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EXECUTIVE SUMMARY

Digital designs have become complex. Specification of design require-

ments and determination that a design meets these requirements is no longer

a casual matter. Correctness of digital designs is the subject of this re-

port.

This report has investigated two major issues:

e How to specify design requirements for digital

systems to designers/contractors

* How a designer/contractor can verify or vali-

date that a design meets the above requirements.

Both of these issues have been researched with increasing activity over the

past five years. Some results are available and have been applied by industry

j - on a small scale to successfully validate and verify designs.

The specification of design requirements is done with narrative descrip-

tion diagrams, or formal hardware descriptive languages. The most complete

technique uses hardware descriptive languages (HDLs) to describe hardware

function. An HDL description or program bears strong resemblance in many

cases to a software program written to execute the same function on a computer.

The main difference between HDLs is the level of detail which can be included.

Some HDLs describe interconnected gates; others describe black-box behavior

of sequential machines. The more detail which is specified, the more likely

a design is to meet requirements. However, supplying large amounts of detail

is, in essence, doing the design itself. Thus, there is a balance between

supplying too little information, allowing for the possibility of ambiguity

ind hence design or specification errors, and supplying most of the design

itself (which itself may be in error). 05 26 10
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The state-of-the-art in HDLs has advanced to the point that they are

widely used by industry, but primarily for simulation. They are used increas-

ingly for design documentation. The use of such a language for design spe-

cification to contractors is practical at this time, with some limitations and

exceptions.

Verifying that a design meets some specified requirements is a less mature

discipline. There are three approaches to this task

* Simulation

* Symbolic simulation

* Formal proofs

ranked in decreasing order of usage. Simulation is widely used. However,

simulation only proves correctness for the specific cases simulated. Symbolic

simulation, on the other hand, uses symbols as input data to the simulator.

The outputs from the simulator are functions of these input symbols. In theory,

all possible cases can be examined in this manner. American and Japanese com-

panies have reported results in this area,although it is not known the extent

of practical application of this technique.

Formal proofs, much like geometric proofs, for example, have been used in

academic studies to prove correctness. This is the most rigorous type of an-

alysis but is not likely to be employed by industry in the near future since

it is tedious and only small problems have been examined.

In short, formal languages (HDLs) can be used to specify design require-

ments. Some validation, via simulation, is possible at this time. Symbolic

simulation is a technique which shows promise.

ii
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1. INTRODUCTION

This report addresses the problem of logical correctness of digital designs.

This problem divides into several subissues:

* How can design requirements be specified unambiguously to a

designer?

* How can a designer or design team verify that a design pro-

duced from a set of requirements accurately reflect those

requirements?

* How can evidence be presented to a contractor that a design

does meet the requirements?

9 Can certain design techniques support design verification?

We will deal with the first two subissues in detail in this report; the third

and fourth are open research questions.

In particular, Chapter 2 deals with design specification. Section 2.1

* summarizes informal specification techniques.. 2.1.1 reviews graphical tech-

niques, and 2.1.2 covers other diagrams useful for design specification. Hard-

ware-Descriptive Languages (RDLs) are suinarized in 2.1.3. Section 2.2 points out

some important features of specification techniques, beginning with specifi-

cation of desired behavior (2.2.1). The specification of design rules to be

used in implementing the specified designs is mentioned in 2.2.2. Conclusions

about design specification are presented in 2.3.

Chapter 3 deals with the problem of design verification. Section 3.2

discusses various concepts in program verification which are applicable to hard-

ware verification, and in Section 3.3 we discuss the difference between these

two pXOblems. In Section 3.5 we assess the field and in Section 3.6 present

some ideas on design techniques to aid in verification. NTS GA&Z
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2. SPECIFICATION OF DIGITAL SYSTEMS

This chapter summarizes current techniques for digital system specification.

These techniques are discussed in light of the desired levels of description of

the digital systems, and the styles of design of the systems being described.

Some important features of good specification techniques are presented, followed

by a possible scenario for use of HDLs. Although the thrust of this chapter is

on requirement specification techniques for contractors to use when processing

digital designs, these techniques are equally applicable for documentation of

designs in progress.

Before we can address the problem of design specification we need to state

and define exactly what information constitutes a design specification. Not all

of this information is included in every design specification. Some information

may be actually required to meet system requirements external to the chip being

specified. Other types of information may overly constrain a designer and

therefore produce suboptimal designs. Thus, there is a balance between ambigu-

ity and precision which allows a designer freedom and still meets requirements,

and this balance may shift from design to design.

There is specific information which must be included in a design specifica-

tion:

* design requirements

* technological requirements and constraints

e behavior - both internal and external

We will be primarily concerned with the specification of behavior.

Design requirements are requirements which concern the implementation of a

design. For example, a design might be specified to be done in the style of a

microprocessor (Von Neumann machine) or in the style of a multiple-instruction-

single-data stream (pipeline) machine. On a lower level, there might be a re-

quirement that only two-phase clock schemes be implemented, or that all multi-

plexers be built with transmission gates (design rules).

Technological requirements and constraints involve packaging, power con-

sumption, cost, size, pin count, and any consideration independent of the actual

functioning of the IC.

,- ~ "
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The IC function is termed behavior. Behavior has two major components:

e data flow

* control flow

Data flow is the set of functions to be performed on data, along with a

specification of input and output variables. The ordering of operations or

functions is done on the basis of data precedence, which specifies that an

operation cannot be performed on some data until the operation which produced

that data as output has been performed.

More detail can be added to the data flow specification by indicating:

* actual memory available to the designer

* number of registers required in the design

* number of functional units of each type

(adders, shifters, etc.)

" Interconnections between registers and

functional units

" Bit widths of each element

Control flow is the specification of when and under what circumstances

each function specified in the data flow is performed. Precise timing, con-

ditional execution, concurrent operation (greater than one state machine

running simultaneously) and state sequencing are all part of control flow.

State sequencing can be synchronous (clocked) or asynchronous (self-timed).

Response to exception (error) conditions is also part of control flow.

Implementation-specific information can be added to the control flow.

This includes:

* specification of control hardware in terms of

a finite-state machine

* specification of control hardware in terms of

a microprogram

* assignment of operations to clock phases

* assignment of bit patterns to states of the

state machine or fields of the microinstruction

e specification of communication mechanisms be-

tween concurrent state machines

7- NO
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In summary, the control flow specifies the parallelism to be implemented

in the design. This should be distinguished from the data flow, which shows

variable interactions and hence the potential parallelisms.

Ideally, specification of a design should encompass both control and data

flow. Furthermore, it is convenient to divide behavior into internal function

and interaction with the external world. The importance of data-flow specifi-

cation is increased when internal functions are being described; interaction

with the environment demands precise specification of control flow.

Several reviews of hardware-descriptive languages are useful for refer-

ence [Dudani and Stabler 1978,Shiva 1979] in spelling out the requirements

for information contained in hardware descriptions.

2.1 METHODS OF SPECIFICATION

Requirements specifications fall into two classes - specification of the

behavior of the design and a set of design rules which should be adhered to in

carrying out the design. We address the former in great length; the latter

will be touched on briefly.

Specifications of digital system behavior can be informal or formal. Up

until the past few years, specification prior to design was virtually always

j informal.

Informal descriptions are usually just verbal narratives. They are use-

ful as a complement to formal descriptions, which tend to cryptic. Also, ver-

bal descriptions are used to define formal notations. The main pitfall in re-

lying on informal specifications is that there is an opportunity for ambiguity,

or worse, conflicting information, which cannot be detected by computer process-

ing of the description.

It is relevant to note here some research Balzer has performed on the ma-

chine processing of informal program specifications [Balzer et al. 1977,Goldman

et al 1977]. He has found a number of criteria for assessing whether program

specifications are well-formed. For example, if a variable is used in an oper-

ation but has not been produced anywhere, then an action has been omitted from

the specification. This type of analysis could be used for testing the complete-

ness of informal hardware specifications.

Formal descriptions use well-defined rules to express specific information.

This information can be in the form of

4RA I
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" graphs

* diagrams

" languages

The appropriateness of each of these techniques depends on the level of des-

cription and style of design. Level refers to the degree to which the physi-

cal structure of a design is being described. Common terminology and taxon-

omy usually includes these levels

* logic

* register-transfer

e architecture (behavioral)

* algorithm (system)

Thus, the logic level is described by the interconnection of gates ant lip

flops and the register-transfer level by the interconnection of regist and

other functional units. The register-transfer level is higher than t' -cqic

level since the gate structure of the registers and other units is noi

cluded in the higher-level description.

The architecture level deals with register transfers, but in an abstract

jfashion. For example, at this level we might state "put into the A register

the contents of memory location 3." We have not specified explicitly the mem-

ory-address register, the memory-data register, or the intermediate transfers

which must occur. The algorithm level abstracts away any information about the

hardware, with the possible exception of parallelism (concurrent operations).

The design style is the global shape of the data flow, as implemented in

the hardware. We can identify four major styles:

9 central accumulator

o distributed random

o parallel

o pipelined

Central accumulator design style encompasses designs which process data seri-

ally, sharing registers and functional units, and storing intermediate results

in random-access memory. Distributed random styles usually contain irregularly

connected networks of registers and operators (address, etc.), operating simul-

taneously. Parallel styles have a regular structure (repeated sub-networks)
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but are otherwise similar to distributed random styles. Pipelined designs

contain an interconnection of operators and registers arranged one after the

other, so that a sequence of data values can filter through the "pipe," be-

ing passed from register to operator, following the previous value through

the pipe. Microprocessors reflect the central-accumulator design style while

VLSI layouts of signal-processing algorithms are done in the parallel design

style. A summary article on design styles can be found in [Thomas and Siewiorek

1981].

It should be noted here that specification of a single state machine is

easier than description of concurrent, communicating state machines, due to

the complex control flow inherent in the latter problem.

2.1.1 Graphical Techniques

Graphical techniques for design specification include state diagrams, con-

trol-flow graphs, Petri nets, data-flow graphs, and binary decision diagrams.

(The UCLA graph (The Graph Model of Behavior) (Razouk 1977] is a well-known and

researched extension of the retri net.)

State didgrams are a universal technique for system specification, from

abstract behavior to the operation of interconnected gates and flip flops. Since

they specifically model control flow, they are often used to specify the beha-

vior of a control unit in a digital system. They are _iso useful in the des-

cription of interfaces and protocols for communication between functional units,

where control flow is complex. Actions are indicated in the circles (states) and

conditions for state change are shown beside the arcs. They have been used for

simulation and synthesis of finite-state machines. A portion of the UNIBUS

operation described with state diagrams is shown in Figure 1. Note that the

actual operations carried out by the hardware can be specified informally (e.g.,

npg-l means set npg to the value 1), which partially defeats the purpose of

the formal specification. Furthermore, timing is not specified formally using

this technique. Finally, state diagrams become -nwieldy when used for descrip-

tion of large systems (a PDP-8 computer, for example) which cannot be parti-

tioned into multiple, asynchronous state machines. State diagrams were used

extensively in the design of the Hewlett-Packard interface bus (Knoblock 19751.

1Arm-
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bg.enoble- W-2
npg count *- count +1I

np r A bg. enablIe

if3

W5
delay 75sok 0W

bg.enable '-i

Figure 1: The UNIBUS" Non-Processor Grant Process,

4 Described in State Diagram Form. (From

*1 [Parker & Wallace 1981])
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Control-flow graphs are a hybrid between flow charts and state diagrams.

Figure 2 shows a typical control-flow graph. Each node in this graph spe-

cifies a specific operation to be performed and the required ordering of op-

erations is indicated by the directed arcs of the graph. "Fork" and "Join"

nodes encapsulate multiple paths in the graph whose operations could occur

during the same period of time. Operations to be packed into microinstruc-

tions are often presented in this format, as in the Carnegie-Mellon Design

Automation (CMU-DA) System (Nagle and Parker 1981]. A control-flow graph

for the PDP-1l has been automatically translated into microcode. The advan-

tage of this specification technique is that it can be easily derived from

a language description, either manually or by computer. It has the same

shortcomings as the state-diagram approach.

Petri nets are used to describe behavior of digital systems,usually above

the register-transfer level. Figure 3 shows an example of a Petri net. The

use of Petri nets has been primarily for verification of correct behavior and

for simulation purposes. Chapter 3 spells out some results of these applica-

tions. Petri nets model asynchronous control flow. The circles represent

places and the bars represent transitions, or events (register-transfers, for

example). When enough tokens accumulate in an input place(s), a transition

"fires," a token is taken from every input place and a token is placed on

every output place connected to that transition. Petri nets can be processed

by algorithms to provide information such as:

* whether the number of states of the machine is finite

e whether there is a directed path from any state to an initial

state

* whether it is possible to reach any arbitrary state from

any other arbitrary state by a series of firings

The latter two findings tell us whether the machine can be initialized and

whether there are deadlocks (states which cannot be left once entered). Pro-

cessing Petri nets can be computationally expensive, but for some classes of

Petri nets this problem can be overcome. Petri nets are useful for asynchron-

out circuit description and for specification of pipelined operation. Because

techniques exist to process Petri nets, they provide a useful specification

4 . .<:.
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2 6

JOIN

Figure 2. Control Graph of a Single Parallel

Segment. (From [Nagle & Parker 1981])

Figure 3. Petri Net Graph.

(From [Cooprider 1976])

{
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format for posing many theoretical problems. Unfortunately, they suffer the

same maladies as state disagrams. However, timing has been included in an

extension to Petri nets proposed by Wallace [Wallace 1979]. Summaries of

Petri nets are found in [Agrawala 1979,Cooprider 1976].

All of the graphs discussed so far are most useful when control flow

is important to the designer. When the digital system is to perform a comp-

licated manipulation of data (for example an FFT), the overall design prob-

lem may be reflected better with a data-flow graph (F4gure 4). The nodes

indicate operations performed on values, and the arcs indicate values used

or produced. Control flow is implicit, since ordering of operations here

depends only on availability of data (data precedence). Data flow graphs

generally indicate function or behavior without specifying any hardware

structure. These graphs are useful for optimization of the control flow

since they remove unnecessary orderings. However, they are not useful for

describing precisely-timed behavior or asynchronous communications. Data-

flow graphs are primarily used for software optimization or to represent

programs to data-flow machine [Dennis et al. 1977]. We should note here

that an extension of the data-flow graph, the Value Trace [McFarland 1978,

Snow et al. 1978], has been designed. This graph can be automatically de-

rived from a language description of hardware behavior, and plays a part in

some verification research described in Chapter 3.

Binary decision diagrams (Akers 1980] (Figure 5) specifically modelthe

logical behavior of combinational and sequential logic. No timing consid-

erations are included. It is possible that binary decision diagrams or an

extension of these diagrams could be used more easily than conventional logic

diagrams for VLSI design, since transmission-gate structures could be modeled.

They have been used for verification of logical behavior.

2.2.2 Other Diagrams

There are other types of diagrams useful for system specification. The

first of these is the system block diagram, or PMS diagram [Bell and Newell

1971], which usually contains data interconnections between independent func-

tional units; control connections are often omitted since they tend to be im-

plementation dependent. More dynamic information can be provided by hardware

_____ t
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Figure S. Binary Decision Diagram (from [Akers 1980]).

flowcharts [Tredinnick 1980]. These flowcharts were used by Tredennick to

design the control hardware for Motorola's 16-bit microprocessor, the MC68000.

These flowcharts assume the register-transfer structure of the data paths has

already been designed, and specify the control flow.

The dimensional flowcharts proposed by Lawson [Lawson 1979] are similar

to conventional flowcharts but tend to represent abstract behavior in a struc-

tured manner. They do not represent timing constraints. A self-explanatory

example of Lawson's method is shown in Figure 6. These flowcharts are valu-

able primarily at the algorithm level of abstraction, and it is not known

whether they have had practical application.

Another flowchart approach is a graphic language proposed by Bayegan

[Bayegan et al 1979]. Register transfers and conditional signals are shown

L _ _
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PROCESS CONVERT BINARY TO DECIMAL

DECLARATIONS

PORTS

BINARY NUMBER, INITIAL, START, DECIMAL NUMBER

STATE VARIABLES

DIGIT, POSITION VALUE, ACCUMULATED SUM

PROCEDURZS

INITIAL STARTN I
SET POSITION VALUE TO 1 WHIL-A BINARY DIGIT EXISTS

I I
SET ACCUMULATED SUN INPUT NEXT LOW ORDER DIGIT
TO 0 FROM BINARY NUMBER

MULTIPLY DIGIT WITR POSITION VALUE
AND ADD TO ACCUMULATED SUM

MULTIPLY POSITION VALUE BY 2

OUTPUT ACCUMULATED SUM TO DECIMAL NUMBER

!I

Figure 6. (from [Lawson 1980]).

as horizontal arrows and control flow as vertical arrows. (See Figure 7 for

some example graphs.) This technique is useful for hierarchical description

of hardware and should be investigated more completely.

A final flowchart approach is the ASM (Algorithmic State Machine) chart

described in [Clare 1973]. These charts specify control flow of state-

* 'machines at the logic level and can be used to synthesize logic designs.

*+ Timing diagrams are the final type of descriptive technique we will touch

on in this section. These diagrams are useful particularly when describing

how a device interacts with the external world, as shown in Figure 8. They
are used extensively in the UNIBUS description [DEC 1979]. Although timing

diagrams can be used to describe requred operation of hardware at any level,
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they are most often used to describe register-transfer or logic behavior. They

primarily represent the timing of control flow and do not describe data manip-

ulations.

2.1.3 Hardware Descriptive Languages (HDLs)

Hardware descriptive languages do not fall into the clean categories

which the above techniques did. In this report it is impractical to survey the

entire field of hardware descriptive languages; [CHDL 1979] provides a selection

of current publications. Here, we focus instead on desirable features of lan-

guages and on example languages which are popular or which have interesting

features which are uncommon.

Two excellent comparisons of hardware descriptive languages (HDLs) (which

were published some time ago [Barbacci 1975, Figueroa 1973] revealed some de-

sirable properties of general-purpose HDLs. Barbacci cited

* Readability

* Familiarity with naming and usage conventions

9 Use across several levels of detail

* Simplicity; small number of language primitives

o Extensibility

* Fidelity to the system organization

* Timing and concurrency

* Syntactic simplicity

* Ability to separate data and control

These were chosen presumably because of his emphasis on the description of

digital systems. Barbacci defined timing and concurrency as "parallel actions,"

and explained "At the RT level, concurrent activities are described by allowing

them to be activated simultaneously (i.e., under the same conditions)." Figueroa,

focusing on design automation, also found some of the above properties important;

and in addition discussed

o Modularity

o Block structuring, including the existence of global and

local variables

* Facilities for functions, subroutining and macros

* Facilities for specification of parallel processes

* Facilities for determining and controlling process inter-

action explicitly.
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In addition, some comments on programming languages are valid here as well.

Iverson [Iverson 1980] finds valuable the ability to subordinate detail and

economy - the ability to express a larger number of ideas in terms of a rela-

tively small vocabulary. In addition he recommends that the languages be

amenable to formal proofs and suggestive - that is forms of expressions suggest

related expressions found in similar problems. Winograd [Winograd 19791 con-

siders the overall structure of programs. He proposes that

* states and state transitions be expressed

* modularity and structured procedures be employed

* interacting processes and their c.omunication be

specified

Other features of good programming languages which are relevant here are
[Higman 1967]

* the use of a standard character set

* the use of established constructs in the field of the

problem being specified

* the prohibition of unintentional ambiguities

Thus, we will judge HDLs not merely by their expressive capabilities but also

with respect to the features previously mentioned here.

Example languages can be subdivided into those which describe a design at

the level of

* system or algorithm
0 architecture (behavior)

& register transfer

0 logic

However, some languages cover a mixture of these levels depending on the indi-

vidual language constructs. Others apply equally well to more than one level.

System level behavior can be described with a programming language such

as PASCAL or ADA. Sequential orderings in the language, however, should not

constrain the hardware to the same sequential control flow. The SCHEME chip

[Holloway 1980] was described and designed in a top-down fashion using the

LISP language. Since the SCHEME chip is a processor which executes LISP, this
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allowed a close correlation between specification technique and desired system

behavior.

An example of. a system- level language is MIMOLA [Zimmerman 1979].

It has been used successfully as input to an automatic design system which pro-

duces an architecture and machine organization as output. In one example,

MIMOLA was used to describe the behavior of an operating system, and the archi-

tecture produced was designed to support such a system. The advantage

of MIMOLA is that it does not constrain the designer even to a specific archi-

tecture. However, MIMOLA lacks the ability to express multiple-process commu-

nication easily and cannot provide timing constraints. Finally, the syntax of

MIMOLA makes the language difficult to read. An example of structural descrip-

tion using MIMOLA is shown in Figure 9. Figure 9(a) shows the hardware and 9(b)

shows the language description. Behavior is indicated with register-transfers,

and control flow by ALGOL-like constructs. (IF-THEN-ELSE, WHILE-DO, etc.).

Another publication in this area [Sorenson 1978] describes a system le-

vel language based on the BCPL language. This language has three interesting

features - the ability to declare processes (concurrency), mailboxes for inter-

processes communication (synchronization),aad uninterruptable code sequences

(critical sections). The language is designed to model systems at a higher

function level than register-transfer behavior and consists of a mixture of

block diagrams (each block represents a concurrent process) and statements

(which represent process behavior).
Another system-level language along similar lines, SOL (Simulation Oriented

Language) [Knuth 19641, based on ALGOL-60, does not describe hardware structures

explicitly. However, it does allow concurrent processes, timing, subordinate

processes and shared-resource contention to be dealt with explicitly. One other

system-level language, ASPOL [MacDougall 1973] also reflects these important as-

pects of interconnection behavior. Concurrent processes can be declared, and

processes can have priorities of execution. Set and Wait primitives are provided

for synchronization. While these languages provide synchronization and process-

level constructs, they do not provide the level of detail possessed by register-

transfer languages.

Usually, some structure (or architecture) of a system has been determined

during this initial design process. In this case, a language can express

register-transfer behavior or architecture is required.

t -- - -----
.~~~ .
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There is strong motivation for constructing behavioral register-transfer

(RT) descriptions of hardware. Behavioral RT descriptions differ from struc-

tural RT descriptions because they describe only the RT functions of the hard-

ware and not the RT hardware itself. Some storage locations and register-

transfers which exist in the hardware may be absent from the behavioral des-

cription; control hardware is implicit rather than explicit.

Behavioral RT descriptions can convey to the reader the overall operation

of hardware better than structural RT descriptions, since much of the unneces-

sary detail is eliminated. Simulations proceed more rapidly, and can encompass

larger systems. Verification of behavior is possible since the behavior is ex-

plicit, the implementation is hidden, and the description can be structured.

Of course, more detail is present in architectural and behavioral RT lan-

guage than is the case with system-level languages. Bit widths are assigned to

variables, and arithmetic operations are often expressed in terms of more prim-

itive functions. The control flow contains specific sequencing and concurrency

information. Most descriptions at the behavioral register-transfer level are

procedural or operational. Control flows sequentially from statement to state-

ment unless otherwise altered. (There are specific exceptions to this when be-

havior becomes non-procedural. A particular condition can trigger a set of ac-

tions at any time, for example.)

ISPS [Barbacci 1979] is an example of such a behavioral RT language. The

applications of ISPS are numerous. They include

* simulation

* machine description for automatic compiler generation

* automatic synthesis of digital hardware

* architectural evaluation

o automatic generation of microcode

An example ISPS description is shown in Figure 10. ISPS has shortcomings,

some of which are discussed in (Parker et al. 1979]. In summary, these deal with

lack of formal definition of the language semantics, and the presence or absence

of language features which have made machine processing of ISPS descriptions dif-

ficult.

One particular shortcoming of ISPS is its inability to deal with the concur-

rent processes which characterize system-level specifications. Thus, ISPS is

most useful describing isolated-state-machine situations.

--- --- -- . - - , ,,,- .
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Hark I a The Mark-1 Computer. /lLaington. 1975/
Begin
** Prlmary.Hemory * Primary Memory Section
HEO: 8191]<31:0>, 8K words, 32 bits/word

** Central.Processor ** Centrmi Processor Section
Processor 8=

Begin
** Processor.State ** Processor State Section
PI\Present.Instruction<15:,0>, Instruction Register

F\Function<0:2> = PI<15:13>, Opcode
S<O: 12> : = PI <12: 0>, Operand Address

CR\Contro|.Register<12:0>, Program Counter
Acc\Accumu tat or<31: 0>,

** Instruct Ion. Cycle * Instruction Interpretation Section
I.Cycle :=

Begin
PI %[ CR] <15: 0> next Instruction Fetch
Decode F => Instruction Decoding

Begin
O\JMP CR = M[S1], Jump Indirect
1\JRP I = CR = CR + ME[SI, J.mp Relative
2MLON = Ace = - H[ S], Load Complement
3\STO : M[S] = Ace, Store
4:5\SUB = Ace = Ace - MSI, Subtract
6\CMP := If Ace Lss 0 :> Conditional Skip

CR = CR + 1,

7\STP := St opO, Halt
End next

'CR = CR + 1 next Increment Program Counter
Restart I.Cycle Repeat Istruction Cycle
End

End
End

The MARK-I Computer

Figure 10. Example ISPS Description (from (Barbacci 1979]).

- -- -- --
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SLIDE [Parker 1978, Parker and Wallace 1981, Altman and Parker 1980] has

been designed for description of concurrent processes at the register-transfer

level. At this point SLIDE has all the features of ISPS with the exception of

procedure parameters, the case construct, and some arithmetic and logic opera-

tions. On the other hand, many SLIDE features are not present in ISPS.! The

major shortcomings of ISPS with respect to interconnected system description

are at two extremes - the lowest level hardware operations and the overall pro-

cess structuring. or example, attempts to describe the UNIBUS in IPS have re-

sulted in inability to synchronize between concurrent processes and failure to

model the open-collector behavior, timing, and transitions of signals on the

bus itself. SLIDE has some non-procedural constructs which allow more accur-

ate modeling. A portion of the UNIBUS described in SLIDE is shown in Figure
11.

busgrant / NEXT I grant the bus I
DELAY 500 UNTIL ack EQL /

ELSE BEGIN I do this If a timeout I
sysreaet *- / NEXT I reset the bus I
DELAY 100 NEXT

Delay statement example with timeout

Figure 11. SLIDE Example (from [Wallace & Parker 19791).

A specific construct lacking at this level is the ability to replicate

interconnection structures between hardware modules algorithmically. For ex-

ample, a set of processors and memories is connected through a crosspoint

The most recent version of ISPS has incorporated some SLIDE features for
process synchronization.

- -' r "---- -
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switch. Each element in the switch must be specified individually in order to

describe the system. Sastry [Sastry 1980] has proposed a language construct

which allows algorithmic replication of interconnection structures.

The SLIDE and ISPS research produced a list of requirements for the ideal

behavioral register-transfer language. Here is the list, taken from [Parker et

al. 19791:

1. An abstraction facility for adding new primitives to the language*

as hardware becomes more complex.

2. The ability to specify behavior without specifying structure.

3. Support for structured programming constructs.

4. The capability to specify additional information which may be ap-

plication specific (e.g., with qualifiers).

5. The capability to express concurrency more precisely than the ISPS

semicolon now allows.

6. The capability to describe multi-process functionality, including

terminations, suspensions, and priorities.

7. The capability to express synchronization primitives explicitly.

8. Formal semantic definition of the language operators to the great-

est possible extent.

ADLIB [D. Hill 1979] is a language which attempts to span the gap between

system-level languages and behavioral RT languages. It is built onto PASCAL,

and thus has some semantic definition as well as software support. A disad-

vantage of ADLIB is the syntax, which becomes unwieldy as the level of des-

cription becomes lower. A multiplexer description, for example, requires many

(>20) lines of ADLIB code. There are some interesting timing features and

concurrent operation allowed at the process level (independent executing en-

vironments). However, concurrent operations can be described only by declara-

tion and use of an explicit synchronizing signal. ADLIB comes the closest to

possession of description capabilities across hardware levels of the languages

surveyed. An ADLIB example of combinational logic is shown in Figure 12. It

should be noted, however, that the power of ADLIB is in description of higher

levels of behavior.

These primitives may not be functions of existing primitives, so simple text
substitution is not all that is implied here.

. . .. ..... .... _.

-aAa
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comptype combin;

a,bc : boolnet;
output
d : boolnet;

x : boolnet;
suborocess

endgate : transmit (a and b) J2 x
dslay 15.0;

orgate : transit Cx &c a) t1 d delay 14.0;

permit(andgte);

perMit(orget.)a

Combinational logics
D=(A*B)+C

Figure 12. ADLIB Example (from (Hill and Van Cleemput 1979]).

DDL [Dietmeyer 1978J is an example of a structured register-transfer lan-

guage; as such it conveys more detail than ISPS and the underlying semantics

are more straightforward since operations are more primitive. Control flow is

explicit and unstructured (not structured in the sense that there are "go-to"

conditions, just as in unstructured software). A DDL example is given in Fig-

ure 13.

Since there is more detail than in a comparable ISPS description, DDL des-

criptions quickly become large. Furthermore, since these descriptions are es-

sentially unstructured they do not reflect multiple-process operation clearly.

DDL is a nonprocedural or declarative language. Each statement in the language

executes whenever the conditions for its execution become true. DDL has been

used widely for simulation and synthesis of gate-level designs, as well as ver-

ification.

AHPL is similar in structure to DDL. AHPL III [Hill 1979] does allow rep-

lication of interconnections. An example using AHPL III is shown in Figure 14.

Shiva reported AHPL and DDL were both difficult to program with [Shiva

1979].

_ _ _A
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Addressing Effect of Executing an
IX Mode ADD Intruaion

00 Immediate ACC-ACC+XADR
01 Direct ACC --ACC + M[ADR]
10 Relative ACC 4-ACC + MVR + ADR]

II Indirect ACC t- ACC + M(M[ADRI]

<ID> XADR - ADR[I] x 6-ADR, ZADR - 0D6'ADR.

IFI : MAR - CAR, -1IF2.

IF2: IR4 M[MAR), CAR -CAR + 1, -IF3.

IF3: rOPL add [IX LO ACC -- ACC + XADR, -. IFI

11 MAR .- ZADR, -*EX

12 MAR - ZADR + B, -EX

3 MAR - ZADR, -*IF4...

IF4: MAR 4- M(MAR], -+ EX.

EX: ACC ACC + M[MAR], -IFl.

I
IR ,

ADR

ACC
ALU

B

CAR ShifterR

Figure 13. DDL Example

IA
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Combinational logic wit description say be

written in this structured syntax as illustxated by

a 16-bit rippe carry adder

bein body C[161 - 0

POR X - 15 DOWTO 0 CMIU!WC

C(X1 - CNM z(XII'YtII.C[I#1)

SIX - PM!1(XIZ1.7[II,CI+11) a

ADD - C1OISIO:15I

end body.

Ca)

F CT:COUNTER (loa, vip, ent, caw~a; DATA)

begin declaratiolnI DATA INPUTS: DATA [4).
ccxTFoL InPTS. Load, vip, ent, clear.

UTITS: COUNTR [5).

CIAINITS: XNC141

end declaratiolns

begin

D~olear - 0, 0, 0, 0;

COUNTBU - entA(A/D),D

end

(b)

Figure 14. (a) AHPLIII Adder Example

Wb AHPLIU1 Counter Example

T774 47,*
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We conclude this section with a discussion of CONIAN (consensus language)

being designed by a committee [CONLAN 1979]. CONLAN in essence consists of a

base language and mechanisms for building more specific languages onto the

base language. The main advantage of CONLAN seems to be the use of the base

language to define any other hardware-descriptive language. There are some

desirable features of CONLAN. These include

* distinguishing physical interconnections from the action of

a register-transfer.

* algorithmic replication of functional units.

* the provision for insertion of assertions about environment

conditions into the CONLAN descriptions. These assertions

indicate what is supposed to be true at the point they are

asserted.

Even so, there are some constructs present in current hardware descriptive lan-

guages which represent semantics (meaning) not easily specified in CONLAN.

In summary, the features of a language for hardware description (and the

applicability of a given language) depend on each application. It is more dif-

ficult to choose a good language when the range of applications and number of

levels of design (e.g., logic and register transfer) increases.

2.2 IMPORTANT FEATURES FOR SPECIFICATION TECHNIQUES

We have already presented desirable features of hardware descriptive lan-

guages. Here, we focus on the use of languages and graphs for specification

of design requirements. As such, we subdivide these into specification of be-

havior, and specification of required design rules, or design practice.

2.2.1 Specification of Behavior

We are going to emphasize here important features of specification tech-

miques which are not common to current methods. It is assumed that basic fea-

tures (like the ability to express sequential behavior and conditional actions)

are required features.

The specification of internal device (functional unit) functioning is eas-

ier than specification of external behavior. The main areas of ambiguity are

usually

* . . . ••
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" arithmetic expressions

" exception (error) conditions

Accuracy of arithmetic computations is an important consideration if designs

are specified above the register-transfer level. At the RT levels the exact

meaning of arithmetic operators should be made clear.

The most commonly omitted aspect of design specification is the precise

description of response to error or unanticipated conditions. For example,

the use of the PDP-11 condition codes to detect exceptions is not clearly de-

fined or uniformly employed [Russell 1978]. This is an area which requires

research.

External behavior must be specified more precisely than internal function

in order to provide a uniform interface between independently produced modules.

Just as in system specification, the concept of process communication must be

present. Sequencing and timing of events which appear at the interfaces to the

modules must be specified, including allowable worst-case and desirable re-

sponse times. Also, crucial timing relationships between signals which are not

allowed to change over time should be indicated. Finally, the behavior of the

module in producing or processing streams of signals, particularly synchronous

transfers, should be clearly specified.

2.2.2 Specification of Design Rules

More general than the specification of a particular design is the specifi-

cation of design rules to be followed during implementation.

Design rules are quite often expressed informally. For example, at the

register-transfer level, a commonly followed design rule is the following: In

order to store a value, it must have been available at the register inputs for

at least the set-up time of the register prior to the clock.

A more desirable method of expression is, of course, a formal technique.

Such a technique would allow unambiguous description and would indicate clearly

where conflicts between design rules existed.* A formal expression of the above

rule is: The storage element s1 is a clocked register with input set-up time

DSS (l). For the store of the value 01 in register s,, the clock time must

satisfy the constraint

It would also allow automatic checking for design rule violations.

_ _ _ _ _ _ ____



29

TOS(01) 1 TOA (c) + Ds(sS)

where TOS(01) is the time s1 is clocked to store value 01 and ToA(0) is the

time the outputs of operation are available for use. (Data path delay is

not being modeled.)

A summary of design rules for the register-transfer level is found in

[Hafer and Parker 1981], along with their application to automatic design.

Their role in design verification is presented in Chapter 3. Extension of

these design rules to cover other levels and aspects of design is an area of

future research* McWilliams [McWilliams 1980] uses some specific timing

rules which will be discussed in Chapter 3.

2.3 CONCLUSIONS

Ideally, a single specification technique should suffice for specifying

design requirements and documenting the design process. This technique should

provide clear specification of

e communicating and computing hardware processes

* multiple levels of designs

* detailed interface behavior along with less-

detailed internal functioning

a asynchronous and synchronous operation

The technique should support

* modularity and structured description

e ease of use of mathematical tools for analysis

* static checks for inconsistencies, rule viola-

tions, and ambiguities

Along with the technique, a formal semantic definition of the technique should

be provided so that the precise meaning of the language is understood.

Along with this specification technique, and, interspersed with specific

descriptions, design rules should also be expressed in a uniform formal manner.

*Rules for design for testability at the RT level are currently being researched.
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Finally, it should be clear from the specification which aspects are

merely expressions which allow the description to be written, and which are

requirements. For example, the use of a temporary register T1 may be neces-

sary in order to describe a complex computation, but may not be needed in

the actual hardware. A second temporary register T2, on the other hand, may

be available externally and hence must be realized.

In reality, the above techniques are not currently available. No one

specification method is adequate. A possible scenario is to use a number of

techniques, some redundant, in expressing design requirements. (In fact, re-

dundancy may be desirable here to ensure understanding since the specification

techniques will not be ideal.) An example of combined techniques is the use

of delay information combined with state diagrams for protocol description

[Vissers 19783.

The scheme we mention here is the following: Designs should be specified

in a hardware-descriptive language at the behavioral (architectural) register-

transfer level. Gate-level specifications will not be appropriate for VLSI and

VHSI designs since transistor structures now can be used to directly implement

register-transfer functions, and these structures do not reflect logic diagram

specifications of the same function. If register-transfer structure is required

to be the level which the contractor specified designs, DDL should be used since

it has had wide usage and is relatively readable. However, it should be noted

that the specification of register-transfer structure constrains the designer

to a control flow and interconnection topology, thus predetermining floor plan,

speed and cost to a large extent. If DDL is used, timing diagrams should be

used in conjunction to express interface behavior, since deducing timing rela-

tionships between signals in a DDL description is difficult. State diagrams

or Petri nets should be used to indicate overall behavior, and carefully cor-

related with the detailed description.

One approach is that systems should be specified internally at a more ab-

stract level than the structural RT level, while maintaining physical intercon-

nections and timing requirements in the itnerface specification. SLIDE does

allow this, and could be used independently of any other technique. Informal

definition of SLIDE control-flow constructs has been done using Petri-net-like

graphs. However, SLIDE data manipulations have never been precisely defined.

For this reason, an alternate approach is to use ISPS for internal specification.

- - -
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A formal definition of ISPS does exist and is expressed in a notation which

could be rewritten for use by vendors. (The current notation is straight-

forward but compact and hence cryptic.) [McFarland 1980].

In summary, areas for future study include:

* The use of graphic languages like that proposed by

[Bayegan 1979].

* The feasibility of combining elements of ISPS, SLIDE, ADLIB

and DDL to produce an ideal language.

* The formal definition of the selected specification language

-semantics (meaning).

o The precise specification of exception conditions in the

language.

9 The specification of design rules for all designs done from

contractor specifications.

o The ability to separate design requirements from abstract ex-

pressions of behavior in a specification.

i
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3. DESIGN VERIFICATION TECHNIQUES

3.1 INTRODUCTION

One of the fundamental problems facing VLSI designers is that of assuring

themselves that an integrated circuit is functionally correct. By functionally

correct, we mean that the outputs and their ordering are what we expected from

our inputs. In other words, there are no logical errors in the design. This

is a difficult problem with LSI circuits, but an overwhelming one with VLSI and

VHSI designs. The complexity of the designs and the timing considerations are

difficult to keep track of. There are two approaches to determining the func-

tional correctness of hardware.

* Simulation

* Verification

Simulation does not guarantee that a design is logically correct unless

all input data combinations have been applied during the simulation. It merely

validates* that for the inputs chosen, the correct outputs are obtained, and in

the correct order.

Verification, on the other hand, gives some confidence that a design is

correct for an entire class of inputs, or for all possible inputs. Simulation

handles specific cases, while verification involves the general case. An anal-

ogy can be given: Suppose we suspected that the three angles of a triangle

added up to 180. We could construct a large number of cases which all gave us

the expected result. Or, we could prove, using geometric theorems and axioms,

that for all triangles, our rule held. Verification of hardware involves the

same type of analysis in proving that a particular hardware design meets cer-

tain rules we pose about its behavior.

Simulation of hardware as a validation technique is widely used. We will

not pursue this topic further here. Rather, we intend to survey the field of

hardware verification. Within the timeframe of this study, only a brief glimpse

of the field could be taken - many more aspects ofthe field should be investi-

gated. [Cory and VanCleemput 1980] recently published a survey paper on this

subject.

Section 3.2 presents some basic concepts of program verification which

are also applicable to hardware verification. Section 3.3 describes the dif-

ferences between program verification and hardware verification. The variety

Validation of correctness is an informal or case b. .Q t1 4 h- -.

ing correctness.
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of hardware verification techniques which have been published are summarized

in 3.4. 3.5 presents some ideas for design for verification, and 3.6 gives

and assessment of the field.

Verification is a difficult, complex research field. All that can be

done here is to present the concepts in as straightforward manner as possible.

The reader should try to view verification merely as the manipulation of

strings of symbols in order to produce equivalent strings. Whether the sym-

bols represent program code or hardware descriptions, that is all that is

really going on. Definitions and axioms merely tell us how to produce and

manipulate these strings.

Another way of viewing verification is to view it as functional testing

where faults are not in the fabrication of the design, but in the design it-

self.

3.2 BASIC CONCEPTS IN PROGRAM VERIFICATION

The fundamental basis of program verification is the concept of proof of

equivalence. We may have either of the following situations:

e Two descriptions of a program at the same level of detail

which we want to prove equivalent.

a A detailed description (a program) and an abstract descrip-

tion (a specification) which we use to specify the required

behavior of the program.

In either case we need an underlying definition of each of the elements of

the language or -pecification technique so that we can manipulate the descrip-

tions until we can prove equivalence. In other words, we need to understand

exactly what each statement in the program language does. We also need to un-

derstand what we mean by each operation in the specification if we give an ab-

stract specification. Then we need some axioms, or rules, or methodology to

manipulate the detailed description (or one of the detailed descriptions if

two are to be compared), until it is identical to the other description.

Often, in program verification, the program is compared to the abstract

specification. The abstract specification is expressed as a set of assertions

about the program behavior. These assertions can be further specialized into

preconditions and postconditions. In essence, preconditions give the conditions

existing prior to execution of a particular program statement or segment;

, .. . ...
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postconditions give us the desired conditions afterwards, given the precondi-

tions which existed beforehand. Alternately, we can state that,given post-

conditions which exist after execution, the preconditions are what we would

have expected to exist beforehand.

3.2.1 Program Language Definition Techniques

As we said earlier, we could not prove two descriptions of a desired com-

putation equivalent unless each aspect of both descriptions was carefully de-

fined. Research in program verification has paid much attention to the ability

to define the exact meaning of various operations in a given programming lan-

guage. The underlying model of program behavior can be one of two type

" Computational

* Sequential

Computational behavior of each statement in a programming language is

simply the specification of the mapping of inputs to outputs. Thus, it is

concerned with the effect of each program statement on the flow of data (data

values).

Sequential behavior, on the other hand, is concerned with a series of ac-

tions, some of which may involve the environment. A sequential model of be-

havior of a program statement or segment must therefore express the series of

actions which occur as a result of the statement execution. Most program ver-

ification has been involved with computational behavior specification and def-

inition. In other words, PROGRAMMERS ARE MAINLY CONCERNED WITH GETTING THE

RIGHT OUTPUTS FROM THE POSSIBLE INPUTS TO THE PROGRAM. THEY ARE GENERALLY NOT

CONCERNED WITH THE SEQUENCING OF ACTIONS IN ORDER TO GET THE OUTPUTS. We Shall

return to this difference in a few paragraphs.

Here, we merely summarize definition techniques which have been used. The

summary is mainly abstracted from [McFarland 1981*]. The earliest model of com-

putational behavior definition techniques was the use of the interpreter func-

tion. This function was used to specify the mapping from inputs to outputs for

each action in a program. For example, the FORTRAN statement

A = B+C

would have as its underlying definition a function which took two operands as

Michael McFarland is a Ph.D. student at Carnegie-Mellon working under the
supervision of Alice Parker.
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input and produced a single operand as output (which was the sum of the two

inputs), and would be specified as the mapping from the lattice of inputs to

the lattice of the outputs. (A lattice is an ordered set.) The interpreter

function formed the basis for other models of behavior which defined program

actions. These are

* operational definitions

* denotational semantics [Gordon 1979]

* propositional semantics

An operational definition gives rules for translation of programs into in-

structions for an abstract, predefined machine. Denotational semantics de-

fines each program element as a function over a domain. Thus, an assignment

statement would be defined by a function which operated on the domain of pos-

sible data structures. Thus, the denotation, or meaning, of a program is a

function which maps each initial state into a final state. Propositional

semantics requires preconditions (what is known to be true before execution)

and postconditions (what must be true after execution if the precondition held

prior to execution). Thus a definition of a program element would be the post-

conditions which would result after execution, if the preconditions existed

prior to execution.

3.2.2 Program Verification Scenario

Using one of the above definition techniques, we could set out to prove

a program correct using one of two techniques:

* symbolic execution [King 1969]

* formal proofs

Symbolic execution has a lot of intuitive appeal. In symbolic execution we

execute a program, only instead of using numerical inputs, we use symbols.

We retain these symbols throughout the execution of the program, and obtain

expressions for the outputs in terms of the input symbols. If these output

expressions can be then manipulated so that they are equivalent to the high-

level specifications, or equivalent to the output from the symbolic execution

of the comparison program, then the program has been proved correct. Usually,

the high-level specifications are in terms of preconditions and postconditions.

The inputs are symbols which adhere to the preconditions, and the output ex-

pressions are compared to the postconditions.

I; . .. . .. '- .
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The expressions involved in symbolic execution tend to get unwieldy with

long programs, particularly when there are lots of branches. If a program is

instead translated into the lower level definition, then that definition can

be mathematically manipulated, much as in a geometric proof, until it is shown

to be equivalent to another program or specification, defined in the same man-

ner. Thus, formal techniques for proving equivalence by algebraic manipula-

tions can also be used. Operational definitions and denotational semantics

are often used to define programs which are proven equivalent in this manner.

3.3 DIFFERENCES BETWEEN PROGRAM AND HARDWARE VERIFICATION

Verifying hardware is more difficult than verifying software because, in

the general case, both the control flow and data flow must be verified. Hard-

ware often does not reach a final state. It cannot be described as a mapping

from inputs to outputs. Rather, hardware behavior is better described as the

sequence of outputs obtained from a sequence of inputs, interleaved in a pre-

scribed manner. In specific cases, the focus has been on either control flow

or data flow. Either the control flow or the data flow is considered the prob-

lem, and the other is assumed correct or insignificant.

If we are concerned with the ordering of actions, we must deal with the

sequential definitions of behavior mentioned earlier. These include state

diagrams (or more generally, finite state machines), Petri nets, path ei'_res-

sions (Habermann 1974], and other sequential models. A few hybrid models do

take both control flow and data flow into account. These include UCLA graphs

[Razouk 1977], extensions of denotational semantics, and transition systems

[Keller 1976].

Thus the main difference between program verification and hardware verifi-

cation is the desire to verify orderings of events as well as the events them-

selves.

3.4 EXAMPLES OF HARDWARE VERIFICATION AND RESULTS

We are going to subdivide the examples of hardware verification into the

following areas:

e abstract behavior

o microcode

o register-transfer-level hardware

*e logic-level hardware
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We present examples in each area and the outcome of each study. Levels of

verification below the logic level, such as design rule checks for layout,

will not be dealt with.

3.4.1 Verification of Abstract Behavior

Abstract behavior is behavior that is at the architectural or functional

register-transfer level. Verification at this level usually consists of

e protocol verification

e functional verification

Protocol verification is concerned with the communication mechanism be-

tween two or more modules in a system. Verification involves insuring that

there are no deadlocks, or that no module is continually denied access to the

communication mechanism. Finite state machines and Petri nets are commonly

used for protocol verification. The following discussion of these is from

[McFarland 19811.

If the system has a significant amount of data memory which must
be modeled, the fsm formalism becomes cumbersome. There must be
a separate state assigned to each possible set of values in the
memory, which makes consideration of the set of all possible state
transitions impossible. In modeling a simple sender-buffer-receiver
communications protocol, for example, a finite state machine analy-
sis can be used to verify that the three processes cycle correctly
through their control states ("send," "wait," "receive," "acknow-
ledge," "error"). But in a more complicated protocol, where the
actions being taken depend in a complicated way on the content of
the message being passed, a separate state would have to be assigned
to each set of values for the messages currently in the system, mak-
ing the usual fsm analysis techniques to unwieldy.

The Petri net model of system behavior is similar in some ways to the
finite state machine model, but is more general, in that it can also
describe the concurrent execution of several processes.

Because it is not required to have a single locus of control, i.e.,
a single enabled state as in an fsm, a Petri net may be used to
model a system composed of several concurrent processes and their
interfaces.

In practice Petri nets, like finite state machines, are very effec-
tive in modeling overall flow of control, but -, not show the details
of the data state or the data transformations. :f the control flow
depends in a critical way on the particulars of the data being pro-
cessed, then Petri nets by themselves are not adequate for the analy-
sis.

-t
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Both finite state machines and Petri nets present the dynamics of
a system in terms of lists of transition rules or firing rules.
This information is relatively unstructured and diffuse. It is
hard to get any sense of how the system works from looking at the
individual rules themselves. It is only the composition of the
rules into sequences of transitions and the patterns of states re-
sulting from them that are of interest. Some sense of the patterns
can be derived from graphical representations; but any meaningful,
rigorous analysis usually involves "simulating" in some way the al-
lowed sequences of transitions until all possible sequences have
been explored. The lack of structure also makes these models more
difficult to represent in a logical system and to reason about, al-
though some work in the hierarchical decomposition of Petri nets has
been done.

UCLA graphs have also been used for protocol verification [Razouk and

Estrin 1980]. McFarland also discusses UCLA graphs:

Another system based on a graphical control structure similar to
a Petri net with information added to describe data transformations
is the UCLA Graph Model of Behavior (GMB). A system is described
in the GMB model by a data graph, a control graph and an interpre-
tation. The data graph shows the data path structure of the system,
i.e., registers and memories, processors and their interconnections.
The control graph is similar in concept to a Petri net in that it
models control flow by passing tokens among nodes, but has a some-
what different structure. There is only one type of node in the
graph, called a control node. The control nodes are associated with
processors in the data graph, so that when a control node is acti-
vated, its associated processor performs its function. A control
node is activated when the proper combination of tokens are present
on its input arcs. After its process has completed, the activated
node removes the tokens from its input arcs and places a certain
combination of tokens on its output arcs, guided possibly by condi-
tions on the data state. The nodes in the control graph, therefore,
are roughly analogous to the transitions of a Petri net, and the arcs
to places.

The interpretation specifies the formatting of the data in the memory
elements and the specific functions of the processors. It is through
the data graph and interpretation that the GMB can model data trans-
formations as well as control flow.

Van-Mierop [Van-Mierop 1979] has used the GMB, along with the SARA sys-
tem of hierarchical design specification, to model a class of concur-
rent processes. Within this model he has shown how to verify the
"proper cycling" of a system, meaning essentially that the system al-
ways returns to its main control loop. The method he used was to gen-
erate all "interesting" states via symbolic execution and to check
that every such state was reachable from every other one, so that there
were no deadlocks or subloops from which escape was impossible.

i
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McFarland covers a final study (Brand and Joyner 1978]:

In this application a nondeterministic program consisting of
several parallel processes is checked against a simple single-
process machine which describes the required sequential behavior
for the protocol. Again the designer must supply stopping points
and a correspondence relation. Both machines are "executed" sym-
bolically and corresponding stopping points compared in order to
verify that the correspondence relation holds. For the parallel
program it must also be shown that at every stopping point all
processes but one are waiting or delayed. Since the stopping
points are usually the places where shared data is accessed or
changed, if only one process is active at each such point, there
is no chance of conflict.

Transition systems have also been used for protocol verification

[Bochmann 1975] and [Bochmann and Gesei 1977].

Other research has been reported, but was not read in the scope of this study

[Hailpern and Owicki 1980].

All of the above techniques involve an analysis that looks at all cases,

in some fashion. Formal proofs have also been used to verify protocols, but

this work is in the early stages.

Progress in the protocol verification field has been good. Quite a few

real-world protocols have been analyzed. A good summary of the field is

found in (Sunshine 1979].

) Unfortunately, most hardware verification problems relevant to VLSI fall

into the less developed field of functional verification. Here, the communi-

cation between modules is deemphasized, and the behavior of modules themselves

is explored.

The most recent work in this area is the thesis by McFarland [McFarland

1981]. McFarland begins with the ISPS hardware description language. His

goal is to prove that manipulations of ISPS descriptions to optimize the cost

or speed of the resultant implementations do not change the fundamental be-

havior of the machine being described. He first defines every element of the

ISPS language. He also invents a way to specify the fundamental behavior de-

sired of the machine at the level more abstract than the ISPS description.

This behavior involves sequences of actions as well as data inputs/outputs.

He then derives the fundamental behaviors of the machines which are to be

proven equivalent from their ISPS descriptions. Finally, he proves the fun-

damental behavior equivalent using formal proofs. The first step, that of
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defining the ISPS language elements, was done so that he could formally derive

the fundamental behaviors from the language descriptions of the machine.

The reader should not become discouraged over the complexity of McFarland's

work. It is an early attempt in this area and should be viewed as basic re-

search at this time. He has proved manually that many optimizations performed

on ISPS descriptions do produce equivalent behavior.

In an earlier piece of work, Alfvin published a denotational semantics

definition of AMDL, which is a hardware descriptive language with roots in

ISPS (Alfvin 1979]. The use of this definition for verification has not been

published to date. In another effort, Oakley [Oakley 1979] performed symbolic

execution of ISPS descriptions, primarily to obtain formal descriptions of the

effects of instruction execution, as described in ISPS. This information could

then be used in automating the design of compilers, since there, it is neces-

sary to know the effects of executing a particular machine instruction.

3.4.2 icrocode Verification

Because microprograms are quite similar to software programs, verifica-

tion of microcode can be accomplished using some of the same techniques. Again,

McFarland has summarized this field [McFarland 1981]:

Another use of symbolic execution is in microcode verification.
This involves proving that a host machine executing a given micro-
code program does the same thing as the target machine which it is
supposed to be emulating. This application is somewhat different
in that two "programs" or hardware descriptions are being compared
to one another rather than a program being verified against some
abstract specification expressed by pre- and postconditions. In ex-
isting microcode verification systems, the person verifying the mi-
crocode must enter in a correspondence relation between the host and
target machines, showing how the registers of the target are mapped
onto those of the host. The user must also choose corresponding
"stopping points" in the two descriptions, i.e., control points at
which the states of the two machines must be compared. Usually it
is required that there be at least enough stopping points to break
every loop in both machines, so that only loop-free segments must
be checked. Given this input from the user, the system symbolically
executed the two machine descriptions along their respective paths
between corresponding stopping points. For each such pair of paths,
the system checks that at the end of the paths the required corres-
pondence relationship holds, meaning that corresponding registers
hold the same symbolic values. This method has been used in the
IBM microcode verification system described by [Birman 1974 and
Joyner, Carter and Leeman 1976]. A similar approach, but making
use of State-Deltas, has been taken by [Crocker, Marcus and
van Mierop 1979]. The State-Delta system adds another level of
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verification to that of host-target correspondence in that it can
also be used to verify the function of the target machine against
an abstract specification, using standard program verification
techniques.

Lewinski (Lewinski 19801 demonstrates three methods for verifying micropro-

gram correctness. Besides symbolic simulation, he also uses relational algebra

and assertions to do formal proofs of correctness. His work is mathematical

and still in the research stage.

3.4.3 Register-Transfer Level Verification

At the register-transfer level, verification of function becomes of im-

mediate interest to industry. Currently, software which simulates at the

register-transfer structural level is widely employed. However, the complex-

ity of even present LSI designs disallows exhaustive functional testing of

designs. An early look at verifying register-transfer level designs was

done by [Hoehne and Piloty 1975]. Hoehne and Piloty make several points

worth considering. First, they describe errors which can occur at the RT

design level as

* syntactic

* semantic

e timing

errors. Syntactic errors are those which can be detected directly from the

RT design, for example, attempting to store an 8 bit value in a 4 bit regis-

ter. Timing errors can be checked from the RT design alone, also. Semantic

errors, on the other hand, indicate differences between the specification and

implementation.

They further discuss types of timing errors which occur and give some

rules for checking for these errors. Then they describe a method for seman-

tic cnecking. A set of states are selected so that there is a correspondence

between hardware and functional specification. Then, both specification and

realization are simulated and corresponding states are checked for equival-

ence.

one successful research project is the LCD project at IBM, described in

[Cory and Van Cleemp,t 1980].

£
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Wagner [Wagner 1977] performed formal proofs in order to verify simple

register-transfer level hardware. He described the hardware using a simple

register-transfer language and used symbolic manipulation to determine if

the hardware satisfied some specification. His technique was quite power-

ful. For example, he could detect races, hazards, and oscillations in

hardware descriptions, as well as static hazards in conditional expressions.

However, he could not deal with flip-flop designs and delays biased to in-

sure correct operation, and he could not model capacitive storage.

The problem with Wagner's research is the size of descriptions he pro-

cessed. He verified a synchronous counter, a binary ripple counter, and a

multiplier.

In a more recent publication fMaruyama et al. 1980], a small processor

was verified at the register-transfer level. DDL was used to describe the

processor. Backward symbolic simulation (execution) was used, starting with

the desired outcome, and working backward through the DDL description until

a contradiction to the expected result could be obtained. At times, the

human had to intervene to guide the backward tracing.

Denotational semantics has been used for formal definition of register-

transfer language elements, and for use in automatic production of hardware

simulators [Meinen 1979]. It has also been used for similar definitions for

automatic microcode productions [Hansen and Leszczylowski 1980]. Neither of

these publications indicates that the definitions were used for verification,

however.

A somewhat different approach has been taken by McWilliams [McWilliams

19803 in his research. He used simulation to verify the timing behavior of

register-transfer circuits, and included assertions (postconditions) in the

simulation input to verify the behavior against.

3.4.4 Logic Verification

Early work in hardware verification was done by Roth (Roth 1977]. This

method involved a high-level specification of combinational logic, and its

automatic translation to a gate-level logic description. The gate-level

description is then compared to a manual design. The assumption made is that

the automatically-generated design is correct. The comparison is carried

out by a D-algorithm type process. It starts with outputs from the combina-
tional logic, and assigns opposite values to the pairs of outputs under
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consideration. By working backward to the inputs, the algorithm looks for

inputs which provide a counter-example to the logic equivalence (Roth 1977].

Akers has done similar work [Akers 1980]. He converts logic diagrams

to binary decision diagrams and then compares two of the diagrams for equiv-

alence. He manipulates the diagrams until they are equivalent. Both of

these techniques deal with combinational logic only.

Leinwand (Leinwand 1979] has produced a method of deriving register-

transfer function from sequential logic circuits in order to verify that

they exhibit the proper register-transfer behavior. This method was used

to recognize counters and adders from their logic circuits.

Darringer [Darringer 1979] describes an approach to sequential logic

verification using symbolic execution. The example he gives is a two-bit

ripple counter. However, this example is not indicative of the limit on the

size of problem capable of being analyzed by this procedure.

Cory and VanCleemput [Cory and VanCleemput 1980] also describes work

done at Fujitsu on gate-level verification.

3.5 DESIGN FOR VERIFICATION

One idea that has promise is the notion that designs should be constructed

so that their verification is straightforward. This is similar to the design

for testability idea. In fact, designs which are easily tested for fabrica-

tion faults are also probably easily tested for logical errors. Some possible

approaches to this problem are:

& permit only synchronous design

* force control to be microcoded

* require the state be controllable and observable to the

outside

* use a hierarchy of design descriptions and maintain cor-

respondence between them

* require the designer to meet assertions given in the

design specification

* partition designs

* use only timing-independent design techniques where pos-

sible
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* use automatic design programs which have been tested for

correctness. Double check by verifying human designs

against the automatically generated ones.

3.6 THE STATE OF HARDWARE VERIFICATION AND CONCLUSIONS

In summary, formal proofs and symbolic simulation have both been used

for hardware verification. Symbolic simulation is more intuitive and per-

haps of more immediate value to industry.* From the activity apparent in the

field recently (note that there are very few references to hardware verifi-

cation prior to 1977) it is clear that this is a new research area. However,

the potential for usefulness is high, the references are not entirely academic,

and the work is beginning to be applied to production designs.

Perhaps significant is the use of human intervention in automatic verifi-

cation techniques. Verification, much like design, should be directed by

humans with the creative decisions under manual control, but with the pains-

taking details and bookkeeping under control of a machine.

For example, microcode verification using symbolic simulation has been of
practical use (Carter 1977].

JA
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