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SECTION I

INTRODUCTION

The present Author has developed an Alternating Direction Implicit (ADI)

technique for the calculation of viscous, incompressible, steady flows past

an arbitrary, two-dimensional body 1. Such an approach used the vorticity-

stream function Navier-Stokes equations in a system of general body-fitted

coordinates. The governing equations were parabolized by adding a relaxation-

like time derivative to the stream function equation, linearized in time and

2solved by means of the ADI procedure of Douglas and Gunn . The method used

second-order-accurate finite differences and, at convergence, provided a

second-order-accurate approximation to the steady flow of interest. The

major limitation of the proposed AI approach was due to its use of central

differences, which limited its applicability to low Reynolds number flows, or

to separation-free high Reynolds number flows. A first-order-accurate method,

using windward differences for the convective terms in the equations, although

feasible in principle, is not recommended, insofar as the effective Reynolds

number of the numerical solution is lowered by the numerical viscosity

introduced by the first-order-accurate windward differences. A more stable,

viscosity-free numerical technique is obtainable by using windward differences

for the convective terms, which are evaluated implicitly, and correcting them

3to second-order-accurate central differences, explicitly , or, more simply,

by employing the incremental (delta) form of the equations 4and using wind-

ward differences for the incremental variables and central differences for

the nonincremental variables. Both approaches, which are shown here to

coincide, have the desirable property of lowering the effective Reynolds

number of the pseudo-transient problem by adding numerical viscosity, which

IL



is, however, completely removed from the solution as convergence is achieved.

The second approach, using the incremental variables, is employed in this

paper to provide an improved version of the ADI technique given in Ref. 1,

which is more stable and capable of resolving high Reynolds number separated

flows, while maintaining the second-order accuracy of the numerical-viscosity-

free central differences, at convergence.

5
Furthermore, following the idea of Rubin and Khosla , it is possible

and very straight-forward indeed to obtain a fourth-order-accurate spline

ADI method by means of a spline deferred-corrector approach 5 . The present

paper also provides a simplified spline ADI technique for the vorticity-

stream function Navier-Stokes equations, which has all the features of the

aforementioned improved ADI method. In particular, incremental variables

are used and, in order to enhance the stability of the method, the convective

terms are approximated by first-order-accurate windward differences. At the

end of each two-sweep ADI cycle, the right hand side (RHS) of the difference

equations, which is already second-order-accurate, is corrected by means of

a spline interpolating procedure, explicitly, so that, at convergence, a

fourth-order-accurate approximation to the steady flow of interest is obtained.

The present report develops as follows: In Section II the basic ideas

of obtaining second- or fourth-order accuracy at convergence, while using

first-order-accurate windward differences to stabilize the transient pheno-

menon, are provided. The approach of Rubin and Khosla 3'5 is briefly reviewed

and the equivalent simpler and more elegant approach used in this study is

II
presented. In Section III those ideas are applied to the ADI numerical

technique previously developed by the Author1 , to provide an improved, more

stable, second-order-accurate ADI method as well as a fourth-order-accurate

spline ADI procedure.

2



II

Finally, the results obtained by applying the present techniques to

two model problems (viscous flow between two concentric circles and the

classical driven cavity flow) as well as to a problem of practical interest

(viscous flow in a channel of complex geometry) are presented in Section IV.

3



SECTION II

THE DEFERRED CORRECTOR APPROACH OF RUBIN AND KHOSLA

Rubin and Khosla have presented their simplified spline technique 5

as applied to the numerical solution of the steady state Burgers equation,

starting from the unsteady equation:

U + c u = Vu
t x xx

The numerical procedure of Rubin and Khosla uses the following discrete

form of Eqn. (1):

n+l n n+l n+l n+l n+l n+l 2
u U + cA(u U j kh - B v(uj+ 1 - 2u3 + j-i ) k / hl

c {A(un  u ) hm.} k/h + v k{M n - B (n - 2 + n )/h2  (2)1 I ) - j+l 2j j-l (

where the subscript j, j-1 and j+l indicate the spatial grid locations, the

superscripts n and n+l indicate the old and new time levels, k is the time

step, h is the spatial meshwidth, m and M are the fourth-order-accurate

spline approximations of u and u and A and B are two arbitrary constants,

necessary for the stability of the method, see Ref. 5 for details. Notice

that the high-order spline correction terms only appear on the old time

level, known RHS of Eqn. (2), so that at each time advancement only a tri-

diagonal system has to be solved, exactly as for the case of a low-order-

accurate finite difference scheme, but that, t convergence, a fourth-order-

accurate solution is obtained. Also notice that, if m and M are replaced with

simple second-order-accurate finite difference approximations, Eqn. (2) leads

to the unconditionally stable KR scheme (A = B = 1) of Ref. 3.

In the present paper an ADI and a spline ADI technique will be developed

for the Navier-Stokes equations, which are based on these two techniques.

4



However, an incremental (delta) formulation is preferred in this paper for

its superior simplicity and elegance. For example, by writing Eqn. (2) in

delta form, one obtains:

Duu +cA DuJl)k/h - B -(DuJ+1 - 2Du + Du Jl)k/h =

-c km n+ vk M (3)

n+l n

where Du u - u n . Eqn. (3) actually coincides with Eqn. (2) and will

obviously produce the same numerical results, but it is simpler, more elegant

and requires less computation effort. Notice, for example, that the RHS of

Eqn. (3) is a fourth-order-accurate discrete approximation of the steady

Burgers equation, which thus, at convergence (Du = 0 at all gridpoints), will

be resolved with the desired level of accuracy. Moreover, the arbitrary

constants A and B, which only multiply the incremental variables, are clearly

seen not to influence the final steady state solution. By comparing the

j simplicity of Eqn. (3) with respect to Eqn. (2), it is easy to understand

the advantage of using the delta approach in complex numerical techniques

for the Navier-Stokes equations. Obviously, also in Eqn. (3), by replacing

m and M with standard second-order-accurate finite differences, one obtains a

scheme which has the stability of a windward difference scheme and the

accuracy (at convergence) of a central difference scheme. In such a case,

although unnecessary for stability, the use of values greater than one for

A and B can further enhance the convergence of the numerical method. It

remains to be said how m and M are evaluated. After all n+l values have

been obtained directly from Eqn. (2), or from Eqn. (3) and the definition of

5i



Du, the new time level m and M values are explicitly evaluated as:

mj = (uj+1 - uJ-1)/2 h + h(K J_1 - K J+)/12 (4)

and

2a
M. = {K + u - 2u + /h2}/2 (5)

where all K. terms are easily obtained by solving the following tridiagonal

system

Kj+ 1 + 4K + K_ I = 6(u j+ - 2u. + Uj-1 )/h2  (6)

see Ref. 5 or Ref. 8 for details. It is noteworthy that, with respect to a

standard second-order-accurate finite difference method, the simplified

spline technique requires the solution of an additional tridiagonal system

8
(Eqn. 6), at each time level, whereas a standard spline technique would

require the solution of a 2 x 2 block-tridiagonal system, at each time

level. The convenience of the simplified approach is seen to increase when

dealing with coupled systems of equations (e.g. with the Navier-Stokes

equations).

4
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SECTION III

THE PRESENT ADI AND SIMPLIFIED SPLINE ADI METHODS
FOR THE NAVIER-STOKES EQUATIONS

The vorticity-stream function Navier-Stokes equations in a general

system of curvilinear body-oriented coordinates ( ,n) are given 7 as:

W t + (1 - W Jr)/J - (aw -28awl + YW nn + aw + TWJ)/j 2 Re = 0 (7)

and

(00 - 2a n + Vonn + °Vn + T E) J 2 + W = t (8)

where a, Y, a and T are the metric coefficients and J is the jacobian of

the coordinate transformation, and a relaxation-like time derivative has

been added to the stream function equation, in order to deal with a parabolic

system of equations 6 ,. For this reason, Eqns. (7) and (8) are not the time-

dependent Navier-Stokes equations and in the present time-marching numerical

techniques only the converged solutions will have physical meaning.

Equations (7, 8) are written in terms of the incremental variables,

D = + -n, Dw = wn+1 - n, and linearized in time by a Taylor's series

2expansion, which neglects terms of order D , to give:

Dw/k + (D W n Dw Do W n -0n Dw )/J -(a w +YD +

o Dwn + T D)/j 2 Re SSVEn (9)

and

Dip/k - Dw - (a DU + y D I + a Di n + T DI)/J2  SSSFEn (10)

where SSVEn and SSSFEn are shorthand notations for steady state vorticity

(stream function) equation evaluated at the n time level. It is noteworthy

7



that the linearized Eqns. (9) and (10) are fully implicit for the incremental

variables except for the mixed derivatives, which are treated explicitly.

Also, for more generality, two constants, A and B, can be introduced to

multiply all convective and diffusive incremental terms, respectively. At

this point, we are ready to solve Eqns. (9) and (10) by means of two-sweep

ADI techniques, differing only in the level of a.curacy used to approximate

n n 2
SSVE and SSSFE . These ADI methods, derived from that of Douglas and Gunn

proceed as follows: at the first sweep, the n derivatives and the source-like

terms in the LHS (left hand side) of Eqns. (9) and (10) are evaluated implicitly

to give:

% 11- )/J_ 2
Dw/k + (D W n + a Dw) )/J Re = SSVEn  (11)

D /k - Dw - (yDn, + a DT)IJ2  = SSSFEn (12)

where the ', indicate that the solution is a first sweep (predictor-type) one

and all the derivatives, which are evaluated explicitly, give zero contribu-

tion in the incremental variables. At the second and final sweep, all the

derivatives and the source-like terms are evaluated implicitly, whereas the

n derivatives are evaluated at the first sweep (%) level, explicitly. The

resulting equations are not given here because, for computational convenience,

they are replaced by the following ones, obtained by subtracting from t.t,*

the first sweep Eqns. (11,12):

nn 2Dw/k + (iP Dw - Do W)/J - (a DW + T DW)/J2Re = DW/k (13)

D1/k - 11w - (C + a D*)/J2 = DT/k -D (14)

8
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In Eqns. (11) thru (14) all the incremental terms are approximated with

central differences (the second derivatives) and windward differences (the

first derivatives) whereas the nonincremental terms are approximated with

standard central differences (for the case of the ADI method) or fourth-

order-accurate spline approximations (fnr the case of the spline ADI method).

Therefore, for both techniques, a series of 2 x 2 block-tridiagonal systems

is to be solved at each sweep of the ADI procedure, exactly as in the former

ADI technique due to the Author

At the end of a complete ADI cycle the solution is updated as:

n+l n
n+p = 0 + Do (15)

n+l= + DW (16)

and, for the case of the ADI method, the process is repeated until a satis-

factory convergence is achieved.

For the case of the spline ADI, however, in order to be able to evaluate

the RHS in Eqns. (11) and (12) with fourth-order accuracy (at convergence),

it is necessary to obtain a fifth-order interpolating polynomial approximat-

ing the new values of the stream function and of the vorticity along each row

and column of the computational grid. This is done by solving two tridiagonal

systems, formally identical to Eqn. (6), for each row and for each column of

gridpoints, which allow to evaluate the four matrices KOi j , KoPirj , Kwi'j

and Kij; from these, all the corresponding first and second derivatives,

moi 1 j , M1P ij, etc., can then be evaluated explicitly, by means of expressions

formally identical to Eqns. (4) and (5). As far as the boundary conditions are

concerned, for the case of Eqn. (6), the first and last values of K are

9
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evaluated by linear or quadratic extrapolations from the neighboring points.

It is noteworthy that in the present spline ADI technique, if a N x N mesh

is used, at each ADI sweep it is necessary to solve 2N 2 x 2 block-tridiagonal

systems (Eqns. 7-10) and 4N simple tridiagonal systems (equations of the type

of Eqn. 6). A standard spline ADI would require the solution of 2N 4 x 4

block-tridiagonal systems, i.e., a lot more computational work. Also, the

additional work of the present simplified spline ADI method with respect to

the corresponding ADI approach is minimal, considering the accuracy improve-

ment it provides.

The present approaches solve, at each sweep, the vorticity and the

stream function equations as a coupled set on each row and column of the

computational grid. For this reason it is possible, in the solution routine

for each 2 x 2 block-tridiagonal system, to accommodate the double specifica-

tion on the stream function at the boundary and to evaluate the vorticity

at the wall, directly. For the case of the ADI method, the boundary condi-

tions are imposed exactly as in Ref. 1, with the difference that, in the

present case, the incremental approach is used also at the first sweep of the

ADI method. For the case of the spline ADI method, the boundary conditions

have to be imposed in such a way that, at convergence, they are to be fourth-

order-accurate, consistently with the numerical scheme. Dirichlet boundary

conditions are obvious, insofar as, if w or i are prescribed at the boundary,

it is required that

= - - Dip = Dw = 0 (17)

at the appropriate boundary gridpoints. A Neumann boundary condition for the

stream function is slightly more complicated to deal with. Here only one

example will be given, namely how to impose the boundary condition *T 0

10
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in the first sweep of the spline ADI method: The boundary condition

itself is written in incremental form and replaced by its fourth-order-

accurate spline approximation (Eqn. 4); the stream function equation at

the boundary and the second boundary condition on the stream function are

also considered. In this way, three linear equations are available for

evaluating the vorticity and the stream function at the boundary point and

the stream function at a mirror-image gridpoint(external to the flow field).

The stream function equation basically allows to eliminate this extra un-

known and the two boundary conditions on the stream function allow a direct

evaluation of the wall stream function and vorticity. Obviously, all the

K terms are known from the previous time level and the value corresponding

to the aforementioned mirror-image gridpoint is obtained by linear or

quadratic extrapolation. Several other boundary conditions are possible;

for example, using alternate expressions of m and M, which do not introduce

a mirror-image gridpoint, or two different expressions for m, which amounts

to enforce that the spline interpolating polynomial has a continuous first

derivative thru the boundary gridpoint. In the present study all the

approaches described above have been used successfully.

In Ref. 1, an alternate, Crank Nicolson-type, linearization and dis-

cretization in time of the governing equations was also used. The present

techniques also have this option: In the computer programs all coefficients

of the block-tridiagonal systems, to be solved at every sweep of the ADI

methods, contain a CR coefficient which can be either 1 or 0.5, to provide

the implicit backward (see, e.g., Eqns. 9 and 10) or the Crank Nicolson

time discretization, directly. The Crank Nicolson approach is obviously

second-order-accurate in time, but, since the present techniques only provide

11
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the steady state solution, this is not necessarily an advantage. Further-

more, when using a Crank Nicolson averaging, in order to obtain a correct

value of the vorticity at the wall, the boundary conditions have to be

inconsistent with the difference equations; that is, it is necessary to use

an implicit backward time discretization of the stream function equation at

all boundary points in the ^ sweep of the ADI methods, in order to obtain the

correct vorticity at the wall at convergence. This result is consistent with

9 10
that already observed by Davis et al and Briley and McDonald . For this

reason, most of the results later presented in this report have been obtained

with the fully implicit time discretization of Eqns. (9,10). However, in some

calculations, the Crank Nicolson time linearization (which obviously produces

identical results at convergence) has been found to provide faster convergence

rates for the same values of At.

i
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SECTION IV

RESULTS

A. Flow Between Two Rotating Circles

The present methods have been developed in order to compute viscous

steady flows past two-dimensional airfoils, in connection with a methodI

for generating a system or orthogonal curvilinear coordinates. The viscous

flow between two concentric rotating circles has been considered as a model

problem (somewhat simulating such a flow configuration), for which an exact

solution is available for comparisons. The inner circle of radius equal to

one is chosen to be stationary in order to test the no-slip, zero injection

boundary conditions, usually given at the surface of a stationary airfoil,

whereas the outer circle rotates at such a speed that the vorticity on its

boundary is also equal to one. A given vorticity has been imposed at the

outer circle (of radius equal two), because, for external flow configurations,

the outer boundary is usually chosen at a sufficient distance from the

j surface of the airfoil, that a zero vorticity boundary condition is imposed.

The physical flow field, divided into a system of equally spaced polar

coordinates, has been transformed into a rectangle in the E,n plane. All

metric coefficients and the jacobian have then been evaluated numerically

with fourth-order-accurate spline interpolating polynomials, except for the

mixed derivatives which are identically zero. It is noteworthy that, due

to the coordinate transformation, the flow field is "opened up," so that

periodic boundary conditions are needed in the direction. For more details

* ,

and for an algorithm capable of solving periodic 2 x 2 block-tridiagonal

systems, the reader is referred to Ref. 1.

13
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The results obtained with both the ADI and the spline ADI methods for

such a test problem are given in Fig. 1, where the stream function at the

center of the anulus and the vorticity at the wall of the inner circle are

plotted versus the inverse of the number of gridpoints (A), square (for the

ADI method), and to the fourth power (for the spline ADI method), for several

values of A. Two sets of spline ADI results are given, corresponding to the

use of a linear and a quadratic extrapolations for the K spline functions.

All results are seen to tend to the exact solution as A tends to zero and

with the correct second-order-accuracy and fourth-order-accuracy, respectively.

Also, the higher order extrapolation is seen to produce more accurate results

as expected. However, the most interesting point to make is that, whereas the

computation cost is almost equivalent (the convergence rate is almost the

same for both approaches, probably due to the one-dimensional nature of the

problem), the more accurate spline ADI results, using a 10 x 10 mesh, have a

discretization error up to five times smaller than that of the ADI results,

using a 24 x 24 mesh.

B. The Driven Cavity Flow

The classical driven cavity problem (see, e.g., Rubin 1) was also used as

a test problem to verify the present numerical techniques. The Re = 100 case

has been considered, using a uniform rather coarse 14 x 14 mesh. The values

of the vorticity at the center of the moving wall of the cavity and the maximum

value of the stream function are given in Table 1 for the ADI method as well as

for the spline ADI method using either linear or quadratic extrapolation for

the spline boundary conditions. The second-order-accurate results are seen to

11
perfectly coincide with the results given by Rubin . It is worth mentioning

that the present approach does not use the divergence form of the equations.
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The results in Table I have been obtained with both the backward and Crank

Nicolson time discretization of the governing equations and with values of

A and B equal to or greater than one. It is noteworthy that, if one uses

CR = 0.5 and the consistent boundary conditions, the vorticity at the wall

is completely wrong although a correct solution is obtained at all internal

gridpoints. The spline ADI results given in Table I clearly indicate the

superior accuracy obtained by means of the high order spline correction

procedure (see Ref. 11 for very accurate results). It is noteworthy that

in the present calculations it was unnecessary to use values of A and B

greater than 1. The results in Table I have been obtained within 2 CPU

minutes on an HP 1000/F minicomputer, thus verifying the efficiency of the

proposed methods. The Re = 1000 rather difficult case has also been con-

sidered, using a uniform 20 x 20 mesh, and the results obtained with the ADI

method are given in Table 1. Although insufficiently accurate, due to the

use of a uniform mesh, which is completely incapable of capturing the thin

boundary layers at the walls of the cavity, the results in Table 1 are the

correct ones corresponding to a second-order-accurate central space discreti-

zation of the steady state equations. Furthermore, the most important point

is that, whereas this Re = 1000 case was found to be an impossible task for

the method of Ref. 1, a fully converged solution was obtained in less than

1000 ADI cycles (30 CPU minutes on the HP/O00OF minicomputer) by using the

present improved method.

C. Flow in a Channel of Complex Geometry

The present methods were finally used to compute viscous laminar flow

inside a channel of complex geometry. The problem was first proposed by

Roache 12 who numerically verified that, if the length of the channel is

scaled proportionally to the Reynolds number of the flow, self similar flow

15r
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conditions are obtained for very high Re values. Recently the same problem

has been used as a numerical test-case for comparing the accuracy and effi-

ciency of several numerical Navier-Stokes solvers by the IAHR working group

on refined modelling of flows in its VI meeting held in Rome (June 24-25,

1982). The geometry of the channel is given in Figs. 2a for the Re 1 10 case

and 2b for the Re 1 100 case. The lower wall of the channel is given ana-

lytically as

1Y, [tanh (2 - 30 x /Re) - tanh 2] (18)

and its centerline as

Y = 1 (19)u

The inlet and outlet sections of the channel are finally given as

x = 0 and x = Re/3 (20a,b)

respectively.

In the present study, a system of orthogonal, curvilinear coordinates

has been used to map the physical (x,y) flow domain into a rectangle in the

( ,q) computational domain. A simple algebraic transformation, as given by

13 14
Blottner and Ellis and described by Davis , has been used for simplicity

as well as for taking full advantage of the shape of the channel, being pre-

scribed analytically. The system of (n = constant) coordinate lines in the

physical plane has been prescribed as follows: The line n = 0 coincides with

the lower boundary (the wall) of the channel and the line 1 = with its

upper boundary (the symmetry line). All the other ni =( - l)An (j f 2,3,...

1
N+l, An = are given by the following expressions

N J"

q N q J-1

N - q+N - YU1 (21)
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A family of ( = constant) lines, orthogonal to the n = constant lines have

then been obtained by integrating numerically with a fourth-order-accurate

Runge Kutta procedure, the following equation

_x . 'Y' ('x (22)

a n 1 + _ ) 1 +

starting from prescribed points at the lower boundary of the channel. A few

points are of interest: The distance between two successive n = constant

lines in the physical plane has been chosen to increase at a constant rate

(q = 1.1) starting from the lower boundary. In this way a finer resolution

is obtained near the wall of the channel where viscous effects are more

important. The distance between two successive constant lines along

the x coordinate in the physical plane has also been chosen to increase at a

constant rate (r = 1.054), starting from the point xi= Re/15 (where the lower

boundary of the channel has an inflection point) in both x > xi and x < x.
1 1

directions. In this way a finer resolution is obtained in the region where

a separation bubble is likely to develop. Finally, the = 0 and 1 = lines

in the physical plane have been chosen to coincide with the entrance and the

exit of the channel, i.e., with the x = 0 and x = Re/3 lines, for convenience,

and are not perfectly orthogonal to the n = constant lines. Therefore, the

metric coefficients multiplying the mixed derivatives in the governing Navier-

Stokes equations are not identically zero at all gridpoints and the accuracy

of the spline ADI method slightly deteriorates locally, insofar as the mixed

derivatives are evaluated with standard second-order-accurate central diff-

erences. The curvilinear coordinates, generated as described above, are

shown in Fig. 3 for the Re = 10 case, together with the boundary conditions

17

-I-



used in the present calculations. After evaluating all the gridpoint locations

in the physical x,y plane (corresponding to a uniform cartesian grid in the

computational ,q plane), the metric coefficients (%, 8, y, G, T, and the jacobian

of the transformation are evaluated at all internal gridpoints by means of

central differences or fourth-order-accurate spline approximations in the ADI

and spline ADI methods, respectively. At the boundary points the metric co-

efficients necessary to evaluate w from the stream function equation are

obtained by linear or cubic extrapolation from the neighboring gridpoints.

The numerical solutions obtained for the Re = 10 and the Re = 100 cases by means

of both present ADI methods are given in Table 2 as the values of the vorticity

at the wall versus the x. locations of the coordinate lines (the x. values1 1

corresponding to Re = 100 have to be multiplied by 10). For convenience, these

results are also plotted in Figs. 4 and 5 for the Re = 10 and Re = 100 cases,

respectively; the results obtained by means of the spline ADI method, using a

coarser 10 x 10 mesh, are also given. All solutions are seen to coincide, for

all practical purposes, and favorably compare with those obtained by means of

several other methods (see e.g., Ref. 15). The 20 x 20 mesh spline ADI solution

is the most accurate and the other two solutions have comparable accuracy. For

the two ADI calculations, the minimum value of the vorticity at the wall is

plotted versus the normalized number of iterations, to provide an idea of the

convergence properties of the technique. A full convergence (to machine accu-

racy) has been obtained within about 130 and 150 iterations (At = 0.075 and

At = 0.08) for the Re = 10 and Re 1 100 cases, corresponding to less than 5 CPU

minutes on the HP 1000/F minicomputer. If one considers that a reasonable con-

vergence is obtained in about 40% of the total number of iterations (see

Figs. 6 and 7), the efficiency of the present ADI approach is self evident.

The spline ADI procedure, using the same mesh, required from five to ten times

18
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more iterations to fully converge, because a stability limitation on At had

to be satisfied for A = B = 1. An optimization of the convergence, obtained

by using different values of A and B, or by correcting the ADI solution only

after a given number of ADI cycles, has not been pursued. However, by com-

paring the ADI solutions with the 10 x 10 mesh spline ADI solutions (which

have comparable accuracy), it turns out that these required about 20% less

CPU time.

19



SECTION V

CONCLUSIONS

An improved ADI numerical technique for the solution of incompressible

viscous steady flows has been developed, together with a fourth-order-accurate

spline ADI method obtained by applying a spline deferred corrector approach

to the present ADI technique. The validity and efficiency of the present

approaches have been demonstrated by their application to the numerical

solution of three viscous flow problems.
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TABLE 1

DRIVEN CAVITY RESULTS

Re - 100 14 x 14 Mesh

WMTP MAX

ADI -8.196 -0.0874

Spline ADI -8.557 -0.0941

(linear extrap.)

Spline ADI -9.380 -0.0992

(quad. extrap.)

Re = 1000  20 x 20 Mesh

WMTP MAX

ADI -28.471 -0.0344
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TABLE 2

CHANNEL FLOW ADI AND SPLINE ADI WALL VORTICITY RESULTS

SADI ADI

x Re10 Re=100 Re=lO Re=100

1 0.0 3.0756 3.0769 3.0113 2.9970

2 0.1477 2.5877 2.5393 2.6612 2.5620

3 0.2879 2.1025 1.9546 2.0040 1.9564

4 0.4209 0.9908 1.1806 0.9675 1.1820

5 0.5470 0.1826 0.4915 0.2148 0.4999

6 0.6666 -0.0864 0.0992 -0.0837 0.1075

7 0.7862 -0.1314 -0.0679 -0.1365 -0.0621

8 0.9123 -0.1145 -0.1227 -0.1184 -0.1189

9 1.0453 -0.1024 -0.1261 -0.1037 -0.1245

10 1.1855 -0.1025 -0.0930 -0.1032 -0.0901

ii 1.3333 -0.0986 -0.0349 -0.0993 -0.0327

12 1.4891 -0.0752 0.0431 -0.0761 0.0482

13 1.6534 -0.0292 0.1281 -0.0307 0.1307

14 1.8266 0.0337 0.2158 0.0313 0.2212

15 2.0092 0.1056 0.2966 0.1024 0.2985

16 2.2018 0.1798 0.3747 0.1762 0.3790

17 2.4048 0.2511 0.4399 0.2473 0.4396

18 2.6188 0.3147 0.5020 0.3114 0.5058

19 2.8455 0.3661 0.5507 0.3636 0.5470

20 3.0824 0.4001 0.5945 0.3986 0.5997
21 "3.3333 0.4115 0.6415 0.4336 0.6525
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