
Eq. (2.363) has been evaluated for a number of surface states, and the results

are plotted in Fig. 16. As one moves to larger |K| (energies near the gap center),
the curves clearly show that both the magnitude and the range of the surface

charge interaction increase. Since we have found that the surface charge also in-
creases under these circumstances, this is exactly what is expect. All curves,
however, show an appreciable contribution to the potential produced by the surface
states with || > 0.01 ag/q.

In order to give a better comparison of the surface charge interaction among the

——

various surface states, we have plotted the change in potential at zy=a for all

i ‘ surface states in Fig. 17. The upper branch states are at a higher energy
! {positive sign in Eg. (2.291)] than the lower branch states. Therefore, the ex-
’ ponential tail of the charge density and, subsequently, the interaction is slightly
greater.

Fig. 16. The magnitude of the surface interaction potential (in millihartrees)
at various distances from the surface. The solid line represents the system with
excited state x z -(2V_./g); the dashed line, K"-O-S(Zvélg): and the dotted line,
n<--o.1(zvq/g) , all in"the lower energy branch.
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Thus we see that an appreciable effect on an adspecies-surface interaction can
be produced by use of a laser to localize electronic charge in the surface region.
If the adspecies is positively charged, the possibility of aduorption is enhanced;
on the other hand, if the adspecies is negative, desorption can be induced. In a
more complete model of a semiconductor, both occupied and empty surface states
could exist in the ground state. A laser could then be used to excite holes as
well as slectrons to these surface states and thus adsorption or desorption could
be enhanced for the same charged adspecies.

Because the concentration of charge is so large in the surface region, one would
expect the effective interaction length to be greater than that indicated by Fig.
16. The exponential decay of the surface interaction is probably an artifact of
; the assumed Thomas-Fermi screening. The dielectric screening problem would have
% ' to be addressed more carefully in order to improve these results.

' The surface charge is also large enough that it is conceivable that such a large

charge displacement could lead to a lattice rearrangement. Such an effect could
lower the charge in the surface region. On the other hand, the new surface states
would probably be more stable and, subsequently, have a larger lifetime. To study
these effects a sel}-consistent field calculation would have to be performed.

The major limitation of the above model, however, is its one-dimensionality. The
three-dimensional interaction potential may be quite complex depending not only on
3 the distance from the surface but also on the position of the adspecies with

respect to the plane of the surface. Also, most common semiconductors have
v indirect band-gapslll (the minimum in the conduction band is not over the maximum
1 - in the valence band), and the form of the wave function in such a gap is not

eor y
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Fig. 17. The magnitude of the surface interaction potential (in millihartrees) at
a distance zy=a for the system with various excited surface states. The solid line
represents surface states in the lower energy branch; the dashed line, the upper

energy branch.
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readily obtainable from a 1D model. Finally, in a real semiconductor, the surface
states are not necessarily confined to the gap between the valence and conduction
bands.114

Nonetheless, our contention that lasers can be used to control surface charge
density in semiconductors and, subsequently, enhance surface processes has been
substantiated. Since metals also play an important role in catalysis, the effect

of lasers on metal surfaces will also be examined in terms of a simple model.

(b) Metals. As with wide-band semiconductors, the valence electron wave function
of a metal of infinite extent can be written as a sum of plane waves, Eq. (2.271).
Consequently, if we model a metal as a truncated 1D chain, we will obtain equations
for the bulk and surface wave functions and their related energies which are of the
same forms as the wave functions, Egs. (2.289), (2.306) and (2.308), and the
energies, Egs. (2.287) and (2.291), of our model semiconductor. The band
structure for the metal can also be illustrated by Fig. 13. However, whereas the
V band is the valence band of the semiconductor, for the metal the V band corre-
sponds to an overlapping valence and conduction band that is characteristic of a
metal. Consequently, for the metal the lower band is only partly occupied. The C
band would correspond to an upper conduction band.

For example, in the case of sodium111 the top of the lower band lies at 3.8 eV,
but the band is only occupied up to 3.1 eV in the ground state. Also, whereas the
energy gap is about 1 eV for most common semiconductors, for sodium the energy gap
is 0.45 ev.

If we shine a laser on our metal, we wish to see if we can also populate the
surface state and thus increase the surface charge. However, because of the
selection rule we previously developed,1°3 we must conserve the real part of the
crystal momentum when we excite electrons into the surface states. But there are
no occupied bulk states with real momentum at or near g which is the real momentum
of the surface state. To overcome this problem we suggest not only exciting the
electrons with a laser but also with the vibrational energy of the crystal. The
laser photoné would supply us with the energy we need to get to the surface states,
and the phonons would supply the needed crystal nonnntun.lls

For our model system, we write the Schrédinger equation

N(z,t)
i ’I‘Si" - H(E)P(z,t) (2.366)

H(t) = 0 + uf(e) + #Pv) (2.367)

where ° is the electronic Hamiltonian of our system in the ground state, Hf(t) is
the coupling of the electrons to the laser field, and HP(t) is the coupling of the
electrons to the phonons. We expand our wave function in terms of the stationary
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states ¢k(z):

-izkt

Viz,t) = ] c (t) ¢ (2) e . ‘ (2.368)
k

Using this expression in Eg. (2.366) and assuming that ck(O) =0 for k > kP and
ck(O) = 1 for k < kF' we obtain

t '
¢, (t) = -1 dt-{<k|uf(e)|k) + <k|Hp(t') |k'>} ii“.“k't ' (2.369)
0

where
mkk' = Ek - Ek' . (2.370)

To get our transition rate to first order, we would sum the square of Eq. (2.369)
over all initial states k' from O to kP and over all final states k = %g+ik for
all surface states K. However, the field coupling term between k and k' would
vanish since the wavenumber of the field is too small to assure conservation of
crystal momentum. The phonon coupling term will conserve this momentum, but the
energy of a phonon (for sodium, maximum phonon energy is about 0.015 eV)is not
sufficient to assure conservation of energy. Consequently, the phonon term and
the overall transition rate in first-order perturbation theory is zero. Therefore,
we will have to carry our calculations to higher order.

Using Eq. (2.369) in Eq. (2.368) and then inserting into the Schrodinger

equation, Eq. (2.366), we obtain the second-order solution:

t -iw t' -iw t'Y) i .t
) £ 3 p Y
- e L}
ck(t) Ji at H o +H£k, e e
t £ ~dw t" -iw t" iwk,k,t"
x|at" dH . e +u:,k,, e P e , (2.371)
0
where
-lw, ¢t
ufPt) «nf'Pe TP (2.372)
Wy being the frequency of the laser field and wp the frequency of the phonon.

The matrix elements are defined:
":i? : ("'"f'p'k') (2.373)

If we multiply Eq. (2.371) out, we will obtain terms that are second order in the

field, H:k, H:'k" and in the phonons, Hﬁk' H:'k" Again, if we consider initial
states k" lying below the Fermi inctgy and final states k as in the surface band,




the second-order field terms will vanish since they do not conserve crystal momen-
tum, and the second-order phonon terms will vanish since they do not conserve
energy. Using this fact, we can simplify Eq. (2.371):

. t ¢!
e tt) = - 1 n‘;k ni’,k.. at’ ,i(m"k'-wf]t' at" ,i[mk'k"'wp]t'
x' 0 o |
t 1 t. [ ]
- k)_" R, B, et ei(m"k'.wp]t at= .1(0"‘"‘"-%]?' . (2.374)
0 0

The first term in this equation represents the electron being excited by a phonon
from initial state k" below the Fermi energy to an intermediate state k' which
lies between the Fermi level and the top of the lower band. From here, the
electron is excited to the final state k in the surface band by a photon. The
second term involves a photon exciting an electron from the initial state k"
below the Fermi level to an intermediate state k' which lies in the upper con-
duction band. From there we are scattered into the final surface state k by a
phonon. Since both the conduction band and the upper conduction fall off rapidly
as you move away from the surface state region (see Fig. 13), the excitation of an
electron to the upper conduction band involves a large energy mismatch. The sub-
sequent scattering by a phonon into the final state will also involve a large
energy mismatch since the intermediate state can be very high in the upper con-
duction band. Consequently, we would expect the second term in Eq. (2.374) to be
very small when compared to the first term,and thus we will disregard it.
Assuming the time, t, becomes very large, we can ﬁow find the modulus of
Eq. (2.374):

2 2
o egc o] [
lk__tk__l - 21r6[wkk,,-wf-wp] L mk:k"-:)p +2m kz' . G(wkk,-wf]. (2.375)

To proceed further we must first evaluate Hik".

When the system is at rest, the electronic Hamiltonian can be written as

1 &2
0o = 3 =3+ Lviz-zy) (2.376)
dz L

where v(z-zg) is the screened potential between the electron at position z and
the ion at equilibrium position zj;. If there is a disturbance in the lattice
(a phonon), the ion will change position to zz+uz(t). Consequently, our
Hamiltonian will become
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1 &2
H(t) = 3 <5 + ] vizezg-u (t)) . (2.377)
az® ¢

If we assume the lattice is not too greatly perturbed by the phonon, we can expand
the potential in terms of a first-order Taylor expansion:

H(t) = HO - ] v'(z-29) ug(t) , (2.378)
2 .

where v'(z-2zp) is the gradient of the electron-ion potential evaluated at

equilibrium. The displacement, uy(t), can be written as

- -impt
uz(t) = U!‘ e . (2.379)

Using this in Eq. (2.372), we get

T et e ————

i
B = -] vizz U , (2.380)
L
! ‘ and the subsequent matrix element will be

B = - 10 | 6z 0 (2) v'(zzp) 6, (2) (2.381)
g

T

where ¢k(z) is the eigenfunction of Ho. If we neglect the exponential tail of the
wave function by assuming the system is very large, we can approximate the wave

i function in a metal by (see Eq. (2.289)]
J :

¢ (2) =12 ok (2.382)

T

Using this in Eq. (2.381), we obtain

e s ~i(k-k')zg
‘{k. o - 1(k-k t)I vi{k~k') Z Uge . (2.383)

where v(k~k') is the (k-k')-th component of the Fourier transform of the electron-
ion potential. It is also convenient to express the displacement magnitude, Uy, in
terms of the phonon annihilation, a(K), and creation, af(x) . oporators:no

1 1
2 2 | ixe -ixe
1 L L+
Uz - [—”] Z[zu):] ™ al(k) + o a (X) ’ (2.384)

where M is the mass of the lattice atom and X is the wavevector of the phonon. We

can now write for the phonon matrix element




1 2

2 2 i[Kk+(k'~k)]2 -[K+(k~k') ]z
1 P 1 '3 1 Lt
,--1[ ] {( ] (k=k')v(k=k') =Je a(K)+zJe a' (k) .
l{k W L Yk Ng n%
(2.385)

But the sums over the exponentials are delta functions. Therefore,

1

2 'yw (kk ? K
L, - -1[&‘) Uk DvikZk') Guk-k') + atk'=x)] . (2.386)

e

Ingserting this into Eq. (2.375) and then averaging over the eigenstates of the
|, phonon number operator, [n(K)>, we will obtain terms of the form

f <n(KX) |a(K)a(K") |n(x)> = 0 (2.387a)
;' <(x) [at®)at(x')[n(x)> = 0 (2.387b)
i < lamaf k) + af@am) nwp= 8, (20141 (2.387¢)
wvhere § is the Xronecker delta function and n(K) is the population of phonon :1

. X, X'
’ state K. We have assumed that K = k-k'. Using Eqs. (2.386) and (2.387) in k

Eqg. (2.375), we obtain 2
[H:k] (k' =k") 2v (k' =k") 2 [2n (k' =k") +1]

ck('t)c;(t) an
<n(x) - n(K)> - [ﬁk[“kk".wf-wp]zn 2w fw -w 2
p( k'k" P]

S[u)kk,-mf] . (2.388)

r )2 2 2
2,,‘ Ekk'J (k*=k") v(k'=k") [2n(k'-k")+1]
+[m4 E" 2“) [ -w ]2

p u‘klkl p

e —————— . A

If we assume the frequency of our exciting radiation is nearly equal (expect for
the phonon contribution) to the difference between the frequencies of the initial
and final states, the second term in Eq. (2.388) will vanish. If we now sum over
all initial and final states in Eq. (2.388), we will obtain the total second-

order transition rate:

24 I (k'-k")z\r(k'--k")z[2n(k'-k")+1] £
T= { } X' k" 20 ( - 2 E[ﬂkk.}zs[mkk.-mf-(ﬂp] (2.389)
o\ i p]

Y (2.372):
2
215y
L) 1dz12 /0 (2.390)

i ,
i Kk' 137)\ a 2 2xa
! We (1 - e j

The field matrix element can he readily evaluated using Eqs. (2.318), (2.334) and
{af ]2- [2_".1.] [?J.!] 60"-21 K‘

g + ik, with

where we have replaced the final-state wave number k, which equals
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the surface state index K.
As we did in going from Eq. (2.335) to Eq. (2.337), the sums can be converted
to integrals. Then, if we use Eq. (2.390), we obtain for the transition rate

e (&) o oo [nfp)s o, ] _—

m 2w W -
P [ Gy p]
2

2
Kk induced by the laser field and is given by Eq. (2.340). In obtaining T‘!) [x,g]

we made use of the fact that wp<<6f. Converting to an integral over the frequency
J
of the initial state, Eq. (2.391) now becomes

e o ) LB g

(L)p wg - (.0.)p
Zk"

Since the initial states are not near the band edge, we can write ([see Eq. (2.287)]

where T( )[K,z is the first-order transition rate between state g and surface state

W, = x"2/2 (2.393a)
ak"” k"
Ay 20

If we assume a thermal distribution of phonons and electrons, we need only consider
the integral within an interval kBT ('1‘L is the lattice temperature) around the
Fermi energy. 108 At room temperature, this interval is small and thus we can
consider the integrand to be constant:

2
T 3 “‘TL] [-—kE] (g.)&'] g-k"] [zn{i-ﬂu‘l ‘1)[ ] (2.394)
2nM ) |2 o N .
.
Since T(l)[r,g] is the only term that depends on
we would sxpect that the cross section based on this transition rate would be
qualitatively similar to that depicted {n Fig. 14 with the distance from the Fermi

energy to the top of the band added to the laser frequency.
Por sodium at room temperature we can readily evaluate Eq. (2.394):

T = 2.38 x 1079 7V {x.gl ] (2.395)
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Since the various physical constants for sodium are not significantly different
from those for silicon, we would expect the first-order rates to be roughly compa-
rable. From the last section and Fig. 14, we see that a significant photon ab-
sorption in silicon could be induced with a low-power laser (1 to 10 W/cmz). From
Eq. (2.394), therefore, we would expect to produce a similar effect in sodium with
a moderate power Jaser (10 to 100 kw/cmz). Consequently, as with a semiconductor,
we would expect a laser to act as an efficient controller of surface charge in a
metal. Subsequent interactions with adspecies would likewise be effected.

Not only does this formalism apply to metals but also to semiconductors when one
is considering the excitation of electronic states that do not have the same real
momentum as the surface states. When there is a direct band gap as in our model,
this would be insignificant when compared to direct transitions. But, in tF ‘ase
of the semiconductor with indirect energy gaps, the electron-phonon couplind »>uld
play an important role in surface state excitation.

For a more realistic picture of a metal we would also have to go to a thrs
dimensional model. Furthermore, not only the phonon effect on the electrons
considered here), but also the electron effect on the phonons would have to be
studied. Nonetheless, we have clearly demonstrated that lasers can effect the

surface charge on metals as well as semiconductors.

{(ii) Predissociation. A process which is central to a wide range of chemical

reactions catalyzed by a metal surface is the dissociation of one of the reactants,
or partial dissociation due to bond stretching, as it adsorbs onto the surface.
Another process which has received attention is laser-induced dissociation of gas-
phase molecules. We want to entertain the idea of synergistic catalysis, where the
surface and the laser combine to increase the dissociation rate above that caused
by the surface alone or the laser alone. The situation we shall consider is laser-~
induced predissociation, where a visible or UV laser couples the ground electronic
state of a diatomic molecule to an excited electronic state in which the molecule
can dissociate. Two specific effects of the surface will be included: the surface
magnetic field (SMF) and the phonon "continuum.” The former can be as strong as

116 and gives rise to Zeeman

107 G, such as in the case of ferromagnetic materials,
splitting of the electronic states of the diatomic molecule.117 The latter is
referred to as a "continuum" since the phonon levels are assumed to be much more
closely spaced than the vibrational levels of the adsorbing diatomic molecule.

The combined effects of the laser and the surface can probably be most easily
visualized in terms of Fig. 18. This is a schematic drawing of the multiwell con-
figuration among the laser-dressed and SMF-split electronic levels of HZ adsorbed
on a metal surface, where R is the internuclear separation. Rc is the point of an

avoided crossing, and R, is the inner classical turning point on the ground

* 104
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electronic state embedded in the phonon continuum (represented symbolically by the
vertical slashes). The laser-dressing gives rise to the three avoided crossings

indicated by the primed quantities vi'j (due to spin-electric dipole and spin-

magnetic quadrupole coupling). The fourth avoided crossing designated by the un-

primed quantity V._ is due to just the SMF. Each V designates a vibrational

12

quasibound well, where Vl' is the diabatic well vy

well generated from diabatic curves i and j. Each pj designates a local transition

+ fiw and Vij is the adiabatic

probability.

The term "predissociation" is used in the sense that the laser-shifted ground
singlet state (shifted up by the photon energy #w) is coupled to the continuum of
the repulsive triplet states. Strictly speaking, one could call this type-I pre-
dissociation,118 where the laser induces crossings (or more appropriately, avoided
crossings) between the singlet and each of the triplet states. A similar situation
exists for the case of NO, with a modification due to the different spin multi-
plicities of the states as shown in Fig. 19. (the vertical slashes indicating the
phonon continuum have been omitted). For a sufficiently high combination of the
initial vibrational state and #w, the dressed 2H state becomes predissociative by
radiative coupling to the continuum of the 2Z+ state.

Starting from the picture provided by Figs. 18 and 19, we have derived a semi-
classical expression for the total widthT (and hence predissociative rate).llg'120
The idea is to use classical trajectories as input for a description of the inter-
ference of the quasibound nuclear motion in the multiwell system. The widths,

energies and shifts for each of the wells can be obtained by locating the poles of

AN

Kl

R

Fig. 18. Schematic drawing of the multiwell configuration among the laser-dressed
and SMF-split electronic levels of H, adsorbed on a metal surface. See the text
for further details.
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the S-matrix element for oscillatory motion within the Wells.121 We use the
electronic-field representation122 {combined photon-dressing and SMF-splitting)
for the electronic states and limit our consideration to single-photon absorption.

For a combination of N wells, the semiclassical S-matrix takes the form

N © n.
s, « T J exp|ia,-imn | I (2.396)
L ! N N ] j J

j=1 njso

wj>0 is the appropriate multiplicative combination of Pj and (l-pj) factors in the

jth well, which can be calculated by the Landau-Zener formula or the Miller-George

semiclassical approach.123 By locating the poles in Eg. (2.396) we obtain the

\
5 where aj is the classical action inteqral for a single pass in the jth well, and ’
]

tollowing expression for the width Tj for the quasibound levels in the jth well:

Fj = -log(wj)/aéj , (2.397)

where aé_, the energy derivative of the action integral, is approximately equal to

J
the constant ﬂ/hvj(v,sexact resonance frequency in the jth well). The total
]

width is then given as

N
L wily (2.398)

where ' is the multiplicity of the ground electronic state, and

N
} wy/m) =1 . (2.399)
i=1

R

Fig. 19. Schematic drawing of the multiwell configuration among the laser-dressed
and SMF-split electronic levels of NO adsorbed on a metal surface.
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To incorporate the effects of surface-phonon-admolecule coupling, we assume the
admolecule to be embedded in a phonon-bath continuum with a finite probability of
transition (energy loss) into the continuum from any internuclear distance R of the
potential. This in turn decreases the local transition probability p at each
avoided crossing, where we are assuming the transition to the phonon continuum to

be irreversible. The decreased or modified nrobability can be expressed as

P. Z n.p. , (2.400)

where nj is a survival factor such that nj=1 represents a phonon-free situation and
nj-o represents a situation where the energy has leaked totally into the phonon
bath. A formal expression is available for nj, involving a phase integral and a

phonon-induced level width,119 but is not shown here since we shall simply

parametrize N in our calculations. [Another approach described elsehwere124 for in-
corporating phonon coupling is to carry out a "double dressing", where the elec-
tronic curves of the admolecule are simultaneously photon-dressed and phonon-
dressed.)

In Fig. 20 we present qualitative results for [', the total width in the presence
of the laser and the SMF, for the case where all njsl. Along the vertical axis we
are actually plotting the unitless quantity aéF, where we assume a6j to be the same
for each well, i.e., abj = aé = constant. For a comparative study we have con-
sidered different cases corresponding to different ratios of the pj's. These

probabilities may be written as pj = exp(-ej), where Gj is a dynamical factor

r1 T r1TrirrToerTr T T

-
—————

Fig. 20. Relative dissociation rates of adsorbed H, in a phonon-free situation,
resulting from the combined action of the laser and the SMF (dotted curves). 8, is
proportional to the laser power density, and the ratios refer to 61:62:93. The
dashed curve is for gas-phase laser~induced predissociation.
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dependent on the strength of the radiative coupling, velocity at the avoided cros-
sing and the geometry of the crossing curves, and can be taken to the proportional
to the laser power density. The results for H2 are plotted versus 91, where the
lowest (dashed) curve represents gas-phase laser-induced predissociation and the
upper (dotted) ones are for the adsorbed molecule subjected to the combined action
‘ of the laser and the SMF. Four different ratios of 91:92:63 are indicated (we
] have not accounted for the fourth avoided crossing at the far right in Fig. 18).
The main conclusion to be drawn from Fig. 20 is that the interference of the quasi-
| bound nuclear motion in the multiwell configuration due to the SMF serves to en-
hance the dissociation rate of H2 for all laser powers. For the simplest case
where all pj are equal, we estimate an enhancement due to the SMF of about 20%
for a laser power density of 100 Mw/cmz. Similar results are obtained for NO,
although with a somewhat greater enhancement. For 02, where the ground state is a
triplet and the upper is a singlet, there is a diminution at low laser powers
which becomes an enhancement as the power increases.

In Fig. 21 we present qualitative results for aéF, the predissociation rate in
the presence of the laser, SMF and phonons (dotted curves), and for comparison we
\ also display the gas-phase laser-induced rate (dashed curve) and the phonon-free

laser/SMF~induced rate *(solid curve). We have taken the survival factors nj to be
the same at all the avoided crossings, given as exp(-f) where 8>0, where the
various values of B are indicated in parentheses after the ratios. We see that the
phonon coupling results in a dramatic enhancement at low laser power densities as

compared to the phonon-free situation. However, higher laser powers dampen the

otr&.qﬂitﬂi

: Fig. 21. Relative dissociation rates of H, in the presence of the laser, SMF and
) phonon continuum (dotted curves). The dashed curve is for gas-phase laser-induced
predissociation, and the solid curve is for laser/SMF-induced predissociation.
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local probabilities more, and the net result is a lowering of the dissociation
rate. Although we have not included a feedback from the phonons to the admolecule,
i.e., we assume just a damping of the local probabilities due to phonon coupling,

most likely such feedback would not reverse the trend observed in Fig. 21.

(iii) Ionization - thermionic and photoelectric. We shall now study another aspect

of laser-induced transient effects, namely the emission of electrons from laser-

heated surfaces. To calculate the laser-generated current density, J, we employ

the generalized Richardson equationlzs'126
N+1
g= 3 3 (2.401)
n=0
with
n n_ 2
J = anIOA(l-R) TSF(G) ’ (2.402)

where Jn represents the current density produced by pure thermionic emission for
n=0 and by n-photon ionization for n>0; A and An are the Richardson constant and
the appropriate coefficient related to the matrix element of the quantum n-photon
process, respectively; F(8) is the Fowler function with argqument §=nhv-¢, where
hv and ¢ are the photon energy and system work function; and N is the largest
integer less than ¢/hv. Ts is the surface temperature calculated from the heat

diffusion equation
2

T 3°T
S=0= (2.403)
dz

with initial and boundary conditions

T(z,0) = TO ' (2.404a)
T
KSE 2e0 = -(1-R)I(z,t) 2=0 ’ (2.404Db)

where D and K are the thermal diffusivity and the thermal conductivity and are
related by D=K/pc, P and ¢ being the mass density and the specific heat of the
solid; TO is the initial temperature of the system; R is the refractivity of the
surface; and I(z,t) represents the intensity of the incident laser pulse.
Employing the Green's function technique, we obtain an integral expression for

127,1
the surface temperature, i.e., solution of the diffusion equation at z=0, 27,128

1, (1-R) R¥: t )
5] at' g(e-t") /(") . (2.405)

T (r,0,t) = To + 0 exp
s inx ' 1
pe -0

For an arbitrary laser pulse shape, the above integration must be carried out

numerically. For the case of a rectangular pulse with constant intensity
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IO and duration tp, the integration can be performed analyticallg. Thisiyields
an expression for the maximum surface temperature Ts = 2Io(l-R)tp/(nxpc) . which,
however, tends to overestimate actual experimental results. We therefore propose
triangular pulses to better approximate an actual pulse, e.g., a Gaussian or an
asymmetric long~tail pulse. The effect of the triangular pulse shape on the
temperature and its time delay can be analyzed by means of an exact analytic
solution of the diffusion equation.

A triangular temporal dependence of the laser pulse takes the form

g(t) = Iot/a, ostsa (2.406a)
= Io(a+b-t)/b, astsa+b (2.406b)
= 0, otherwise (2.406c¢)

*

which has a peak intensity at t=t1 a with a pulse energy (a+b)I°/2, and whose
shape is governed by the ratio between a and b. From Eq. (2.405), the surface

temperature generated by the above triangular pulse can be given exactly, in the
126
m

fo
T (£,0,t) = T, + B(r)I T (t), OStsb (2.407a)
3
=T, + B(r)IoiZITi(t), ast<a+b (2.407b)
4
=T, + B(r)Ioilei(t), a+bst (2.407¢)
where
B(r) = (1-R)exp(-(r/d)21/(mkpc) (2.408a)
T, (t) = atd/a (2.408b)
T,(t) = —2(t-a)  (2t+a) /32 (2.408c)
T (t) = 20t-a)? - 4(t-a?/3b , (2.4084d)
T4(t) = 4(t-a-b)i/3b . (2.408e)

By setting [BTs(r,Qtnlat]t_tn-O we obtain the rise time for the maximum surface
temperature, t;-aLz/(Lz-l), 3hich then gives us the delay time by means of the

simple expression
ot =t} - &) =asaien (2.409)
where L = (a+b)/b and t; = a is the rise time of the peak laser intensity.

To show the effect of the pulse shape on the surface temperature, we plot the
analytical results for the rectangular and triangular pulses and the numerical
result for a Gaussian pulse (with FWHM=18.8 ns) in Fig. 22. It is seen that when
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the laser pulse is Gaussian, the surface temperature is overestimated by a rectan-
gular pulse but is well approximated by a triangular pulse with equal sides (asb).
Note that in the surface temperature profiles the laser energies (fg(t)dt) of
different pulses are all the same, and the surface temperatures are normalized to
the maximum value generated by a rectangular pulse.

For a low work function material, e.g., a cesiated tungsten surface with
$:2.0 eV subjected to pulsed laser radiation with intensity 10:50 Mw/cm2 and
photon energy hv=1.165 eV, we may use limiting forms of the Fowler function, for
surface temperature Ts<2000 K. This results in the following expression for the
total current density from pure thermonic emission and from one~ and two-photon

photoelectric effects:

J = Jo + Jl + J2 ’ (2.410a)
with
2
Jo = 3 AT_exp (-¢/k'rs) ’ (2.410b)
J, = (a3/ag) Ig(1-R)Jgexp (~hv/Tg) , (2.410c)
2 2 2 2 T =8) 2
J, = a2AIO(1-R) (2hv=9) “/4k“ + [6-e ]Ts . (2.410d)

The above equations are valid for a material with low work function or low

ionization energy, and hence are more applicable to metal adspecies rather than

R N R )
TIME (nanosecond)

Fig. 22. Normalized surface temperature profiles (Tg/T3) for rectangular (solid
line =), Gaussian (dotted line...) and triangular pulses with a=b/3 (dash-dot-
dashed~+-), a=b (dashed ---) and a= 3b (dash-dot-dot-dashed ----). TE=1I,t is
the maximum surface temperature generated by a rectangular pulse with duratgog
t =20ns. The intensity profiles g(t) are also shown, where the Gaussian pulse
has a FWHM = 18.8ns and all pulses with different shapes have the same energy
I.t.
0°p




nonmetal adspecies. Note that, from the expression in Eq. (2.410), the one-

photon emission current density J is equivalent to that of the pure thermionic
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emission J. enhanced by a factor a, Oexp(hv/KTs), which is photon energy and

intensity 2ependent. For the two-photon process, the current density J2 is inde-
pendent of Ts provided Ts is sufficiently low, where the "cold" electrons gener-

ated by two-photon ionization dominate the current density. At sufficiently high
surface temperatures, we expect the pure thermionic effect to be the major compo-

nent of the total current density, and a much higher power law for the intensity

dependence, J(t) = JOIm(t), is expected. This power law provides information

about the shape of the emitted current. For example,a Gaussian laser intensity,

I(t) = Ioexp(—tz/Bz), gives a Gaussian current density, J(t) = Joexp(-tzlsz), with

2 a narrower width B = B//m if it follows the power law. In general, we expect an
intensity-dependent exponent, m, due to the mixture of pure thermoionic emission

' and multiphoton ionization.

Fig. 23 shows the surface temperature (normalized to its peak value) generated
by a Gaussian laser pulse (at the hot spot center) and also shows the correspond-
ing current density (only the pure thermionic current is plotted). We note that
the surface temperature and the associated current profiles may be well approxi-
mated by the results generated by a triangular pulse :ith a = b in Eq. (2.407),

which gives the peak surface temperature T; « Io(a+b)

-20 -0 O 10 20 30 40
TIME (nanosecond)

Fig. 23, The normalized surface temperature and current densxty (J/J*) as a func-
tion of time generated by Gaussian pulses for [intensxty(MW/cm ), FWHM(ns)] = (A)
(57.73,15), (B)(50,20), (C)(40.82,30) and (D)(35 35,40). Note that all of these
pulses have the samevﬁpak surface temperature T . which is well approximated by Ts-
[(1R)/(mpc) } 115(2/V3)3a}, as in the case for an isosceles triangle.
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(iv) Resonance fluorescence. The phenomenon of rescnance fluorescence for a two-
130

level atom in the gas phase has been known for some time. Hovwever, considera-
bly less work has been done for a two-level atom near or adsorbed on a solid
surface. In the absence of a surface or when the adatom is far from the surface,
the dynamics of the population inversion and the power spectrum of the system may
be described by the usual optical Bloch equations. When a surface is present,
particularly a metal, the following factors become important: (i) nonradiative
energy relaxation of the excited adatom via electron-phonon coupling; (ii) radi-
ative spontaneous decay and stimulated emission produced by both the applied field
and the reflected field; (iii) the oscillatory behavior of the lifetime of the ad-
atom due to the interference between the applied field and the reflected field;
(iv) the reflectivity and refraction index of the surface; (v) surface-induced
dephasing of the dipole; and (vi) the interaction between the adatom and plasmons;
as a first step, one can assume that the effects of the conduction electrons in
the metal jus