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SECTION 1

INTRODUCTION

The understanding and analysis of three-dimensional fluid

behavior around a surface mounted blunt obstacle (turret) is of

consideTrble importance for flight applications. The prime

motivation to solve such problems has been to investigate the

basic phenomenon of separated flow and to determine the asrociated

forces on the object. In addition, the dynamic features c. the

unsteady flow field around the obstacle are of interest tc 'e

designer.

The time variation of the separation line due to the .,- ding

of vortices for the flow past a turret produces a complex and

intriguing flow structure. Also the appropriate turbulence model,

ranges of Mach number and Reynolds number, and protuberance

height are some of the elements in parametric space which restrict

the unified approach and generality of the solution. The experi-

mental and computational approaches are the common aerodynamics

tools to investigate complex problems. However, during recent

years, the computational approach has been preferred because of

its lower cost, availability of faster computers, and detailed

description of the fluid physics. In this frame of reference,

the present work addresses the "computational flow visualization"

of the three-dimensional separated flow. The primary objective

is to provide an efficient numerical procedure for the solution

of the governing equations and to compare the computed results

with the previously obtained experimental data.

A survey of the literature reveals a substantial but not an

exhaustive effort in this area. The experimental results [1 - 5 ]

obtained primarily by conventional flow visualization techniques
A

and the data correlated indicate some important facts about the

primary separation features for flow past small protuberances.

For different protuberance heights, the available flow field data

is so sparse that its interpretation leading to a general conclusion

I - - • . . .. ... ...... . .. . . . . .. ..1



is not obvious. To acquire the finer details, it is felt that the

three-dimensional separated flow past a turret requires numerical

analysis.

Influenced by the results of experimental studies and a search

for proper criterion for three-dimensional flow separation led to
[6-91a simple convincing topological approach 6 -  This approach is

based on the hypothesis that vector fields of the skin friction

lines and external strearlines remain continuous. Taking bodies

of revolution at various angles of incidence, for example, it was

possible to synthesize the flow mechanism in a rational manner.

We will be using some of these topological ideas to explain the

fluid behavior around the turret.

Turning to our present effort, for subsonic high Reynolds

number flow, past a hemispherically capped cylindrical obstacle

(the turret), the horseshoe vortex, turbulent boundary layer

characteristics and near wake structure, need careful attention,

particularly from a numerical simulation point of view. A subset

of this immense problem, unsteady flow oscillatirns past a circular
1101cylinder, was recently studied by Shang For this numerical

experiment, the mesh point distribution and appropriate boundary

conditions were optimized to yield the time mean and fluctuating

properties of the fluid. This two-dimensional computation provided

encouragement to continue further and to analyze the large-scale

organized fluid motion around a three-dimensional turret at a

Mach number of 0.55 and a Reynolds number of 10.3 x 106/m. At

these conditions the turret height is much larger than that of

the turbulent boundary layer on the surface. The aim is to evaluate

the density data field and its fluctuations around the turret and

compare the results with the experimental data of deJonckheere,

et al.[l

2



SECTION 2

ANALYSIS

For the problem under consideration, the solution of unsteady

compressible Navier-Stokes equations becomes necessary. These

equations offer, on a fine scale, a good insight into the viscous-

inviscid interaction and the separated flow structure. For the

present Reynolds number range, the flow along the flat plate as well

as around the turret will be turbulent, and, thus, adequate

inclusion of turbulence terms is needed. In the absence of body

forces and electromagnetic effects, the governing equations can

be written as

+ V • (pu) = 0a t

3(pu) + • u - -) = 0
3t +V (Puu 0

(pe) - - =0

where the heat flux q is given by the Fourier's law

q = -K 7 T

and the shear stress tensor T is defined as

= -(u+)(Def u) ij + ( (u+c)V.U + ")

In order to optimize the numerical resolution, using body oriented

coordinate transformation, these equations, in mass averaged

variables, can be written in the following convenient form:

4U + + -3H + ny G H
x [ VQ aG + x [](aF 3G 2H) +t y ac 'an an '

~(i)

F1~ + 4.
(F aG

3

--III . ... ... , , --



where

PV (2)

Pu
PU2 +a

F= puv + T xy(3)

Puw + Tx

L(pe + x)u + *rxy*V+T xz .w-qX

pv
Pvu + *T

PV2 a y(4)

PVW + T y

L(pe+oy )V + T X U+T y -

Pw

+ PWU + TZ (5)
PWV + Tzy(5

Pw2 + (I

L(pe+a )w + *zu+T V4

(a av aw Du

*rXY= TyX =-(Ui+E)(tau +ea (6-2)

T T -(U+E) -u +W (6-3

=y p + 2/3 (u+c) ly+ 2- + wapE v (6-4)

aa (i w)* (6-6)
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e

+ e x(7-1)
r rt)

y Y + rt ay (7-2)

ae,

qz = Y  ( + r(7-3)

e = e i + (u2 + V 2 + w 2 )/2.0 (8)

This system of equations is closed by a perfect gas law,

Sutherland's viscosity formula, and appropriate eddy viscosity

model as a supplementary relation.

The fluid motion defined by the aforementioned set of equations

is to be analyzed around a turret (Figure 1) mounted on a flat

surface. Its base is a circular cylinder with diameter 0.44 meter

and the height to diameter ratio 1.071. One of the sides has a

cut-out (window) of area 0.249 meter x 0.201 meter at a normal

distance 0.194 meter from the turret axis. The top of the turret

is a hemispherical dome of radius 0.223 meter whose center is on

the axis. The , n, correspond to normal, axial, and tangential

transformed coordinates of the turret, respectively, with its

origin at the turret base. For this configuration, the experi-

mental results [i ll were available for various locations of the

turret window (look angle). In order to demonstrate, a typical

flow field for a 90 degree look angle was simulated.

One of the major tasks in numerical simulation is the proper

selection of mesh system in the computational domain. A judicious
choice of grid points helps capture the important flow field

.3characteristics as well as reducing the data processing time.
After much study the following choice was made. The turret surface

is defined by 62 x 30 points. On the cylindrical portion, 15

points were used in the axial direction stretched exponentially

from the base and 15 points were uniformly placed on the hemi-

spherical dome. In the tangential direction, 62 equidistant

5
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points were used with the first two points overlapping to permit

the use of fourth order pressure damping (Figure 2). Using these

surface nodes as the reference points, the normal coordinates are

then described by 30 exponentially stretched points from the turret

surface extending outward to ten times the turret radius (Figures

3 and 4). The finer mesh near the turret and flat plate will help

resolve the viscous effects while the coarser mesh helps reduce

the computational time. Care has been taken that no mesh point

lies on the turret axis; however, a sufficient number of mesh

points is provided to resolve the flow field. For this mesh

arrangement, the derivatives of coordinate transformation can be

evaluated through the Jacobian, J.

x y z

J x yn z

This Jacobian of the coordinate transformation is a non-singular

determinant and allows a one-to-one correspondence from the

physical to the transformed space.

In any numerical algorithm, the boundary conditions play a

crucial role in both the accuracy and stability of the numerical

scheme. The initial and boundary conditions associated with

this system of equations are straightforward and simple. Initially,

the turret is assumed to be immersed completely in a uniform

stream. The upstream boundary conditions are merely the free

stream value, whereas at the downstream side, the gradient of

properties is assumed to vanish. At the solid contours, the no

slip conditions for velocity, ortho-isobaric condition Zor density

and isothermal conditions are imposed; while near the turret axis,

an interpolation is adopted to eliminate calculation on this

singularity (Figure 5). Thus, for the independent variables,

0 < C, n, C < 1, in the computational domain, the conditions are

set in the following forms.

7
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Initial Conditions

u (0, , ) =U. (&,,n, ) (9)

Boundary Conditions

Upstream: U(t, ,1,c) = U(t, ,l,), (10)

I< 0 <

Downstream: a

i .- 0 - 2

At the Solid Contours, n=0 u = v w = 0 (12-1)

T = Tw = 1.0584T (12-2)

T

Pw =  P "(12-3)
T w

4. 4.

At the Axis U(t,C,l,C) = F(U(t,C,1, 0 ),ICI F 2 ,AL) (13)

where c and 2 are the extremum of the left half of the computa-

tional domain exposed to the free stream and AL is the arc length

subtended by two consecutive points along the turret axis to the

center of the hemisphere. The significant variation in the turret

surface curvature and strong vortical interactions[12] require

careful selection of the turbulence model. Once the turbulence

model is identified, the system of equations is closed and the

computation can be initiated.

*Eddy Viscosity Model

The closure of the system of equations is achieved by using

a Cebeci-Smith type eddy viscosity model and by assigning a

*turbulent Prandtl number of 0.90. The specific turbulence model
Lmx[13]used is a simplified version due to Baldwin and Lomax

12



In the inner region:

E= p(K.L-DI)2 .IwI (14)

where w is the vorticity of the flow field. In the present

formulation, the Van Driest's damping factor is given as

D1 1 xp- Pw 1~w!
D 1 •exp( W W * L/26) (15)

and the scaling length L is the distance measured along the outward

normal from the surface.

In the wake region, we use the modified Clauser's law,

Co = 0.O0168".p U 6t (16)

where 6t is the kinematic displacement thickness of the wake in

the plane of the turret shoulder. This thickness is evaluated at

a downstream distance about six times the turret radius.

(2

= 
- u 2 +v 2 +w 2  I

r 1J max

The effective eddy viscosity is, thus, taken to be

E min(e0 , Ei). (17)

I
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SECTION 3

NUMERICAL PROCEDURE

The present investigation utilizes the well established vector

solver[ 14 , 151 which adopts, basically, the MacCormack's explicit

finite difference scheme o161 Owing to the large memory availability

and high data processing rate (the CPU time per grid point per

time iteration), the CRAY-i computer was choosen for our computation.

The intricate interplay between its capacity and numerical scheme

provided an efficient and powerful tool to analyze this three-

dimensional problem with acceptable engineering accuracy.

We used the solver to initialize the planes or "pages" in the

(n-C) plane and to sweep, for each time step, in the c-direction,

thus minimizing the data flow from and to the disk or mass storage

devices. The vector length for this case was 62, which is also

the longest index array of the three-dimensional mesh system.

The computational facilities were utilized with remote access via

long distance dial-up and the SAMNET network link. The data

processing rate of 6.8 X 10 - 5 seconds was achieved for the present

analysis. Most of the available memory was required to perform

the time dependent calculations.

The finer mesh sizes in the normal direction of the turret

and flat surface were 0.357 x 10- 2meter and 0.345 x 10- 2meter,

respectively, and the angular displacement between nodes was six

degrees (60). These mesh sizes seem to provide satisfactory time

step increments during the computation. Further refinement could

result in the stiffened behavior of the transformation metric

element near the dome and/or much smaller time step. A conservative
choice of the Courant-Fredrich-Lewy (CFL) condition was implemented

to have optimum time step with stable numerical evolution.

Once the initial phase of computation was completed and some
anticipated periodicity in the flow characteristics was observed,
the evaluation of the root mean square (RMS) density fluctuation

was attempted. For turbulent compressible flow, separating the

14
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time mean and fluctuations of density, the squared density

fluctuation over a characteristic time period was calculated as

t+T pt+T 2,p2> f p 2
= T J dt - j p-dt (18)

where T is the principal time period, equal to 0.0114 secondsp
and is a function of Strouhal number, turret diameter and free

stream velocity. The computation of RMS density for all grid

points demanded three times the additional available computer

memory which was not feasible at this stage. Therefore, this

particular analysis was confined to a part of the computationalY Y
domain from a turret height 1 = 0.4 to 1 = 1.7. A total of

9880.0 seconds CPU time of CRAY-I computer were required (using

a CRAY FORTRAN compiler (CFT) version 1.09) to calculate the entire

flow and the RMS density fluctuations over one principal period.

Almost "all" the memory resources of the computer were required

to process the three-dimensional separated flow.

II
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SECTION 4

RESULTS AND DISCUSSIONS

This section contains two main areas of discussion. The first

of these will deal with the comparison of the computed and experi-

mental results I . This permits the validation of our computa-

tional procedure as well as providing guidelines for the subsequent

analysis. The rest of the discussion is concentrated on probing

into the different aspects of three-dimensional separated flow

structure.

The pressure coefficient distribution at the turret shoulder

and 450 meridian plane angle (MPA) are presented in Figure 6.

The variable THETA is the azimuth angle measured clockwise from

the oncoming free stream direction. Thus, the cavity side of the

turret is located in the range 00 to 1800 and the smooth side is

between 1800 and 3600. We will adhere to the same definition

throughout our discussion. The comparison shows good agreement

with the experimental results. The different curves represent the

variation in pressure coefficient during one principal time period.

At the turret shoulder, where the cylindrical and hemispherical

surfaces meet, the computed mean CP (Figure 6a) is 0.9918 for

the forward stagnation point (AZA = 00), whereas the measured

value is 0.91. The front edge of the turret window experiences

a sudden expansion of the flow and a small separation zone resulting

in a steep drop in pressure (AZA = 630) and a rapid pressure

recovery within 200 in the downstream direction. The smooth side

does not witness such abrupt changes and gives way to minimum

pressure value at AZA = 2790. For the 45' MPA, on the hemispherical

surface (Figure 6b), the CP distribution exhibits relatively smooth

variation. It also hints that the presence of the turret window

has very small effects for this meridian plane.

This argument is further confirmed by Figure 7, which shows

the instantaneous pressure distribution contours of different

levels around the turret surface. A zone of very low pressure can

16
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Figure 6. Comparison of Pressure Distribution.
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be observed at the turret window spread over 100 azimuth angles

extending from slightly above the flat surface on to the hemisphere

up to 370 MPA. The low valued pressure contours are mostly con-

fined to the rear side of the turret for the azimuth angles 800

to 3000. At the turret top, the averaged computed value is

-1.27 which is lower than the experimental value -1.0. It may

be recalled that the turret top is in the vicinity of 60 clustered

mesh points, none of which is at the top. Our pressure coefficient

value is the mean of the values at all these points. This dif-

ference may be attributed to the grid point arrangement and the

improvement in this direction is one of our future goals.

A significant insight into the separated flow is offered by

the limiting streamline patterns, which are, in the limiting case,

the skin friction lines on the flat surface around the turret.

In Figure 8, we present a sequential development of such lines

that agree, at a particular instant of time, qualitatively to the

work of Sedney and Kitchens [1  The primary separation line

located at twice the turret radius upstream of the forward stag-

nation point and the attachment lines are quite clear and distinct.

However, the secondary separation, appearing on and off near the

primary separation line during the process of computation are

difficult to detect. These lines merge into the primary separation

line, very close to the plane of symmetry indicating that it lifts

off the surface very quickly. This observation will be further

confirmed when we discuss the flow field in the cross-sectional

plane. The primary separation line that encircles the turret

front and extends downstream in the asymmetric plane finally

becomes a leg of the horseshoe vortex.

The asymmetry in the plane induced by the turret window con-

tains some spectacular features in the downstream direction. The

vortical motion in the near wake is produced by the adverse pres-

sure gradient at this separation point and rear turret window

edge. These separation points on the surface together with rear

stagnation point qualify for the half saddle point (Hunt, et al.[7]

19



T/To,-S. 1488

0 jp

- , - - ..

-* --, - &

T/T *- . 9

*&s .% -t \ •

- " "*.- //. l "A"s. " -" -" - "

C IOp I

* .. , .

-,.5 . is in A as

-* *' "

L5 N 4

-(L =

-L - C -4

-M i5 20 36 4

-, - - , , , - , , -

S-28I -68l -18 -08 0.5 LOI 3U 30 45 58 5

X/R

(b) T/T = 9.1799

CH

Figure 8. Instantaneous Limiting Streamline Pattern on the
Flat Surface at Different Times.

20

--.5.. .jJ -I

II



35 7.

t f / . 6 -

L.5

-1.5 -

M2---h~ L5 a a .4 w &a
X/R

(c) T/T CH = 13.0183

T/Tae. 17. 7595

3.5.

1.5

-L5 - -

-MI -w -LB 0 0.5 15 2.0 28 4. w5 8
X/R

T/T CH 17.7505

* Figure 8. (Concluded) Instantaneous Limiting Streamline Pattern
on the Flat Surface at Different Times.

21



The turret window introduces an additional node and saddle point

close to the surface. Accounting for the node of separation in

the downstream direction, saddle point at the plane of symmetry

at the primary separation, and regrouping them, the following

topological rule for streamlines on a two-dimensional plane cutting

the three-dimensional body is satisfied
[6 1

1 1
(N + T + 2S) = -i (19)

where ZN is the sum of the nodes and ZS is the sume of the saddle

points. This confirmation provides a sound reasoning for coupling

the analytical, experimental, and computational studies.

The asymmetry in the flow is further exemplified in Figure 9,

showing the local Mach number distribution for the azimuth angle

of 900 (cavity side) and 2700 (smooth side). Close to the flat

plate (Figure 9a), the cavity side records lower Mach number.

The recovery is only 77% of the free stream value at the outer

boundary which is less than 5 percent of its value at the smooth

side outer boundary. This may be associated with the strong

vortical flow near the rear edge of turret window and the dominant

viscous effects. An altogether different situation is observed at

the turret shoulder (Figure 9b), where the Mach number attains its

peak values of 0.83 and 0.62, very close to the body and asymptoti-

cally approaches the free stream value within 1.5 turret radii.

The experimental data [1 7'1 8 ] also endorses these values.

In Figure 10 we present the RMS density fluctuations, normalized

by free stream density for the azimuth angle 900. Each curve repre-

sents the density fluctuations, at a fixed turret height, along a

normal direction. The peak value, 0.0405, happens to be at the

j turret window base. As we move upwards, this peak value shows

a decreasing trend and then oscillates between 0.009 and 0.003

(Figure 11). The corresponding peak value[ll (experimental) is

0.034, 19 percent lower than our computed result. This experi-

mental value was deduced from the hot wire data using an empirical
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relation and ignoring the higher order pressure fluctuations.

The far field fluctuations, which are small, might not be of major

concern, but in the near field the turret base is most sensitive

to such fluctuations. This fact is further elaborated in Figure

12, giving RMS density fluctuation contours at the base, middle,

and top of the turret window. It is interesting to observe that

these fluctuations are grouped at two different locations and the

peak value, 0.073, occurs at AZA = 2460. These fluctuations of

high intensity slip off towards the downstream direction and cluster

between AZA = 1000 and 2100 with a peak value of 0.04 at AZA =

1900. The density in the upstream direction remains almost

invariant and does not give rise to any substantial fluctuations.

Figure 13, 14, 15 give a glimpse of the flow field structure

in the cross-sectional plane (azimuth angle 0* - 1800) of the

computational domain. It presents the instantaneous velocity field,

Mach number, and density contours in a sequential manner. The

significant upstream influence is confined close to the flat plate

up to 2.5 times the turret radius. The velocity field is sug-

gestive of an interesting feature: along the front stagnation

line on the cylindrical surface, the flow is almost divided into
Y

two parts. At - = 0.3543, the contribution of the axial velocity
Rcomponent is neglibible compared to the tangential and normal

components. The accelerating flow at the hemispherical dome, with

a maximum Mach number of 0.87 at 720 MPA upstream, is separated

at 470 MPA in the downstream direction. The reverse flow in the

near wake region and at the turret shoulder and their time depen-

dent variation provide the mechanism for vortex shedding and the

relative movement of reattachment point.

Complementary to this cross-sectional plane, the flow fieldIdistribution in the plane parallel to the flat plate offers a
4qualitative comparison to flow past a cylinder. In this plane,

up to the turret shoulder, the fluid phenomenon shows a similar
trend. As a typical example, the velocity field distribution,

Mach number, and density contours are presented at two different
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Y
locations (Figures 16 through 18, at - = 0.3543 and Figures 19

R
through 21, at turret shoulder). The turret window contributes

an additional amplification to the process of vortex shedding in

the downstream direction. At the turret shoulder, the maximum

local Mach number attained was 0.93 at AZA = 630 and 0.90 at AZA =

2700. These values are much lower than that for the corresponding

two-dimensional case 0], where transition and even shock wave

formation is reported. Also, the separation point has advanced

further downstream towards the rear stagnation point at AZA = 990

and 2430, respectively. Even though the separation point location

is a function of time, it is observed that for a particular

instant of time, the locus of the separation point, the separation

line, changes its course considerably along the turret height.

This illuminating fact is further revealed in Figure 22.

This Figure shows an instantaneous limiting streamline pattern

on the turret surface. Near the stagnation point, a saddle point

type singularity, a foci, node of attachment along the turret

height can be easily identified. The turret window includes an

additional small separation zone and, hence, introduces a node

and saddle point. These singular points, together with the nodes

at the forward and rearward stagnation points, give another con-

firmation to the topological criteria. For the skin friction lines

on a three-dimensional body, B, connected simply to a plane wall,

P, the sum of nodes, EN and the sum of saddle points, ES satisfy

the following relation [6]

(EN - ES)p+ B = 0. (20)

The asymmetric separation lines start just above the foci, at

the turret base, climb up towards the hemisphere and then meet atI
the rear stagnation line at 300 MPA. The separation effects on

the turret top are mostly confined to 630 MPA. On the cylindrical

surface, near the turret shoulder, the separation points show a

tendency to move upstream indicating that strong three-dimensional

flow exists.
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Finally, these limiting streamline patterns offer a precise

description of the downstream flow. The situation is similar to

flow past a hemisphere cylinder at 900 incidence. The separation

line around the turret passes through the singular points,

indicating a close-type of separation. This registers an inacces-
[ 19)ability of the outer flow to the near wake region 1 . This

interpretation follows logically from the steady state separated

flow. However, the periodic mass exchange due to unsteady effects

is evident
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I ••
SECTION 5

CONCLUSIONS

An efficient numerical procedure is successfully accomplished

for the three-dimensional separated flow around a turret. An

adequate description of flow structure is obtained and an endorse-

ment of a topological criteria is presented. For a free stream

Mach number of 0.55 and a Reynolds number of 10.3 x 106/meter,

good comparison is established between our computed results and

the experimental data for both the pressure distribution and levels

of RMS density fluctuations.
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