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Abstract

> Fourier representations of the equations of motion for a rotating
stratified fluid are obtained both in the two~dimensional and three-~
dimensional wave number space. It is shown that these spectral equations
can be further transformed to reveal explicitly the interaction between
waves and waves and between waves and eddies by decomposing the Fourier
coefficients in terms of three basis functions, that correspond to the
"dpwark“ propagating and the‘"wanwat&“‘propagating wave modes and the
zero frequency horizontal eddy mode in the linear analysis. 1In the case
of two-dimensional rotating stratified fluid motion, the transformation
is made and full spectral equations up to second moments for these basis

functions are derived\\
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1. Remarks

Rotating stratified wave-turbulence interaction is a highly complex
process, and one must continually explore and examine for the best
approach to a satisfactory description of the process. In this report, we
present a spectral formulation of the wave-turbulence interaction. Such a
formulation has the advantage over the perturbative approach currently
used in the literature (e.g. McComas and Bretherton, 1977) in that
interaction equations can be derived for finite amplitude up to the
Boussinesq approximation, whereas the perturbative approach by the very
nature of the technique must assume small amplitude for the derivation.
Our spectral formulation thus can potentially improve the description of

the interaction, especially in the strong interaction regime.

The spectral equations of motion in this report are obtained in terms
of three functions that represent separately the 'upward' propagating, the
‘downward' propagating inertial gravity waves, and the zero frequency
horizontal eddy current; Equations expressed in this manner have the
advantage that the interaction between waves and between waves and eddies
can be separated out and examined explicitly. In view that the equations
may be of general interest, sufficiently detailed derivations are given.
The derivations also serve as a reference for the spectral equations
used in the recent numerical modelling study of nonlinear internal waves
by Shen and Holloway (1982).

The interaction equations are derived below for a stratified
rotating fluid system independent of one horizontal axis. This simpler
two dimensional case is considered because it is most frequently
numerically simulated, and the full detail of the interaction
can be derived. The more difficult three dimensional case is discussed

in a memo by Holloway which is attached as an appendix to this report.

The fluid system considered is unbounded, incompressible, uniformly
rotating and uniformly stratified in the mean. The system satisfies the

Boussinesq approximation; that is, fluid accelerations are small compared

with gravity and vertical excursions are small compared with density

scale height.




2. Equations of motion on a vertical plane

We shall briefly state the equations of motion from which the
spectral equations for the two dimensional case are to be derived. The

relevant quadratic integral invariants for this case will also be noted.

The coordinate system adopted here is the usual right-handed
rectangular Cartesian coordinate system in which x and y denote the
horizontal axes and z denotes the vertical axis; the direction of z is
opposite to the local gravity g . The local component of earth's
rotation f is along 2. In this system the two dimensional motions are
assumed to be functions of x and z coordinates only. The full equations

of motion which satisfy the Boussinesq approximation in two dimension

are then
du+udu+wdu-=-fv=-p 3P+ VW (2.1a)
t X 2 0 X
3.v+ud v+ wdv+ fus Wiy (2.1b)
t X z
- - o) 2 .
Btw + uaxw + wazw po axP + Wé (2.1c)
du+3w=0 (2.1d)
X z
» - Py - 2.~ 2.1
Bto + uaxp + wazp Rw + DV°p ( e)

where u,v,w are the velocity components along x,y,z, respectively. P
is the pressure. Py is the mean density. p~ is the perturbatiom
density defined by p” = p - p_(1 - Rz), where R = IB;EI is a constant
mean density gradient. Vv is the viscosity and D is the diffusivity

e.g., via thermal conduction.

For the derivation, it will be much simpler to work with a reduced
set of the above equations. This is obtained by eliminating the pressure
through cross differentiating (2.la) and (2.1c) and by replacing u and w

with a streamfunction ¢ via. u = azw and w = -3xw . The result is
3,5 - £3.v ~ g3 p" = J(Y.5) + VWi (2.2a)

3,V + £3.4 = J(y,v) + wiy (2.2b)
3,0" + R3Y = J(V,p") + DV?p” (2.2¢)
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where § = V2) 1is the relative vorticity and J(A,B) = aanya - BxBazA
is the Jacobian. Thus the field is adequately described by three

physical variables {, v, and p~.
In later spectral formulation, we shall consider only fluid region

1 which has periodic boundary conditions. In such a region the net flux

through the boundary is zero, and two quadratic integrals are invariant
The first is the

provided that dissipation and diffusion are absent.

conservation of energy, atffE dxdz = 0, where
E= (|Vg]2 + v’ + N20"2/R?)/2 (2.3)

and N2 = gR/oo is the Brunt-Vaisala frequency squared. The energy
conservation is obtained by multiplying the three equations by {, v, and
p”, respectively, summing and then integrating. The other invariant

quantity 1s the potential vorticity

¢ PV =[Gy + )3 (F+p7) - 9,930 (2.4)

which is obtained by taking ax and 82 of (2.2b) alternately and by applying

the same operation to (2.2¢) and then forming the product shown in (2.4).

' This is a special case of the Ertel's theorm. These invariants are

useful as diagnostics for numerical simulation study and also suggest
useful second moment quantities for statistical study (see eq. 3.15 and
Sec. 3-D). Lastly, we note the existence of a third invariant for the

special case of f = 0. In this case, the quantity p°C 18 also conserved.

This quadratic invariant can be obtained by multiplying (2.2a) and (2.2c)

by p” and ;, respectively and then integrating.




3. Derivation

The derivation will proceed in three steps: a) Fourier transform
the equations of motion; b) obtain the basis functions for the Fourier
coefficients; and c¢) construct the second moment spectral evolution
equations. In step b, the basis functions refer to the functional
representation of the two inertial gravity wave modes - i.e., the 'upward'
and the 'downward' propagating modes - and the zero frequency current mode
in the linear wave analysis. We choose such representation so that

interactions between waves and eddies can be examined separately.

A, Fourier representation

The domain uver which we obtain the Fourier expansion is assumed
to have dimension 27 x 2n. The choice is for convenience since the
dimension can always be rescaled later to the size of interest. Thus

in terms of discrete set of wave vectors, Fourier expansions for y,v,p”

are
¥o= g v exp(ik-x) (3.1a)
ve g v; exp (ik*x) (3.1b)
p= g E exp (ik*x) (3.1c)

*
with wk = w—k » etc., since the physical variables are real.

Substitution of the above into (2.2), the equations for Fourier

coefficients are

O, + V“z“’k + 18k, + gk o) )/k? = (3.2a)
;. prie ByPy = KGRI/ ¥y by

! 3 * vk’vk + 4 szwk = (3.2b)
3 Rfﬂfk (k Py P ) WE Ve

3. 3o + m&pk + 1 Rky, = (3.2¢)
‘. - e ey = kgp ) ¥ o
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For the convenience of later discussion, the above in the matrix

notation is

W=D phx Mg’ g

where
wk
X = Vi
pa
|k
-at 0 O
A = 0 -Bt 0
0 0 -3
L t
vk?  ifk_/k?  igk_/k?
z x
W= |ifk vk?
z
iRk 0 Dk?
x
and Nk is a 3x3x3 matrix whose only nonzero elements are
- _ 24,2
Njpp = (kb = kop ) (a? /i)
N -kp

221 ° kxpy y x

-kp

N331 - kxpy y %

(3.3)

(3.4)




B. The Basis Functions

We will obtain linear solutions to the equations ( 3.2 ), generalize
the solutions to basis functions and then find the transformation between

the Fourier coefficients of physical variables and the basis functions.

Removing the nonlinear terms from ( 3.2 ) and substituting the
solution igf {wk, Vi pk} exp(iwt) into the linear part of the equationm,
one has a'zigeﬁ;alﬂz pfsblem for w, in which the following determinant

must vanish in order for the solution to exist,

iw + vk? 1sz/k2 igkx/kz
ifk, iw + vk? 0 - 0 , (3.5)

iRk 0 iw + Dk?

that is, (diw + vk?)?(iw + Dk2) + (sz/k)z(im + Dk?) + (ka/k)z(iw + vk?)=0,

This equation is third order in w which generally yields rather |

complicated expressions for the frequency except for the case, D = V.
We will briefly indicate below the effect on frequency when D # v .

For the remainder of the derivation, only the simple case D = v will be
considered. However the procedure used below for obtaining the basis

functions remains general.

In the case of kinematic viscosity equal to diffusion, the solutions

for the frequency are F

wl = jvk?

0, = w4 1V (3.6)

- 2
w3 wo + 1vk

with w; = (fzk: + Nzk;)/kz. Thus the first solution is the

diffusively damped zero frequency current mode. The other two solutions

are frequencies for inertial gravity waves with dissipation. When D ¢ v,

a frequency shift from the natural frequency wo and additional damping
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are to be expected. We briefly indicate this by comsidering

asymptotic behavior of w near € = 0, with e = (D - v)/v . Let

Q = iw + vk? . Eq. (3.5) then becomes Q° + evk?Q? + wiQ + ev(sz)2 = 0.
For €<<1, this can be solved readily by perturbative technique. Letting
Q= Q0 + te + €2Q2 + ..., the zeroth order soluticn has the three roots

Q1 =0 Qp = 1w, , and Qpy = - 1w,
To the first order, the three roots are

- - 2, 2
Q, V(Ek,)*/ug

- - 2 2
v(kxN) /Zwo and

Q, Qi3 = Q,

To the second order, the three roots are
Gy =0
Qyp = 1(VKk2/2) W/w)? (vik?/w )1 + (3/4) (N/w )? (k_/k)?)
and - Q3 = - Qy

Thus for D # Vv and € << 1, the frequencies are

- 2 1,2 2
wy iv[k® + akz(f/wo) 1+ ...

w, = wy *+ €2 (Vk/2) (N/w )2 (Vi /w )1 + (3/4) (N/w )?(k /k)*]
+ V[P ekl (N/w )?/2 + ...
and Wy = - Real(mz) + Imag(wz)

These show that the natural frequency tends to increase when D and v differ,
and the dissipation increases or decreases slightly depending on the
sign of €.

Now returning to the case D =~ Vv being considered for the derivation

of basis functions, the dispersion relatlons are (3.6). The eigenvector

for each frequency can be solved for and these are
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il.& - {0, -gk /fk,, 1} h (3.7a)
X2,k " {1, -fk,/w,, -Rk /uw } a (3.7b)
2 N "+

x3,k = {1’ sz/w°’ ka/wo} a (3-7C)

vhere the elements correspond to the elements in the vector i& = {w.v,p'}k

~ -~ ~

- "+

and h, a , a are arbitrary constants. The above three vectors are
linearly independent. Hence, any solution of {wk,vk,ok} is given as a
linear combination of the three vectors -7

= it | = fwzt | £ it (3.8)
= X 2 3
x'k 1,k e + x2,k e + x3a,l£ e

At this point we may generalize to arbitrary t-dependence by denoting

+ ’\+ - AT >
a =8 exp(iw3t), a =a exp(iwzt), h& = h exp(iwlt) s

where the first generalize function a: may be thought as a 'upward' ]
propagating wave mode since for a given k the frequency has opposite
sign to k. Similarly., a; may be thought of a 'downward' propagating
wave mode, and hk a nonpropagating current mode. Thus, formally we
have three basis functions representing three elementary mc les of motion
in a stratified rotating fluid. The transformation from the basis to the ﬁ
Fourier coefficients of the physical variables is readily obtained from

(3.8 ) . In matrix form the transformation is

X = M"Y ]

) r -+
QE 1 1 0 8,
vE = sz/wo —sz/w0 -gkx/sz a_li (3.9)
LpE Lka/wo —ka/w0 1 khE

It follows that the inverse transformation from physical variables to

the basis function is
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-1
?E = M %E
N

] [z @) @epr@du)] (v
a; =1{1/2 -(sz)/(Zksz) -(gkx)/(2k2wo) Vi (3.10)

2 2 2 -
khE Lo - (£k_Rk )/ (ki) (Fk)?/ (k) ok

Later calculation will be considerablly simplified if all the above

variables are nondimensionalized. This can be achieved by letting

e-(94] g-[54) melw]

(3.11)

-G
| =
1
e
zZ|=
[N}
<
|=
—_—
<
|=
"
N\
z|=
<
|=
L S
o
=
n
Py,
| =
[ g

2
]

(£k )/ (k) m = 8k )/ (k)

The foregoing transformation matrices in terms of dimensionless variables

are
( ]
lk/Z QE/Z nl(_/Z
1 - (3.12a)
M = 9,5/2 _Qh/z -nhlz
L 0 -ﬂE le
1/fzE 1/5LE 0 }
M = Q -, -Mh (3.12b)
n Ny Qk
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C. Some identities:

For reference purpose, summarized here are the identities resulting
from the Fourier transform.

The reality condition requires

* * *, -
bom v Vo=V, b, = 0 (3.13)

-— -— — - —

where * denotes the complex conjugate.

The transformation together with the reality condition require

*
+
|

|
|

*o
- 3.14
A Al (3.14)
*
T TR
The mean energy in terms of Fourier coefficients is
E, = 2y ¥ vl 400 p
3 kokk” kT Pk P
- - (3.15)
+ k4 - *k_ *
=2 kv KD v

Finally, for the dimensionless parameters we note

(3.16)
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D. Spectral Equations for the Basis Functions

Equations (3.3 ) for the Fourier coefficients can now be
transformed into equations for the basis function. This is dome simply

by substituting M Yk for Xk and then multiplying both sides of ( 3.3)

-1
by M 7, i.e. -1
(w -AD)MY, =M : X X
k _2+_¢1-E “kpa® *pq
Using the dimensionless form of M and M © and rewriting the W matrix as

, _
R A L UL
= 2
W= i“’kzkﬂk Mk 0 3.17)
inQ.E N 0 uk

by applying the scaling in (3.11 ), the above matrix multiplication
yields

. 2 -+
Bt + (1wE + uE) 0 0 Ah
- 2 o XX
0 at + ( igh + ME) 0 A5 M E.FEES.XBKS
2
0 0 Bt + “E QE (3.18)
where we have scaled W = wO/N and M = vk2/NR? . The nonlinear terms
on the right hand side of (3.18) are
+
for AK : 1/2 Bfﬂ'k k R.k Eya[(lafl )2 Wﬂl ka + nkp “1 (3.19a)
6& v 1/2 Efﬂ?k k 2%k k Y [(2 /23? Wagk- QE.S - nEPS] (3.19b)
HL : 2+1<21=£ thnek.pwg['”hvg * Qlipg] (3.19¢)
where Gk P is the sine of the angle between the wave vectors k and p.
X

Now substituting A+, A-, and H for ¥,V,p'using the transform
relation (3.12b) and expanding the nonlinear terms, we have for the

A: equation the following,




. a

EVPRY NPV ST

-12 -

+ 2 +
QA+ Uy + ) A - (3.20)

- +
1/2 L. 2,26 & (AY+a L /%) + Q80 + A
pri=k M0k, pte (A * ) (/) + Rty + mn 1A
+H@e/ey-aa - A~
[Rg'h) - Bty = N lAg
- - Q H
(Beng = gy
The nonlinear terms can be simplified somewhat by defining a
frequency vector,
w, =i, nJ (3.21)
This allows rewriting
Q + =0 = ; -n0 =8
Uhg ¥ Mg =GBy = B q F Ky T Mg T Bk q
which are, respectively, the cosine and sine of the angle between the

two frequency vectors. Further to reduce tte number of terms, we introduce

I = nNEYS (3.22)
R

which is the sum of an upward going and a downward going wave of wave-

number p . The final form of the A: equation is

3:A£ + (195 + ui) A; = (3.23)
M2 prgei O‘E-BSLFRA; ) a“l‘.'P_SPBAS-l " r,pq'p%
where the interaction coefficients are
%.pa = %kp® * Alk,d (3.24a)
Ykpa " kip’ig (3.24b)

Thus, we see that the interactions are determined by the ratio of the
magnitudes of wave vectors, the angle between the wave vectors and the
angle between the frequency vectors; Furthermore, the generation of

A+ waves arises from both wave~wave interaction and wave-eddy interaction.

In a similar manner the A wave equation can be obtained by

expanding the nonlinear terms and the result is

o
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- ae -
2)t AE + (—mh + uh) A.‘s (3.25)
-1/2 %, - rat+ T A” + T H
prisk ““-k,pq p'a " “k.pa 'p'a T 'kipq P'q

The third spectral equation, the current mode H equation, after expanding

becomes

3 + u? - 3 T at - T A + T u
e oMM " pediek Ykopa Tpfa T Vk.pg "ot ¥ Bk,pg Tplq

(3.26)

where the coefficient B is B L and is related to the

pg ™ %k, ple.g

coefficient

%,pq = *®.p * Bx.pg i (3.27)
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D. Second and third moment spectral equations

In the foregoing the spectral interaction equations for A+, A, and
H are derived. As a final item, we will write down the governing
equations for the second moment of these three functions in anticipation
that these equations will be useful for a statistical treatment of
rotating stratified wave~turbulence interaction. The closeure for these
equations frequently requires the consideration of the third moment
equations. For completeness, we will also record the details of the

third moment equations at the end.

The three basis functions A', A, and H imply six different
combinations of second moments among them. However, we will record only
three moments here, namely, <§£ 5;?, <§£ gg?’ <FE gg?' since the moment
equations associated with the A~ function can be obtained by simply
changing the sign of the interaction coefficients as will be indicated
below. The angle brackets here denote ensemble average. Note that in
the case of homogeneity which is often assumed in statistical study,
the number of moments is reduced one more to only <A: A:> and <Hk Hk>.

The second moment equation for A: A; is obtained by forming the
+ + + + - =
products §E at&g and 52 atAh . The two products are then added and
averaged. The same procedure applies to the other two moment equations.

The results are given below

+ .+ 2 27_.F ¢+
8t<AE AE> + [i(wh + wE) + uE + HE]<AE AE> (3.28)

1 +.4 +.+
- = L < AA> + z a <" A >
2 Uik %opg TpAd%n” topdem %mipg Tpiafk

-+ -+
- z Q <T AA> =~ z a <" A >
pHa~k ~k,pq pam pHq*m -m,pq p gk
<T u At < u A" )

- 3 -~ 3
pti=k 'k,pq 'pgm “pH™m 'mpq pgm
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atqi HE> + [mk_ + ui + u;_] <A£ BE> (3.29)
-2 {p+d=k “k.pq rnAaﬂ > ¥ piden mipg aaAk>
-3 (i %i,pa TpAan” } " prem Ympg <rn‘a“£>
" 7 (pdek Veops T’ 1t pilm Yapa <Tyighy?
3t<H£ HE> + “"é + u;] <Hy HE> (3.30)
el Yops T * pdm Tmas TphgH
ptik “k.pg TpAhy” = piien "m.pg Tty
p_+§-£ B_k_,m <rnﬂanm> ¥ n+_{1-t_-; Bg,m <rp_“s k

Now note that the spectral equations (3.23) for Af and (3.25) for A
differ only in the sign of their coefficients and subscripts. Thus the
above second moment equation for A+ can be converted to one for A~ by
applying this simple rule: Change the superscript of the A function(s)
in the time dependent term to negative and then note the subscript
associated with that function. In the remaining terms, change the sign
of the frequency associated with that subscript, the sign of the
interaction coefficients containing that subscript, the sign of the
subscript itself in the coefficients, and the sign of the superscript of
that particular A function throughout. This completes the general
second moment equations. Among the second moment equations,of particular
interest are moment equations describing the spectral energy evolution.
EqQ.(3.15) gives the expression of spectral energy. Since A: X: = A: A:k
the above equation (3.28) can be immediately converted to one describing
the spectral energy of A: mode by applying the just stated conversion
rule, The left-hand side of (3.28) is irreducible, but the right-hand

i ; Griasi Al bl ax, SYRICPY VNS TIUC NI P
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side is simply,for A{ K: R
+ - 2.,% .~
3t<§5 ATE? +ZHE$éE A15>
for A; K;
o 5 <A AT > 4 2u <A” AT >
tAj‘_ -k uEAl& -k
*
and for Hk Hk’
‘ -3t<l{£ H-E> = ZUE<HE_ H-l‘_>

The right~hand side of (3.28) to (3.30) contained third moment
quantities. We conclude this report by listing four third moment
equations for different combinations of A+ and H basis functions.

Moment equations involving A~ functions again can be deduced by changing

signs according the rule given earlier.

S G R 2 2 2 + .+ .+
> >
dt<AE AE AB + [i(mE + gﬂ + QE ) + UE + HE + HE] <A£ 52 AE

1 +,+, -+t + +
2 U pfamk %kopa Tpiairtn” T %k,pq TpAdntn” T Yk,pg <Tpfgtnn’
+
(o] <T" A A > - A <T H A
pFaen “m,pg“TpAq*kA” ~ %em,pqg TP sAk m,pg “'pgtK*n
Fgn O <r atatats - o <I A~ +-Y <r § atat)
=n °n,pq p'gkm ~ *n,pq p gk n,pq pgKm
a.<al At + 1w +w) +u +u]< HA>
t % "n %a “® 7 " Ak

1 +. .+ +
) { Z‘ES'E 'Y '2_‘1<FBASH_‘!A_9_> = ®.y.pq I‘RASHmAn Yi ’m<PP-H&HEAE>}

+ y_ < atafat> -y < ATATATS 4y A: PN
“m m,pq pPgkn o,pq pgkn gkn

+
< H> ~ < A~
2 p¥g=n 'n,pq RS.A\‘E *-n,pq 23_2 »P_S p_ Alt_
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+ 2 2 2 +
Sp<Hy By Ag> ¥ [Hug + oy +uy gl <y By A2

<T A+H A+ T AH A B <T H H A

" p¥a=k k,pa* p’qm™n” ~ Yk,pq'pidmn ' "k,pq pgmm
+o b R + i
+ <" A A > <T A > + <T" H A >
p¥eem mpa“ e~ Ym,pq TpAqMktn” * Bm.pa“Tplaitn ;
+l{ o« <T ATHH > - a_ HkH <I' H H_H>}
P n,pq pg K m 0,p9° pAg K Yn,pq" ' pama

2 2 2
< > < >
PP By By Dy g ] B By By

+ - .
= phaek YkopgTpAen” T Yik,pg Tptdnn ¥ Pi,paTpfa'mn

+
+ <" A H> H>+ H >
pFaen "mpa PP’ T Ym,pa TpAaMn” * Pm,pg TpMe i

+ T H > - Ya
’

AHH> + <T" H
p¥g=n 'n.pq naHk ToAghfn” * Pa,pg

H >
Pq PgXxnm
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APPENDIX

Flow Research Technical Memo No. 236

To: Jim Riley, Mike Weissman, Ralph Metcalfe Date: April 1981
From: Greg Holloway
Subject: "Basis functions for analysis of stratified, rotating

turbulence"

Trhe object of this note is to set out the equations of motion for
an unbourded, incompressible fluid which is uniformly rotating and
uniforriy stratified in the mean. Especially important is that the
derivation remain fully valid for finite amplitude up to the Boussinesq
approximziion. We require such a confident basis before proceeding
toward a statistiral dynamical theory for the evolution of internal

wave/stratified turbulence fields in oceans, atmospheres and labora-

tories. Calculations which follow are "straightforward but tedious" as

is appro;riate when laying a foundation. Sufficient detail is given so
that no significant algebraic effort has been left to the reader's
1 ]

imagination.

1. Derivation of Interaction Equations

The instantanecus fluid state may consist of finite amplitude
departures from the mean state which we seek to describe in a non-
perturbative, complete way. In fact, we will make the Boussinesq
approxiration on the assumption that fluid accelerations are small
compared with gravity and that vertical excursions are small compared
with the density scale height. Then we begin by writing "usual" field

equations for velocity u, density deviation p and pressure p .

5( v+ fxu + u'Yu + Vp + go =W u = 0 (1.2)

36 + w ¥ - Ru-y U = 0 (1.b)

(l.¢)
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Here ¢ is departure from a reference density Py (x3) = 1 - Rx3 with R
a positive constant and gR = N2 » the squared buoyancy frequency where
we have nondimensionalized density by the mean density at the mean depth
which is taken as Xy = 0 . We take f parallel to g upward along
Xy .V is viscosity while Y is a density diffusivity resulting, say,
from thermal conduction in a thermally stratified fluid. We will consider
this to be the only source of stratification and so will not consider
double diffusive phenomena.

An important aside: The present formulation is quite different
froz- a usual way of setting up the internal wave interaction equations.
That zethod considers a field of fluid "particle"” displacements € (x,0)z0
or to soze '"equilibrium" position € o (x,t) . The two concepts can be
confused, i.e., equivalenced. Diffusion is not considered. Interaction
equations are then obtained as an infinite power series in the "small"
displacezents | £ | . Basis functions obtained from this series do not
appear to be capable of a complete description of the possible fluid
states. 1 feel this approach can only be useful for very small amplitude,
non-dissipative waves.

Returning to the present derivation, we can evaluate pressure from

the divergence of (l.a):

3 5 2 32 2
B, f332 fu, #+ g g Y + % 3%, L " °

where €om is the unit alternating tensor and we sum on repeated indices.

Next let all deviations from the mean state be constrained to be periodic

(2)

over some large length scale, which may go to infinity. Nondimensionalizing

that length scale to a volume of 27 , transform from the continuous spatial

variable x to an infinite, discrete set of wavevectors k on vhich ve

denote Fourier coefficients of u , p and p by

ikex
(u,p,0) =Z!<. (uy s Py Py e

3)

[ LT
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with coxzponents of u Kk denoted UJ-E .
From (2)
ik, ¢ k, k igk
P =« —d _J43% fu -1t u u + —3 P (%)
k .2 199 3 k2 L,p L,9 K2 k
. pHe=k

2
vhere k" = k°k . Substitute this into the transform of (1l.a) to obtain

e Uy Sy fug, *dk, Z Y. %.q

Kk
2 Y2,k 2 Z“z.g m,g

1gk, 2
‘0'—“2—0h +go£613+vk uj'h-o
Conbine sore terms:
k.k
I .
33 TUox T 7 Co3n gk

where
k,k
- .
ij.g 6jm 2 (5)
Likewise

k. k. k
- jim
ikﬁ E ul.g uj-ﬂ i kz E “l.g.un.g

e .o el

m
= {k (6jm-—‘L2—) z ui u
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" mjim.le z “2,p “m.g
Ptg=k
: ¢ where for symmetry we have introduced
? 1
Mﬁm -3 (k2 ij + ko sz) (6)
| : Now (l.a) can be rewritten
-~ + .
% Y5k €03t ful.k Fj A + 8o, Fj3.k (7.a)
+ iM . u + vkzu 0
jam, k L,p m,q ik
P*tg=k
while (1.b) and (l.c) are
I 2 =
at p_lg + 5.1<j z uj2 pS Réj3 uj.!& + vk p!. 0 (7.b)
X PHg=k
il
i
i kj uj,k = 0 (7.¢)
i
Equations (7.a,b) constitute four equations in four unknowns u o pk
having eliminated pressure. We may still use incompressibility (7.c)-£o
eliminate one component of velocity. To do so, define a set of unit vectors
for each k :
s;_'h*s:‘ I lxxe |
el x(xxers | rxe] (8)
4
e3 = V x
1 % -3
1
) With respect to these unit vectors, define new velocity components

I

|
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~ 2
Uy Lyt oey (9)
wh-gk. 5-:-
The horizontal component of Eh is kh =k -gi . It will be convenient
to denote ratios of kh’ k3 and k as
o-kh/k.e-k3/k.y-k3/kh (10)

whence we eliminate u x by incompressibility

e
=

- W, (1)

The next object is to rewrite (7.a,b) in terms of w k*Vik*® k°
For the moment we will not worry about the nonlinear terms. Then we
may consider a single wave vector k and so, for the moment, oumit the
k subscripts as being implied. wu x ¢an be written

-—

u = vg? - OUE? + we3

We will need g} , 5? ’ 33 in the original Cartesian coordinate systern.

Their corponents are

1
€. = 3 k_1 N
2
e s - ks / kh (12)
3
ey "= %53
2

2 2
where s = 1,2 and kh - kl + kz .
Take first the j = 3 component of (7.a). Expand the term

£m32 fuk FJm

ek




_SA_
k3km
= Epyg fOVegp3 Ky = owky) (64 - 2 !,
' k3%
= ~ fv 3
k
Denoting the nonlinear term only symbolically as iMuu , the j = 3 component
, of (7.a) is
2 2
(at + Vk“) w- faBv + ga“ p= - i(M uu)3 (13)
To cbtain an equation for v , contract (7.a) with 3} . This is
k4 2
€5j3 kh (3t + vk%) u, + €n3s ful Fsm
k
- - ik |
+ 83?53] i{'sjB k) M m.x)s
Expanding and collecting, obtain
' El 2
€Sj3 kh (at + vk) (vasm3 km - kas)
k.km 2
L = Esj3 €sm3 k: (ot + vk v
- (3, + D) v
b
k k_k
g _ _ .8 mn
Csj3 2 o f(vc£p3 kp °"kl) (6'm k2 )
. N
4 » k,k
.‘
X - 42
) €533 “m3s, fou k: 6sm
‘ » = fow

PRI ST
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So »

(2, + vkl + fou = (M vu), (14) i

k

_ic ..J.

8j3 kh
Finally, from (7.b)

(at + Ykz)p -~ Rw = =~ ik, (up) (15)

b 3

where, again, we write the nonlinear terms symbolically and will worry
about this later.

Gathering (13), (14) and (15), the system is

.

- - e - _ -
E: + vkz - fuz gaz w - i (M uwu)
. 2 k
i 3t + vk 0 v = - iec— (M uwu) (16)
kn
L-R 0 3_ + ykz c - ik (uz)
t J L J | " J

Now we can check that for linearized waves with v =y = 0 , solutions

proportional to eiwot may be found when the determinant of the array

in (16) vanishes. This yields
W= Nt 4 £26 (17)
as well as a solution for w, = 0 . We have worked very hard to find 7

linearized internal waves, but at least this tends to check our algebral
In fact (16) is valuable because, with a little more work, we could
evaluate completely and exactly the nonlinear terms on the right side.
This is in contrast to recent wave-wave interaction theories for which
nonlinear terms are given by an infinite power series which cannot be
evaluated exactly for any nonzero amplitude of the wave fields.

A quick overview of where we are and where we are going: A 1
minimal statement of the dynamics given by (1) requires three equations ]
in threce unknowns, as seen in (16). If more unknowns are present,
there is some diagnostic relation among thém. If fewer unknowns are

present, the description is incomplete, as recent wave interaction

e

theories may be.
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2. A New Basis
For unknowns we have considered w , v and p at each k . Call
these a "primitive" basis y, - (w, v, p)k « In terms of y , (16)

has the form
(13 +L) y=i)K:yy

vhere 1 is an identity and L and N are linear operators. Other
bases are possible, in particular a "wave" basis z - (a+. a, h)k ’
which will satisfy an equation like that for Y but with a diagonal
operater Lo in the nondissipative case.

kWere we to solve for the time evolution of all ¥, (or Ek) , this
would give us the history in detail of the flow field. We suppose that
is neither practical nor especially useful. Rather we imagine an ensemble
of statistically similar flows and we seek to describe the ensemble
average (denoted < - > ) moments of the flow. Suppose there is no
enserblc =ean motion, hence <xk> = 0, Interest then turns to the

second moment tensors

* %
%:(&xﬁ) or &Z—k=<££-z‘h>

Scme of the components of ¥ include density variance, < pp¥ >k ;

-_.k k
vertical mass flux, Real [ < pw* K ]; and enstrophy,
2. 2
<(7 x 5)3> X = kh <vv*>k R

while total kinetic energy is

KE = (1 + 02) <wu*>k + <vv*>k .
Gravitational potential energy is related to < pp* >k as
PE = < pp* >k N2 / R2 .

Reality of ¢ , w and v in physical space is expressed by

*
yk y_k .
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Consequently, e.g. <po*>k = <DD*>_k .
Next let us explicitly obtain the wave bases zZ omitting dissipation

for the mozent, i.e., V=Y =0 . From (16) see (5:t + wi) v, - 0. So obtain

+
a and a as

at = (3 Tiu) w
“o t “o

= fufv - guzo ¥ fw W

which then satisfy (3t b4 i:o) a® = 0 . The third basis component, denoted

h, , is ncz-propagating and can be seen from (16)

3 k
; 3, W+ 2oy =0
ﬂ so h = v - %1 s . Together the transform is
[ -iuo faf -gxz T .\.rT -a+ -1
io, fa2 -g’ vl = |a 8)
S %gd L © Jk " Jx

. . - r- .’.‘
o+ iw 0 0 a
t [}

0 9, -~ dw, O a | = 0 19)

1 0 0 at h j&
| - o

1

|

Let us just note the¢ inversc transform:




A A £
L
3
H

..9A_
r - 4+
i i/2 -i/2 0 a* v ]
v 2 2
fc fo N'a -
' 2».. 2(.) [N 2 a = v (20)
o o o
- B - R REfy2
7. N 2 bk ° |
S o o w | - =
- o - - -l
. + -
.t Physiczally, what are a , a and h ? The propagating modes a+

and a can be termed the "upward” and "downward" propagating inertial-
gravity waves. In terms of vertical phase propagation, the linearized,
inviscid waves are described by

i(+
ik3x3 . 1(-w°t + k3x3)

a: (t) e e

. +
so that with xq upward we have a the upward going wave in the sense
of phase speed. Recall for these waves that the vertical component of
group s:ced is of sign opposite the phase speed so that energy, say,
. . + .
associa:ed with a is downward going.
f Perhaps more interesting are the h modes. To characterize these
: . + _
consider the pure case when a = a = 0, Then from (20), or from the
. s + -
sirmultaneous conditions a = a = 0 , we see that pure h modes are

given o

v fov = gr , w= 0 (21)

v

' i.e., the¢ horizontal velocity field is geostrophically balanced by

variations in the density field. When we expand the right hand side

.. £ oL R el

of (16) in wave bases 2z 2 , then if we retain only h h components,
23 : ) A

we will express '"quasi-geostrophic turbulence'. However, we will also

‘ see the transfer from quasi-geostrophic motion into the inertial-gravity
waves. When inertial-gravity waves are excited, we may also see energy
transfer from the waves to the quasi-geostrophic field. This is bost

tantalizing, suggesting a possible synthesis among quasi-geostrophic

4 turbulence, internal waves and stratified, three-dimensional turbulence.
While it is generally acceptable to refer to h-modes as geostrophic
! wodes, two other specific interpretations are interesting. Firstly, when

f =0, kh ¢ 0 then h = v while v drops out of a~ . Vertical

e
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vorticity (VU x 9_)3.k = kv is then given solely by h-modes which we
would now be inclined to call "vortex modes' although they are the f-+0
limit of geostrophic moes. Are these the horizontal pancake eddies

left behind in wakes after more three-dimensional disturbances subside ~-
perhaps by radiation in the a! modes? Do nonlinearities in (16) lead to
transfer of energy from h-modes to radiating a: modes during wake
collapse?

A second point when f = 0 is the case kh - 0. In this limit,
i.e., vertical k , 0 may also contribute to h since fo 1is undefined.
This vertical variation of ﬁorizontally uniform density is termed "density
finestru:zture'”. The waves-finestructure interaction is fully included in
the present analysis.

Ancther case f ¥ 0, kh - 0 , corresponding to density finestructure
with ro:ation present appears to be troublesome insofar as h =+ = .,
Probabtly it gould have been more appropriate to define h differently as

a variatle h for present purposes.

"= ah = av + %ﬁ P (22)
recognizing that the dual limit f - o , kh + o 1is special. ; like
a” have been defined so that 2z, has dimensions of energy.

Tnis is as far as seems useful to go in developing and discussing
the different bases for the problem. What is important is that we
retain a complete basis for describing the possible fluid motions.

In particular we do not discard the geostrophic modes (or "vortex
modes” or "density finestructure') as has been the rule with previous
internal wave-wave interaction studies. Rather we view as very exciting
the possible exchanges among h and a: modes on all scales. To see
these we turn to expanding the right side of (16) both in primitive

bases Y, and in wave bases z, -
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3. Expansion of the Nonlinear Terms

Firstly in primitive bases we develop the right side of (13):

-1M3£mo_l_\: z UQ’B umoﬂ

To do so, first note

k2

- 3 )e ko
M333,x k:4(‘ - k2) k3%

Denotirz by b and ¢ indices ¢ 3,

2
k K
1 ) 3
Mapa,x ™Mb,k T2 %3 (’ 2 )* 7k (1 "2 )

1 2 2
‘2‘%(‘5'%)
My, =l o WS U 'Y
3be,k 2 k2 2 ¢ k2
-1
= -SE kb kc k )

Using these we express some terms

M u u = k uz w v
333,k 3,p 3,9 3 p g

M3b3,x Yb,p “3.q

1

.}
Nolre

2 2 ) -
kb (a5 -£ 5) (Lbj3 pj vz - o2 Py vz) Yg P\

22 M %
Ky (uh &h) (Lbjj by Ve¥a —.02 he UEFS)

(23.3)

(23.b)

(23.¢c)

(24.a)

(24.b)
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Likewise

M33b,k ¥3,p Ub.q

S22 f 9y %
2 Lb (0.‘5 B.‘_‘.) (‘bj3 N VSUB c:a N "3"2)

Next

<4

:3':*:.5 u'b,P_ uc,ﬂ

-1

= -?5 kb kc k (ij3 pj Vo =P, OV )

P R R

. -1
(Ccm3 qmv_g 9% 3 g)Ph Y
ek
= 2
X TEXH UoPrkede = *n Ppp)
"

P vg i;;-E; kb kc Py op €cm3
i
vg?g kph 9 kb c cbj3 pj 9 q
"
k
“p ¥a ¥p, q; %2 %a Pb % ' Ke

Collecting terms, the right side of (13) is
'Lv‘3lm._lg z uﬂ'.2 Um.g
p¥a=k
= ~f z ‘Cl (_lg.g.g)vz vS + Cz(l&_,g.g)w2 w

q
pta=k

"’%‘!-2-3)"2 vg * C3(£.3-2)Vs v

(24.c)

(24.4)

(25)
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where

2
C, (k,p,q) = -

o p c q
C,(x.p,q) = k30.2 - % kb(“kz - 82 (._2_2 + _Lb)

vovg) = L i (o2 ]
C3(_'_~9213) = 2 kb(dh - BE )E s

£
e e e e ka0 | € kxp
’
) For the right side of (14) we need
ii
5 -i(sjB kh ”slm,h EE ulg umg
Ptg=k

Now s ¥ 3 and again b and ¢ denote indices ¥ 3. Note that

k. k.
- - —3—-2. 2 - > 2
Ms33,k k3( 2 ) kg by (26.a)
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Mob3.k = Ms3b,k
k Ky 1
1 s
= L .
ks (2‘sb 2 ) (26.b)
v Ls +x _2_‘125) (26.¢) :
“'sbc,k kb sc c k2 '
We begin evaluating.
k
i -] M u, u
€33 kh s33,k 3p 34q
-ékz
(Ls_] 3k_]ks) _Eh— \.'Rw& = 0 (27.a)
k
. 4
*si3 K Mob3,k Ybp Y3g (27.b)
|
k. k kb
S
i . - E O w )W
€533 khph 7 e ) =7 ) (eppaPe¥p T Pyp¥pM¥g
p k, k.0
pbkbk Ps¥3%3%p
€ . w
TZg Py, 2a si3 2q Py
Likewise
]
1 X3
< 27.
j “s33 & Ms3u,k “3p Ubg (27.0)
1
; > q k k.0
V € e WW
Zkh qh sj3 2k, q, Pa
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Finally we develop as above and find

k .
|
Esj3 kh Msbc.ﬁ ubg ucg (27.4)
-1
vg}g(Zthhqh) [ cm3(k 9 pbkb
9Py kh P9 )]
» ~ K -l
+ vgfg‘gog(Zthhqh) [ésjB(pskjkcqc
+ qskjkbpb)}
. - VEP c_qukhphqh) [pbkchkc
+ kq kP khpq]
- vﬂwE *(p,q sym. coef.)
’ Collecting terms, the right side of (1l4) is
1 k
-] 28
j ’ 533 i Msim,k Z (28)
! PHa=k
‘ 4
! L
{
‘. Rslatmain — i s o e o
i

b o
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= -1 z |C4(§.2._q)v2va + CsQc_.P_._q)tvav-r_‘1
P*g=k

+ C6Q‘-'2'3)vp_"3 + (:dh,g.g)vﬂw2

wvhere

€
cm3

[ 2
C.'. (x,p,q) = _m Lz pbkbkcqm - l'*h pcqm]

€ -
. - 5813 -
Cy(k.2,9) Zi Py qp Pek; (GRCJS}\:qc 02k3qh)

e

+ qskj (Cp_og‘%pb - O&k3ph):|

. -1 -
Co(k:p:@) = (Ziypyay) [k3thbkb 2 foPrkeddc l

2
+ oy chc]

The right side of (15) is more easily seen:

- (29)
| ik, z N
i pta=k
. |

" e - + k -
i i z ks (cs 3 3P JVE psonwn)os/ph 3‘203
! pak
i
1 - kgPy koPs
1 - - - - k

£ Vpq te p,  PPa|% e, T3

{ pra=k

S

f
!
|
i
i
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Together, (25), (28) and (29) give the complete right side of (16). 1n
matrix notation, that right side may be written
- i N N :
D Mpg il
ptgsk
where N is a 3 x 3 x 3 matrix whose elements are functions of k , p
4 and g . For each k , p and g there are 27 elements of N . However,
; only ten are different from zero. Explicitly these are
Mig; = C3k.9.p)
K127 = € &kep.9)
t
N221 = Celkogip)
' k
P
s's
,, Mai T ks % o

' Py

1 k

.. P,
j K332 ™ G543 -1
1
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In like fashion was seek to develop the interaction equations among
a+. a and h . The straightforward but frightfully tedious method is
to make the substitution (20) throughout (16).
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