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CHAPTER 1

INTRODUCTION

1.1 Statement of the Problem

Equivalent circuits containing frequency dependent elements, or
circuits valid only in narrow bands of frequencies, have been used for
years by the electromagnetics community to model the terminal behavior
and receiving properties of radiating and scattering structures. In
contrast, this work is concerned with the synthesis of broad-band
equivalent circuits with frequency and time invariant elements, for
electromagnetic energy collecting structures with definable ports.

Our goal can be perhaps best explained with the help of Figure
1.1. 1In Figure 1.1(a) is shown an energy collecting structure (a
2ylindrical dipole in this case) excited by a plane wave having some
time history f(t), and loaded at its terminals by a general impedance
ZQ, which is permitted to be nonlinear and/or time-varying. Our task
is to proceed from the known mathematical description of the structure
and a given specification of the spatial character of the impinging
field, to synthesize an equivalent active network (Figure 1.1(b))
consisting of a finite number of lumped, linear circuit elements, whose
behavior at the terminals is a good approximation to that of the original
object for any loading conditions, The network should be driven by an
autonomic voltage source with a waveform f(t) and, with the source shorted,
it should replicate the driving-point immittance of the structure with
no external incident field present. This equivalent network should
also be applicable in the time-harmonic mode of operation.

The question which naturally arises 1s, "Why would one want to

construct an equivalent circuit for an electromagnetic/radiating
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Figure 1.1 1Illustration of the synthesis problem., (a) Energy-collecting
structure excited by a plane wave with a time history f(t) and headed
at a prot by a load ZQ; (b) its equivalent circuit representation.
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problem?" Baum [1976a] in his work introducing the singularity expansion
based equivalent circuit synthesis states that these circuits, under
certain circumstances, could be helpful in providing some or all of the
following:

1. physical insight

2. computational convenience

capability of using established circuit transformation
techniques

capability to combine the electromagnetic analysis with physical
circuit elements, transmission lines, etc., which are constructed
as part of an antenna or scatterer

5. capability of using existing computerized circuit analysis
programs.

In a more recent paper Baum and Singaraju [1980] add to this list two

new areas of application:

6. physical construction of equivalent circuits for use in special
types of electromagnetic pulse (EMP) simulators

7. radar target detection and camouflage techniques.

The desired features of the equivalent networks depend, of course,
on the area of application. In general, they should be simple, easy to
construct, and accurate in the frequency band of interest. It is
desirable that the networks be physically realizable, Z,e., they should
not contain any negative or complex-valued elements. It is self-evident
that this requirement is essential if the equivalent circuit is to be
physically constructed. This feature is not essential, but it is
potentially helpful in other applications, because negative-valued
elements are difficult to interpret physically and they can cause numerical
problems in some circuit analysis codes., A potential application of the
hardware-realized circuits is in the high-voltage environment of transient

pulse simulation. This environment precludes the use of any controlled
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sources, gyrators, and ideal or perfect transformers, because these

elements can only be realized by active devices which usually do not

tolerate high voltages and currents. It is also desirable that the angle

of incidence and other parameters of the incident field enter the .

circuit in the simplest possible way. For example, we would prefer

that a change in the angle of incidence 6 in Figure 1.1(a) would change

perhaps some element or source values but not the topology of the circuit.

Furthermore, neither the topology nor the element values should depend

on the time history f(t). It would be also convenient for the autonomic

source to be connected to only one pair of terminals in implementation.
Perhaps the most convenient and powerful mathematical description

of an electromagnetic energy collecting structure for purposes of

equivalent circuit synthesis is the Singularity Expansion Method (SEM)

introduced by Bawm [1971] (see also [Bawm, 1976bl} and [Baum, 1976c]. |

SEM is a generalization of well-known techniques of linear circuit theory

in which the singularities of a transfer function are used to determine

the transient response by the Heaviside expansion theorem. In electro-

magnetic theory, the singularities are found by first applying a two-

sided Laplace transform to Maxwell's equations and then constructing
an integral equation for the scattered field. Complex singularities
{sn} appear as poles of the inverse of this equation and these are

the frequencies for which non-trivial solutions of the corresponding

homogeneous integral equation exist. These non-trivial solutions are

A Bt il L oa.

termed the natural modes of the structure. From these modes and the

assandie

integral operator the so-~called normalization coefficients can be found.
‘ Poles, natural modes and normalization coefficients constitute the ﬂ

fundamental SEM parameters. If the poles and the associated modal
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distributions are known, one can compute the coupling coefficients which
weight a given singularity's contribution to the response for a given
incident field. From these quantities and the normalization coefficients
the residues associated with the poles can be evaluated. Since a
distributed-parameter system has an infinite order of complexity, it

can only be described by an infinite series of terms associated with
poles and other singularities (see Section 2.4). In practice, however,
for band-limited excitations, the response of such system is dominated
by a limited number of resonances, so that the series can be truncated
without introducing appreciable error.

Following this introduction, the main objective of this work can
be stated as follows: To develop simple and reasonably accurate
procedures for the synthesis of finite, lumped-parameter, physically
realizable circuits for electromagnetic energy collecting structures
from their SEM description. These procedures should be practically
tested on some representive canonical structures, their responses for
broadband excitations should be computed and compared with available

data or with responses obtained by other means.

1.2 brief Literature Survey

One of the early attempts to extend circuit theory concepts to
distributed-parameter system was made by Schelkunoff [1944], who
applied the Fogter [1924] expansion theorem to immittances of lossless
structures with an infinite number of degrees of freedom. He observed
that this infinite series representation was slowly convergent or did
not converge at all. He then used a Mittag-Leffler theorem from the
theory of functions of a complex variable to convert it into a more

rapidly convergent form (he in effect introduced what we call in Chapter
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2 the modified pole modules). Subsequently, Schelkunoff modified this
series to allow for slight dissipation. He did not present any equivalent
circuits for this case.

In a later work, Schelkunoff and Frite [1952] discussed the
representation of driving-~point immittances of antennas in terms of
their poles and zeros. They conjecture there that the impedance of
any physical circuit may be expressed as a ratio of two products of
linear factors exhibiting the natural oscillation constants of the
circuit with its terminals at first floating and then short-circuited.

For a distributed-parameter system the number of factors is infinite

and the convergence of this product form is governed by the Weierstrass
theorem from the theory of functions of a complex variable. Then they
state that the static capacitance (inductnace) of a dipole (loop) antenna,
together with its natural oscillation constants, determines the antenna
impedance at all frequencies. They do not present any equivalent
circuits for antennas, except for parallel and series resonant circuits
valid in the vicinity of the antenna resonance.

An explicit expression for the driving-point admittance can be
written only for a few structures, such as the spherical or spheroidal
antenna with circumferential slot. This expression is in a form of an

. infinite series of terms associated with the eigenfunctions of the
problem. For the spherical antenna [Stratton and Chu, 1941] the nth
term involves a ratio of a spherical Hankel function of order n and its
derivative. As shown by Chu [1948], this ratio can be expanded in a
finite continued fraction with positive real coefficients, which can

be physically realized by an LC ladder network terminated into a single

—_— i A Sk e . i e

resigstance. A complete equivalent circuit consists of a parallel connection




of an infinite number of such "eigennetworks". Unfortunately, this
representation is not practical because it converges very slowly.
Schelkunoff [1952]) and, more recently, Franceschetti [1976] (see

also [Bucei and Franceschetti, 1974]) observed that each of the eigen-
networks contributes to the static capacitance C of the antenna. They
were able to sum explicitly the infinite series for C. The subtraction ]
of this series term~by-term from the series for the admittance resulted
Aé in a more rapidly convergent series. Franceschetti constructed an
equivalent circuit representation for this modified series by intro-
ducing gyrators (with frequency-dependent gyration resistance) to

each eigennetwork. Neither Schelkunoff nor Franceschetti discussed

the source problem.

An important development for the equivalent circuit synthesis for
energy collecting structures was the introduction in 1971 of the
Singularity Expansion Method [Bawn, 1971). Barmes [1973] constructed
perhaps the first SEM driving-point equivalent circuit for a thin dipole
antenna. He used the approximate poles and residues derived amalytically
by Lee and Leung [1972]. 1In his circuit each pole pair was represented
by a series RLC module. Hess [1975] has used SEM analysis to develop
a transfer function model for determining EMP coupling to a dipole antenna.
He used the SEM data obtained numerically by Tesche [1973). He did
i not, however, synthesize any equivalent circuits so no loading effects
could be analyzed by this method.

Perhaps a more systematic approach to SEM equivalent circuit

B VI GG

synthesis was propsoed by Bawm [1976a] (some of this material appeared

PR

recently in [Baum, 1978]). 1In this work he introduced the formalism and

terminology which stimulated and influenced most of the subsequent

21

[ - D RS P T R




regsearch in this area, including the present effort. In his paper,
however, Baum developed only formal equivalent circuits without addressing
the issues of their practical realizability. In a latter work Baum and
Stngaraju [1980] utilized a sinusoidal natural-mode approximation and an -
analysis similar to that presented by Marin [1974], to derive driving-~
point admittance equivalent circuits for a thin-wire dipole antenna.
They did not, however, present any active equivalent circuits for an
illuminated dipole.

Schaubert [1979] constructed lumped-parameter equivalent circuits

for a center-driven dipole and a Yagi antenna using experimentally

derived SEM description. He used Prony's algorithm [Van Blaricum and
Mittra, 1975] (a technique for parametrization in terms of complex
exponentials) to extract SEM data from the antenna terminal voltage
waveform due to a step-like excitation and used these data to construct
the driving-point impedance function in the form of a ratio of two
polynomials in s. He then used Brune's [Brune, 1931] synthesis method
to derive equivalent circuits. As usual in Brune's method, perfect
transformers were employed. Schaubert did not consider the source
problem but limited his concern to the determination of the driving-
point impedance part of the equivalent circuit.

! The first extensive study of the physical realizability of

passive equivalent circuits for thin-wire dipole and loop antennas

was performed by Streable and Pearson [1981}. They utilized the Bott-

he atvi il oo .

Duffin {Bott and Duffin, 1949) synthesis method to realize input admittances
using different grouping of pole terms and used the resistive padding

technique [Guillemin, 1977] for an approximate synthesis of pole-pair

- e

circuits. In a companion paper, Pearson and Wilton [1981] proved
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that the eigenadmittances (reciprocal eigenvalues) of a structure are
positive real (PR) [Brune, 1931)] functions of frequency s and speculated
on the PRness of the admittances associated with individual current
eigenmode contributions to total current. They also briefly discussed
the source synthesis issue, but they did not present any actual active
circuits.

Another approach to equivalent circuit synthesis has been to compute
the driving-point or transfer function of the structure on the imaginary
axils in the s-~plane and then to use a curve fitting technique to
develop the corresponding rational function in s, which can be
subsequently submitted to some standard synthesis procedure [Weber and
Toultos, 1974; Sharpe and Roussi, 1979]. This technique was used by
Sharpe and Roussi [1979] to obtain a ladder network representation for
the input admittance of a biconical antenna [7aZ, 1981]. This method,
however, does not offer the advantages of the SEM appraoch, as discussed
above.

Recently Tescne and Giri [1981) presented some active SEM equivalent
circuits for a dipole antenna. Their networks, however, are intended
for computational purposes only and contain negative-valued elements.

The foregoing discussion can be summarized with the observation
that, to date and to the best of the author's knowledge, no active,
physically realizable equivalent circuits valid over significant

frequency band-widths have been synthesized and analyzed for electro-

magnetic energy collecting structures.




1.3 Scope of the Present Work

The outline of this work is as follows., In Chapter 2 the SEM
formalism is defined and the SEM expansion for the current density
on a scattering object is developed. This representation is derived
formally via the eigenfunction expansion. It is based on some evidences
for which a rigorous proof has not been furnished, to date. Some
questions concerning the formal development fo the SEM exapnsion are
elaborated upon in Appendix A. The convergence properties of the two
SEM coupling coefficient forms (termed class 1 and class 2), as a
function of the time origin location, are investigated. Then the most
convenient choice of the time origin location for the purposes of SEM
equivalent circuit synthesis is determined. Also, the dominant-pole
approximation is discussed and numerical evidence is presented showing
that it can be successfully used, at least in the case of highly-
resonant structures.

In Chapter 3 is presented a formal development of SEM equivalent
circuits for energy~collecting structures. Both the short-circuit and
the open~circuit boundary value problems are discussed. With some
exceptions, the material of this chapter is a recasting of the results
obtained previously by Bawn [1976a}, in a notation consistent with
the rest of this work.

In Chapter 4 the realizability conditions for the pole-pair
immittances and voltage transfer functions are discussed and explicit
realizations for them are given. The real-part padding technique for
the synthesis of approximate driving-point circuits is also addressed,
and an explicit expression for the amount of padding necessary, in

terms of the SEM parameters, is derived, Most of the material of

24




R T 5 N s

this chapter is original to the present work.

Chapters 5 and 6 present an application of the developed synthesis
procedures to the thin-wire loop and dipole antennas, respectively.
Practical, physically realizable active equivalent networks are presented
and analyzed in the time domain with the help of a circuit analysis
program. The results are compared with known repsonses or with responses
obtained by the classical frequency domain technique. In addition, in
Chapter 6 a sinusoidal current mode approximation is used to develop a
particularly simple, and yet reasonably accurate, equivalent circuit
for a symmetrical dipole, or a cylindrical post over a ground plane.

An application of the equivalent circuits developed in Chapters 5 and
6 to the analysis of antennas with nonlinear loads is described in
Appendix B where representative equivalent circuit responses for a
thin-wire loop and a dipole antenna loaded with a semiconductor diode
are included. The calculation of these responses with other methods,
though tractable, is quite tedious.

Chapter 7 is devoted to the equivalent circuit synthesis for a
spherical antenna. The dominant pole-pair circuits are synthesized
by the real-part padding technique and the quality of the dominant
pole approximation is examined. In Appendix C the static capacitance
of the spherical antenna is computed both analytically and numerically.

The conclusions from this work are summarized in Chapter 8.
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CHAPTER 2

THE SEM REPRESENTATION FOR EM SCATTERING

2.1 1Introduction

In Sections 2.2-2.4 of this chapter the SEM formalism is defined
and the SEM expansion for the current density on a scattering object
is derived formally via the eigenfunction expansion. In Section 2.5
the convergence properties of the two SEM coupling coefficient forms
(termed class 1 and class 2) are investigated as a function of the
time origin location. Then, in Section 2.6, the optimal choice of the
time origin location for the purposes of SEM equivalent circuit synthesis
is determined. Finally, in Section 2.7 the dominant pole apprcximation
is discussed and numerical evidence is presented that it can be success-

fully used, at least in the case of highly-resonant structures.

2.2 Integral Equation Formulation

The integral equation for the current density 3(;,3) on a surface
S of a perfectly-conducting object immersed in a lossless, homogeneous
medium may be formulated as

<> >
r

FE. e sy = THE,e) , Tes (2.1)

Tﬁ;,;',s) is the

where fi(r,s) is the known incident or source field and
dyadic kernel of the integral equation. The symmetric product

notation
<F(D); G(P)> = ” F(@) « 8(D)as

S

is used to denote integration over the surface S of the object.

1)If two or more ranges of integration are used then subscripts can
be placed on <,>,

1)
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As in [Marin and Latham, 1972] it is assumed that S is a smooth surface
of finite extent enclosing a simply-connected region. The solution of
(2.1) can then be sought in L2(S), the Hilbert space of all square-

integrable functions with support S. The frequency variable is

s=0+ jw and is that associated with the Laplace transform pairl)
)
L{E(E)) = £(s) = Jf(c)EStdt (2.2a)
0
and
£(e) = LME(s)) = 2—11Tj— J f(s)etds (2.2b)
C

B
where tildes (~) over quantities distinguish Laplace domain members of

transform pairs and CB is the Bromwich contour.
This work deals specifically with the electric field integral

equation (EFIE) characterization for a conducting object. 1In this

case the kernel of eq. (2.1) becomes the symmetric impedance kernelz)
~ N
TE, ) = zoy['i#lj,-]co(?,?',s) (2.3)
where
- >
=y|r-r'|
G (T,T's,) = g (2.4)
4m|r-r'|
1)

The unilateral Laplace transform is used since only causal functions
of time are dealth with. This is accomplished by a judicious choice
of the time origin of the problem (see Section 2.5).

2)The primed and unprimed differential operators act, respectively, on

the primed and unprimed variables. Strictly speaking (2.1) is only
meaningful when interpreted in terms of some sense of principal value
integration. We use it and the kernel Z in a symbolic sense for efficiency
of notation. Bringing the gradient operator in (2.3) outside of the
integration leaves an integrable kermel, and it is upon this integro-
differential operator that we may build a meaningful mathematical

theory.
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is the scalar Green function, Tdenoces the identity dyadic, yY=s/c
is the complex propagation constant, and Zo is the intrinsic impedance
of the medium. The speed of light is denoted by c. The EFIE incident
field function is the tangential component of the incident electric

field on S

i

e

B - T

(T,s) = EX(T,s) « (T-an) (2.5)

A~k . >
where fi Z0(r) is a unit vector normal at r to the object surface S.
In most cases of practical interest the incident field is "factorable",

Z.e., it can be written in the form

s - E DBE,)E(s) (2.6)
where Eo(;) indicates a spatial distribution factor, 5(;,5) is a propa-
gation factor which links space and time dependencies, and E(s) is
the Laplace transform of the time history of the wave. It is assumed
here that E(s) is algebraic, which is also satisfied in most practical
cases. For example, a plane wave carrying a time history f(t) may be

written as

->
~

~ A ->
.8 = £ (=T D% (s) (2.7)

+ A
where Eo is a constant polarization vector, P is a unit vector in the
->
direction of propagation, and L is a vector pointing to a chosen

phase reference point. The time domain counterpart of (2.7) is
B - E s E:-fa . ('r’-?o)/c:]*f(t)

= ‘Eo fE:-,s . (‘r’-?o)/{l

- Eo f(t-t_-p «¥/c) (2.8)
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where §(t) is the Dirac delta function, * denotes convolution in time,

and

/e . (2.9)

It is noted that, since the causality assumption is imposed on f(t),
i.e., £(t) =0 for t <0, the excitation first reaches the point ?-;0
at the time t=0. Hence, ;o defines the time origin of the problem:
the time 1s counted beginning from the moment when the wave front
passes the point ;'-;o. The wave front reaches the coordinate origin

-
r=3 at (‘.=t°.

2.3 Formal Solution of the EFIE

The kernel (2.3) is complex-symmetric [Cochran, 1972] and so one

may define a set of eigenvalue/eigenfunction pairs through

T,8)> = <Z (F,2',8);1(ths)> = Xn(s).?n(?,s) . (2.10)

It follows, formally, that the kernel and its resolvent can be expanded

an |

. o Ta,e
ECEADEDRNO <§“(; n 3“(; " (2.11)
n o'k’ H a'fe
and
3> > 3 -
L@ Ee) - — i“(r's) i“(r"s) . (2.12)
n A8 T (7,87 (T,8)>

The solution to the integral equation (2.1) is thus written
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> >, >{ >

- Z 1 <3n(-;'!s) ::E;i(-r"os)> ? -+ 2.13
T () 3 5 ~ n(r,s) . (2.13) -
n An <Jn(r.s);Jn(r,s)>

The EEM representation (2.13) is formal in the sense that in
deriving it some tacit assumptions have been made which, in general,
may not be satisfied. Among other things, the major pitfall in the
expansions above is that since the kernel (2.3) is not Hermitiar-symmetric,
there is nothing to guarantee the existence of a complete set of eigen-
vectors }n(;,s), as defined in (2.10). One cannot even be sure that
the normalization factors in the denominators above do not vanish
(famm, 1973]. Perhaps the most common situation in practice in which
the eigenfunction representation fails 1s when the eigenvalues Xnks).
have branch points. At a branch point in the s-plane two or more

eigenvalues coalesce [Cochran, 1972], so that the inclusion of root

1)

vectors in the expansion may be necessary [Raomm, 1980]. In some

cases even for degenerate eigenvalues a set of independent eigenvectors

1)Let A be a linear operator on the space considered and let ¢4,1#0

be an eigenvector associated with an eigenvalue )i, i.e., (A-IXi)

¢i,1 =0, where I denotes the identity operator. Consider the

oubspace of all vectors that are annihilated by some power of

(A-I\y). 1If for some power k there exists a vector $1i,k in the

subspace such that (A-I\i) - ¢i k #0 and (A-IAi) ¢1,k =0, and such

that there is no vector in the subspace that is not annihilated at

least by (A-I\i) then ¢4,k 1s a root vector (generalized eigenvector

(Pease, 1965]) of rank k, where k is the length of the longest chain

associated with eigenvalue Xj. The chain {¢i 150i,2s00.9914, k}. with .
the elements defined by ¢i k-1 = (A~IA1)d4, k,...,¢1,1_-(A-IA1) - ¢1 k»
is called a Jordan chain of length k. The union of all root vectors
of a linear operator A corresponding to all eigenvalues of A is called
the root system of A [Rarm, 1980].
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1)

can be found so that the root system coincides with the eigensystem.

2)

This is true for normal operators. For example, it was shown by
Ramm [1973] that the scalar analog of the operator in (2.1) is normal
if S is a sphere. If the operator is not normal, it is not always
diagonalizable and considerable complexity arises in the computational
scheme (Dolph et al., 1980].

There is an important class of bodies for which it can be shown
that branch points do not occur. These are structures such as the
sphere or circular loop, in which the eigenvectors are completely
determined by the geometrical symmetry of the structure and hence are
frequency independent. This follows from the Rayleigh quotient
3)

representation of the eigenvalue,

S RORICRANO RO

Xn(s) - . (2.14)

> > > >
<J ()5 (r)>
The kernel in (2.14) can be expanded in a Laurent series converging

for all Is[ >0, and integrated term-by-term to obtain a series with

the same region of convergence and analyticity. This argument is not
valid, however, if the body is not completely symmetric because the
eigenmodes 3n are then generally functions of s. To date, analytic

1)In the language of finite-dimensional spaces this means that the
geometric multiplicity of an eigenvalue is equal to its algebraic
multiplicity (Stakgold, 1967]. We say that an eigenvalue Aj has
algebraic multiplicity k {f the term (A -Xj) is repeated k times

in the characteristic equation of the operator. Geometric multiplicity

of Aji denotes the number of independent eigenvalues corresponding to it.

2)An operator A is called normal if AaA-AAa. where A? is the adjoint
operator.

3)'I.'he triple product notation is introduced for a triad of elements,
the middle element of which is dyadic: < ; ; > = < 5< ; >>,
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properties of the eigenvalues of only rotationally-symmetric objects,

such as the sphere and the circular loop, have been thoroughly examined.

2.4 Singularity Expansion of 3(;,s)

The singularity expansion for the surface current density on a
scattering object can be obtained from the eigenfunction expansion by
performing the residue series expansion of (2.12) or (2.13) in terms
of the complex natural resonances s, (the poles) of the object, defined

as follows:

{sni: Xn(sni) = 0} . (2.15)

It is noted that for s=s o in view of (2.10) and (2.15), the following

is true:
- > '-1 >, -
<Z(r,r ’Sni)’ Jn(r ’Sni)> 0. (2.16)

n )Ejni(;) are the natural modes of the object associated

with the poles s In practice the homogeneous integral equation

ni’
(2.16) is replaced by a matrix equation by some approximate technique
such as the method of moments (MoM) [Harrington, 1968}, and the poles
are sought as zeros of the determinant of the coefficient matrix.

Before expanding the reciprocal eigenvalue factor which appears in
(2.12) and (2.13) in terms of its singularities in the complex

frequency plane, it is expedient to subtract from X;l(s) the possible

pole at the origin and define

T S S (2.17)
n Xn(s) s *

where T denotes the residue of the pole at s=0. Assuming first
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1)

order poles ° one can postulate using the Mittag-Leffler

expansion [Jeffroys and Jeffreys, 1956] the representation

[Pearson and Wilton, 1980; Pearson, 1983]

() =B (@) +]r |+l b () (2.18)

1 ni  “ni

where bn(s) denote the branch~-integral contributions which mav occur

and r , are the residues which can be computed by using eq. (2.14)

i
as well as the orthogonality property of the eigenfunctions to yield

-1
d -~ -> > -»> hed
Tai = [:Es_ )‘n(sni):] = BhiIag (D3dp (> (2.19)
with the normalization constants Bni given by
- <3 ».Q-C—'»->+' . > -1
Bag = T (05 532" 053 G (2.20)

Marin and Latham [1972) have shown that for perfectly ¢.nducting
;b_l > -
bodies of finite extent imbedded in a lossless medium 2 (ryv's) is
anarytic in s except for pole singularities. This does not wmean, however,
that there cannot be branch-integral contributions to (2.18) which

cancel out in the summation (2.14), f.e.,

3> -+ > ">
<J (£:8)3E (r)plr,s)> 5
Jn(r,s) =0 . (2.21)

g (s)
L Pale)

Y =

-> > >
n(r,S);Jn(r,S)>

It is demostrated in Appendix A that such phenomena can, indeed, occur.
Only for bodies such as the sphere or the circular loop antenna, in

which geometrical symmetry completely determines the eigenfunctions

1)It was conjectured by Bawm [1971] that perfectly conducting, finite-
extent vodies in homogeneous, lossless media possess only simple (first
order) poles. A proof of this conjecture has been put forth recently
by Sancer and Varvatsis [1980]. The simple pole restriction exludes
also essential singularities in a finite complex plane since they can
be regarded as infinite order poles.
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(and hence they are frequency independent), has it been possible to
show (Section 2.3) that branch points cannot occur, and poles are the
only singularities of the reciprocal eigenvalue in the finite complex
frequency plane, so that Bn(s)=-0. On the other hand, any losses in
the medium always contribute a branch cut in the complex frequency
plane. Although in the lossless medium case the branch-integral
contributions ultimately cancel leaving the singularity expansion of
current unaffected, they are likely to have bearing on SEM formulations
where eigenmode-by-eigenmode expansioﬁ enters in, including the SEM
equivalent circuit synthesis discussed in this work. Pearson and
Wilton [1981] have shown that the reciprocal eigenvalues in (2.13)
are positive real (PR)l) functions of s; they have also speculated
that the same may hold for the terminal admittances associated with
individual current eigenmode contributions to total current. The PRness
is a necessary condition for the realizability of driving-point functionms.
If the branch-integral constituent in (2.18) is non-zero, its ommission
may lead to non-realizable immittances. This difficulty can potentially
be circumvented by grouping terminal eigenadmittances which share
common branch points, so that the branch-~integral constituents add
to zero and PRness is preserved. Since in most practical cases the
branch-integral terms cannot be explicitly identified, the Sn(s)
factors in (2.18) will be suppressed throughout the rest of this work.
The expansion (2.18) is valid provided ﬁn(s) is bounded on a set
of circular contours centered at s=0 and passing between the poles

[Jeffreys and Jeffreys, 1956]. 1If ﬂn(s) is not only bounded, but

actually decays onthis set of contours, one can show that [Pearson, 1981]

1)See Section 4.2 for the definition of a positive real function.
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> Z rni
h (0) =~ ) — (2.22)
n i sni
and
b rni
h_(s) = 2"_"3-s . (2.23)
i ni

It is noted that even when Sn(s) =0 in (2.18), the poles and the
residues alone do not determine En(s) and some additional information
is necessary to determine the constant term ﬂn(O). Often it can be
argued from the high freuqency and/or low frequency considerations

that En(O) =0, In that case it follows

r r sr
i N e e I e e I (2.26)
Kn(s) i Sni ni s 1 %0157 S0t

Similarly, using (2.17) and (2.23) yields

1 rno r i
R ——— 2 ————n . (2.25)
Ay 5§ |57 5%

Following the terminology introduced by Baum [1976a], the terms in
brackets in (2.24) and (2.25) are referred to as, respectively, the
modified and unmodifeid pole modules. Both forms have been used in
the SEM equivalent circuit synthesis to date. Throughout most of

this work the modified pole modules are used since they impose

less stringent conditions on the behavior of Xn(s). It is of interest
to point out, that the unmodified pole modules expansion (2.25) was
proved by Umashankar and Wiltonm [1974] to be valid for the circular
loop in a lossless medium. However, in the actual computations the
truncated series (2.25) converged very slowly at low frequencies and

they were forced to use, in effect, the modified from (2.24).
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The substitution of the expansion (2.24) into (2.13) yields

I =g fi ()3 D)

0000
) >
+ —_— n (S)J (r)f(S) (2.26)
5 % sni(s-sni) ni ni

o~

with the coupling coefficients nni(s) defined as

~(1) F s

U o1 (F)E (D)P(r,s [)> (2.27)
-~ the class 1 coupling coefficient, or

~(2) - <3 I S N

Ny (8) = <J . (x)3E (r)p(r,s)> (2.28)

—- the class 2 coupling coefficientl) [Bawm, 1972; Baum, 1976b]. It

is noted that the class 1 form is simply a specialization of the class 2
. =x(1) _ x(2)

coupling coefficient: Moy Ny (Sni)' Also, both forms are identical

for nonpropagating excitation fields, when ﬁ(;,s) =], For the plane

wave incident field the two classes of coupling coefficients take the

form
A ->
t =Y ;P°T
i) =e MO <3 E e > (2.29)
and
A >
~(2) -St:o > > “Yp°r
ni (s) = e <Jni(r);Eoe > . (2.30)

1)'I‘he coupling coefficients defined here differ slightly in form from
the ones originally introduced by Baum [1976b]. In Baum's work the time
origin coincides with the space origin but the SEM series can be

"turned on" in negative time, if necessary, by choosing the value of the
turn-on time parameter, In the present formulation, which follows
natural%y from the assumed form of the incident field (27), the time
origin r, is chosen independently from the space origin and the SEM
series is always turned on at t=0,
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In the next sections the convergence properties of both coupling
coefficient forms are discussed and what is believed to be the
best choice of the coupling coefficient for the purposes of SEM circuit
synthesis is determined. Meanwhile the generic notation ﬁni(s) is
used to embrace both forms.

Several comments are in order concerning eq. (2.26). First, the
term associated with the pole at the origin is shown explicitly and
it is assumed that this pole belongs to the zeroth eigenmode. It can
be argued from the form of the integral equation that this mode must
be divergenceless (solenoidal). If the structure is not capable of
supporting a solenoidal current mode, it can not have a pole at the
origin. Second, it is noted that a concellation of a pole can occur
if it coincides with a zero of the corresponding coupling coefficient.
A limiting procedure should be used in such case to determine the
contribution of such a pole-zero pair. Finally, it should be noted that
perhaps the most improtant feature of the representation given in
(2.26) is that the set of complex natural frequencies {sn}, the set of
complex natural modes {3ni(;)}, and the set of complex normalization
coefficients {Bni} are dependent on the object parameters only but are
indepe ient on the excitation. The effect of the exciting field is

contained entirely within the set of coupling coefficients {ﬁni(s)}.

2.5 Convergence Properties of Class 1 and Class 2 Coupling Coefficients

In this section are investigated the convergence properties as
Re{sni}-'w of the singularity expansion (2.26) with both

coupling coefficient forms, as a function of the choice of the location
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of the time origin ¥0. The tools for this analysis were provided in

a recent paper by Baum and Pearson [1981]. It is helpful to follow

them in defining the following characteristic dimensions for use
subsequently: the largest linear dimension of the scatterer

L, = ;’§$ES|¥-?'[ , (2.31)

the "clearance distance

L, = sup P ‘T, (2.32)
1
res
and the "contact distance
— a +
L2 =4inf p-r . (2.33)
reS

The latter two distances define, respectively, the signed distance from
the coordinate origin to the point at which the wave frontclears the
object, and the signed distance from the coordinate origin to the
point at which the wave front first contacts the object (see Figure 2.1).

To investigate the convergence properties of the SEM expansion
(2.26) the asymptotic properties of the terms Bni ﬁni(s) need to be
examined. The behavior of Bni for Re{sni}-*—‘” was argued by Baum and
Pearson [1981] to be

sniLo/c

Bni ~voe . (2.34)

The behavior of the class 1 coupling coefficient is governed by

-3
- (L -ﬁ s r )/c
~(1) Sni‘™1 0
W v e (2.35)
so that
@) . Sl *B T/
Bni Nni “oe . (2.36)
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Figure 2.1 Portrayal of a scatterer in a plane-wave field. Indicated
arc the maximum extent of the object L,, the clearance distance L3
relative to the coordinate origin, and the contact distance Lj.
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This term decays provided

A

-
per, > L -L. (2.37)

o) 1

This condition is most stringent when the direction of propagation of
the incident plane wave is along the largest dimension of the object.

In this case (2.37) reduces to

>
r

P 0 L, - (2.38)
Hence, if the time origin is placed on the surface of the scattering
object the convergence of the class 1 SEM expansion term is assured.
Similar analysis of the class 2 coupling coefficient form shows
that
sniLo/c

8 s ﬁii)(s) n e ) (2.39)

Since Lo is always positive, one can conclude from the last expression
that the class 2 form is always convergent, independet of the choice

of the time origin.

2.6 Optimal Choice of the Time Origin

In this section are discussed the numerical properties of the two
classes of coupling coefficients in the case of plane wave incident
field. Also, the most convenient choice of the time origin ;o for SEM
circuit synthesis if determined.

Although both class 1 and class 2 coupling coefficients give valid

representation for the surface current density when used in (2.26),
they exhibit quite different properties from the practical computation

point of view. This is evident when one performs the Laplance inversion
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of (2.26) to obtain the time domain response
G0 = HEE Y (2.40)

In this process terms like

n_,(s)
L J ni eStds (2.41)
2mj s-s

ni

s

must be evaluated. Using the class 1 coupling coefficient (2.29) in

(2.41) gives

A ->
-s .t s Ypy BT Shit

ni o > u(t)e n

g . 2.42
e Jni(r),Eoe (2.42)

whereas the class 2 coupling coefficient (2.30) gives

s[t-p* (?—?o)/c]

> > > 1 e
= <Jn (r)’Eo 2mj s-s g ds>

~ ->
-5 .t -y per s
= e nio <3ni(r);E°e ni u(t-to-ﬁ ';/c)>e ni . (2.43)

Thus, in the time domin the class 1 and class 2 coupling coefficients

take, respectively, the form

1)1: should be kept in mind that any singularities of E(s) must be
taken into account in this process.
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(1) _ nio +» =, ni N
Mni (t) <Jni(r),Eoe u(t) (2.44)
and
t ber
—S —Y ‘p L] r
(2) nio > ,»> = ni PO (2.45)
= < . - - . -
U (t) e Jni(r)’Eoe u(t t =P r/c)
It should be noted that the integrand in (2.45) gives a nonzero
contribution only when
et/ <t -t (2.46)
or, equivalently, when
pe(r-t)/c <t . (2.47)
These expressions can be interpreted with the help of Figure 2.1 as
follows. The pole terms in (2.40) are "turned on" at t=0, 7, ..,
as sculi as the wave front passes the time origin ;= ?o. Howcver, (' .y

are computed differently depending on whether class 1 or class 2 counling ]
coetticients are used. The class 1 coupling coefficients are constants
resulting from the integration over the entire object, as indicated in
(2.44), The class 2 coefficients (2.45), however, are obtained by
integrating only over that part of the object illuminated at the given
moment by the incident plane wave. Thus, they are time dependent

until t=tc, when the edge of the incident wave has cleared the object.
After that time they take on constant values identical with those of
the class 1 coefficients. It is evident from the above discussion,
that the class 2 coupling coefficients form is much more expensive
computationally than the class 1 form. It is also unsuitable for the
purposes of SEM circuit synthesis because of its s-dependence in the

frequency domain. It has, however, some advantages, as discussed below.
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It should be noted that the series (2.40) must sum to zero in the
period of time before the leading edge of the incident wave arrives
at the observation point (port location). However, the terms of the
series contain the factors exp{sni[t-ﬁ -(;-;o)/c]} which take on large
values in early times, because Re{sni}'<0. Since these large numbers
must sum to zero, the result is sensitive to errors in the pole values
[Marin, 1972; Pearson, 1979]. The class 1 form requires also that a
possibly full collection of poles belonging to a given eigenmode be
included in the time domain counterpart of (2.26) (Pearson, 1979].
To illustrate this point, in Figure 2.2 are shown current responses
at ¢ =180° of a loop antenna of radius b illuminated by a step function
plane wave polarized as indicated in the inset, computed in three ways.
The first two curves were obtained by using class 1 coupling coefficients,
but different collections of poles. In one case (solid line) all poles
belonging to eigenmodes 0 - 10 for which Im{sni} < 10c/b were included,
while in the second case (dotted line) only one, "dominant" pole (the
pole closest to the jw axis) from each eigenmode collection was taken.
The third curve (dashed line) was obtained by using class 2 coupling
coefficients and dominant poles only. The time origin was chosen in
all cases at ¢ =0°, the point of the first contact with the incident field.
As can be seen in the figure, using class 1 coupling coefficient form
and incomplete collection of poles results in a non-causal behavior
of the response. The class 2 form is more tolerant and gives accurate
responses for this case. Since in most practical situations the full
eigenmode collections of poles are not at one's disposal, this last
example would suggest that the class 1 coupling coefficient is of no

value and that one must resort to the class 2 form. It should be noted,
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however, that the three curves in Figure 2.2 agree favorably for t<2b/c
after the wave first arrives at the observation point., The response in
the period 0<t<2b/c is not of much interest, since it is known g priori
to be zero. Why not then move the time origin to the observation
coordinate (port zone) and use the simple class 1 coupling coefficient?
This point is supported by further examples presented below.

In Figure 2.3 and 2.4 are compared current responses of a loop
antenna computed at ¢ =90° and ¢ =0°, respectively, by using class
1 (dotted line) and class 2 (solid line) coupling coefficients and
dominant poles satisfying Im[sniJ <10c/b. The excitation conditions
are identical to that of the previous example. Again, one observes
good agreement of the responses beginning from the time when the wave

front reaches the observation point. It is seen, however, that the

class 1 responses deteriorate slightly for observation points closer
to the point of first contact of the plane wave with the loop. This
can be attributed to the fact that in the process of moving the observaticn
point toward the point first illuminated by the incident field increases
the area of the object surface which in early time lies ahead of the
wave front in the integral (2.44),
The conclusions drawn from the loop example also appear to be
valid in a thin cylinder case, as demonstrated in Figure 2,5~2.7.
The incident field is a step function plane wave whose angle of incidence
= =30°, In the numerical procedure the length £ of the cylinder was

divided into 72 equal-size zones and the time origin was placed at the

72nd zone—the one first illuminated by the incident field. 1In Figures

2.5, 2.6, and 2.7 are shown, respectively, the current responses

evaluated at zones 18(1/42), 36(1/22), and 54(3/42). Only the
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dominant poles for which Im[sni] <10mc/% were used in the SEM expansion
for the current. It is seen from these figures that class 1 responses
(dashed lines) agree favorably with class 2 responses (solid lines)
beginning from the time when the leading edge of the plane wave reaches
the observation point. As in the loop case the agreement deteriorates
somewhat when the observation point is moved toward the point of first
contact of the incoming wave with the cylinder. The discrepancy

between the class 1 and class 2 responses in the present case is greater
than in the loop case, which can be attributed to the fact that the poles
of the cylinder are computed less accurately than the poles of the loop,
and to the sensitivity of the class 1 coupling coefficient form to
errors in pole values [Baum and Pearson, 1981].

The following observations can be made from the above examples.

1. Using an incomplete pole collection in the SEM expansion
together with class 1 coupling coefficients gives non-
causal responses in the period of time before the leading
edge of the incident field reaches the observation point.

2. The class 2 coupling coefficient form gives correct (causal)
responses in a similar situation. It is reasonable to assume
that it gives also more accurate responses than the class 1
form for intermediate times, before t= tc.

3. Beginning from the time when the incident wave first reaches
the observation point the class 1 and class 2 responses
agree very favorably, so that the class 1 coupling coefficient
can be used if the time origin is placed at the observation
point.

4. The class 1 response becomes less accurate when the observation
point (port zone) is moved closer to che point >f first contact
of the incident field with the object. Howeve:, the deteriora-
tion of the response is not significant (ef. #igures 2.4 and
2.7).

5. The responses obtained by using dominant poles only agree
favorably with the responses obtained by including more ccmplete
collections of poles. (This fact is exploited in the next

section where the dominant pole approximation is discussed in
more detail.)
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From the above discussion we conclude that the class 1 coupling
coefficient with the time origin at the port location is the best
choice for the SEM equivalent circuit synthesis. In Baqum's [1976b]
formulation this is equivalent to choosing the turn-on time at the

instant when the wave front reaches the observation point.

2.7 Dominant Pole Approximation

It is noted that the singularity expansion for the surface current
density on the object (2.26) contains a potentailly double infinite
summation of terms associated with an infinite number of eigenmodes
and potentially infinite collection of poles belonging to a given eigen-
mode [Pearson and Wilton, 1981]. For many problems of practical interest
one can recover by numerical methods [Tesche, 1973; Crow et al., 1972;
Stngaraju et al., 1976], analytical methods [VanBlaricum and Mittra,
1975; Pearson and Roberson, 1980; Pearson and Lee, 1982; (%o and
Cordaro, 1979] a finite number oflpoles which dominate the frequency
and time responses for excitations whose spectra are bandlimited.

These poles are the ones located closest to the jw-axis and are referred
to as the dominant poles of the structure [Pearson and Wilton, 1981].

In the case of the few structures for which the distribution of poles
among the eigenmodes can be explicitly determined (e.g., the circular
loop and the sphere) the collection of dominant poles can be obtained
by taking only one "dominant” pole from the number of poles belonging
to each eigenmode, There are strong indications that this is true

th

in general. Denoting by Sy the dominant pole of the n~ eigenmode,

one can rewrite (2.26) in the dominant pole approximation as




Jde =1 B T (DE(e) +] S—(s—T B_fi_()T_(D)E(s) (2.48)
4 with
Lo Ay (s) = <3 (D:E (DB(E.9)> . (2.49)

It is understood in (2.48) that complex conjegate poles are included

in the summation. It is noted that the term associated with the pole

at the origin is shown explicitly in (2.48). As pointed out in Section
f. 2.3, this term is present only in the case of multiplv-connected objects,
such as the loop antenna. It is absent, for example, in the case of

the thin dipole antenna, which can be considered as a member of the
singly-connected class of structures.

It is important to note that in the case of a multiply-connected
object immersed in an external incident filed, one expects a cancellation
of the pole at the origin to occur. This is so, because in the limit .
as s+ 0 the coupling coefficient ﬁo(s) is obtained by integrating alomg
a closed path a conservative (in the limit) field against the ®onstant

natural mode. One may rewrite (2.48) in such cases as.

3G = up 3 HEs) + ] s—(s—-g_) B, i ()T (DE(s) (2.50)
n
where
n,(s)
U= Lim [ ] . (2.51)
[o] g0 ]

For example, in the plane wave case, in the limit as s+ 0, one arrives

at
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A (s) = <3 (T);E e >

n

I S N > >
<Jo(r);E°[l-Yp . (r-ro)]>

> > > > -+
= -s<Jo(r);E°ﬁ -(r-ro)/c> (2.52)
so that
S T -+ >
M, = -<J0(r);E°p (r—ro)/c> . (2.53)

S

2.8 Conclusions

The SEM representation for the surface current density on a scattering
object is derived formally by way of the eigenfunction expansion, and

the potenital limitations of this procedure are addressed. Since the

sexXpansion is performed on the eigenmode-by-eigenmode basis, there may

be branch-integral contributions present [Pearson and Wilton, 1981]
which, in the case of finite-extent perfectly-conducting objects in
lossless media, must cancel in the eigenmode summation, to give a
meromorphic current response in accord with [Marin and Latham, 1972].
It is demonstrated by specific examples in Appendix A that such phenomenon
can, indeed, occur. Only for highly symmetric objects, having frequency
independent eigenfunctions, has it been possible to show (Section 2.3)
that the eigenvalues are meromorphic in s. The omission of the branch-
integral constituent in the SEM exapnsion can adversely affect the
realizability of the terminal eigenadmittances [Pearson and Wilton,
1981].

Two basic SEM expansion forms arise in the SEM expansion of the
current, the so-called modified and unmodified forms. Since the modified
form imposes less stringent conditions on the large-s asymptotic

properties of the inverse eigenvalues [Pearson, 1981], it is suggested

54




that the modified poles modules are preferable in the case of problems
k. | dealth with on a purely numerical basis.

* \ Two forms of coupling coefficients have been used to date, the
so~called class 1 and class 2 forms [Bawnm, 1976b]}. For the SEM
equivalent circuit synthesis one is forced to use the class 1 SEM
expansion form. It is demonstrated that this form gives good results
provided the time origin is placed at the gap zone. The convergence
of this representation is assured since it is shown that the class 1
expansion form is always convergent as Re{sni}-*m if the time origin
is located on the surface of the scattering object.

It is also demonstrated that for the thin-wire loop antenna the
dominant-pole approximation [Pearson and Wilton, 1980] gives very
accurate short-circuit current responses. It is conjectured that this

is true for all highly resonant structures.
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CHAPTER 3

FORMAL DEVELOPMENT OF EQUIVALENT CIRCUITS

3.1 Introduction

1)

In this chapter is discussed a formal development of SEM equivalent
circuits for energy collecting structures with definable ports. With
some exceptions, this development essentially follows that presented
by Baum [1976a] and, in a more recent paper, by Pearson and Wilton
[1980]. It is reiterated here, for the sake of completeness, in
notation consistent with the rest of this work.
The objective of this work is to derive an equivalent circuit at !
a portz) of an antenna or scatterer from its SEM description. Since
the problem is linear, one can construct the Norton and Thévenin
equivalent networks, as shown in Figure 3.1. It is noted that the Norton
circuit requires the knowledge of the driving~point admittance ?(s)
and the short-circuit current isc(s). To define the Thévenin circuit

one needs to know the driving~point impedance Z(s) and the open-circuit

voltage Voc(s). These quantities are not independent and are related

by
1
Y(s) ’Zz; (3.1)
and
bt o] o4
z(s) = +L(2) (3.2)
sC
I77(s)
1) ¥

The issues of physical realizability of the equivalent circuits are
addressed in Chapter 4. ﬁ

2)A port 1s here understood in the usual circuit sense as a pair of

terminals with the property that the current entering one terminal
is equal to the current leaving the other terminal.
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The process of constructing the Norton (Thévenin) equivalent network \
can thus be naturally divided into two steps: the computation of
?(s)(i(s)) -- the immittance problem, and the computation of
isc(s)(Voc(s)) -- the source problem.

In order that the circuit quantities voltage and current, could
be uniquely defined, the field in the gap region must be conservative.
This means that the gap must be electrically small in some sense.

In most cases this requirement restricts the class of tractable
-bjects to slender structures with narrow gaps (in terms of wavelengths
or, equivalently, the rate of variation of the transient waveshapes

of interest).l)

A typical gap region of width A and perimeter P is shown in
Figure 3.2. The gap is defined such that there are two sides or
terminals separated by the gap region with surface Sg. The antenna or
scatterer surface is designated by Sa so that S=SaUSg. ﬁg is a unit
vector oriented from one gap side to the other on Sg' Following Baum
[197¢a] we define the gap current and voltage as the averaged quantities

I(s) = <§(¥.s);ag(¥)>s (3.3)
g

and

V(s) = - % <§(?,s);ag(?)>s ) (3.4)
g

Since a slow spatial variation of the field in the gap is assumed, the

expressions (3.3) and (3.4) can be simplified to, respectively,

‘ 1)There are exceptions to this rule, ¢.g., the symmetrically excited
spherical antenna or the thick cylindrical antenna. One can even allow
non-symnetric excitations (e.g., plane wave) if the results are
interpreted properly.




Figure 3.2 Detail of the feed gap of a radiating structure,
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I(s) =P J(rg,s) -ag(rg) (3.5)
and

V(s) = - 4 E(rg,s) -ag(rg) (3.6)

with ;é denoting a point in the gap region.

The Norton and Thévenin equivalent circuits resulting, respectively,
from the short-circuit and the open~circuit boundary value problems
are derived in the next sections. These circuits are based on the
dominant pole expansion (2.48) for the current density on the object.
In his original work Bawm [1976a) also derived the eigenmode expansion
networks obtained from (2.13). These networks, however, are of little
practical value, since in most cases the quantities ?n(;,s) and xn(s)

are not explicitly known.

3.2 Norton Equivalent Circuit

The Norton equivalent circuit consists of the driving-point
admittance ?(s) and the short-circuit current isc(s) (Figure 3.1(a)).
The driving-point admittance of the structure is determined by solving
the short-circuit boundary value problem indicated in Figure 3.3(a).
The incident field is that due to the voltage V(s)==VOE(s) impressed

across the gap, so that the coupling coefficients (2.49) take the form

) v

) R S BPA g -

‘ nn <Jn(r), A ag(r)>S Vo In (3.7)
1 g

i where the notation
3

R - 1 » - o4 -

: 1,53 <Jn(r),:atg(r)>s

H g

( z P 3n(¥8) . ag&g) (3.8)




4
E
-
3
i*;.
s TN
A \s_) ~Sc
-~ (S)
A .
(a) (b)
j
P

Figure 3.3 Short-circuit boundary value problem. (a) Determination of
the driving-point admittance and (b) determination of the short-circuit

current.




has been introduced. Using the coupling coefficients (3.7) in (2.48)
the port current can be determined from (3.3) as
~ a.]; 2 0o s 2 o
I(s) =< 8, I2 V(s) + ] T o357 B Ln VO . (3.9)
n n n
The driving-point admittance ?(s) =i(s)/V(s) follows directly from

(3.9):

sL

¥(s) == + T ¥ (s) (3.10)
o n n

where the ?n(s) are defined by
a a a s

n n n
s-s ts < s (s-s)
n n n n

?n(s) = (3.11)

These are the so-called modified pole admittances, as distinguished

from the unmodified pole admittances

§n(s) = (3.12)

which result if the expansion (2.25) is used. The admittance residues

a are given by

a =8 1; (3.13)

and the magnetostatic inductance Lo is defined as

1
Lo =7 (3.14)
o

One can combine conjugate pole terms in (3.10) to getl)

1)1-‘01: simplicity, only complex conjugate poles are assumed. A trivial
modification of (3.15) is necessary to avoid the double accounting
of purely real poles.
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Y(s) = +] (Y () +¥__(s)

a——+ T Y (s) (3.15)
with the conjugate pole-pair admittances defined as
Yn(s) = Yn(s) + Y_n(s) . (3.16)

In (3.15) - (3.16) the notation is adopted that n and -n constitute
the indices for a conjugate pair of poles (s_n’=s:).l)

The short-circuit current can be found from the boundary value
problem shown in Figure 3.3(b). The incident field is now that due

to a plane wave and the coupling coefficients n, are given by

~ + >
- 3.3 “Y,P '(r-rg)> 3 19
Ny Jn(r),Eo e g - (3.17)

Note that the class 1 coupling coefficient form is used with the time
origin at the gap region, as suggested in Section 2.5. The short-

circuit current can be obtained from (2.50) and (3.3) as

Isc = S ~ e
I (s) = u B I f(s) + g ERCETN] B A, I £(s) . (3.18)

This expression can be conveniently rewritten as

1°°(s) = g E(s) + [ ¥ (o) T E(s) (3.19)
n

where the source coefficients
g, " uOBOIO (3.20)

and

2)

Complex conjugate value is denoted by superscript asterisk (*).
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(3.21)

Hl:’:ﬂ

=}

have been introduced. Combining conjugate pole terms in (3.19) gives

1°€(s) = g E(s) + E ?n(s)rn-+§_n(s)ré]E(s) . (3.22)

It is fruitful to express isc(s) in terms of the pole-pair admittances
?n(s) as follows:
1%(s) = g E(s) + T ¥ ()T (s)E(s)
(o] o n n
o]

=g £(s) + ] Y (s)V (s) (3.23)
n

where the pole-pair voltage transfer functions in(s) are defined as

. Y ()T +¥_ ()T ¥ (s) - Y_ (s)
T (s) = -?ﬁ(s) ¥:?i;?s) = Re{Tn} +j Im{Tn} % o (3.24)
n
and the pole-pair source voltages Gn(s) as
Gn(s) = %n(s)E(s) . (3.25)

The driving-point admittance (3.15) and the short-circuit current

(3.23) can be combined according to the Norton's theorem to give the
equivalent network shown in Figure 3.4(a). By pairing pole-pair
admittances with the corresponding pole-pair source voltages and applying
the Thévenin's transformation to each pole-pair circuit this network

can be recast into the form shown in Figure 3.4(b). This very fruitful

transformation was first introduced by Bawn [1976a].
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3.3 Thévenin Equivalent Circuit

The Thévenin equivalent circuit results from the open-circuit
boundary value problem shown in Figure 3.5, The solution for the
open-circuit SEM parameters is in practice a much more difficult
task than the solution for the short-circuit parameters of the same
structure. Thus, it is probably more practical to derive the Thévenin
circuit indirectly, from the short-circuit parameters. This last
approach, which was pursued recently by Tesche and Giri [1981], is
briefly discussed at the end of this section.

The forcing function in the impedance problem (Figure 3.5(a))

is the impressed gap current
> > > >~ ~l,\ ~
Jg(r,s) Jg(r)f(s) =3 ag(rg)Iof(s)
=28 F)ies) , Te s, - (3.26)

g 8

L.

The field due to this current cah be otained from the integral

equation as

Ei(;ss) = - <+?(;9;"5);3 (;ss)>s
g
- I+ 37(3,2s,):8 (31)>. E(s) (3.27)
oP g S
-4
= -I_ & (s) (3.28)

has been defined:

> . (3.29)




4 A
: P

~ ~ ~0C
= Vis) lts) Vis)

(a) (b)

Figure 3.5 Open-circuit boundary value problem. (a) Determination of
the driving-point impedance and (b) determination of the open-circuit
voltage.
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The current on the object can be now expressed with the help of (2.48)

asl)

3 - 1 . - > >
I(x,8) = - 283 (DT (D) - ] EXCETN]

n

Bn&n(s)jh(r)i(s). (3.30)

The electric field radiated by this current and the gap current is

given by
ES(;’S) = - <??;’;'ss);3(;'9s)>s

. (3.31)

+ L GZE 87 (L)l 1A (B>
P g Sg g g

(3.32)

Substituting (3.26) and (3.30) into (3.32) and using the symmetry

properties of the impedance kernel yields

S

5 - 3 1, s - ~200F
V(s) = & (s) - 5 BE:(s) E S CErW 8 G1(s)I(s) (3.33)

where a new quantity has been defined:

= < (344
ag(s) 37 ag(r), (

> >, A .
r,r ,s),ag(r )>Sg . (3.34)

Since 30(;) is solenoidal, it can be seen from (3.29) and (2.3)

that &o(s)->s as s+0, so that the second term of (3.33) goes to zero

at this frequency. For n >0, however, &n(s) introduces a pole at zero.

Also, &g(s) has a pole at the origin. Expression (3.33) can be reexpanded

l)It should be kept in mind that the SEM parameters sy, 35(:), and _ -

8, are computed with the gap open ard are, in general, different from
the short-circuit quantities used in the previous section.
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to give the driving-point impedance E(S)-V(s)/i(s) in the form

1 B a'?
o> = = ' nn - S 2
2(s) = 5 oo + 1 ! sy Bt (3.35)
n n n n
where
! Z 2im {s & (si] (3.36)
n n
@) 0 (®)
and anEE&n(sn). It is convenient to define new quantities, the
electrostatic capacitance
C = 1 (3.37)
o B a'Z
nn
oa'+2 ) R
) ref ]
n
and the impedance residues
| - 2
a Bnan (3.38)
and rewrite (3.35) as
Z(s) ==~ + ] Z_(s) (3.39)
sCo o n -

with the modified pole impedances En(s) given by

a's

- n
Zn(s) s

EXCEN G-

The impedance counterpart of (3.12), the unmodified pole impedances,

are defined as
al

- n
Zn(s) il . (3.41)
n

Combining the conjugate pole terms in (3.39) gives
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Z(s) = ;é— +1 |2 (o) + i_n(S)]
[o] n

= +1z (9 (3.42)
o} n

!
A
{!
-

with the conjugate pole-pair impedances defined as

~

En(s) =Z (s) +Z_(s) . (3.43)

Note that for multiply-connected objects, such as the loop antenna,

% (3.42) does not exhibit the proper behavior as s+ 0, unless C°-<°.
This means that the denominator of (3.37) must sum to zero in such case.
Also, note that all poles contribute to the static capacitance Co' as
given by (3.37). Numerical evaluation of this expression shows that if
only dominant poles are included, (3.37) significantly underestimates
the value of Co' Much better results can be obtained by computing
Co apart from the SEM formulation, by solving for the static charge
distribution on the structure,.

The open-circuit voltage can be found from the boundary value
problem shown in Figure 3.5(b). The incident field is that due to a
plane wave and the coupling coefficients are given by

- >

-y ﬁ e (r-r )
~ = -+ .-> n g
U <3ﬁ(r),Eoe >Sa . (3.44)

The current on the object is given by (2.50) as

Y YIE STV

3 - > ™ s I T
J(r,s) =u B8 J (D)E(s) + ] 305 Balnda(DE() (3.45)
n n n
and the open-circuit voltage is given by (3.4) as :
V% (s) = 1 <&ZE, 71,033 0)>, ;8 D>, . (3.46)
‘ P s *%g s 9
. a g
5 Substituting (3.45) into (3.46) gives
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! vo(s) = u B G (s)E(s) + f -—7;;:1;-7 B, n Q& (s)E(s) . (3.47)

Again, &o(s) has a zero at zero and &n(s), n >0, introduces a pole

at the origin. Reexpanding (3.47) gives

°C(s) = k! E(s) + 2 PRCETS] B_fi o £(s) (3.48)
n n
A : where
5 a'8 n
nnn
i ky=-l—0 - (3.49)
n n

This series should sum to zero in the case of loop-like (multiply-

connected) structures. By introducing
n
U |
Tn 3 (3.50)
(3.48) can be rewritten in a form
°€(s) = k1E(s) + | Z ()T E(s) (3.51)
n

or, after pairing the conjugate pole terms, as

oc -k B 5 5 w3
(s) =k f(s) + ] ZnTn-FZ_n(s)Té]f(s) (3.52)
with
= 1
: ko 2 Re{ko} . (3.53)
3 It is fruitful to express Voc(s) in terms of the pole-pair impedances
] as follows
3
i ~oc Lz 8 8
; Vh(s) = k f(s) + g Z (s)T!(s)f(s)
= k f(s) + ] zn(s)in(s) (3.54)

n
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where the pole pair transfer function i;(s) are defined by

P "7 (X
%'(s) ) Zn(ézin-FZtB(S)Tn
n 2,(s) +Z_[s)
z_(s)-2Z_(9)
= Re{T'} +§ I {T'} = (3.55)
n m n 5
Z (s)
n
and the pole-pair source currents by
In(s) = Tn(s)f(s) . (3.56)

The driving-point impedance and the open-circuit voltage can be naw
combined according to the Thé&venin's theorem to give the circuit
shown in Figure 3.6(a). By pairing pole-pair impedances with the
correspondi.g pole-pair source currents and applying the Norton's
transformation to each pole-pair circuit this network can be recast
into the form shown in Figure 3.6(b).

As mentioned at the beginning of this section, the open-~circuit
SEM parameters are much more difficult to obtain than the short-circuit
parameters of the same problem. This is so because the highly localized
charge interaction effects between the two parts of the structure in
the vicinity of the gap must be modeled precisely in the open-circuit
boundary value problem. Furthermore, it is enough to solve only one
short-circuit boundary value problem for all possible gap locations on
the structure, whereas the open-circuit problem must be resolved each
time the gap is moved. Thus, if for any reason the Thévenin equivalent
circuit is preferred over the Norton equivalent, it is likely to be
expedient to derive it from the short-circuit parameters using the
relations (3.1) and (3.2). Using (3.15) in (3.1) gives the driving-

point impedance as
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and (b) its alternative form,

tation

Figure 3.6 (a) Thévenin circuit represen
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s

7(s) = oo =

! = . (3.57)
Yo tlhe
o n

This expression can be easily recast in a form of a ratio of two
polynomials in s, and the open-circuit poles can be found by solving
for the roots of the denominator polynomial. Expanding Z(s) in terms
of these poles gives the input impedance in the desired form (3.39).

It should be noted that the inductive term in (3,57) is not present

in the case of a simply-connected structure, such as the dipole antenna.

Such a structure exhibits a capacitive behavior at low frequencies,

with the static capacitance given byl)
] ref-2

C ==2 Re{—r} (3.58)
° n Sn

where a, are the admittance residues and s, are the short-circuit
poles.
In like fashion, the open-circuit voltage can be otained by
substituting (3.15) and (3.23) into (3.2) as
g f(s) + E Y ()Y (s)

>sc
T (s) = LC5) o X (3.59)

(s) 1 o
EnR RS
o o

2>

In the case of dipole-like structures (simply-connected objects) the
first terms in the numerator and the denominator of (3.59) are not
present, and this expression can be easily recast iato the form of

(3.54) with the coefficient k0 given by

1)Coxnplex conjugate poles are assumed. The extension to purely real
poles is trivial. .
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where CO is given by (3.58) and Tn are the source coefficients

defined by (3.21).

(3.60)




CHAPTER 4

SYNTHESIS OF THE POLE-PAIR CIRCUITS

4.1 Introduction

The formal equivalent networks developed in Chapter 3 have the
form of a connection of simple modules associated with conjugate pole
pairs. This network topology simplifies considerably the synthesis
process. Furthermore, it has the advantage that it can be easily
expanded by adding more pole~pair modules without repeating the whole
synthesis process. Since the pole-pair modules are simple, one can

hope to give simple prescriptions for their physical realization. To

Lo ol

define such prescriptions is the main objective of this chapter.

As the first step toward this 'goal, the Norton and Thévenin
networks from Figures 3.4(b) and 3.6(b) are recast into the form given
in Figures 4.1 and 4.2, respectively. These networks are in a physically
realizable form provided the admittances @n(s) and transfer functions
%n(s) in the Norton network, and the impedances En(s) and transfer
functions %&(s) in the Thevenin network, can be physically realized.
It should be noted that these networks contain controlled sources.
In a hardware realization they can be implemented by active devices,
such as operational amplifiers.

The next sections are devoted to the synthesis of the ?n(s) and

[

4 En(s) (driving-point function synthesis), and the synthesis of %n(s)

j and %;(s) (voltage transfer function synthesis). Both modified and

1 unmodified pole modules are considered. 1
2 Some of the material of this chapter is not new and is included ‘
‘ here, for the sake of continuity, in the notation consistent with the
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rest of this work. This is true in particular of the realizability
conditions of the unmodified pole-pair modules and their interpreta
Analogous conditions which we give for the modified pole-pair immit
are believed to be new, however. Similarly, the padding procedure
addressed in Section 4.3 and the approximate Bott-Duffin modules we
used previously, but the explicit expressions for the necessary pad
and network element values in terms of the SEM parameters appear he
for the first time. In deriving them we benefited from an early wo
by Foster [1955]. Most of the material on the pole-pair transfer

function synthesis in Section 4.4 1is also original.

4.2 Driving-Point Function Synthesis

The conjugate pole-pair admittance (2.16) can be written expli

in a form of a biquadratic function of s as follows:

D s2+E s+F
n n n

the numerator coefficients of (4.1) are given by

and C =,

and the denominator coefficients by
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(4.1)

with the coefficients defined differently depending on whether the modified

or unmodified pole admittances are used. For the unmodified modules

(4.2a)

(4.2b)

(4.2¢)




. D = s | -1 (4.3 a)
-1
‘ E,=Q (4.3 b)
| F = |s | . (4.3 ¢)
n n

j For the modified modules the numerator coefficients of (4.1) are given by

ﬁﬂn-c
A = 4 T, (4.4a)
2
3 Qls, |
3 c (2Q2~1) + d_q
3 B = /" -, (4.4b)
« n Q2[s l .
# n' n
' and c, =0 (4.4c¢)

with the denominator coefficients still given by (4.3). In (4.2)-(4.4)

the following notation is introduced:

s, = —on-fjwn . (4.5)
a =c +3jd , (4.6)
s |
Qn =55’ 4.7
n
and
(.un 3
qn = ?r: = ‘/AQn-l » (4‘8)

where the residues a are defined by (3.13) and where Qn are the

quality factors of the poles S -

. A

The conjugate pole-pair impedances 2n(s), defined in (3.43), can

it

aiso be written in the form (4.1) with the only difference that the

.
s doan

residues a_ are given by (3.38) and the poles are, of course, the
open-circuit poles. In what follows we deal specifically with the

b | driving-point admittance function (4.1). However, all conclusions
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hold also for the impedance function En(s). The circuits which realize
En(s) are just the duals of the circuits for \.Iﬁn(s).

The necessary (but not sufficient) condition for the physical
realizability of i’,}n(s) is that the denominatur coefficients of (4.1) i

be positive and that the numerator coefficients be non-negative, ‘

This requirement leads to the following restriction on the residue 1-

location if the unmodified pole modules are 1sed:

anO (4.9a)
and

c -daq >0 . (4.9b)

If the modified pole modules are employed, the conditions are

dnqn - cni 0 (4.10a)

and

2
Cn(ZQn 1) + dnqniO . (4.10b)

The following discussion can be simplified considerably by assuming

Q >L=o0.707 . (4.11)

"2
This assumption does not seem to be restrictive since the dominant poles
of all structures considered so far satisfy (4.11). Even the dominant
poles of a sphere, which is an extremely low-Q structure, satisfy an_l.

Assuming that (4.11) holds, (4.10) can be rewritten as

9

- ——— &
ZQ;-I " %n

< q, (4.12a)

°'|:$°

(4.12b)




The driving-point admittance function §n(s) is physically realizable
if it is positive real (PR) [Brune, 1931}, Z.e., if it satisfies the
following conditions:

1. Re{‘%n(s)} >0 for Re{s}>0; and

2. én(s) is real when s is real.

Since it is extremely difficult to apply these conditions directly,
the following equivalent requirements, which are easier to check, can
be employed:

A, ?n(s) cannot have any poles or zeros in the right half of
the complex frequency plane;

B. any jw—-axis poles of §n(s) must be simple and have positive :
real residues; and ;

C. Re{%n(jw)}f_o for all w. J
In the case of the biquadratic function (4.1) the conditions A and
B above are automatically satisfied if (4.9) and (4.12) hold, respectively,
for the case of unmodified and modified pole modules. It only remains
to check the condition C.
The behavior of Re{%n(jw)} can be investigated with the help of

the function
~ _ l ~ 2 -
Fn(s) = 2En<s)+Yn( s):] (4.13)

which on the jw axis is equal to the real part of ?n(s) there
(Guillemin, 1977}. For the unmodified pole modules case %n(s) has the
form

(CD -BE)s*+CF
nn nn nn

F (s) = . (4.14)
D2s*+ (2D F_ - E?)s?+F?
n nn n n

In addition to a double zero at infinity this function has two zeros H

given by
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(4.15)

1f the zeros are real, zZ.e., 1if

BE -CD >0 (4.16)
nn nn—

the pole-zero pattern of Fn(s) is that shown in Figure 4.3(a) and

the corresponding behavior of Re{?n(jw} is that shown in Figure
(4.3(b).1) If the condition (4.16) is violated, the zeros (4.15)
become purely imaginary, as shown in Figure 4.3(c), and the character
of the real part of %n(jw) changes to that shown in Figure 4.3(d).

It is evident from this figure that in this case there is a negative
excursion in the real part of %n(s) on the jw-axis, and the condition
C is violated. Hence, (4.16) is a necessary condition for the PR-ness
of (4.1) for the case of unmodified pole modules. Expressed in terms

of the SEM parameters this condition takes the form

e, + dnqn-i o . (4.17)
Combining (4.9) and (4.17) yields

c

l “l >q (4.18)
d

n
which is, therefore, the necessary and sufficient condition for the
physical realizability of the unmodified pole pair admittances. This

condition was stated previously by “uillemin [1977].

For the modified pole modules, En(s) takes the form

1)If (4.16) is satisfied with the equality sign, .the zeros (4.12)
move to infinity. However, the character of Re{Y¥,(jw)} is still
that shown in the Figure 4.3(b).
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. AnDnsz +(AF -BE)
F (s) = s? . (4.19)

D2s“ + (2D F ~E2)s?2+F2
n on n n

This function has a double zero at the origin and a pair of zeros

given by
BnEn_AnFn
So = % ——A?— . (4.20)
n n
If the condition
BE -AF >0 (4.21)
nn nn—

is satisfied, the pole-zero pattern of fn(s) and the character of

the real part of %n(jw) are that shown in Figure 4.4(a) and (4.4(b),
respectively. If the condition (4.21) is violated, the pole-zero
pattern of ﬁn(s) and the character of the real part become that shown
in Figure 4.4(c) and (4.4(d), respectively. Again in this case, there
is a negative excursion of the real part on the jw-axis. Hence, (4.21)
is a necessary condition for the realizability of (4.1) in the modified
pole-pair admittances case. This condition may be written in terms

of the poles and residues as
2— - 2—
cn(BQn 1) dn(Q 1)q >0 (4.22)

or, through the use of (4.11) and (4.12a) as

<y Q; -1
dy 3Q!21 -1 "

Combining (4.12) and (4.23) gives the necessary and sufficient condition

for the physical realizability of the modified pole-pair admittances as

G- e,
@ <"<q (4.24a)
30!21-1 n—d, n
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with

d >0 . (4.24D)

If Qn:X>1, which is satisfied for most dominant poles of highly-

resonant structures, the first condition above is given approximstely by

wirs
0150

Q =<

. < 2Q . (4.25)

n

=]

The conditions for realizability of the unmodified and modified
pole-pair modules can be interpreted geometrically in the an-plane as
shown in Figure 4.5. If the residue a, falls into region I, the
unmodified pole-pair admittance is realizable; if it falls in region
11, the modified pole-pair admittance is realizable; if the residue
lies outside the regions I and II, neither form is realizable.

The realizability conditions for the modified pole-pair admittances

were given previously by Streable and Pearson [1981] in a form not

amenable to any geometrical interpretation. Similar conditions derived
by Baum and Singaraju [1980] are necessary but not sufficient.

If the PR-ness conditions are satisfied, the unmodified and modified
pole-pair admittances can be synthesized by a continued-fraction

expansion [Matthaei, 1954; Michalski and Pearson, 1979] in a form

shown 1in Figures 4.6 and 4.7, respectively. (The index n on the
coefficients of (4.1) is dropped in the circuits given in Figures 4.6
and 4.7, and other figures in this chapter.) It should be noted that

two equivalent realizations are possible in each case.

4.3 Synthesis of Approximate Driving-Point Circuits

It has been found that for most poles of the thin-wire dipole and

loop antennas, as well as the spherical antenna, the residue a falls

outgside the regions I and II of Figure 4.5, Z.e., the pole-pair
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I-UNMODIFIED ADMITTANCE REALIZABLE
II -MODIFIED ADMITTANCE REALIZABLE

Figure 4.5 Geometrical interpretation of the realizability conditions
for the modified and unmodified pole-pair admittances.
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N
?j admittance is, in most cases, not physically realizable. This manifests

itself as a negative excursion in the real part of the driving-point
function on the jw-axis, as discussed in Section 4.2. It has been
observed, however, that in the case of modified pole modules this
negative excursion is in most cases negligible, or at least small, in

comparison with the value of the real part near the resonance. Thus,

if a small conductance Gn is added %n(s), the resulting function can be
g rendered PR without introducing appreciable error. This procedure is
called a real-part padding by Guillemin [1977) and was first applied

in the present context by Streable and Pearscn [1981] in synthesizing
driving-point equivalent circuits for the thin-wire dipole and loop
antennas. It should be noted that neither the poles nor the residues
are affected in the padding process. Only the zeros of the pole-pair

module are changed.

The amount of padding Cn which must be added to a pole-pair
admittance, so that the condition C of Section 4.2 is satisfied,
can be found explicitly in terms of the poles and residues to be

i Qn(ZQnIan!-+dn-cnqn)

G (4.26)
; als |
n'"n
for the unmodified pole-pair module, and
2Q’fa [ -d (307 -1) -c_(Q>-1)q
¢ =--n_10 n' " ‘n n ‘n n (4.27)
: " Q_ls_la
4 o n'n
i
; for the modified module. The numerator coefficients of the padded
' pole-pair admittance (4.1) can be expressed in terms of the poles and
residues as follows:
{ Q (20 | | +a - 41,

= (4.28a)

n ' 1. 12
qnlbnl
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. 2Qn'anl+-dn4-cnqn X (4. 28b)
q,ls,

n

and
- 2inanl Cn(Qn 1)qn dn(3Qn L

(o4
n ann

. (4.28c)

The denominator coefficients are not affected and are given by (4.3).
It should be noted that after padding all coefficients of the
biquadratic function (4.1) are nonzero, which makes the synthesis of
it more difficult.

It can be shown [Foster, 1955] that the necessary and sufficient

condition for the physical realizability of (4.1) is
2
VAF - /CD <BE_ . (4.29)
n o nnj — non

It is easy to see that this condition is consistent with (4.16) in

the case when An==0, and with (4.21) when Cn==0. The padded pole-pair
admittance is a minimum-real-part function, Z.e., the real part is zero at
some finite frequency [Balabanian, 1958]. For such functions (4.29)

is satisfied with the equality sign, <.e.,
YAF -/CD =12 /8E . (4.30)
n n n n nn

It appears [Michalski and Pearson, 1979] that the only general synthesis
methods which can be applied in this case are the Brune method [Brunc,
1931] and the Bott~Duffin method [Bott and Duffin, 1949]. The synthesis
of (4.1) by these methods is described in considerable detail in

[Michalski and Peareon, 1979]. Here, we quote only the principal

results.




s ]
1

The Brune network realizing (4.1) is shown in Figure 4.8 with
explicit expressions for the element values in terms of the coefficients
of (4.1). The Brune network is simple and can be successfully used
for analysis purposes. It is less attractive for a physical realization, |
because of the presence of a unity-coupled transformer., Even a slight
deviation of the coupling coefficient from unity gives rise to an
additional zero of %n(s) at infinity. This does not seem to have a

? very drastic effect on the behavior of the function, however,

An application of the Bott-Duffin procedure to (4.1) results
in two different network topologies depending on the sign on the right
hand side of (4.30). For the '"+" sign the network shown in Figure
4.9(a) results, whereas for the "-" sign the network in Figure 4.9(b)
is applicable. These two situations will be referred to as cases A

and B, respectively. An explicit network for the case B (or, rather,

the dual of it) was given previously by Foster [1955]. Note that the
Bott-Duffin networks are in a form of a balanced bridge, Z.e., the
points "A" and " in Figures 4.9(a) and 4.9(b) are at the same potential,
and any impedance (even a short-circuit) can be inserted between them
without affecting the terminal admittance. This fact can be used to
reduce by one the number of reactive elements by inserting a capacitor
or an inductor of a proper value into the bridge arm, and performing

1 a delta-wye or a wye-delta transformation. The resulting networks for

the two cases above are shown in Figure 4,10 and 4.11. Again, the

explicit reduced networks for the case B were given previously by

Foster [1955].

‘ Even in the simplified form the Bott-Duffin networks are rather

compkicated. They are generally considered unattractive from the point
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Figure 4.8 Brune realization of the padded pole-pair admittance
‘ function.
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Figure 4.9 Bott-Duffin realizations of the padded pole-pair
admittance function for (a) case A and (b) case B.
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Figure 4.10 Modified Bott-Duffin networks for the padded pole-
pair admittance function -- case A.
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Figure 4.11 Modified Bott-Duffin networks for the padded pole-
pair admittance function -- case B.
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of view of sensitivity, as element variations from their nominal
values give rise to three additional poles and zeros in the driving-
point function.

In order to determine which of the two cases A or B is applicable
for a given set of SEM parameters, it is helpful to consider the

expression

dqn-c
AF -CD = -2 .18 (4.31)
ls 1o,

It is easy to see from (4.30) that the case A arises when (4.31) is
positive; 1if it is negative, the case B is applicable. This can be
summarized as follows:

>0 , case A

dnqn--cn <o . cases . (4.32)

The geometrical interpretation of this condition in the an-plane is
given in Figure 4.5 with the regions of applicability of the two cases
explicitly indicated.

It can be shown that the resistances R2 in Figure 4.9(a) and
R1 in Figure 4.9(b) are reciprocals of Gn - the amount of padding used.
Thus, if the pole-pair admittance is almost PR, so that the padding
is negligible, these resistances are large and the entire circuit legs
in series with them can be neglected. The Bott-Duffin networks simplified
in this way are shown in Figure 4.12, The approximate pole-pair module
for the case A (Figure 4.12(a)) was first derived by Streable and

Pearson [1981]. They did not give explicit expressions for the element

values, however.
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Figure 4.12 Simplified Bett-Duffin circuits approximating the padded
pole-pair admittance function in the case of negligible padding.
(a) circuit for case A and (b) circuit for case B.




In all cases considered to date (the thin-wire dipole and loop

antennas, the spherical antenna) only the case A has arisen.

It seems,

however, that this cannot be generalized, and situations where the

case B is appropriate cannot be excluded a priori.

4.4 Voltage Transfer Function Synthesis

The voltage transfer function of the Norton network (3.24) and

its Thévenin network counterpart (3.55) can both be written in the

form

(4.33)

with the coefficients (which should not be confused with the coefficients

of (4.1)) given by

>
(]

Re{anTn},

-]
[}

- *
o Re{anTnsn} s

and
ls,lCc -da)
n ZQn

if the unmodified pole-pair modules are used, and by
- *
A Re{ansnTn}.

B_ = - Re{a_s*2T } ,
n nn n

s |
Ca ™ 2Qn (dnqn_cn) ’
and
s, ° 2
Dn' 207 [dnqn+cn(2Qn-1)]
R
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(4.34a)

(4.34b)

(4.34c)

(4.34d)

(4.35¢)

(4.35d)
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|

if the modified pole-pair modules are employed. In (4.34)-(4.35) a
are the immittance residues given either by (3.13) for the Norton
formulation, or by (3.38) for the Thévenin formulation. The source

coefficients Tn are defined in these two cases by (3.21) and (3.50),

respectively.

Before proceeding with the synthesis of (4.33), several comments
are in order. First, note that the equivalent circuits transformations
due to Baum [1976a] indicated in Figures 3.4 and 3.6 lead to very simple
pole-pair voltage transfer functions which are bilinear in s. Without
this transformation one would have to deal with biquadratic transfer
functions, whick would be a more difficult task. Second, note that
each transfer network in Figures 4.1 and 4.2 is followed by a controlled
source. The main purpose of these controlled sources is to provide
the impedance buffering which is required because synthesis techniques
do not exist which realize a given transfer function for a general,
unspecified loading conditions. In addition, these controlled sources
serve as amplifiers. The amplifier function is necessary because,
in general, most synthesis techniques realize a given transfer function
only to within a constant multiplier, with the expectation that the
gain can be restored at a later stage.

The theory of transfer function synthesis is a vast and mature

< e

field [e.g., Balabanian, 1958]. Fortunately, the function (4.33)

is so simple that only a small part of the accumulated knowledge needs

[ YO Sy

to be applied. Before attempting to synthesize (4.33) it is appropriate

-

to quote some of the conditions which a general voltage transfer
‘ : function, say T(s), must satisfy in order to be physically realizable

[Balabanian, 1958]. First of all, no poles of T(s) can lie in the
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right half plane. In addition, no poles of i(s) can lie at zero or
infinity. The zeros, however, can lie anywhere in the s plane. 1If
all the zeros of T(s) are confined to the left half plane, T(s) is
called a minimum-phase function; otherwise it is called a nonminimum-
phase function. The conditions imposed on T(s) depend on the network
topology desired. Here we will seek a transformerless realization.
Also, we will prefer an unbalanced (common ground) topology over a
balanced (no common input and output terminals) realization, whenever
possible. Following Balabanian [1958] we summarize these conditions
as follows.

For unbalanced two-ports with no mutual inductance:

1. Transmission zeros may lie anywhere except on the positive
real axis.

2. For real positive values of s, the value of the transfer
function lies between 0 and 1. The maximum value of unity
can be attained only at zero or infinity, or both.

3. The numerator coefficients of the transfer function are positive
(or zero) and no greater than the corresponding denominator
coefficients, assuming no cancellation of factors.

4. For a ladder network realization, which is a special form of
an unbalanced network, the transmission zeros cannot lie in
the right half plane.

For balanced two~ports with no mutual inductance:

1. Transmission zeros may lie anywhere, including the positive
real axis.

2. For real positive values of s the value of the transfer function
lies between -1 and +1. The extremities of the range can
be attained only at zero or infinity, or both.

3. The numerator coefficients of the transfer function may be
negative, but they are no greater in magnitude than the
corresponding denominator coefficients, assuming no cancellation
of factors.
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As discussed above, for physical realizability one requires that
i ] the pole of (4.33) lie in the left half of the complex frequency

;5 plane. This is satisfied only if the denominator coefficients of
(4.33) are of equal sign. In the unmodified pole module case this

imposes the following restrictions on the location of the residue a :

nlpn

<X, (4.36)
qn

j=]

, \ The geometrical interpretation of this condition is given in Figure
4.13(a). The transfer function is realizable if the a, lies in the
shaded region of the figure, If the modified pole modules are employed,

and (4.11) is satisfied, the residue location is restricted as follows:

q
- <

<gq . (4.37)
2Q§-1

n

5™{a"

The realizability region associated with this condition is the shaded
region in Figure 4.13(b).

The comparison of Figures 4.5 and 4.13 reveals that the voltage
transfer function is always realizable if the associated pole-pair
immittance function is realizable, If the pole-pair immittance is
initially non-PR, Z.e., the residue falls outside the regions I and
II of Figure 4.5 so that the padding procedure described in Section 4.3

is employed, the associated voltage transfer function is still realizable

; in at least one of the two forms: modified or unmodified. There is a
3 region in the an—plane where the realizability regions of Figures
; 4.13(a) and 4.13(b) overlap, so that both forms could be realized.
‘ We have found that for all dominant poles of the thin-wire dipole and

loop antennas the residues a, fall into that part of the realizability
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Figure 4.13 Regions of realizability (shaded) of the pole-pair voltage
transfer function for (a) the unmodified and (b) modified pole modules.
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region lying in the first quadrant of Figure 4.13(b), so that the
modified form of the voltage transfer function is realizable.

For notational convenience the index n on the coefficients of
(4.33) is dropped throughout the rest of this section. Also it is

convenient to introduce a scaling factor k and rewrite (4.33) as

~

2 1 kAs +kB _ 212 Y12 (4.40)
a8 =¥ Tes+d " 3. "3,
Z213 Y22

where iij and §1j denote, respectively, the open-circuit impedance
parameters and the short-circuit parameters of the two~port [Balabanian,
1958]. If (4.40) is realizable, the coefficients C and D are of the
same sign, as discussed above., It will be assumed here that they are
positive, which can always be accomplished by multiplying the numerator
and the denominator of (4.40) by -1. The following discussion can also
be simplified if the sign of k is chosen such that kA is positive.

Then it is only necessary to consider separately two situatioms:

kB >0 (%n(s) is a minimum-phase function), and kB< 0 (%n(s) is a
nonminimum-phase function). 1In each case two circuit topologies are

obtained depending on the choice of the impedance or admittance

parameters representation in (4.40).

Case 1. kB2>0

In this case one can make the associations

212 = kAg + kB (4.41a)

and

211 = Cg+D = (kAs+kB) + (C~kA)s + (D-kB) . (4.41b)
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To this set of parameters corresponds the RL ladder circuit showm in
Figure 4.14(a). This circuit is physically realizable if the value

of the unspecified constant k is restricted to

[ D
k < min fA , g] . (4.42)

It is easy to see that by choosing the maximum allowed value of k

one can eliminate either LA or R, from the circuit in Figure 4.14(a).

A
If the admittance representation is used in (4.40) one can

write

-§1, = kAs +kB (4.43a)
and

Yy, = Cs+D = (kAs+kB) + (C-kA)s + (D-kB) . (4.43b)
This set of parameters can be realized by the RC ladder network shown
in Figure 4.,14(b). This network is physically realizable .f k satisfies

(4.42). Again, by a judicious choice of the value of k one can eliminate

either CBor RB'

Case 2. kB<O

Since in this case the voltage transfer function has a positive
real zero, it cannot be realized in an unbalanced form [Balabanian,
1958]. 1Instead, one must resort to the symmetrical lattice topology
shown in Figure 4.15(a). 1If this network is unwrapped to the equivalent
form of Figure 4.15(b), it is recognized that the symmetrical lattice
is identical with a bridge network. 4

The lattice arm impedances ia and Z, can be expressed in terms

b

of the open-circuit impedance parameters as
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Figure 4.14 Ladder network realizations of (a) the RL and (b) RC
‘ type for the pole-pair voltage transfer function -- negative transmission
zero case.
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Figure 4.15 (a) Standard and (b) bridge form representation of the
symmetrical lattice.
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and

Alternatively, the lattice arm admittances §a'.1/Ea and ?b

be expressed in terms of the short-circuit parameters as

Yo = Y2271
and

~

Yy = Y22*Y12 -

Using (4.41) in (4.44) gives
Za = (C-kA)s + {D-kB)

and

Eb = (C+kA)s + (D+kB) .

= 1/zb

(4.442)

(4.44b)

can

(4.45a)

(4.45Db)

(4.46a)

(4.46b)

This set of parameters can be realized by the network shown in Figure

4.16(a). For physical realizability it is required that

c D
k i min[x, - ‘E] .

(4.47)

By giving k the maximum value allowed by (4.47) one can make either

LA or RB disappear.

In like fashion, using (4.43) in (4.45) gives

?a = (C+kA)s + (D+kB)
and

‘Irb = (C-kA)s + (D-kB) .

To this set of parameters corresponds the network shown in Figure

4.16(b). The value of k is still restricted by (4.47).
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Again, either
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o
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Figure 4.16 Symmetrical lattice realizations of (a) the RL and (b)

RC type for the pole-pair voltage transfer function -- positive
transmission zero case.
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RA or CB can be removed by a judicious choice of the value of k.

The circuits given above do not realize the multiplicative factor
1/k in (4.40). The gain lost can be restored in the controlled
source stage following each voltage transfer network. The amplification
factor of this controlled source must have the value u=1/k.

Still different realizations in the case when kB <O can be
obtained by writing (4.40) as a product of an all-pass functionl)

and a minimum-phase function as follows

l kAs + kB . kAs - kB (4.a9)

Ta(8) "L %a -k " ¢ D °

Now the all-pass function can be realized as a simple constant-

resistancez)

LC lattice, and the minimum-phase function can be synthesized
as a constant-resistance ladder [Balabanian, 1958]. A cascade connection
of these two-ports realizes (4.49). This realization, however, is

more complicated than the networks shown in Figure 4.16.

4.5 Conclusions

In this chapter simple procedures are developed for the synthesis
of physically realizable active equivalent circuits for energy collecting
structures from their SEM description. The general network topology
is that shown in Figure 4.1 for the short-circuit boundary value problem

(the Norton equivalent), or that shown in Figure 4.2 for the open-

circuit boundary value problem (the Thévenin equivalent). These networks

l)An all-pass function is defined as a transfer function whose zeros
are all in the right half plane and whose poles are the negatives
of its zeros.

Z)A constant-resistance two-port 1s defined as one whose driving-

point impedance is equal to a constant R when the two-port is
terminated in a resistance R.
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have the form of a connection of simple modules associated with conjugate
I pole pairs of the structure. These pole-pair circuits are synthesized
one at a time, so if the need arises the network can be easily expanded
by adding more pole-pair modules without repreating the whole synthesis
process. By using the network topologies of Figures 4.1 and 4.2 the
synthesis process if reduced to the realization of a driving-point
function biquadratic in s and a voltage transfer function bilinear ir s.
The realizability conditions and explicit circuit realizations are
given for these functions. 1f the pole-pair driving-point function is
initially nonrealizable, a simple padding procedure is described to
synthesize an approximating network. It is shown that the pole-pair
voltage transfer function can he always realized either in the form
of a ladder circuit or of a symmetrical lattice circuit. Unfortunately,
the applicability of each of the two topologies is dependent on the
direction of arrival of the incident plane wave, so that the circuit
topology may change when excitation conditions are changed. The
equivalent network does not depend on the time history carried by the
incident field, however. Also, the autonomic voltage source is
connected to only one port, which is a desirable feature. As the
Figures 4.1 and 4.2 indicate, the controlled sources could not be

avoided. They can be implemented in practice with active devices which,

e

however, usually can not sustain very high voltages.

In the next chapters the procedures developed here are used to

cAd et wlh

synthesize practical equivalent circuits for the loop, dipole, and

1 spherical antenna.
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CHAPTER 5

EQUIVALENT CIRCUIT SYNTHESIS FOR A CIRCULAR LOOP

5.1 Introduction

In this chapter the procedures developed in Chapters 2-4 are
used to synthesize an SEM Norton-type, dominant pole-pair equivalent
circuit for a thin-wire loop antenna. The thin-wire circular loop
is one of the few structures for which an explicit solution for the
current can be found (subject to the thin-wire approximation). The
development presented here differs in details from the general theory
developed in Chapter 3 because of the occurrence of the eigenvalue
degeneracy in the present case,

The performance of the developed SEM equivalent circuits is
compared with responses obtained by the classical frequency domain—
inverse Fourier transform approach. The application of these circuits
to the analysis of antennas with nonlinear loads is demonstrated in

Appendix B.

5.2 Preliminary Theory

The geometry of the loop is defined in Figure 5,1. It is assumed
that the radius of the wire a is much smaller than the radius of the
loop b(a<<b) and that w a/c << 1, where w=w is the largest

max max

significant spectral component of the excitation. As a consequence,
it can be assumed that there is only a ¢-component of the surface
current density, t.e., 3(;,3)'-3¢(¥,s)$, where $ denotes the unit
vector in the ¢ direction, and that the current density is uniform around

the wire, Z.e., J (?,s)*~3¢(¢,s). The total current can be defined as

¢




Figure 5.1 Geometry of the circular loop.
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as

1(9,s) = 21ra3¢(¢.s) . (5.1)

The EFIE for the total current becomes one-dimensional with the

kernel defined by

s Zo 13 2o e_SR
Z(¢,¢',S) = "B- s COS(¢—¢') - ;W%m (5.2)

s =Yb is the normalized complex frequency, y being the complex
propagation constant, and R is the normalized distance between the
source point and the observation point on the surface of the wire

(see Figure 5.1) given by

R= /4 sin? (@2 + (&)° (5.3)
with
A=2asin(§) . (5.4)

The suitable symmetric product is defined as

w

<[];[]>5J[]'[]bd¢- (5.5)

-7
The eigenvalues of the EFIE can be found as [Harrington, 1968;

King, 1969}

. iz, .
An(s) i an(s) (5.6)
where
K__,(s)+K___(s) 2.,
i (s) = -js n-1 > o+l + (2) K, (s) (5.7)
and
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m L
jn(¢-¢') _-sR
=~ 1 e e '
Ro(s) =77 J ay J = d(9-0") . (5.8)

~T =T

As shown by Wu [1962], eq. (5.8) may be approximately written in

terms of integrals of Anger~Weber functions for unrestricted n, as

z
R () == (@) -1 J [Qo(z) +1 Jo(z):]dz (5.9a)
0
’ I
K_(s) ='%[}o(%§)xo(%§) + Cé} --% J 1720 (2) +] Jzn(zi}dz (5.9b)
0
with
n-1 1
C =@ -2 [ (m+1)” (5.10)
m=0

where [ =-j2s and I0 and KO are the modified Bessel functions of the
first and second kind, respectively, and '=1.781... is the Euler's
constant. This representation was originally obtained by Wu for the real
frequency case (s=jw); it was generalized to the complex frequency
case by Umashankar and Wilton [1974].

The eigenfunctions associated with the eigenvalues (5.6) are

cos(nd)

1 e(¢) = ’ (5.11)
LR sin(n¢)
so that there is an eigenvalue degeneracy for n>1,
The current i(s) Ef(¢g,s) at the location ¢’=¢g can be expanded

in terms of the eigenfunctions as

o1
fay oot |1 o, (@B
%o |29 <1 _(or,1, (00>
= <I(9),E (6,9)>

[ — e I () (5.12)
n=l 0 8a(®) <1 (8),I  (¢)>
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where the subscript ¢ indicates e (for "even") or o (for "odd").

Noting that

<I) (8),1 ) (6)> = 2mb (5.13a)
and

<Ly 60T, (0> = (5.13b)
one can rewrite (5.12) as

e =7 O] <I L (0),E (0,9)>

. 1

~i
+21 1570 <In,0(¢)’E¢(¢’S)>In,0(¢g)J . (5.14)

5.3 Derivation of the Driving-Point Admittance of the Loop Antenna

For the driving-point admittance computation a delta function

generator located at ¢==¢g is assumed, with the field defined by

<

zi _V(s)
E¢(¢’s) = b

5(¢-¢g) . (5.15)
Using (5.15) in (5.14) the admittance ?(s)==i(s)/€(s) can be written

as

seey ool )1 IS 1
Y(s) 7%, 1520 + 2n=z=l g—in(s) SGECID) (5.16)

Umashankar and Wilton [1974) have shown that the term I/En(s)

can be expanded in a residue series

R o 'R R¥,
~i .o, 7y | , 1 (5.17)
(s) s S-S s - s¥
4n i=l ni ni

where the term associated with the pole at s=0 is present only for
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n=0, t.e., RnO-O for n>1, and the residues Rn are given by

i

-1
S~ Sni d an(sni)
R = {im - =
ni s> an(s) ds
ni

(5.18)

In actual computations this series must be truncated after some
finite number of terms (say M). Umashankar and Wilton [1974] have
found that the truncated series (5.17) converged very slowly at low
frequencies and they were forced, in effect, to use the modified pole

expansion (see Section 2.3)

no % i Rni R:i
o4 __.mo v 3 S - T (5.19)
A =1 lfni(s Snd  Sps (5™ Spy)

They also observed that the poles belonging to a given eigenmode could
be divided into three categories:
1. Type I -~ A single pole of each eigenset nearest the jw-axis
at approximately w=n. This pole is the principal contributor
to the response of the loop ~ it is the dominant pole (see
Section 2.7).
2, Type II - A set of (n+l) poles (including conjugate pairs)
which lie roughly along an elliptic arc centered at s=0
and with a semi-major axis somewhat larger than n.
3. Type III - A group of an infinite number of poles lying
almost parallel to the juw-axis. The spacing of these poles
is asymptotic to Aw=Tc/b.
This classification is illustrated in Figure 5.2 for a loop with the
shape factor Q= 2¢n(2mb/a). In this figure all fourth eigenmode poles
with Im{sni}f_ZOb/c are shown together with the dominant (Type I)
poles of the eigenmodes 0-19. More recently Blackburn [1976] (see
also [Blackburm and Wilton, 1978]) has provided an extensive tabulation

of the poles and associated residues for the loop for several

different shape parameters Q.
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Figure 5.2 Type I, Type 1I, and Type III poles of the fourth eigenmode,
and Type I poles of eigenmodes 0-19 of a circular loop with the shape
factor {i=15.
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Denoting by Sy the dominant pole of the nth eigenmode and by

R& the associated residue, one can write

Rl
..—.'j—- z -2 (5.20a)
ao(S) S
and
RI Rl*
1 - n + n
= z — Yy —— » n>1, (5.20b)
an(s) sn(s Sn) sn(s sn)

To simplify notation, it is convenient to define a normalized residue
by

R = —> . (5.21)
o
Using (5.19) and (5.20) in (5.16) yields

T(s) = 4=+ ] Y (s) (5.22)
[0}

?n(s) = ?n’e(s) + ?n’o(s), (5.23)
?p, (s) = ¥ ’O(s) +Y_ O(s),
. a 17 ,(0)
Yn’o(s) =5 °?§:€?:751§- s (5.25)
with
a =2 ,n>l . (5.26)

As discussed in Section 3.2, the index -n indicates the term associated

with the conjugate pole. Note that since

2 =
I (9 + 1;,°(¢> =1 (5.27)
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for all values of ¢, it follows that

(5.28)
and

¥ (s) =¥ () +1_ (s) (5.29)

is independent on the port location. This could be anticipated, of
course, because of the symmetry of the loop.

The quality of the dominant-pole approximation to the driving
point admittance of the loop antenna with ©=15,0 is illustrated in
Figure 5.3 which shows the comparison of the behavior of Y(s) on the
jw—-axis computed both from the approximate formula (5.22), with N=10,
and from the exact expression (5.16). It is seen that the agreement
is satisfactory, in particular in the real parts. The agreement in

the imaginary parts deteriorates fortyz3c/b.

5.4 Derivation of the Short-Circuit Current of the Loop Antenna

For the short-circuit current computation at ¢==¢g a plane wave
incident field is assumed with the geometry defined in Figure 5.4.

The ¢ component of the incident field on the wire is given by

Ey(0.8) = ELQUOIF(4,8)E(s) (5.30a)
with
Q(¢) = siny cosB sin(¢~¢1) - cosu cos(¢-¢i) (5.30b)
and
s sine[cos(¢—¢i) - cos(¢ -—mi)]
P(d,s) = e 8 (5.30¢)

In (5.30a) Ei denotes the magnitude of the field strength and E(s)

is the Laplace transform of the time history carried by the plane wave.
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Figure 5.3 (a) The real part and (b) the imaginary part of the spectrum
of the driving-point admittance of the loop antenna. The dominant pole
approximation (5.22) is compared with the exact expression (5.16).
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Figure 5.4 Circular loop in a plane-wave incident field. (a) The
general view; (b) the plane containing the loop.
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The time origin is placed at the port location @-«tg, as discussed
in Section 2.5. Using (5.30) in (5.14) and normalizing the current

to 2mbE. yields

n,(s) © A, (8)
SCrgy = b {0 _ n, ¢ N
(s) WZO 50(5) + 2 nzl g —E;TEY_ In,0(¢g) f(s) (5.31)

with the coupling coefficients given by

-s sind cos(¢g-<bi)

ﬁo(s) = cos Y Il(s sinf)e (5.32a)
and
fcos(n¢i)
ny e(s) = jcosy Ié(s sing)
'S sin(n¢i)
- ein(n¢ )\ n I (s 31n65] -s sinf cos(e - i)
- siny cos@ —_——_——_6——_ s
| cos(n¢i) s sin J

n>1. (5.32b)

In the dominant-pole approximation the short-circuit current becomes

f_(s) sR_ A _(s)
=8C ~ o) n n,0 n p
1*°(s) = R, Lim [ ]f(s) +2 nzl g 55 1 (0 )E(s) (5.33)

Combining N conjugate pole-pairs in (5.33) results in

N
15¢(s) = g f(s) + 21 ) Yn’o(s)Tn'onkY_n’o(s)T:’;]f(s) (5.34)
=l ¢
where
ﬁo(s) cosy sinf
g =R_fim [ ] = R (5.35)
o o g+ s ° Y3

(5.36)




Eq. (5.34) can be rewritten with the help of (5.32) as

N
I%€(s) = g E(s) + nzl Yn(s)rn+Y_n(s)rﬂf(s) (5.37)

where the source coefficients Tn are defined by

(

= 2 2 = - L)
Tn In,e(¢g)Tn,e-+In,o(¢g)Tn,o {cosw cos[n(d)g ¢i)]In(sn sing)

i

. (5.38)

n I (s sind)| -s sinb cos(d -9.)
- siny cos8 sin[n(®g-—¢i)] ———JL—ll————-}e n g

s_sin?d
n
As discussed in Section 3.2, eq. (5.37) can be further transformed to
 sc . N2
I°%(s) = g £(s) + ) Y (s)T ()E(s) (5.39)
o n n
n=1
with the voltage transfer functions fn(s) defined by (3.24).

The quality of the dominant pole approximation to the short-circuit
current of a loop antenna with 2=15.0 is illustrated in Figure 5.5
which shows the comparison of the behavior of fsc(s) on the jw-axis
computed both from the approximate formula (5.39), with N=10, and
from the exact expression (5.31). It is seen that the agreement is
satisfactory.

The expressions (5.22) for the driving-point admittance, and
(5.39) for the short-circuit current, are now in a form suitable for

the application of the synthesis procedures developed in Chapter 4.

5.5 Equivalent Circuits for the Loop Antenna With =15

In this section Norton-type equivalent circuits are presented for
a loop antenna with the shape factor 2=15. The general layout of the

equivalent circuit is shown in Figure 4.1. It was found that only 10
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(a) The real part and (b) the imaginary part of the spectrum

of the short-circuit current of the loop antenna. The dominant pole
approximation (5.31) is compared to the exact expression (5.39).
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or less dominant pole-~pair modules model the structure adequately for

the excitations used. The SEM data employed (the poles and the
admittance residues) were taken from [Blackburm, 1976] and are listed

in Table 5.1. Also indicated in this table for each pole are the quality
factor Qn’ the residue location—as referred to Figure 4.5, and the padding
necessary to restore the PR-ness of the associated pole-pair admittance

§ (s). The column denoted "7%" gives the ratio (in %) of the padding
conductance Gn to the maximum value of the real part of ?n(jw).

It is evident from Table 5.1 that omly %1(3) is initially PR and can be
realized by one of the ladder circuits shown in Figure 4.7. For all
other pole-pair admittances the residues lie outside the regions I and

II, in the area denoted 'case A" (see Figure 4.5), so that padding is

required. However, the amount of padding is insignificant as compared

to the value of the real part of %n(jw) near the resonance. The padded
pole-pair admittances can be realized by the simplified Bott-Duffin
modules, as discussed in Section 4.3. The element values of the first
10 dominant pole-pair modules are listed in Table 5.2. Similar driving-
point admittance network for the loop was synthesized previously by
Streable and Pearson [1981].

The current response of the equivalent network defined in Table
5.2 due to a Gaussian voltage pulse, computed by the SCEPTRE [Jensen
and Mclamee, 1976] circuit amalysis program, is shown in Figure 5.6.
This response is compared to a waveform obtained from the TWID
[VanBlaricum and Miller, 1972) computer code, which solves an integral
equation for the current in the time domain. It requires, however,
that the structure be modeled by a connection of straight wire segments,

Only about 50 segments were employed to model the loop for the TWID run
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Table 5.2 Element values of the dominant pole-pair admittance

networks for a loop antenna with Q= 15.*

LADDER CIRCUIT (Figure 4.7(a))

n Cl/b[PF/m] R, [2] Ll/b[LlH/m] R, [kQ]
1 3.3034 47.374 3.0865 10.164
BOTT-DUFFIN CIRCUIT-CASE A (Figure 4.12(a)

-n C /blpF/m] L, /b[u/m] C,/b[pF/m] R, [kQ]
2 0.9333 2.8764 44,3967 16.144
3 0.5095 2.7291 2.8702 20.727
4 0.3355 2.6209 1.0626 24,225
5 0.2443 2.5355 0.5527 26.998
6 0.1893 2.4648 0.3384 29,254
7 0.1531 2.4045 0.2284 31.125
8 0.1276 2.352 0.1645 32,701
9 0.1089 2.3055 0.1242 35.042

10 0.0946 2.2637 0.0971 35.197

*
)The static inductance Lolb-7.215 [ul/m].
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with the gap width equal to the length of one segment. This crude
modeling is a possible explanation of the quite significant dis-
agreement (about 15% in the worse case) of the SCEPTRE and TWTD
curves.

Because of the symmetry of the loop, the driving-point part of the
equivalent network does not depend on the gap location ®g; neither
does it depend on the direction of propagation of the plane wave incident
field, of course. The transfer function part of the equivalent network
does depend on the angles of incidence and the polarization of the
incident plane wave, as discussed in Chapter 4. Not only the element
values of the active part of the network change when the direction of
incidence is changed, but also the network topology can be affected.
However, it is shown in Chapter 4 that at most two network topologies
can result: a ladder network or a symmetrical lattice network. For
both cases explicit expressions for the element values in terms of the
poles s, the admittance residues a and the source coefficients Tn
are given in Chapter 4. The expression for Tn in the loop case is
derived in Section 5.4, eq. (5.38). The topologies and element values
of the corresponding transfer networks are listed in Tables 5.3-5.6.
Note that we have chosen to use the RC networks rather than the RL
networks. This choice was made because the element values of the RC
networks turned out to be more realistic than the element values of the
equivalent RL networks.

The short-circuit current responses of the complete equivalent
networks computed by SCEPTRE are compared in Figures 5.7-5.12 with

responses obtained by other means for different excitation conditioms.
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SCEPTRE responses are compared with TWID results in Figures

5.7-5.9. The time history carried by the plane wave is a step function.
As in the case of the admittance network, there is a significant
discrepancy between these two curves. Again, one can attribute this
discrepancy to the relatively crude modeling of the lcop by the
straight pieces of wire. It is of interest to note that the current
waveform approaches a constant non~zero value for late times. This
phenomenon is possible because there is a d-c (direct~current)

component in the incident waveform spectrum and the loop is perfectly
conducting.

The circuit responses are compared with the results of the
classical frequency domain—Fourier transform method in Figures 5.10-
5.12. The time history of the incident wave is a double exponential
function. In computing the frequency domain response the series
(5.31) for the short-circuit current was evaluated for s = jw with 30
terms included. The subroutine developed by Blackburn et ¢l. [1978]
was used to evaluate the in(jw) factors. The time domain response was
obtained by applying the Fast Fourier Transform (FFT) algorithm
{Brigham, 1974]. 1t is seen fromFigures 5.10-5.12 that the SCEPTRE and

FFT responses agree favorably (the maximum discrepancy is less than 8%).

5.6 Conclusions

The responses of the dominant pole-pair equivalent circuits for
a thin-wire loop antenna agree favorably with the exact responses
obtained from the frequency domain—inverse FFT approach. The amount
of the real-part padding necessary for physical realizability of the
pole pair admittances is negligible in comparison to the value of the

real part at the resonance.
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CHAPTER 6

EQUIVALENT CIRCUIT SYNTHESIS FOR A CYLINDRICAL DIPOLE

6.1 Introduction

In this chapter the procedures developed in Chapters 2-~4 are applied
to the synthesis of the dominant pole-pair, Norton-based, equivalent
circuits for a thin cylindrical dipole antenna. The cylindrical dipole
is a member of the class of structures for which an exact analytical
solution is not available. Instead, the SEM data are derived numerically
by the MoM technique. Simplified equivalent circuits based on the
sinusoidal mode approximation are also derived. For a symmetrical dipole
antenna or a cylindrical post over a ground plane, particularly simple
and yet reasonably accurate equivalent circuits result. The responses
of the SEM equivalent circuits are compared with the results of the
classical frequency domain—inverse FFT approach. An application of the
derived equivalent circuits to the analysis of antennas with nonlinear

loads is illustrated in Appendix B.

6.2 Preliminary Theory

The geometry of the dipole 1s defined in Figure 6.1. It is assumed
that the cylinder is slender (a << &) and electrically thin, Z.e.,
wmaxa/C<<]" wheretn-uhmx is the largest significant spectral component
of the excitation. As a consequence, it can be assumed that there is
only a z-component of the surface current density, Z.e., ?(;}s)=-32(;.s)2,
where Z denotes the unit vector in the z direction. It can be further
assumed that the current density is uniform around the cylinder, z.e.,

32(;,3) E:fz(z,s), go that the total current is given by
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Figure 6.1 Geometry of the cylindrical dipole.
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i(z,s) = 2Ta jz(z,s) . (6.1)

The current on the dipole can be found from the so-called "Pocklington's

equation"
zo d? £~ ~ ~1i
- ZF? {3;; - Yz] J I(z,s8)K(z,2',8)dz’' = Ez(z,s) (6.2)
0
where
e 1 " e_YR
K(z,2z',s) = o J R do' (6.3)
-T
with
R = V(z-2')? + 4a? sin?(¢'/2). (6.4)

E:(z,s) denotes the z component of the incident electric field and
Yy=s/c is the complex propagation constant. ;

In order to find the short-circuit SEM parameters of the dipole
the gap is closed (Figure 6.1) and the integro-differential operator

in (6.2) 1is matricized by using the method of moments (MoM) technique

[Harrington, 1968}. 1In a simple variation of this method, as applied
to the present problem, the cylinder is divided into a number, say M,
of equal size zones of width A=¢/M and the current distribution within
a zone is approximated by a constant. By replacing the differential
operator in (6.2) by finite differences {Wilton and Butler, 1976} and
enforcing the integral equation at the match points 2,0 k=1,2,...,N
(collocation testing), a linear matrix equation is obtained for the
expansion coefficients of the current. The natural frequencies (the
poles) are found as the zeros of the determinant of the MoM matrix.

At these freqeuncies the homogeneous eq. (6.2) has nontrivial solutions—
the natural modes. The natural mode associated with the pole s, can

be expressed as
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M
LG = } I . P2 (6.5)
k=1
where in k are the current expansion coefficients obtained from the
]
MoM solution and Pk(z) are the pulse expansion functions defined by
1, zk-A/Zizizk+A/2
P (z) =
0 , otherwise . (6.6)

From the MoM matrix and the natural modes one can compute the normali-~

zation constants Bn according to eq. (2.20).

6.3 Derivation of the Driving-Point Admittance of the Dipole Antenna

The driving-point admittance of the dipole is determined by computing
the current f(s) in the gap region due to a voltage V(s)=-Vof(s) impressed
across the gap, as discussed in Section 3.2. The incident field due
to this voltage can be approximated by

~1 Vo ~
Ez(z,s) = X Pg(z)f(s) (6.7)
where k=g is the index of the gap zone. The coupling coefficients

can be found from (see Section 3.2)
2~ Vo
A, = j In(z) N Pg(z)dz x Vo In,g (6.8)
0

and the admittance residues from

[H
R

~ F2
an 2 Bn In’g . (6-9)

The driving-point admittance Y(s) = I(s)/V(s) has the form

N .
¥(s) = ] ¥ (a) (6.10)
n=1
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where %n(s) are the pole-pair admittances defined in (3.16) and N is
the number of dominant poles employed. Note that the inductive term
of eq. (3.15) is not present in the dipole case.
The poles and natural modes of a thin cylinder with the shape
factor Q=2in(R/a) =10.6 were first found by Tesche [1973] by the
procedure described in the previous section. In this work, however,
the natural modes are given in a graphical form only. Since the numerical

values of the coefficients in were needed for the circuit synthesis

Wk
purposes, Tesche's data were reproduced using 72 pulses in the current
expansion. The gap width was taken to be one zone. The results are
summarized in Figure 6.2 and Table 6.1. It can be seen from Figure
6.2 that the poles lie in layers roughly parallel to the jw-axis. The
first layer poles are the dominant ones. Also shown in this figure
is a grouping of poles according to eigensets, conjectured by D. R. Wilton
[Streable and Pearson, 1981]. Note that, unlike in the loop case, there
are only a finite number of poles belonging to each eigenmode in this
representation.

The quality of the dominant-pole approximation to the driving-
point admittance of a cylindrical dipole antenna with Q=10,6 is
i1lustrated in Figure 6.3 which shows the comparison of the behavior
of Y(s) on the jw-axis computed from the approximate formula (6.10)
with N=10, and by solving the integral equation (6.2) numerically.
It is seen that the agreement is quite good in the real parts case
while it is not as good in the imaginary parts, especially for

w> 2T /L.

147




. a
7T —T /0
2q =24n(L /0)=10.6
+ T;[‘- i9
X X
2 -
r X X 8
- * X x‘ 7
| X ) 6
wd
3 x x 6 - x‘ 5;-6_
(\"/ -
- X S s 14
X (\" -~
/ - d 3
I 4 7 D
X / X ~- -
X /
/ / , 7 r-q 2
X 7 X ey
s 2
/ /
o 4 4 L 1o

6 5 -4 -3 -2 -1 O
al

wrC

Figure 6.2 Pole distribution of a thin cylinder with the
shape factor 2=10.6.
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Figure 6.3
of the driving-point admittance of the dipole antenna.
approximation (6.10) is compared with the "exact" curves obtained by
solving the integral eq. (6.2) numerically.
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6.4 Derivation of the Short-Circuit Current of the Dipole Antenna

For the short-circuit current computation the incident field is
that due to a plane wave carrying a time history f(t). The z-component

of the electric field evaluated on the z-.xis is given by

-1 1 Y(z-—zg)cose~

Ez(z,s) = E0 sinb e f(s) (6.11)
with the time origin chosen in the gap zone, as discussed in Section 2.6.
With the current normalized to lEé, the coupling coefficients can be

computed as

£
Y_(z-z )cosb
~ _ _sinB { = n g
nn - [In(z)e dz
0
M Y (z, -z )cosb
. . Qsind I " k g (6.12)
L ko1 n,k

with the source coefficients given by
Tn =y . (6.13)
n,g
The short-circuit current can be expressed as
~sc N ¢ 2 -
I°°(s) = ] Y (8)T _(s)f(s) (6.14)
n n
n=1
with the voltage transfer functions Tn(s) defined in (3.24). Note that
the first term of eq. (3.23) is not present in the dipole case.

The quality of the dominant-pole approximation to the short-circuit
current of a cylindrical dipole antenna with 2=10,6 is illustrated in
Figure 6.4, in which the behavior of isc(jm) computed from the approximate
formula (6.14) with N= 10 1s compared with the "exact" waveform obtained

from the solution of the integral equation (6.2) numerically by the MoM
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Figure 6.4 (a) The real part and (b) the imaginary part of the spectrum
of the short-circuit current of the dipole antenna. The dominant pole
) approximation (6.14) is compared with the "exact"” curves obtained by
‘ solving the integral eq. (6.2) numerically.
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technique. The time history is the delta function and the angle of
incidence 8 =60°. It is seen that the agreement is excellent, both in

the real and imaginary parts.

6.5 Equivalent Circuits for the Cylindrical Dipole with Q=10.6

In Table 6.1 are listed for each pole Sh the quality factor Qn'
the admittance residue a and its location—as referred to Figure 4.5,
and the padding Gn necessary to restore the PR-ness of the associated
pole-pair admittance %n(s). The column denoted "%'" gives the ratio
(in %) of the padding conductance Gn to the maximum value of the real
part of %n(jw). Data are provided for two gap location: zg==1/22
and zg==1/42. As can be seen from this table, for most poles the
residues fall outside the regions I and II, in the area denoted ''case
A" (see Figure 4.5), so that after padding the Bott-Duffin module can
be employed to realize %n(s). For two dominant poles the residues lie
in region II, so that one of the ladder networks from Figure 4.7 can be
directly used. The element values of the driving-point equivalent
networks for the two gap locations are listed in Tables 6.2 and 6.3,
respectively. These networks were first obtained by Streable and
Pearson [1981]. We include them here for the sake of completeness,
since they are part of the active equivalent networks. The responses of
the equivalent networks for a center- and a quarter-driven dipole due
to a Gaussian voltage pulse, computed by the SCEPTRE [Jensen and
McNamee, 1976] circuit analysis program, are compared to the TWID
[VanBlaricum and Miller, 1972] time domain integral equation solutions
in Figures 6.5 and 6.6, respectively. Except for the early time, the

agreement is seen to be quite good. The early time response of the SEM
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Table 6.2 Element values of the dominant pole-pair admittance
networks for a center-driven dipole antenna (22=10.6).

BOTT-DUFFIN CIRCUIT-CASE A (Figure 4.12(a))

2| c_/alpF/m] | L /RluH/m] c,/ApF/n] | R [K0]
1 2.9728 0.4584 131.99 2.1290
3 0.5063 0.3875 1.134 4.8650
5 0.2412 0.3595 0.2966 6.3673
7 0.1519 0.3417 0.1329 7.3458
9 0.1089 0.3285 7.529%1072 8.0824

*

)Resonant frequencies s, n= 2,4,...

driving-~point network.
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Table 6.3 Element values of the dominant pole-pair admittance

networks for a quarter-driven dipole antenna with =10.6.

LADDER CIRCULIT (Figure 4.7(a))

*)

n C,/4(pF/m] R, (] L, /%[uH/n] R, (k0]
1 1.6149 7.307 0.8243 4,244
9 2.998+10"2 67.612 0.4897 103.08
BOTT-DUFFIN CIRCUIT-CASE A (Figure 4.12(a))

n CO/R[pF/m] Lllz[uu/m] cllz[pF/m] R, [kQ]
2 1.0326 0.4009 3.1783 3.2045
3 0.3246 0.8869 0.2850 5.0706
5 8.738%1072 0.5696 2.4309 30.882
6 0.2171 0.3375 0.1780 5.3000
7 | 0.1209 0.8301 3.797#1072 4.5332
10 0.1166 0.3095 5.693%10 2 5.7955
*)

4th and 8th resonant frequencies do

driving-point network.
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equivalent circuit can be significantly improved by augmenting it by a

. shunt capacitor of a proper value as discussed in Section 3.3. The
value of the capacitor must be computed apart from the SEM representation,
e.g., by solving for the static charge distribution on the object. The

effectiveness of this procedure is illustrated by Figure 6.5 for the

center-driven dipole case.

The active part of the equivalent network depends not only on the
gap location zg, but also on the angle of incidence 6 of the plane wave.
As discussed in Chapter 4, the voltage transfer network realizing %n(s)
can be always synthesized irn one of the two forms: as a ladder circuit
or as a symmetrical léttice circuit. For both cases explicit expressions
for the element values in terms of the poles Sy the admittance residues
an,the the source coefficients Tn are given in Chapter 4. The expressions
for a and Tn in the dipole case are given in Sections 6.3 and 6.4,
respectively.

The topologies and element values of the first ten dominant pole-
pair voltage transfer networks of a dipole (2=10.6) for three gap
locations (zg=-1/4£, 1/22, and 3/4%) and three angles of incidence
(6=30°, 60°, and 90°) are listed in Tables 6.4-6.11., As in the loop
case, we have chosen to use the RC networks rather than the equivalent
RL realizations (see Section 4.4). It was found that less than 10
dominant pole~pair modules were enough to model properly the dipole
behavior for the excitations used. To give the reader the idea of
the complexity of a typical equivalent circuit for a cylindrical dipole,
we show explicitly in Figure 6.7 the topology of the equivalent circuit

for the case zg-3/42 and 6 = 60°,
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The short-circuit current responses of the equivalent circuits for
a plane wave excited dipole (2=10,6) for various angles of incidence
and various gap locations are compared in Figures 6.8-6.15 to results
? obtained by the TWID code. The time history of the plane wave is a
‘ Gaussian pulse. As can be seen from these figures, the circuit responses
computed by SCEPTRE agree favorably with the responses obtained from the
time domain integral equation solution.
Finally, in Figure 6.16 is shown the port current of a symmetrical
dipole antenna ({=10.6) loaded by a parallel RLC circuit with the
s quality factor Q =40, the characteristic resistance Ro- 25¢, and the
resonant frequency w, =, excited by a plane wave with the angle of
1 incidence 6 = 60° and a double exponential time history. The solid line
represents the response obtained from the numerical solution of the
integral equation (6.2) (modified by the loading impedance in the port
zone) followed by an FFT inversion. The dashed line is the equivalent
circuit response obtained from the SCEPTRE analysis, It is seen that
the agreement between these two curves is satisfactory, but not as good
as in the short-circuit conditioms.

6.6 Simplified Equivalent Circuits for a Cylindrical Dipole Based
on the Sinusoidal Mode Approximation

; It has long been known that the natural current modes of a thin

1 cylinder are approximately sinusoidal [King, 1967). That this is

é indeed the case was recently confirmed by the numerical work by

Tesche [1973] where he plotted the "exact" natural modes of a cylinder

with 0=10.6, Hallén [1930] used the sinusoidal approximation
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n

I (2)

sin [P{l z] + o@D (6.15)

to derive by an iterative procedure an analytical expression for the

dominant poles of a thin cylinder. 1In a first order approximation he

obtained
- _ In(2nnl) - C1(2nm) _ Si(2nm) -2
Sn 3 + jomw|l o +0(2 ) (6.16)

where Si and Ci denote the sine and cosine integrals [Abramowitz and
Stegun, 1965), respectively, '=1,781... is the Euler's constant, and the
poles s are normalized to ¢/%2. Hallén [1930] (and more recently Marin
[1974]) also carried the iteration one step further and obtained

expressions for in(z) which are correct up to 9—2 and expressions for

s, correct up to 0_3. These expressions are rather complicated,
however. It was found by Langenberg [1978] that the first order formula
(6.16) can be used for the first few resonances for cylinders with
2212. The second order formula is good for 8.

The zeroth order approximation to the natural modes (6.15) and
the first order approximation to the poles (6.16) were used successfully
by Marin and Liu [1976) and Langenberg [1978] for the solution of
transient thin-wire problems and a similar approach was used by
Singaraju and Gardner [1976] for the computation of a transient response
of a helical antenna.

By using the so-called "reduced kernel" [Xing, 1956] in (6.2)
and the sinusoidal current modes (6.15) it can be shown [Marin, 1974}

that the normalization constants (normalized to ¢/&) can be approximated

by
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oAb 1

% B, * 22 - 308 (6.17)
;f with Zoz.IZOﬂ. The admittance residues are thus given by
' sinz{%zl zg]

a =281I%z ) —mo—— (6.18)

n nn >4 309

For a symmetrical dipole (zg==1/21) (6.18) reduces to
A a === , n=1,3,5 (6.19)
n  30Q ° PTrSene *

Note that these residues are real and equal for all poles. For
X Q= 10.6, anf=(3.145 +j0.0) mS, which differs rather significantly
from the "exact" residues listed in Table 6.1.
Since the residues (6.19) are purely real, they fall into region
- I of Figure 4.5. Thus, the pole-pair admittances of a symmetrical

dipole can be realized in the unmodified form

2 _ 1 1 1
Yn(s) T 300 [s—s s~ g*
n n
s+0
1 n
= 150 (6.20)

s?+20 s+ s |2
n n

A continued-fraction expansion ([Matthaei, 1954] of (6.20) leads to the
circuit in Figure 6.17(a) or to its equivalent shown in Figure 6.17(b).
The first of these circuits was derived previously by Baum and Singaraju
{1980].

By a slightly different procedure still another approximation to

A ks ol

the pole-pair admittance can be derived: j
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1 S

Y2 20 n nis_|[*
[—}s2+[“]s+ &
')

“n “n

Yn(s) g (6.21)

which can be realized by the circuit shown in Figure 6.17(c). This
circuit resembles the circuit u#ed by Barmes [1973], but the expressions
for the element values are different.

The input current response of the simplified equivalent circuit
for a symmetrical dipole (2=10.6) due to a Gaussian voltage pulse is
compared in Figure 6.18 to the result of the TWID code analysis. Also
shown in this figure is the response of the "exact" equivalent
circuit using the reduced Bott-Duffin modules. As can be seen from this
comparison, the response of the simplified circuit is significantly

worse than the response of the Bott-Duffin network. Since the complex-

ities of the two circuit topologies are comparable, one can conclude
that it is more expedient to employ the padding procedure and the
Bott-Duffin realization rather than the sinusoidal mode approximation in
the development of the driving-point equivalent circuits.

The sinusoidal natural-mode approximation can be also used to
simplify the source synthesis problem of a plane wave illuminated

dipole. Namely, the substitution of (6.15) into (6.12) gives

s_cosf
Tn = (~1) 5 sinb > (6.22a)
cos[nﬂ(&g-&)] sncose . Eﬂ)z
—z Z |
for odd values of n, and
s _cosf
Tn = (~1) a sinf . (6.22b)

sin[nﬂ(&g-&)] [sncose] [n"JZ
—_—| [
2
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for n even, where €g==zg/2. These expressions, which were obtained
previously by Pearsor and Wilton [1981], can be used to approximate the
"exact" expressions (6.13) for the source coefficients.

For a symmetrical dipole (Eg-=1/2) the source coefficient (6.22b)
corresponding to an even n has a reciprocal singularity. However, the
assocalted admittance vanishes quadratically, so that the entire pole-
pair module disappears. The source coefficients corresponding to odd

n reduce in this case to

n~1 sncose
B e
’1‘n = (~1) v sinb (6.23)
{s cosby 2 )2
2| 4|87
( 2 2
These are still complex numbers, but a further approximation
s, ¥ jam (6.24)
leads to purely real source coefficients
n-1 nm
=3= g cos|> cosb
Tn = (-1) o Y . (6.25)

Since the Tn's are real numbers, an examination of (3.24) reveals that
F)
the voltage transfer functions Tn(s) degenerate to real constants which

can be realized by VCVS with gain factors given by (6.25).

AT

The gain constants of the simplified dominant pole~pair transfer
circuits for a symmetrical dipole (2=10.6) are listed for three
different angles of incidence 6 in Table 6.12. The topology of a

simplified equivalent circuit using the reduced Bott-Duffin modules is

——ine Al Bewdre wlk .

shown in Figure 6.19. The short-circuit current response of this

network for a plane wave with 6 = 30° and a Gaussian time history is

v w——
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Table 6.12 Gain constants T:) of the voltage controlled
voltage sources associated with the dominant pole-pairs of
a symmetrical dipole antenna (Q=10.6) excited by a plane
wave with the angle of incidence 6=30°, 607, and 90°.

e
30° 60° 90°

n**)
1 0.26598 0.51980 0.63662
3 0.25050 0.17327 -0.21221
5 0.22117 -0.10396 0.12732
7 0.18103 -0.07426 -0.09095
9 0.13415 0.05776 0.07074

*
)Normalized to (ZEi).

i)

the equivalent network.

Resonant frequencies s , n=2,4,..., do not contribute to

PO
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compared in Figure 6.20 to the response obtained from the TWID code.
The agreement is seen to be very satisfactory. Short-circuit current
responses of the network from Figure 6.19 due to a double-exponential
wave with three angles of incidence: 6=90°, 63°, and 30° are plotted
in Figure 6.21. These curves agree favorably with the responses
computed by the WI-MBA/LLL1B code [Landt et al., 1974], included in
[Cho and Cordaro, 1979].

Finally, in Figure 6.22 we compare the response of the circuit
from Figure 6.19 with 6 =90° and a Gaussian time history to the response
of the same circuit with the Bott-Duffin modules replaced by the
simplified circuits from Figure 6.17(a). It is seen that there is a
significant deterioration of the circuit performance when the sinusoidal
mode approximation is used in the admittance modules. It appears,
however, that this approximation can be used successfully to simplify
the source modules of an equivalent circuit for a symmetrical dipole

or a cylindrical post over a ground plane.

6.7 Conclusions

The responses of the dominant pole-pair equivalent circuits for
the thin-wire dipole antenna agree favorably with the "exact" responses
obtained from the classical frequency domain—inverse FFT approach.

The amount of padding necessary for physical realizability of the pole-~
pair admittances is negligible in comparison with the value of the real
part of the admittances at the resonance.

It is demonstrated that the sinusoidal mode approximation gives
poor results when used in the synthesis of the dominant pole-pair

admittances. However, it can be employed successfully in the synthesis
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of the pole-pair voltage transfer networks, For a symmetrical cylin-
drical dipole or a cylindrical post over a ground plane, the pole-

pair transfer networks reduce to just voltage-controlled voltage

sources with gain constants dependent on the angle of incidence of the

0
X
+ 1

impinging plane wave.

-
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CHAPTER 7

EQUIVALENT CIRCUIT SYNTHESIS FOR A SPHERICAL ANTENNA

7.1 Introduction

Although the spherical antenna configuration is not one which
has been employed frequently in practice (its main application has
been in sensors for the electromagnetic pulse (EMP) measurements
[Baum, 1969; Baum et al., 1978]), it is nevertheless worthwhile studying
this structure since it is one of the few finite shapes which can be
analyzed exactly. Also, with its resonances so highly damped, it provides
a stringent test for the dominant pole approximation introduced in
Chapter 2.

In the next sections SEM equivalent circuits are derived for a
spherical dipole with a slot along a longitudinal line. The develop-
ment presented here differs in details from the general theory
developed in Chapter 3 due to the explicit appearance of the internal 7
resonances of the structure in the formulation. This phenomenon,
which has not been taken into consideration in the derivations of

Chapter 3, posed no problem in the thin-wire loop and dipole cases,

since the cavity resonances of these structures lie well outside the
frequency range of interest. Another difficulty not encountered
before 1s the fact that the extent of the port region of the spherical
antenna is not electrically small. Therefore the time origin cannot
be located in the gap zone independently of the direction of arrival

of the incident field, as suggested in Chapter 2. This difficulty

is overcome by moving the time origin to the point of the first contact

of the gap region with the leading edge of the impinging plane wave.
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The static capacitance of the structure can be considered, along
with the poles and residues, as an important SEM parameter. If known,
it can often be used to improve the early time response of the SEM
equivalent circuit by augmenting it by a corrective capacitor of a
proper value, Two methods of computation of the static capacitance
of the spherical antenna are compared in Appendix C.

The analysis presented in this chapter is perhaps more detailed
“ than the analyses of the loop and cylindrical dipole antennas included
in Chapters 5 and 6. Some of the reasons for this are that the
spherical geometry is amenable to an exact analysis, and that it
provides the "worst case' estimate of the performance of the dominant

pole-pair-at-a-time equivalent circuits.

7.2 Preliminary Theory

The surface current density 3(G,¢,s) on a perfectly conducting

sphere of radius a centered at the origin of the spherical covrdinate

system (r,8,¢) is given by an integral equation of the form

<T(8,4,8",6',8);3(8",0',8)> = (T-48) « E-(a,8,9,8) (7.1)
with the symmetric product defined as
™ m
<{ 1;0 1> EJ J [ 1+ 1a’sinbd6d¢ . (7.2)
-7 0

As in Chapter 2, Tdenotes the identity dyadic, fi=(0,¢) is a unit

vector normal at (6,¢) to the surface of the sphere, and Ei(a,8.¢as)

Y V9 ST

is the factorable incident field evaluated on the sphere surface. As




before, the time history of the incident field is f(t) with the Laplace
transform f(s). The dyadic kernel T can be expanded in terms of tne
spherical wave functions, as shown by Tai [1971]. This representation,
when particularized to r=a, as above, constitutes an eigenfunction
expansion fOt.T?in the eigenfunctions of the integral operator in

-1
(7.1). From this expansion the resolvent kernel T can be con-
structed by means of eigenvalue reciprocation, which leads to the

solution of (7.1) in the form

~ © | B B
> _ n, o0 ~TM n,o 3 ~-TE
J(8.9:8) =} *TM gn,o,e(e’q))nn,o,e(s).'\TE Rn,o,e(e’¢)nn,o,e(s)
n=1})"(s) A" (s)
n n
n (‘B 3 l
¢l nym F ~T™ \ n,m =* y=TE Feo
+ 2 ; ™ en,m,d(e’(b)nn,m,o(s'.**TE Rn,m,o(e"p)nn,m, (=) ,E(')
m=1 )l (s) AE(s) |
(7.3

where the index o takes on the values "e" (for "even”) and "o"
(for "odd") and the superscripts TM and TE stand for "transverse
magnetic to T" and "transverse electric to ;", respectively. The
meaning of the other symbols is explaned below.

The X:M(s) and X:E(s) are the eigenvalues of the integral operator

given by
i:“(s) = -z s 1 ()]'[s k_(s)]' (7.4)
and

XiE(s) = 2.0 1, ()][s K (s)] (7.5)
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where Zo is the intrinsic impedance of the medium and the prime denotes
differentiation with respect of the normalized complex frequency

s=vya, Y being the complex propagation constant. The functions

in(s) and kn(s) have been introduced by Baum [1971] and are related

to the spherical Bessel and Hankel functions as
n
1.(8) =3 §,(-38) (7.6)
-n ,(2)
k (€) =-j " b "7(-38) . (7.7)

> ->
The eigenfunctions Qn,m,8(6’¢) and Rn,m,g(e’¢) are given by

. 39 (cosd) [cos(mo)] o om -sin(m¢)] .
%,n,8( 9 = 58 {sin(md))} * Sind Pn(“se){ Cos(m)} ¢ (.8
and

. I -sin(m¢)] . 3P_(cos®) [cos(me)]
Rym,e®® = o3 Pn(cose){ cos(m)} 6 -—Tg— {Sm(m)} ¢ (7.9)

where P: denotes the associated Legendre functions of degree n and
order m [Abramowitz and Stegun, 1965]. Note that the eigenfunctions
are real and frequency independent. Also, there is a manifold eigen-
value degeneracy due to the sphere symmetry.

The normalization constants Bn n 2re defined as
’

-1

: - 2 2n(n+l) (nd+m) !
A Brom [:(1+Go,m)"a (2n+1)(n-;m] (7.10)
j where § is the Kronecker delta function and the coupling coefficients
3
i are given by
| {E} RO _

. n = <{ Mo ;E_(a,6,9)p(a,0,0,8)> (7.11)
! WO R (9,6)] ©

n,m,0" ’
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where Eo is the spatial distribution factor and p is the propagation
factor of the incident field (cf. eq. (2.6) of Chapter 2).

For the purposes of equivalent circuit synthesis the port current
i(s) can be defined as the net surface current passing the specified
longitudinal line 6*60 which coincides with the edge of a narrow
circumferential slot in the spherical shell (Figure 7.1). This is the
component of current which would excite a load attached to the spherical
antenna via a radial or a biconical transmission line. Thus, the port

current is given by |
ul

I(s) = - [ §-3(6_.9,5)s1n8 ads . (7.12)
-

An examination of (7.3) reveals that only the m=0, o=e TM terms H

survive the integration in (7.12), so that

1
-~ ®© P (cosb )sind -
I(s) =5 1 nf’:&) 22— § _(s)E(s) (7.13)
o n=1 [s i1 (s)]'[s k _(s)]'
n n
with the coupling coefficient
5 (8) = == <Pl(cos0)8;E (a,0,0)p(a,0,6,5)> (7.14)
n 2ma n Y 2T : :

7.3 Derivation of the Driving-Point Admittance of the Spherical
Antenna

We consider a spherical shell of radius a with a circumferential

slot of width d(d/a= Zao) with the center located at 9-68 (Figure 7.1).

hs Bakrn ol .oy o

Let this structure be excited by a ¢-independent electric field at the

surface of the sphere

— s

-~ v -~
( Eg(8,8) = - -2 g(8)E(s) (7.15)




Figure 7.1 Geometry of the spherical antenna.
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u
Jg(e)de =1 (7.16)
0

and where
m
V(s) = voE(s) - - J ﬁo(e,s)ade (7.17)
0

is the applied voltage. From (7.13) and (7.17) the driving-point

admittance ?(s)==f(s)/§(s) takes the form

1
Pn(coseo)sine°

T(s) = - ke 2 2n+l
o nu1 D) [s1 (s31 sk (o)1

= m f
x J P (cosh)g(8)sin0de (7.18)
0

where 6°=-9g-ao. By using the Wronskian relation for the functions

in(s) and kn(s) (Bawm, 1971}
W{in(s),kn(s)} = in(s)ké(s)-i;(s)kn(s) = —-ﬁ% (7.19)

it can shown that

si (s8) sk_(s)
=1 — ! -2 i (7.20)

[si,(s)]'[sk (s)]' [si ()] [sk (s)]'

Thus, the driving-point admittance (7.18) can be divided into its

internal and external parts [Bawn, 1969]

(n+1)in(s)

[ "I GRS

Sint T 2n+1
Y (s) = z 2 n(n+l1) s{

o ol }Vn(eg,ao) (7.21)

[sin(S)]'

—a

and
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~ © nk_(s)
1) = - [ 2P ol 0 v (6,0 ) (7.22)
on=1 ©® [skn(s)]' g
where
P_(cos8 )stnd_ "
Vn(eg.ao) = 1 J Pn(cose)g(e)sinede (7.23)
0

can be considered as the excitation voltage of the nth eigenmode

{Franceschetti, 1976}.

The series (7.21) and (7.22) assume the knowledge of the gap
field distribution g(68). This function depends on the details of the
feeder goemetry and requires a solution of a generally complicated
boundary value problem., Therefore, it 1s customary to assume a priori
the field distribution across the gap. However, this can be justified
only for very narrow slots since, as demonstrated by Franceschetti
[1976], the admittance of the spherical antenna is rather sensitive
to the field distribution across the gap, Some of the distribution
functions used in the literature are listed below.

1. Delta function iStratton and Chu, 1941; Karr, 1951; Van Bladel,
1964; Ramo et al., 1965]

8(8) = £(8-6)) , 0<o<w (7.24)

2. Step function [Infeld, 1947; Weeks, 1964]

2 , 8 -d <6<6 +d
d g o— —'g o
g(8) =
0 , otherwise (7.25)

3. Distribution associated with a biconical transmission line
feed [Schelkunoff, 1952]
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Z
0

Trk_ 1w ° 0= d,28208, %0,
g(8) =

0 » otherwise (7.26)

where K, 1s the characteristic impedance of the transmission
line given by

Zo Gg—ao e +a°
KO-Ekncos[ 5 )tan[—g—-—z ] .

4, Distribution exhibiting the edge singularity [Bawn, 1969;
Franceschetti, 1976]

(1 1

o g6 -9
-
o

» 0 -0 <6<8 +a
o— — g o

g(8) = {

0 » otherwise (7.27)

{

5. Distribution approaching the delta function as the parameter

m->
8(6) = ol —(a100)?™! | 0cocm. (7.28)
2 (m!)

This distribution was used by Infeld [1947] to investigate
the convergence properties of (7.22) as a function of the
gap model. A peculiar feature of (7.28) is that it reduces
the number of terms in the series (7.21) and (7.22) to m.

The series (7.21) and (7.22) converge very slowly (for the delta
gap model they diverge). In some cases the nonlinear transformation
technique [Shanks, 1955] can be used to accelerate the series
convergence., This method was successfully applied in a related problem
by Teache et al. )1976]. It seems to be more expedient, however, to
follow the technique employed by Sehelkunoff [1952] and, more recently,

by Franceschetti [1976] (see also Bucei and Franceschetti, 19741).
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They observed that the series (7.21-7.22) represents a pure capacitance
in the limit as s+0, If this geries is subtracted term-by-term from
the admittance series, its convergence properties improve dramatically.
For the symmetrical antenna case (68‘-90°) they were able to sum the
capacitance series explicitly. An application of this technique to

(7.21-7.22) results in

Jint int ST 2n+l szin+1(s)
Y (S) = s C +nzl" Zo' n(n+1) [Sin(s)] [] vn(eg’ao) (7-29)
and
Jext ext s T 2n+l1 szkn-l(s)
Y (S) = g C + nzl Zo nz [Skn(s)] 1 Vn(eg’ao) (7-3(

with the unnormalized interior and exterior capacitances given by

int Ta 2n+l

Chm Y ===V (8 ,0) (7.31)

n=1 Zoc n{n+l) n' g’ o
and
t T 7a 2n+l

ex n

c = —_——V (6 _,a . 7.32
1z r a0pa)) (7.32)

It is shown in Appendix C that for a narrow equatorial slot (a°<<])

with a constant field distribution the capacitances Cint and ¢**% are

given by
clnt 5 24 Em(%) +1 (7.33)
o
and

ext _ 2a [, (a
c = Zc [',Qn(ﬁ)+2.9iﬂ . (7.34)




Perhaps the only practical way to drive or load a spherical antenna
is through a biconical or a radial transmission line. In such

configuration only the external surface of the sphere 1s excited.

Therefore, the following discussion will concentrate on yext

(s)

(the superscript "ext'" is dropped in the rest of this chapter),
By defining
_ 1(2n+l)
bn = —Z}-z*— Vn(eg,ao) (7.35)

(7.22) and (7.30) can be rewritten, respectively, as

¥(s) = ] b ¥ (s) (7.36)
n=1

with
ns kn(s)

?n(s) = - T;E;TETTT (7.37)

and
oo
= >t
Y(s) =s C+ n.z.l bnyn(S) (7.38)
with

2
s kn~1(s)

?;(S) = T;E;?;TTT (7.39)

It is of interest to point out that the normalized eigenadmittances
yn(s) and y;(s) have their exact circuit equivalents. Namely, using
the recurrence relations for the spherical Bessel function [dbramowitsz

and Stegun, 1965] it can be shown that [Chu, 1948; Thal, 1978]
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s

(s) 1
n 1 1
s T 7n-1 1
s 2n-3 +
S L]
+ 11 ) (7.40)
~=+1
s
This continued-fraction expansion can be realized by the circuit
shown in Figure 7.2(a). In like fashion, it can be shown that
y,(s) . -2
n 2n-1 1
s+ s 2n-3
s .,
e (7.41)
—S'+l

which corresponds to the circuit shown in Figure 7.2(b). This represen-
tation, which employs a gyrator with the gyration impedance j/s,
was suggested by Franceschetti [1976].

The normalized eigenadmittance §n(s) can be explicitly expressed
as a rational function of s. This can be done by noting that [Baum,
1971}

-5 -S

e T _(a4m)!
k (s) = = mZO o1 (o) (28) " =—§—w (1/s) (7.42)

where wn(lls) denotes a Bessel polynomial in l/s [Balabanian, 1958].

For notational simplicity it is helpful to define

p(S)-sw(lls)- 2 (otmy1s™

m=0 2 m'(n-m)!

2 m (7.43)

with
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f

(2n-m)!
d B ——————— . 7.44
M N0 (a-m)! (7.44)

Then ;n(s) can be written as

ns Pn(s)

¥ (s) =
: n p(s) +s’p__;(s)

- m=0 O,N . (7.45)
n nd +d
1+s+ z [ m,n m~2,n-1 sm+ 1 Sn+1
nd nd i
m=2 | o,n o,n

Note that the numerator and the denominator polynomials in (7.45)
are of the same order and that ;n(O) = ()., It follows from this that
the modified pole expansion (2.24) is applicable in the spherical

antenna case.

From (7.45) the zeros and poles of §n(s) can be easily found as
the roots of the numerator and the denominator polynomial, respectively.
The poles and zeros of the first six eigenadmittances occuring in
the upper left quadrant of the complex frequency plane are shown in
Figure 7.3. It should be noted that the first layer poles of the sphere
are much more damped than the dominant poles of the thin-wire loop
and dipole antennas. Incidentally, the zeros of the TM admittances,

except for the zero at the origin, are also the poles of the terms

associated with the TE eigenmodes in eq. (7.3). Extensive listings
of the sphere poles are included in [Martinez et al., 1972; Granzow,

1966].

The residue r at the ith

1 pole of the nth eigenadmittance s,

i

can be found as
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Figure 7.3 Pole (x) and zero (o) distributions of the first six
TM eigenmodes of the sphere (the zero at the origin belongs to all
eigenmodes).
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n skn(s)
r, = - fim (8~8_ ) +——v
ni s ni” (sk (s)]’
ni
2
- n snikn(sni) - n sni (7.46)
" 3 . .
[Skn(sni)] [sni-+n(n+1)]
This simple expression follows from the Ricatti-Bessel equation
[Bawm, 1971]
(s K (8)]" = s k (s) = O (7.47)
sZ+n(ntl) 'S “np'\s S Kp's ‘ *

Denoting the dominant pole of the nt:h eigenadmittance by s, and
the corresponding residue by L the nth normalized eigenadmittance

can be approximated by

r r*
~ . n n
Yo (8) = s[;n{g_.sn7»+ s:(s_;gzé] . (7.48)

Using this in (7.36) and taking N dominant pole pairs gives

N - N .
¥(s) =] (Y (&) +Y_ ()] = § Y (s) (7.49)
n=]1 n=1

where the modified pole admittance ?n(s) and the modified pole-pair
admittance ?n(s) are defined by (3.11) and (3.16), respectively, with

the admittance residue given by

a = bnrn (7.50)
or, more explicitly, by
6 +a
o
2n+l s 1 1
Ta n n
an:-- E:E nto+D) [szikn(n+1)] Pn(coseo)sinGO Pn(cose)sinede (7.51)
6 -a
g o©
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In Figure 7.4 is shown the behavior of ?(jw) of a spherical antenna
(68-90". d/a=0.05) computed from the quickly convergent formula (7.38)
with the static capacitance given by (7.34) as C=104,74 a [pF]. It
is seen from this figure that the driving-point admittance of the
spherical antenna evaluated on the jw-axis does not exhibit resonances
and remains capacitive at all frequencies. On the same figure is plotted
the admittance obtained from the dominant-pole approximation (7.49).
Shown is also the character of the imaginary part when the dominant
pole~pair admittance is augmented by a corrective shunt capacitor
adjusting the static capacitance of the circuit to the proper value.

It is evident from the comparison of thase plots that the dominant-
pole formula, even with the capacitive correction, gives a poor

approximation to the admittance of the spherical antenna.

7.4 Derivation of the Short~Circuit Current of the Spherical Antenna

For the short-circuit current computation the spherical antenna,
with its slot closed, is excited by a plane wave incident field with
the polarization as indicated in Figure 7.1. No generality is
sacrificed by limiting the discussion to this polarization since the
field component parallel to the X,y plane does not contribute to the
net current across the gap. Also, the discussion can be simplified
by making the propagation vector p parallel to the x,z plane. Since
the antenna geometry is independent of ¢, this represents no loss in
generality, either.

The plane wave incident field is given by eq. (2.7) of Chapter 2

with Eoﬂ'ﬁ Eo’ where & is the unit polarization vector, as shown in

Figure 7.1. Since the extent of the gap region of the spherical antenna
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cannot be considered electrically small, one cannot choose the time
origin location ;o independently of the direction of arrival of the
incident field, This difficulty is overcome by moving the time origin
to the point of the first contact of the incoming wave with the gap

region. Thus, with

-+ ~
r,=ap cos(90+61) (7.52)
and
A ->
P’ 1.o a
tO = - . = - E COS(90+91) (7.53)

the incident field becomes

n > >
Y Be(r-r ),

34 > >
E (r,s) =Ee £(s)
-STO - ~ . ;
=Ee Ge VP (7.54)

where s =va is the normalized complex frequency and = toc/a. The last
term in (7.54) can be expanded in terms of the spherical vector wave

functions as follows [Bawm, 1971; Morse and Feshbach, 1953)

p-T 5T vy > -> -
G e—Y per = z Z an,mMn,m,o(Yr) + bn’mNn,m’e(‘Yr)] (7.55)
n=1 m=0
where
ﬁn’m’o(v?) - 1n(y:)§n,m,o(e,¢) (7.56)
& > LOm o Lmi m1t

with aa’m’c(e,¢) and ﬁn.m‘o(e,¢) defined in (7.8) and (7.9) and

P (6,0) =8 P:(cose){:::gzgg} . (7.58)

n,m,$
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The coefficients in (7.55) are given by [Baum, 1969]

Pm(cose )
= - _ n+l 2n+l Lp—m)! n 1
4h,m 2 Go,m)( b n(n+l) (n+m)! m sine1 (7.59)

and

m
n 20+l (n-m)! ° Pn(c089p)

n(n+l) (n+m)! 38, . (7.60)

bn n"- (2-6°’m)(—1)

t

With the heip of (7.54) and (7.55) the coupling coefficient

(normalized to an) can be found from (7.14) as

(s in(s)]' -8T Y P Pn(cose) 2
nn(S) - bn,o — J —— sinBde
g

(s in(s)]' -8T

=21 —2— e ° Prll(cosel) i (7.61)

When (7.61) is substituted for the coupling coefficient in (7.13), the
term (s 1n(s)]', which is associated with the purely imaginary cavity
resonances, is cancelled out. The short-circuit current, normalized

to an,takes the form

o -sT
Isc 2m n 2n+l 1 1 e >
I (s) = L 2: (-1) ;?;;IT Pn(coseo)sinBOPn(cosﬂl) ;T;—ﬂzzngT f(s).

(7.62)

To expand (7.62) in terms of its singularities it is necessary to examine

the term

-ST -8T
[s) o
e e

s[s kn(s)]‘ * " Ths kn(s) + szkn_l(s)

n

s
- np (s) +s%p__,(s)

(7.63)
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where the polynomial pn(s) is defined in (7.43). The comparison of

(7.63) with (7.45) shows that isc(s) has the same poles Shi as ?(s).
The residues of (7.63) at these poles can be found as
-STo -sniTo
r' = 2im (S—S ) € K 8 ¢ T
ni . ni’ s{s n(s)] sni[s kn(sni)]
-5 ,T n+l sni(l--To)
nlio s
T2 . +a(mDIk (5 - T YII*i-;n( D p (5. ) (7.64)
ni n ni ni n pn Sni

In the dominant pole approximation the short-circuit current

becomes
S 2 1 2041 _1 1
~sc - 2n _..\n- n
17 (s) = nZ1 . (-1) FYETSRY Pn(coseo)sineoPn(cosal)
n+1 sn(1 - To)
*n ¢ S =
x 3 = f(s) (7.65)
[sn-+n(n+1)]pn(sn) Sn(s sn)
which can be rewritten as
15%(s) = 2 ¥ ()T _E(s) (7.66)
n=]
with the source coefficients '1‘n given by
_SnTo Pi(cose )
Tn = 2(- 1) 52 k (s ) ) -+a
n n n g
J i(cose)sinede
-a

)
Pn(cosﬂl)
3 +a
2 o

(7.67)

aje

J Pi(cose)sinede
6 ~-a
g o




:

Combining N conjugate pole-pairs in (7.66) results in

N ~ -~ -~
1°¢(s) znzl [Y ()T +¥_ ()TXIE(s)
N oo 2
= nzl Yn(s)rn(s)%(s) (7.68)

with the pole-pair voltage transfer functions %n(s) defined in (3.24).

In Figure 7.5 the spectrum of the short-circuit current of the
spherical antenna (6g=90°, d/a=0.05) computed from (7.62) with the
delta function time history (£(s) =1) is compared with the spectrum
obtained from the dominant pole approximation (7.68). The agreement
between these two spectra, although quite poor, is nevertheless much more
satisfactory than the agreement in analogous admittance results
(Figure 7.4).

7.5 Equivalent Circuits for the Spherical Antenna With an Equatorial
Slot of Width d/a=0.05

In Table 7.1 are listed the admittance residues a associated with
the first 20 dominant poles of a spherical antenna with an equatorial
slot (63*90“) of width d/a=0.05. Included also for each pole s, are
the quality factor Qn and the amount of the real part padding Gn
required for the realizability of the associated pole-pair admittance.
The column denoted "%" gives the ratio (in %) of the padding conductance
Gn to the resonance value of the real part of qn(jm). It is seen from
this table that, except for the first few poles, the amount of padding
Gn is a significant fraction of the value of the real part at the
resonance. Only the first pole pair admittance does not require

padding and is realizable in the modified form. This is further

213

- - - o




uoriewrxoidde atod jueutwop ayy
ue yifm euuajue [eOTIdY

0¢

)
N

*(29°¢) uoyssaadxa 319ex3 ayl yifm paaedwod sy (g9°/) ! ‘
*aaem dueTd uoTIduny BITEP IJUIPTOUI-IPIS-PROIq B £q JOTS [EBIi03ENnbD
ds e uy palTox? JuUS1AND ITNDATO-3A0YS 3yl Jo wnijoads ayl G-/ Sandy4

Gl

v L J lﬂ v L2

"' L3 20 3L 4 ' 'j"?

'..".-‘l.“.-'\.\l

*'f"lll

AMVNIOVNI ---- 1=(8)4*,06= m..
w3y — §0'0- o/p* ,06=2

T v e OMI H

LR - L ¥

O
N
'

0Z=N HLIM (892)03 a2
'XONddY 370d LNVNINOQ S PO S
ido T
. Wiy =
29'2)03 Lovxa " - s ]

RY 0]]

FEEPEE T W -.-bL\n!-bl,ON




{
- - - o0 f+ 0°0 8v°¢ 6925°6 [+ 178€°1- o1 _
9°%1 €L19°2 V-111 €zo*sef+ LzL6'6 | 9z°¢ szss 8 f+ 99zg°1- 6
- - - 0°0 f+ 0°0 £0°€ 1086°¢ f+ 9997°1- 8
VARAN 86C1°C V-111 96€°1¢F+ O%T6°L | 08°C £609°9 f+ z10Z°1- L
- - - 0’0 F+ 0°0 | $5°¢ 91%9°g f+ 6821°1- 9
~ €6 £6ES° 1 v-111 vL€° L1+ 6%59°¢ 62°¢ %949y f+ £L%0°T- S
m - - - 00 I+ 00 | 10°¢2 8yIL°E T+ zvs6°0- | v L
ﬁ 0°¢ 948L°0 V-111 y8L TTl+ TE1T°¢ (O ¢ 6L5L°7 T+ 6Tv8°0- € n
- - - ocof+ o0 | se1 €L08°1 F+ ozoL'0- | -
- - 11 vsiz'L I+ 0°0 1 0998°0 f+ 0005°0- 1
. s Lsw] ase)- [su] s Yor + Vo= Vs u
9 8uipped uoy8ay c—uﬂ+=u Y .

‘600 =¢8/P YiIPIm
30 (,06 = 39) 307s TeriolEnbs ue YITm BUUGIUE TEOFIaYds B jO (¥s sarod jueutwop 3yl Yiya

paleroosse Ug saduelonpuod Suipped pue ‘UY) sio3oey L3yjenb *Ue soanpysair adueldjupy T[°f 3rqel




u
.N\U 03 pIZFTEwIou dIR® e SINPESaaA pue

u

s saytod w:aﬁ
¥

- - - 0o+ o0 oY°s €zZe 61f+ £S6L°1- 0z
v°02 002" Y v-111 86€°6€f+ L82°8T | €2°S ov€ 8Tf+ 029L°1- 61
- - - 0'0 I+ 0°0 S0°S 8se L10+ oLTL 1~ 81
9°61 796°¢ V-111 vZ26°9€f+ 6€8°91 | L8°Y 9.€°91F+ 9069°1- L1
- - - 00 f+ 00 | 89°% S6€ ST+ 82591~ 91
L°81 069°¢ V-111 897 vEl+ €62°GT | 06°Y STy 91+ €€19° 1~ ST
- - - 0°0 t+ 0°0 0ty sev €Tl+ 6T46°1- 121
9°L1 ¥28€ "€ v-111 9ty Tel+ Tv9°€T | 11°% 96y Z1f+ %876 1~ €1
- - - 0°0 (+ 00 06°¢ 6.7 T1E+ gz8y 1~ At
€°91 620°€ v-111 gy gzl+ €L8°11 | 0L°€ Z0S°0OTf+ 6€€y 1~ 1
% ) wmﬂwvmm cwmmwm :cﬁ‘%wuwucm " “refo- =T u

(panuyiuod) [ 219l

216

5




“’ ]

illustrated in Figures 7.6-7.11 where the behavior of the real part of

some of the dominant pole pair admittances is plotted as a function of
the real frequency w. It is seen that, except for the first pole-pair
admittance, there is a significant negative excursion of the real part
on the jw-axis.

The element values and the circuit topology of the dominant
pole-pair admittance networks for the spherical antenna with 8g=-90°
and d/a=0.05 are included in Table 7.2. The transient response of this

| equivalent network due to a Gaussian voltage pulse 1is compared in
Figure 7,12 with the "exact" response obtained from (7.38) and an
FFT inversion. Shown also is the response of the equivalent circuit
augmented by a corrective capacitor. In both cases the discrepancy
between the circuit response and the exact response is significant.
In Table 7.3 are defined the dominant pole-pair voltage transfer
networks of the spherical antenna (9g==90°, d/a=0.05) for the case
of a broad-side plane wave incident (61 =90°).
] The short-circuit current response of the complete equivalent
network for the éphetical antenna due to a plane wave incident field
(8l =90°) carrying a step function time history is compared in Figure
i 7.13 with the "exact" response obtained from (7.67) by an FFT inversion.

Again, the agreement between these curves is not satisfactory.

7.6 Conclusions

; The spherical antenna, with its resonances so highly damped,

4

3 provides an extremely stringent test for the dominant-pole-at-at-time
equivalent circuits. The dominant-pole approximation, which works

so well for the thin wire loop and dipole antennas (Chapters 5 and




6¢=90° |

[\ d/a=0.051

N

@)
f7—77

-

7 15F

L -
—=\ -

3 10F
@ |

NP TP T '

1 ] | M 1 i | A

2 4 6 8 wa/c 'O

0

=
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Table 7.2 Element values of the dominant pole-pair admittance
networks for a spherical antenna with an equatorial slot (8 _ =90°)
of width d/a=0.05. &

LADDER CIRCUIT (Figure 4.7(a))

n Clla[pF/m] R, [Q] L1/a[uH/m] RZ[Q]
1 41.66 0.0 266.71 80.0
BOTT~DUFFIN CIRCUIT-CASE A (Figure 4.12(a))

n Co/a[PF/m] L,/a[uf/m] Clla[PF/m] R, (2]
3 11.923 132.45 33.456 115.84
5 7.269 93.48 11.884 123.54
7 5.348 74.257 6.416 125.38
9 4,282 62.613 4,136 125.34
11 3.597 54.737 2,941 124,61
13 3.115 49,027 2,225 123.66
15 2.755 44,69 1.756 122.67
17 2.474 41,287 1.430 121.75
19 2,246 38.547 1.191 120.96

*)

Natural frequencies s,, n=2,4,6,.., do not contribute to the
driving~point network.
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6), is a rather crude one in the spherical antenna case. Also, the
dominant pole-pair admittances of the spherical antenna require a
much larger amount of real-part padding (relative to the value of the
real part of the admittance at the resonance) to render them positive

real than do the loop and dipole antennas. As a consequence of this,

the performance of the dominant pole-pair equivalent circuits for
the spherical antenna is considerably poorer than the performance of
similar circuits for the thin-wire loop and dipole structures, as
demonstrated in Chapters 5 and 6. It seems that most of the inaccuracy
in the circuit response is introduced by the driving-point admittance
part of the equivalent circuit. The performance of the source part
is significantly better than that of the admittance part of the equivalent
network, so that the short-circuit current waveform does not differ
significantly from the true response.

Due to 1ts extreme low-Q character, the spherical antenna provides
a worst case estimate of the performance of the dominant-pole approximation
in the sense that for poles residing so far from the jw-axis the dominance
of the poles nearest the axis is, at best, weak. Although the dominant
pole results are relatively poor in Figures 7.12 and 7.13, they agree
within 35 percent with more accurately computed results. We therefore
conclude that in the low-Q limit, the approximation fails gracefully
and that for structures whose dominant pole quality factors are inter-
mediate between those of wire structures and the sphere, the dominant

pole-approximation may be sensibly applied.
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CHAPTER 8

SUMMARY AND CONCLUSIONS

Practical and systematic procedures have been developed for the
synthesis from the SEM (Singularity Expansion Method) description of
acitve, physically realizable equivalent circuits for electromagnetic
energy collecting structures with identifiable ports., The necessary
SEM information includes the poles (sn} of the structure and the
associated natural modes and normalization coefficients. From the poles
and the associated modal distributions one can compute for a given
incident field the coupling coefficients which weight a given singularity's
contribution to the total response. Two different coupling coefficient
forms have been used in the SEM work to date—the so-called class 1
and class 2 forms [Bawn, 1976b]. In the SEM equivalent circuit synthesis
only the class 1 form is applicable, which is known to exhibit numerical
instability in early times [Marin, 1972; Pearson, 1979]. However, it
is demonstrated in Chapter 2 that the simple class 1 coupling coefficient
can be used with success provided the time origin of the problem is
placed in the port zone (gap region); it is also argued that the class
1 expansion is always convergent as Re[sn]+-m for this time origin
location.

The SEM expansion for the current density ?(;,s) on a scattering
object is derived formally in Chapter 2 from the eigenfunction expansion
of ?(;,s) in terms of the eigenvalues and eigenvectors of the electric
field integral equation (EFIE) operator. It is assumed in this
development that a complete set of eigenvectors exists which is not
necessarily true since che EFIE operator is non-~selfadjoint. In fact,
it is demonstrated in Appendix A that the eigenvalues of the EFIE
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operator may have branch points in the complex frequency plane at
which two or more eigenvalues become degenerate so that the inclusion
of root vectors in the expansion may be necessary [Ramm, 1980]. If
an eigenvalue has a branch point, a branch cut must be chosen in the
s-plane, resulting in a branch-integral term in its SEM expansion.
This can have an important bearing on the SEM equivalent circuit
synthesis because in most practical cases these branch-integral
constituents are not explicity identifiable. Their omission, however,
can result in non-realizable terminal eigenadmittances [Pearsorn and
Wilton, 1981].

In the process of expanding the inverse eigenvalue in terms of its
singularities oie refers to the Mittag-Leffler theorem from the theory
of functions of a complex variable. Two basic SEM expansion forms
result depending on the large-s asymptotic behavior of the eigenvalue—
the so~called modified and unmodified forms ([Bawn, 1976a]. It is
observed in Chapter 2 that the modified form imposes less stringent
conditions on the asymptotic behavior of the eigenvalues of the integral
operator. Therefore this form appears to be preferable in the case of
problems solved numerically. This suggestion is supported by the fact
that, as shown in Chapter 7, the modified SEM expansion is the proper
one in the case of the sphere, which is one of the few structures
for which an exact analytical solution is available.

The SEM equivalent network can be derived either from the Norton
or from the Thévenin equivalence, leading to two different but equivalent
networks. Of course, the SEM parameters which must be supplied are
different in those two cases. The short-circuit SEM data are usually

found by solving the short-circuit boundary value problem, whereas the
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open-circuit parameters result from the solution of the open-circuit
boundary value problem. The open-circuit SEM parameters are much more
difficult to obtain than the short-circuit parameters of the same
object because of the highly localized cl.arge interaction effects
between the two parts of the structure in the vicinity of the gap
which must be modeled precisely in the open-circuit problem. Further-
more, it is enough to solve only one short-circuit boundary value
problem for all possible gap locations on the structure, whereas the
open-circuit problem must be solved for each location. Thus, if for
some reason the Thévenin-based equivalent circuit is preferred over
the Norton-based equivalent, it is perhaps more expedient to derive

it from the short-circuit parameters, as described in Chapter 3.

The SEM equivalent circuit synthesis procedures developed in this
work are based on the first-layer, dominant pole-pairs because they
dominate the response of the structure and they are the ones easiest
to extract by numerical or experimental means., An alternative
approach of grouping the poles according to eignvalues is not

practical, however, because in most cases this collection

of poles is not explicitly identifiable. Also, the number of poles
grows rapidly for higher order modes, making the corresponding circuits
extremely complicated [Streable and Pearson, 1981],

The SEM equivalent circuits developed in Chapter 4 have the form
of a connection of simple modules associated with the conjugate pole
pairs of the structure. These pole-pair circuits are synthesized one
at a time, so if the need arises the network can be easily expanded
by adding more pole-pair modules without repeating the whole synthesis
process. By using the network topologies developed in Chapter 4 the

synthesis process is reduced to the realization of a driving-point

228




function biquadratic in s and a voltage transfer function bilinear
in s. The realizability conditions and explicit circuit realizations
are given for these functionms.

If the driving-point function is realizable, it can be synthesized
by simple continued fraction expansion. If a pole-pair driving-
point function is initially nonrealizable, a simple padding procedure
is described to synthesize an approximating circuit. The padded pole-
pair driving-point function is a minimum-real-part function. It appears
that the only transformerless realization applicable in this case is
the Bott-Duffin network. If the amount of padding is negligible, this
network can be simplified by deleting one leg without introducing
appreciable error.

It is shown that the pole-pair voltage transfer function can be
always realized either in the form of a ladder circuit or in the form
of a symmetrical lattice circuit. Unfortunately, the applicability of
each of the two topologies is dependent on the direction of arrival
of the incident plane wave, so that the circuit topology may change when
excitation conditions are changed. In each of the two cases, two
equivalent realizations are possible: an RC realization and an RL
realization. In the cases tested it was found that the element values
of the RC netw. ck were more realistic than the element values of the
equivalent RL realization.

Each of the transfer networks must be followed by a voltage-
controlled voltage source which serves as an impedance buffering
stage and as an amplifier to rest.re the gain lost in the associated
transfer network. The controlled sources can be implemented in practice

with active devices which, however, usually cannot sustain high voltages.
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The synthesis procedures developed are tested on thin-wire loop
and dipole antennas (Chapters 5 and 6), as well as on a spherical
antenna (Chapter 7). The synthesized equivalent circuits are analyzed
by a general circuit analysis program (SCEPTRE) and the responses
compared with classical frequency domain and numerical inverse Fourier

transform results or with results obtained from the Thin Wire Time

Domain (TWTD) code. 1In the case of the thin-wire structures, the results
are very encouraging. The circuit responses agree favorably with the
responses obtained by other means. Of course, the quality of the

circuit responses is commensurate with the quality of the dominant-

pole approximation, which is very accurate in the case of highly resonant
(slender) structures. The only additional approximation in the SEM
circuit is the possible padding introduced in the synthesis of the
pole-pair driving-point function. This padding is negligible in the
thin-wire loop and dipole cases; it is rather significant for the
spherical antenna. In the case of the spherical antenna the dominant

pole approximation breaks down, too. For these reasons the SEM equivalent
circuit of the spherical antenna cannot be expected to perform well,
unless modules associated with the second and, perhaps, third layer

of poles are included in the circuit.

The driving-point responses of the equivalent circuits are consider- H

ably poorer than the short-circuit responses excited by a plane wave

-

incident field. This can be attributed mainly to the capacit‘ve

deficiency of the SEM equivalent circuit. Namely, the capacitance of

& Moan.

the finite equivalent circuit in the limit as s+ 0 underestimates the

true static capacitance of the structure. Therefore, the early-
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time response of an SEM equivalent circuit can often be improved by

augmenting it by a shunt capacitor of a proper value. This phenomenon
does not influence the short-circuit response because the input terminals
of the structure are shorted for tﬁat case. Most of the comparisons
included in this work involve the short-circuit conditions primarily
because only for those cases were benchmark results readily available.

In view of the above, these tests may appear to be, perhaps, too for-

giving. However, the loaded dipole example included in Chapter 6

indicates that our equivalent circuits also perform well under finite
loading conditions. The SEM equivalent circuits with nonlinear loads
are analyzed in Appendix B. No data were available for comparison
in those cases, but the results lend themselves to a straightforward
physical interpretation.

In the thin-wire dipole case the sinusoidal natural-mode approxi-
mation can be employed to simplify the SEM equivalent circuits. It
is demonstrated in Chapter é that this approximation is poor in the case

of the driving-point circuits but it can be applied successfully to

the voltage transfer networks. For a symmetrical dipole antenna or
a cylindrical post over a ground plane, particularly simple and yet

reasonably accurate circuits result.

e e .

In conclusion, the main objective of this work has been fulfilled.
The SEM equivalent circuits developed are physically realizable, simple,

and reasonatly accurate. These circuits possess most, but not all of

J VPO

the desirable features listed in the Introduction. In particular, the
network topology does change with the change of the direction of

arrival of the incident field. However, the equivalent circuit does
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not depend on the time history of the incident field. Also, the autonomic
voltage source is connected to only one port, and the equivalent circuit

is transformerless, but it does include controlled sources.
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APPENDIX A
ON THE EXISTENCE OF BRANCH-POINTS IN THE EIGENVALUES

OF THE ELECTRIC FIELD INTEGRAL EQUATION (EFIE) OPERATOR
IN THE COMPLEX FREQUENCY PLANE

A.1 Introduction

The Singularity Expansion Method (SEM) [Bawn, 1971] representation
for the current density on a scattering object can be derived formally
from the eigenfunction expansion involving eigenvalues and eigenfunctions
of the associated integral operator [Bawm, 1975]. It has generally
been assumed that the inverse eigenvalues are analytic in the complex
frequency plane (s-plane) except for pole singularities [Pearson and
wilton, 1981]. This is suggested by Marin and Latham's result
(Marin and Latham, 1972] that in the case of finite extent perfectly
conducting bodies in lossless media, poles are the only singularities
in the SEM expansion. D However, as pointed out by Pearson and Wilton
[1981], this does not preclude the possibility of the occurrence of
other singularities which cancel in the complete sum representing
the singularity expansion of the current. As it turms out, in fact,
only for bodies such as the sphere or the circular loop antenna, in
which geometrical symmetry completely determines the eigenfunctions

(and hence they are frequency independent), has it been possible to

show (Section 2.3) that such singularities cannot occur.

& wae..

1)In contrast to finite extent bodies, infinite cylindrical objects
always manifest golutions with a branch point singularity of well-
understood origin at zero frequency. Schafer and Kouyowumjian [1975]
discuss this branch point for the case of a conducting circular cylinder.
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The presence or absence of branch points has an important bearing on
the validity of the Eigenmode Expansion Method (EEM) [Bauwm, 1975]
representation of the resolvent kernel, because at a branch-point in
the s-plane two or more eigenvalues become degenerate and the inclusion
of root vectors [Ramm, 1980] in the expansion may be necessary at that
point. The expansion of individual reciprocal eigenvalues or any

associated "

eigen-quantities' to obtain their singularity expansion
can also require integrals along the concomitant branch cuts in order for
the expansion to be complete. The previously-mentioned meromorphicity
result of Marin and Latham for finite extent objects ensures that when
the eigenvalue expansions are summed, the branch-integral constituents
cancel and the traditionally-used SEM forms result. However, in some
applications, singularity expansions are applied on an eigenmode-~at-~
a-time basis and the branch integrals must be retained. For example,
the eigenvalues and their reciprocals manifest a "generalized positive-
realness" [Pearson and Wilton, 1981] which is important in SEM circuit
synthesis. To discard the branch-integral constituent of their
expansion may compromise this property.

Although the existence of branch-integral constituents in the SEM
representation has been speculated upon [Baum, 1978; Pearson and
Wilton, 1981], no specific examples of their occurrence have been cited,
to date (except for the well-known infinite cylinder case, mentioned
above). The purpose of this paper is to fill this gap.

In SectionA.2 we demonstrate simple circuit and transmission line
examples in which the eigenvalues of the impedance matrix have branch-
points. Although only finite-dimensional impedance operators are

involved in these examples, they provide valuable insight into the

~
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of the branch-point occurrence. In particular, they clearly demonstrate
the role of the object symmetry in the occurrence of branch-points in
the eigenfunction expansion of the inverse operator. In Section A.3
we consider the problem of scalar scattering by a prolate spheroid

and demonstrate the presence of branch points in the eigenvalues of
the associated integral operator which follows from the analysis of
the spheroidal wave equation in the complex frequency plane {Oguchi,
1970]. In Section A.4, similar analysis of the Mathieu's differential
equation [Rlancn and Clemm, 1969] leads us to the conclusion that
branch points besides that associated with the infinite extent of the
object exist in the frequency plane behavior of the eigenvalues of

the EFIE for an infinite perfectly-conducting elliptic cylinder.

A.2 Branch Points in Circuit and Transmission Line Problems

A.2.1 General Remarks
The terminal quantities of an N-port linear, passive, and bilateral

electrical network are related via the equation
(zifr} = (vl , (A.1)

where [1] and [V] are column vectors containing N-port Laplace-transformed
currents and voltages, respectively, and [2] is the Nx N symmetric
open~circuit impedance matrix. Eq. (A.l) is analogous to the electric

field integral equation (2.1). The primary difference is that the electro-

magnetic problem consists of an uncountably infinite number of ports.
Even this distinction vanishes, however, when a numerical solution of
-
(2.1) is undertaken because then a matrix approximation replaces [ and
1 -
column vectors analogous to voltage and current replace 1™ and J,

respectively [Harrirgton, 1968]. In the following, some conjectures
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concerning (2.1) are made based on observations of properties of (A.l).

In general, an eigenvector expansion of the inverse of [Z] can

be found as follows:
T
1 [I“(S)] [:I“(S)]

-1 N
[Z (S)] = 2 b\ (s) T ’
-5 Tl

where the superscript T denotes transpose and An and [In] are

eigenvalues and eigenveétors of {Z]. 1In the regions in the s-plane
where (A.2) holds, solution of (A.l) can be found in a form analogous to
(2.13). However, it is demonstrated in simple examples below that there
may be points in the s-plane where the eigenvalues become degenerate and
the simple expansion (A.2) is no longer valid.

Before presenting specific examples it is helpful to investigate
what general conclusions can be drawn concerning the eigenvalues of
a two-port. The characteristic equation of a lumped reciprocal two-

port network described in the form of (A.l) is

Pu"‘ 212

det = 2 _ z > -2 = .3
€ Am Gy 2500 4214299721, = 0 @.3)
212 P2
where 2190 Zy90 and Z,, are rational functions in s. From (A.2.3)

eigenvalues become

1 . ST
)\I(s) = 5[7.“4-7,22 * VA(s):l . (A.4)

2

where the discriminant A(s) is given by
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A(s) = (z, +z y2 - 4(z )

- 2
22 11%22 7 %12

(A.5)
)2+4 2z, 2

= (z),- 2%y 12 -

The radical in (A.4) suggests that, in general, the eigenvalues have
_ branch points in the s-plane. Branch points do not occur, however, if
one of the following conditions is satisfied:

1. =0 (uncoupled ports), which is a trivial case;

%12

2. A(s) =0, which-can happen only if (23] -z,;) =*j2z32; however,
this situation is not possible since zy4 are rational functions
with real coefficients;

3. A(s) 1s frequency independent or of the form [(P(s)/Q(s)]?
where P(s) and Q(s) are polynomials in s;

4, 2118 222’ which holds for a symmetric network.

The role of the network symmetry in eliminating branch points in
the impedance matrix can also be illustrated in the example of a three-

port with rotational symmetry. Tne impedance matrix of such a network

is given by
11 %12 %12
(Z]= 2y, 23y %)y (A.6)
212 %12 *n1
The characteristic equation
- 1§ - - 2
det ([Z] - MI]) (20422, - N +z),-2,,) G
yields the eigenvalues
Al -z11+2212 (A.8a)
and
AZ =z -2, (A.8b)
which have no branch points if z94 and z]2 are rational, but where Az

is of algebraic multiplicity 2, The eigenvector corresponding to Al is
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1
[11] =11 ’ (A.9%a)

1

and the eigenvectors corresponding to AZ are

1 1
[12’1] ejz"/3 s [12’2] = ejl’"/3 . (A.9b)
ej‘m/B ejZn/3

Since two independent eigenvectors corresponding to Xz could be found,
its geometric and algebraic multiplicities are equal. Also, owing to
the symmetry of the network, we see that the eigenvectors are the

so-called "symmetrical components” and are frequency independent.

The impedance matrix of the last network example has properties
similar to the EFIE operator in the case of the circular loop antenna
and the spherical antenna—both rotationally symmetric bodies. As in
the case given above, both the circular loop and the spherical antenna
have multiple eigenvalues for which independent eigenfunctions can be

found. These eigenfunctions are frequency independent, too.

£.2.2 Two~Port Example—Lumped-Element Circuit

The simple two-port of Fig. A.1(a) provides an example explicitly

illustrating the occurrence of branch points in the eigenvalues of an

impedance matrix and their mutual cancellation in the singularity expansion of

Y " VOSSR %

the inverse of the matrix. The impedance matrix of the circuit is

P
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FigureA.1 (a) Two-port circuit and (b) branch points of the eigenvalues
of the impedance matrix.
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1+s/2 1
{z] = (A.10)
1 1+2s

with the eigenvalues

A (s) = 1+% s + /&) , (A.11)
2
where
3 2
Ms) =1+ |3 s] , (A.12)

and with the eigenvectors

[:Il(s):l = . (A.13)
2

+ VA(s)

&Sl

From (A.11) one finds that Xl(-S/Z) =0 and >\2(0) =0, and hence [Z-l]
has poles at s=0 and s=-5/2, However, there are also branch points
at s=1%j4/3, where the eigenvalues become degenerate (Fig. A.l1(b)). Away

from these isolated points we can find [Z-I] according to (A.2) as

1 %s+¢A(s)

2
3 e+ /ATy [:gwm]

4
[Z—l(s)] - - 1
1+Z s + vA(s)

2VA(s) VA(s) +-s]

1 %s-/A(s)
4

H
- vA(s) Es - »’A(s)]

+ 1 . (A.14)
1+-2-s—/A(s) 2/A(S) E”A(“s')——'}s]
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At the branch points the denominators of (A.14) vanish and the expansion

is nat valid. However, if the terms in (A.14) are combined together we

obtain
[ 2s+1 -1 ]
2.5 2,3
s +25 s +23
[z’l(s):] = . (A.15)
-1 s/2+1
sz+és sz+is
2 2

Obviously, there are no branch points in [Z-l(s)]. Its only singularities
are the poles at s=0 and at s=-5/2.
At a branch point the root system can be used to expand the inverse

matrix. The coefficients of this expansion can be found with the help

of the biorthogonal root system [lease, 1965]. For example, at the branch

point s =+j4/3, [Z] has a double eigenvalue X =1+ 35/3 and a root system
1 0
= = A 16
(1,1} [j] v (1] ]:1] (2.16)
If the scalar product
<{r,J.(1,]> = (I 1+(1 ] (A.17)
) 1 2

is introduced where t denotes the Hermitian transpose, a biorthonormal

root system can be found as

[ ] . j
W = s [w :] = . (A.18)
1,1 0 1,2 ]

Using (A 16) and (A.18) [Z-l] can be expanded at the branch point

s=+j4/3 as
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1 0 j -1
-1,.4
[; (13)] = —+— bt (A.19)

[1+j%] 0 1 [1+j%]2 -1 j

with a similar conjugate representation at the other branch point,
s=-j4/3. Note that the eigenfunction expansion (A.14) is valid through-
out the complex s-plane except at the two isolated branch points.

One might speculate that the resistive element in this circuit
is the feature which leads to the branch points. Since we wish to draw
analogies with scattering from lossless surfaces, this would indeed
be untimely, However, one can readily construct LC circuit examples
as well, where the branch points arise. Furthermore, examples are easily

constructed in which the branch points lie in the right half plane.

A.2.3 Two-Port Example—Non-Uniform Transmission Line

To illustrate that the branch point occurrence in the eigenvalues
is not limited to lumped systems, we consider a section of lossless
non-uniform transmission line of length L (Fig. A.2(a)). The impedance
and admittance per unit length are assumed to vary exponentially witﬁ_tﬁé
distance x along the line according to, respectively, z(x)= exp(20x) and
y(x) =y exp(-2ax), where z=sl and y=sc and ¢ and ¢ denote, respectively,
the per-unit-length inductance and capacitance of the line. Viewing the
line as a two-port network we may find its chain-parameter matrix by the
method described in [Rertnelii, 1967). From the chain-parameter

description the impedance matrix can be found as

ol

[84

L ctuh(i'L) + & r
Y y y sinh(fD
o , (. 20)
.ol )
roe" 5 A 2l
v sioh(TLy [-}; ctnh(TL) ik

L.
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Figure A.2 (a) Exponential transmission line, (b) branch points of the
eigenvalues of the impedance matrix and (c) branch-point trajectory as
" a function of the taper parameter.
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where T’=v/a2+zy = /mwith v=1//tc denoting the speed of light
(a deviation from the generally accepted notation is made here because
the symbol ¢ is used in this section to denote the per-unit-length
capacitance :»f the line). The inverse of [Z] can be readily found as

B -al

P octanrpy- 2 - L _&
- z T2 z sinh(11)
lz'_] = —al . R (A.21)
- . T e |l -2a

-2 SR [; ctnh(TL) +*;]e J

If the hyperbolic functions in (A.21) are expanded in a power series,
it is seen that only even powers of T enter the elements of [%-f}, hence

the inverse matrix has no branch points. Its only singularities are the

infinite number of poles given by

sl

= = :3/(m? + (ab)? , n=0,1,2,... (A.22)

The eigenvalues of [Z] can be found to be

{
X = eQL ig ctnh(Tl)cosh(al) - % sinh(al) * vA(s)} , (A.23)

1
2
where

2
A(s) = (%] ctnh?(TL)cos?(al) - (-‘;-) (g—)ctnh(TL)sinh(ZaL)

, (A.24)
+ C%) sinh?(al) - ? .

Obviously, there are braanch points in the eigenvalucs (A.23) which can
lw.hnmd from the cquatlon A(s) =0. A numerfcal Investipation of
(A.24) yields four branch points located symmetrically in the four
quadrants in the s-plane (Fig, A.2(b)). Note that the branch points

are not restricted to the left half-plane., The trajectory of the
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first-quadrant branch point for different values of the parameter o
is shown in Fig. A.2(c),.

We recover a uniform transmission line— 7,¢., @ symmetric structure-—
by letting a-*d. In the limit, the branch points recede to infinity,

continuing the trend indicated in Fig. A.2(c).

A.3 Scalar Scattering from a Prolate Spheroid

The role of symmetry in eliminating the appearance of branch points
in the preceding examples suggests that in the scattering problem we

should examine a finite-extent structure which, for simplicity, conforms

to a separable coordinate system but which is not symmetric under a
general rotation, Z.e., something separable, but not spherical.
The vector Helmholtz equation 1s not separable in spheroidal coordinates,
but the scalar Helmholtz equation is. We therefore consider the
associated scalar scattering problem,

The geometry of the structure under consideration and the coordinate
system are shown in Fig. A.3, The surface S of the spheroid is defined
by the radial coordinate u==u0, and the semifocal distance is 9. We
are interested in the eigenvalues of the integral equation in ¢ defined

by

JIGO(;.;’,S)W(;’,s)dS' = F(?,s), Tes . (A.25)
S

where GO(;,;',S) is the scalar Green function defined in (2.4) and
F(tt.s) is the forcing function.
Expanding the Green function in (A.25) on the surface S§ in terms of

the spheroidal wave functions gives [Flammer, 1957]

245




v

v=const.

u=const.

-
-

v=0

Figure A.3 Geometry of the prolate spheroid.
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e-yl;-;'l ® o (2-8

- - L 2 ——2% 5 (q,v)S__(q,v")
4m|r-r'| 2" w=0 nem “mn m me
x coslm(@-0 IR T (a0 )R (qu), ToEe s (a.26)

where Gnm is the Kronecker delta, q=-jy¢ is the frequency parameter,
and Smn and R;:)(i= 1,4) satisfy the following differential equations
which arise in the separation of the Helmholtz equation in prolate

spheroidal coordinates [Flwmnrer, 19571:

2

Sm(q,v)] + [amn(q) -q%v? - 1 Tv;] Smn(q"’) =0 (A27)

Q-lo-
l ~~
—
!
<
N
N
gl

c

d d _(1) 2, mt (i)
m [i(uz-l) o Rmn (q,u):l - [amn(q) —qzu +ur;_1:lRmn (q,u) =0 , (A.28)

where m and n are integers and a are the separation parameters. The
normalization factors appearing in (A.26) are defined through the

orthogonality of the angle (periodic) functions

1
J Smn(qvv)smnv(qvv)dv = Snnvan (A.29)
-1
1)
and are found to be )
R Ct]
- r+2m)!
Nmn 2 z (2r+ 2m+ 1)r! ’ (a.30)

r=0
. mn . .
where the functions dr (q) are the coefficients in the expansion of

the anple functions Smn In Lerms of the assoclatoed Legendree funct Lonss

1)'I‘he prime over the summation sign indicates that the summation is
over (only) even values when (n-m) is even and over (only) odd values
when (n-m) is odd.
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S = T ar (@pl, (V) . (A.31)

The substitution of this expansion into (A.27) yields a three-term
recursion formula for the coefficients dzn. From this recursion
formula, we obtain a transcendental equation, the roots of which are

the separation parameters a [Oauchi, 1970]. This equation has the form
U(amn,q) =0 . (A.32)

It follows from (4.8) that the separation parameters a coupling

(A.27) and (A.28) are functions of the frequency parameter q.
The orthogonality given by (A.29) is awkward in identifying (A.26)
with an eigenfunction expansion of the (scalar counterpart to) form

(2.11), because the weight in the integration of (A.29) is unity, while

in (A.25) the surface metric is

ds' = 22/(u;-1)(u2-v'2) dv'de' . (A.33)

However if we interpret

b(vsdss) = 23V (0l - 1) (02 =v'?) Y(v,9,9) (A.34)

as the unknown in (A.25) and define

2r 1
<r,y> = J J Iy dv d¢ , (A.35)
g -1
{ then our symmetric product yields the orthogonality integral of (A.29).
?
J By comparison with (2.11) we find that
3
(1) (4)
Amn(q)“ Rmﬂ (Q)Uo)Rmn (qyuo) . (A.36)
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The radial (non-periodic) functions R(i)

o in the eigenvalues (A.36)

can be computed in terms of the spherical Bessel functions [F! pm-»,
1957]. Here, we are interested only in their analyticél properties in
the complex q-pléne. Since R;:) satisfy the differential equation
(A.28), their behavior in the q-planel) can be inferred from the

properties of the associated separation parameters an The branch

(1)

points of amn(q) are also branch points of Rmn

» and thus of 1}

mn
The functions amn(q) have been investigated in the literature [Oguchi,
1970; Meixner et al., 1980) and, indeed, it has been found that they

have branch points in thé gq-plane. The branch point locations can be

computed by the procedure outlines below,

The behavior of the separation parameters a n in the g-plane is

governed by the differential equation [Wilton et al., 1975]
d_ a (q) T - UJ , (A-J7)
a

«susct, results from (A.32) (the subscript denotes a partial ditferential
with respect to the variable indicated). Integration of (A.37) on &

closed contour C in the g-plane yields

0]
= - § 9 A.38
A a . f Ua dq . ( )
C

This integral gives a non-zero contribution, Z.e., amn is multi-valued,
if the contour C encloses a Zero of Ua' The location of the branch

point of amn coincides with the location of the zero of Ua' Thus, the

hranch points can be found by solving (A.32) together with

1)l"ollowing the convention accepted in the literature we use the
q~-plane rather than the s-plane here. The normalized frequency plane
is related to the g-plane by the trivial mapping v{ = jq.
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Ua(amn,q) =0 . (A.39)

These simultaneous transcendental equations can be solved by a Newton-

like iteration [Oguchi, 1970].

A partial listing of branch points in the eigenvalues for a
number of indices m,n is given in [Oguchi, 1970]. A more complete
list is included in [Meixner et al., 1980}. As an example, we display
in Table A.l1 a number of branch points for m=0-2 and n=0-4. We observe
that some of the branch points for different eigenvalues coincide,
which means that an eigenvalue for some m,n can be obtained by an
analytic coentinuation into another Riemann sheet in the gq-plaine of an
eigenvalue with different indices. This observation substantiates
the degeneracy interpretation of the branch point which is mentioned
in Section 2.3,

When the spheroid is deformed into a sphere, which can be accomplishe’
by letting the focal distance { go to zero, the points in the y-plarne
corresponding to branch points in the g-plane recede to infinity—

a phenomenon analogous to that observed in the case of a non-uniform
transmission line (Section A.2.3), Indeed, it is well known that the eigen-
values of the sphere are proportional to the spherical Hankel functions

of the second kind, which are meromorphic in the finite complex

frequency plane. The absence of branch points can be thus attributed

to the geometrical symmetry of this structure, which is lacking in the

spheroid case.




A hasen o e

Table A.1 Branch points of
problem.

the eigenvalues in the prolate spheroid

o n Branch Points of am’n(YQ)
0 0,2 -2.601670 + j 1.824770
0 2,4 -5.807965 + j 2.094267
0 2,4 -3.081362 + j 5.217093
0 1,3 -2.887165 + j 3.563644
1 1,3 -4,097453 + j 1.998555
1 2,4 -4.492300 + j 3.862833
2 2,4 -5.449457 + j 2.736987
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A.4 TM Scattering from an Elliptic Cylinder

In this section we consider an electromagnetic scattering problem
which demonstrates the introduction of branch points because of its
departure from rotational symmetry: that of transverse-magnetic (TM)
scattering from a perfectly conducting elliptic cylinder. Since the

structure is infinite in extent, a branch point at the origin of the
frequency plane appears as in the case of the circular cylinder
{Sehafer and Kouyoumjian, 1975]. It is demonstrated here that the
elliptic cross~section introduces additional branch points into the
frequency plane.

The geometry of the structure and the coordinate system used
are shown inFig. A.4. The elliptical surface of the cylinder, which is
infinite in the z-~direction, is defined by the radial coordinate u==u°.
The semifocal distance is ?¢. The integral equation for the current

-> i -
densitv Jz(o,y) excited by the incident electric field E:(F,r) is

3 -> 2 A > { - >
- %-Zov sz(o',Y)Hé )(-JYIO-D'l)dL' = E;(o,w), oel , (A.40)
L
where Héz)is the Hankel function of the second kind and zeroth order
and is the two-dimensional free-space Green function,
The Hankel function can be expanded in terms of Mathieu functijions

as [Jones, 1964}

> > = 1 4
? HéZ)(—jylo-o'l) = ZmZO cem(v,q)cem(vkq)Mc; )(uo,q)Mc; )(unyq)
4
3 b 1 4
+ 2m§1 sem(v,q)sem(v',q)MS; )(UosQ)MS; )(UO-Q) s

-+ >
‘ p.p'EL , (A.41)
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Figure A.4 Cross-sectional geometry of the elliptic cylinder.
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The frequency parameter is q=-(y2/2)? and ce and se are, respectively,
the even and odd angular (periodic) Mathieu functions [MeLachlan, 1947]

satisfying

42 ( am(q) ] {cem(v,q)} i
'Ev—z + l{bm(Q) -2q cos 2v sem(v,q) 0 (A.42)

and Mc(i) and Mséi)(i= 1,4) are the radial (non-periodic) Mathieu
m

functions satisfying

Mc;i)(u,q)

d’ [{a“‘(q)} 0 (A.43)
-— + - 2q cosh u] . = . .
du2 bm(q) Ms;l)(u,q)

As in the spheroidal equation case in the preceding section, the
separation constants am(q) and bm(q) of the Mathieu's equation satisfy
transcendental characteristic equations and are dependent on the complex

variable q. The angular functions possess the following orthngonality

properties:
2m
[ cepvarce, uarav < ma, (A.442)
0
2w
Jsem(v,q)sen(v,q)dv =T 6mn R (AJ44b)
0
and
2w
j sem(v,q)cen(v,q)dv==0 R (A.b4c)
0
while the integration metric is
1
- 2. _ 2
dL = 2/cosh u -cos‘vdv . (A.45) )
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By applying reasoning analogous to that used in the spheroid development,
we conclude that the frequency variation of the eigenvalues
of the operator in (A.40) follows

Mcil)(uo,q)Mcéa)(uo,q)

A o(q) (A.46)

ng Mssl)(uo,q)MssA)(uo,q)

(4)

and Ms
n

(4)

n

Since the radial functions Mc are related to the Hankel
functions of the second.kind [McLachlan, 1947], they share with them
the branch point at the origin—the branch point due to the infinite
extent of the scatterer. The radial functions in (A.46) manifest
additional branch points, however.

As in the spheroid case, the analytic properties of these functions
in the complex q;plane can be inferred from the properties of the
separation paraweters an(q) and bn(q). These functions have becrn
investigated in the literature [Blanch and Clemm, 1969; Meixner et al.,
1980] where it was shown that a, and bn have branch points in the q-
plane, and the locations of these points were computed for a number
of values of n by a scheme similar to that'outlined in Section A.3.

The listing of branch points in a_ and bn in yY2-plane for n=0-7 is
displayed in Table A.2.

When the elliptic cylinder is deformed into a cylinder with
circular cross-section, the eigenvalues of the external scattering
problem become the Hankel functions having only a branch point at the
origin. Thus we may assoclate the additional branch points in the

elliptic cylinder with the lack of symmetry in this structure,




Table A.2 Branch points of the eigenvalues in the elliptic cylinder

problem.

n Branch Points of an(yq) n Branck Points of bn(vQ)
0,2 -1.713919 + j 1.713919 2,4 ~3.722621 + j 3.722621
1,3 -1.917584 + j 3.376788 3,5 ~3.968460 + j 5.416204
2,4 ~2.046414 + § 4.988464 4,6 ~4.159649 + j 7.064678
3,5 ~2.140312 + j 6.582698 5,7 ~4.316064 + j 8.689667
4,6 ~5.739541 + j 5.739541 6,8 ~7.758450 + j 7.758450
4,6 ~2,213980 + j 8.168790 6,8 -4.448352 + 3 10.300680
5,7 ~5.895408 + j 7.313526 7,9 ~-8.027379 + j 9.468520
S,7 ~2.274478 + § 9.750397 7,9 -4.562911 + j 11.902630

3

1

}

J

3
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A.5 Conclusions

It is demonstrated by séveral specific examples that eigenvalues
of impedance-type integral operators can have branch points in the
complex frequency plane (s-plane). Through a two-port circuit example,
it is demonstrated that as s approaches a branch point two eigenvalues
become degenerate, the eigenfunction expansion of the inverse operator
becomes invalid, and the root vector expansion must be used to expand
the inverse operator at this point. If the terms involving the degenerate
eigenvalues are grouped together a representation is obtained which
does not exhibit any branch points and simple poles are the only
singularities of the inverse operator.

In the eigenanalysis of scattering from a prolate spheroid or
elliptic cylinder branch pouints also occur and two or more eigenvalues
become degenerate. 1In fact, since some of the branch points for
different eigenvalues coincide, one of the eigenvalues can be obtained
by the analytic continuation into another Riemann sheet in the s-plane
of the "neighboring" eigenvalue,

These examples demonstrate that symmetry plays an important role

in the presence or absence of branch points in the eigenvalues of

the EFIE operator. It is conjectured that branch points may always
be pregsent when sufficient object symmetry is lacking. This conjecture

is supported by the fact that branch points appear when the sphere is

PR

deformed into a spheroid or when a circular cylinder is deformed into

i

an elliptic onc. The analogous phenomenon has been observed in the

[ VI SO

circuit and transmission line problems. For example, when the taper

”.

parameter of a non-uniform transmission line goes to zero (the line

‘ becomes uniform), the branch points move away to infinity.
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The examples substantiate that the previously-speculated-upon
branch points do occur in the scattering theory. In addition, they
suggest a tie between the branch points and the need for root vectors
in a basis spanning the solution space. Whether the need for root
vectors in the solution expansion is isolated to branch points in the
frequency plane and what ties exist between the braunch points and
the normal operator condition stated by Rarmm [1980] remain open

questions.
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APPENDIX B
AN APPLICATION OF THE SEM EQUIVALENT CIRCUITS TO
THE ANALYSIS OF ANTENNAS WITH NONLINEAR LOADS
In this appendix we give some examples of the application of the
SEM equivalent circuits to the analysis of antennas with nonlinear
loads. Nonlinear effects are important for antenna systems containing
semiconductors, integrated circuits, and voltage limiters when they
may be illuminated by an extremely strong signal, such as that produced
by a lightning strike or an electromagnetic pulse (EMP) [Liu and
Tesche, 1976].
One approach to the analysis of nonlinearly loaded energy-collecting
structures has been to solve a space-time domain integral equation for

the current Miller et aql., 19763 Liu and Tesche, 1976; Schuman, 19741,

At each time step a system of nonlinear algebraic equations must be

solved in this method by a Newton-like iterative procedure. Even
complex-shaped bodies could be treated by’this technique if the procedures
developed recently by Rac et al. [1981] are applied. This approach

is not very practical, however, since the complex boundary value

problem must be resolved each time the loading is changed.

An original technique for the analysis of antennas with nonlinear
loads has been developed recently by Tesche and Liu [1975] (see also
[Liu and Tesche, 19763Liu et al., 1977]. They use frequency domain
data of an unloaded structure and a numerical Fourier transform to
formulate a Volterra-type integral equation for the current in the
time domain. Subsequently, this equation is solved by stepping in

time and iteration procedure.
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It is believed that the approach proposed in the present work,
t.e., the application of the SEM-derived equivalent circuits and a
standard circuit analysis code to the analysis of nonlinearly loaded
energy-collecting structures, can be an useful alternative to the
method of Tesche and Liu [1975]. It has the advantage that no special
purpose computer code is required. Furthermore, the input languages
of many advanced circuit analysis programs, such as SCEPTRE [Jensen and
Mcelamee, 1976], allow one to define almost any real or conceivable
loading situation. Also, an EMP with an arbitrary time history can
he easily defined.

In the examples given below the nonlinear loading is provided
by an 1N414B high-speed switching diode. The diode was represented
in the circuit by a voltage dependent current source I= Io[exp(AV)-ll

with I_ = 2.9%10"7 A and A=15 v!

in shunt with a 0.5 pF capacitor
modeling the junction capacitance. The diode parameters were taken
from [Liu et al., 1977].

In Figure B.l 1is plotted the input current response of a circular
loop (=15) driven by a double exponential function voltage source
(with a peak voltage of 10V) through a diode connected in the forward
direction. Shown is also the input current with the diode removed.
The topology and element values of the equivalent circuit used are
given in Table 5.2.

In Figures B.2 and B.3 are shown the current and voltage responses
at a port of a plane-wave-excited loop antenna ({1=15) loaded by a diode.
The incident wave time history is a step function with a peak field
strength 2mb Ei!*lOOV (note that the response cannot be magnitude-

normalized as in the examples given in Chapters 5 and 6, since the
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present problem is nonlinear). In the case of Figure B.2 the diode

is connected so that it is polarized in the "on" direction from the

beginning and has little idfluence on the current waveform (cf. Figure
5.8). When the terminals of the diode are interchanged the situation
changes drastically, as shown in Figure B.3, The current is initially
blocked and then flows in the reverse direction. Also in this case,

the reverse voltage on the diode can reach quite high levels in early
times. The topology and element values of the equivalent circuit

used are defined in Tables 5.2 and 5.4. Only the first eight dominant
pole~pair modules were employed. Note that in this case the transfer

networks for n=1,3,5,.., are not present, as indicated in Table 5.4.

In Figures B.4 and B.5 are plotted the current and voltage wave-
forms at a port of a cylindrical dipole antenna (N=10.6) center-loaded
with a diode, exicted by a broadside incident plane wave with a double
exponential time history and a peak field strength of 2Ei==100V.

In Figure B.4 the diode is connected so that it is initially forward
conducting. In Figure B.5 the terminals of the diode are interchanged.
As expected [Liu and Tesche, 1976), the current of the diode for tc/2>1
oscillates at about twice the rate of the short-circuit current shown

in Figure 6.21. This phenomenon occurs because the diode, when reverse

conducting, acts as an open circuit. The antenna thus behaves in

effect like two collinear wires, each having its fundamental natural

-

resonance at a f{requency roughly twice that of the whole structure.

B I P

The simplified circuit of Figure 6.19 was used in the SCEPTRE analyses,

with the elements defiend in Tables 6.2 and 6.12.
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APPENDIX C

STATIC CAPACITANCE OF THE SPHERICAL ANTENNA

C.l Introduction

The rapidity of the convergence of the eigenfunction or SEM
series for the driving-point admittance of a simply-connected object
can be significantly increased if the static capacitance of the
structure is known, as discussed in Chapter 7. The early time response
of an SFM equivalent circuit can often be improved by adjusting the
static capacitance of the circuit to the proper value as demonstrated
in Chapters 6 and 7. It is in this context that we discuss here the
computation of the static capacitance of the spherical antenna.

In the first part of this appendix approximate closed form formulas
are derived for the internal (Cint) and external (CQXt) capacitances
of a spherical antenna with an equatorial slot. The derivation
essentially follows that given by Franceschetti [1976]. A constant
field distribution in the slot region is assumed. In the second part
a numerical technique is used to compute the total capacitance of
the spherical antenna. Results are presented for 68=-90° (equatorial

slot) and 88-60" with the slot width d/a=0.05 in both cases.

C.2 Derivation of Closed Form Expressions for the Internal and

External Capacitance

In the equatorial slot case the expressions (7.31) and (7.32)

can be rewritten as

oo
int Ta z 4n-1

C - Z—o-c- L m vn(wlz,ao) (C-1)
and
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and
ext ma p 4n-1
(] 7 c Z a)? Vn('n'/Z,o.o) (C.2)
o n=1
with
1 '3 r"o
A=
PP S L Ukl W (e R (c.3)
n *“o 2n 2ao 2n-1 )

where n=sina, a=1/2-6, and ao=d/(2a).

Following Franceschetti [1976]) we define

@) = = V(o) (€.4)

where V:(ao) is the asymptotic expansion of Vn(w/Z,ozo) for n+w,

From [Franceschetti, 1976)

Pén_l(n) ~ /?c%nsa cos(nm)cos| (2n-%)a] (C.5)

it follows that

1 1 2n
14 (n )P ) ~ ——
2n~-1" 0’ 2n-1 " 7——_—cosa°cosa
X {cos[(Zn-%) (a-ao)] + cos[(2n-%) (aﬂo)]} (C.6)
and
a
o 2vcosa 1 °
fn(ao) = -——ﬁ?—g Wo I vcosa cos[ (2n-%) (a+a°)]da . (c.7)
—a
o

Now the series (C.1l) and (C.2) can be recast in the following form

o0 0
int m1a oo 4n-1
c Zc z fn(ao) + z 2n(2n-1) vn(ﬂlz’ao) -fn(ao)] (C.8)
o n=1 n=1
and
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[+ ] -]
ext na o0 4n-1 co
C = e 2 fn(ao) + 2 W Vn(ﬂ/Z.ao) - fn(ao):l . (c.9) .
o) n=]1 n=1
By using [Franceschetti, 1976] ‘
cos[ut)x] . | og(x/2)In(2sinx) + (T7/2-x)sin(x/2) (c.10)

n=1 n

and assuming a narrow gap (ao <<1), the first term in (C.8) and (C.9)

can be summed as follows

o
(o)
© 2Vcosa o  cos{(2n-%) (ot )]
z fm(a ) = ____—-2 _1-. Yycoso 2 o da
n o Ll 200 o n
n=}] o) n=1
-0
o
2 1 2 a
T faf2(ota )]da = Zlan(53) +1 . (c.11)
-0
o

The series in the second terms in (C.8) and (C.9) are uniformly

convergent with respect to a, and their evaluation can be safely performed

for ao-O. Noting that

1
P2n_1(0) 2n P2n(0) (C.12)
and, for large n,
n
Py (0 L2 (C.13)
nn
) it is easy to show that
1
] v (1/2,a ) 2 (C.14)
3 n o ™ :
and
o 2
‘ fn(O) ot (C.15)
269
R . — e e
S et ———— —_— e -




Using (C.1l4) and (C.15) it can be shown that

Y] 4n-1 w 2 ©) 4n-1 1| 2
L {‘_“—m(zn-l) Vo (M/230,) 'fn(%)} ol Zl{m‘s} =7 0.693  (C.16)

n=]1 n

and
v ] 4n-1 o 2 %) 4n-1 1l . 2
nzl -(Zn—_l—)r Vn(‘nlz,ao) - fn(o:.o) = ? L W - ; = ;l’— 2.620 . (C.17)

The substitution of (C.11), (C.16) and (C.1l7) into (C.8) and (C.9)

yields
int 2 [ ca ]
c g —— |n|l=) +1ja (C.18)
Zoc | (d)
and
¢t & 2 2,n(-3—)+2.97:|a . (c.19)
° -

For d/a=0.05 these expressions give Cint; 70.66a [pF] and

int ext

ext=104.74a {pF], so that the total capacitance Ct°t=C +C =

c
75.4a[pF].

It is of interest to point out that Schelkunoff [1952] derived
the following expression for the capacitance of a symmetrical spherical

antenna driven by a biconical transmission line:
¢ =<2 [en(®) +0.52| a (C.20)
Zoc d ' *

This expression differs significantly from (C.19), except for very

narrow slots.

C.3 Computation of the Total Capacitance by the MoM Technique

In this part of the appendix the static cap~~itance of the spherical

antenna is computed by solving numerically the integral equation for
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the charge density. The integral equation is formulated in terms of
the total charge density on the spherical shell, <.e., it cannot
distinguish between the charge residing on the internal and the
external side of the shell. As a result the capacitance obtained is the
total capacitance, which is a sum of the internal and external
capacitances discussed above., The numerical technique applied is the
Method of Moments (MOM) [Harrington, 1968] with subsectional basis
functions,

The charge distribution c(;) on the spherical antenna (Figure

7.1) can be found from the system of two coupled integral equations

>
V., , reS$s
-+, *, 1 1
o(x') as' + o) dS' = (c.21)
4meR 4mR v -1: €s
S S 2’ 2

1 2

where R==I;-;'l, and Sl and S2 denote the upper and lower parts of the
sphere, respectively, having the arbitrary constant potentials V1 and
VZ’ and € is the permittivity of the medium. In order to find the

capacitance C of the structure, the system (C.21) must be solved with

the constraint Q-(2]‘=-Q2 where Ql and Q2 denote the total charges

on S1 and 82, respectively. Then we have

L ) (.22
V-V

Exploiting the azimuthal symmetry of the problem, eq. (C.21)

can be rewritten in the form
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8% T 412 v, 0<8<8 ~ag
Tp(e')K(e,e')de' + Jp(e')K(e,e')de'= , (€.23)
0 eg+°‘o 4m v2, eg+a°§6_<_1r
where
1 p(8) = 212 5(e) (C.24)
1]
K(8,0") = —210 _ y(g) (c.25)
. 1 6+9'
gL sin ~——
B = sinf sind' (C.26)
1]
sinz{eﬁf ]

and K(B) denotes the complete elliptic integral of the first kind
[Abramowitz and Stegun, 1965]. 1In terms of the new function p(8) the

total charge on surface S1 is given by
3 0 -a

(o]
Q1 =ac T 0(6)sinbdo (€.27) "
0

with an analogous expression for Sz.
The MoM technique is applied to (C.23) by dividing the surface
of the spherical antenna into N subsections and expanding the unknown

function p(9) in terms of the pulse functions as follows

N
- p(8) = Y Q, p,(8) (C.28)
: OB
j i where
: A AB
] 1 .9;’——2—1565_6;‘+—2—1
3 (6) = ; (C.29)

Py

0 , otherwise
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This is illustrated by Figure C.1l.

The substitution of (C.28) into (C.23) and matching the integral

. equations at 6? results in the matrix equation for the expansion
coefficients
N am? v, 1<4<N)
a,,Q. = (C.30)
=1 M3 lanr vy, wpcacn
with
A8
m,_J
63 + 3
ajy " f K(87,9")d0" (C.31)
AB
i k
3 2

where the index i takes on the values i=1,2,...,N, Nl and N2

(N1+N =N) denote the number of zones on S, and 82, respectively,

2 1
The integration is done numerically by a Gaussian quadrature.

The integrand in (C.31) is singular for 1= j, thus the integration
for the self-term cannot be performed directly. This difficulty is

taken care of by subtracting the logarithmic singularity of the elliptic

integral and integrating the singular term analytically as follows

48
m i
hare o
m 61-6' 894
- t L —_— -
a;y = I 1]((91),6 )+ 2n -—Z——I dé Aei[ln( 4] ] . (C.32)

e
« i 2

In order to gain some confidence in this method, the capacitance

with respect to infinity of asolid sphere (Oto‘o, V,=V =V, Q'Q1+Q2),

1 2
C=Q/V, was computed first. With N=10 the value 111.267 a [pF] was

obtained, which is in an excellent agreement with the exact value 4mea.
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‘ Figure C.1 Subdomain placement on the spherical antenna for the
capacitance computation by the method of moments.
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In order to find the capacitance (or "capacity" [Adams, 1972})
of the slotted sphere, the system (B.23) must be solved together with the
charge neutrality constraint. However, as pointed out in [Adams, 1972;
Lee, 1978], it is more convenient to solve the unconstrained system
(C.23) twice for even and odd voltage excitation modes (Figure C.2)
and then suitably superpose the results. It can be shown that the
capacity is then given by
Q2 - Qla’
“T e dd o
e e

where the superscripts "e" and "o" denote, respectively, the even and

odd excitation modes.

The capacity of the spherical antenna computed by this scheme is
shown in Table C.1 and in Figure C,3 as a function of the number of
zones N. The extrapolated values of the normalized capacitances are
165 [pF/m] for 6g-90° and 137 [pF/m] for eg=60°. The width the
slot was d/a=0.05 in both cases. The value 165 a [pF) obtained in
the equatorial slot case agrees favorably with the value 175.4 a [pF]
obtained from the closed form formulas derived in the first part of
this appendix, considering that approximations are made in both

approaches,
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Figure C.2 (a) The even and (b) odd excitation modes of a two-
part structure,
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j
4
g' Table C.1 The capacitance per unit radius of a spherical antenna with
F a slot of width d/a=0,05 located at 8g = 90° and eg-60°, as a function
2, of the number of zones N in the MoM procedure.
-
y
: C/a[pF/m]
N
8 =90° 6 =60°
g 2
10 132.7 107.5
20 145.9 119.4
30 151.5 124.7
40 154.6 127.5
50 156.6 129.3
60 158.0 130.6
70 159.0 131.5
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Figure C.3 Capacitance of the spherical antenna with a slot located at
6 = 90° and at 8 = 60° as a function of 1/N, where N 1is the number of zones
in the MoM solution.
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