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CHAPTER 1

INTRODUCTION

1.1 Statement of the Problem

Equivalent circuits containing frequency dependent elements, or

circuits valid only in narrow bands of frequencies, have been used for

years by the electromagnetics community to model the terminal behavior

and receiving properties of radiating and scattering structures. In

contrast, this work is concerned with the synthesis of broad-band

equivalent circuits with frequency and time invariant elements, for

electromagnetic energy collecting structures with definable ports.

Our goal can be perhaps best explained with the help of Figure

i.I. In Figure 1.1(a) is shown an energy collecting structure (a

'-ylindrical dipole in this case) excited by a plane wave having some

time history f(t), and loaded at its terminals by a general impedance

Z., which is permitted to be nonlinear and/or time-varying. Our task

is to proceed from the known mathematical description of the structure

and a given specification of the spatial character of the impinging

field, to synthesize an equivalent active network (Figure 1.1(b))

consisting of a finite number of lumped, linear circuit elements, whose

behavior at the terminals is a good approximation to that of the original

object for any loading conditions. The network should be driven by an

autonomic voltage source with a waveform f(t) and, with the source shorted,

it should replicate the driving-point immittance of the structure with

no external incident field present. This equivalent network should

also be applicable in the time-harmonic mode of operation.

The question which naturally arises is, 'Why would one want to

construct an equivalent circuit for an electromagnetic/radiating
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problem?" Baum [1976a] in his work introducing the singularity expansion

based equivalent circuit synthesis states that these circuits, under

certain circumstances, could be helpful in providing some or all of the

following:

1. physical insight

2. computational convenience

3. capability of using established circuit transformation
techniques

4. capability to combine the electromagnetic analysis with physical
circuit elements, transmission lines, etc., which are constructed
as part of an antenna or scatterer

5. capability of using existing computerized circuit analysis
programs.

In a more recent paper Bazn and Singaraju [1980] add to this list two

new areas of application:

6. physical construction of equivalent circuits for use in special
types of electromagnetic pulse (EMP) simulators

7. radar target detection and camouflage techniques.

The desired features of the equivalent networks depend, of course,

on the area of application. In general, they should be simple, easy to

construct, and accurate in the frequency band of interest. It is

desirable that the networks be physically realizable, i.e., they should

not contain any negative or complex-valued elements. It is self-evident

that this requirement is essential if the equivalent circuit is to be

physically constructed. This feature is not essential, but it is
J

J potentially helpful in other applications, because negative-valued

* elements are difficult to interpret physically and they can cause numerical

problems in some circuit analysis codes. A potential application of the

hardware-realized circuits is in the high-voltage environment of transient

pulse simulation. This environment precludes the use of any controlled

17



sources, gyrators, and ideal or perfect transformers, because these

elements can only be realized by active devices which usually do not

tolerate high voltages and currents. It is also desirable that the angle

of incidence and other parameters of the incident field enter the

circuit in the simplest possible way. For example, we would prefer

that a change in the angle of incidence 0 in Figure 1.1(a) would change

perhaps some element or source values but not the topology of the circuit.

Furthermore, neither the topology nor the element values should depend

on the time history f(t). It would be also convenient for the autonomic

source to be connected to only one pair of terminals in implementation.

Perhaps the most convenient and powerful mathematical description

of an electromagnetic energy collecting structure for purposes of

equivalent circuit synthesis is the Singularity Expansion Method (SEM)

introduced by Baum [1971] (see also [Baum, 1976b] and [Baum, 1976c].

SEM is a generalization of well-known techniques of linear circuit theory

in which the singularities of a transfer function are used to determine

the transient response by the Heaviside expansion theorem. In electro-

magnetic theory, the singularities are found by first applying a two-

sided Laplace transform to Maxwell's equations and then constructing

an integral equation for the scattered field. Complex singularities

{s } appear as poles of the inverse of this equation and these are

the frequencies for which non-trivial solutions of the corresponding

homogeneous integral equation exist. These non-trivial solutions are

termed the natural modes of the structure. From these modes and the

integral operator the so-called normalization coefficients can be found.

Poles, natural modes and normalization coefficients constitute the

fundamental SEM parameters. If the poles and the associated modal

18



distributions are known, one can compute the coupling coefficients which

weight a given singularity's contribution to the response for a given

incident field. From these quantities and the normalization coefficients

the residues associated with the poles can be evaluated. Since a

distributed-parameter system has an infinite order of complexity, it

can only be described by an infinite series of terms associated with

poles and other singularities (see Section 2.4). In practice, however,

for band-limited excitations, the response of such system is dominated

by a limited number of resonances, so that the series can be truncated

without introducing appreciable error.

Following this introduction, the main objective of this work can

be stated as follows: To develop simple and reasonably accurate

procedures for the synthesis of finite, lumped-parameter, physically

realizable circuits for electromagnetic energy collecting structures

from their SEM description. These procedures should be practically

tested on some representive canonical structures, their responses for

broadband excitations should be computed and compared with available

data or with responses obtained by other means.

1.2 Brief Literature Survey

One of the early attempts to extend circuit theory concepts to

distributed-parameter system was made by Scheikunoff [19441, who

applied the Foster [1924] expansion theorem to immittances of lossless

structures with an infinite number of degrees of freedom. He observed

that this infinite series representation was slowly convergent or did

not converge at all. He then used a Mittag-Leffler theorem from the

theory of functions of a complex variable to convert it into a more

rapidly convergent form (he in effect introduced what we call in Chapter

19



2 the modified pole modules). Subsequently, Schelkunoff modified this

series to allow for slight dissipation. He did not present any equivalent

circuits for this case.

In a later work, ScheZkunoff and Friis [19521 discussed the

representation of driving-point immittances of antennas in terms of

their poles and zeros. They conjecture there that the impedance of

any physical circuit may be expressed as a ratio of two products of

linear factors exhibiting the natural oscillation constants of the

circuit with its terminals at first floating and then short-circuited.

For a distributed-parameter system the number of factors is infinite

and the convergence of this product form is governed by the Weierstrass

theorem from the theory of functions of a complex variable. Then they

state that the static capacitance (inductnace) of a dipole (loop) antenna,

together with its natural oscillation constants, determines the antenna

impedance at all frequencies. They do not present any equivalent

circuits for antennas, except for parallel and series resonant circuits

valid in the vicinity of the antenna resonance.

An explicit expression for the driving-point admittance can be

written only for a few structures, such as the spherical or spheroidal

antenna with circumferential slot. This expression is in a form of an

infinite series of terms associated with the eigenfunctions of the

thproblem. For the spherical antenna [5tratton and Chu, 1941] the n

term involves a ratio of a spherical Hankel function of order n and its

derivative. As shown by Chu (1948], this ratio can be expanded in a4

finite continued fraction with positive real coefficients, which can

be physically realized by an LC ladder network terminated into a single

resistance. A complete equivalent circuit consists of a parallel connection

20



of an infinite number of such "eigennetworks". Unfortunately, this

representation is not practical because it converges very slowly.

Schelkunoff [1952] and, more recently, Franceschetti [1976] (see

also [Bucci and Franceschetti, 1974]) observed that each of the eigen-

networks contributes to the static capacitance C of the antenna. They

were able to Fum explicitly the infinite series for C. The subtraction

of this series term-by-term from the series for the admittance resulted

in a more rapidly convergent series. Franceschetti constructed an

equivalent circuit representation for this modified series by intro-

ducing gyrators (with frequency-dependent gyration resistance) to

each eigennetwork. Neither Schelkunoff nor Franceschetti discussed

the source problem.

An important development for the equivalent circuit synthesis for

energy collecting structures was the introduction in 1971 of the

Singularity Expansion Method [Baum, 19711. Barnes £1973] constructed

perhaps the first SEM driving-point equivalent circuit for a thin dipole

antenna. He used the approximate poles and residues derived analytically

by Lee and Leung [1972]. In his circuit each pole pair was represented

by a series RLC module. Hess [1975] has used SEM analysis to develop

a transfer function model for determining EMP coupling to a dipole antenna.

He used the SEM data obtained numerically by Tesche [1973]. He did

not, however, synthesize any equivalent circuits so no loading effects
I

could be analyzed by this method.

APerhaps a more systematic approach to SEM equivalent circuit

synthesis was propsoed by Baum [1976a] (some of this material appeared

recently in [Baum, 1978]). In this work he introduced the formalism and

terminology which stimulated and influenced most of'the subsequent
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research in this area, including the present effort. In his paper,

however, Baum developed only formal equivalent circuits without addressing

the issues of their practical realizability. In a latter work Baum and

Singaraju (1980] utilized a sinusoidal natural-mode approximation and an

analysis similar to that presented by Mann [1974], to derive driving-

point admittance equivalent circuits for a thin-wire dipole antenna.

They did not, however, present any active equivalent circuits for an

illuminated dipole.

Schazbert [1979] constructed lumped-parameter equivalent circuits

for a center-driven dipole and a Yagi antenna using experimentally

derived SEM description. He used Prony's algorithm [Van BZaricum and

Mittra, 1975] (a technique for parametrization in terms of complex

exponentials) to extract SEM data from the antenna terminal voltage

waveform due to a step-like excitation and used these data to construct

the driving-point impedance function in the form of a ratio of two

polynomials in s. He then used Brune's [Brune, 1931] synthesis method

to derive equivalent circuits. As usual in Brune's method, perfect

transformers were employed. Schaubert did not consider the source

problem but limited his concern to the determination of the driving-

point impedance part of the equivalent circuit.

The first extensive study of the physical realizability of

passive equivalent circuits for thin-wire dipole and loop antennas

was performed by StreabZe and Pearson [1981]. They utilized the Bott-

Duffin (Bott and Duffin, 1949] synthesis method to realize input admittances

using different grouping of pole terms and used the resistive padding1I
technique [GuilZemin, 1977] for an approximate synthesis of pole-pair

circuits. In a companion paper, Pearson and WiZton [1981] proved
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that the eigenadmittances (reciprocal eigenvalues) of a structure are

positive real (PR) (Brune, 1931] functions of frequency s and speculated

on the PRness of the admittances associated with individual current

eigenmode contributions to total current. They also briefly discussed

the source synthesis issue, but they did not present any actual active

circuits.

Another approach to equivalent circuit synthesis has been to compute

the driving-point or transfer function of the structure on the imaginary

axis in the s-plane and then to use a curve fitting technique to

develop the corresponding rational function in s, which can be

subsequently submitted to some standard synthesis procedure [Weber and

Touliios, 1974; Sharpe and Roussi, 1979]. This technique was used by

Sharpe and Roussi [1979] to obtain a ladder network representation for

the input admittance of a biconical antenna [Tai, 1981]. This method,

however, does not offer the advantages of the SEM appraoch, as discussed

above.

Recently Tesche and Giri [1981] presented some active SEM equivalent

circuits for a dipole antenna. Their networks, however, are intended

for computational purposes only and contain negative-valued elements.

The foregoing discussion can be summarized with the observation

that, to date and to the best of the author's knowledge, no active,

physically realizable equivalent circuits valid over significant

frequency band-widths have been synthesized and analyzed for electro-

magnetic energy collecting structures.
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1.3 Scope of the Present Work

The outline of this work is as follows. In Chapter 2 the SEM

formalism is defined and the SEM expansion for the current density

on a scattering object is developed. This representation is derived

formally via the eigenfunction expansion. It is based on some evidences

for which a rigorous proof has not been furnished, to date. Some

questions concerning the formal development fo the SEM exapnsion are

elaborated upon in Appendix A. The convergence properties of the two

SEM coupling coefficient forms (termed class 1 and class 2), as a

function of the time origin location, are investigated. Then the most

convenient choice of the time origin location for the purposes of SEM

equivalent circuit synthesis is determined. Also, the dominant-pole

approximation is discussed and numerical evidence is presented showing

that it can be successfully used, at least in the case of highly-

resonant structures.

In Chapter 3 is presented a formal development of SEM equivalent

circuits for energy-collecting structures. Both the short-circuit and

the open-circuit boundary value problems are discussed. With some

exceptions, the material of this chapter is a recasting of the rfsults

obtained previously by Baum (1976a), in a notation consistent with

the rest of this work.

In Chapter 4 the realizability conditions for the pole-pair

immittances and voltage transfer functions are discussed and explicit

realizations for them are given. The real-part padding technique for

the synthesis of approximate driving-point circuits is also addressed,

and an explicit expression for the amount of padding necessary, in

terms of the SEM parameters, is derived. Most of the material of

24

f



this chapter is original to the present work.

Chapters 5 and 6 present an application of the developed synthesis

procedures to the thin-wire loop and dipole antennas, respectively.

Practical, physically realizable active equivalent networks are presented

and analyzed in the time domain with the help of a circuit analysis

program. The results are compared with known repsonses or with responses

obtained by the classical frequency domain technique. In addition, in

Chapter 6 a sinusoidal current mode approximation is used to develop a

particularly simple, and yet reasonably accurate, equivalent circuit

for a symmetrical dipole, or a cylindrical post over a ground plane.

An application of the equivalent circuits developed in Chapters 5 and

6 to the analysis of antennas with nonlinear loads is described in

Appendix B where representative equivalent circuit responses for a

thin-wire loop and a dipole antenna loaded with a semiconductor diode

are included. The calculation of these responses with other methods,

though tractable, is quite tedious.

Chapter 7 is devoted to the equivalent circuit synthesis for a

spherical antenna. The dominant pole-pair circuits are synthesized

by the real-part padding technique and the quality of the dominant

pole approximation is examined. In Appendix C the static capacitance

of the spherical antenna is computed both analytically and numerically.

The conclusions from this work are summarized in Chapter 8.

I

4
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CHAPTER 2

THE SEM REPRESENTATION FOR EM SCATTERING

2.1 Introduction

In Sections 2.2-2.4 of this chapter the SEN formalism is defined

and the SEN expansion for the current density on a scattering object

is derived formally via the eigenfunction expansion. In Section 2.5

the convergence properties of the two SEM coupling coefficient forms

(termed class 1 and class 2) are investigated as a function of the

time origin location. Then, in Section 2.6, the optimal choice of the

time origin location for the purposes of SEN equivalent circuit synthesis

is determined. Finally, in Section 2.7 the dominant pole apprcximation

is discussed and numerical evidence is presented that it can be success-

fully used, at least in the case of highly-resonant structures.

2.2 Integral Equation Formulation

The integral equation for the current density J(r,s) on a surface

S of a perfectly-conducting object immersed in a lossless, homogeneous

medium may be formulated as

,r s);J(rs)> - I(r,s) , rES (2.1)

where I (r,s) is the known incident or source field and P(r,r',s) is the

dyadic kernel of the integral equation. The symmetric product

notation
.4

1 S

is used to denote integration over the surface S of the object.1)

1)If two or more ranges of integration are used then subscripts can
be placed on <,>.
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As in [Mann and Latham, 1972] it is assumed that S is a smooth surface

of finite extent enclosing a simply-connected region. The solution of

(2.1) can then be sought in L2 (S), the Hilbert space of all square-

integrable functions with support S. The frequency variable is

s =CY+jw and is that associated with the Laplace transform pairI )

L{f(t)} f(s) "f()eStdt (2.2a)

0

and

f(t) L-1 {f(s)) ?(s)eStds (2.2b)

CB

where tildes () over quantities distinguish Laplace domain members of

transform pairs and CB is the Bromwich contour.

This work deals specifically with the electric field integral

equation (EFIE) characterization for a conducting object. In this

case the kernel of eq. (2.1) becomes the symmetric impedance kernel
2 )

r r s) fZ20 Y (r3rs) (2.3)

where

G (r,lr's,) = (2.4)

l)The unilateral Laplace transform is used since only causal functions
of time are dealth with. This is accomplished by a judicious choice
of the time origin of the problem (see Section 2.5).

'2)The primed and unprimed differential operators act, respectively, on
.the primed and unprimed variables. Strictly speaking (2.1) is only

meaningful when interpreted in terms of some sense of principal value

integration. We use it and the kernel Z in a symbolic sense for efficiency
of notation. Bringing the gradient operator in (2.3) outside of the
integration leaves an integrable kernel, and it is upon this integro-
differential operator that we may build a meaningful mathematical

theory.
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is the scalar Green function, 1denotes the identity dyadic, y - s/c

is the complex propagation constant, and Z is the intrinsic impedance0

of the medium. The speed of light is denoted by c. The EFIE incident

field function is the tangential component of the incident electric

field on S

I (r,s) E (r,s) • (1-fifi) (2.5)

where fif() is a unit vector normal at r to the object surface S.

In most cases of practical interest the incident field is "factorable",

i.e., it can be written in the form

(rs) = E (r)p(rs)f(s) (2.6)
0

where E o() indicates a spatial distribution factor, p(r,s) is a propa-

gation factor which links space and time dependencies, and f(s) is

the Laplace transform of the time history of the wave. It is assumed

here that f(s) is algebraic, which is also satisfied in most practical

cases. For example, a plane wave carrying a time history f(t) may be

written as

E (rs) = E e o f(s) (2.7)0

+

where E is a constant polarization vector, is a unit vector in the

direction of propagation, and r is a vector pointing to a chosen

phase reference point. The time domain counterpart of (2.7) is

.3 E (r,t) - E 0 6 t -p (r-r 0)/lft

E 0 f[ -p. -( )/C]

Eo f(t- t o -p "r/c) (2.8)
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r$

where 6(t) is the Dirac delta function, * denotes convolution in time,

and

t r 0 /c (2.9)

It is noted that, since the causality assumption is imposed on f(t),

i.e., f(t)-0 for t<0, the excitation first reaches the point r-r 0

at the time t O. Hence, r defines the time origin of the problem:0

the time is counted beginning from the moment when the wave front

passes the point r - ro . The wave front reaches the coordinate origin

r- at t=t
0

2.3 Formal Solution of the EFIE

The kernel (2.3) is complex-symmetric [Cochran, 1972] and so one

may define a set of eigenvalue/eigenfunction pairs through

'1444.4
<J (r',s);Zr'( ',r,s)> = <ZC',',s);Tn( ;s)> - X (s)J (r,s) . (2.10)n n n n

It follows, formally, that the kernel and its resolvent can be expanded

as

4. 4. 4 .

J(r,s) J Cr s)

n n _ _

(r,r,,s)--n (s) < n;,);_'. s) (2.11)

and

1 Jr.) C's (2.12)
n() < n( 's);In( 's)>

The solution to the integral equation (2.1) is thus written
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J(rs) <Z (r,r' ,s);I (r,,s)>

< n(r',s);E (r',s)> n

The EEM representation (2.13) is formal in the sense that in

deriving it some tacit assumptions have been made which, in general,

may not be satisfied. Among other things, the major pitfall in the

expansions above is that since the kernel (2.3) is not Hermitiarn-symmetric,

there is nothing to guarantee the existence of a complete set of eigen-

vectors J (r,s), as defined in (2.10). One cannot even be sure that
n

the normalization factors in the denominators above do not vanish

[derin, 1973]. Perhaps the most common situation in practice in which

the eigenfunction representation fails is when the eigenvalues nS)

have branch points. At a branch point in the s-plane two or more

eigenvalues coalesce Cochran, 1972], so that the inclusion of root

vectors in the expansion may be necessary [Rcn, 1980]. In some

cases even for degenerate eigenvalues a set of independent eigenvectors

1)Let A be a linear operator on the space considered and let in wi

be an egenvector associated with an eigenvalue Aj, i.e., A-lki)
ei,l "0 , where I denotes the identity operator. Consider the

3ubspace of all vectors that are annihilated by some power of

(A-lli). If for some power k there exists a vector i,k in the
subspace such that (A-lli)k-li,k 00 and (A-Ili)ki,k -0, an"' such
that there is no vector in the subspace that is not annihilated at
least by (A-lAi)k, then i,k is a root vector (generalized eigenvector

3a [Pease, 1965]) of rank k, where k is the length of the longest chain
associated with eigenvalue Ni. The chain {0i,li,2,... 4i,k, with
the elements defined by i,k-I -(A-l~i)0ik...i,i -(A-lli)k-li,k,
is called a Jordan chain of length k. The union of all root vectors
of a linear operator A corresponding to all eigenvalues of A is called
the root system of A [Ram, 1980].
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can be found so that the root system coincides with the eigensystem.1)

This is true for normal operators. 2) For example, it was shown by

Ramm [1973] that the scalar analog of the operator in (2.1) is normal

if S is a sphere. If the operator is not normal, it is not always

diagonalizable and considerable complexity arises in the computational

scheme [Dolph et al., 1980].

There is an important class of bodies for which it can be shown

that branch points do not occur. These are structures such as the

sphere or circular loop, in which the eigenvectors are completely

determined by the geometrical symmetry of the structure and hence are

frequency independent. This follows from the Rayleigh quotient

representation of the eigenvalue,

X .s) ) n r). _). - (2.14)

<Jn ()Jn ()

The kernel in (2.14) can be expanded in a Laurent series converging

for all Isf >0, and integrated term-by-term to obtain a series with

the same region of convergence and analyticity. This argument is not

valid, however, if the body is not completely symmetric because the

eigenmodes J are then generally functions of s. To date, analyticn

1)In the language of finite-dimensional spaces this means that the
geometric multiplicity of an eigenvalue is equal to its algebraic
multiplicity [StakgoZd, 1967]. We say that an eigenvalue Xi has
algebraic multiplicity k if the term (X- Xi) is repeated k times
in the characteristic equation of the operator. Geometric multiplicity
of Ai denotes the number of independent eigenvalues corresponding to it.

2) a a aAn operator A is called normal if A -AA , where A is the adjoint
operator.

3)The triple product notation is introduced for a triad of elements,
the middle element of which is dyadic: < ; ; > - < ;< ; >>.
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properties of the eigenvalues of only rotationally-symmetric objects,

such as the sphere and the circular loop, have been thoroughly examined.

2.4 Singularity Expansion of J(r,s)

The singularity expansion for the surface current density on a

scattering object can be obtained from the eigenfunction expansion by

performing the residue series expansion of (2.12) or (2.13) in terms

of the complex natural resonances s (the poles) of the object, defined

as follows:

{Sni Xn (S)- O} . (2.15)

It is noted that for sSsi, in view of (2.10) and (2.15), the following

is true:

<Z(r,r',s ni); J n(r,sni )> = 0 . (2.16)

Hence, Jn (r,s n)=Jni() are the natural modes of the object associated

with the poles snl. In practice the homogeneous integral equation

(2.16) is replaced by a matrix equation by some approximate technique

such as the method of moments (MoM) (Hcrrington, 1968], and the poles

are sought as zeros of the determinant of the coefficient matrix.

Before expanding the reciprocal eigenvalue factor which appears in

(2.12) and (2.13) in terms of its singularities in the complex

frequency plane, it is expedient to subtract from -l (s) the possible
nI pole at the origin and define

~r
h n(S) 1 no (2.17)

Xn(S) s

where ro denotes the residue of the pole at s =-. Assuming first
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order poles one can postulate ujing the Mittag-Leffler

expansion [Jeffr,!ys and Jcffreys, 1956] the representation

[Pearson and WiZton, 1980; Pearson, 1981)

hn(s) = hn() + r [ni + _i'j+ n(S) (2.18)

where b (s) denote the branch-integral contributions which may occur
n

and rn are the residues which can be computed by using eq. (2.14)

as well as the orthogonality property of the eigenfunctions to yield

r = i n(s = ni<J ni(r);J ni()> (2.19)

with the normalization constants i1 given by
ni

<ni sZ(rr i n (2.20)

ni Jn r;7 "n;n()

Mqrin and Latham [1972] have shown that for perfectly ',nducting

bodies of finite extent imbedded in a lossless medium Z (r,r's) is

dnaLytic in s except for pole singularities. This does not mlian, however,

Ithat there cannot be branch-integral contributions to (2.18) which

cancel out in the summation (2.14), i.e.,

<(r,s); (r,s)>~
n 04

b n(s) - (r,s) = 0 (2.21)
n Jn (r,s)n

It is demostrated in Appendix A that such phenomena can, indeed, occur.

Only for bodies such as the sphere or the circular loop antenna, in

which geometrical symmetry completely determines the eigenfunctions

l)It was conjectured by Baum [1971] that perfectly conducting, finite-
extent Dodies in homogeneous, lossless media possess only simple (first
order) pole&. A proof of this conjecture has been put forth recently
by Sancer and Varvatsis [1980]. The simple pole restriction exludes
also essential singularities in a finite complex plane since they can
be regarded as infinite order poles,
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(and hence they are frequency independent), has it been possible to

show (Section 2.3) that branch points cannot occur, and poles are the

only singularities of the reciprocal eigenvalue in the finite complex

frequency plane, so that b (s)- O. On the other hand, any losses inn

the medium always contribute a branch cut in the complex frequency

plane. Although in the lossless medium case the branch-integral

contributions ultimately cancel leaving the singularity expansion of

current unaffected, they are likely to have bearing on SEM formulations

where eigenmode-by-eigenmode expansion enters in, including the SEM

equivalent circuit synthesis discussed in this work. Pearson and

Wilton [1981] have shown that the reciprocal eigenvalues in (2.13)

1)
are positive real (PR)I ) functions of s; they have also speculated

that the same may hold for the terminal admittances associated with

individual current eigenmode contributions to total current. The PRness

is a necessary condition for the realizability of driving-point functions.

If the branch-integral constituent in (2.18) is non-zero, its ommission

may lead to non-realizable immittances. This difficulty can potentially

be circumvented by grouping terminal eigenadmittances which share

common branch points, so that the branch-integral constituents add

to zero and PRness is preserved. Since in most practical cases the

branch-integral terms cannot be explicitly identified, the b (s)n

factors in (2.18) will be suppressed throughout the rest of this work.

The expansion (2.18) is valid provided hn (s) is bounded on a set

of circular contours centered at s- 0 and passing between the poles

[Jeffreys and Jeffreys, 1956]. If h (s) is not only bounded, but! n

actually decays onthis set of contours, one can show that [Pearson, 19811

See Section 4.2 for the definition of a positive real function.
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hn(O) - ri (2.22)i Sni

and

h(s)ni (2.23)

It is noted that even when b (s) -0 in (2.18), the poles and the
n

residues alone do not determine h (s) and some additional information
n

is necessary to determine the constant term h (0). Often it can be
n

argued from the high freuqency and/or low frequency considerations

that h (0) -0. In that case it follows
n

rrol n ~ sr ] '224+ I r+_ + + (2.24)

n

Similarly, using (2.17) and (2.23) yields

+ r i (2.25)
X (s) s ni

Following the terminology introduced by Baum [1976a), the terms in

brackets in (2.24) and (2.25) are referred to as, respectively, the

modified and unmodifeid pole modules. Both forms have been used in

the SEM equivalent circuit synthesis to date. Throughout most of

this work the modified pole modules are used since they impose

proeby re nrc nd We, n 1e74, tbe aid fr thecircula
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The substitution of the expansion (2.24) into (2.13) yields

(,s) I 8 o(s)Joo ()f(s)
S 00 00 00

8n (S) Jn ( )f(s) (2.26)

n i SniS -ni)

with the coupling coefficients %i (s) defined as

- J ni (r);Eo(r)(r, ni)> (2.27)
ni ' n

-- the class I coupling coefficient, or

(2) (S) <Jn(r);Eo ()p(,s)> (2.28)
ni ni 0

-- the class 2 coupling coefficient [Baum, 1972; Baum, 1976b]. It

is noted that the class 1 form is simply a specialization of the class 2

coupling coefficient: )ni .(2)ni (sni). Also, both forms are identical

for nonpropagating excitation fields, when p(r,s) = 1. For the plane

wave incident field the two classes of coupling coefficients take the

form

(i) -S nito . Ynip r
ni e <Jni (r);E e > (2.29)

and

-(2) -st - r
" (s) - e 0 ni(r);E0e > (2.30)

in

1 )The coupling coefficients defined here differ slightly in form from

the ones originally introduced by Baum [1976b]. In Baum's work the time
origin coincides with the space origin but the SEI series can be
"turned on" in negative time, if necessary, by choosing the value of the
turn-on time parameter. In the present formulation, which follows
naturallw from the assumed form of the incident field (27), the time
origin ro is chosen independently from the space origin and the SEM
series is always turned on at t- 0.
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In the next sections the convergence properties of both coupling

coefficient forms are discussed and what is believed to be the

best choice of the coupling coefficient for the purposes of SEM circuit

synthesis is determined. Meanwhile the generic notation ni(s) is

used to embrace both forms.

Several comments are in order concerning eq. (2.26). First, the

term associated with the pole at the origin is shown explicitly and

it is assumed that this pole belongs to the zeroth eigenmode. It can

be argued from the form of the integral equation that this mode must

be divergenceless (solenoidal). If the structure is not capable of

supporting a solenoidal current mode, it can not have a pole at the

origin. Second, it is noted that a concellation of a pole can occur

if it coincides with a zero of the corresponding coupling coefficient.

A limiting procedure should be used in such case to determine the

contribution of such a pole-zero pair. Finally, it should be noted that

perhaps the most improtant feature of the representation given in

(2.26) is that the set of complex natural frequencies s n}, the set of

nincmlxnatural modes D ni (r)}, and the set of complex normalization

coefficients {B ni} are dependent on the object parameters only but are

indep ient on the excitation. The effect of the exciting field is

contained entirely within the set of coupling coefficients { ni(s)}.

I

2.5 Convergence Properties of Class 1 and Class 2 Coupling Coefficients

In this section are investigated the convergence properties as

Re{s ni} of the singularity expansion (2.26) with bothnii

coupling coefficient forms, as a function of the choice of the location
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-4.

of the time origin ro. The tools for this analysis were provided in

a recent paper by Bawn and Pearson [1981]. It is helpful to follow

them in defining the following characteristic dimensions for use

subsequently: the largest linear dimension of the scatterer

L° 4  I . jup ir-r'l , (2.31)

r,r'ES

the "clearance distance

• +

L I  jup p * r , (2.32)
rsS

and the "contact distance"

L - inf p -r . (2.33)
2 rE+rF.S

The latter two distances define, respectively, the signed distance from

the coordinate origin to the point at which the wave front clears the

object, and the signed distance from the coordinate origin to the

point at which the wave front first contacts the object (see Figure 2.1).

To investigate the convergence properties of the SEM expansion

(2.26) the asymptotic properties of the terms ni %i (s) need to be

examined. The behavior of 8ni for Re{s ni}_o was argued by Baum and

Pearson [1981] to be

s n iL / c

Sni 1 i e (2.34)

The behavior of the class 1 coupling coefficient is governed by

( -Sni (L1 - pro)/C 
(2

ni (2.35)

so that

(i) S ni (Lo0- EL1 
+ p 0 / c

6n "nl \ e (2.36)
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Figure 2.1 Portrayal of a scatterer in a plane-wave field. Indicated
arc the maximum extent of the object L.,, the clearance distance Ll
relative to the coordinate origin, ane the contact distance L2.
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This term decays provided

p •r L> -L . (2.37)
: , 1 0

This condition is most stringent when the direction of propagation of

the incident plane wave is along the largest dimension of the object.

In this case (2.37) reduces to

p r > L2  (2.38)

Hence, if the time origin is placed on the surface of the scattering

object the convergence of the class 1 SEM expansion term is assured.

Similar analysis of the class 2 coupling coefficient form shows

that

(2) S niLo/C

ni ni (s) ^v e (2.39)

Since L is always positive, one can conclude from the last expressiono

that the class 2 form is always convergent, independet of the choice

of the time origin.

2.6 Optimal Choice of the Time Origin

In this section are discussed the numerical properties of the two

classes of coupling coefficients in the case of plane wave incident

field. Also, the most convenient choice of the time origin r for SEM0

circuit synthesis if determined.

Although both class 1 and class 2 coupling coefficients give valid

3representation for the surface current density when used in (2.26),

*they exhibit quite different properties from the practical computation

point of view. This is evident when one performs the Laplance inversion
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of (2.26) to obtain the time domain response1

JYrt) L .Jr~) (2.40)

In this process terms like

-; - e ds (2.41)

must be evaluated. Using the class 1 coupling coefficient (2.29) in

(2.41) gives

1f e Snito <J ni (r)E ni e > s

GB 5- s ni e d

e i ni (r ' 0 per u(t)eS (2.42)

whereas the class 2 coupling coefficient (2.30) gives

l J nir)E0e> s

GBr C 5 5sni d d

si - P _______ 0_V__

M jn r);Lo02.Tj e -8n s

-Snito -- ni^ 5 t
= e <3 (r);E e u(t- t -.r/c)>e ni (2.43)

ni 0 0

Thus, in the time domin the class 1 and class 2 coupling coefficients

take, respectively, the form

1) It should be kept in mind that any singularities of f(s) must be

taken into account in this process.
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( -S nt o i -Yni p • r
n n)t) = e J < (r);E e >u(t) (2.44)

and

(2) s t -Yn ip - (2.45)n =i(t e <Jni (r);Eo0e u(t - t - r/0)-

It should be noted that the integrand in (2.45) gives a nonzero

contribution only when

p r/c < t -t (2.46)0

or, equivalently, when

(r-7 )Ic < t . (2.47)0

These expressions can be interpreted with the help of Figure 2.1 as

follows. The pole terms in (2.40) are "turned on" at t=0, '.,.,

as sui as the wave front passes the time origin r=r . However, _
0

are computed differently depending on whether class 1 or class 2 counling

coerticients are used. The class I coupling coefficients are constants

resulting from the integration over the entire object, as indicated in

(2.44). The class 2 coefficients (2.45), however, are obtained by

integrating only over that part of the object illuminated at the given

moment by the incident plane wave. Thus, they are time dependent

until t=tc, when the edge of the incident wave has cleared the object.

After that time they take on constant values identical with those of

the class I coefficients. It is evident from the above discussion,

that the class 2 coupling coefficients form is much more expensive

computationally than the class 1 form. It is also unsuitable for the

purposes of SEM circuit synthesis because of its s-dependene in the

frequency domain. It has, however, some advantages, as discussed below.

42



It should be noted that the series (2.40) must sum to zero in the

period of time before the leading edge of the incident wave arrives

at the observation point (port location). However, the terms of the

series contain the factors exp Sni[t -f •(r-ro)I which take on large

values in early times, because Re{s ni} <0. Since these large numbers

must sum to zero, the result is sensitive to errors in the pole values

[Marnn, 1972; Pearson, 19791. The class I form requires also that a

possibly full collection of poles belonging to a given eigenmode be

included in the time domain counterpart of (2.26) [Pearson, 1979].

To illustrate this point, in Figure 2.2 are shown current responses

at =1800 of a loop antenna of radius b illuminated by a step function

plane wave polarized as indicated in the inset, computed in three ways.

The first two curves were obtained by using class 1 coupling coefficients,

but different collections of poles. In one case (solid line) all poles

belonging to eigenmodes 0- 10 for which Im{s ni} 10c/b were included,

while in the second case (dotted line) only one, "dominant" pole (the

pole closest to the jw axis) from each eigenmode collection was taken.

The third curve (dashed line) was obtained by using class 2 coupling

coefficients and dominant poles only. The time origin was chosen in

all cases at 0= 0, the point of the first contact with the incident field.

As can be seen in the figure, using class 1 coupling coefficient form

and incomplete collection of poles results in a non-causal behavior

of the response. The class 2 form is more tolerant and gives accurate

responses for this case. Since in most practical situations the full

eigenmode collections of poles are not at one's disposal, this last

example would suggest that the class 1 coupling coefficient is of no

value and that one must resort to the class 2 form. It should be noted,
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however, that the three curves in Figure 2.2 agree favorably for t<21>/c

after the wave first arrives at the observation point. The response in

the period O~t 2b/c is not of much interest, since it is known a priori

to be zero. Why not then move the time origin to the observation

coordinate (port zone) and use the simple class 1 coupling coefficient?

This point is supported by further examples presented below.

In Figure 2.3 and 2.4 are compared current responses of a loop

antenna computed at CP=90* and 0 =00, respectively, by using class

I (dotted line) and class 2 (solid line) coupling coefficients and

dominant poles satisfying Im[s ni] lOcib. The excitation conditions

are identical to that of the previous example. Again, one observes

good agreement of the responses beginning from the time when the wave

front reaches the observation point. It is seen, however, that the

class 1 responses deteriorate slightly for observation points closer

to the point of first contact of the plane wave with the loop. This

can be attributed to the fact that in the process of moving the observation

point toward the point first illuminated by the incident field increases

the area of the object surface which in early time lies ahead of the

wave front in the integral (2.44).

The conclusions drawn from the loop example also appear to be

valid in a thin cylinder case, as demonstrated in Figure 2.5-2.7.

The incident field is a step function plane wave whose angle of incidence

W-= 30*. In the numerical procedure the length Z of the cylinder was

divided into 72 equal-size zones and the time origin was placed at the

.72nd zone-the one first illuminated by the incident field. In Figures

2.5, 2.6, and 2.7 are shown, respectively, the current responses

evaluated at zones 18(1/4Z), 36(1/2t), and 54(3/4t). Only the
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oil dominant poles for which Im[s ni <10ITc/t were used in the SEM expansion

for the current. It is seen from these figures that class 1 responses

(dashed lines) agree favorably with class 2 responses (solid lines)

beginning from the time when the leading edge of the plane wave reaches

the observation point. As in the loop case the agreement deteriorates

somewhat when the observation point is moved toward the point of first

contact of the incoming wave with the cylinder. The discrepancy

between the class 1 and class 2 responses in the present case is greater

than in the loop case, which can be attributed to the fact that the poles

of the cylinder are computed less accurately than the poles of the loop,

and to the sensitivity of the class 1 coupling coefficient form to

errors in pole values [Baum and Pearson, 1981].

The following observations can be made from the above examples.

1. Using an incomplete pole collection in the SEM expansion
together with class 1 coupling coefficients gives non-
causal responses in the period of time before the leading
edge of the incident field reaches the observation point.

2. The class 2 coupling coefficient form gives correct (causal)
responses in a similar situation. It is reasonable to assume
that it gives also more accurate responses than the class 1
form for intermediate times, before t= t .

c

3. Beginning from the time when the incident wave first reaches
the observation point the class 1 and class 2 responses
agree very favorably, so that the class I coupling coefficient
can be used if the time origin is placed at the observation
point.

4. The class 1 response becomes less accurate when the observation
point (port zone) is moved closer to he point 3f first contact
of the incident field with the object. However, the deteriora-

tion of the response is not significant (of. ligures 2.4 and
2.7).

5. The responses obtained by using dominant poles only agree
favorably with the responses obtained by including more complete
collections of poles. (This fact is exploited in the next
section where the dominant pole approximation is discussed in
more detail.)
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From the above discussion we conclude that the class 1 coupling

coefficient with the time origin at the port location is the best

choice for the SEM equivalent circuit synthesis. In Baum's (1976b]

formulation this is equivalent to choosing the turn-on time at the

instant when the wave front reaches the observation point.

2.7 Dominant Pole Approximation

It is noted that the singularity expansion for the surface current

density on the object (2.26) contains a potentailly double infinite

summation of terms associated with an infinite number of eigenmodes

and potentially infinite collection of poles belonging to a given eigen-

mode [Pearson and Wilton, 1981]. For many problems of practical interest

one can recover by numerical methods [Tesche, 1973; Crow et at., 1972;

Singaraju et al., 1976], analytical methods [VanBlaricum and Mittra,

1975; Pearson and Roberson, 1980; Pearson and Lee, 1982; C o and

Cordaro, 19791 a finite number of poles which dominate the frequency

and time responses for excitations whose spectra are bandlimited.

These poles are the ones located closest to the jw-axis and are referred

to as the dominant poles of the structure [Pearson and Wilton, 19811.

In the case of the few structures for which the distribution of poles

among the eigenmodes can be explicitly determined (e.g., the circular

loop and the sphere) the collection of dominant poles can be obtained

by taking only one "dominant" pole from the number of poles belonging

to each eigenmode. There are strong indications that this is true

in general. Denoting by sn the dominant pole of the n th eigenmode,

one can rewrite (2.26) in the dominant pole approximation as
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fs

J(rs) ' 6ofo(s)Jo(r)f(s) +1 S (s n(S)Jn( )?(s) (2.48)
n n n

with

n 0

It is understood in (2.48) that complex conjegate poles are included

in the summation. It is noted that the term associated with the pole

at the origin is shown explicitly in (2.48). As pointed out in Section

2.3, this term is present only in the case of multiply-connected objects,

such as the loop antenna. It is absent, for example, in the case of

the thin dipole antenna, which can be considered as a member of the

singly-connected class of structures.

It is important to note that in the case of a multiply-connected

object immersed in an external incident filed, one expects a cancellation

of the pole at the origin to occur. This is so, because in the limit

as s -0 the coupling coefficient o(s) is obtained by integrating along

a closed path a conservative (in the limit) field against the *onstant

natural mode. One may rewrite (2.48) in such cases as

J(rs) 0 ao J 0r)f(s) + I Sn(2 s n ) n n(S)'Jn(r)-f(s) (2.50)

where

10 = .im -- (2.51)

For example, in the plane wave case, in the limit as s O, one arrives

at
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o(s) - <Jo 0r;e 0>

0 0 o

-s<J 0(r);E 0 * ('r-r )/c> (2.52)o • o~2

so that

4.

o - -<J o();Eo0 ( - o)Ic> (2.53)

2.8 Conclusions

The SEM representation for the surface current density on a scattering

object is derived formally by way of the eigenfunction expansion, and

the potenital limitations of this procedure are addressed. Since the

.0expansion is performed on the eigenmode-by-eigenmode basis, there may

be branch-integral contributions present [Petarson and WiZton, 1981]

which, in the case of finite-extent perfectly-conducting objects in

lossless media, must cancel in the eigenmode summation, to give a

meromorphic current response in accord with [Marn and Lathamn, 1972].

It is demonstrated by specific examples in Appendix A that such phenomenon

can, indeed, occur. Only for highly symmetric objects, having frequency

independent eigenfunctions, has it been possible to show (Section 2.3)

that the eigenvalues are meromorphic in s. The omission of the branch-

integral constituent in the SEM exapnsion can adversely affect the

realizability of the terminal eigenadmittances [Pearson and Wilton,

19811.

Two basic SEM expansion forms arise in the SEK expansion of the

current, the so-called modified and unmodified forms. Since the modified

form imposes less stringent conditions on the large-s asymptotic

properties of the inverse eigenvalues [Pearson, 19811, it is suggested
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that the modified poles modules are preferable in the case of problems

dealth with on a purely numerical basis.

A Two forms of coupling coefficients have been used to date, the

so-called class 1 and class 2 forms [Baum, 1976b]. For the SEM

equivalent circuit synthesis one is forced to use the class 1 5EM

expansion form. It is demonstrated that this form gives good results

provided the time origin is placed at the gap zone. The convergence

of this representation is assured since it is shown that the class 1

expansion form is always convergent as Re{s ni} if the time origin

is located on the surface of the scattering object.

It is also demonstrated that for the thin-wire loop antenna the

dominant-pole approximation [Pearson and WiZton, 19801 gives very

accurate short-circuit current responses. It is conjectured that this

is true for all highly resonant structures.

5
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CHAPTER 3

FORMAL DEVELOPMENT OF EQUIVALENT CIRCUITS

3.1 Introduction

In this chapter is discussed a formal development 1 ) of SEM equivalent

circuits for energy collecting structures with definable ports. With

some exceptions, this development essentially follows that presented

by Bam [1976a] and, in a more recent paper, by Pearson and WiZton

[19801. It is reiterated here, for the sake of completeness, in

notation consistent with the rest of this work.

The objective of this work is to derive an equivalent circuit at

a port2 ) of an antenna or scatterer from its SEM description. Since

the problem is linear, one can construct the Norton and Thevenin

equivalent networks, as shown in Figure 3.1. It is noted that the Norton

circuit requires the knowledge of the driving-point admittance Y(s)

sc
and the short-circuit current I (s). To define the Thivenin circuit

one needs to know the driving-point impedance Z(s) and the open-circuit

voltage VC (s). These quantities are not independent and are related

by

Y(s) (3.1)

Z(s)

and

-oc(s
Z(s) = V ) (3.2)I iSC (s)

1 )The issues of physical realizability of the equivalent circuits are

addressed in Chapter 4.

2)A port is here understood in the usual circuit sense as a pair of

terminals with the property that the current entering one terminal
is equal to the current leaving the other terminal.

56

- ,_ _ __""_ _.._ _.... .... _ I ia_ _ "



0

am 4m m 
-0

w 4

06)

I4

r-

Un

57-



The process of constructing the Norton (Thevenin) equivalent network

can thus be naturally divided into two steps: the computation of

Y(s)(Z(s)) -- the immittance problem, and the computation of

ISC (s)(Voc(s)) -- the source problem.

In order that the circuit quantities voltage and current, could

be uniquely defined, the field in the gap region must be conservative.

This means that the gap must be electrically small in some sense.

In most cases this requirement restricts the class of tractable

* bjects to slender structures with narrow gaps (in terms of wavelengths

or, equivalently, the rate of variation of the transient waveshapes

of interest).l)

A typical gap region of width A and perimeter P is shown in

Figure 3.2. The gap is defined such that there are two sides or

terminals separated by the gap region with surface S . The antenna org

scatterer surface is designated by S so that S=S US . 9 is a unita a g g

vector oriented from one gap side to the other on S . Following Baumg

[197%Ta] we define the gap current and voltage as the averaged quantities

I(s) - 1 <J(,,s);a ('r)>s  (3.3)

g

and

SErsa (r)>_ (3.4)
s - - g

Since a slow spatial variation of the field in the gap is assumed, the

expressions (3.3) and (3.4) can be simplified to, respectively,

l)There are exceptions to this rule, e.g., the symmetrically excited
spherical antenna or the thick cylindrical antenna. One can even allow
non-symmetric excitations (e.g., plane wave) if the results are
interpreted properly.
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Figure 3.2 Detail of the feed gap of a radiating structure.
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I (s) P J(rg, S) a ag(rig) (3.5)

and

V(s) - E(r ,s) a ag(r ) (3.6)

with r denoting a point in the gap region.g

The Norton and Thevenin equivalent circuits resulting, respectively,

from the short-circuit and the open-circuit boundary value problems

are derived in the next sections. These circuits are based on the

dominant pole expansion (2.48) for the current density on the object.

In his original work Baum [1976a] also derived the eigenmode expansion

networks obtained from (2.13). These networks, however, are of little

practical value, since in most cases the quantities J (r,s) and \ (s)n n

are not explicitly known.

3.2 Norton Equivalent Circuit

The Norton equivalent circuit consists of the driving-point

admittance Y(s) and the short-circuit current isc (s) (Figure 3.1(a)).

The driving-point admittance of the structure is determined by solving

the short-circuit boundary value problem indicated in Figure 3.3(a).

The incident field is that due to the voltage V(s) V of(s) impressed

across the gap, so that the coupling coefficients (2.49) take the form

V

<J r g - V I (3.7)
n n '' g'o'n

where the notation

1 < ( WO (')>
n g

P 4( g) - a (' ) (3.8)
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(34 I(S)

Figure 3.3 Short-circuit boundary value problem. (a) Determination of

the driving-point admittance and (b) determination of the short-circuit
current.
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has been introduced. Using the coupling coefficients (3.7) in (2.48)

the port current can be determined from (3.3) as

I(S) °  )
2 V(s) + s12 V(s) (3.9)

n sn(s- sn

The driving-point admittance Y(s) -I(s)/V(s) follows directly from

(3.9):

i(s) + [ Y(s) (3.10)
oL n
0 n

where the Y (s) are defined by
n

a a asn + _a = n
Yn (S )  s-s n  sn S (SS (3.11)

These are the so-called modified pole admittances, as distinguished

from the unmodified pole admittances

a
Yn(s) = - (3.12)n s-s

n

which result if the expansion (2.25) is used. The admittance residues

a are given by
n

a = 8n 12 (3.13)
n n

and the magnetostatic inductance L is defined as

1
L 0 a (3.14)

0

One can combine conjugate pole terms in (3.10) to get
1 )

1 )For simplicity, only complex conjugate poles are assumed. A trivial
modification of (3.15) is necessary to avoid the double accounting
of purely real poles.
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Y(s) +I (s + (
sL Pn n"0 n

sL + I 'n(S) (3.15)0~ n

with the conjugate pole-pair admittances defined as

Y n(s) f Yn (s) + Y_n(s) . (3.16)

In (3.15) - (3.16) the notation is adopted that n and -n constitute

the indices for a conjugate pair of poles (s_ s*).i)
n= n

The short-circuit current can be found from the boundary value

problem shown in Figure 3.3(b). The incident field is now that due

to a plane wave and the coupling coefficients n n are given by

-YnP (r - )
nn - J n r);o e (3.17)

Note that the class 1 coupling coefficient form is used with the time

origin at the gap region, as suggested in Section 2.5. The short-

circuit current can be obtained from (2.50) and (3.3) as

ssc n nln__(S) (3.18)

o o ss- )
Isc(s) - PoaoIofi(S) + I s (S -S) B~n~)-(.8

n n n

This expression can be conveniently rewritten as

isc(s) go f(s) + I Yn (s) T nf(s) (3.19)

n
I

where the source coefficients

Sgo 0 0oI (3.20)

and

2)Complex conjugate value is denoted by superscript asterisk (*).
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n
a Tn (3.21)

n I
n

have been introduced. Combining conjugate pole terms in (3.19) gives

-ssc

; IS~) " gof ( s ) +  n(S)Tn+Y-n(S)T* i(s) (3.22)

n F

It is fruitful to express isC(s) in terms of the pole-pair admittances

Y (s) as follows:n

iS (s) = g + Y(s)Tn nn

gf(S)+ Y(S)V n(S) (3.23)
n

where the pole-pair voltage transfer functions T (s) are defined asn

Y n(s)Tn +Y-n (s)T n Yn (s) - Y n(S)
n(S) n () + Y_n(S) Re{T n } +j Im{Tn (S)  (3.24)

and the pole-pair source voltages V (s) asn

V n(s) = T n(s)f(s) (3.25)

The driving-point admittance (3.15) and the short-circuit current

(3.23) can be combined according to the Norton's theorem to give the

equivalent network shown in Figure 3.4(a). By pairing pole-pair

admittances with the corresponding pole-pair source voltages and applying

the Thivenin's transformation to each pole-pair circuit this network

can be recast into the form shown in Figure 3.4(b). This very fruitful

transformation was first introduced by Baum [1976a).
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3.3 Thevenin Equivalent Circuit

The Th~venin equivalent circuit results from the open-circuit

boundary value problem shown in Figure 3.5. The solution for the

open-circuit SEM parameters is in practice a much more difficult

task than the solution for the short-circuit parameters of the same

structure. Thus, it is probably more practical to derive the Thevenin

circuit indirectly, from the short-circuit parameters. This last

approach, which was pursued recently by Tesche and Girz [1981], is

briefly discussed at the end of this section.

The forcing function in the impedance problem (Figure 3.5(a))

is the impressed gap current

J (r,s) = - Z(r'f(s) (r f(s)

ggo

i (r <s)I(s) r r S .
(3.26)

The field due to this current can be otained from the integral

equation as

li -- t

E (rs) = 'Z(r,r's);j (r~s)> S

g.1 '.Z -.. n4
0 -I r <Zr s,);i r)>Sfs (3.27)

and the coupling coefficients are given by

i, (S) - -1 0 < ;sE -Io &n)s) (3.28)
g a

where, for notational convenience, a new quantity has been defined:

n(s) <jn>r<Z(ri, s • (r)>S>S (3.29)
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Figure 3.5 Open-circuit boundary value problem. (a) Determination of
the driving-point impedance and (b) determination of the open-circuit
voltage.
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The current on the object can be now expressed with the help of (2.48)

as
1 )

= - & (s)- s) n(S)3 (r)i(s). (3.30)
s0 0 0 nS n(s -sn n n n

The electric field radiated by this current and the gap current is

given by

,' 4 4-4- -0-1 4
E (rs) = _<- (,,s);J(r,,s)> s

a

-4.'s);t4 's) . (3.31)

g

Using the last expression in (3.4) gives the voltage across the gap as

V s) << ( , ',s);J (r ,s)> S  ,a 9 " ^  ( )>S ( . 2

+ <~r 1. S ' >s .r (3.32)
g g

Substituting (3.26) and (3.30) into (3.32) and using the symmetry

properties of the impedance kernel yields

V(s) - (s) 1S(S- 1na2(s)?(s) (3.33)
9 S 0 0 s(ssn)6nan(Is 3.)

where a new quantity has been defined:

S(s) 1 ;a(r)> (3.34)
g

Since J o(r) is solenoidal, it can be seen from (3.29) and (2.3)

that a (s) -s as s-O, so that the second term of (3.33) goes to zero

at this frequency. For n >0, however, n(s) introduces a pole at zero.

Also, 9(s) has a pole at the origin. Expression (3.33) can be reexpanded

)lIt should be kept in mind that the SEM parameters sn , 3n(r), and

sn are computed with the gap open and are, in general, different from
the short-circuit quantities used in the previous section.
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to give the driving-point impedance Z(s) -V(s)/I(s) in the form

Z ( S + n 2 2 (3.35)
(s + n n Sn(S-S n ) n nSn n -~~(.5

where

at m [i & (s] (3.36)

and a E ( ns ). It is convenient to define new quantities, the
n n n

electrostatic capacitance

C 9 (3.37)

g+ Re n n}na

and the impedance residues

a' a 2  (3.38)
n nn

and rewrite (3.35) as

i(s) - + I Zn(S) (3.39)ic n

o n

with the modified pole impedances Z (s) given by
n

a's
Sn(S) n (3.40)

The impedance counterpart of (3.12), the unmodified pole impedances,

are defined as

a'
Z ~ s ( - n (3.41)

n

Combining the conjugate pole terms in (3.39) gives
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- [2s (a) + _(]
o n

C-+ Z Zn(s) (3.42)
0 n

with the conjugate pole-pair impedances defined as

Zn(s) - Zn(s) + Z_n (s) . (3.43)

Note that for multiply-connected objects, such as the loop antenna,

(3.42) does not exhibit the proper behavior as s -0, unless C

0

This means that the denominator of (3.37) must sum to zero in such case.

Also, note that all poles contribute to the static capacitance Co, as

given by (3.37). Numerical evaluation of this expression shows that if

only dominant poles are included, (3.37) significantly underestimates

the value of C . Much better results can be obtained by computing0

C apart from the SEM formulation, by solving for the static charge0

distribution on the structure.

The open-circuit voltage can be found from the boundary value

problem shown in Figure 3.5(b). The incident field is that due to a

plane wave and the coupling coefficients are given by

-YnP • (-r )
) <a.G);0e n g>(3.44)n n oS "

a

The current on the object is given by (2.50) as

a (,) (s) +([ fn(S
J -n p6n(r)f(s) J (3.45)

n n sn)

and the open-circuit voltage is given by (3.4) as

V°c (s) <4 r a (3.46)

a g

Substituting (3.45) into (3.46) giveL,
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V °C(s) - joo&(s)f(s)+ s ( ) n (s)M(s) (3.47)
n n n-

Again, & 0(s) has a zero at zero and & n(s), n> 0, introduces a pole

at the origin. Reexpanding (3.47) gives

voC(s) - k' '(s) + I s (s sn  anCtn f(s) (3.48)
o n n n

where

k' n [ n n (3.49)
0 s2

n n

This series should sum to zero in the case of loop-like (multiply-

connected) structures. By introducing

T' r n -(3.50)
n an

(3.48) can be rewritten in a form

Voc (s) - k'f(s) + Z (s)T'f(s) (3.51)
0 n nn

or, after pairing the conjugate pole terms, as

-oc 0 ZTni-Zn(S)T]f(s) (3.52)v°C ~~ ~ IL i ofSs) ~

with

k - 2 Re{k'} . (3.53)

0 0

It is fruitful to express voc(s) in terms of the pole-pair impedances

as follows

oc(S) - k 0f(s) + IZ n(s)T;(s)f(s). o nS n
n

kf(s) + Z n(S)I n(s) (3.54)

n
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where the pole pair transfer function T'(s) are defined by
n

Z (s)T' +Z (s)T*
n n -n n

nZn(S) _(s)

}Z (s)- Z(s)" Re{T '} +j I(T; C  (3.55)Z (s)
n

and the pole-pair source currents by

I n(s) = T n(s)f(s) . (3.56)

The driving-point impedance and the open-circuit voltage can be now

combined according to the Thevenin's theorem to give the circuit

shown in Figure 3.6(a). By pairing pole-pair impedances with the

corresponding pole-pair source currents and applying the Norton's

transformation to each pole-pair circuit this network can be recast

into the form shown in Figure 3.6(b).

As mentioned at the beginning of this section, the open-circuit

SEM parameters are much more difficult to obtain than the short-circuit

parameters of the same problem. This is so because the highly localized

charge interaction effects between the two parts of the structure in

the vicinity of the gap must be modeled precisely in the open-circuit

boundary value problem. Furthermore, it is enough to solve only one

short-circuit boundary value problem for all possible gap locations on

the structure, whereas the open-circuit problem must be resolved each

time the gap is moved. Thus, if for any reason the Th~venin equivalent

circuit is preferred over the Norton equivalent, it is likely to be

expedient to derive it from the short-circuit parameters using the

relations (3.1) and (3.2). Using (3.15) in (3.1) gives the driving-

point impedance as
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Z Ys) L. (3.57)
() + Yn(s)

0 n

This expression can be easily recast in a form of a ratio of two

polynomials in s, and the open-circuit poles can be found by solving

for the roots of the denominator polynomial. Expanding Z(s) in terms

of these poles gives the input impedance in the desired form (3.39).

It should be noted that the inductive term in (3.57) is not present

in the case of a simply-connected structure, such as the dipole antenna.

Such a structure exhibits a capacitive behavior at low frequencies,

with the static capacitance given by
I )

ra
C - -2 n Ref (3.58)

where a are the admittance residues and s are the short-circuitnn

poles.

In like fashion, the open-circuit voltage can be otained by

substituting (3.15) and (3.23) into (3.2) as

S gi(s) + I Y(S)V (s)

Voc ) n (3.59)Y(s) + ^

o n

In the case of dipole-like structures (simply-connected objects) the

first terms in the numerator and the denominator of (3.59) are not
I

present, and this expression can be easily recast into the form of

4 (3.54) with the coefficient k given by
0

1 )Complex conjugate poles are assumed. The extension to purely real
poles is trivial.
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ku~ Re 1n}n (3.60)'I on

where C 0is given by (3.58) and T nare the source coefficients

defined by (3.21).
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CHAPTER 4

SYNTHESIS OF THE POLE-PAIR CIRCUITS

4.1 Introduction

The formal equivalent networks developed in Chapter 3 have the

form of a connection of simple modules associated with conjugate pole

pairs. This network topology simplifies considerably the synthesis

process. Furthermore, it has the advantage that it can be easily

expanded by adding more pole-pair modules without repeating the whole

synthesis process. Since the pole-pair modules Pre simple, one can

hope to give simple prescriptions for their physical realization. To

define such prescriptions is the main objective of this chapter.

As the first step toward this goal, the Norton and Thevenin

networks from Figures 3.4(b) and 3.6(b) are recast into the form given

in Figures 4.1 and 4.2, respectively. These networks are in a physically

realizable form provided the admittances Y (s) and transfer functionsn

T n(s) in the Norton network, and the impedances Z (s) and transfern n

functions T'(s) in the Thevenin network, can be physically realized.
n

It should be noted that these networks contain controlled sources.

In a hardware realization they can be implemented by active devices,

such as operational amplifiers.

The next sections are devoted to the synthesis of the Y (s) and~n

Z (s) (driving-point function synthesis), and the synthesis of T (s)n 'n

and T'(s) (voltage transfer function synthesis). Both modified andn
unmodified pole modules are considered.

Some of the material of this chapter is not new and is included

here, for the sake of continuity, in the notation consistent with the
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rest of this work. This is true in particular of the realizability

conditions of the unmodified pole-pair modules and their interpretation.

Analogous conditions which we give for the modified pole-pair immittances

are believed to be new, however. Similarly, the padding procedure

addressed in Section 4.3 and the approximate Bott-Duffin modules were

used previously, but the explicit expressions for the necessary padding

and network element values in terms of the SEM parameters appear here

for the fizst time. In deriving them we benefited from an early work

by Foster [1955]. Most of the material on the pole-pair transfer

function synthesis in Section 4.4 is also original.

4.2 Driving-Point Function Synthesis

The conjugate pole-pair admittance (2.16) can be written explicitly

in a form of a biquadratic function of s as follows:

A s2 +B s+C
Y (s) = n n (4.1)

D s2 +E s+Fnf n n

with the coefficients defined differently depending on whether the modified

Bor unmodified pole admittances are used. For the unmodified modules

the numerator coefficients of (4.1) are given by

A - 0 , (4.2a)n

2c
B n (4.2b)

n Ini

and C -dq n (4.2c)n Qn

and the denominator coefficients by
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D n Is I 1  (4.3 a). n n

En = Qn- (4.3 b)

Fn = Isn (4.3 c)

For the modified modules the numerator coefficients of (4.1) are given by

dnqn -c n

A = , (4.4a)n Qn[S n 12

c (2Q 2 - 1) + d q
B = n n (4.4b)n Q 2Sn!

and C = 0, (4.4c)n

with the denominator coefficients still given by (4.3). In (4.2)-(4.4)

the following notation is introduced:

s = -o +jW n (4.5)

a = c +jd , (4.6)
n n n

Q=IS nI (4.7)
Sn 2a

n

and
W

=_= /4Q2 1 (4.8)qn a
n

where the residues an are defined by (3.13) and where 0n are the

quality factors of the poles s .n

The conjugate pole-pair impedances Z (s), defined in (3.43), can

also be written in the form (4.1) with the only difference that the

residues a are given by (3.38) and the poles are, of course, the.; n

open-circuit poles. In what follows we deal specifically with the

driving-point admittance function (4.1). However, all conclusions
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hold also for the impedance function Z (s). The circuits which realizen

Z (s) are just the duals of the circuits for Y (s).
n n

The necessary (but not sufficient) condition for the physical

realizability of Yn(s) is that the denominaroi coefficients of (4.1)

be positive and that the numerator coefficients be non-negative.

This requirement leads to the following restriction on the residue

location if the unmodified pole modules are 'ised:

c >0 (4.9a)n-

and

cn - dnq n0 (4.9b)

If the modified pole modules are employed, the conditions are

dnq cn > 0 (4.10a)

and

c (2Q2 -l) + d q >0 (4.10b)
n n n n-

The following discussion can be simplified considerably by assuming

Q > - = 0.707 (4.11)

This assumption does not seem to be restrictive since the dominant poles

of all structures considered so far satisfy (4.11). Even the dominant

poles of a sphere, which is an extremely low-Q structure, satisfy Qn > 1.

jAssuming that (4.11) holds, (4.10) can be rewritten as

qn c
n dn<- - n (4.12a)T 2 -i n

n

( and

d >0 (4.12b)
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The driving-point admittance function Y n(s) is physically realizable

if it is positive real (PR) [Bivr2, 1931], i.e., if it satisfies the

following conditions:

1. Re{Yn(s)} >0 for Re{s} >0; and

2. Y (s) is real when s is real.
n

Since it is extremely difficult to apply these conditions directly,

the following equivalent requirements, which are easier to check, can

be employed:

A. Yn(s) cannot have any poles or zeros in the right half of
the complex frequency plane;

B. any jw-axis poles of Yn(s) must be simple and have positive
real residues; and

C. ReY n(jw)}l>0 for all w.

In the case of the biquadratic function (4.1) the conditions A and

B above are automatically satisfied if (4.9) and (4.12) hold, respectively,

for the case of unmodified and modified pole modules. It only remains

to check the condition C.

The behavior of Re{Y n(jw)} can be investigated with the help of

the function

F C~s) =- n L(s)+ Y (-s (4.13)

which on the jw axis is equal to the real part of Yn (s) there

(Guilfemin, 19771. For the unmodified pole modules case F (s) has the

form

(CnD -BnE )s2 +C F
F (s) n n nn nn (4.14)
n D2s + (2D F - E2)s2 + F2

n n
f n n n

In addition to a double zero at infinity this function has two zeros

given by
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lJCF

o B n n (4.15)o -BE n _ C D

nf nfnl

If the zeros are real, i.e., if

B E -C D >0 (4.16)n n n n-

the pole-zero pattern of F n(s) is that shown in Figure 4.3(a) and

I the corresponding behavior of Re{Y (jw} is that shown in Figure
n

(4.3(b).i) If the condition (4.16) is violated, the zeros (4.15)

become purely imaginary, as shown in Figure 4.3(c), and the character

of the real part of Y (jw) changes to that shown in Figure 4.3(d).n

It is evident from this figure that in this case there is a negative

excursion in the real part of Yn (s) on the jw-axis, and the condition

C is violated. Hence, (4.16) is a necessary condition for the PR-ness

of (4,1) for the case of unmodified pole modules. Expressed in terms

of the SEM parameters this condition takes the form

c +dq > 0 (4.17)

Combining (4.9) and (4.17) yields

c
n > qn (4.18)

Idn

which is, therefore, the necessary and sufficient condition for the

physical realizability of the unmodified pole pair admittances. This

condition was stated previously by :uiZZemin [1977].

For the modified pole modules, F (s) takes the form
3 n

l)If (4.16) is satisfied with the equality sign,^the zeros (4.12)

move to infinity. However, the character of Re{Yn(Jw)} is still
that shown in the Figure 4.3(b).
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AD s z +(A F B E)
Fn(S) s2  n . (4.19)

D2 s 4 + (2D F -E 2
)s 2 +F 2

n n n n n

This function has a double zero at the origin and a pair of zeros

given by

/BnE n  A nFn

so A D D (4.20)
n n

If the condition

B E -A F >0 (4.21)n n n nl

is satisfied, the pole-zero pattern of F n(s) and the character of

the real part of n (jw) are that shown in Figure 4.4(a) and (4.4(b),

respectively. If the condition (4.21) is violated, the pole-zero

pattern of Fn (s) and the character of the real part become that shown

in Figure 4.4(c) and (4.4(d), respectively. Again in this case, there

is a negative excursion of the real part on the jw-axis. Hence, (4.21)

is a necessary condition for the realizability of (4.1) in the modified

pole-pair admittances case. This condition may be written in terms

of the poles and residues as

c (3Q 2 - ) - d (Q2 - l)q > 0 (4.22)n n n n n

or, through the use of (4.11) and (4.12a) as

c Q 2 1

d n -- q n (4.23)
dn 3 Q2 1 -n

n

Combining (4.12) and (4.23) gives the necessary and sufficient condition

for the physical realizability of the modified pole-pair admittances as

Q2 -1 c
n q < 2 < qn (4.24a)

3Q2 - i n

n
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with

d > 0 (4.24b)

If Qn > > I, which is satisfied for most dominant poles of highly-

resonant structures, the first condition above is given approximately by

2 C< 2Q< . (4.25)qn _ _- 2Qn"
n

The conditions for realizability of the unmodified and modified

pole-pair modules can be interpreted geometrically in the a -plane asn

shown in Figure 4.5. If the residue a falls into region I, then

unmodified pole-pair admittance is realizable; if it falls in region

II, the modified pole-pair admittance is realizable; if the residue

lies outside the regions I and II, neither form is realizable.

The realizability conditions for the modified pole-pair admittances

were given previously by Streable and Pearson [1981] in a form not

amenable to any geometrical interpretation. Similar conditions derived

by Baum and Singaraju [1980] are necessary but not sufficient.

If the PR-ness conditions are satisfied, the unmodified and modified

pole-pair admittances can be synthesized by a continued-fraction

expansion [Matthaei, 1954; Michaiski and Pearson, 1979] in a form

shown in Figures 4.6 and 4.7, respectively. (The index n on the

coefficients of (4.1) is dropped in the circuits given in Figures 4.6

and 4.7, and other figures in this chapter.) It should be noted that

two equivalent realizations are possible in each case.

4.3 Synthesis of Approximate Driving-Point Circuits

It has been found that for most poles of the thin-wire dipole and

loop antennas, as well as the spherical antenna, the residue a fallsn

outside the regio.is I and II of Figure 4.5, i.e., the pole-pair
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d Cn O~n-I qn
in ' 3Q2 '-

CASE A I nln = q

CASE B .

I-UNMODIFIED ADMITTANCE REALIZABLE
IH-MODIFIED ADMITTANCE REALIZABLE

I

.3

Figure 4.5 Geometrical interpretation of the realizability conditions
for the modified and unmodified pole-pair admittances.
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admittance is, in most cases, not physically realizable. This manifests

itself as a negative excursion in the real part of the driving-point

function on the jw-axis, as discussed in Section 4.2. It has been

observed, however, that in the case of modified pole modules this

negative excursion is in most cases negligible, or at least small, in

comparison with the value of the real part near the resonance. Thus,

if a small conductance G is added Y n(s), the resulting function can be

rendered PR without introducing appreciable error. This procedure is

called a real-part padding by GuiZlemin [1977) and was first applied

in the present context by StreabZe and Pearson [19811 in synthesizing

driving-point equivalent circuits for the thin-wire dipole and loop

antennas. It should be noted that neither the poles nor the residues

a~re affected in the padding process. Only the zeros of the pole-pair

module are changed.

The amount of padding C which must be added to a pole-pairn

admittance, so that the condition C of Section 4.2 is satisfied,

can be found explicitly in terms of the poles and residues to be

Qn(2Qnlanl,+d -cnq n )

Gn = nnn n nn (4.26)
q Is n i

for the unmodified pole-pair module, and

2Qan I-dn(3Q 2 1)-c(Q n-)q
Gn  n n n n n n n (4.27)
n

Qn Sn Iqn

for the modified module. The numerator coefficients of the padded

pole-pair admittance (4.1) can be expressed in terms of the poles and

residues as follows:

A q (4.28i)
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2Qnla n +d n cnqn

Bn qn (4.28b)

and

2Q la I-c(Q 2 -l)q-d (3Q2 -l)
C = n n _ (4.28c)n qnOn

The denominator coefficients are not affected and are given by (4.3).

It should be noted that after padding all coefficients of the

biquadratic function (4.1) are nonzero, which makes the synthesis of

it more difficult.

It can be shown [Foster, 1955] that the necessary and sufficient

condition for the physical realizability of (4.1) is

A < BnE< . (4.29)

It is easy to see that this condition is consistent with (4.16) in

the case when A =0, and with (4.21) when C =0. The padded pole-pairn n

admittance is a minimum-real-part function, i.e., the real part is zero at

some finite frequency [Ba~abanian, 19581. For such functions (4.29)

is satisfied with the equality sign, i.e.,

- 7CW = ± E (4.30)nn nn nn

It appears [MichaZaki and Pearson, 19791 that the only general synthesis

methods which can be applied in this case are the Brune method [Brune,

19311 and the Bott-Duffin method [Bott and Duffin, 1949]. The synthesis

of (4.1) by these methods is described in considerable detail in

[Michalski wid Pearson, 1979]. Here, we quote only the principal

results.
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The Brune network realizing (4.1) is shown in Figure 4.8 with

explicit expressions for the element values in terms of the coefficients

of (4.1). The Brune network is simple and can be successfully used

for analysis purposes. It is less attractive for a physical realization,

because of the presence of a unity-coupled transformer. Even a slight

deviation of the coupling coefficient from unity gives rise to an

additional zero of Yn (s) at infinity. This does not seem to have a

very drastic effect on the behavior of the function, however.

An application of the Bott-Duffin procedure to (4.1) results

in two different network topologies depending on the sign on the right

hand side of (4.30). For the +" sign the network shown in Figure

4.9(a) results, whereas for the "-" sign the network in Figure 4.9(b)

is applicable. These two situations will be referred to as cases A

and B, respectively. An explicit network for the case B (or, rather,

the dual of it) was given previously by Foster [1955). Note that the

Bott-Duffin networks are in a form of a balanced bridge, i.e., the

points "A" and in Figures 4.9(a) and 4.9(b) are at the same potential,

and any impedance (even a short-circuit) can be inserted between them

without affecting the terminal admittance. This fact can be used to

reduce by one the number of reactive elements by inserting a capacitor

or an inductor of a proper value into the bridge arm, and performing

a delta-wye or a wye-delta transformation. The resulting networks for

the two cases above are shown in Figure 4.10 and 4.11. Again, the

explicit reduced networks for the case B were given previously by

Foster [1955].

Even in the simplified form the Bott-Duffin networks are rather

complicated. They are generally considered unattractive from the point
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Figure 4.8 Brune realization of the padded pole-pair admittance
function.
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Figure 4.10 Modified Bott-Duff in networks for the padded pole-

pair admtitance function -- case A.
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of view of sensitivity, as element variations from their nominal

values give rise to three additional poles and zeros in the driving-

point function.

In order to determine which of the two cases A or B is applicable

for a given set of SEM parameters, it is helpful to consider the

expression
dnqn -cn

A F -C D = n n (4.31)

n nn Is IQ.

It is easy to see from (4.30) that the case A arises when (4.31) is

positive; if it is negative, the case B is applicable. This can be

summarized as follows:

> 0 ,case A

dnqn - cn  (4.32)
0 , case B

The geometrical interpretation of this condition in the a -plane is

given in Figure 4.5 with the regions of applicability of the two cases

explicitly indicated.

It can be shown that the resistances R2 in Figure 4.9(a) and

R1 in Figure 4.9(b) are reciprocals of Gn - the amount of padding used.

Thus, if the pole-pair admittance is almost PR, so that the padding

is negligible, these resistances are large and the entire circuit legs

in series with them can be neglected. The Bott-Duffin networks simplified

4 ~in this way are shown in Figure 4.12. The approximate pole-pair module

4for the case A (Figure 4.12(a)) was first derived by StreabZe and

Pearson [1981]. They did not give explicit expressions for the element

values, however.
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Figure 4.12 Simplified Bett-Duffin circuits approximating the padded
pole-pair admittance function in the case of negligible padding.
(a) circuit for case A and (b) circuit for case B.
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In all cases considered to date (the thin-wire dipole and loop

antennas, the spherical antenna) only the case A has arisen. It seems,

however, that this cannot be generalized, and situations where the

case B is appropriate cannot be excluded a priori.

4.4 Voltage Transfer Function Synthesis

The voltage transfer function of the Norton network (3.24) and

its Thevenin network counterpart (3.55) can both be written in the

form

. A s+B
n nCs nT n(S) C ns +D n(4.33)

n n

with the coefficients (which should not be confused with the coefficients

of (4.1)) given by

An = Re{anTn}, (4.34a)

B = - Re{a TnS } , (4.34b)
n nn n

C = c , (4.34c)
n n

and

D - n n nn (4.34d)n 2Qn

if the unmodified pole-pair modules are used, and by

A u Re{a s*Tn,
n nnn

4 } Bn - - Re{ans*2Tn  ,

C sn ( (4.35c)n 2n nqn n

and

D n - dq +c (2Q -) (4.35d)
n 22 [n n n n I
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if the modified pole-pair modules are employed. In (4.34)-(4.35) a
n

are the immittance residues given either by (3.13) for the Norton

formulation, or by (3.38) for the Th~venin formulation. The source

coefficients T are defined in these two cases by (3.21) and (3.50),n

respectively.

Before proceeding with the synthesis of (4.33), several comments

are in order. First, note that the equivalent circuits transformations

due to Bat [1976a] indicated in Figures 3.4 and 3.6 lead to very simple

pole-pair voltage transfer functions which are bilinear in s. Without

this transformation one would have to deal with biquadratic transfer

functions, whic& would be a more difficult task. Second, note that

each transfer network in Figures 4.1 and 4.2 is followed by a controlled

source. The main purpose of these controlled sources is to provide

the impedance buffering which is required because synthesis techniques

do not exist which realize a given transfer function for a general,

unspecified loading conditions. In addition, these controlled sources

serve as amplifiers. The amplifier function is necessary because,

in general, most synthesis techniques realize a given transfer function

only to within a constant multiplier, with the expectation that the

gain can be restored at a later stage.

The theory of transfer function synthesis is a vast and mature

field (e.g., Baabanian, 19581. Fortunately, the function (4.33)

is so simple that only a small part of the accumulated knowledge needs

to be applied. Before attempting to synthesize (4.33) it is appropriate

to quote some of the conditions which a general voltage transfer

function, say T(s), must satisfy in order to be physically realizable

[Balabanian, 1958]. First of all, no poles of T(s) can lie in the
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right half plane. In addition, no poles of T(s) can lie at zero or

infinity. The zeros, however, can lie anywhere in the s plane. If

all the zeros of t(s) are confined to the left half plane, t(s) is

called a minimum-phase function; otherwise it is called a nonminimum-

phase function. The conditions imposed on T(s) depend on the network

topology desired. Here we will seek a transformerless realization.

Also, we will prefer an unbalanced (common ground) topology over a

balanced (no common input and output terminals) realization, whenever

possible. Following Balaxbnian [1958] we summarize these conditions

as follows.

For unbalanced two-ports with no mutual inductance:

1. Transmission zeros may lie anywhere except on the positive
real axis.

2. For real positive values of s, the value of the transfer
function lies between 0 and 1. The maximum value of unity
can be attained only at zero or infinity, or both.

3. The numerator coefficients of the transfer function are positive
(or zero) and no greater than the corresponding denominator
coefficients, assuming no cancellation of factors.

4. For a ladder network realization, which is a special form of
an unbalanced network, the transmission zeros cannot lie in
the right half plane.

For balanced two-ports with no mutual inductance:

1. Transmission zeros may lie anywhere, including the positive
real axis.

2. For real positive values of s the value of the transfer function
lies between -1 and +1. The extremities of the range can
be attained only at zero or infinity, or both.

3. The numerator coefficients of the transfer function may be
negative, but they are no greater in magnitude than the
corresponding denominator coefficients, assuming no cancellation
of factors.
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As discussed above, for physical realizability one requires that

the pole of (4.33) lie in the left half of the complex frequency

plane. This is satisfied only if the denominator coefficients of

(4.33) are of equal sign. In the unmodified pole module case this

imposes the following restrictions on the location of the residue a
n

d
-' - (4.36)
cn qn

The geometrical interpretation of this condition is given in Figure

4.13(a). The transfer function is realizable if the a lies in the
n

shaded region of the figure. If the modified pole modules are employed,

and (4.11) is satisfied, the residue location is restricted as follows:

< n q (4.37)

The realizability region associated with this condition is the shaded

region in Figure 4.13(b).

The comparison of Figures 4.5 and 4.13 reveals that the voltage

transfer function is always realizable if the associated pole-pair

immittance function is realizable. If the pole-pair immittance is

initially non-PR, i.e., the residue falls outside the regions I and

II of Figure 4.5 so that the padding procedure described in Section 4.3

is employed, the associated voltage transfer function is still realizable

in at least one of the two forms: modified or unmodified. There is a

region in the a -plane where the realizability regions of Figures
n

4.13(a) and 4.13(b) overlap, so that both forms could be realized.

We have found that for all dominant poles of the thin-wire dipole and

loop antennas the residues a fall into that part of the realizability

n
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Figure 4.13 Regions of realizability (shaded) of the pole-pair voltage
transfer function for (a) the unmodified and (b) modified pole modules.
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region lying in the first quadrant of Figure 4.13(b), so that the

modified form of the voltage transfer function is realizable.

For notational convenience the index n on the coefficients of

(4.33) is dropped throughout the rest of this section. Also it is

convenient to introduce a scaling factor k and rewrite (4.33) as

1 kAs +kB =1 2  1I2 (4.40)
T n(s) 1 Cs+D

where and denote, respectively, the open-circuit impedance

parameters and the short-circuit parameters of the two-port [BaZabanian,

1958]. If (4.40) is realizable, the coefficients C and D are of the

same sign, as discussed above. It will be assumed here that they are

positive, which can always be accomplished by multiplying the numerator

and the denominator of (4.40) by -1. The following discussion can also

be simplified if the sign of k is chosen such that kA is positive.

Then it is only necessary to consider separately two situations:

kB>0 (Tn (s) is a minimum-phase function), and kB< 0 (T n(s) is a

nonminimum-phase function). In each case two circuit topologies are

obtained depending on the choice of the impedance or admittance

parameters representation in (4.40).

Case 1. kB >0

In this case one can make the associations

2 12 - kAs + kB (4.41a)

and

- Cs+D (kAs +kB) + (C-kA)s + (D-kB) . (4.41b)
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To this set of parameters corresponds the RL ladder circuit shown in

Figure 4.14(a). This circuit is physically realizable if the value

of the unspecified constant k is restricted to

k < min * (4.42)

It is easy to see that by choosing the maximum allowed value of k

one can eliminate either LA or RA from the circuit in Figure 4.14(a).

If the admittance representation is used in (4.40) one can

write

kAs+kB (4.43a)

and

Y22 = Cs+D = (kAs+kB) + (C-kA)s + (D-kB) (4.43b)

This set of parameters can be realized by the RC ladder network shown

in Figure 4.14(b). This network is physically realizable f k satisfies

(4.42). Again, by a judicious choice of the value of k one can eliminate

either CBor N.

Case 2. kB< 0

Since in this case the voltage transfer function has a positive

real zero, it cannot be realized in an unbalanced form [3aZabanian,

1958). Instead, one must resort to the symmetrical lattice topology

shown in Figure 4 .15(a). If this network is unwrapped to the equivalent

form of Figure 4.15(b), it is recognized that the symmetrical lattice

is identical with a bridge network.

The lattice arm impedances Za and Zb can be expressed in terms

of the open-circuit impedance parameters as
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(b)

Figure 4.14 Ladder network realizations of (a) the RL and (b) RC
type for the pole-pair voltage transfer function -- negative transmission
zero case.
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a - 11 - 1 2  (4.44a)

and

Zb a z 1 1 + z1 2  (4.44b)

Alternatively, the lattice arm admittances Y ml/Z and Y l/Z can
a a b b

be expressed in terms of the short-circuit parameters as

a " 22 -YI2 (4.45a)

and

Sb iY22 +Y 12 "(4.45b)

Using (4.41) in (4.44) gives

Z = (C-kA)s + (D-kB) (4.46a)a

and

Z (C+kA)s + (D+kB) (4.46b)

b

This set of parameters can be realized by the network shown in Figure

4.16(a). For physical realizability it is required that

k < min C,-D , (4.47)

By giving k the maximum value allowed by (4.47) one can make either

LA or RB disappear.

In like fashion, using (4.43) in (4.45) gives

I

:Y - (C+kA)s + (D+kB) (4.48a)

and

b (C-kA)s + (D-kB) . (4.48b)
b

To this set of parameters corresponds the network shown in Figure

4.16(b). The value of k is still restricted by (4.47). Again, either
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RA or CB can be removed by a judicious choice of the value of k.

The circuits given above do not realize the multiplicative factor

1/k in (4.40). The gain lost can be restored in the controlled

source stage following each voltage transfer network. The amplification

factor of this controlled source must have the value i- 1/k.

Still different realizations in the case when kB < 0 can be

obtained by writing (4.40) as a product of an all-pass function
1 )

and a minimum-phase function as follows

1 kAs+ kB . kAs- kB (4.49)
Tn(s) k UA -kB C +D

Now the all-pass function can be realized as a simple constant-

resistance 2) LC lattice, and the minimum-phase function can be synthesized

as a constant-resistance ladder [Balabanian, 1958]. A cascade connection

of these two-ports realizes (4.49). This realization, however, is

more complicated than the networks shown in Figure 4.16.

4.5 Conclusions

In this chapter simple procedures are developed for the synthesis

of physically realizable active equivalent circuits for energy collecting

structures from their SEM description. The general network topology

is that shown in Figure 4.1 for the short-circuit boundary value problem

(the Norton equivalent), or that shown in Figure 4.2 for the open-

circuit boundary value problem (the Thevenin equivalent). These networks

1 An all-pass function is defined as a transfer function whose zeros
are all in the right half plane and whose poles are the negatives
of its zeros.

2)A constant-resistance two-port is defined as one whose driving-

point impedance is equal to a constant R when the two-port is
terminated in a resistance R.
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have the form of a connection of simple modules associated with conjugate

pole pairs of the structure. These pole-pair circuits are synthesized

one at a time, so if the need arises the network can be easily expanded

by adding more pole-pair modules without repreating the whole synthesis

process. By using the network topologies of Figures 4.1 and 4.2 the

synthesis process if reduced to the realization of a driving-point

function biquadratic in s and a voltage transfer function bilinear in s.

The realizability conditions and explicit circuit realizations are

given for these functions. If the pole-pair driving-point function is

initially nonrealizable, a simple padding procedure is described to

synthesize an approximating network. It is shown that the pole-pair

voltage transfer function can be always realized either in the form

of a ladder circuit or of a symmetrical lattice circuit. Unfortunately,

the applicability of each of the two topologies is dependent on the

direction of arrival of the incident plane wave, so that the circuit

topology may change when excitation conditions are changed. The

equivalent network does not depend on the time history carried by the

incident field, however. Also, the autonomic voltage source is

connected to only one port, which is a desirable feature. As the

Figures 4.1 and 4.2 indicate, the controlled sources could not be

avoided. They can be implemented in practice with active devices which,

however, usually can not sustain very high voltages.

In the next chapters the procedures developed here are used to

synthesize practical equivalent circuits for the loop, dipole, and

spherical antenna.
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CHAPTER 
5

EQUIVALENT CIRCUIT SYNTHESIS FOR A CIRCULAR LOOP

5.1 Introduction

In this chapter the procedures developed in Chapters 2-4 are

used to synthesize an SEM Norton-type, dominant pole-pair equivalent

circuit for a thin-wire loop antenna. The thin-wire circular loop

is one of the few structures for which an explicit solution for the

current can be found (subject to the thin-wire approximation). The

development presented here differs in details from the general theory

developed in Chapter 3 because of the occurrence of the eigenvalue

degeneracy in the present case.

The performance of the developed SEM equivalent circuits is

compared with responses obtained by the classical frequency domain-

inverse Fourier transform approach. The application of these circuits

to the analysis of antennas with nonlinear loads is demonstrated in

Appendix B.

5.2 Preliminary Theory

The geometry of the loop is defined in Figure 5.1. It is assumed

that the radius of the wire a is much smaller than the radius of the

loop b(a<< b) and that w maxa/c<< 1, where w -w max is the largest

significant spectral component of the excitation. As a consequence,

4it can be assumed that there is only a 0-component of the surface

current density, i.e., J(r,s) J (r,s)$, where $ denotes the unit

vector in the 0 direction, and that the current density is uniform around

the wire, i.e., J0(r,s) -J 0(4 ,s). The total current can be defined as
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2a2b sin(

2a sin dl'

a

Figure 5.1 Geometry of the circular loop.
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i(o,s) - 27aJo(o,s) . (5.1)

The EFIE for the total current becomes one-dimensional with the

kernel defined by

I. -sR
-. s (5.2)L s 30 'oj 41TbR

s =yb is the normalized complex frequency, y being the complex

propagation constant, and R is the normalized distance between the

source point and the observation point on the surface of the wire

(see Figure 5.1) given by

R - /4 sin2( )+ ( ) (5.3)

with

A = 2a sin() (5.4)

The suitable symmetric product is defined as

<[ ];[ ]> f [ I " [  ]b do . (5.5)

The eigenvalues of the EFIE can be found as [Harrington, 1968;

King, 1969]
jZo0n(S) - - an(S) (5.6)

where

n~ s) K jnl (s)+ Kn+lcs) n (2(](57

and
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1T 7r jn(O-O') -sR
dS) d d(0-o') (5.8)

-7 -7T

As shown by Wu [1962], eq. (5.8) may be approximately written in

terms of integrals of Anger-Weber functions for unrestricted n, as

K (S) = in - [ (Z) +z+j Jo(z dz (5.9a)
0

Kn(S) = I[I()K°!) + - -IbJ p 2 n(Z) +j J 2 (z dz (5.9b)

0

with

n-i
C = £n(41) -2 [ (2m+ 1) -  (5.10)

muO

where C =-j2s and I and K are the modified Bessel functions of the0 0

first and second kind, respectively, and r= 1.781... is the Euler's

constant. This representation was originally obtained by Wu for the real

frequency case (s = jw); it was generalized to the complex frequency

case by Umashankar and Wilton (1974].

The eigenfunctions associated with the eigenvalues (5.6) are

'cos(n€

I e()= , (5.11)
0' sin(no)

so that there is an eigenvalue degeneracy for n> 1.

The current I(s) E I(q ,S) at the location 0 - can be expanded

in terms of the eigenfunctions as

-j~bI 01 <Io (4),E~ (Os)>
I(s) -j2b 1 o,e

Zo 1 <I Oe(O)lio,e(W)
io,e ~

+ n, Cn (),E( (gs)> I (0)} (5.12)
ni I an(s) <In,0(0),nn(
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where the subscript a indicates e (for "even") or o (for "odd").

Noting that

<Io,e 'Io,e(0)>  2Trb (5.13a)

and

<Ie() ' I ne( )> = nb (5.13b)

one can rewrite (5.12) as

I (S) <In,e (M)Ei(ops)>
01

+ 2n~ 1 an s <In,aM(,)E(Ps)>In,0(0g (5.14)

n-i a an (S) n 04

5.3 Derivation of the Driving-Point Admittance of the Loop Antenna

For the driving-point admittance computation a delta function

generator located at = is assumed, with the field defined by

Ei(*,s) = (S) 6(*-g) (5.15)

Using (5.15) in (5.14) the admittance Y(s) -(s)/V(s) can be written

as

Y(s) I 1 22 (5.16)

rz a ) n i s) n,C

U'ashankar and WiZton [1974] have shown that the term 1/a (S)

can be expanded in a residue series

R 0. R Ri
n + i + -- (5.17)

an(s) s ii - Sni s-sij

where the term associated with the pole at s-0 is present only for

117

Now-&-_



n-0, i.e., R no= 0 for n>l, and the residues Rni are given by

s-si Fa o(s
Rni W Zim n(s)  d- (5.18)

ni n (

In actual computations this series must be truncated after some

finite number of terms (say M). Umashankar and WiZton [1974] have

found that the truncated series (5.17) converged very slowly at low

frequencies and they were forced, in effect, to use the modified pole

expansion (see Section 2.3)

R M Rn ni
no + n sni (5.19'

an(s) s I si (s-.si+ * Ss (.9an(S - i=l ni(S-n) Sni(-si_

They also observed that the poles belonging to a given eigenmode could

be divided into three categories:

1. Type I - A single pole of each eigenset nearest the jw-axis

at approximately w= n. This pole is the principal contributor
to the response of the loop - it is the dominant pole (see

Section 2.7).

2. Type II - A set of (n+l) poles (including conjugate pairs)
which lie roughly along an elliptic arc centered at s =0
and with a semi-major axis somewhat larger than n.

3. Type III - A group of an infinite number of poles lying
almost parallel to the ji-axis. The spacing of these poles
is asymptotic to Aw -rc/b.

This classification is illustrated in Figure 5.2 for a loop with the

4 shape factor Q- 29n(2rb/a) In this figure all fourth eigenmode poles

with Im{s ni} <20b/c are shown together with the dominant (Type I)

poles of the eigenmodes 0-19. More recently BZackburn [1976] (see

also [BZackburn and Wi Zton, 1978]) has provided an extensive tabulation

of the poles and associated residues for the loop for several

different shape parameters Q.
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TYPE IPOLES x C
TYPE R POLES =4 x 18
TYPE X POLES

I x

x

X-

it, x 16

2a 
x

x0

X- 6

/ 0

1 x2

b -3 -2 I
C

Figure 5.2 Type I, Type II, and Type III poles of the fourth eigenmode,
and Type I poles of eigenmodes 0-19 of a circular loop with the shape
factor 0] 15.
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Denoting by s the dominant pole of the nth eigenmode and by

R' the associated residue, one can write
n

-_i o (5.20a)
o (s) - s

and

R R'*
n n

() s S_ +s*(s -s*) >1 52b

n~ s  
[n s - Sn) n n_

To simplify notation, it is convenient to define a normalized residue

by

RV

R n (5.21)
n 'iZ00

Using (5.19) and (5.20) in (5.16) yields

N

(s) + (s)  (5.22)
o n=l

where L ° =IR N is the number of dominant poles used, and

Y n(s) = Y n,e(s) + Y n,o(s), (5.23)

Yro (s) =  (s) + -n,o(s ) '

Yn,o(s) = sn(s -s) (5.25)

with

a = 2R , n>l . (5.26)n n -

As discussed in Section 3.2, the index -n indicates the term associated

with the conjugate pole. Note that since

12 ( + 12 (q) 1 (5.27)
n,e n 0
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for all values of 0, it follows that

aY(s)Y (s)+Y s
nSn) e Yn,o s n(S_ +S) (5.28)

and

Y (s) - Y (S) + Y_ (S) (5.29)
n n -n

is independent on the port location. This could be anticipated, of

course, because of the symmetry of the loop.

The quality of the dominant-pole approximation to the driving

point admittance of the loop antenna with 0 -15.0 is illustrated in

Figure 5.3 which shows the comparison of the behavior of Y(s) on the

jw-axis computed both from the approximate formula (5.22), with N=10,

and from the exact expression (5.16). It is seen that the agreement

is satisfactory, in particular in the real parts. The agreement in

the imaginary parts deteriorates for w >3c/b.

5.4 Derivation of the Short-Circuit Current of the Loop Antenna

For the short-circuit current computation at 0 =4 g a plane wave

incident field is assumed with the geometry defined in Figure 5.4.

The p component of the incident field on the wire is given by

ii(ES) - EQ(4)p(4,S)f(s) (5.30a)

with

Q()= sinW cose sin(O- ) - o cosq cos(p-0 i ) (5.30b)

and
s sine[cos(o-¢i) - coS(g- (bi) 1

S(O,s) - e 9 (5.30c)

In (5.30a) Ei denotes the magnitude of the field strength and f(s)
0

is the Laplace transform of the time history carried by the plane wave.
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Figure 5.3 (a) The real part and (b) the imaginary part of the spectrum

of the driving-point admittance of the loop antenna. The dominant pole

approximation (5.22) is compared with the exact expression (5.16).
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The time origin is placed at the port location 9 = , as discussed

in Section 2.5. Using (5.30) in (5.14) and normalizing the current

to 21TbE i yields0

~sc (s 0s + 2 n,O s I (i s (5.31)

with the coupling coefficients given by

-s sinO coS( g-(t

0o(s) cos I Il(s sinO)e (5.32a)

and
rcos~n

fl~~~ )Is 1;oi '.I(s sine)'n~(s) = os0 snn )

tsin(no 1 )

S- sin(n )' n In (s sine)1 -s sine cos(eg-ei)

- sin cos o s sine e
n >li . (5.32b)

In the dominant-pole approximation the short-circuit current becomes

Sc _oos) 00+2 sR n n, n ( i 2 )f(s).(5.33)

I O Im S nl a n n

Combining N conjugate pole-pairs in (5.33) results in

(s)N (S)Tn + _ n(s)T (s )  (5.34)

0 n n ofY +s, a nsn=l a

where

(f(s) _____-R 2Am -R cosW sine (5.35)
go osO R 0 2

and

T n,a n) (5.36)
n,c I n, ( g)
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Eq. (5.34) can be rewritten with the help of (5.32) as

N
Is (s) z gof(s) + I Y (s)T n+Y (S)T n(s) (5.37)

n-1 I

where the source coefficients T are defined by
n

(

T - 12 ( )T +12 , )T cosq cos[n(g )]I'(s n sine)
n ne n,e n'o no g 1 n

sini cose sin(n(g- n I (s sine) e -sn sise.o g - (5.38)
Sn

As discussed in Section 3.2, eq. (5.37) can be further transformed to

ICs) gof(s) + Yn(s) n(s)f(s) (5.39)
n-1

with the voltage transfer functions Tn (s) defined by (3.24).

The quality of the dominant pole approximation to the short-circuit

current of a loop antenna with Qf=15.0 is illustrated in Figure 5.5

which shows the comparison of the behavior of ISC(s) on the jo-axis

computed both from the approximate formula (5.39), with N-10, and

from the exact expression (5.31). It is seen that the agreement is

satisfactory.

The expressions (5.22) for the driving-point admittance, and

(5.39) for the short-circuit current, are now in a form suitable for

the application of the synthesis procedures developed in Chapter 4.

5.5 Equivalent Circuits for the Loop Antenna With Q - 15

In this section Norton-type equivalent circuits are presented for

a loop antenna with the shape factor 0- 15. The general layout of the

equivalent circuit is shown In Figure 4.1. It was found that only 10
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Figure 5.5 (a) The real part and (b) the imaginary part of the spectrum
of the short-circuit current of the loop antenna. The dominant pole
approximation (5.31) is compared to the exact expression (5.39).
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or less dominant pole-pair modules model the structure adequately for

the excitations used. The SEM data employed (the poles and the

admittance residues) were taken from [BZackburn, 19761 and are listed

in Table 5.1. Also indicated in this table for each pole are the quality

factor Q n the residue location-as referred to Figure 4.5, and the padding

necessary to restore the PR-ness of the associated pole-pair admittance

Yn(s). The column denoted "%" gives the ratio (in %) of the padding

conductance Gn to the maximum value of the real part of Y n(j).

It is evident from Table 5.1 that only Yp(s) is initially PR and can be

realized by one of the ladder circuits shown in Figure 4.7. For all

other pole-pair admittances the residues lie outside the regions I and

II, in the area denoted "case A" (see Figure 4.5), so that padding is

required. However, the amount of padding is insignificant as compared

to the value of the real part of Y (jw) near the resonance. The padded

pole-pair admittances can be realized by the simplified Bott-Duffin

modules, as discussed in Section 4.3. The element values of the first

10 dominant pole-pair modules are listed in Table 5.2. Similar driving-

point admittance network for the loop was synthesized previously by

Streable and Pearson [1981).

The current response of the equivalent network defined in Table

5.2 due to a Gaussian voltage pulse, computed by the SCEPTRE [Jensen

and MNainee, 19761 circuit analysis program, is shown in Figure 5.6.

This response is compared to a waveform obtained from the TWTD

(VanBZar'icwn and MiZZer, 1972] computer code, which solves an integral

equation for the current in the time domain. It requires, however,

that the structure be modeled by a connection of straight wire segments.

Only about 50 segments were employed to model the loop for the TWTD run
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Table 5.2 Element values of the dominant pole-pair admittance
networks for a loop antenna with Q -15.*)

LADDER CIRCUIT (Figure 4.7(a))

n Cl/b[pF/m] R1 [Q] L1/b[IH/m] R2[kQ]

1 3.3034 47.374 3.0865 10.164

BOTT-DUFFIN CIRCUIT-CASE A (Figure 4.12(a))

n Co/b[pF/m] L1 /b[pH/m] C1 /b[pF/m] R1 k ]

2 0.9333 2.8764 44.3967 16.144

3 0.5095 2.7291 2.8702 20.727

4 0.3355 2.6209 1.0626 24.225

5 0.2443 2.5355 0.5527 26.998

6 0.1893 2.4648 0.3384 29.254

7 0.1531 2.4045 0.2284 31.125

8 0.1276 2.352 0.1645 32.701

9 0.1089 2.3055 0.1242 35.042

10 0.0946 2.2637 0.0971 35.197

*)The static inductance L /b -7.215 [H/m].

0
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with the gap width equal to the length of one segment. This crude

modeling is a possible explanation of the quite significant dis-

agreement (about 15% in the worse case) of the SCEPTRE ind TWTD

curves.

Because of the symmetry of the loop, the driving-point part of the

equivalent network does not depend on the gap location g; neither

does it depend on the direction of propagation of the plane wave incident

field, of course. The transfer function part of the equivalent network

does depend on the angles of incidence and the polarization of the

incident plane wave, as discussed in Chapter 4. Not only the element

values of the active part of the network change when the direction of

incidence is changed, but also the network topology can be affected.

However, it is shown in Chapter 4 that at most two network topologies

can result: a ladder network or a symmetrical lattice network. For

both cases explicit expressions for the element values in terms of the

poles s, the admittance residues a and the source coefficients Tn n

are given in Chapter 4. The expression for T in the loop case isn

derived in Section 5.4, eq. (5.38). The topologies and element values

of the corresponding transfer networks are listed in Tables 5.3-5.6.

Note that we have chosen to use the RC networks rather than the RL

networks. This choice was made because the element values of the RC

networks turned out to be more realistic than the element values of the

equivalent RL networks.

The short-circuit current responses of the complete equivalent

networks computed by SCEPTRE are compared in Figures 5.7-5.12 with

responses obtained by other means for different excitation conditions.
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SCEPTRE responses are compared with TWTD results in Figures

5.7-5.9. The time history carried by the plane wave is a step function.

As in the case of the admittance network, there is a significant

discrepancy between these two curves. Again, one can attribute this

discrepancy to the relatively crude modeling of the loop by the

straight pieces of wire. It is of interest to note that the current

waveform approaches a constant non-zero value for late times. This

phenomenon is possible because there is a d-c (direct-current)

component in the incident waveform spectrum and the loop is perfectly

conducting.

The circuit responses are compared with the results of the

classical frequency domain-Fourier transform method in Figures 5.10-

5.12. The time history of the incident wave is a double exponential

function. In computing the frequency domain response the series

(5.31) for the short-circuit current was evaluated for s=jw with 30

terms included. The subroutine developed by BZackburn et rZ. [1978]

was used to evaluate the a (jnw) factors. The time domain response wasn

obtained by applying the Fast Fourier Transform (FFT) algorithm

[Brighmn, 19741. It is seen fromFigures 5.10-5.12 that the SCEPTRE and

FFT responses agree favorably (the maximum discrepancy is less than 8%).

5.6 Conclusions
I

The responses of the dominant pole-pair equivalent circuits for

a thin-wire loop antenna agree favorably with the exact responses

obtained from the frequency domain-inverse FFT approach. The amount

of the real-part padding necessary for physical realizability of the

pole pair admittances is negligible in comparison to the value of the

real part at the resonance.
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CHAPTER 6

EQUIVALENT CIRCUIT SYNTHESIS FOR A CYLINDRICAL DIPOLE

6.1 Introduction

In this chapter the procedures developed in Chapters 2-4 are applied

to the synthesis of the dominant pole-pair, Norton-based, equivalent

circuits for a thin cylindrical dipole antenna. The cylindrical dipole

is a member of the class of structures for which an exact analytical

solution is not available. Instead, the SEM data are derived numerically

by the MoM technique. Simplified equivalent circuits based on the

sinusoidal mode approximation are also derived. For a symmetrical dipole

antenna or a cylindrical post over a ground plane, particularly simple

and yet reasonably accurate equivalent circuits result. The responses

of the SEM equivalent circuits are compared with the results of the

classical frequency domain-inverse FFT approach. An application of the

derived equivalent circuits to the analysis of antennas with nonlinear

loads is illustrated in Appendix B.

6.2 Preliminary Theory

The geometry of the dipole is defined in Figure 6.1. It is assumed

that the cylinder is slender (a<< Z) and electrically thin, i.e.,

wmaxa/c <<I, where w -wmax is the largest significant spectral component

of the excitation. As a consequence, it can be assumed that there is

only a z-component of the surface current density, i.e., J rr~s)z,^
z

4

where k denotes the unit vector in the z direction. It can be further

assumed that the current density is uniform around the cylinder, i.e.,

JZ( ,s) EJz(z,s), so that the total current is given by
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Figure 6.1 Geometry of the cylindrical dipole.
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i(z,s) - 2ra z(zs) . (6.1)

The current on the dipole can be found from the so-called "Pocklington's

equation"

- -~z dz - y2 I(zs)k(zz',s)dz' -Ei(zs) (6.2)

0
where

-yR
K(z,z',s) f --- dO' (6.3)

-7

with

R = /(z-z') 2 + 4a2 sin2 (0'/2). (6.4)

Ei (z,s) denotes the z component of the incident electric field and

z

y -s/c is the complex propagation constant.

In order to find the short-circuit SEM parameters of the dipole

the gap is closed (Figure 6.1) and the integro-differential operator

in (6.2) is matricized by using the method of moments (MoM) technique

[Harrington, 1968]. In a simple variation of this method, as applied

to the present problem, the cylinder is divided into a number, say M,

of equal size zones of width A - Z/M and the current distribution within

a zone is approximated by a constant. By replacing the differential

operator in (6.2) by finite differences [WiZton and ButZer, 1976] and

enforcing the integral equation at the match points zk, k=1,2,...,N

(collocation testing), a linear matrix equation is obtained for the

expansion coefficients of the current. The natural frequencies (the

poles) are found as the zeros of the determinant of the MoM matrix.

At these freqeuncies the homogeneous eq. (6.2) has nontrivial solutions-

the natural modes. The natural mode associated with the pole s can

be expressed as
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M

In(Z) k 1 In,k Pk(z) (6.5)
k-i

where In,k are the current expansion coefficients obtained from the

MoM solution and Pk(z) are the pulse expansion functions defined by

P k(Z) W

0 otherwise (6.6)

From the MoM matrix and the natural modes one can compute the normali-

zation constants a according to eq. (2.20).
n

6.3 Derivation of the Driving-Point Admittance of the Dipole Antenna

The driving-point admittance of the dipole is determined by computing

the current i(s) in the gap region due to a voltage V(s)-V 0 f(s) impressed

across the gap, as discussed in Section 3.2. The incident field due

to this voltage can be approximated by

V

E(z's) -Y P 9(z)(s) (6.7)

where k -g is the index of the gap zone. The coupling coefficients

can be found from (see Section 3.2)

r V
n n In(z) - Pg(z)dz V o n,g (6.8)

0

and the admittance residues from

a a a n2 (6.9)nn npg

a The driving-point admittance !(s) -a(s)/(s) has the form

N ^

Y(s) a [Y n(S) (6.10)
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where Y (s) are the pole-pair admittances defined in (3.16) and N is

the number of dominant poles employed. Note that the inductive term

of eq. (3.15) is not present in the dipole case.

The poles and natural modes of a thin cylinder with the shape

factor 0 -21n(t/a) -10.6 were first found by Tesche [1973] by the

procedure described in the previous section. In this work, however,

the natural modes are given in a graphical form only. Since the numerical

values of the coefficients In,k were needed for the circuit synthesis

purposes, Tesche's data were reproduced using 72 pulses in the current

expansion. The gap width was taken to be one zone. The results are

summarized in Figure 6.2 and Table 6.1. It can be seen from Figure

6.2 that the poles lie in layers roughly parallel to the jw-axis. The

first layer poles are the dominant ones. Also shown in this figure

is a grouping of poles according to eigensets, conjectured by D. R. Wilton

[Streable and Pearson, 1981]. Note that, unlike in the loop case, there

are only a finite number of poles belonging to each eigenmode in this

representation.

The quality of the dominant-pole approximation to the driving-

point admittance of a cylindrical dipole antenna with Q- 10.6 is

illustrated in Figure 6.3 which shows the comparison of the behavior

of Y(s) on the jw-axis computed from the approximate formula (6.10)

with N- 10, and by solving the integral equation (6.2) numerically.

It is seen that the agreement is quite good in the real parts case

while it is not as good in the imaginary parts, especially for

w 21r cZ.
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Figure 6.3 (a) The real part and (b) the imaginary part of the spectrum
of the driving-point admittance of the dipole antenna. The dominant pole
approximation (6.10) is compared with the "lexact" curves obtained by
solving the integral eq. (6.2) numerically.
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6.4 Derivation of the Short-Circuit Current of the Dipole Antenna

For the short-circuit current computation the incident field is

that due to a plane wave carrying a time history f(t). The z-component

of the electric field evaluated on the z-Lxcis is given by

(zs) = Ei sinee f)s(s) (6.11)z 0

with the time origin chosen in the gap zone, as discussed in Section 2.6.

With the current normalized to LE0, the coupling coefficients can be

computed as

sine (Z)eY n(Z-Zg )Cose
r~n f n Wedz

0

Asine M Yn(Zk- Zg)CosO
- I e (6.12)

k.1 n

with the source coefficients given by

Tn n - . (6.13)
n,g

The short-circuit current can be expressed as

N ,
SC(s) Yn(S)Tn(s)f(s) (6.14)

n1l

with the voltage transfer functions Tn (s) defined in (3.24). Note that

the first term of eq. (3.23) is not present in the dipole case.

The quality of the dominant-pole approximation to the short-circuit

current of a cylindrical dipole antenna with - 10.6 is illustrated in

Figure 6.4, in which the behavior of isc(jw) computed from the approximate

formula (6.14) with N- 10 is compared with the "exact" waveform obtained

from the solution of the integral equation (6.2) numerically by the MoM
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Figure 6.4 (a) The real part and (b) the imaginary part of the spectrum
of the short-circuit current of the dipole antenna. The dominant pole
approximation (6.14) is compared with the "exact" curves obtained by
solving the integral eq. (6.2) numerically.
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technique. The time history is the delta function and the angle of

incidence 8 -60 ° . It is seen that the agreement is excellent, both in

the real and imaginary parts.

6.5 Equivalent Circuits for the Cylindrical Dipole with Q -10.6

In Table 6.1 are listed for each pole sn the quality factor Qn'

the admittance residue a and its location-as referred to Figure 4.5,n

and the padding G necessary to restore the PR-ness of the associated
n

pole-pair admittance Yn(S). The column denoted "%" gives the ratio

(in %) of the padding conductance G to the maximum value of the real
n

part of Y (jw). Data are provided for two gap location: zg 1/2k
ng

and z 9 1/4Z. As can be seen from this table, for most poles theg

residues fall outside the regions I and II, in the area denoted "case

A" (see Figure 4.5), so that after padding the Bott-Duffin module can

be employed to realize Yn (s). For two dominant poles the residues lie

in region II, so that one of the ladder networks from Figure 4.7 can be

directly used. The element values of the driving-point equivalent

networks for the two gap locations are listed in Tables 6.2 and 6.3,

respectively. These networks were first obtained by Streable and

Pearson [1981]. We include them here for the sake of completeness,

since they are part of the active equivalent networks. The responses of

the equivalent networks for a center- and a quarter-driven dipole due

to a Gaussian voltage pulse, computed by the SCEPTRE (Jensen and

McNwnee, 1976] circuit analysis program, are compared to the TWTD

[VanBlaricum and Miller, 19721 time domain integral equation solutions

in Figures 6.5 and 6.6, respectively. Except for the early time, the

agreement is seen to be quite good. The early time response of the SEM
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Table 6.2 Element values of the dominant pole-pair admittance

networks for a center-driven dipole antenna (S= 10.6).

BOTT-DUFFIN CIRCUIT-CASE A (Figure 4.12(a))

n C /Z(pF/m] Ll/Z[pH/m]  Cl/Z[pF/m ]  R[kO]

1 2.9728 0.4584 131.99 2.1290

3 0.5063 0.3875 1.134 4.8650

5 0.2412 0.3595 0.2966 6.3673

7 0.1519 0.3417 0.1329 7.3458

9 0.1089 0.3285 7.529*10 -2  8.0824

*)Resonant frequencies sn, n- 2,4,... do riot contribute to the

driving-point network.

1

4
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Table 6.3 Element values of the dominant pole-pair admittance
networks for a quarter-driven dipole antenna with R= 10.6.

LADDER CIRCUIT (Figure 4.7(a))

n C1 /Z[pF/m] Rl[S1Q L1 /Z[VH/m] R2[kn]

1 1.6149 7.307 0.8243 4.244

9 2.998*10- 2  67.612 0.4897 103.08

BOTT-DUFFIN CIRCUIT-CASE A (Figure 4.12(a))

n Co/k[pF/m L1/Z[pH/m ]  Ci/t[pF/m] R l[k]

2 1.0326 0.4009 3.1783 3.2045

3 0.3246 0.8869 0.2850 5.0706

5 8.738*1 2 0.5696 2.4309 30.882

6 0.2171 0.3375 0.1780 5.3000

7 0.1209 0.8301 3.797*10- 2  4.5332

10 0.1166 0.3095 5.693*10- 2  5.7955

*)4th and 8th resonant frequencies do not contribute to the

driving-point network.

j
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-VF

equivalent circuit can be significantly improved by augmenting it by a

shunt capacitor of a proper value as discussed in Section 3.3. The

value of the capacitor must be computed apart from the SEM representation,

e.g., by solving for the static charge distribution on the object. The

effectiveness of this procedure is illustrated by Figure 6.5 for the

center-driven dipole case.

The active part of the equivalent network depends not only on the

gap location z , but also on the angle of incidence e of the plane wave.

As discussed in Chapter 4, the voltage transfer network realizing Tn (s)

can be always synthesized in one of the two forms: as a ladder circuit

or as a symmetrical lattice circuit. For both cases explicit expressions

for the element values in terms of the poles s n the admittance residues

nna n, the the source coefficients T n are given in Chapter 4. The expressions

for a and T in the dipole case are given in Sections 6.3 and 6.4,n n

respectively.

The topologies and element values of the first ten dominant pole-

pair voltage transfer networks of a dipole (0 -10.6) for three gap

locations (zg -1/4Z, 1/2k, and 3/4Z) and three angles of incidence

(e- 30*, 60, and 900) are listed in Tables 6.4-6.11. As in the loop

case, we have chosen to use the RC networks rather than the equivalent

RL realizations (see Section 4.4). It was found that less than 10

dominant pole-pair modules were enough to model properly the dipole

behavior for the excitations used. To give the reader the idea of

the complexity of a typical equivalent circuit for a cylindrical dipole,

we show explicitly in Figure 6.7 the topology of the equivalent circuit

for the case z .3/4X and 8-60*.
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The short-circuit current responses of the equivalent circuits for

a plane wave excited dipole (Q -10.6) for various angles of incidence

and various gap locations are compared in Figures 6.8-6.15 to results

obtained by the TWTD code. The time history of the plane wave is a

Gaussian pulse. As can be seen from these figures, the circuit responses

computed by SCEPTRE agree favorably with the responses obtained from the

time domain integral equation solution.

Finally, in Figure 6.16 is shown the port current of a symmetrical

dipole antenna (R- 10.6) loaded by a parallel RLC circuit with the

quality factor Q -40, the characteristic resistance Ron 250, and the

resonant frequency wo n 7, excited by a plane wave with the angle of

incidence 8 -60* and a double exponential time history. The solid line

represents the response obtained from the numerical solution of the

integral equation (6.2) (modified by the loading impedance in the port

zone) followed by an FFT inversion. The dashed line is the equivalent

circuit response obtained from the SCEPTRE analysis, It is seen that

the agreement between these two curves is satisfactory, but not as good

as in the short-circuit conditions.

6.6 Simplified Equivalent Circuits for a Cylindrical Dipole Based

on the Sinusoidal Mode Approximation

It has long been known that the natural current modes of a thin

cylinder are approximately sinusoidal [King, 1967]. That this is

indeed the case was recently confirmed by the numerical work by

Tesche [1973] where he plotted the "exact" natural modes of a cylinder

with Q- 10.6. HaZZgn (1930] used the sinusoidal approximation
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(z) sin n ] + 0G2 1  (6.15)

to derive by an iterative procedure an analytical expression for the

dominant poles of a thin cylinder. In a first order approximation he

obtained

n(2nrr) n -Ci(2nr) V si(2n7r) -2(

s n  Q + jnTrj [ +0(2 ) (6.16)

where Si and Ci denote the sine and cosine integrals [Abrczmowitz and

Stegun, 1965], respectively, = 1.781... is the Euler's constant, and the

poles s are normalized to c/k. Halten [1930] (and more recently Man

[1974]) also carried the iteration one step further and obtained

expressions for i n(z) which are correct up to O-2 and expressions for

s correct up to -3 . These expressions are rather complicated,

however. It was found by Langenberg [1978] that the first order formula

(6.16) can be used for the first few resonances for cylinders with

Q 12. The second order formula is good for P 2 8.

The zeroth order approximation to the natural modes (6.15) and

the first order approximation to the poles (6.16) were used successfully

by Marin and Liu [1976] and Langenberg [1978] for the solution of

transient thin-wire problems and a similar approach was used by

Singaraju and Gardner [1976] for the computation of a transient response

of a helical antenna.I

By using the so-called "reduced kernel" [King, 1956] in (6.2)

and the sinusoidal current modes (6.15) it can be shown [Mann, 1974]

that the normalization constants (normalized to c/k) can be approximated

by

179



4r 1(6.17)
n ET 300

0

with Z zl20ft. The admittance residues are thus given by

sin , ,n, zgJ

a I 2 (zg) 12• (6.18)
n n g 30

For a symmetrical dipole (z = 1/2Z) (6.18) reduces to

g

a n=1,3,5,... (6.19)
n -3002

Note that these residues are real and equal for all poles. For

Q- 10.6, a = (3.145 +JO.O) mS, which differs rather significantly
n

from the "exact" residues listed in Table 6.1.

Since the residues (6.19) are purely real, they fall into region

I of Figure 4.5. Thus, the pole-pair admittances of a symmetrical

dipole can be realized in the unmodified form

=== _i n(6.20)n n0S
15 s On+ F l

A continued-fraction expansion (Matthaei, 19541 of (6.20) leads to the

circuit in Figure 6.17(a) or to its equivalent shown in Figure 6.17(b).

The first of these circuits was derived previously by Baum and Singaraju

[1980].

By a slightly different procedure still another approximation to

the pole-pair admittance can be derived:

180
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(s) 1 __(6.21)nS n + -n s + n

Wn n Wn

which can be realized by the circuit shown in Figure 6.17(c). This

circuit resembles the circuit used by Barnes [1973], but the expressions

for the element values are different.

The input current response of the simplified equivalent circuit

for a symmetrical dipole (Q =10.6) due to a Gaussian voltage pulse is

compared in Figure 6.18 to the result of the TWTD code analysis. Also

shown in this figure is the response of the "exact" equivalent

circuit using the reduced Bott-Duffin modules. As can be seen from this

comparison, the response of the simplified circuit is significantly

worse than the response of the Bott-Duffin network. Since the complex-

ities of the two circuit topologies are comparable, one can conclude

that it is more expedient to employ the padding procedure and the

Bott-Duffin realization rather than the sinusoidal mode approximation in

the development of the driving-point equivalent circuits.

The sinusoidal natural-mode approximation can be also used to

simplify the source synthesis problem of a plane wave illuminated

dipole. Namely, the substitution of (6.15) into (6.12) gives

n-l -s (g - )cose sn cose

T W (l)-2 sn e sinO n cosh 2 (6.22a)
Cosfn1T(Eg ) 'I + (n 2 2

for odd values of n, and

n-2 s - n8 ( - )cos sinh cose

T -(-) 2 nir sin e n6.22b)
n2sin(n7r(Eg) [s cosO) 2  2
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for n even, where Cg= Z /Z. These expressions, which were obtained

previously by Person and Wilton [19811, can be used to approximate the

'texact" expressions (6.13) for the source coefficients.

For a symmetrical dipole (Cg =1/2) the source coefficient (6.22b)

corresponding to an even n has a reciprocal singularity. However, the

assocaited admittance vanishes quadratically, so that the entire pole-

pair module disappears. The source coefficients corresponding to odd

n reduce in this case to

n-l c s cose~~cosh

T = (-1) 2 sine 2 (6.23)
n 2 fsncosej 2 2

These are still complex numbers, but a further approximation

sn jn7T (6.24)n

leads to purely real source coefficients

T ( n 2 cos 2 cos3 (6.25)
n nT sine

Since the T 's are real numbers, an examination of (3.24) reveals thatn

the voltage transfer functions T n(s) degenerate to real constants which

can be realized by VCVS with gain factors given by (6.25).

The gain constants of the simplified dominant pole-pair transfer

circuits for a symmetrical dipole (1- -10.6) are listed for three

different angles of incidence 6 in Table 6.12. The topology oS a

simplified equivalent circuit using the reduced Bott-Duffin modules is

shown in Figure 6.19. The short-circuit current response of this

network for a plane wave with 6 - 30* and a Gaussian time history is
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ri

Table 6.12 Gain constants of the voltage controlled
voltage sources associated with the dominant pole-pairs of
a symmetrical dipole antenna (Q=10.6) excited by a plane
wave with the angle of incidence e-30*, 60*, and 90*.

30° 600 900

1 0.26598 0.51980 0.63662

3 0.25050 0.17327 -0.21221

5 0.22117 -0.10396 0.12732

7 0.18103 -0.07426 -0.09095

9 0.13415 0.05776 0.07074

*)Normalized to (IE

0

*)Resonant frequencies s, n,2,4,..., do not contribute to

the equivalent network

1
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A
I
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compared in Figure 6.20 to the response obtained from the TWTD code.

The agreement is seen to be very satisfactory. Short-circuit current

responses of the network from Figure 6.19 due to a double-exponential

wave with three angles of incidence: e -90, 60, and 30* are plotted

in Figure 6.21. These curves agree favorably with the responses

computed by the WT-MBA/LLLlB code [Landt et aZ., 1974], included in

[Cho and Cordaro., 1979].

Finally, in Figure 6.22 we compare the response of the circuit

from Figure 6.19 with 0= 900 and a Gaussian time history to the response

of the same circuit with the Bott-Duffin modules replaced by the

simplified circuits from Figure 6.17(a). It is seen that there is a

significant deterioration of the circuit performance when the sinusoidal

mode approximation is used in the admittance modules. It appears,

however, that this approximation can be used successfully to simplify

the source modules of an equivalent circuit for a symmetrical dipole

or a cylindrical post over a ground plane.

6.7 Conclusions

The responses of the dominant pole-pair equivalent circuits for

the thin-wire dipole antenna agree favorably with the "exact" responses

obtained from the classical frequency domain-inverse FFT approach.

The amount of padding necessary for physical realizability of the pole-

pair admittances is negligible in comparison with the value of the real

part of the admittances at the resonance.

It is demonstrated that the sinusoidal mode approximation gives

poor results when used in the synthesis of the dominant pole-pair

admittances. However, it can be employed successfully in the synthesis
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w

of the pole-pair voltage transfer networks. For a symmetrical cylin-

drical dipole or a cylindrical post over a ground plane, the pole-

pair transfer networks reduce to just voltage-controlled voltage

sources with gain constants dependent on the angle of incidence of the

impinging plane wave.

1

J
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CHAPTER 7

EQUIVALENT CIRCUIT SYNTHESIS FOR A SPHERICAL ANTENNA

7.1 Introduction

Although the spherical antenna configuration is not one which

has been employed frequently in practice (its main application has

been in sensors for the electromagnetic pulse (EMP) measurements

[Baum, 1969; Baum et al., 1978]), it is nevertheless worthwhile studying

this structure since it is one of the few finite shapes which can be

analyzed exactly. Also, with its resonances so highly damped, it provides

a stringent test for the dominant pole approximation introduced in

Chapter 2.

In the next sections SEM equivalent circuits are derived for a

spherical dipole with a slot along a longitudinal line. The develop-

ment presented here differs in details from the general theory

developed in Chapter 3 due to the explicit appearance of the internal

resonances of the structure in the formulation. This phenomenon,

which has not been taken into consideration in the derivations of

Chapter 3, posed no problem in the thin-wire loop and dipole cases,

since the cavity resonances of these structures lie well outside the

frequency range of interest. Another difficulty not encountered

before is the fact that the extent of the port region of the spherical

antenna is not electrically small. Therefore the time origin cannot

be located in the gap zone independently of the direction of arrival4

of the incident field, as suggested in Chapter 2. This difficulty

is overcome by moving the time origin to the point of the first contact

of the gap region with the leading edge of the impinging plane wave.
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The static capacitance of the structure can be considered, along

with the poles and residues, as an important SEM parameter. If known,

it can often be used to improve the early time response of the SEN

equivalent circuit by augmenting it by a corrective capacitor of a

proper value. Two methods of computation of the static capacitance

of the spherical antenna are compared in Appendix C.

The analysis presented in this chapter is perhaps more detailed

than the analyses of the loop and cylindrical dipole antennas included

in Chapters 5 and 6. Some of the reasons for this are that the

spherical geometry is amenable to an exact analysis, and that it

provides the "worst case" estimate of the performance of the dominant

pole-pair-at-a-time equivalent circuits.

7.2 Preliminary Theory

The surface current density J(6,0,s) on a perfectly condlucting

sphere of radius a centered at the origin of the spherical coordinate

system (r,6,4) is given by an integral equation of the form

I= (i-nnf) *E (a,e,,s) (7.1)

with the symmetric product defined as

<[ ];[ > f f[ t )a 2 sinedOd# " (7.2)

-IT 0

As in Chapter 2, 1 denotes the identity dyadic, n=fi(0,4) is a unit

vector normal at (e,O) to the surface of the sphere, and E (ae,os)

is the factorable incident field evaluated on the sphere surface. As
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before, the time history of the incident field is f(t) with the Laplace

4transform f(s). The dyadic kernel can be expanded in terms of tne

spherical wave functions, as shown by Tai [1971]. This representation,

when particularized to r -a, as above, constitutes an eigenfunction

expansion for t in the eigenfunctions of the integral operator in

(7.1). From this expansion the resolvent kernel I can be con-

structed by means of eigenvalue reciprocation, which leads to the

solution of (7.1) in the form

S)R 
(e) (s)

noe noe TEs n, o,e n,o,e
n

n TMF(3n + 3n mE2 " T Onai,m,(j 5TE() n,m,Ce n,m,
m1C)A n (s) n~, lnO'+nm (S))?_ n

(7.3)

where the index a takes on the values "e" (for "even") and "o"

(for "odd") and the superscripts TM and TE stand for "transverse

magnetic to *" and "transverse electric to r", respectively. The

meaning of the other symbols is explaned below.

_TM TThe (s) and AT(s) are the eigenvalues of the integral operator
n n

given by
I

AT(s) -Z oS i (s)]'[s k (S)]' (7.4)
n 0 n n

and

STE(s ) Z [s i (s)][s k (s)] (7.5)
n o n n
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where Z is the intrinsic impedance of the medium and the prime denotes

differentiation with respect of the normalized complex frequency

s- ya, y being the complex propagation constant. The functions

i n(s) and kn (s) have been introduced by Baum [1971] and are related

to the spherical Bessel and Hankel functions as

in(& ) - jn jn(-J ) (7.6)

kn(E) _ _j-n h(2)(-j) . (7.7)

n n

The eigenfunctions Q n,m,S(e,) and R me(e, ) are given by

npm(cose) cos(m4) '-sin(mS)'

Qn e, Om)  ) n n+ m P(cose)j $ (7.8)n , e MS sin(m ) s P ( cos(mo)

and - cs)Io m~

M DM (c -i~o O(O (7.9)0sne n cos(m) sin(mo)l

where pm denotes the associated Legendre functions of degree n and
n

order m [Abramowitz and Stegun, 1965]. Note that the eigenfunctions

are real and frequency independent. Also, there is a manifold eigen-

value degeneracy due to the sphere symmetry.

The normalization constants an,m are defined as

-1

1+6 7ra(7.10)
n 8 1+om)a2nn+l) (n+m)
n,m 1 om (2n+l)(n-m)!(

where 6 is the Kronecker delta function and the coupling coefficients

are given by

TE = <, ~ 8,Os) (7.11)
{m} (n,mR O (9,) 1
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where E is the spatial distribution factor and is the propagation

factor of the incident field (cf. eq. (2.6) of Chapter 2).

For the purposes of equivalent circuit synthesis the port current

i(s) can be defined as the net surface current passing the specified

longitudinal line e-6 which coincides with the edge of a narrowo

circumferential slot in the spherical shell (Figure 7.1). This is the

component of current which would excite a load attached to the spherical

antenna via a radial or a biconical transmission line. Thus, the port

current is given by

i(s) 9 - J " (eo t s ) sin e oado .(7.12)

An examination of (7.3) reveals that only the m -0, a e TM terms

survive the integration in (7.12), so that

00 ~ ___1_____ ________2n+ n P (cos°) sine0  (S)f(s) (7.13)
='o n-l n(n+l) [s i (s)]'[s kn (s)]' n

with the coupling coefficient

(s) <Pl(cose);*Eo(a,e,4)(a,e,4,s)> . (7.14)n 2Ta n 0

7.3 Derivation of the Driving-Point Admittance of the Spherical
Antenna

We consider a spherical shell of radius a with a circumferential
i

slot of width d(d/a= 2ao) with the center located at 6 =e 9 (Figure 7.1).

4Let this structure be excited by a 0-independent electric field at the

surface of the sphere

V
E(e,s) - - -g(B)i(s) (7.15)e a

where
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d/a~2%
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4d

Figure 7.1 Geometry of the spherical antenna.
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j'g(O)dO 1 (7.16)
0

and where

IT

V(S) V Vf(s) 0 E(O,s)adO (7.17)

0

is the applied voltage. From (7.13) and (7.17) the driving-point

admittance i(s)- !Wi~s(s) takes the form

P (case )sine
'T~ 2n+l n 0 0

zo ninl n~~)(si n(s)]'[sk n(B)]'

7T

XJ P n(cos6)g(O)sined6 (7.18)

0

where e0 we 9 a. By using the Wronskian relation f or the functions

i n (s) and k n s) (Baum, 1971]

W i Cs), k(S)} i (s)k'(s)- -i' s)k s)=-1(7.19)
f nn n n~ s nS

it can shown that

____________ si n(s) sk C~s)
-l - - .(7.20)

[si n (s))'fsk n(s)]' [si Cs)]' [sk n(s)]'

Thus, the driving-point admittance (7.18) can be divided into its

internal and external parts [Baum, 1969]

int i 2n+1 (n+1)i (S)
Yit(S) 20nlnn+l) s ns] V (6 a (7.21)

o 1 n s)

and
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ex s 2n+1 nkn ()
--- s V(gao (7.22)
on-]. n' A ns(s)1' n 50g~

where

(g n (cos 0)si° P1(cos)g()snd (7.23)
Vn(O'o 9 n+1l

0

can be considered as the excitation voltage of the nth eigenmode

(Franceschetti, 1976].

The series (7.21) and (7.22) assume the knowledge of the gap

field distribution g(O). This function depends on the details of the

feeder goemetry and requires a solution of a generally complicated

boundary value problem. Therefore, it is customary to assume a priori

the field distribution across the gap. However, this can be justified

only for very narrow slots since, as demonstrated by Franceschetti

[19761, the admittance of the spherical antenna is rather sensitive

to the field distribution across the gap. Some of the distribution

functions used in the literature are listed below.

1. Delta function [Stratton and Chu, 1941; Karr, 1951; Van BladeZ,
1964; Remo et aZ., 19651

g(O) - 6(e-6 ) , 0<9< (7.24)

2. Step function (Infeld, 1947; Weeks, 1964]

I , 0 - d <6<6 +dg 0 - - g d
g (e) -

0 , otherwise (7.25)

3. Distribution associated with a biconical transmission line
feed [ScheZkunoff, 1952]
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Iz

w r K do < e < +a
2Tks in; 9 - _6

0 otherwise (7.26)

where Ko is the characteristic impedance of the transmissionline given by

K z o tan 2

4. Distribution exhibiting the edge singularity (Baum, 1969;
Franceschetti, 1976]

1 1
cc < < ct 0< + a0o / e -e2 g o--Tr - 9

0
g(e) -

0, otherwise (7.27)

5. Distribution approaching the delta function as the parameter

__________ 2m+l
(() -2 2m+l)! (sine) , 0 < < 1T. (7.28)2() 2~ (rn!)2

This distribution was used by Infeld (1947] to investigate
the convergence properties of (7.22) as a function of the
gap model. A peculiar feature of (7.28) is that it reduces
the number of terms in the series (7.21) and (7.22) to m.

The series (7.21) and (7.22) converge very slowly (for the delta

gap model they diverge). In some cases the nonlinear transformation

technique [Shanka, 1955] can be used to accelerate the series

convergence. This method was successfully applied in a related problem

by Tesche et aZ. ]1976]. It seems to be more expedient, however, to

follow the technique employed by Schelkunoff (1952] and, more recently,

by Franceschetti [1976] (see also Bucci and Franceschetti, 19741).
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They observed that the series (7.21-7.22) represents a pure capacitance

in the limit as s- O. If this series is subtracted term-by-term from

the admittance series, its convergence properties improve dramatically.

For the symmetrical antenna case (6g -90*) they were able to sum the

capacitance series explicitly. An application of this technique to

(7.21-7.22) results in

yint~ s in t + T 2n+l s24 n+l (s)

Y nS) o (n+- (S), Vn (6 gao) (7.29)
t+ni o n~~)[i~)

and

2n0 S2kn-(S)
yext(S) - S Cext + _ 2 Skn(S),  Vn(6, ) (7.3(

n-i Z n [sk(s)] n g

with the unnormalized interior and exterior capacitances given by

mt wa 2n+l V (e , o) (7.31)C n i Z c n(n+l) n g 0
nul o

and

Cext . a 2n+l v C (7.32)

It is shown in Appendix C that for a narrow equatorial slot (a° << 1)

with a constant field distribution the capacitances Ci n t and Cex t are

given by

SL [n + (7.33)

and

Cex t  ItZo n a+2.9 .(7.34)
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Perhaps the only practical way to drive or load a spherical antenna

is through a biconical or a radial transmission line. In such

configuration only the external surface of the sphere is excited.

Therefore, the following discussion will concentrate on yext(s)

(the superscript "ext" is dropped in the rest of this chapter).

By defining

b = 7(2n+l) (7.35)
n Zn n (eg 'o

0

(7.22) and (7.30) can be rewritten, respectively, as

Y(s) = b(S) (7.36)

n=l

with

Y(s) ffi [Skn (7.37)

and

00

s s'(s) (7.38)
n=l n

with

s~kn~ (s)
n 2sk n(s)],  (7.39)

n (sn

It is of interest to point out that the normalized eigenadmittances

Yn(s) and y'(S) have their exact circuit equivalents. Namely, using
n n

the recurrence relations for the spherical Bessel function [AbrWnwitz

and Stequn, 19651 it can be shown that [(Cu, 1948; TaZ, 1978]
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ni _ ______+ ________1 __

n 1s 2n-1 1
s 2n-3

5

+ (7.40)
I-+1
s

This continued-fraction expansion can be realized by the circuit

shown in Figure 7.2(a). In like fashion, it can be shown that

(s) 2

n S+ 2n-l +1
S 2n-3 +

5

+ - (7.41)
1-+
s

which corresponds to the circuit shown in Figure 7.2(b). This represen-

tation, which employs a gyrator with the gyration impedance j/s,

was suggested by Franceschetti [19761.

The normalized eigenadmittance n (s) can be explicitly expressed

as a rational function of s. This can be done by noting that [Baum,

1971]

-s n nm)'-s

kn (S) . e (nm) (2s)-m = e w(i/s) (7.42)
n s m n)! sMMO

where w n(1s) denotes a Bessel polynomial in 1/s (Balabanian, 1958].

For notational simplicity it is helpful to define
I

; s% n ( ) .!sn - m
(S) - (l/s) - n+

Pn ~n
m-0 2 .(n-m)l

n s (7.43)
Im-O n n

with
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d .(2n-m)! (744)
m,n 

2n-mm1 (n-m)!

Then y (s) can be written as

n s p n(s)
n(s) pn(S)

n d'

' n 5+5SPni(s)

MOI 1-j,

mO do,n(745)

n ~ nd +d

Ll+5+m=2 ]~ 5m d o~n1Sl

Note that the numerator and the denominator polynomials in (7.45)

are of the same order and that y (0) - 0. It follows from this that

the modified pole expansion (2.24) is applicable in the spherical

antenna case.

From (7.45) the zeros and poles of n (s) can be easily found as

the roots of the numerator and the denominator polynomial, respectively.

The poles and zeros of the first six eigenadmittances occuring in

the upper left quadrant of the complex frequency plane are shown in

Figure 7.3. It should be noted that the first layer poles of the sphere

are much more damped than the dominant poles of the thin-wire loop

and dipole antennas. Incidentally, the zeros of the TM admittances,

except for the zero at the origin, are also the poles of the terms

*associated with the TE eigenmodes in eq. (7.3). Extensive listings

.3of the sphere poles are included in [Martinez et aZ., 1972; Granzow,

19661.

The residue rni at the ith pole of the nth eigenadmittance ni

can be found as
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n sk (S)
rni -im (Ss n) [sk (s)]

Bs**Snin

n snikn(an n s 2
ns n n n ] " (7.46)

[Sk n(SnD)]" [Snzi+l +)

This simple expression follows from the Ricatti-Bessel equation

[Baum, 19711

Sn Cs k (s)]" - s k (S) - 0 (7.47)
s' +n(n+l) n n

th
Denoting the dominant pole of the n eigenadmittance by s andn

the corresponding residue by r n  the nth normalized eigenadmittance

can be approximated by

Yn(S) Z sn_ + P . (7.48)

Using this in (7.36) and taking N dominant pole pairs gives

N N -
1(s) a n [Yn(s) + '-n(s)] - n Yn(S) (7.49)

in-i n-i

where the modified pole admittance Y n(s) and the modified pole-pairZn

admittance Yn (s) are defined by (3.11) and (3.16), respectively, with

the admittance residue given by

a n b r (7.50)
dln nn

or, more explicitly, by
e +a

as
2

nta n+1 n P1(o in P 1 (cos@)sinede (7.51'
-n Z d n(n+l) [s2 +n(n+l) ( P (cose0i n

0 n
g 0
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In Figure 7.4 is shown the behavior of Y(jw) of a spherical antenna

(eg =90*, d/a -0.05) computed from the quickly convergent formula (7.38)

with the static capacitance given by (7.34) as C -104.74 a (pF]. It

is seen from this figure that the driving-point admittance of the

spherical antenna evaluated on the jw-axis does not exhibit resonances

and remains capacitive at all frequencies. On the same figure is plotted

the admittance obtained from the dominant-pole approximation (7.49).

Shown is also the character of the imaginary part when the dominant

pole-pair admittance is augmented by a corrective shunt capacitor

adjusting the static capacitance of the circuit to the proper value.

It is evident from the comparison of these plots that the dominant-

pole formula, even with the capacitive correction, gives a poor

approximation to the admittance of the spherical antenna.

7.4 Derivation of the Short-Circuit Current of the Spherical Antenna

For the short-circuit current computation the spherical antenna,

with its slot closed, is excited by a plane wave incident field with

the polarization as indicated in Figure 7.1. No generality is

sacrificed by limiting the discussion to this polarization since the

field component parallel to the x,y plane does not contribute to the

net current across the gap. Also, the discussion can be simplified

by making the propagation vector P parallel to the x,z plane. Since

the antenna geometry is independent of 4, this represents no loss in

generality, either.

The plane wave incident field is given by eq. (2.7) of Chapter 2

with E o - E , where 6 is the unit polarization vector, as shown in

Figure 7.1. Since the extent of the gap region of the spherical antenna
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cannot be considered electrically small, one cannot choose the time
-.

origin location r0 independently of the direction of arrival of the

incident field. This difficulty is overcome by moving the time origin

to the point of the first contact of the incoming wave with the gap

region. Thus, with

r° - a cos(o+ ) (7.52)

and

to c o -c S(eo+ 1 ) (7.53)

the incident field becomes

-4.
(r - r 0 o

E (rs) E e (s)
-STo -Y 0 -s

E e u e (7.54)

where s-ya is the normalized complex frequency and T -t c/a. The last
0 0

term in (7.54) can be expanded in terms of the spherical vector wave

functions as follows [Baum, 1971; Morse and Feshbach, 1953]

e - yr) + b n,--er)] (7.55)
n=1 m1.0 En,m .n,m,o( n,m n~m,e

where
M ,(yr) - in(yrlm (e,*) (7.56)

n,m,a n 'G

Sin(yr) [(yr) in(Yr) 1'
n ",, n(n+l) ma P U(,)+ (ar) Qn,,(e,O) (7.57)Nnyr nnm)P Cr ~

I
4 with (8,) and (e, ) defined in (7.8) and (7.9) and

4n,M,o ~ ,

P e~,~ ~o 8 .csm~I..(7.58)4e ( O )  f Pn(cose ) sin(m) "
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i) The coefficients in (7.55) are given by (Baum, 19691

(2- (_l)n+l 2n+l (n-)! P(cs 1)

an m  om) n(n+l) (n+m)! m sineI  (7.59)

and

aP m(cose )

b = (2-6 )(-1 ), 2n+l (n-m)! n 1 (co60)
n,m om n )(n+l) (n+)" (7.60)

With the help of (7.54) and (7.55) the coupling coefficient

(normalized to E0a ) can be found from (7.14) as

[s in (S)] ST or Pn (COS)]
2

(s)bno s 0 ind

0

~[s in(S)]' -ST°

- 2(-1)n s e P (cose1) (7.61)

When (7.61) is substituted for the coupling coefficient in (7.13), the

term [s i n(s)]', which is associated with the purely imaginary cavitynP
resonances, is cancelled out. The short-circuit current, normalized

to E0a, takes the form

-sT
1sc (s (_)n 2n+l p1(cose )sine P (Cos e e(s).

nS = o 0 n(n+l) n 0 0 n I seis knT]'f)

(7.62)

To expand (7.62) in terms of its singularities it is necessary to examine

3the term
4

-ST -ST
0 0

e -e

s[s k n(s)]' n s k n(s) + sk n_l(s)

s (7.63)
nPn(S) + S2Pn2l(S)
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where the polynomial pn(s) is defined in (7.43). The comparison of

(7.63) with (7.45) shows that ISc(s) has the same poles Sni as Y(s).

The residues of (7.63) at these poles can be found as

-ST -s niT0
eo nio

r' = i{m (ssni) k(s)](ni SSni -Si) ~s n(S]' Sn[s kn(Sni)J"

S T n+l Sni ( I - To)
e Sni e
e z ni (7.64)

[s2 +n(n+l)]kCSn) (ss [ +n(n+l)]p n(s)
ni n n ni nni

In the dominant pole approximation the short-circuit current

becomes

SC(s) I - (_,n 2n+l p (coso )sine P (cose1 )n= 1 - ( -1 n - n (n+l --'-- n

nfinl o o

n+l Sn (1 - to)
(1 T

Fnl s rn 0s
_________n_____ S f(s) (7.65)
Sn +n (n+l)]p n (sn ) sn (S-Sn) .

which can be rewritten as

SC (s) W (s)T n(s) (7.66)

nfl

with the source coefficients T given byn

-SnT p1
n P(cose)

T k ))n  e nns 2 k s + a
n n n go

a P (cose)sind6

eg co
n 0 n

n-1 S n (-To pl(o0t

s e cj - 2 (_ 1 ) (s + (7.67)

f pl(cose)sinede

g o

2
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Combining N conjugate pole-pairs in (7.66) results in

NiSC(S) [Y (s)T +Y_ (s)T* If(s)

n=l n n n n

N l
~ (s~ (s?(s)(7.68)

nil n" l~)?s

with the pole-pair voltage transfer functions T (s) defined in (3.24).n

In Figure 7.5 the spectrum of the short-circuit current of the

spherical antenna (g =90*, d/a- 0.05) computed from (7.62) with the

delta function time history (f(s)- 1) is compared with the spectrum

obtained from the dominant pole approximation (7.68). The agreement

between these two spectra, although quite poor, is nevertheless much more

satisfactory than the agreement in analogous admittance results

(Figure 7.4).

7.5 Equivalent Circuits for the Spherical Antenna With an Equatorial

Slot of Width d/a-0.05

In Table 7.1 are listed the admittance residues a associated with
n

the first 20 dominant poles of a spherical antenna with an equatorial

slot (0 90') of width d/a 0.05. Included also for each pole sn are

the quality factor Qn and the amount of the real part padding Gn

required for the realizability of the associated pole-pair admittance.

The column denoted "%" gives the ratio (in %) of the padding conductance

G to the resonance value of the real part of Y (Jw). It is seen from
n n

this table that, except for the first few poles, the amouit of padding

G is a significant fraction of the value of the real part at then

resonance. Only the first pole pair admittance does not require

padding and is realizable in the modified form. This is further
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illustrated in Figures 7.6-7.11 where the behavior of the real part of

some of the dominant pole pair admittances is plotted as a function of

the real frequency w. It is seen that, except for the first pole-pair

admittance, there is a sigaificant negative excursion of the real part

on the jw-axis.

The element values and the circuit topology of the dominant

pole-pair admittance networks for the spherical antenna with e -90
g

and d/a= 0.05 are included in Table 7.2. The transient response of this

equivalent network due to a Gaussian voltage pulse is compared in

Figure 7.12 with the "exact" response obtained from (7.38) and an

FFT inversion. Shown also is the response of the equivalent circuit

augmented by a corrective capacitor. In both cases the discrepancy

between the circuit response and the exact response is significant.

In Table 7.3 are defined the dominant pole-pair voltage transfer

networks of the spherical antenna (eg = 9 0
O, d/a=0.05) for the case

of a broad-side plane wave incident (01 900).

The short-circuit current response of the complete equivalent

network for the spherical antenna due to a plane wave incident field

(a1 =90*) carrying a step function time history is compared in Figure

7.13 with the "exact" response obtained from (7.67) by an FFT inversion.

Again, the agreement between these curves is not satisfactory.

7.6 Conclusions

The spherical antentn, with Its resonances so highly damped,

provides an extremely stringent test for the dominant-pole-at-at-time

equivalent circuits. The dominant-pole approximation, which works

so well for the thin wire loop and dipole antennas (Chapters 5 and
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Figure 7.9 Real part behavior of the 7th dominant pole-pair admittance
of the spherical antenna with an equatorial slot.
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of the spherical antenna with an equatorial slot.
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Table 7.2 Element values of the dominant pole-pair admittance
networks for a spherical antenna with an equatorial slot (e. -90-)
of width d/a -0.05.

LADDER CIRCUIT (Figure 4.7(a))

n Cl1/a[pF/m ]  R I[Q ]  LlI/a[UH/m ]  R 2[Q ]

1 41.66 0.0 266.71 80.0

BOTT-DUFFIN CIRCUIT-CASE A (Figure 4.12(a))

n C0 /a[pF/m] L1 /a[pH/m] C1 /a(pF/m] R1 [[]

3 11.923 132.45 33.456 115.84

5 7.269 93.48 11.884 123.54

7 5.348 74.257 6.416 125.38

9 4.282 62.613 4.136 125.34

11 3.597 54.737 2.941 124.61

13 3.115 49.027 2.225 123.66

15 2.755 44.69 1.756 122.67

17 2.474 41.287 1.430 121.75

19 2.246 38.547 1.191 120.96

*Natural frequencies sn , n-2,4,6,... do not contribute to the
driving-point network.
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6), is a rather crude one in the spherical antenna case. Also, the

dominant pole-pair admittances of the spherical antenna require a

much larger amount of real-part padding (relative to the value of the

real part of the admittance at the resonance) to render them positive

real than do the loop and dipole antennas. As a consequence of this,

the performance of the dominant pole-pair equivalent circuits for

the spherical antenna is considerably poorer than the performance of

similar circuits for the thin-wire loop and dipole structures, as

demonstrated in Chapters 5 and 6. It seems that most of the inaccuracy

in the circuit response is introduced by the driving-point admittance

part of the equivalent circuit. The performance of the source part

is significantly better than that of the admittance part of the equivalent

network, so that the short-circuit current waveform does not differ

significantly from the true response.

Due to its extreme low-Q character, the spherical antenna provides

a worst case estimate of the performance of the dominant-pole approximatioa
I

in the sense that for poles residing so far from the jw-axis the dominance

of the poles nearest the axis is, at best, weak. Although the dominant

pole results are relatively poor in Figures 7.12 and 7.13, they agree

within 35 percent with more accurately computed results. We therefore

conclude that in the low-Q limit, the approximation fails gracefully

and that for structures whose dominant pole quality factors are inter-

mediate between those of wire structures and the sphere, the dominant

pole-approximation may be sensibly applied.
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CHAPTER 8

SUMMARY AND CONCLUSIONS

Practical and systematic procedures have been developed for the

synthesis from the SEM (Singularity Expansion Method) description of

acitve, physically realizable equivalent circuits for electromagnetic

energy collecting structures with identifiable ports. The necessary

SEM information includes the poles s n } of the structure and the

associated natural modes and normalization coefficients. From the poles

and the associated modal distributions one can compute for a given

incident field the coupling coefficients which weight a given singularity's

contribution to the total response. Two different coupling coefficient

forms have been used in the SEM work to date-the so-called class 1

and class 2 forms [Baum, 1976b]. In the SEM equivalent circuit synthesis

only the class 1 form is applicable, which is known to exhibit numerical

instability in early times [Marin, 1972; Pearson, 1979]. However, it

is demonstrated in Chapter 2 that the simple class I coupling coefficient

can be used with success provided the time origin of the problem is

placed in the port zone (gap region); it is also argued that the class

1 expansion is always convergent as Rets] -= for this time origin

location.

The SEM expansion for the current density J(r,s) on a scatteringI
object is derived formally in Chapter 2 from the eigenfunction expansion

4of J( ,s) in terms of the eigenvalues and eigenvectors of the electric

field integral equation (EFIE) operator. It is assumed in this

development that a complete set of eigenvectors exists which is not

necessarily true since che EFIE operator is non-selfadjoint. In fact,

it is demonstrated in Appendix A that the eigenvalues of the EFIE
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operator may have branch points in the complex frequency plane at

which two or more eigenvalues become degenerate so that the inclusion

of root vectors in the expansion may be necessary [Ram, 1980]. If

an eigenvalue has a branch point, a branch cut must be chosen in the

s-plane, resulting in a branch-integral term in its SEM expansion.

This can have an important bearing on the SEM equivalent circuit

synthesis because in most practical cases these branch-integral

constituents are not explicity identifiable. Their omission, however,

can result in non-realizable terminal eigenadmittances [Pearson and

Wilton, 1981].

In the process of expanding the inverse eigenvalue in terms of its

singularities one refers to the Mittag-Leffler theorem from the theory

of functions of a complex variable. Two basic SEM expansion forms

result depending on the large-s asymptotic behavior of the eigenvalue-

the so-called modified and unmodified forms (Baum, 1976a]. It is

observed in Chapter 2 that the modified form imposes less stringent

conditions on the asymptotic behavior of the eigenvalues of the integral

operator. Therefore this form appears to be preferable in the case of

problems solved numerically. This suggestion is supported by the fact

that, as shown in Chapter 7, the modified SEK expansion is the proper

one in the case of the sphere, which is one of the few structures

for which an exact analytical solution is available.

The SEM equivalent network can be derived either from the Norton

or from the Thevenin equivalence, leading to two different but equivalent

networks. Of course, the SEN parameters which must be supplied are

different in those two cases. The short-circuit SEM data are usually

found by solving the short-circuit boundary value problem, whereas the
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open-circuit parameters result from the solution of the open-circuit

boundary value problem. The open-circuit SEM parameters are much more

difficult to obtain than the short-circuit parameters of the same

object because of the highly localized cl.arge interaction effects

between the two parts of the structure in the vicinity of the gap

which must be modeled precisely in the open-circuit problem. Further-

more, it is enough to solve only one short-circuit boundary value

problem for all possible gap locations on the structure, whereas the

open-circuit problem must be solved for each location. Thus, if for

some reason the Th~venin-based equivalent circuit is preferred over

the Norton-based equivalent, it is perhaps more expedient to derive

it from the short-circuit parameters, as described in Chapter 3.

The SEM equivalent circuit synthesis procedures developed in this

work are based on the first-layer, dominant pole-pairs because they

dominate the response of the structure and they are the ones easiest

to extract by numerical or experimental means. An alternative

approach of grouping the poles according to eignvalues is not

practical, however, because in most cases this collection

of poles is not explicitly identifiable. Also, the number of poles

grows rapidly for higher order modes, making the corresponding circuits

extremely complicated [Streabie and Pearson, 1981].

The SEM equivalent circuits developed in Chapter 4 have the form

of a connection of simple modules associated with the conjugate pole

jpairs of the structure. These pole-pair circuits are synthesized one

at a time, so if the need arises the network can be easily expanded

by adding more pole-pair modules without repeating the whole synthesis

process. By using the network topologies developed in Chapter 4 the

synthesis process is reduced to the realization of a driving-point
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function biquadratic in s and a voltage transfer function bilinear

in s. The realizability conditions and explicit circuit realizations

are given for these functions.

If the driving-point function is realizable, it can be synthesized

by simple continued fraction expansion. If a pole-pair driving-

point function is initially nonrealizable, a simple padding procedure

is described to synthesize an approximating circuit. The padded pole-

pair driving-point function is a minimum-real-part function. It appears

that the only transformerless realization applicable in this case is

the Bott-Duffin network. If the amount of padding is negligible, this

network can be simplified by deleting one leg without introducing

appreciable error.

It is shown that the pole-pair voltage transfer function can be

always realized either in the form of a ladder circuit or in the form

of a symmetrical lattice circuit. Unfortunately, the applicability of

each of the two topologies is dependent on the direction of arrival

of the incident plane wave, so that the circuit topology may change when

excitation conditions are changed. In each of the two cases, two

equivalent realizations are possible: an RC realization and an RL

realization. In the cases tested it was found that the element values

of the RC networck were more realistic than the element values of the

equivalent RL realization.

Each of the transfer networks must be followed by a voltage-
4

3controlled voltage source which serves as an impedance buffering

stage and as an amplifier to rest,,re the gain lost in the associated

transfer network. The controlled sources can be implemented in practice

with active devices which, however, usually cannot sustain high voltages.
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The synthesis procedures developed are tested on thin-wire loop

and dipole antennas (Chapters 5 and 6), as well as on a spherical

antenna (Chapter 7). The synthesized equivalent circuits are analyzed

by a general circuit analysis program (SCEPTRE) and the responses

compared with classical frequency domain and numerical inverse Fourier

transform results or with results obtained from the Thin Wire Time

Domain (TWTD) code. In the case of the thin-wire structures, the results

are very encouraging. The circuit responses agree favorably with the

responses obtained by other means. Of course, the quality of the

circuit responses is commensurate with the quality of the dominant-

pole approximation, which is very accurate in the case of highly resonant

(slender) structures. The only additional approximation in the SEM

circuit is the possible padding introduced in the synthesis of the

pole-pair driving-point function. This padding is negligible in the

thin-wire loop and dipole cases; it is rather significant for the

spherical antenna. In the case of the spherical antenna the dominant

pole approximation breaks down, too. For these reasons the SEM equivalent

circuit of the spherical antenna cannot be expected to perform well,

unless modules associated with the second and, perhaps, third layer

of poles are included in the circuit.

The driving-point responses of the equivalent circuits are consider-

ably poorer than the short-circuit responses excited by a plane wave

incident field. This cnn be attributed mainly to the capacit've

adeficiency of the SEM equivalent circuit. Namely, the capacitance of

the finite equivalent circuit in the limit as s-0 underestimates the

true static capacitance of the structure. Therefore, the early-
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time response of an SEM equivalent circuit can often be improved by

augmenting it by a shunt capacitor of a proper value. This phenomenon

does not influence the short-circuit response because the input terminals

of the structure are shorted for that case. Most of the comparisons

included in this work involve the short-circuit conditions primarily

because only for those cases were benchmark results readily available.

In view of the above, these tests may appear to be, perhaps, too for-

giving. However, the loaded dipole example included in Chapter 6

indicates that our equivalent circuits also perform well under finite

loading conditions. The SEM equivalent circuits with nonlinear loads

are analyzed in Appendix B. No data were available for comparison

in those cases, but the results lend themselves to a straightforward

physical interpretation.

In the thin-wire dipole case the sinusoidal natural-mode approxi-

mation can be employed to simplify the SEM equivalent circuits. It

is demonstrated in Chapter 6 that this approximation is poor in the case

of the driving-point circuits but it can be applied successfully to

the voltage transfer networks. For a symmetrical dipole antenna or

a cylindrical post over a ground plane, particularly simple and yet

reasonably accurate circuits result.

In conclusion, the main objective of this work has been fulfilled.

I The SEM equivalent circuits developed are physically realizable, simple,

4and reasonably accurate. These circuits possess most, but not all of

the desirable features listed in the Introduction. In particular, the

network topology does change with the change of the direction of

arrival of the incident field. However, the equivalent circuit does
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not depend on the time history of the incident field. Also, the autonomic

voltage source is connected to only one port, and the equivalent circuit

is transformerless, but it does include controlled sources.

I
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APPENDIX A

ON THE EXISTENCE OF BRANCH-POINTS IN THE EIGENVALUES
OF THE ELECTRIC FIELD INTEGRAL EQUATION (EFIE) OPERATOR

IN THE COMPLEX FREQUENCY PLANE

A.1 Introduction

The Singularity Expansion Method (SEM) [Bawn, 1971] representation

for the current density on a scattering object can be derived formally

from the eigenfunction expansion involving eigenvalues and eigenfunctions

of the associated integral operator [Baum, 1975]. It has generally

been assumed that the inverse eigenvalues are analytic in the complex

frequency plane (s-plane) except for pole singularities [Pearson and

Wilton, 19811. This is suggested by Marnn and Latham's result

[Manin and Lathao, 1972] that in the case of finite extent perfectly

conducting bodies in lossless media, poles are the only singularities

in the SEM expansion. 1) However, as pointed out by Pearson and Wilton

[1981], this does not preclude the possibility of the occurrence of

other singularities which cancel in the complete sum representing

the singularity expansion of the current. As it turns out, in fact,

only for bodies such as the sphere or the circular loop antenna, in

which geometrical symmetry completely determines the eigenfunctions

(and hence they are frequency independent), has it been possible to

show (Section 2.3) that such singularities cannot occur.

4

')In contrast to finite extent bodies, infinite cylindrical objects

always manifest solutions with a branch point singularity of well-
understood origin at zero frequency. Schafer and Kouyonzjian [1975]
discuss this branch point for the case of a conducting circular cylinder.
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The presence or absence of branch points has an important bearing on

the validity of the Eigenmode Expansion Method (EEM) [Baum, 1975]

representation of the resolvent kernel, because at a branch-point in

the s-plane two or more eigenvalues become degenerate and the inclusion

of root vectors [Raw, 1980] in the expansion may be necessary at that

point. The expansion of individual reciprocal eigenvalues or any

associated "eigen-quantities" to obtain their singularity expansion

can also require integrals along the concomitant branch cuts in order for

the expansion to be complete. The previously-mentioned meromorphicity

result of Marin and Latham for finite extent objects ensures that when

the eigenvalue expansions are summed, the branch-integral constituents

cancel and the traditionally-used SEM forms result. However, in some

applications, singularity expansions are applied on an eigenmode-at-

a-time basis and the branch integrals must be retained. For example,

the eigenvalues and their reciprocals manifest a "generalized positive-

realness" [Pearson and Wilton, 1981] which is important in SEM circuit

synthesis. To discard the branch-integral constituent of their

expansion may compromise this property.

Although the existence of branch-integral constituents in the SEX

representation has been speculated upon [Baum, 1978; Pearson and

Wilton, 1981], no specific examples of their occurrence have been cited,

to date (except for the well-known infinite cylinder case, mentioned
I

above). The purpose of this paper is to fill this gap.
4

.In Section A.2 we demonstrate simple circuit and transmission line

examples in which the eigenvalues of the impedance matrix have branch-

points. Although only finite-dimensional impedance operators are

involved in these examples, they provide valuable insight into the

234



of the branch-point occurrence. In particular, they clearly demonstrate

the role of the object symmetry in the occurrence of branch-points in

the eigenfunction expansion of the inverse operator. In Section A.3

we consider the problem of scalar scattering by a prolate spheroid

and demonstrate the presence of branch points in the eigenvalues of

the associated integral operator which follows from the analysis of

the spheroidal wave equation in the complex frequency plane (Oguchi,

1970]. In Section A.4, similar analysis of the Mathieu's differential

equation [BZL,7;7 and Clenn, 1969] leads us to the conclusion that

branch points besides that associated with the infinite extent of the

object exist in the frequency plane behavior of the eigenvalues of

the EFIE for an infinite perfectly-conducting elliptic cylinder.

A.2 Branch Points in Circuit and Transmission Line Problems

A.2.1 General Remarks

The terminal quantities of an N-port linear, passive, and bilateral

electrical network are related via the equation

[zJ(IJ = IV) , (A.1)

where [I and IV] are column vectors containing N-port Laplace-transformed

currents and voltages, respectively, and [Z] is the NxN symmetric

open-circuit impedance matrix. Eq. (A.1) is analogous to the electric

field Integral equation (2.1). The primary difference is that the electro-

magnetic problem consists of an uncountably infinite number of ports.

Even this distinction vanishes, however, when a numerical solution of

(2.1) is undertaken because then a matrix approximation replaces r and

column vectors analogous to voltage and current replace I and J,

respectively [H2arri nton, 1968]. In the following, some conjectures
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concering (2.1) are made based on observations of properties of (A.1).

In general, an eigenvector expansion of the inverse of (Z] can

be found as follows:

1 N [In (s)]1I )
nZ (nCS M nCS, (A.2)

LZs_ nil A n(s) []nTs '[ ' (s)]

where the superscript T denotes transpose and An and (I nI are

eigenvalues and eigenvectors of [Z]. In the regions in the s-plane

where (A.2) holds, solution of (A.1) can be found in a form analogous to

(2.13). However, it is demonstrated in simple examples below that there

may be points in the s-plane where the eigenvalues become degenerate and

the simple expansion (A.2) is no longer valid.

Before presenting specific examples it is helpful to investigate

what general conclusions can be drawn concerning the eigenvalues of

a two-port. The characteristic equation of a lumped reciprocal two-

port network described in the form of (A.1) is

rll x  z12  2

det x2  + 7 + Z z -z 2 = 0 A.3)det~1 22 11_ (ZlZ2 22_Z1 2

12 z 22-Xj

where z,11  z1 2 , and z22 are rational functions in s. From (A.2.3)

elgenvalues become

X (S) = +
17 + t (A.4)

~2

where the discriminant A(s) is given by
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A(s) (Z 1 1 +z 2 2 ) 2 -4(z1 1z2 2-z1 2
2 )

(A.5)
(Zli-z 2 2 ) 2 +4 z1 2  .

The radical in (A.4) suggests that, in general, the eigenvalues have

branch points in the s-plane. Branch points do not occur, however, if

one of the following conditions is satisfied:

1. z12 '0 (uncoupled ports), which is a trivial case;

2. A(s) E0, which can happen only if (zll- z2 2) 
= ±j2zl 2 ; however,

this situation is not possible since zij are rational functions
with real coefficients;

3. A (s) is frequency independent or of the form [P(s)/Q(s)1 2

where P(s) and Q(s) are polynomials in s;

4. z 11 ' z22, which holds for a symmetric network.

The role of the network symmetry in eliminating branch points in

the impedance matrix can also be illustrated in the example of a three-

port with rotational symmetry. Tre impedance matrix of such a network

is given by

zll z12 z12

[z]- z12 Zl1 z12 (A.6)

The characteristic equation

det ([Z] - X[I]) - (z11+2z 1 2 - X)(X+z 1 2- z11
)2  (1.7)

yields the eigenvalues
I

X zll +2Z12  (A.8a)

4 and

A zll - z1 2  (A.8b)

which have no branch points if z and z]2 are rational, but where A2

is of algebraic multiplicity 2. The eigenvector corresponding to AI is
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[I1l f=ij(A.9a)

and the eigenvectors corresponding to X are
2

[12,1] e L [12,2] e (A.9b)

ej477/3 LJ21t/ 3

Since two independent elgenvectors corresponding to 2 could be found,

its geometric and algebraic multiplicities are equal. Also, owing to

the symmetry of the network, we see that the eigenvectors are the

so-called "symmetrical components" and are frequency independent.

The impedance matrix of the last network example has properties

similar to the EFIE operator in the case of the circular loop antenna

and the spherical antenna-both rotationally symmetric bodies. As in

the case given above, both the circular loop and the spherical antenna

have multiple eigenvalues for which independent eigenfunctions can be

found. These eigenfunctions are frequency independent, too.

A.2.2 Two-Port Example-Lumped-Element Circuit

The simple two-port of Fig. A.l(a) provides an example explicitly

illustrating the occurrence of branch points in the eigenvalues of an

imped:Ince matrix and their mutual cancellation in the singularity expansion of

the inverse of the matrix. The impedance matrix of the circuit is
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'I 1/t at
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4/3
,I

-I I Re[s]

-4/3

(b)

" I

Figtre A.1 (a) Two-port circuit and (b) branch points of the eigenvalues
of the impedance matrix.
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+ s/2

= [Z] (A. 10)

I 1+2

with the eigenvalues

(S (s) 1+ s t V (,s) (A.11)
1 42

where

A(s) 1+ 1 , (A.12)

and with the elgenvectors

-
[(s)= (A.13)

From (A.11) one finds that Xi(-5/2)=0 and X2 (0)=0, and hence [Z- 1

has poles at s=O and s =-5/2. However, there are also branch points

at s=j4/3, where the eigenvalues become degenerate 
(Fig. A.1(b)). Away

-1

from these isolated points we can find [Z -1I according to CA.2) as

V+ +A- 1(s ¢ s+/KsT

4

3 1 ]

+ s(A.14)S)[t +vA (
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At the branch points the denominators of (A.14) vanish and the expansion

is not valid. However, if the terms in (A.14) are combined together we

obtain

2s+1 -1

s 2 +IS S2 +IS2 2

L ( -1 s/2+l

S 2+ IS S 2+-5s2 2

Obviously, there are no branch points in (s)] Its only singularities

are the poles at s=0 and at s=-5/2.

At a branch point the root system can be used to expand the inverse

matrix. The coefficients of this expansion can be found with the help

of the biorthogonal root system (rease, 1.9651. For example, at the branch

point s =+j4/3, [Z] has a double eigenvalue ==I+j5/3 and a root system

[1 1,11 [11, 2 1 [= ](.6

If the scalar product

<[ 1[12 > = (11 (1]21 (A.17)

is introduced where t denotes the Hermitian transpose, a biorthonormal

root system can be found as

1 = I 'rIr"(^fi
LW, WI2i j (A . 18)' 0 '

Using (A.16) and (A.18) [Z-t can be expanded at the branch point

s= +J4/3 as
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-1 ])
2  1 ' (A.19)

with a similar conjugate representation at the other branch point,

s=-j4/3. Note that the eigenfunction expansion (A.14) is valid through-

out the complex s-plane except at the two isolated branch points.

One might speculate that the resistive element in this circuit

is the feature which leads to the branch points. Since we wish to draw

analogies with scattering from lossless surfaces, this would indeed

be untimely. However, one can readily construct LC circuit examples

as well, where the branch points arise. Furthermore, examples are easily

constructed in which the branch points lie in the right half plane.

A.2.3 Two-Port Example-Non-Uniform Transmission Line

To illustrate that the branch point occurrence in the eigenvalues

is not limited to lumped systems, we consider a section of lossless

non-uniform transmission line of length L (Fig. A.2(a)). The impedance

and admittance per unit length are assumed to vary exponentially with the

distance x along the line according to, respectively, z(x)= exp(2x) and

y(x) -y exp(-2ctx), where z=sZ and y=sc and Z and c denote, respectively,

the per-unit-length inductance and capacitance of the line. Viewing the

line as a two-port network we may find its chain-parameter matrix by the

method described in [FertnoZ~i, 1967]. From the chain-parameter

dscription the impedance matrix can be found as

ctnh1(i'L) + - i
y y y sinh(IL)

(zl = L Y f, ctnh(rL) -2 e2cxL (A .20)

y eihr) ctnh(Ft
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Figure A.2 (a) Exponential transmission line, (b) branch points of the
eigenvalues of the impedance matrix and (c) branch-point trajectory as
a function of the taper parameter.
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where r =v ' a+zy = (s/v.with v=//-cc denoting the speed of light

(a deviation from the generally accepted notation is made here because

the symbol c is used in this section to denote the per-unit-length

capacitance f the line). The inverse of [Z] can be readily found as

ctnh(rL) L r e

Fk-] = hc hL~ t :;2ec~ (A. 21)
F ec L 2

sinh(FL ctnh(U L) +- e- 2e

If the hyperbolic functions in (A.21) are expanded in a power series,

it is seen that only even powers of r enter the elements of [ ,1jI hence

the inverse matrix has no branch points. Its only singularities are the

infinite number of poles given by

sL - j/(nir) 2  + ( L )2  , n= 0,1,2,... (A.22)

The eigenvalues of [Z] can be found to be

-= e ctnh(rL)cosh(oLL) - sinh(L) t , (A.23)

where

A(s) = ctnh 2 (FL)cos2 (tL) - (a fctnh(PL)sinh(2aL)

(A.24)

+-(- sinh 2 (AL)-
y y

Ohvlouisly, there are branch points in the eigenvnltis (A.23) which can

Iu I oijd f rom the equL Loll A(s) = 0. A numrical nvCSLt L iflon of

(A.24) yields four branch points located symmetrically in the four

quadrants in the s-plane (Fig. A.2(b)). Note that the branch points

are not restricted to the left half-plane. The trajectory of the
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first-quadrant branch point for different values of the parameter a

is shown ii Fig. A.2(c).

We recover a uniform transmission line-ie., a symmetric structure-

by letting a -0. In the limit, the branch points recede to infinity,

continuing the trend indicated in Fig. A.2(c).

A.3 Scalar Scattering from a Prolate Spheroid

The role of symmetry in eliminating the appearance of branch points

in the preceding examples suggests that in the scattering problem we

should examine a finite-extent structure which, for simplicity, conforms

to a separable coordinate system but which is not symmetric under a

general rotation, i.e., something separable, but not spherical.

The vector Helmholtz equation is not separable in spheroidal coordinates,

but the scalar Helmholtz equation is. We therefore consider the

associated scalar scattering problem.

The geometry of the structure under consideration and the coordinate

system are shown in Fig. A.3. The surface S of the spheroid is defined

by the radial coordinate u=uo, and the semifocal distance is 9. We

are interested in the eigenvalues of the integral equation in Q defined

by

,sr(r',s)dS' = F(r,s), rc S , (A.25)

S

where G0(r,r',s) is the scalar Green function defined in (2.4) and

F(, s) Ls the forc 'u fUnetion.

Expanding the Green function in (A.25) on the surface S in terms of

the spheroidal wave functions gives [FZcner, 1957]
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Figure A.3 Geometry of the prolate spheroid.
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I I _..N S(qv)Sn(q.v,
47rr-r' 1 m-0 n=m mn

x cos[m(m-n )R(q(q,u0)R(4)(qu 0), r.r'E S (A.26)

where 6 is the Kronecker delta, q-jyZ is the frequency parameter,
nm

and S and R (i- =1,4) satisfy the following differential equations
mn mn

which arise in the separation of the Helmholtz equation in prolate

spheroidal coordinates [Fwnr'ci, 19571:

v - ) v Smn(qv + [n(q ) - q2v2  - Sm(q,v) =0 (A.27)

and

d_ [u d R ")(qu - Ua u2 (in (q.u) 0 , (A.28)du dSl u mn [mn( q ) - q  u+ 2  mRni

where m and n are integers and a are the separation parameters. Themn

normalization factors appearing in (A.26) are defined through the

orthogonality of the angle (periodic) functions

f Smn(qv)Smn,(qv)dv = Snn N mn (A.29)
-i

and are found to bel )
mnq

N 2~ (r + 2m)! (.0

In (2r 4 2m+ l)r! (A.30)

mnm=~ rwhere the functions d (q) are the coefficients in the expansion of~r

11c h ,igh. Ic 11u ct i ls S Ii Lvrms ol he IS,4oCJ Iitd I cgt't-I c fnt.Lo;IMS:noll

The prime over the summation sign indicates that the summation is
over (only) even values when (n-m) is even and over (only) odd values
when (n-m) is odd.
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S (q,v) = I dmn(q)pm (v) (A.31)mn r m+r

The substitution of this expansion into (A.27) yields a three-term

mnrecursion formula for the coefficients dm . From this recursion
r

formula, we obtain a transcendental equation, the roots of which are

the separation parameters a [Oauchi, 1970]. This equation has the form
mn

U(a ,q) =0 (A.32)
mnn

It follows from (4.8) that the separation parameters a mn culn

(A.27) and (A.28) are functions of the frequency parameter q.

The orthogonality given by (A.29) is awkward in identifying (A.26)

with an eigenfunction expansion of the (scalar counterpart to) form

(2.11), because the weight in the integration of (A.29) is unity, while

in (A.25) the surface metric is

dS' = 2 /(u2 - 1)(u 2 -v' 2 ) dv'd ' (A.33)

However if we interpret

o - 9,//(u 2 _l)(U 2 _V, 2) ,(v,,,s) (A.34)
o 0

as the unknown in (A.25) and define

27T 1
f frpd (A. 35)

0 -1

then our symmeLrLc product yields the orthogonality integral of (A.2().

By comparison with (2.11) we find that

Xn(q)= R (1)(q,u )R(4) (A.36)

m m mn 0 mn o
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The radial (non-periodic) functions R in the eigenvalues (A.36)mn

can be computed in terms of the spherical Bessel functions [F L7(r,,

1957]. Here, we are interested only in their analytical properties in

the complex q-plane. Since R i ) satisfy the differential equationmn

(A.28), their behavior in the q-plane1 ) can be inferred from the

properties of the associated separation parameters amn. The branch

points of a (q) are also branch points of RM, and thus of
mf mn mn

The functions a mn(q) have been investigated in the literature [Oguchi,

1970; eixner et aZ., 1980] and, indeed, it has been found that they

have branch points in the q-plane. The branch point locations can be

computed by the procedure outlines below.

The behavior of the separation parameters amn in the q-plane is

governed by the differential equation [Wilton et aZ., 1975]

d U
d (q) = - (A. j7)d-q amn Ua

*, results from(A.32) (the subscript denotes a partial ditterential

with respect to the variable indicated). Integration of (A.37) on

closed contour C in the q-plane yields

A a = - fSdq .(A.38)

mn

Ca

This integral gives a non-zero contribution, i.e., a is multi-valued,mn

if the contour C encloses a Zero of U . The location of the branch
a

point of a coincides with the location of the zero of U . Thus, the
; mn a

hranch points can be found by solving (A.32) together with

l)Following the convention accepted in the literature we use the
q-plane rather than the s-plane here. The normalized frequency plane
is related to the q-plane by the trivial mapping yQ-jq.
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Ua(amn,q) - 0 (A.39)

These simultaneous transcendental equations can be solved by a Newton-

like iteration (Oguchi, 19701.

A partial listing of branch points in the eigenvalues for a

number of indices m,n is given in (Oguchi, 1970]. A more complete

list is included in [Meixner et at., 1980]. As an example, we display

in Table A.1 a number of branch points for m=0-2 and n-0-4. Ue observe

that some of the branch points for different eigenvalues coincide,

which means that an eigenvalue for some m,n can be obtained by an

analytic ct.ntinuation into another Riemann sheet in the q-pljne of an

eigenvalue with different indices. This observation substantiates

the degeneracy interpretation of the branch point which is mentioned

in Section 2.3.

When the spheroid is deformed into a sphere, which can o.o accuiplishe'

by letting the focal distance k go to zero, the points in the y-pla,

corresponding to branch points in the q-plane recede to infinity-

a phenomenon analogous to that observed in the case of a non-uniform

transmission line (Section A.2.3). Indeed, it is well known that the elgen-

values of the sphere are proportional to the spherical Hankel functions

of the second kind, which are meromorphic in the finite complex

frequency plane. The absence of branch points can be thus attributed
I

to the geometrical symmetry of this structure, which is lacking in the

spheroid case.
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Table A.1 Branch points of the eigenvalues in the prolate spheroid
problem.

M n Branch Points of a m(y9k)

o 0,2 -2.601670 + j 1.824770

0 2,4 -5.807965 + j 2.094267

0 2,4 -3.081362 + j 5.217093

0 1,3 -2.887165 + j 3.563644

1 1,3 -4.097453 + j 1.998555

1 2,4 -4.492300 + j 3.862833

2 2,4 -5.449457 + j 2.736987
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A.4 rM Scattering from an Elliptic Cylinder

In this section we consider an electromagnetic scattering problem

which demonstrates the introduction of branch points because of its

departure from rotational symmetry: that of transverse-magnetic (TM)

scattering from a perfectly conducting elliptic cylinder. Since the

structure is infinite in extent, a branch point at the origin of the

frequency plane appears as in the case of the circular cylinder

(Schafer and Kouyoumjian, 1975]. It is demonstrated here that the

elliptic cross-section introduces additional branch points into the

frequency plane.

The geometry of the structure and the coordinate system used

are shown in Fig. A.4. The elliptical surface of the cylinder, which is

infinite in the z-direction, is defined by the radial coordiniate u=u 0 .

The semifocal distance is Z. The integral equation for the current

i -*
density J z(y) excited by the incident electric field E (t"') iszz

-JJ_',Y)H( 2 (-jYI -')dL' = Ei(p,), EL (A.40)

L

where H 2)is the Hankel function of the second kind and zeroth order
0

and is the two-dimensional free-space Green function,

The Hankel function can be expanded in terms of Mathieu functions

as (Jones, 19641

H(2) (-iYI-P' 2 00c vqc v,)c(1) (U ,lq)Hc (4) (u ,q)
H0  m0 I m m o m~m=O

+ 2 sem(v,q)se (v',q)Ms l (u (q)Ms (u q)

PP' EL . (A.41)
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Fig.jre A.4 Cross-sectional geometry of the elliptic cylinder.
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The frequency parameter is q--(yZ/2)2 and ce and se are, respectively,m m

the even and odd angular (periodic) Mathieu functions [McLaclzZan, 1947]

satisfying

2 {a() Wfce (vq)

V 2 + b (q)J-  2q cos 2v j se (vq)} 0 (A.42)

and Mc (i) and Ms(i)(i= 1,4) are the radial (non-periodic) Mathieu

m m

functions satisfying

Mc M(u,q)

_ bm(q ) -2q cosh uj s(i) - 0 (A.43)

As in the spheroidal equation case in the preceding section, the

separation constants a (q) and bi(q) of the Mathieu's equation satisfy

transcendental characteristic equations and are dependent on the complex

variable q. The angular functions possess the following orthogonality

properties:

21T

Sce m(vq)cen(V'q)dv Tr 6mn (A.44a)

0

21T

Sse m(v,q)se n(v,q)dv 7 6 mn (A.44b)

0

and

27T

f se(vq)ce(v,q)dv -0 (A.44c)
0

3 while the integration metric is

dL = cosh 2u -cos 2v dv (A.45)
0
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By applying reasoning analogous to that used in the spheroid development,

we conclude that the frequency variation of the eigenvalues

of the operator in (A.40) follows

'Mc(l) (Uo, q)Mcn4) (uq)1

n(q- (1) (4) (A.46)
0 ~MSn (uogq) n (u0pq

Since the radial functions Mc (4) and Ms (4 ) are related to the Hankel
n n

functions of the second kind [McLachZan, 19471, they share with them

the branch point at the origin-the branch point due to the infinite

extent of the scatterer. The radial functions in (A.46) manifest

additional branch points, however.

As in the spheroid case, the analytic properties of these functions

in the complex q-plane can be inferred from the properties of the

separation parauieters a (q) and b n(q). These functions have been

investigated in the literature (BZlanch and CZem, 1969; Meixner et at.,

1980] where it was shown that a and b have branch points in the q-n n

plane, and the locations of these points were computed for a number

of values of n by a scheme similar to that outlined in Section A.3.

The listing of branch points in a and b in yt-plane for n=0-7 isn n

displayed in Table A.2.

When the elliptic cylinder is deformed into a cylinder with

circular cross-section, the eigenvalues of the external scatteringI

problem become the Hankel functions having only a branch point at the

3origin. Thus we may associate the additional branch points in the

elliptic cylinder with the lack of symmetry in this structure.

255

I -



Table A.2 Branch points of the eigenvalues in the elliptic cylinder
problem.

n Branch Points of a n('Y9) n Branch Points of b (y)

0,2 -1.713919 + j 1.713919 2,4 -3.722621 + j 3.722621

1,3 -1.917584 + j 3.376788 3,5 -3.968460 + j 5.416204

2,4 -2.046414 + j 4.988464 4,6 -4.159649 + j 7.064678

3,5 -2.140312 + j 6.582698 5,7 -4.316064 + j 8.689667

4,6 -5.739541 + j 5.739541 6,8 -7.758450 + j 7.758450

4,6 -2.213980 + j 8.168790 6,8 -4.448352 + j 10.300680

5,7 -5.895408 + j 7.313526 7,9 -8.027379 + j 9.468520

5,7 -2.274478 + j 9.750397 7,9 -4.562911 + j 11.902630
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A.5 Conclusions

It is demonstrated by several specific examples that eigenvalues

of impedance-type integral operators can have branch points in the

complex frequency plane (s-plane). Through a two-port circuit example,

it is demonstrated that as s approaches a branch point two eigenvalues

become degenerate, the eigenfunction expansion of the inverse operator

becomes invalid, and the root vector expansion must be used to expand

the inverse operator at this point. If the terms involving the degenerate

eigenvalues are grouped together a representation is obtained which

does not exhibit any branch points and simple poles are the only

singularities of the inverse operator.

In the eigenanalysis of scattering from a prolate spheroid or

elliptic cylinder branch points also occur and two or more eigenvalues

become degenerate. In fact, since some of the branch points for

different eigenvalues coincide, one of the eigenvalues can be obtained

by the analytic continuation into another Riemann sheet in the s-plane

of the "neighboring" eigenvalue.

These examples demonstrate that symmetry plays an important role

in the presence or absence of branch points in the eigenvalues of

the EFIE operator. It is conjectured that branch points may always

be present when sufficient object symmetry is lacking. This conjecture

is supported by the fact that branch points appear when the sphere is

deformed into a spheroid or when a circular cylinder is deformed into

jan elliptic one. The analogous phenomenon has been observed in the

circuit and transmission line problems. For example, when the taper

parameter of a non-uniform transmission line goes to zero (the line

becomes uniform), the branch points move away to infinity.
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The examples substantiate that the previously-speculated-upon

branch points do occur in the scattering theory. In addition, they

suggest a tie between the branch points and the need for root vectors

in a basis spanning the solution space. Whether the need for root

vectors in the solution expansion is isolated to branch points in the

frequency plane and what ties exist between the branch points and

the normal operator condition stated by Fm [1980] remain open

questions.

258



APPENDIX B

AN APPLICATION OF THE SEN EQUIVALENT CIRCUITS TO
THE ANALYSIS OF ANTENNAS WITH NONLINEAR LOADS

In this appendix we give some examples of the application of the

SEM equivalent circuits to the analysis of antennas with nonlinear

loads. Nonlinear effects are important for antenna systems containing

semiconductors, integrated circuits, and voltage limiters when they

may be illuminated by an extremely strong signal, such as that produced

by a lightning strike or an electromagnetic pulse (EMP) [Liu and

Tesche, 1976].

One approach to the analysis of nonlinearly loaded energy-collecting

structures has been to solve a space-time domain integral equation for

the current[MZier et al., 1976; Liu and Tesche, 1976; Schuman, 1974].

At each time step a system of nonlinear algebraic equations must be

solved in this method by a Newton-like iterative procedure. Even

complex-shaped bodies could be treated by this technique if the procedures

developed recently by Rao et al. (1981] are applied. This approach

is not very practical, however, since the complex boundary value

problem must be resolved each time the loading is changed.

An original technique for the analysis of antennas with nonlinear

loads has been developed recently by Tesche and Liu [1975] (see also
I

[Liu and Tesche, 1976;Liu et al., 1977]. They use frequency domain
4

data of an unloaded structure and a numerical Fourier transform to

formulate a Volterra-type integral equation for the current in the

time domain. Subsequently, this equation is solved by stepping in

time and iteration procedure.
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It is believed that the approach proposed in the present work,

i.e., the application of the SEM-derived equivalent circuits and a

standard circuit analysis code to the analysis of nonlinearly loaded

energy-collecting structures, can be an useful alternative to the

method of Tesche and Liu (1975]. It has the advantage that no special

purpose computer code is required. Furthermore, the input languages

of many advanced circuit analysis programs, such as SCEPTRE [Jensen and

McNamee, 1976], allow on-" to define almost any real or conceivable

loading situation. Also, an EMP with an arbitrary time history can

be easily defined.

In the examples given below the nonlinear loading is provided

by an 1N414B high-speed switching diode. The diode was represented

in the circuit by a voltage dependent current source I= 1 [exp(AV)-l]0

with I - 2.9*10 - 7 A and A= 15 V in shunt with a 0.5 pF capacitor0

modeling the junction capacitance. The diode parameters were taken

from [Liu et al., 1977].

In Figure B.1 is plotted the input current response of a circular

loop (Q- 15) driven by a double exponential function voltage source

(with a peak voltage of IOV) through a diode connected in the forward

direction. Shown is also the input current with the diode removed.

The topology and element values of the equivalent circuit used are

given in Table 5.2.

In Figures B.2 and B.3 are shown the current and voltage responses

at a port of a plane-wave-excited loop antenna (Q=15) loaded by a diode.

The incident wave time history is a step function with a peak field

istrength 2nb E 100V (note that the response cannot be magnitude-

normalized as in the examples given in Chapters 5 and 6, since the
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present problem is nonlinear). In the case of Figure B.2 the diode

is connected so that it is polarized in the "on" direction from the

beginning and has little idfluence on the current waveform (cf. Figure

5.8). When the terminals of the diode are interchanged the situation

changes drastically, as shown in Figure B.3. The current is initially

blocked and then flows in the reverse direction. Also in this case'

the reverse voltage on the diode can reach quite high levels in early

times. The topology and element values of the equivalent circuit

used are defined in Tables 5.2 and 5.4. Only the first eight dominant

pole-pair modules were employed. Note that in this case the transfer

networks for n- 1,3,5,... are not present, as indicated in Table 5.4.

In Figures B.4 and B.5 are plotted the current and voltage wave-

forms at a port of a cylindrical dipole antenna (Q=10.6) center-loaded

with a diode, exicted by a broadside incident plane wave with a double

iexponential time history and a peak field strength of ZE0 = IOOV.o

In Figure B.4 the diode is connected so that it is initially forward

conducting. In Figure B.5 the terminals of the diode are interchanged.

As expected [Liu and Tesche, 1976], the current of the diode for tc/t>l

oscillates at about twice the rate of the short-circuit current shown

in Figure 6.21. This phenomenon occurs because the diode, when reverse

conducting, acts as an open circuit. The antenna thus behaves in

effect like two collinear wires, each having its fundamental naturalI

jresonance at a frequency roughly twice that of the whole structure.

The simplified circuit of Figure 6.19 was used in the SCEPTRE analyses,

with the elements defiend in Tables 6.2 and 6.12.

I
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APPENDIX C

STATIC CAPACITANCE OF THE SPHERICAL ANTENNA

C.1 Introduction

The rapidity of the convergence of the eigenfunction or SEM

series for the driving-point admittance of a simply-connected object

can be significantly increased if the static capacitance of the

structure is known, as discussed in Chapter 7. The early time response

of an SVM equivalent circuit can often be improved by adjusting the

static capacitance of the circuit to the proper value as demonstrated

in Chapters 6 and 7. It is in this context that we discuss here the

computation of the static capacitance of the spherical antenna.

In the first part of this appendix approximate closed form formulas

are derived for the internal (C n t ) and external (C ex t ) capacitances

of a spherical antenna with an equatorial slot. The derivation

essentially follows that given by Frcnceschetti [19761. A constant

field distribution in the slot region is assumed. In the second part

a numerical technique is used to compute the total capacitance of

the spherical antenna. Results are presented for e u 90* (equatorialg

slot) and e -60* with the slot width d/a- 0.05 in both cases.8

C.2 Derivation of Closed Form Expressions for the Internal and

IExternal Capacitance

In the equatorial slot case the expressions (7.31) and (7.32)

can be rewritten as

tint 7ra 4 4n-I 1
n - 2n(2n-l) Vn (/2'a ) (C-l)

o n=l

and
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and

ext ra 4n-l Vn(w/2,ao) (C.2)
Z c (2n-1) 2

0 n-i

with

Pn(T2 ) - o1 2

V (w-/2, -2 2 0 P0n1l(n)dn (C.3)n 02n 2aS°  '2-
-nl

0

where n =sina, a -Tr/2-0, and a =d/(2a).0

Following Franceschetti [1976] we define

i(a0) 1 Vn(ao) (C.4)n 0So n n0

where Vn(a ) is the asymptotic expansion of V (r/2,a o) for n - .
n 0 nl 0

From [Franceechetti, 1976]

P 2 (n) ~ 4- cos(n7)cos[(2n- )a] (C.5)

it follows that

P i 1 2n
2n-1 0o)2n-- " - 7T,COSa flOSS

0

x {cos[(2n- )(-ao)] + cos[(2n- )(a+co)I} (C.6)

and

00 ~ i 0
f2S(ao0) 1 2a v' s cos((2n- )(a+a0°)]da (C.7)

Now the series (C.l) and (C.2) can be recast in the following form

"in -n+-l) Vn(T/2'co) -fn(a] (C.8)

0 n=1 n0 n l [LInL2L-)n 0

and
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Cext ma f f 0 ) r V (rr/2,a) f ((C9)

o n-i n-li n o

By using [Franceschetti, 1976]

xc°Slt(2n- )xl _ cos(x/2)tn(2sinx) + ('r/2-x)sin(x/2) (C.1O)n~ln1

and assuming a narrow gap ( o<<1), the first term in (C.8) and (C.9)

can be summed as follows

OD2 rc o oo 00 cos[ (2n- ) ( -"oa

nilfoCa -0 1 2a0)~ da
Sfn(ao), 7 o 2l -o f rn dsa

00
-ae02 a

2 i n[2(a+ao)Ida n + (C.11)

The series in the second terms in (C.8) and (C.9) are uniformly

convergent with respect to a and their evaluation can be safely performed

for a - 0. Noting that
0

2nl (0 ) - 2n P (0) (C.12)

and, for large n,

P (OYn (,) (C.13)
2n

it is easy to show that
I

V (r/2,a o ) (C.14)
4n o IT

and

fo(O) - 2 (C.15)
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Using (C.14) and (C.15) it can be shown that

n{n-/2 ) - fn()} 7 {2n(2n-1) - 0.693 (C.16)nnlT2n(2n-l) Vn( 0),n-) _22 n-i 4n-i

and

nI(n- Vn(T/2,'xo)- =. 2n-1) 1 22.620 . (C.17)

n=il(2n-') n n-)} n

The substitution of (C.1l), (C.16) and (C.17) into (C.8) and (C.9)

yields

Cin t  2 a a(C18

and

Cet.Z2C[n() +2.9 a .(C.19)

For d/a -0.05 these expressions give C in t = 70.66a [pF] and

ext tot mnt ext
C 1l04.74a [pF], so that the total capacitance C C +C

75.4a[pF].

It is of interest to point out that Sohelkunoff [19521 derived

the following expression for the capacitance of a symmetrical spherical

antenna driven by a biconical transmission line:

C c~ It n ydI+ 0.52 a (C.20)

This expression differs significantly from (C.19), except for very

4 narrow slots.

C.3 Computation of the Total Capacitance by the MoM Technique

In this part of the appendix the static cap'-itance of the spherical

antenna is computed by solving numerically the integral equation for
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the charge density. The integral equation is formulated in terms of

the total charge density on the spherical shell, i.e., it cannot

distinguish between the charge residing on the internal and the

external side of the shell. As a result the capacitance obtained is the

total capacitance, which is a sum of the internal and external

capacitances discussed above. The numerical technique applied is the

Method of Moments (MOM) [Harrington, 1968] with subsectional basis

functions.

The charge distribution a(r) on the spherical antenna (Figure

7.1) can be found from the system of two coupled integral equations

4.

o(~') rr - £ r e rS 1
dS' + f f r dS f - (C.21)4 f : aliR V2  r E S2

Sr S2

where R -Ir-r'l, and S1 and S2 denote the upper and lower parts of the

sphere, respectively, having the arbitrary constant potentials V1 and

V2, and E is the permittivity of the medium. In order to find the

capacitance C of the structure, the system (C.21) must be solved with

the constraint Q-Q -Q2 where QI and Q2 denote the total charges

on S1 and S2 , respectively. Then we have

C - VQ-- (C.22)V I - V 2
I

j Exploiting the azimuthal symmetry of the problem, eq. (C.21)

.can be rewritten in the form
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p')K(,8')de' + p(e')K(e')de'-= (C.23)+f 4 Tr V ,  6 +ao< O< Tr
0 +a 2 go

where

p(e) = a(e) (C.24)

K(6,O') - K(S) (C.25)

sin6 sine'8 - (C. 26)

sin2(+'

and K(a) denotes the complete elliptic integral of the first kind

[Abrcmowitz and Stegun, 1965]. In terms of the new function o(8) the

total charge on surface S is given by

Q~ - a c j esinedO (c.27)

0

with an analogous expression for S2.

The MoM technique is applied to (C.23) by dividing the surface

of the spherical antenna into N subsections and expanding the unknown

function p(O) in terms of the pulse functions as follows

N

p(e)- I Qj p (6) (C.28)
J.l

where

I - < e

p(e) - (C.29)

, otherwise
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This is illustrated by Figure C.I.

The substitution of (C.28) into (C.23) and matching the integral

equations at em results in the matrix equation for the expansion

coefficients

N4TV I  , l <i<N I

a ajQ = 49 v2  N1 <i<N (C.30)

with AMm A

j 2

aij - f K(em,a')de' (C.31)

6m 
6

j 2

where the index i takes on the values ifl,2,...,N, N1 and N2

(N1+N 2 N) denote the number of zones on S1 and S 2, respectively.

The integration is done numerically by a Gaussian quadrature.

The integrand in (C.31) is singular for i =J, thus the integration

for the self-term cannot be performed directly. This difficulty is

taken care of by subtracting the logarithmic singularity of the elliptic

integral and integrating the singular term analytically as follows

m + Iel+
2 e ' A e i

f A .K(),6') (C. 32)

1 2

In order to gain some confidence in this method, the capacitance

with respect to infinity of asoZidsphere ( o- O, V I -V 2 V, Q-Q I+Q2)

C -Q/V, was computed first. With N-10 the value 111.267 a [pF] was

obtained, which is in an excellent agreement with the exact value 47rea.
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Figure C.A Subdomain placement on the spherical antenna for the
capacitance computation by the method of moments.
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In order to find the capacitance (or "capacity" [Adba, 1972])

of the slotted sphere, the system (B.23) must be solved together with the

charge neutrality constraint. However, as pointed out in [Adams, 1972;

Lee, 19781, it is more convenient to solve the unconstrained system

(C.23) twice for even and odd voltage excitation modes (Figure C.2)

and then suitably superpose the results. It can be shown that the

capacity is then given by

12 12

C = (C.33)
2V(Q e+Q e)

where the superscripts "e" and "o" denote, respectively, the even and

odd excitation modes.

The capacity of the spherical antenna computed by this scheme is

shown in Table C.1 and in Figure C.3 as a function of the number of

zones N. The extrapolated values of the normalized capacitances are

165 [pF/m] for 6 = 90 and 137 [pF/m] for 8 9 60*. The width theg g

slot was d/a-0.05 in both cases. The value 165 a [pF] obtained in

the equatorial slot case agrees favorably with the value 175.4 a [pF]

obtained from the closed form formulas derived in the first part of

this appendix, considering that approximations are made in both

approaches.
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Figure C.2 (a) The even and (b) odd excitation modes of a two-
part structure.
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Table C.l The capacitance per unit radius of a spherical antenna with

a slot of width d/a-0.05 located at eg-90* and eg-60 , as a function
of the number of zones N in the MoM procedure.

C/a[pF/m]
N

e = 900 e 160*
g

10 132.7 107.5

20 145.9 119.4

30 151.5 124.7

40 154.6 127.5

50 156.6 129.3

60 158.0 130.6

70 159.0 131.5
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Figure C.3 Capacitance of the spherical antenna with a slot located at

6-90* and at -60* as a function of 1/N, where N is the number of zones

in the MoM solution.
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