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Abstract

Fourier representations of the equations of motion for a rotating

stratified fluid are obtained both in the two-dimensional and three-

dimensional wave number space. It is shown that these spectral equations

can be further transformed to reveal explicitly the interaction between

waves and waves and between waves and eddies by decomposing the Fourier

coefficients in terms of three basis functions, that correspond to the

"upwar- propagating and the' "downward propagating wave modes and the

zero frequency horizontal eddy mode in the linear analysis. In the case

of two-dimensional rotating stratified fluid motion, the transformation

is made and full spectral equations up to second moments for these basis

functions are derived.
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1. Remarks
$

Rotating stratified wave-turbulence interaction is a highly complex

process, and one must continually explore and examine for the best

approach to a satisfactory description of the process. In this report, we

present a spectral formulation of the wave-turbulence interaction. Such a

formulation has the advantage over the perturbative approach currently

used in the literature (e.g. McComas and Bretherton, 1977) in that

interaction equations can be derived for finite amplitude up to the

Boussinesq approximation, whereas the perturbative approach by the very

nature of the technique must assume small amplitude for the derivation.

Our spectral formulation thus can potentially improve the description of

the interaction, especially in the strong interaction regime.

The spectral equations of motion in this report are obtained in terms

of three functions that represent separately the 'upward' propagating, the

'downward' propagating inertial gravity waves, and the zero frequency

horizontal eddy current; Equations expressed in this manner have the

advantage that the interaction between waves and between waves and eddies

can be separated out and examined explicitly. In view that the equations

may be of general interest, sufficiently detailed derivations are given.

The derivations also serve as a reference for the spectral equations

used in the recent numerical modelling study of nonlinear internal waves

by Shen and Holloway (1982).

The interaction equations are derived below for a stratified

rotating fluid system independent of one horizontal axis. This simpler
two dimensional case is considered because it is most frequently

numerically simulated, and the full detail of the interaction

can be derived. The more difficult three dimensional case is discussed

in a memo by Holloway which is attached as an appendix to this report.

The fluid system considered is unbounded, incompressible, uniformly

rotating and uniformly stratified in the mean. The system satisfies the

Boussinesq approximation; that is, fluid accelerations are small compared

with gravity and vertical excursions are small compared with density

scale height.



-2-

2. Equations of motion on a vertical plane

We shall briefly state the equations of motion from which the

spectral equations for the two dimensional case are to be derived. The

relevant quadratic integral invariants for this case will also be noted.

The coordinate system adopted here is the usual right-handed

rectangular Cartesian coordinate system in which x and y denote the

horizontal axes and z denotes the vertical axis; the direction of z is

opposite to the local gravity & . The local component of earth's

rotation f is along z. In this system the two dimensional motions are

assumed to be functions of x and z coordinates only. The full equations

of motion which satisfy the Boussinesq approximation in two dimension

are then

au + ua u + wa u - fv - -1; P + vV2u (2.1a)
t x z0 x

a v + ua v + wa v + fu _ VV2v (2.1b)

a w +ua w+ W;w . - p + VV2W (2.1c)
t x z x

a u + B w - 0 (2.1d)
x z

at p + uDxp' + waz p ' - Rw + D 2p, (2.1e)

where u,v,w are the velocity components along x,y,z, respectively. P

is the pressure. p0 is the mean density. p is the perturbation

density defined by p' - p - p0 (l - Rz), where R - Jaz 1 is a constant

mean density gradient. v is the viscosity and D is the diffusivity

e.g., via thermal conduction.

s For the derivation, it will be much simpler to work with a reduced

set of the above equations. This is obtained by eliminating the pressure

I through cross differentiating (2.1a) and (2.1c) and by replacing u and w

with a streamfunction * via. u - a z and w - -axi . The result is

a at; - fazv - gaxOP - J(*,;) + vV 2 ; (2.2a)

a v + fa - J(O,v) + VV2V (2.2b)
t Z
at P + R3 x J(pp') + DV2p, (2.2c)

WK

-- - - -
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where = V2
* is the relative vorticity and J(AB) - a A3 B - a B Ax y x z

is the Jacobian. Thus the field is adequately described by three

physical variables p, v, and pV.

In later spectral formulation, we shall consider only fluid region

which has periodic boundary conditions. In such a region the net flux

through the boundary is zero, and two quadratic integrals are invariant

provided that dissipation and diffusion are absent. The first is the

conservation of energy, a tffE dxdz - 0, where

E - (IVpI2 + V2 + N2p,2/R2 )/2 (2.3)

and N2 w gR/p is the Brunt-Vaisala frequency squared. The energy

conservation is obtained by multiplying the three equations by , v, and

P , respectively, summing and then integrating. The other invariant

quantity is the potential vorticity

PV - [(dv + f) z (P + p') - a zvxP,] (2.4)

which is obtained by takiiig and of (2.2b) alternately and by applying
x z

the same operation to (2.2c) and then forming the product shown in (2.4).

This is a special case of the Ertel's theorm. These invariants are

useful as diagnostics for numerical simulation study and also suggest

useful second moment quantities for statistical study (see eq. 3.15 and

Sec. 3-D). Lastly, we note the existence of a third invariant for the

special case of f - 0. In this case, the quantity p% is also conserved.

This quadratic invariant can be obtained by multiplying (2.2a) and (2.2c)

by p' and 4, respectively and then integrating.

I

p

- -I i-l - -' , i .
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3. Derivation

The derivation will proceed in three steps: a) Fourier transform

the equations of motion; b) obtain the basis functions for the Fourier

coefficients; and c) construct the second moment spectral evolution

equations. In step b, the basis functions refer to the functional

representation of the two inertial gravity wave modes - i.e., the 'upward'

and the 'downward' propagating modes - and the zero frequency current mode

in the linear wave analysis. We choose such representation so that

interactions between waves and eddies can be examined separately.

A. Fourier representation

The domain uver which we obtain the Fourier expansion is assumed

to have dimension 27 x 2r. The choice is for convenience since the

dimension can always be rescaled later to the size of interest. Thus

in terms of discrete set of wave vectors, Fourier expansions for *,v,p'

are

*Pk~ P exp(ikxA) (3.1a)

v - vk exp(ik-x) (3.1b)

with Pk f *-k , etc., since the physical variables are real.

Substitution of the above into (2.2), the equations for Fourier

coefficients are

+ k2 'k + i(fkzVk + gk P- )/k2 = (3.2a)

EI. (kxPy - kyP )(q2/k2) E .P

t k + k i + k (3.2b)

A!Mi (k x p y - k yp x ) * v

atO + V+ k' +i x Rk
t Dk +i (3.2c)

E (kxp -kyp) P P'p~~rk~ ay y .
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* For the convenience of later discussion, the above in the matrix

notation is

(W A) Xk 2- NI._ : XXPX (3.3)

f where

X v k

-t

* A 0 - 1t 0 (3.4)

0 0 -9 t

.vk ifk /k2  igk 1 /k

W - ifk z  vk 2  0zz
iRk 0 Dk2

and N is a 3x3x3 matrix whose only nonzero elements are

N 11  (k xP - k yPx )(q2 /k2 )

N2 2 1 =kPy - kypx

N33 1 = k Py - kYpx

9

(
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B. The Basis Functions

We will obtain linear solutions to the equations ( 3.2 ), generalize

the solutions to basis functions and then find the transformation between

the Fourier coefficients of physical variables and the basis functions.

Removing the nonlinear terms from ( 3.2 ) and substituting the

solution Xk {lk' Vks Pk} exp(iwt) into the linear part of the equation,

one has a eigenvalue problem for w, in which the following determinant

must vanish in order for the solution to exist,

iw + vk
2  ifkz /k2  igkx/k2

ifk iw + 'k 2  0 0 , (3.5)z

iRk 0 iW + Dk 2

x

that is, (iw + vk2 )2 (iW + Dk2 ) + (fkz /k)2 (i(.- + Dk2 ) + (Nk x/k)2 (iw + Vk2 )_O.

This equation is third order in w which generally yields rather

complicated expressions for the frequency except for the case, D V.

We will briefly indicate below the effect on frequency when D # V

For the remainder of the derivation, only the simple case D - v will be

considered. However the procedure used below for obtaining the basis

functions remains general.

In the case of kinematic viscosity equal to diffusion, the solutions

for the frequency are

WI = ivk
2

w + (3.6)
W2 - W ivk2

W3 =-w + ivk
2

with w2 - (f2k2 + N2k2)/k2.  Thus the first solution is the
0 z x

diffusively damped zero frequency current mode. The other two solutions

are frequencies for inertial gravity waves with dissipation. When D 0 V,

a frequency shift from the natural frequency w and additional damping
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are to be expected. We briefly indicate this by considering

asymptotic behavior of w near E - 0, with c - (D - v)/v . Let

Q - iw + vk2 . Eq. (3.5) then becomes Q3 + Cvk2Q2 + w2Q + Ev(fk )2 - 0.
0 Z

For <<l, this can be solved readily by perturbative technique. Letting

Q - QO + EQ1 
+ C2 2 + ... , the zeroth order solutien has the three roots

Q01 0 , Q02 ' ico , and Q i03 iW 0

To the first order, the three roots are
9

Q a - v(fk )
2/W2

SQ12 = - v(k x N2/2% and Q13 = Q12

* To the second order, the three roots are

Q 0

21 i(vk/2)(N/wo ) 2 (,k 2/w)[1 + (3/4)(N/w)2 (kx/k)2 ]

and Q23 Q22 "

Thus for D 0 V and C << 1, the frequencies are

W1 M iv[k 2 + Ek2 (f/wo)2] +

- w + C2 (vk 2 /2)(N/w ) 2 (vk2/W )II + (3/4)(N/w )2 (kx/k)2 ]2 0 00o

+ iv(k 2+ ek2 (N/w )2/2 +

and W3  - Real(w 2) + Imag(W2 )

These show that the natural frequency tends to increase when D and V differ,

and the dissipation increases or decreases slightly depending on the

sign of C.

Now returning to the case D - V being considered for the derivation

of basis functions, the dispersion relations are (3.6). The eigenvector

for each frequency can be solved for and these are

I
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X (, - (0, -gk lfkz, I h (3.7a)

X2,k - (1, -fkz/ o, -Rk x1w 0 a (3.7b)

.a ^ +

X3,k = (1, fk /W o, Rk x/w a (3.7c)

where the elements correspond to the elements in the vector Xk {,v,p'}k

and h, a , a are arbitrary constants. The above three vectors are

linearly independent. Hence, any solution of {4kVkpk} is given as a

linear combination of the three vectors
a ier! iW2t eiw3t (3.8)

X. Xk 2,k 3 ,k

At this point we may generalize to arbitrary t-dependence by denoting
+-^+ a - ,~\ h exp''

ak a exp(iw 3t), ak- erp(iw2 0), h (it)

where the first generalize function ak may be thought as a 'upward'

propagating wave mode since for a given k the frequency has opposite

sign to k. Similarly., ak may be thought of a 'downward' propagating

wave mode, and hk  a nonpropagating current mode. Thus, formally we

have three basis functions representing three elementary m ies of motion

in a stratified rotating fluid. The transformation from the basis to the

Fourier coefficients of the physical variables is readily obtained from

(3.8) . In matrix form the transformation is

)'k -M Y

1P 'k I 1 1 0 ak+
0 ak

Sk " fk z/1w O  -fkz/w0 -gk x/fkz  ak (3.9)

P - Rk/wo -Rkx/go I hk

It follows that the inverse transformation from physical variables to

the basis function is



I

+ Yk- M- 1 Xk

S+

ak 1/2 (fk z)/(2k 0O) (gk x)/(2kao 0 k

ak = 1/2 -(fk z)/(2k2W0 ) -(gkx)/(2k 2w0) vk (3.10)

hk 0 -(fk Rk )/(kW )2 (fk )2/(kw )2 0i
k z x o z o k

Later calculation will be considerablly simplified if all the above

variables are nondimensionalized. This can be achieved by letting

i~ ~~A [a) k[ak) Hk fhk]

(3.11)

2k = (fkz)/(kwo) nk = (Nkx)/(kwo )

The foregoing transformation matrices in terms of dimensionless variables

are

zk/2 Qk/ 2  k /2

- - - (3.12a)

M zk/ 2  -"k/2  -nk/2

I
0 Yk "2k

I/£Zk 1ik 0

M k - -% (3.12b)

Tqk -nk "

I 4

i - I .. .. : [ I • = - * . ... . .. ... .. . . .. i
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C. Some identities:

For reference purpose, summarized here are the identities resulting

from the Fourier transform.

The reality condition requires

T k - Y-k v k -Vk k -k (3.13)

where * denotes the complex conjugate.

The transformation together with the reality condition require

iAk

k (3.14)

Il -H

The mean energy in terms of Fourier coefficients is

E k k 4,k'Fk +vk vk + k
(3.15)

2(+ *++ A A)+lk

Finally, for the dimensionless parameters we note

Q7 - " (3.16)

kI k

+ - 1.2

I~~ k ,' - -'. ---
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D. Spectral Equations for the Basis Functions

Equations ( 3. 3 ) for the Fourier coefficients can now be

transformed into equations for the basis function. This is done simply

by substituting M Yk for Xk and then multiplying both sides of ( 3.3

by M-  i.e., M-I(W A) M Yk M -1 E N X Xby1 '4 -- A 21 .-. q.

Using the dimensionless form of M and M and rewriting the W matrix as

I iW°kZkl £k iWknik/2£k

W 0 (3.17)

iW k TI 0 P 2

by applying the scaling in (3.11 ), the above matrix multiplication

yields

ft + (iWk + ) 0 -

0 at + (-1%k + p2)_ 0 Ak M -  - Nk :X X

0 0 at + 4218(i~ ~ (~wk+) t~~ k H (3.18)

where we have scaled wk = W /N and Pk vk2/NR2  The nonlinear terms

on the right hand side of (3.18) are

I

for A k : 1/2 Z ZkZ k'1y((Z/Z )2T Zk §2kV + n P (3.19a)

Ah : 112 E Z6 (k (/k )2 k k- i (3. 19b)

H Z k 6 T[-
p +A-h h p k,p p )S S, + (3.19c)

where 8 is the sine of the angle between the wave vectors k and p.

Now substituting A+ , A-, and H for ',V,P'using the transform

relation (3.12b) and expanding the nonlinear terms, we have for the

At equation the following,

* I -t__
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+ k + A: (3.20)

1/2 p4-k ktp.kp".t (A + Ap.) [(iY Y + _. + , + A.

+1%r1.1 -- ryejlA_

The nonlinear terms can be simplified somewhat by defining a

frequency vector,

W)k _'Sk ' n'(3.21)

This allows rewriting

%" + -% ; %l - TV& - 'kq&
which are, respectively, the cosine and sine of the angle between the

two frequency vectors. Further to reduce tl.e number of terms, we introduce

r - A+ + A- (3.22)
£ P. k

which is the sum of an upward going and a downward going wave of wave-

number p The final form of the A equation is

A + 'U'k' k k 2)(3.23)

1/2_ , rA + - ,  - H
p. -,k _g 1 -_P a

where the interaction coefficients are

tp ' %,p (z + X _k,S) (3.24a)

YkR& - h k, (3.24b)

Thus, we see that the interactions are determined by the ratio of the

magnitudes of wave vectors, the angle between the wave vectors and the

angle between the frequency vectors; Furthermore, the generation of

A+ waves arises from both wave-wave interaction and wave-eddy interaction.

In a similar manner the A wave equation can be obtained by

expanding the nonlinear terms and the result is

LA
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k + (-iWk + rk (

-1/2 E -Ct rA A+ +a r A+ Ykr H
R+ilwi -kik jj ,kl P- k, _' P-

The third spectral equation, the current mode H equation, after expanding

becomes

+ 2 Hk A+ - Yk rkAk- + r H

(3.26)

where the coefficient B is 6k p_ - Z -kjk kq and is related to the

ccefficient

°'kp s !k,p- + k,p (3.27)

I

I - - _____________________________
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D. Second and third moment spectral equations

In the foregoing the spectral interaction equations for A , A-, and

H are derived. As a final item, we will write down the governing

equations for the second moment of these three functions in anticipation

that these equations will be useful for a statistical treatment of

rotating stratified wave-turbulence interaction. The closeure for these

equations frequently requires the consideration of the third moment

equations. For completeness, we will also record the details of the

third moment equations at the end.

The three basis functions A + , A, and H imply six different

combinations of second moments among them. However, we will record only

three moments here, namely, <4 A >, <4i H>, <lk Hm>, since the moment
equations associated with the A7 function can be obtained by simply

changing the sign of the interaction coefficients as will be indicated

below. The angle brackets here denote ensemble average. Note that in

the case of homogeneity which is often assumed in statistical study,

the number of moments is reduced one more to only <A 4> and <H k H k>.
The second moment equation for 4 A is obtained by forming the

products A  and A+ t . The two products are then added and

averaged. The same procedure applies to the other two moment equations.

The results are given below

++2 + 2j< + + >

t< A M+> + [i(Wk + WM ) + k + Pm + (3.28)

_t 1 A Am>E CL <a <r kAA+ P!,Pq <r

j_+Am -!& 17 -s ,P1 P_
- a <A> - Z a <r ^'

I-

- H A > -y <r.H.A >

p47Y-p _q__________ E -IO n -_ I R
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<Aj H > + [iLok + + P'] <A4 > (3.29)

t . i k Hk m >

E+j-k <r Aaii > i+ Em ym, <r A+Aj>
2~ I _ ,p p_ _qa V _ A ._

1 <rA Aj>

1 <r H H I + r +-- { Yk, _ -s M> <P_ I

: (t<Hk H> + + <Hk Hm> (3.30)

E Y r + H z m rAH-k E q _
k.~kl P_ <A A> +kq

E+j-k Ykg <r ilm> E +Z <r A H >

+ E.kk 8kpg <r H H> + <r H~9 Hi:>

Now note that the spectral equations (3.23) for A+ and (3.25) for A

differ only in the sign of their coefficients and subscripts. Thus the

above second moment equation for A+ can be converted to one for A7 by

applying this simple rule: Change the superscript of the A function(s)

in the time dependent term to negative and then note the subscript

associated with that function. In the remaining terms, change the sign

of the frequency associated with that subscript, the sign of the

interaction coefficients containing that subscript, the sign of the

subscript itself in the coefficients, and the sign of the superscript of

that particular A function throughout. This completes the general

second moment equations. Among the second moment equationsof particular

interest are moment equations describing the spectral energy evolution.

* Eq.(3.15) gives the expression of spectral energy. Since + A- A Ak

the above equation (3.28) can be immediately converted to one describing

the spectral energy of 4 mode by applying the just stated conversion
rule. The left-hand side of (3.28) is irreducible, but the right-hand

Ihw
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+ *+

side is simply,for AK Ak k

t "-i Ak> +2'k(Ai Ak>

for A kAk

3t<A A-k> + 2 ik<A A-k>

and for k Hk

-t<Hk Hk> - 2 k<k Hk>

The right-hand side of (3.28) to (3.30) contained third moment

quantities. We conclude this report by listing four third moment

equations for different combinations of A + and H basis functions.

Moment equations involving A7 functions again can be deduced by changing

signs according the rule given earlier.

t.<A+ A m A+n > + [i< k + w + w n + Pk + + < < A+ A+>

_ _ _ k n

++ + 4++
+( <r A A0A> - a <rA AA> -Y <r H A+A >

" S .- ,PS P_ a _ -_m,P& P_- 'Ps, _ IS a

ml{ <rA r H..+>-,. AA+ ,>)H

2pm _k,2p] prnn -k, pm n -k,pj __

p wm REs<r A A A> - < A - A > - y r A A <>

S R _,E _ _ ~ A! _IR .i

+ + 22 +p21 + +

206nk <r A H A+> - a <r A-H A > - y <r H H A >1
T -___ a__ ,_ __ _ - k I . a

+ r A ,A+ A > - <rA k A+> + Y r H kA., >
2 s a ,1kIIn RR

+ p C < A .H - r AAkH> Yn <FH AH >
2 nR2 ES_#jpIIRS
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t<H~ +1 n> + (iwo + + + 2 2] <H c~An>

+ + +n k+

p- k Yk <r AH A+> - Y, <r A-i A> + 5k <r.H H A>£.,.-_ P_-,% 2- 1m _.,a pq n_ _jq - & P. Is_.

+ ,.<r A +,H.A + > - <r A -LA +> + < H A + >

1 _ a < RH > - a ar -P2 a -

+ p <Y rAH > - " <r AIHkH > - y <r H H H>)

a <11k H. H.> +[1 + 1Ill+.P2 H _

_ _ __ p££m P £q_n k,p9q p.9r

+ y <r A+H H > -y <r A-H H > + S <r H H H >

+ r < A +li, > - <r PA ItH > + a~ <r H ILH+£+ =n -n,pa P- .Em R,SLP- -1 M_ R,kl £qk E _
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APPENDIX

Flow Research Technical Memo No. 236

To: Jim Riley, Mike Weissman, Ralph Metcalfe Date: April 1981

From: Greg Holloway

Subjezct: "Basis functions for analysis of stratified, rotating

turbulence"

Tr,e object of this note is to set out the equations of motion for

an unbo..nded, incompressible fluid which is uniformly rotating and

unifor.ly stratified in the mean. Especially important is that the

derivation remain fully valid for finite amplitude up to the Boussinesq

approxiz:ion. We require such a confident basis before proceeding

toward a statistir.al dynamical theory for the evolution of internal

wave/stratified turbulence fields in oceans, atmospheres and labora-

tories. Calculations which follow are "straightforward but tedious" as

is appro-riate when laying a foundation. Sufficient detail is given so

that no significant algebraic effort has been left to the reader's

imagination.

1. Derivation of Interaction Equation!;

The instantaneous fluid state may consist of finite amplitude

departures from the mean state which we seek to describe in a non-

perturbative, complete way. In fact, we will make the Boussinesq

approxiration on the assumption that fluid accelerations are small

compared with gravity and that vertical excursions are small compared

with the density scale height. Then we begin by writing "usual" field

equations for velocity u, density deviation p and pressure p

tu+f xu + u V u + V p f- VV 2 u 0 (l.a)

+ + u - Ru 3 -Y V2P 0 (l.b)

V- u - 0 (l.c)

4.
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Here c is departure from a reference density p0 (X3 - Rx3 with R

a positive constant and gR - N , the squared buoyancy frequency where

we have nondimensionalized density by the mean density at the mean depth

which is taken as x3 a 0 . We take f parallel to I upward along

X3 * v is viscosity while Y is a density diffusivity resulting, say,

from thermal conduction in a thermally stratified fluid. We will consider

this to be the only source of stratification and so will not consider

double diffusive phenomena.

An important aside: The present formulation is quite different

fro= a usual way of setting up the internal wave interaction equations.

That =e:hod considers a field of fluid "particle" displacements E (,0)EO

or to soze "equilibrium" position C 0 (x,t) . The two concepts can be

confuse;, i.e., equivalenced. Diffusion is not considered. Interaction

equations are then obtained as an infinite power series in the "small"

displaze=ents I j . Basis functions obtained from this series do not

appear to be capable of a complete description of the possible fluid

states. I feel this approach can only be useful for very small amplitude,

non-dissipative waves.

Returning to the present derivation, we can evaluate pressure from

the divergence of (l.a):

j3i fu + u, u + 2  g P M 0 (2)

where Ej.m is the unit alternating tensor and we sum on repeated indices.

Next let all deviations from the mean state be constrained to be periodic

over some large length scale, which may go to infinity. Nondimensionalizing

that length scale to a volume of 2n , transform from the continuous spatial

variable x to an infinite, discrete set of wavevectors k on which we

denote Fourier coefficients of u , p and P by
I

(u. p, D' )= k (uk, pkPk) e (3)

. 1 1-. . . .... .... . . . . . . . . . . ....
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with components of u k denoted uJ k

From (2)

1k kJ31 Igk3
Pk " 2 ,k_- k2 .",",S k2  Pk (4)

where k" - k'k . Substitute this into the transform of (1.a) to obtain

a t 'j. j fuLk + k L utP "JOS

+ -k m3Z f kIk L u .j

k U2iZk k 2 LO U U

tgk3  2
+k 2 3 Pk + k 6J3 + vk2 uj,k - 0

Combine so.e terms:

C fu imC fj 3. I,k k 2  cm3t L,k

m3t fuik F.immk

where

k k
FN k  6 jm k 2  

()

Likewise

ikt > U 1, U 3 - V U Um

Ik .k

4 - 1k F Jm,k > U 1 2 uSO

• . . . I- -



* -3A-

= 6IJim, k  I U LP ,p I.

where for symmetry we have introduced

Mum j (k, Fj. + km Fi) (6)

Now (l.a) can be reuritten

t Uj,k + m3 futk FJm,k + gP Fj3,k (7.a)

+ i . u + vk 2 u -0
j A6m,k ; Ms.& uj,k

while (l.b) and (l.c) are

2
at Ok + ik u£ O- R6J3 uJk + yk k 0  (7.b)

ki ujk 0 (7.c)

Equations (7.a,b) constitute four equations in four unknowns u k

having eliminated pressure. We may still use incompressibility (7.c) to

eliminate one component of velocity. To do so, define a set of unit vectors

for each k

1 e3 3
-_t kx_ / kx_ I

2 3 3 3 3._ ,€kx_ )/X k k_ )x (x)

3
-k - x3

With respect to these unit vectors, define new velocity components

11

Vk -k -k

p
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~k*e2 (9)

k R ~k k
w 3

k k -k
2

The horizontal component of k is kh  k 2 It will be convenient

to den t~ ratios of kh, k3 and k as

=kh/ k ke k 3/ k y k3/ kh  (10)

whence w'e eliminate u k by incompressibility

uk - C (k) wk (11)

The next object is to rewrite (7.ab) in terms of w k v v k ' k

For the moment we will not worry about the nonlinear terms. Then we

may consider a single wave vector k and so, for the moment, omit the

k subscripts as being implied. u k can be written

u ve1 -owe 2  + we3

1 2 3
We will need e , e , e in the original Cartesian coordinate systen.

Their components are

I 1
s sj3 j / k

2 k / kh (12)

3 6 3
3 j

where s - 1,2 and 2- kI + k 2

Take first the J - 3 component of (7.a). Expand the term

m3k fuk F3m

' { 7 - " ... . ... . I 3 m .. . . . . . . . .
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E m3. f(vcE p3 k - owk L) (63m - k k h

k 3khk 2 k

Denoting the nonlinear term only symbolically as iMuu , the j -3 component

of (7.a) is

(at + vk2 ) w - f v +g 2 pm -i(M uu) 3  (13)

To obtain an equation for v , contract (7.a) with e This is

E _. ( + vk) u + C fuL FCsJ3 kh  ts cm3i sm

k+ pFs 1  ._ cj (M U
i~ -~-(uu)$

s3sj 3 k s

Expanding and collecting, obtain

S( + vk 2 ) (Vs k - awk )

sj3k th  m a

k.k 02

E sj3 (3 3 2 0t + vk ) v

kkk(a + vk2) v

k 
kakaM)

E a f k - Owk) (6 - -)
sJ3 2 m39 ( p3 I rn 2

k* k

- sj3 Um3L 2ow 2 am

- fow

tsJ3 kj Fs3 0

3 -- -'I I I . . . . I I I m
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(t + vk2 )v + fOw - - is , (M uu) (14)

sj3 kb hla

Finally, from (7.b)

( t +'rk 2 ) ~ - Rw =- ~ikj (uO)j (15)

where, again, we write the nonlinear terms symbolically and will worry

about this later.

Gathering (13), (14) and (15), the system is

-i-vk2  -fL£ ga2  w -i (M uu)

t + %k2  0 v ki (M uu) (16)

-R 0 a + Yk 2 J - ik (u)t

Now we can check that for linearized waves with V 'y - 0 , solutions
L t

proportional to e o may be found when the determinant of the array

in (16) vanishes. This yields

W - 22+ 22 (17)
0

as well as a solution for w 0 0 . We have worked very hard to find

linearized internal waves, but at least this tends to check our algebra!

In fact (16) is valuable because, with a little more work, we could

evaluate completely and exactly the nonlinear terms on the right side.

This is in contrast to recent wave-wave interaction theories for which

nonlinear terms are given by an infinite power series which cannot be

evaluated exactly for any nonzero amplitude of the wave fields.

A quick overview of where we are and where we are going: A

minimal statement of the dynamics given by (1) requires three equations

in three unknowns, as seen in (16). If more unknowns are present,

there is some diagnostic relation among them. If fewer unknowns are

present, the description is incomplete, as recent wave interaction

theories may be.

- __________
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2. A Ncw Basis

For unknowns we have considered w , v and p at each k . Call

these a "primitive" basis k (w, v, P ) In terms of y (16)

has the form

+ L)y=i : y

*where 1 is an identity and L and N are linear operators. Other

bases are possible, in particular a "wave" basis k - (a+ , a-, h)k

which w .l satisfy an equation like that for y but with a diagonal

operator L in the nondissipative case.

kere we to solve for the time evolution of all Yk (orak) , this

would gve us the history in detail of the flow field. We suppose that

is neit-.er practical nor especially useful. Rather we imagine an ensemble

of statistically similar flows and we seek to describe the ensemble

average (denoted < • > ) moments of the flow. Suppose there is no

ensebl r -ean motion, hence < .> - 0 Interest then turns to the

second moment tensors

Y= c.: 4 , > or Z - zz>=k

Scm, of the components of Yk include density variance, < p* > ;

vertical mass flux, Real [ < pw* >k ] ; and enstrophy,

<(7Z X U)2> 2kV*

while total kinetic energy is

KE = (1 + 02 ) <W%,*> k + <w*> k

Gravitational potential energy is related to < D* > k as
N2 1 2 .

PE = < p* >kN /R
tk

Reality of , w and v in physical space is expressed by

Yk Y-k

{ .... .. . . m. . .. . II _ '- . . . . . . . . . . . . ..-

-- _____________ ____________
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Consequently, e.g. <p*>k = <pp*>-k *

Next let us explic-.tly obtain the wave bases , omitting dissipation

for the moment, i.e., v y 0 From (16) see ( + W2 w 0. So obtain

a and a as

+

o a- = ( + i, ) w
0 t 0

Sf(ABv - ga 0 iW w

+0

which th=n satisfy (at i- ) a 0 . The third basis component, denoted
t 0

hk. is ncn-propagating and can be seen from (16)

fo
t (v + - ) 0

so h = v - . Together the transform Is
R

2 +
-iW0 faE -g1 w a

ij0 fl£ ** 2 V 2 a (18)

0 1 R

J F h k

such that the linear, Inviscid system is given by a diagonal operator

t + iLo 0 0 a

0 a- iW0 0 a 0 (19)t 0

0 t h

Let us just note the inverse transform:

I

-I--- ---.----
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22"
IN2 -i/2 0 a w

2c f ( °2  a - v (20)

o 0o0

R _ .R h o
2, 2t- 2 k

0 0 W O
-

Ph~si_-ally, what are a + a -and h ? The propagating modes a+

and a- can be termed the "upward" and "downward" propagating inertial-
gravity waves. In terms of vertical phase propagation,, the linearized,

inviscr ,aves are described by
S ik 3 x3  i(±wot + k 3 x3 )

+-

so that with x3  upward we have a +the upward going wave in the sense

of phasz speed. Recall for these waves that the vertical component of

group s~eed is of sign opposite the phase speed so that energy. say,

associaz&2 with a +is downward going.

Perh.-aps more interesting are the h modes. To characterize these

consider the pure case when a + a- 0 . Then from (20), or from the
+-

simultaneous conditions a + a - 0 , we see that pure h modes are

given b.

fay - g;, w - 0 (21)

i.e., the horizontal velocity field is geostrophically balanced by
variations in the density field. When we expand the right hand side

of (16) in wave bases z z , then if we retain only h h components,-£- _ -- a-

we will express "quasi-geostrophic turbulence". However, we will also

see the transfer from quasi-geostrophic motion Into the inertial-gravity

waves. When inertial-gravity waves are excited, we may also see energy

transfer from the waves to the quasi-geostrophic field. This is most

tantalizing, suggesting a possible synthesis among quasi-geostrophic

turbulence, internal waves and stratified, three-dimensional turbulence.

While it is generally acceptable to refer to h-modes as geostrophic

modes, two other specific interpretations are interesting. Firstly, when
4f 0, Ic, # 0 then h =v while v drops out of a .Vertical
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vorticity (V x u)3,k - khv is then given solely by h-modes which we

would now be Inclined to call "vortex modes" although they are the f-0

limit of geostrophic moes. Are these the horizontal pancake eddies

left behind in wakes after more three-dimensional disturbances subside --
4

perhaps by radiation in the a modes? Do nonlinearities in (16) lead to

transfer of energy from h-modes to radiating a modes du-ing wake

collapse?

A second point when f - 0 is the case kh - 0 . In this limit,

i.e., vertical k , 0 may also contribute to h since fo is undefined.

This vcrtical variation of horizontally uniform density is termed "density

fines:r..:ture". The waves-finestructure interaction is fully included in

the present analysis.

Ant:her case f 0 0 , kh - 0 , corresponding to density finestructure

with rotation present appears to be troublesome insofar as h - - •

Probably it would have been more appropriate to define h differently as

a varia._e h for present purposes.

t - ch - cv +j- P (22)

recognzing that the dual limit f - o , kh - o is special. h like

a have been defined so that zk -k has dimensions of energy.

This is as far as seems useful to go in developing and discussing

the different bases for the problem. What is important is that we

retain a complete basis for describing the possible fluid motions.

In particular we do not discard the geostrophic modes (or "vortex

modes" or "density finestructure") as has been the rule with previous

internal wave-wave interaction studies. Rather we view as very exciting

the possible exchanges among h and a modes on all scales. To see

these we turn to expanding the right side of (16) both in primitive

ibases Yk and in wave bases

1
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3. Expansion of the Nonlinear Terms

!' Firstly in primitive bases we develop the right side of (13):

m -l3;-m~ k  u. uk'P U mOq

To do sz,, first note (2
S333, k - - k2 k3 Ok  (23.a)_3,k 3 k2 J 3k-

Denoting by b and c indices 0 3

2= 3

H3b3,k N33b,k " 3 (k)/ ( hb

- kb k 2 (23.c)

Using these we express some terms

M333,k u3,p u3,_ k 3C&2 w wa (24.a)

M 3b3,k Ub,, U3, (24.b)

2 2
2kb (_k k bj3 Pj V e W ' ,

h 2- 2qhk-) ] k'b (u,% - _ (LbJ5 P vw -- P P

I' - - i l l I l l " .. .. .. . ... ., .. . .. .... . ... .
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Likewise

M 33bk u3,, ubi_ (24.0c

I1.( 2 _82) ( w~ a- _
2 b k ek 1bj3 qh Ral k 1% hAP

Mex "3.,,k u c_ (24.d)

-ak kD kc k(C bj 3 Pj VR - Pb Wk~

.E q v - qc W )pq
~cm3 m& c q jh h

k
k 2

£ 2 k (kbpb kcqc - kh Pb q )

hw h

+ wk v p kb kc b 0 C 3 qm

qV~~pk Ph Cbj P apcm

k

-w w 1 CphhaaP ck

Collecting terms, the right side of (13) is

*1-xu u (25)
3iEm~k L. O

-~~ -i~ 1(tk£,)v v +t C (k~p~a)w w~

3 _ Wvk + C3(kR£v a~ j
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C C(k,p,q ek - (bbkcq c - kh 2 Pqb
- kph qh (k Pkb

kPh q (e 3 . k x p)(e 3  k x

2 1 2 k2) b fgLb
"k bph q h

Bkek

-, Cph ~ kb kcqkh qh k R k Pb q

C ,  2 2) p
_qk,,) )E~( B3 2 uk k bj 3 P h

Bk

+ -h q kbk bj3 Pj q O

(Ok 2 k2) + k qa (e_3 k )

For the right sid. of (14) we need

k.-ic -u m
sj3 k h nsm,k R u U ml

Now s 0 3 and again b and c denote indices 1 3. Note that

m s33,k k 3  k3k2  - ks 6k2  (26.a)

Ik



Nsb3,k = Ms3b,k

= k sb k(26.b)

+ k 6 K~kk(26. 0
sz:,k 2 (bsc kc6sb 2 2

W.e beg'-. evaluating.

hj-'3 kh Ms33,k"32U3a

2

= ( . 3kk) -- wi = 0 (27.a)

E k _ (27.b)sj3 kh Hsb 3, k ubp u3.,

Ckkb pv- a oW)w
sj3 kh Ph 2 sb k2  (b pi Pb 2- p)I

Pbkbk 3  pskj k3 0 2
2 kh h --sj3 2 ph

Likew ise

3 !, m(27.c)
i j3 kh s 3L,k U3 q kbk

qbkbk 3  q 3 skj 3 A
2 kh qh P sj3 2 kh qh

q)
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Finally 'e develop as above and find

k -

C Ubu(27.d)

sj3 kh qsbck c

u v v(2k hPq) [ccm3 (kcqPk b  i

C M 
i 

)

+ krP k - (pckm)]

P q(khPhqh) [CsJ 3  skj Cc

+ qsk kbPb)]

- v w R (2khphq h ) -  [Pbk b qckc

+ kqk P- kh2Pqcqckjj Pcqcj

- v w "(p,q sym. coef.)

Collecting terms, the right side of (14) is

k

csJ3 k~ M s;.mk U** Umq(8

p

• pI. . .I i - I .. ; , , ' " - . ." " - ' .. ."r i '
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- -i4'I(k-P-RW v + C 5 (k p-) ww

+ ckpqvw + C6 (k,_S,k)v w

where

2 kh PhIh P

c -sJ3-- k (o a k q -a k q5 2kh q s j kIC C p-3 h

+ q k~ (ca kS$b a Ok Ph)

s -I= A2~~~) [ 3 h-2

+ c~qkh 2 Pq C

The right side of (15) is more easily seen:

-ik1  u ikt (29)

(c1 P k( Pv 2 - Pa w) +~ kjk

_ k-j3p h q kp ]h
k+S -k



i -17A-

Togthcr, (25). (28) and (29) give the complete right side of (16). In

matrix notation, that right side may be written

-I N
p,,

where N is a 3 x 3 x 3 matrix whose elements are functions of k , p

and q . For each k , p and q there are 27 elements of N . However,

only ten are different from zero. Explicitly these are

N _il C 2 (k'p')

NI~
S112 c3 (k,_,)

NI2 2 = C (k P q

N = (_%,p)

N, C Ck,p,q)

N2 1 2 = 6 (k,p, )

N2 2 1  C 6(-k)

N 2 22 = _4(k'P-q)

N -k ksPs
331 k Ph

E k p.J N332 "sj3 - S j

Ph

p

6 t6

P.~ _ _
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In like fashion was seek to develop the interaction equations among

a + a -and h . The straightforward but frightfully tedious method is

to make the substitution (20) throughout (16).
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