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I
i ABSTRACT

I An integral equation for the electromagnetic field within a die-

lectric body is given. The equation is set up for numerical solution

3 jfor the case of thin-wall cylindrical dielectric shells having finite

length.

entThe solution of the integral equation utilizes a truncated double

Fourier expansion of the field in the shell. The integral equation is

then enforced at enough points within the shell wall to obtain a suf-

ficient system of linear equations in the unknown expansion coefficients

of the field. Numerical integration over the shell volume is used to

obtain the coefficients in the system of linear equations. The sys-

I tem of equations is solved numerically for the expansion coefficients

of the field in the shell. Calculation of the backscattered fields and

I the backscattering cross section are then performed.

A comparison of the calculated and measured backscattering cross

section is made for rings with arbitrary plane wave incidence and for

I tubes with axial plane wave incidence. The agreement is excellent in

all cases considered.

I The numerical methods, experimental arrangement, computer programs

j and suitable extension of this work are discussed.

7-'
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I CHAPTER I

iI INTRODUCTION

It is a relatively difficult task to accurately calculate the scat-

tering characteristics of dielectric bodies when they are placed in an

I arbitrary electromagnetic field. Knowledge of dielectric scattering is

Important when a protective dielectric shell is placed over an antenna

I and when radar mapping is used for geophysical or military purposes.

The research discussed in this paper was motivated primarily by interest

in the scattering from protective dielectric shells (radomes) when placed

j Iover an antenna.

By comparison with the effort expended on electromagnetic scat-

r tering from perfectly conducting bodies, the amount of research on

scattering from dielectric bodies is small. Some of the earliest work

on dielectric scattering was done by Lord Rayleigh. Stratton [1]

1 points out that Rayleigh applied the electromagnetic theory of light

to scattering by dielectric bodies which are small in comparison with

SI a wavelength. Lord Rayleigh used his results to describe scattering

by colloidal particles and to explain the blue cast of the sky.Ir
Rigorous solutions for plane wave scattering from dielectric bodies

'1 have been found for the sphere,C2] the infinite circular cylinderC3,4]

the Infinite elliptic cylinder,[5] the infinite parabolic cylinder[6J

Iand the infinite plane dielectric slab.[7J Tice and Adney[8] for-

mulated a rigorous solution for a dipole within a spherical shell and

a iorui
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Andreasen[9] developed an asymptotic solution for a dipole within a

I thin spherical shell.

The homogeneous vector Helmholtz equation must be satisfied in a

I source-free homogeneous medium by the vector potential functions for

the electromagnetic field. Morse and Feshbach[lOJ have observed that

this equation is separable in only six coordinate systems (rectangular,

I circular cylindrical, elliptic cylindrical, parabolic cylindrical,

spherical and conical). They also point out that, although rigorous

I series solution can be obtained for the remaining five coordinate systems
in which the scalar Helmholtz equation Is separablet1i] "the fitting of

boundary conditions is well-nigh impossible of attainment." The number

of problems for which a rigorous series solution is practical is there-

fore severely restricted.

I Various approximate methods have been used to study the scattering

from finite dielectric bodies. Cohen[12] developed approximate scat-

tering formulas based on the reaction concept and applied these for-

mulas to the infinite dielectric cylinder. Montroll and Hart[13]

derived formulas for the scattering of finite cylinders by approximating

Ithe fields in the finite cylinder by those in the infinite cylinder.

Lind[14] also used the infinite cylinder field to approximate that in

a finite cylinder but added a "normal mode" correction to this solution.

1 Oguchi[15] derived formulas for the scattering by dielectric spheroids

of small eccentricity by considering the spheroids to be perturbations

I of a sphere. Philllipson[16] calculated the scattering from dielectric

rings using an iteration method. Geometrical optics was applied by

I|
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Peters and Thomas[17] to scattering from thin-wall spherical shells and

by Kouyoumjian, et.al.[18] and Peters, et.al.[19] to more general die-

>1 lectric bodies.

For the Scattering from an arbitrary dielectric body, rigorous

series methods are impractical and the accuracy of the approximate

techniques is unknown. For these reasons, another approach, the in-

Ii tegral equation method, has been applied in recent years to some

i dielectric scattering{ problems. The integral equation method is fun-

damentally a rigorous numerical technique for finding the fields within

a dielectric volume.

The power of the integral equation method was recognized in an

-I Iearly report by Rhodes.[20] A recent book by Harrington[21] devotes

a considerable amount of discussion to the solution of integral equa-

tions for field problems by means of the method of moments. Richmond

'E has used the integral equation method successfully to solve a varied

group of dielectric scattering problems: calculation of radome dif-

fraction patterns,[22] diffraction by metallic or dielectric toroids

with a coaxial magnetic line source,[23] scattering from finite die-

lectric cylinders[24] and scattering from infinite dielectric cylinders

I of arbitrary cross section.[25,26] Waterman[27] has recently applied an

l'extended" integral equation method to scattering by dielectric bodies;

1 heutilizes spherical mode expansions and satisfies the integral equa-

"i tion over the body's interior region.

The solution of an integral equation for the field within a body

I, is usually accomplished by approximating the equation by a system of

linear equations. The unknowns in the system are either the field it-
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self at a number of points within the body or a set of expansion co-

I efficients for the field in the body. Solution of large systems of

j equations and repeated computation of complicated volume integrals

require large, high speed computers. It is for this reason that the

integral equation method was not applied extensively prior to the ad-

vent of the modern generations of digital computers.

In general, a radome can be an arbitrary three-dimensional shape,

may be inhomogenepus and is placed in the relatively complex near field

of a radar antenna. Solution of such a difficult scattering problem

must proceed in a sequence of smaller, yet significant, steps. Thus, as

the first step in this paper, the integral equation method is applied to

the problem of calculating the scattering by thin-wall dielectric cir-

cular cylindrical tubes of finite length. In Chapter II the equivalent

source currents for the scattered field and the basic integral equation

are discussed. The expansion of the field in the shell, the derivation

of the system of linear equations and the Fourier expansion of an in-

cident plane wave are described in Chapter III. The techniques of nu-

merical integration, the special manner of integrating through the singu-

larity and the far field calculation are discussed in Chapter IV. In

Chapter V a comparison is made of the calculated and measured plane-wave

backscattering from dielectric rings and cylindrical shells. Conclusions

are presented in Chapter VI. A discussion of the experimental method

and a description of the computer programs used are presented in the

Appendices.
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JI CHAPTER II

j IFORMULATION OF THE INTEGRAL EQUATION

A. The Equivalent Currents

The following equivalence principle and its derivation were de-

veloped by Rhodes.F203 The derivation below is the same as that

given by Richmond.r281

The time dependente e+jWt is understood and linear, non-magnetic

mII (p-po), isotropic dielectric media are assumed. The medium may be

m11 inhomogeneous and lossy, i.e., it may have a complex permittivity.

Let a current source J(x,y,z) in a medium (ji(x,y,z), ei(x,y,z)

II generate a field (Ei(xy,z), Hi(x,yz). This field will satisfy

Maxwell's curl equations:

q 7 x i i iiI-

il
V. _ W I E.

Let the same current source J.(xy,z) in a new medium (u (xy,z), e(x.y.z))

I generate a different field (E(x,y,z), H.(x,y,z)). This new field must

also satisfy Maxwell's curl equation:

(2) x H J+ Jwe WE

V x E = -J w~ u H

I5
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The difference between these fields is called the scattered field:

(3)

H- H

If Maxwell's equations for the two sets of fields are subtracted, we

obtain the curl equations for the scattered field:

(4) Vx H, = w(E - i) E+ w ci

xE -j = (- w( ) H - j w Hs

The term j ( -ei) E (which is nonzero only where € i) may be

interpreted as an equivalent electric current density radiating in the

original medium, (-pi ei). Similarly, the term -j w(v - Pi)!_2 can be

interpreted as an equivalent magnetic current density rad-ating in the

original medium (p ci). These current densities are the sole source,

of the scattered field.

In this investigation, the original medium is chosen to be free

space so -i = C . Furthermore, all media are assumed nonmagnetic so

that ui = P= uo and the equivalent magnetic current density vanishes.

The electric current density, j w(c - E0
) E, then becomes the sole

source of the scattered field and radiates in unbounded free space.

As noted earlier, the equivalent current concept can be applied

to inhomogeneous, lossy dielectric media.

!ii
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B. The Integral Equation

I The fields radiated by a source current density J in free space

can be calculated using an integral form such as

(5) EP= fff _ G (r,r) dv'

where EP is the p-th component of the radiated field, J is the source

current density, V' is the source volume and Gp represents the free

space vector Green's function for the p-th component. The equations

given by Richmond[28] and given in Eq. (9) can readily be put into the

above form. Substituting the equivalent current density of Eq. (4)

into Eq. (5) and using this result in Eq. (3), we obtain our integral

equation for the field in the dielectric body and the exterior free-

space region:

I (6) EP = Ep +1sf ji W( - E . (.-' <,r) dv'

To determine the field, it is sufficient to enforce Eq. (6) in the

K interior region.

Equation (6) must be satisfied for each of the three components

E of the field such as Ex, Ey , and Ez in rectangular coordinates

or EP , EO and Ez in the cylindrical system.

Solution of Eq. (6) yields a solution for the total field within

the body. Then the field at any exterior point can be calculated from

Eq. (6). For the scattering by cylindrical dielectric shells, a tech-
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nique for solving the 

integral equation Is 
outlined below. Up to this

point the analysis covers lossy and lossless, 
homogeneous and inhomO-

geneous dielectric 
bodies with arbitrary 

size and shape. Now to illus-

trate the techniques we hereafter restrict our attention to a specific

case: thin-wall, homogeneous, dielectric circular cylindrical shells.

1 The shell is assumed homogeneous and sufficiently thin that any

I radial variation of the 
fields is negligible within 

the shell. The

shell and its coordinate 
system are illustrated 

in Fig. 1. At any point,

z, along the shell, the field components can be expanded in a Fourier

series in 0. The expansion 
coefficients in this 

series are functions

of z and are likewise expanded in a Fourier series (in z). Bth series

are truncated to finite sums as a practical matter. The degree of

truncation depends 
on the particular shell 

and the incident field.

The expansion coefficients 
are determined by enforcing 

Eq. (6)

at many points in the 
shell to obtain a set of simultaneous linear

equations in the expansion 
coefficients. The system is solved 

for the

expansion coefficients, 
or equivalently, for 

the field within the 
shell.

Finally, when the total 
field within the shell 

is known, the asymptotic

form of Eq. (6) is employed to calculate the distant field.

• I

4

I



I I 7-1

CHAPTER III

SOLUTION OF THE INTEGRAL EQUATION

A. Field Expansion and the System of Linear Equations

The coordinate system and a cylindrical shell are shown in Fig. 1.

The circumflex indicates a unit vector.

6~- z

Fig. 1--Cylindrical coordinate system

I
and cylindrical shell.

~The shell is assumed to be sufficiently thin that field variations

with p can be neglected within the shell. In the dielectric region,

~the fields can be expanded in a Fourier Series as follows:

I9
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E0(z) - [A (z) cos(no) + Bn (z) sin no]
n 0

(7) EO(z) = [A, (z) cos(no) + BO (z) sin no]
n=O

EZ(z) = O CAnZ(z) cos no + BO (z) sin no]
-- n=0

In Eq. (7), as noted, the A 's and Bn's are functions of positionn n
along the shell and can be represented by a Fourier series in z. The

period of the expansion is p where p is greater than or equal to the

shell length. The expansions of the A 's and B 'S follows:
n n

[(mnCOS (L"L z) + as' sin (?-L z)]
n  =0 %n p mn pm=O 2M

(8) Bn  (z) 0 b n cos (T!ML z) + bsm  sin (Tn z)]
nMao mn p mn p

AO W I Eo cos (2mn z) + aSn sin (2m! z)]
B (z) = [bn cos (T (T

B(c (-2m z) + bs sin mz)n M0 n p mnp

AnZ(z) = [an o (IT Su Tz) ]+aZ i

=O p _2 mm

BZ (z) - m=[bn cos ( 22. z) + bszn sin (Lftr z)]

In the circular cylindrical system, there will be no coupling be-
tween modes of different index n in the 0-expansion. For this reason

it is possible to solve the integral equation for one value of n at a

1



lI 11

time, to obtain the solution for all necessary n and then to superimpose

the results to determine the total field within the shell. This allows
a considerable saving in computer storage compared with solving the

entire system in one fell swoop. The z-expansion must be considered

in its (truncated) entirety for each value of n, however.

Eq. (6) is to be enforced at a number of points in the shell. For

numerical purposes. the shell is divided into equal-length elemental

rings, each ring being short compared with the wavelength. The numerical

integrations over the tube (shell) are performed on a ring-by-ring basis

Ii and the total integral is found by summing the contributions of all ofi 'i the rings. Fig. 2 illustrates the subdivision of the cylindrical shell.

x MATCH POINTS

I z

!.

I: Fig. 2-- Division of shell into elemental rings.

I.
• o
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The match points (points of enforcement of the integral equation)

are at the center of the wall cross section of the matching rings (two

per ring) and are located at 0=0 and 0- 1 The matching rings are

evenly spaced along the tube. If M is the maximum index of the z-expan-

sion, (2M + 1) matching rings are required to obtain a complete system

of equations in the field expansion coefficients.

The next step is to evaluate the integrals for the scattered

field at points in the shell. In the following work, attention is

confined to thein-th mode in 0; it is understood that in general many

such modes may be needed to obtain an accurate solution for the total

field in the shell.

The following equations are given by Richmond[28] for the cartesian

components of the field generated in free space by a source current

density with components jx, Jy, and Jz:

Ex = o , e'Jkr {P(r) jx + (x-x,)Q(r)[(x-x,)Jx

+ (y-y')Jy + (z-z') Jz]} dv'

e"-Jkr
(9) Ey =A'o ff e {P(r) Jy + (y-y')Q(r)C(x-x')J x

4wjk v

+ (y-y)JY + (z-z')JZ]} dv'

Sff {P(r) Jz + (z-z)Q(r)[(x-x')J x

+ (y-y')JY + (z-z')Jz]} dv'

4 2

I I .. l i . .. . . . . . . . . . .I4. . . i i .. l
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In Eq. (9),

P(r) -1 - kr+ k2 r2

~r 3

(10) 3+ 3. - k2 r2

Q(r) =
r

In Eqs. (9) and (10), k = w = 2ir/x and

r : 2 p 2 - 2pp' cos(4-o') + (z-z') 2

is the distance from the source to the observation point. The equiv-

alent current density, jw(e-co)E, is substituted into Eq. (9) to ob-

tain an expression for the scattered field in terms of the total field.

The field components are then converted to circular cylindrical com-

ponents and the field expansion of Eq. (7) and (8) used to get the

following result for the n-th mode scattered field where cm = cos(I2m z),

sm = sin(!-z) and Er o.

(11) E er- " e-jkr.

F {(a n cm+asPnSm) cos n' + (bPncm+bsnsm)sin no'}cos'j

S(nCm+asnsm) cos no'+ (bnCm + bsn)sin n'sin'1

-Q(r)(x-x')2 L + s s ) no' (bc + bso s )sin no'}sin'j
[%nm amn m + mnm mn m
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Q(r)(x-x')(y-y') Q (0 C o no. n (bmncmn + bs s
mnm as ~ sin :no' sino mn

(11) L(I(ao cm + astOns ) cos n'+(bO c~ + bss)
(cont.) nm m nm nmj

sin flo'l cos 0'

+ Q(r)(x-x')(z-z-) ~zc + asZs) cos n'
Lmnm rnnm no dv'
+(bZc +bsz ) sinn
+mncm n nm nj

(12) E Y r ef ~m ]
Pc +asPs)co0 o (bo c + bsP s ) sin no' }coso'

%n m + n sm) o o mn m mn m
0 + ~ as s ) cos no' + (b c + bs s ) ol so

+(nmm m nm n mm

((Pc + as" s ) cos no' + (bp' c + bsp s)
+m~)yy'(- n m mn m mn m mn m

sin no'} sinO
2 ((ao c + asO s) cos no + (bOn~ + bsoQ~)~mn m mn mnc mn m

sin n' l sin '

f~aP c +as" s )cos no' +. (bp c + bsP .)7
sin no'} csn '

+ Q (r)(y-y')(z-zl) z8n~ + szm cos no' + (bz cm + bSsrn } dv'
sin no'
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(13) E Z fr -f 'f e.jkr.

1 11l=0 V 8

P(r) E(nC + asZns cos no' + (mn + bs sin n¢"]
4nIn m mmnm mnsm

c+ as o )oso + Cncm + bsm sn'

+ Q(r)(7-z')(x-x') (a nm + aSnnSm)C°S nI' n+ b+
sin no'} cos 01

E{(anCm + aSm~Sm) cos no' + (bc + bs s)
%m nI mncm mn mn

sin n o') sin o'

P + ass cos no' + (bo c + bsn Sm)+ Q(r)(z-z')(y-y'1) %( nCm + amnSm) csn'+(mn m  mn

sin no'} sin o'

+Qr(%n)(-' L m mn m mn m mnmi+{(am~n~+ a5m~nSm) cos no' + (bm~nCm + bSmfnSm).i

sin n f'} cos o'

+ Q(r)(z-z')2  (%nCm + asZnsm) cos no' + (bmncm + bsdZs') sin no] dv

f The symmetries of the integrands for the scattered fields about

= 0 and- = 1 permit a convenient correspondence between the inte-

grations for a match point at o = 0 and one at o Only the inte-

gration for o = 0 need be calculated and the ones for * = 0 can ben 2
obtained from them. Also, the odd symmetry of some of the integrand

terms results in those terms integrating to zero for a match point at

* =0 or o =- 1 . After making use of the odd symmetry of certain
*n 1

I - terms and of the relationship between the * = 0 and o = 1- calculations,

I "th e cylindrical components of the scattered field for a given matching

ring can be written:
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EP (0,z) P ei~ r~ Al n(z)+ 5z f2()b'
mO r inn in+% lm~)+bn A3 (z)

aspn Blin(Z) + asZ 82 (z) + bso B3 (z
in n nin inn in

*bp A4 (z) + bZ A5 (z) + A6 (z
(14 EO (O-z) =( -) Inn Iin inn nn in % n n'

m=10 p 84m (Z) + bsz B5 (z) + asn 8 6 (z),+ sin 'n i nn inn mn in

E~~O~) Yrlinc{ac A7in(Z) + zin A8in (z) + bO A9 n(z)

as in l(Z) + asz~ B8i(nn + bs B9IZ
mn ninInnin n rnn

bp Al (z) +bz A2 z) a A3 (z)1E P (j-z)= (min in inn inn~ nn in
in=0 bsin B1 (z) +bsz B2 (Z) - *

in n inn mn -as inni

sn f-a A4 (Z) Zam A5in(z) + inn A6(z
(1 E -z)= (e ff inn mn ai nm inz

-z as inB4 n ~asn inn (Z) + bs Bmn m mn minn nP:

Sn n2 n binnnA7i(z inn in
minn +bsnn(Z) + bszn B8in (z) - aso B9 (Z,

Almn(z) through A9mn(z) and 81m (z) throuqh 89 mn(z) are defined

below. The integrals are to be calculated for an observation point

at the center of the shell wall cross section for *=0 and z equal to

the z-coordinate of the match point in question.
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Al (Z) - I fffj e-jkr (P(r) Cos o# + Q(r)(x-x 1)2 cos *lm n 4 V" v I

+ Q (r)(x-x')(Y-Y')} Cos ( m-z') cos no' dv'
p

A2m(Z3 = 1 ff eijkr (Q(r)(x-x')(z-z') } cos (2m!Lz)co r'v

A3(z 1e-jkr2A3 ef -P(r) sin 0' - Q(r)(x-x') 2  sin o'
mn v

+ Q(r)(x-x')(y-y') Cos o'l cos (2!!!2Lz') sin no' dv'
p

A4m(z) - 1 jf eik {P(r) sin o' + Q(r)(x-x')(y-y') cos olmn 4wT

+ Q(r) (y-y') 2 sin o'1 Cos (2v') sin no' dv'I
A (z)J -Jkr 2mwt
Smn ~ ffl e {Q(r)(y-y')(z-z')![ cos V3--' sin noldv'

A6 (ff ejkr{P(r) cos o' - Q(r)(x-x')(y-y-) sin ONmn ew

+ Qv ()(yy 1 Cs o} Cs (m~rV)Cos no$ dv'

An (z) L f e-jkr.{Q(r) (z-z')(x-x') Cos o,
+Q(r)(z-z')(y-y') sin o') cos (pm2 osn' v

A8(Z)= fff j~~?'{P~r)* Q~r ()2v ') Co n2 wZ)oS' dv'

A(Z) 1 f jkr si 2m,
Amn f e {P- )Q(r)(z-z') ) Cs 'csn'v

+ Q(r)(z-z')(y-y') cos o'} cos (-p--z' sin no' dv'
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B (1z) through B9mn (z) are found directly by replacing cos (- z')

by sin z') in the corresponding equations for Almn(Z) through Agn(2) ,

The integrations for the B (Z) s are also evaluated at 0 - .
mn

The field expansion of Eq. (8) and the results given in Eqs. (14)
and (15) are used in Eq. (3) to obtain the set of linear equations

corresponding to one point along the shell, i.e., for one matching ring.
The sUmation over m has been truncated to a maximum index value of

m a H. For this case a total of (2M + 1) sets of the following equa-
tions will be necessary to have a sufficient system. In Eq. (17), the!*

dependence of Aim n etc. upon z has not been shown explicitly; It is
undestood that these coefficients are functions of the z-coordinates of

the matching rings.

fM a~COS(2z} n)+( -1 Z) P nAlin+as BIP Z A2% an ) p (Zr+ ( nr'la) nB) nn A mn+bn mnJrMP 2mcos,2z n M bmA4 +bsnB4 +bnAS 1

NO +as sin(- ) Z) mo +bSnBinn~anA6n+aS nB6mn

li l=nCS( z) + (er1 f inn inn Inn i nn m n n

inn L n m mn inn mnJ

M P A7n+as iB7 +mn nAmn%nco 2r ( r") ,inn mnin

} ,.(z) + (L -ny-

Moo +as,, sin(;-- ) ino +bs n8n+ A6 +asO 86

M 2ii N P bA7 +s B +bZ2A2

11*0 +bSncOs(T } "0 z+bSmnB2 - n mn asB31n

I

-
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M b 2n A4-asp B4-a A5
b Amn i)n'n inn n n

m= +sncsn~ )j in Bn +4 A6
(17) si(-zz) (r m 1i=0iasn inn innA +bs nB6m~

(17)
cont r

bZcos( 2m M bo A7 +bs0 B7 +bz A8
Zn 2(-f-z bfn(z)+ (fb-

'_ inn sin( -z)1  I= M bs B8 *aO A9 -as B9 .mnI mn % n n in inn mn

The an¢Z), an(Z), etc. are the n-th mode expansion coefficientsi maching ing inusin

in the Fourier expansion (in €) of the incident field at the particular

matching ring in question.

B Incident Field Expansion

In general, the incident field may be very complex, e.g., the near

field of an antenna. To illustrate the technique, however, we shall con-

sider the case for which the incident field is a linearly polarized

plane wave with arbitrary propagation angle e. For this case a formula

for the Fourier expansion of the incident field can be found quite

readily.

The Fourier expansion of the incident plane wave over a ring

of radius a can be found from the general form of the plane wave at any

point in space. Fig. 3 illustrates the geometry.

The phase of the incident wave is relative to the origin and the

rectangular field components have been converted to circular cylindrical

components in the equations below.

For the TE case, the incident electric field is given by:

(18) E cos - sin ) e +jkPsin f sine e+Jkzcose

I - - - i. .. . . . r
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Fig. 3--Linearly polarized incident plane wave.

The Fourier-Bessel expansion is needed:

(19) jupsino . ejupcos( - N) in (u) cos n( - )

In Eq. (19), u = k sine
Nn= >=

in is the n-th order Bessel function of the

first kind.

Equation (19) is used in Eq. (18) and after simplification, the

TE incident field can be expressed by the following Fourier expansion:
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TE
(20) E(p,4,z) = ... ('anI(up) + an+l(UP)] cos no

IL n=1 ,3,5... i +JiUp]csn

+ J [Jn(Up) + J (up)J sin nLeJkZcose
. n=2,4,6... nn+s

.1
.. + ;f -j 1(up)

+ U
+ -Lnl(UP) - Jn+l(uP)] sin no~n=13,5 ...

!n=294,6... [Jn 1( s

For the TM case, the incident electric field is given by:

TM usn kcs(21M= (p cOse sine + o cose coso - z sine) e upsinleikZce

Comparison with Eq. (18) shows that with the exception of the

I-component, the TM expansion can be obtained directly by using the re-

sults of the TE expansion. The final result is:

I
TM IS+

(22) EI(p,ZZ) = p cos j JI(up) +n= [ni (Up)n+i(up)]sin no

J + -n24,6... "J[nl(Up) "Jn+l(up)]Cos no ejkzcose

+ {1cose =13,5.. Cjni (up) + Jn+2(uP)l cos no

+n=24,6... J[ n-i(up) + Jn+1(uP)] sin no eJkzcosen

I.i
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(22) - sine f(ua) + 2J (up) cos n*
cont. 10na24.6 ... n

+ n=~,..J2 Jn(up) sin n h ejkzcose

The Fourier expansions over a ring of radius a can be found by

substituting a for p in Eqs. (20) and (22).
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CHAPTER IV

INTEGRATION PROCEDURES

This Chapter discusses the techniques of numerical integration used

in the solution of the cylindrical shell scattering problem. The gen-

eral method of calculating the scattered field in the shell, the for-

mula for handling integration through the singular points and the for-

mulas for calculation of the far scattered fields are discussed.

V A., General

The coefficients defined in Eq. (16) must be evaluated at 0 = 0

', for each value of the 0 mode index n and the z-mode index m at each of

the matching rings. *The general procedure for the numerical integra-

tion is to divide the shell into elemental rings as shown in Fig. 2.

I The integrals are then calculated over each ring for each of the match

points at 0 = 0 and the total integration is obtained by adding the con-
1

tribution of all the rings.

Integration over a given elemental ring is accomplished by dividing

the ring into a number of subcells as shown in Fig. 4. The maximum

j arc-length of any subcell is much less than a free space wavelength and

the angle subtended by the subcell at the ring center is small compared

Iwith the smallest period needed in the *-expansion.
For the case of a match point far from a given ring, the trapezoid-

al rule of numerical integration is applied over the entire ring with

the center of each subcell providing one data point. For the case of

a match point close to the ring, finer subdivision of the cells closest

1 23
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X

IY

r)

Fig. 4--Ring subdivision for numerical integration.

to the match point is required to obtain accurate results.

The case in which the match point is within the ring being inte-

grated over Is a rather special one. Examination of P(r) and Q(r) in

Eq. (10) reveals that one can expect severe numerical computation prob-

lems as r approaches zero. In this case, the usual numerical integration

procedure (including finer subdivision for cells near the match point)

is used to calculate the contribution of all the parts of the ring ex-

cept for that of the cross-hatched cell in Fig. 4; this cell is the

so-called singular cell.

The contribution of the singular cell at its center is then cal-

culated from analytical formulas. These formulas are derived in the

next section.

IF
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B. The Field at the Center of the Singular Cell

Three basic assumptions are used to obtain the singular cell contri-

bution at its own center. First, it is assumed that the cell can be

closely approximated by a rectangular parallelopiped. Second, the cell

is assumed sufficiently small that any field variations within its

volume can be neglected. Finally, the linear dimensions of the singular

cell are assumed to be much smaller than the wavelength.

The rectangular parallelopiped is a suitable approximation to the

shape of the singular cell in an elemental ring of a thin cylindrical

shell.

The second assumption is also valid since the odd symmetry of

the sin no mode about the center plane of the singular cell can be

shown to result in zero field at the cell center due to sin n current

]densities. This leaves only the cos no variation with 0 and this term

has a zero slope at the center plane of the cell. The period of the

z-expansion is assumed large'enough that variations with z along the

singular dell can be safely neglected.

The singular cell problem is therefore reduced to finding the

electric field at the center of a rectangular box of uniform current

density flowing in an arbitrary direction. Consider the box of cur-

rent density to be aligned with a local cartesian coordinate system with

the origin at the center of the box as shown in Fig. 5.

Examination of the symmetry of Eq. (9) for this case shows that

only Jx will contribute to Ex , Jy to Ey and jz to Ez. Thus, the sol-

ution needs to be developed for only one component of curr,-nL !n:a
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i,

C'C

S2 '/

Fig. 5--Rectangular parallelopiped of current density J.

cyclic rotation of the coordinates will give the solutions for the

other components. The solution will be found for J x.

Consider Maxwell's curl equation relating the electric field to

the curl of the magnetic field:

(23) E -x [yxH-J]

J is assumed known and uniform in the small box. In order to

evaluate the field of this source at the center of the box, then, V x H

must be found at the center.

By symmetry, for this particular problem, there will be no magnetic

field at the center of the box, nor wili there be any magnetic field

t Zj
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I whatever at any point on the x-axis (for an x-directed current density).

Thus, for this case, HX(x,o,o) = 0 and Ly  = 0. The curl operationIax ax
on H can therefore be written as follows:

(24) -o aH
OI' X5y Z rL 1-~o,o,o) ay az :-x az]

(o, o, o)
o Hy Hz L -'(oooo

I The partial derivatives of Hz and Hy will be found by evaluating

the magnetic field at the center of the box (known by symmetry to be

zero) and at a small distances Ay and Az along the y-and z-axes. The

SI partial derivatives are then found from the definition:

1 (25) alY I lm AHY= lim HY(o,o,Az) - HY(o,o,o)

z -)zO Az Az-*O ZI
aHz  lim AHy  - lim HZ(o,Ay,o) - Hz(ooo)ay = y'O -aZ =AYTO AY

I
Fig. 6 shows a view looking down the x-axis at the box of current.

From symmetry considerations, it can be seen that Region I will not

contribute to the magnetic field at (o,Ay,o), the magnetic field at

I that point will be strictly due to Region II. Fig. 7 shows the geometry

which is now considered. For the special case when the distance and di-

mensions are small compared to the wavelength, the x-component of the

magnetic field at a point a distance y = b from the center of the slab

of current can be shown to be:
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* Fig. 6--View of the box of current from the positive x-axis.
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Fig. 7--Geomietry for calculation of magnetic field.



I"

1" 29

j "(26) Hz_ 2Jxytan- ac

Similarly, the y-component of the field a distance z=c along the z-axis

can be shown to be:

(27) Hy  -2jXz tan - A

Reference to Fig. 6 reveals that the incremental fields sought

are those fields just calculated. Namely,

(28) Hz(O.AyO) = y tan 1

WY(o,o, z) = - 2j~ tan-'~ ab~2c
(c a2 +b2+c 2

These are used in Eq. (25) to find:

(29) H-- 2- ' tan-' ( ab

alz. - tan-' a~c )

Use of Eq. (29) in Eq.(23) gives the final result for the electric

field at the center of a box of x-directed current density Jx:

9.
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(30) EX 2J x [ ac + tan--- ab J

Similarly, for Ey and E2 6

(31) tan" 1  a + tan "1  .c ,-jy

(32) Ez = i1 2 2[1 ca )j JC ab2+c)+tan

(2x X a +tan ( a

rEs  (rL)E kb (~a 2  ana+b 2+c2/ ab2+c2

E52 ~cT a (eb1 +c taI}

It was pointed out earlier that within the singular cell, only the

equivalent current component in the direction of one of 
the local coor-

dinates will contribute to that component of the scattered field. The

above formulas will therefore be applied only in calculating the values

of coefficients in Eqs.(14) and (15) which represent self-coupling terms.

For example, there will be singular cell contributions necessary in the

2.I i i . . .
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calculation of Al mn(z) and B mn(z) in Eq. (14) since these represent

the "self-coupling"of EP to E s.

C. The Far Scattered Fields

This section gives the derivation of the formulas for the far

scattered fields of a ring of current having p, 0 and z components of

I current density. The far fields of a cylindrical shell of current are

then obtained by superposition of the fields of the elemental rings making

Sup the shell.

The far field of a source in terms of cylindrical source components

as given by Richmond[28] is given in Eq.(34). The primed coordinates

are the source coordinates and Fig. 8 defines the geometry for the far

field cal'culation.1

E e e 0-J cos(=-oe) cose - JO'sin(o-o') cose
0o Va

(34) + JZ'sine] ejk[p'cs(o-o')sine + z'cose]

p dp' dz' do'

I

E 1w ejk ro fff CJ Isin(o-o') - Jocos(o-o')]

SeJk[p' cos(o-o') sine + z'cosed

Spe dp' dz' do'

For the case of a very short, thin ring, of length z, thickness t

and mean radius a, the integrations over p' and z' can be replaced by a

multiplication by (t.z). In addition, if we replace J0, JO and jz by
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~-~j DENSITY
2 1 <.Cro

a <<< r0

Fig. 8--Geometry for the far field calculation.

the equivalent current of Eqs. (4), we find, for the scattered fields,

E5  k2_kc2  ejkro0 e +Jk z' cose ( --a

f EOcose cos(#-#.) - EOsin (#-#') cose
0

(35)+ E sie) jka sine Cos(#-#')do

E4 k2.kez e.r e Jkz' cose~t t-a)

1f EEP sln(s-s') - EOcos(#-#')] eJasn os,*)d'
4.0
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where k2 -k 2 =w 2  (c-0)

The field expansion of Eqs. (7) and (8) is used in Eq. (35) and,

in addition we let cm = cos (-p- z), sm = sin(2 -z) and

R= (t.t.a) k2-ke2  e eJkZ' cose
4wt ro

in order to find (for the n-th mode in o):

M C 21r
=e I c f C-(pco o + bp sin no~') case cos(o-01)sn in0O m  0 n in

- (a cos no' + bm sin no') cose sin(o-')n z cosnnine

% cos no + bmn sin no') sine] e ka sineCOS( ')d

2w
(36) + sm f E- (asp coso ' + bsp sin n') cose cos(€-o')

0
-" (aS~n cos no' + bsm sin no') cose sin(o-¢')

+ (asmn Cos ' + bsZnsin no') sine] eika sine cos(o-¢')d.,j

M 27r
Es = cm N cos n' +mnV sin no') sin(o-,')

- (a cos n' + b sin no') c o ')] eika sine cos(o-o')dot

2 i
+ (apco no' + sin no') sin(O-0')

sm C 0mn + bmn

(as# cos no' + bS n sin no') cos(o-o')] ejka sine cos(O-'do"
mn n
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For the cases considered in this paper the incident field is a

plane wave at o = - . If this value of * and the Fourier-Bessel series
2

(Eq. (19)) are used in Eq. (36), the final result for the far scattered

fields of a ring of "equivalent current density" can be shown to be:

e m bp+am

m=O fb n..i cose cos(n+1) I *

snm (bs n+

Ri n-an) 1j-jL m m cas ocse cos(n-1) NOua

[4 nbwsn)]

+ C % -bs ] cose sin(n+1) j n+1 Ji (ua)

(37) + Fcm(aPn~n 3 co1snn1 . 1 f~ j (a

sm (asn bso~ n-1 ia

(cz z
2 (mamn + smasinn) cos r]~ sine . in j NOa~

+ h 1(Cinbn + Sinbsmzn) sin 2!. n

rO [c%+bmn) 2o~ 1 j n+1 j (a
Sn T Lm8 n nl Icsn1 J n+ 1 (am=O s m(asp b

+1P [c( n-bn) cos(n-l) i- 11 .jini(ua)

+ m(bn an) sin(n+l) 1 jn+1 ~ (a

s(bsP -a0) 2 Jn+lua

+ n insnn1 . l-1

+ i(bsn+as ) 2l~nI J-.11-i. n-IC (ua)J
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The scattering cross section of a scattering body is defined as

follows:

Iiran 4,r r 2  JEs(8,0)1 2.

(38) (e,*) = 2r =JEll 2

In order to calculate the scattering cross section, then it is

simply a matter of calculating the far scattered field and then applying

Eq. (38). It should be noted that Z in Eq. (37) involves a factor 1/r

which eliminates the r2 in Eq. (38). Ei, of course, is the field in-

cident upon the body and in this case is taken to be of unit magnitude

so that Et
2 = 1.

= I

I

I

I

I



CHAPTER V

COMPARISON OF CALCULATED ANID MEASURED RESULTS

The cases considered are all for the backscattering of a linearly

polarized plane wave incident on a homogeneous cylindrical shell and
7!

parallel to the plane o = - . The wave is polarized TE (transverse
2

electric) or TM (transverse magnetic) to the shell axis and has a prop-

agation angle 0 with respect to the shell axis.

A. Dielectric Ring Backscatterinq

The first case considered is for the plane wave incident along the

ring axis. This is followed by a calculation for both TE and TM plane

waves with arbitrary incidence angles. For arbitrary incidence, many

modes in € are needed to obtain the field in the ring. Figure 9 illus-

trates the geometry.

The ring is sufficiently short that only the zero order mode of tre

z-expansion is needed. Because of the synetries in this case, many of

the integrals in Eq. (16) are equal to zero and considerable simplifi-

cation of Eq. (17) results. The set of simultaneous equations for the

n-th mode in 0 is as follows:

a , a n + ( I) ap  Al + bOnA3 Ion in r on on on on
bt n + ( -1) {-ao A4o+ bOnA6 }

on in Er on on on on

(39) an n (-1){bO A4n +a A6 )abon in + €r-) on PAon- aon Aon
=bP+(-1) IbP Al -a Abon OA

n in r on on on on

36
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K DIELECTRIC

* RING) z
(TE)

I ._(TM)

H H(TE) DIRECTION

-E(TM)I, Fig. 9--Geometry of dielectric ring problem

S(39) aon a (C r1) {a oZ AB on
cont. o n r n o

Lbz . b n + (r- 1) {bon A8on}

IThese become the following sets of linear equations:

SI

I{

aO Cl(-1) Aol ] - 0~r C1(c-1) A3on] = bar

(40) a#o [ 1-r-) A6on -bV (er-1) A4on ] = a n

a# E(c -1) A3-] + bP Cl-(cr-1) Alo ] , bPnIa

I
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Iaz l - -)A 8 n] = azon (r "1 )  n ain

(40) bz  l - (E:r-1) AS]= bz
cnnt. on on in

For a linearly polarized plane wave incident along the ring axis,

only the n = 1 mode in 0 is needed. This situation represents the ut-

most simplification of Eq. (17). Calculated and measured backscatter-

ing data are compared in Fig. 10 for several polystyrene rings of dif-

ferent radius where E r is taken to be 2.54-j 0.00. Each ring considered

had a geometrical wall cross section 0.100" x 0.100". The scattering

cross section was measured twice for each ring; where only one circle

is evident, the experimental data were in nearly exact agreement for

both measurements. The agreement between the calculated and measured

results is seen to be excellent.

As can be seen from Eq. (16), the formulas defining the coefficients

in the system of linear equations are independent of the dielectric

constant. The dielectric constant appears only in the solution of the

set of simultaneous equations and in the calculation of the far scattered

fields; these two operations represent relatively efficient computer

operations. (The numerical integrations and solution of the simultaneous

linear equations occupy most of the computation-time. These need not

be repeated for each new permittivity or loss tangent.) Thus, once the

basic integrations have been performed, it is a matter requiring rela-

tively little additional labor to calculate the effect of the dielec-

tric constant and to include the effect of the loss tangert on the scat-

tered fields. This is an interesting characteristic of the integral
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equation approach to homogeneous dielectric scattering problems.

Fig. 11 shows the calculated backscattering cross section versus

00- CALCULATED (INTEGRAL- EQUATION)

0.0070/ 0 00 0 MEASURED 0

0.0060-

=0.0050-

2

FREQUENCY 6.03GHz

Q 000030

0.0020-

0

0.0010-

0.25 0.35 0.45 0.55 0.65 0.75 0.65

a (INCHES)

Fig. 1O--Backscattering cross section versus mean
ring radius for a polystyrene ring with a plane,

linearly polarized wave incident on axis.

(I ;J
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dielectric constant for a plane wave incident along the axis of a

ring with an outer radius of 0.5 inches. The effect of the loss

tangent is also included parametrically.

A comparison of the calculated and experimental backscattering

cross section for TE or TM plane waves incident at an arbitrary in-

cidence angle is presented next. Four polystyrene rings were considered.

Calculations were performed for several incidence angles, out to nearly

90 , for each ring. Both TE and TM backscattering patterns were meas-

ured for all four rings. Figures 12 through 19 show the comparison of

the measured and calculated data. The agreement is seen to be excellent.

A portion of the small disagreement in the TE cases may arise

from scattering from the support strings; the strings were parallel to

the incident field in this case. For the TM case, the incident field

was normal to the support strings and the string scattering was not so

noticeable.

The number of modes in 0 required for a particular ring scattering

problem depend on the ring radius and the propagation angle of the in-

cident field, i.e., the number of incident modes which have significant

magnitude. In the case discussed here, both the incident modes and the

far-field scattered modes contain factors Jn+1(ua) or Jn l(ua); the prob-

lem of de;ermlning the necessary number of modes reduces to an examin-

ation of the Bessel functions of the first kind. In the examples pre-

sented here, the incident field modes became negligibly small for n > 10;

therefore only ten 0-modes were required. For more complicated incident

fields and for larger rings, more modes may be required; the exact number

would of course depend on the accuracy desired.
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It should be noted that the only inherent assumption in the ring

scattering calculation is that the thickness and length are sufficiently

small compared with a wavelength that field variations with p and z can

be neglected. Aside from practical problems such as lengthy integration

times and summations over many *-modes, there is nothing preventing ap-

plication of this technique to rings with larger radii if the above re-

strictions are kept in mind.

B. Dielectric Tube Scattering

The final situation considered is that of a homogeneous thin-wall

cylindrical shell with a linearly polarized plane wave incident along

the shell axis. Shells up to one wavelength long are considered and

several terms of the z-expansion are required for a good solution for

the field in the tube. Choice of on-axis incidence requires only the

n - 1 mode in o and the amount of computer storage required is consid-

erably reduced from the arbitrary incidence calculation. The geometry

of the problem is shown in Fig. 20.

In this calculation, all the coefficients given in Eq. (16) were

retained in the system of equations. Atough rapid access computer

storage restrictions limited the maximum z-mode index to two, this was

found to be adequate for the cases considered. For tubes much larger

than one wavelength, however, more modes would be needed.

The calculations and experiments were performed for polystyrene

tubes with an outer radius of 0.500" and a wall thickness of 0.100".

The frequency was 6.23 Glz, the dielectric constant used in the calcu-
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DIELECTRIC TUBE

[] ig. 0--Panewave incident along dielectric tube axis.

3 I lations was Er = 2.54 - jO.O and the tube lengths ranged from 0.100"

/ * Ito 1.960".

~ The experimental data, the averaged data and the calculated back-

I'1 scattering cross section are given in Table 1. A comparison of the

I ~caculated and measured scattering cross section is shown in Fig. 21.1: The ag;'ement between the calculated and measured cross sections

I again is excellent. The increasing disagreement for the larger tubes

undoubtedly arises from the three-mode limitation i n the z-expansion.
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CHAPTER VI

CONCLUSIONS

Accurate calculation of radome boresight error is a challenging

task. Rigorous series solutions of the boundary-value problem are

usually 'cot practical for the general radome shell and the accuracy

of present-day approximate methods of radome analysis is generally

not known. An essentially rigorous technique for application to

radome scattering is the integral equation method. The first step in

the development of an integral equation analysis of radome shells is

discussed in this report, namely the calculation of the backscatterinq

from thin-wall, finite-lenqth, circular cylindrical shells.

The unknown function in the integral equation is the field within

the dielectric shell. The integral equation derivation and the method

of solution of the equation by the point matching technique are dis-

cussed. The field within the dielectric shell is found in terms of

expansion coefficients in a double Fourier series over the shell. The

far scattered fields are determined by using the calculated total field

and the equivalent current concept.

The technique is applied to calculation of the backscattering of

a linearly polarized incident wave by dielectric rinqs and tubes. A

comparison of the calculated and measured backscattering was made for

the following three particular cases:

(1) a thin, short, homogeneous, dielectric ring for axial

incidence
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(2) a thin, short, homogeneous, dielectric ring for arbitrary

incidence with TE and TM polarization

(3) a thin-wall cylindrical shell for axial incidence.

The dielectric material for each of the above cases is polystyrene.

Agreement between the calculated and measured results is excellent in

all three cases.

The general numerical integration procedures, the far field in-Stegration formulas, the experimental methods and the computer programs

used are all discussed.

In addition, a useful expression is derived for the electric field

at the center of a rectangular parallelepiped of current density. This

expression is needed when integrating throughout a volume of source

current density to calculate the field at a point within the source

region.

The numerical technique used seems to be particularly suitable for

treatment -of arbitrary shaped shells of revolution which could be con-

sidered to be made up of a large number of dielectric rings. Longitu-

dinally inhomogeneous bodies are also amenable to analysis by the ring-

subdivision method; each ring would be homogeneous, of course, so that

this approach would give a piecewise uniform approximation to the in-

homogeneity being considered.

In summary, excellent results have been obtained by applying an in-

tegral equation technique to calculation of the plane wave scattering from

thin-wall dielectric cylindrical shells. This work is significant to the

general radome scattering problem for two reasons. First, the excellent

theoretical and experimental agreement implies a high degree of accuracyIII:
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obtainable with the method. 
Second, a workable mode of application 

of

the integral equation technique 
has been established and this 

approach

can be extended to more complex dielectric shell configurations and to

more general fields.

I.



APPENDIX A

EXPERIMENTAL METHODS AND EQUIPMENT

Measurement of the backscattering cross section of the rings and

tubes was accomplished using a one horn monostatic backscattering

cross ection system operating in a large microwave darkroom. A block

diagram of the measurement system is shown in Fig. 22.

IA measurement is made by following the steps outlined. The three-

stub tuner is adjusted to create a load mismatch precisely balancing out

the background return from the darkroom when no target is present. A

reference cross section level is then established by using a standard

sphere with known cross section as the target and recording the back-

I scattering return. The sphere is then removed, the target is placed

in position and the target return is recorded. The absolute value of

the target cross section is then found by measuring the relative levels

I of the target and sphere and calculating the target cross sectioni

directly from the known sphere cross section. In all cases the reference

I sphere is chosen to provide a reference level of the same order of mag-

j nitude as the target cross section.
I

The linearity of the system was checked by comparing the measured

I levels of two reference spheres. For the range of cross sections con-

sidered, the relative sphere levels were within -0.1 dB of their known

relative values. This is considered to be very good. The wide range

linearity (30 dB range) was also checked using a precision attenuator;

J' 57
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I this check gave relative levels within 0.1dB of the attenuator values.

For the case of the on-axis scattering of the thinnest, shortest

rings (Fig. 10), the cross section levels were somewhat low to obtain

I good "far zone" scattering results. As pointed out by Kouyoumjian and

Peters,[293 however, accurate cross section measurements do not require

- that the target be in the far zone of the antenna but only that the

Iincident fields have plane wave properties in the vicinity of the tar-

get and that the antenna-target interaction be very small.

The thin, short rings were measured by suspending them on strings

in the horn mouth with the center of the rings on the horn axis.

1 i Kouyoumjian[ 30J shows that in the neighborhood of maximum points along

a horn axis, the field is nearly a uniform plane wave. The axial field

variation of the measurement horn was probed using a 0.25" sphere. For

Ithe thin rings, the axial incident field variation over the rings was

found to be less than 0.5 dB and the horn-mouth location was found to be

very close to a maximum point. For small rings and small cross sections,

antenna-ring interaction can undoubtedly be neglected. Thus, reasonably

good plane wave scattering measurements are expected. No quantitativeI
* estimate of the errors has been made, however.

Measurement of the ring patterns and the tube cross sections im-

poses a larger axial extent of the target than can be tolerated for a

horn-mouth measurement. The larger cross section, however, allowed

use of the more standard far-zone cross section measurement. Observed

repeatability and linearity were again very good.I
U



APPENDIX B

COPUTER PROGRAMS

A discussion of the computer programs used to calculate the ring

and tube fields and backscattering cross section is presented in this

appendix. The programs are written in the Fortran IV language for

processing on the Ohio State University IBM 7094 computer.

Flow charts outlining the computations are given for all the pro-

grams used. Definition o,* the input and calling parameters and a com-

plete statement listing of the programs are also included.

A. Arbitrary Plane Wave Incidence on a Dielectric Ring

The progra' flow chart is shown in Fig. 23 and the statement list-

ing of the computer program is given in Fig. 24. The input data card

variables and the subroutine calling paramenters are defined below.

(1) Cards needed once for each run:

Card -Number 1 Format (110, 7F 10.5)

Columns Quantity Description

1-10 NCASE NCASE = the number of
different rings to be
calculated.

(2) Cards needed once for each different ring:

Card Number 2 Format (I10,7F 10.5)

Columns Quantity Description

1-10
(right-adjusted) NX NX a the maximum 0-mode

index to be used

11-20 Al Al = t!e mean ring

radius in inches.

60
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Columns Quantity Description

21-30 DI DI = the radial thickness
of the ring in inches.

31-40 WI WI = the width of the
ring in the z-direction
in inches.

41-50 FREQ FREQ = the frequency ingigahertz.

51-60 Re(ER) ER = the complex relative
dielectric constant of

61-70 Im(ER) the ring material.

Card Number 3 Format (I10,7F 10.5)

Columns Quanity Description

1-10
(right-adjusted) NANG NANG = the number of in-

cidence angles to be
calculated for the ring.

11-20 REF REF = the reference
cross section for calcu-
lation of the theoreti-
cal cross section in dB.

(3) Cards needed once for each different incidence angle for each ring.

Card Number.4 - Format (8F 10.6)

Columns Quantity Description

1-10 B(I), I=1,10 B() = the I-th order
11-20 Bessel function of the
21-30 first kind. Used in
etc. calculation of the in-

cident field Fourier co-
efficients for a partic-
ular incidence anqle.

Card Number 5 Format (8F 10.6)

Col umns Quantity Description

1-10 TH TH = the incidence angle
for one calculation for
one ring.



62

The calling parameters for the NRCELL subroutine are defined as

fol I ows:

M = the number of subcells along each side of the larger cell

(a total of M3 subcells)

RC,PC,ZC are the p,¢,z coordinates respectively of the iarger

(near) cell

AL= o.d

NX1 = the maximum 0-mode index to be used plus 1.

XM,YM,ZM = the rectangular coordinates of the matching point for

which the NRCELL subroutine was called.

AABBCC = the incremental dimensions of the large (near) cell in

the p, and z directions respectively.
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Main Program

Read (NX,AI,DI,WI,FREQ,ER)

[Read (NANG,REF)

Calculate Dimensions in Wavelengths

S1000 continue

r Calculate the number of cells

Divide ring into cells with angle subtended
at ring center equal to:
OPHI ( ,- DEL)/(No. of cells).

100 1 continuje
C.alc. contribution to integrals of parts
of ring more than 4 cells away from the

"singular cell." Do for all 0-modes

200 continue

I Calc. contribution of 4 cells closest to
singular cell and add to previous results.
Do for all -modes. Uses c ELL subroutine

[250 continue]

lcCalc. the contribution of the singular celltO heiegas

Fig. 23--Flow chart, ring scattering computer program.
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300 continue

Add the singular cell contribution to 1
the appropriate coefficients. Do for
all ,-modes.

Punch out (on cards) the coefficients

j in the system of equations. Do for all
O-mOdes.

) 400 continue

Do 800 N 1 NANG

Read Bessel functions and incidenceLangle.

F [1002 continue

Calculate incident field Fourier

[ coeffi ci ents.

35 continue

Solve system of equations for Fourier
coefficients of the total field.

500 continue

Calc. the far scattered fields for all
--modes.

F 600 continue
Calc. the total scattered field as the
sum of the fields due to each of the
:-modes.

Fig. 23--(continued).
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© 610 continueI
SCalculate and write out the backscattering )rs~eto

800 continue

END

N RCELL SBOTN

Calling parameters (M,RCPCZC, AL, NXI,
XM, YM,ZM,AAB ,CC)

Initialize integrals to zero]

5S0 conti nue

Divide the cell into M3 subcells and cal-
culate the total cell integral as the sum
of the contributions of each of the
subcells.

[100 continue

END

Fig. 23--(continued).V'
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VANDOEREN* Ro JOSN FGJ921 3
*SEXE:CUTE 18.108
S I1A JOA1
SIMFTC MAIN NODECK

I FORMAT IIO.v7F10.5)
2 FORMAT (ISX*215)
22 FORMAT (5X*8F14.81

3 FORMAT(4Xo2IH REST OF RING RESULTS/AXI4F8o4)
* FORMAT(6X*21H SINGULAR CELL RESULT/IOX%4F8.41
7 FORMAT (SFI5a8)

15 FORMAT (SF10.6)

COMPL~EX Al (IO).A3(10).A4(IO) .A6(I0).ASCI OI
COMPLEX AT(13).BT( I0).AP(I0).8P110).AL( IO)oBL(1O)
COMPLEX AIT(IO).8fT(I0i.AiP( l0J.B!PCJO)oAIL(IOp.BIL(IO)
COMPLEX CJ*CI.ETHCIO).EPS(lO,.ETHT.FPST
COMPLEX XP.P9O
COMPLEX DET#ER

COMPLEX Vi (IO.VZ( IO),V3(10.-V4(IO).VS(10.oV6(IO).VS(IO)
COMPLEX V9(I0)*VII(IO)9V18(IO)
COMPLEX P1 (I0,.P2(1O).P3(lO).P4(1O).P5(lO).P6(IO).P7(1O).PS(10)
COMPLEX P9(10),PIO( IO.PII (IO).P12(IO).P13(IO).PI4(IO).P15(IO)
COMPLEX P16(101
COMMON Pl.P2.P3.P4.PS.P6.P7.PS.P9,P10.PII.P12.P13.P14.P15.P16
COMPLEX AITM( 10).BITM(in).AIPM(IO,.BIPM(1O).AILM( IO).I3ILM(1OI

COMPLEX ATM( IO),BTM( 10) .APM( lO).BPM(10O).ALM( IO).BLM( 10)
COMPLEX ETHM(I0)eEPSM(IO)*ETHMToEPSMT
DIMENSION 8(10)
COMPLEX EE
COMPLEX XPPXPO
READ (Sol) NCASE

C NCASE IS THE NUMBER OF RING CASES TO BE RUN*
00 801 NCASwi.NCASE

READ (5.11 NX*AIoVI.WI.FRE09ER-
C NX IS THE MAXIMUM PHI-MODE INDEX.

C Aia MEAN RADIUS OF THE RING IN INCHES-

C Of* THIPKINESS OF RING IN RADIAL DIRECTION IINCEHES).

C VUAMIDTH OF RING IN Z-nIRECTION (INCHES)*

C ER a RELATIVE DIELECTRIC CONSTANT OF RING.
C PREG a FQECUENCY IN GHZ.

READ (5.1) NANG9REP

C NANG IS THE NUMBER OF INCIDENCE ANGLES FOR A GIVEN RING.
C REP IS THE REFERENCE CROSS-SECTION FOR THE PARTICULAR RING.

ALSO.O
NXI=NX+l
YOOw 11*8028/FREG
YIlu YOO/SQRT(ER)
AuA I/Y 00
DO I /YOO
MW I/YO0
wA036e 283 I9/YOfl
wAv6.28.119/YI I

C A IS THE MEAN RADIUS OF THE RING.

C 0 IS THE THICKNESS IN THE RADIAL DIRECTION OF THE RING.

C W IS THE WIDTH OF THE RING IN THE Z-OIRECTION.

C ALL THE ABOVE ARE IN TERMS OF FREE SPACE WAVELENGTH%

00 32 JUl.10

VI (J)ft(O*90.)

V3(J)G(0990e.

VO(J)8(0..O. 3

Va(JIM(O0.001

V91JINf~).00.)

Fig. 24--Ring scattering computer program
statement listing.
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VII (J)Z(O.,0. S
V16(j)u(Oot'0.

ST(J)=(09.0.2
GT J )= (0.*.0. )
SP(J)ZfOoq.O.

AL(J)-(0.oe0

BL(J)=(Oe.)
AIT(J)=(0.,De)
SIT(J)u(0..O. 5
AIP(J)=(O..0. 5
SIP(J, CO. ,O.1

AIL(J=B(Oo9..

ETH (J sm(0%9. .
EPS (J )u(0.* 0.0
ETN?4(J)=(O6%O*
EPSM(Jlm(0.,0,s

32 CONTINUE
ETHTu (O0 .!)
EPST3 (0. .0.)
ETNMTm(0*9O.S
EPSMTUtOo*Ool
00 403 INDI.*NXI
READ (5916) JvAt,FQEG

READ (5.171 AI(J)oA3(JSA4(Jf9A6(J)*AS(J)
403 CONTINUE

GO TO 401
1000 CONT INUE

Nu(3el4159*A)/OoOt
OELU 00I/A

C TH4E CELL FROM -DEL TO +DEL IS ACCOUNTED FOR ANALYTICALLY.
IF (N*LT.30) NB30
T6mN
0PN18C3.141S9-DEL)/T6
DVAW*D*A*DPNI /6.28319
WTTw( (W/2. )**35*0*666667

1001 CONTINUE
00 200 Ku20oN

0IHuDfL+OPNZ/2.+TZ *OPHI
CNCOSIPE)
S=SIN (PMI
XuA*(I .- C)
Yo-A*S
2.0.0
P=SOPT (X*X+Y*Y+Z*Z)
ARa6o28.i19*R
AQSwAW**2
P3*Q**3
ps=R**5

m (-I .4ARS)/R3
Plm-AR/R3
P SCMPLX (PR .PI
OWS(3*-ARS)/RS
0133.*ARi'R5
OUCMPLX(OROl)
XPftCMPLX(COS(AR~s-SIN(AQ))
xPPBXP.P
,(Po .xP*0
DO 60 NNUINXI
TIvNN-I
4tNmS NCTI *PM)

CN*COS( TI*PH)

Fig. 24--(continued).



C NO SCN*o0V

%NOuSN@OV
Vt (NN~nVt (NNI+C*CfNOOXPP*
V2(NN)OV2 NNt+S4SN0*XPP
V3(NN)2V3 (NN)+XgX*C*CND*XPO
VA(NN)*VA (NN)4.X*X*S*SNO*XP0
VS INN 'VS INN) ,X*Y*S*CND*XPO
V6 CNN 'VA CNN 4X*Y*C*SNO*XPQ

V8(NNjmV8(NNI .Y*Y*S*SNt0.XPQ
V9(NNI AV9 (NN I Y*Y*C*CNOXPO
VII (NN)sVlI (NNI+CNO*XP
V16( NN I VIA 1 N I Wfl CNOXPO.160 CONTINUE

200O CONTINUE
00 201 Jsl.NXI
WRITE (Au1) J
WRITE (6.3) VI (JI.V2IJ)V3(J).V4fJI*V5(J).V6(J).VS(j),V9Cj).VlJ (jI

201 CONTINUE

YMin.

88ms**oPHI
CCow

C DOWN TO 250 IS THE CALCULATION FOR THE 4 CELLS N'EAREST THE *
C *** SINGULAR POINT CTHE OBSERVATION~ POINT).

00 250 Jul.4
TIinJ-I
OPNUS**OPH I
PHIDEL+DPH/2.4.Tt*DPH

S USIN(PH I
xC=A*C

IF tj*EO~t) M820
IF fJoEO*2) M-10
IF tJotO*3 M28
IF IJ.EO.4) M86

CALL NR ELL ('4APH1,ZC.ALNXI.XM.VH.ZM.AAB6,CCI
00 202 JJSI.NXl
WRITE (6.21 JoJJ
WRITE (6.22) Pt (JJ,,P2(jj).pIIjjI.p,(jj),pSIJJI.PGIjj,.P71JJ).PS(J

VI(jjVIfJj4PI(jj)
V2fIjj I V2 Cjj) +92 jjI
V3(.jj)uV3(JJ*93I(JJ)
V4(JJlaVd (jj)*pAIjj)
Vs(4j)SVSIjjJ+5(jD)
V6CJJuVA(JJl+PA(JJ?

V9(jjlwV9CJJ),pqI jj)
VlIIJJlmVII(jj)+PItCjjl
V16(JJIuVIAI JJ)+PI6CJJ)
WRITE 1602) J.J
WRITE f6v22) VI (JJ).V2(JJ),V3(JJ).VAIJJ).VS(JJIV6(JJ).VSIJJI.V9(J

202 CONTINUE
260 CONTINUE

C FROMI HERE TO 300 13 CALCULATED THC SINGULAR CELL CONTRIBUTION.
At 30/2.
8 1 sAOEL
CISW/20
A~oS0T(AI*At4Rtlfgt+CI*Ct)
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T2*/3. 14159
qtTaTZ*LATANtfAJ*C))/(8I*SO)).ATANt(Al*81)/(CI*SO)))-I*
SPaT2*(ATAN (I*Al /(C14S01 )4ATANt 181*CI h,(AI*SO)I) -1.

SLB'tZ*(ATAN(ECI*81)/(AI4SO))+ATAN((CI*AI),(BI*SO)))-1.
300 CONTINUE
c ER IS THE RELATIVE DIELECTRIC CONSTANT OF THE DIELECTRIC PING*

00 400 JN14NXI
Al (JpaVI J)+V31J))+VE.J)+ST
A3(J)a-V2(.JI-V4(JI+V61J)
A4(j)nv2(j)4V6(J3,VSIJ)
A6(J)uVI(J,,V9tJ)-V5(J),SP ..

Ai(J).VI I(J).V18(J)+SL
WRITE (6%8) JAI(J)sA3(J)oA41J)vA6(J)9A8(J).-

16 POR14AT (IIOs7F10.6)
17 FORMqAT (SF10.6)

PUNC~H 16% J.AI.F'REO
PUNCH 17s AI(J)9A3(JIA4(J)sA6(J)#AS(J)

400 CONTINUE
401 CONTINUE

DO 600 N11-19NANG
READ (5.15)!(S(J).JxI.IO)

C THE 84S ARE BESSEL FUNCTIONS USED IN THE INCIDENT FIELD CALC9

-- READ (5.15) TH
1002 CONTINUE

SYSSIN(3*I4159-TH)

CTOCOS(i. 14159-TH)
TN~uTN*57 *3

C DOWN TO 35 IS CALCo OF THE INCIDENT FIELD COEFFICIENTS*
AlTo )0(0*O.o)
SITU )=(0.oO*)

AITMOI )*-CT*AIP(I)
aITm(I p#(Ooqoe)
AfPM(l )R(O..Oo)

- - sIpm(I)u(o.o.o)
AILM(1 )u-ST*ChIPLXC((I 30.)
UILM(I )x(Oas0el
00 36 J=194
J132*J
JIPIAJl~t
JI4I=JI -I
.AIT(JI)ECMPLX'US(JIMI)+SE(JIPI)).00s
SITIJI )u(O..oe)
AIP(S) )U(O..o.

SIP(JI)CMPLXt(-8(JIAMI346(JIPI)).Oe)

8ITMOJI )m-CT*8IP(JI)
AIPMCJI )*CT*AIT (SI)
SIRmIJI )u(oeoof)
AILMOJI )s(*o09O)
SILMOJI )w-CMPLX(0o.2o*ST*B(JI))

SIp) .52+1

AIT(j2 3(0. .0.)

SITIJ2uC.PLX(0.. (S(J2MI )*5(JEPII
AIRIJ2)uCMPLX(O..(8(J2MI)8S(J2P1))'
SIPI 52193(0. .0.
AITMIJ2)o-CT*AIP(J2)
ShTMlJ2 1* 0. e00.

* . AIPMIJ2)*(OsO.l

8IPMIJ2 )mCT*8IT(.J2l
AILMfJ2)u-CIMLE2ST8(J2)~o.)

Fig. 24--(continued).

......_ _ _ _ __.
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8ILI4(J2)*(O..O.)

35 CONTINUE
C F OLLOWING 1S THE SOLUTINE FOP THE FOURIER COEFP. OF THE FIELDS&

IEEER-l.s
00 500 JuI4NxI
Olft-C(.-EE*AlI(JI)*( I*-EE*A6(J))eEE*A3(J)*EE*A4 Ii)
AT(J).tAiTIJ,*( I.-EE*A8(J) )4.IP(J)REF*A3(J) )/D!rT

6P(J)m(8IP(J,*cI.-EE*A1(jfl-AtT(J)*EE*A4(Jfl#0ET
APIJ)u(AIP(J)*(I.-EEC*Al(j))+8tT(ji*EEfA4(J))/OET
BTIJ)ut0IT(.h*(I.-EE*A6(J))-AIP(J)EE*A3(J).#ET
AL (J)n . .0.)
SL(J 3 (O0 .0
ATM(J)u(AITM(J)#(I.-EE*A6(JI),8SIPM(J)*EE*A3GJ),/DET -

5PM4(J)3(SI0M(J)*(I.-E*AI.1)1-AITM(J)*EE*A4(J))/DET
APM4(JI3(AIPM(J)*I.EE*A(.J))SITM(J)*EE*A4(J)l/OET
STMtJ)&(17M4)*I.-EE*A6(J))-AIP4(J)*EE*A3(J))/DET

BLM(J)uBILM(J)/(1.-EE*A8(J))
8 FORMAT (5X.Il0./.b6I5.B,/5X6FI5S.S/)

WRITE (6.18)

WRITE (6s6) J.AIT(J).SIT(J) .AIP(J).8tP(JJ.AlLeJ).SIL(J)
WRITE (6.8) J.AT(.J).8rIJ) .AR(J,,BP(4).AL(J).BL(J,

WRITE (6.19)
WRITE (6.8) J.AITM(J .BITM(J) .AI~m(j).IP4(J).AtLM(tJ).II.4(JI
WRITE(6v8) J.ATM(J) .STM.J),APM(J).BPM(J) .ALM(J).SLM(JI

500 CONTINUE
C ?ME FOLLOWING IS CALC* OF THE SCATTERED FIELDS.

CJU(Oe. I *)
-ETH(.i.)a2*82)*CT*CJ*AT(I+2.#()STrAL(I)

EPSi .I .I.-.*8()*CJ*AP(I)
ETHM(I)e-2.05(2elCrfC.J*ATM(I)+2.*8(1)*ST*ALMf I)

EPSM(I )*-29*8(2)*CJ*hPM~l)
00 600 J2103

IF (JI .EO.2.OR.JI.EO8.OR.~j1 Eo0lO) CIS-CJ

iF IJI.EO.A.OR.JI*EOes) CIRCJ
JMwJI-

JMMOJV-l

s I m (- 1 ) *j

22.*AL (JP)t(-Cj)48(JP)*ST)
EPS(JP).SI*Cl((TJP)A(JP)8(BJPPI)(8T(PIAP(JP))8(JlI)
WRITE (6.9)
WRITE (6.5) JP.ETH(JP)*Eps(JP)

_ -9 FORMAT (5X*I8PfJP#ETH(JP)%EPS(JIPI)
ETNM(JP)uSf*CI*(((ATM(JP-PM(JP))8(JPP)(ATf(J)PM(JP))*SJI

t)OCT,2.*ALM(JP)*(-Cj1#8IJP)*ST)
EVPSMtJP).SI*Clf((BTM(J0)AM(JP))*(JPP4+(8TM(JP)+APM(JP))*(J))
WRITE (6#900)

900 PORMAT ISXtOHJPoETMM(JP)*EPSMlJP))
WRITE (6) J0.ETHM(JP)4EPSM(JP)
Jes(2*j)-I

JMMAJM- I

IF fJ2oE0.l.OQ*J2.EO.5.OR.J2oI!O.9) C2u-I@O

IF (J2*EO.3eOR.J2-EO.7) C221.0
J2PR (J2+1 112

22**L (jP)*CJ*BIJP)5ST)

Fig. 24--(continued).



IFPS(JP,=Sl*Cp*ltAT(JP,+R(JPJ)*RJPP,+ATIJP-P(JP))*(J2)) 
7

?) *CT+2. #8L%$ejp)#C*9lJP)*ST)
EPSM(JP).SI4C2*((AT(4P4+l3PM(JP))*B(JPP)+(ATM(JP)-8PM(JP))*l(J2))
WRITE (6910)

10 PORMAT (5X.I8HJP.ETH(JP).EPS(JPII

WRITE (6.81 JP.ETH(JP)*EPS(JP)
WRITE (6.900)P~T~J~FS~
WR TE (6.8) PEMJ)VS~(P

600 CONTINUE
D0 620 J-1410
eTHTvETHT+ETF- (J)

E THMT -E THMT +E TH-M C J
EPSMTMEPSMT+EPSM C 4

610 CONTIN'.E
IS FORMAT (SX.33HTHE FOLLOWING IS FOR TE INCIOENCEi/?

WRITE (6.181
WRITE (6*11U ETH-(rEPST

11 FORMAT (IOX.IOHE-THETA v 2P12.6*/.20)C.SHE-PSI u o2F12.6)

AIGTHwP2*( (CA55ISTHT) **2)
%IGPSsFI*( (CA8S(EPST) )**P)
S IGTHO 20.*ALOG 0(CS IGTH/REFI
S IGPSO*1O.*ALOGIOtSIGPS/REF)
WRITE (6912)

12 FORMAT (/.9X*4?HTE SAME POL. RACKSCATTERING CROSS SECTION*)
WRITE (6413) SIGP%*SIGPSD

13 FORMAT *(25X98MHSIGMA a qF14.8-ISXsIHSIGMA(DS) a *F14*8)
WRITE (6,341

14 FORM4AT (/.5Xv42HTE 0PP. POL. BAC'KSCATTERING CRISS SECTION.)
WRITE (6.13) SIGTH*tSIGTHD

19 WORMAT (5Xo33HTHE FOLLOWING IS FOR TM INCIDENCE%/)
WRITE (6.29)
WRITE (6.22) ETHMTEPSMT
qtGTHsFI*( (CASS(ETHMT)1)**Z2)
%IGPS=FI*( (CABS (EPSMT) 1**2)
SIGTHDvIO.*ALOGIO(SIGTH/REF I
S IGPSO20O.*ALOGIO(SIGPS/REF)

20 WORMATI/,SX.42HTM SAME eOL. 8ACKSCATTERI44G CROSS SECTIONo)
WRITE (6920)
wRITE (6.1.31 SIGTHiSIGTHO

22 FORMAT (/t.SXA2H.TM OPP. POL. BACKSCATTERING CROSS SECTION.)
WRITE (6.22)
WRITE (6.13) SIGPS.SIGPSO
WRITE (6. IS) Ai0.E.FQEO9THOER.REF
ETMTm(O. 0.)
EPSTO(Oosc.)
ETH?4Tu(O..O*)
EPS14T.O.O.0)

600 CONTINUE
Sol CONTINUE

S TOP

SISFTC CC NOOEC(
%SBOUTINE NRCELL(M.RC.PC.ZC.AL.NX1 .XM.YM.ZM.AAoSBCC)

C NXI IS THE MAXIMUM PHI-MOOE INDEX PLUS 1.

C SC.PC.Zr DEFINE THE CENTER OF THE NEAR CELL
C XM.YM.ZM ARE 'THE MAT,4 POINT COORO:NArES.

C CELL DIMENSIONS ARE QmAAv PHI*8s. LmCC.

C 01 tHRO4GN 026 ARe THE VARIOUS INTEGRALS.

c At IS THE NUMBR OF SUI3CFLLS ALONG EACH EDGE OF THE MAIN CELL*

C M*M#M IS TP4E TOTAL NO. OF SUISCELLS. M Is EVEN
COAIACON /XXX/ xmCIo).zM(Ifl)

Fig. 24--(continued).
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COMPLEX XP,.

COMPLEX P15(I10)e.P16( 10)

COMPLEX )PP.XPO
PEAL L0t.S

P1 IN)z(00.0

09(N)u(0%*0*.

POI(NI-(O.,0.

P1N)2(0..3. I

P06(N)*(0*,O%

PI0(N)*(0.s0. I
Pi0 CONINUE 0.

PIGINIRC(0.90.SO *

t SmRC-0T.0*C~

00 100 Isi.#4
ria-i
PHIS PH IS.? 1*S
ClUCOS (PHI I
P,12SINtPHfl

DO 100 Je),m
TISJ-1

RAOuPADS+T) *A
00 100 CuI.M
TI mKI~
t ULS*T1*C
XsXM-(RAO*COSIhLI-L*SIN(AL))*COS(PHI)
YuYq-(PAD*COS(ALI-t OStN(ALI I*SIN(PHI)
2Z*.(Ze+L*COS(ALI I
OuSORT I X*XY*Y+Z*Z I
Q36044.)

AR36*28319*P
DRS(.t .4AR*API/P3

*CIPL X(IPP PI I
QQRt3.@-AQ#AP)/Pl

OSCMPLX(OtQQI
AP.Q0^0S( AL)
OVsAP* !*A*V/6*28319

X~stLMPLX((C0S( AQ)*-SIN(APII
KPPS XP'P
xP~u xP#0

00 loo N*I.NKI
'r2*N- I

Fig. 24--(continued).
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CNuCOS(T2*PHI)

%NES INC TZ*PHI)
CNDUCN*OV
RNDBSN*DV
*1 (N)=PI CN),CI*CND*XPP
02(N)aP2(N)+SI*SNO*XPP
P3(NINPJ IN),X*X*CI *CNO*XPO

044N)sPA IN)+X*X*SI*SND*XPO
PS(N) uP5(N )*X*Y*S1 4cNn*xpo

06CN)aP6(N )+X*Y*C I4SND*XPO
0?(N uP7CN +X*Z*CND*XPO
DO(N)uPS(N)+Y*Y*S1 *SNO*XPO

09IN )uP9(N)+Y*Y*CI *CNO*XPO

b00(N 1 SPIC(N 1 Y*Z*SND*XPO
Ott (M)*PII N)+CNO*XPP
otz(NinpI2(NI+Z*X*Ck*cNn)*xpo

m13(N)ftPI 3(Nj+Z*X*Sj*SN0~*XP0
01* (N)mP14 (N) +ZV*S1*CNfO*XPO
015(N)*PI5(N)ZY*C1*SNO*XPO
Pt 6( N ).Pt6(N I Z*Z*CNC*XPQ

100 CONTINUE
qETURN

ENO

9 0.750 0.100 0.200 6.030 2.4 000 000

Fig. 24--(continued).
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B. Tube Scattering with an Axially Incident Plane Wave

The flow* chart of the basic operations is shown in Fig. 24 and the

statement listing is given in Fig. 25. The input and calling parameters

are defined below.

The data cards needed for each run are as follows:

Card Number I Format (215,7F10.5),i
Columns Quantity Description

1-5 NNN NNN = the maximum 0-mode
(right adjusted) index (NNN = 2 for on-

axis incidence)

6-10 MMM MMM = the maximum z-mode
(right adjusted) index.

11-20 A A = the mean ring radius
in inches.

21-30 T T = the tube wall thick-
ness in inches.

31-40 TL TL = the total tube
length in inches.

41-50 FR FR= the frequency in
gigahertz.

51-60 Re(ER) ER = the complex relative
dielectric constant of
the tube material.

1 61-70 Im(ER)

Card Nufber 2 Format (1115)

Columns Quantity Description

1-5 JT JT - the total number of
(right idiIs-Ad) rin s into which the

shell is divided.
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Col umns Quantity Description

6-10 JZ(I) Z(I) = the index of the
11-15 JZ(2) I-th matching ring.
16-20 JZ(3) There will be 2(MMM) + I
* .matching rings.

4

( t(tight adjusted)



76

The calling parameters for the RING subroutines are defined below:

NX = the maximum *-mode index

MX the maximum z-mode index

A = the inner radius of the tube in inches

Z1 the z-coordinate of the center of the particular ring

(In waelengths)

AL 0.0 (always)

T - the ring thickness in wavelengths

TL the total tube length in wavelengths

DL the length of the particular ring (in wavelengths)

The calling parameters for the NRCELL subroutine are defined

below:

M= the number of subdividions of the large cell along each side.

There are M3 total subcells.

RCPC,ZC = the o, z coordinates, respectively, of the center of

the large cell.

AL 0.0 (always)

NXI * the maximum o-mode index plus 1.

XM,YM,ZM = the rectangular coordinates of the match point for

a given calculation.

AA,BB,CC = the large cell dimensions in terms of the polar coordin-

ates, p, 0, z respectively.

The function FL(Z) gives the distance along the shell (tube) as a

function of the z-coordinate of the point on the shell. This generalized

J
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function approach is used in anticipation of the general case when the

arc length along the shell will be a more complicated function Pf z such

as a polynomial with several terms.
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MmROGRAM

Read (NNN,MM,A,TL.FR,ER)_

Read (JT JZ(I))

Calc. shell dimensions in wavelengths

Calc. z-coordinates of the matching rings
on the shell

j [ Initialize integrals to zero

f Use the longitudinal tube symmetry so
integration is needed for only half the
tube.

I 52 continuel

Calc. the total integrals at each matching
ring at o=O by calculating for each ring
(using ring subroutine) and adding the con-
tributions of all the rings at each match
point.

50 continuel

Calc. the coefficients in the system of linear
equations and put in matrix form.

Calc. the incident field coefficients for the
Nal o-mode and augment the previous matrix by
adding these coefficients as another column
on the right side of the matrix.

Fig. 25--Flow chart of the tube scattering
computer program.
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Solve the system of equations using the
Crout reduction method. The solution
yields the Fourier expansion coefficients
of the total field. Write out the Fourier
coefficients.

Calculate and write out the far scattered
fields and the backscattering cross-section.

RI UBRUTINE

Calling parameters (NX,MI,A,ZI,AL,T,TL,DL)

Initialize all integrals to zero

55 continue

Do 100, J = 1, M1 (Ml is the total number
of matching rings on the tube.

SDivide the ring into a minimum of 30 cells]

Test to see how far the match point in question
is from the ring.

Assign the number of "near" cells (to be
integrated over using the NRCELL Subroutine)
also determine if the singular cell calculation
is needed (if the match point is in the ring)

Calc. the contribution of the "far" parts of
the ring.

200 conti nue

© B®

Fig. 25--(continued).

I



If the NRCELL subroutine is needed, set the
numbter of subcells needed in each "near"
cell, call NRCELL subroutine and add the
contribution tothe "far" results.

Call nd paamethesinua (McellcoALntribution

5 continue

Divide the ceflficint cls A1,and calculate
threac total cl pint.a aThe giudiontea onl
syutrn of teaho te isubelosimlfh

100 continue

END

F0cn ig.2cnine)
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VAN DOEREN, Ro E. JO8N FG8230 a

SEXECUTE 1BJOB
a B o
SIBPTC MAIN NOOECC

I FORMAT f2?5#7F10.5)
22 FORMAT (5X.4HJ a .15)
2 FORMAT (I2FI0o4./)
3 FORMAT (5X.6E 16.7./.SX.6EI6.7./.SX.6E16e7.'/)
4 FORMAT (5Xo6)4MXX a o15)
5 FORMAT 15X#6E16o7./. 10Xo6E26o7#/)
6 FORMAT(5Xv17HER.ToL.A.WAV*FR %7FII.6%/o5Xo8HSIGMA * F16o9)
7 FORMATI2X.IOHATAU(O.I).,2F10.5,IIH BPHI(OeI)u92FlOo5oIIH ATAUIteI)

2a#2F)O*591IH BPHI(Iv.Uu.2F10.5)
* FORMAT ISX9215)
9 FORMAT 95X,SHJT a o[5%/)
10 FORMAT (1115)
11 FORMAT t5X*14HTHE AoS FOLLOW)
12 FORMAT (SX*IAHTHE 8.S FOLLOW)
13 FORMAT (5X.2BHTHE AUGMENTED MATRIX FOLLOWS)
14 FORMAT f5Xo28HTHE AUXILIARY MATRIX FOLLOWS)

COMPLEX FTHSFS
COMPLEX Al (6.3.2.-.A2(6.3.2).A3(6,3.2).A4(6.3.2,.A5(6.3.2)
COMPLEX A6(6.3.2) ,A7(6.3-.2A8(6,3.* ) A9(6.3.21
COMPLEX 81 (6.3.2).B2(6.3.2).83(6.3.Z).84C6.3.2).65(6.3.2)
COMPLEX 86(6.3,2) .87(6.32).B8(6,3.Z.89(6.3.2)
COMPLEX AAI (6.3.2).Ah2(6.3,2).AA316,3,2).AAA(6.3.2).AAS(6.3.2)
COMPLEX AA6(6.3.2) .AA7(6,3,2),AA8(6.i,2).AA9(6.3.2)
COMPLEX 88) (6.3.2).BBZ(6,3,Z).683(6.3.2).B416.3.2).8B5(6.3.2)

COMPLEX BI)6(6.3.2 .887(6.3.2 I 888(6.3.2).8B916.3e2)
COMMON /AAA/ AAI.AA2,AA3,A44AAS.AA6.AA7.AA8.A*.BB.882.888a4.8
286.856.887.58.889
COMPLEX C(72,72)oE.FF.FTHsFPS4EQ
COMPLEX AQG9ARG29EX
COMMON /XXX/ XM(1O)*ZM( 10)
COMMON /JWW/ JWw
DIMENSION JZ(1O)
INTEGER OOEV
READ (5.1) NNN.MMM.A#ToTL.oFR9ER

C NNN 15 THE MAXIMUM PHI-MODE INDEX.
C MMM IS THE MAXIMUM L-MOOE INDEX.
C A IS-THE MEAN RINd RADIUS I OR TUBE RADIUS).
C A.T%)Lo ARE IN INCHES* FR IS IN GIGAHERTZ.
C Eft IS THE RELATIVE DIELECTRIC CONSTANT (COMPLEX IN GENERAL$.
C 00 IS THE APPROX. LENGTH IN WAV. OF EACH ELEMENTAL RING.

NXwNNN. I
MX&MMM* I
MMX*2*MX-1

C MMX IS THE NUMBER OF MATCHING RINGS OVER THE TUBE.
M4 1 MMM
READ (5.10) JT*IJZ(I)oIttMMX)

C JY IS AN O00 INTEGER (THE TOTAL NUMBER OF RINGS FOR INTEGRATION).
WAVe) I 803/FR
AuAIWAV
T uT/WAV
TL*TL/WAV

DLwTL/T I
DO 41 JvI.MMX
TIBJZ (Jl-)
ZM(JuT1*0LOL,02*
)CMIJ)NA

41 CONTINUE
WRITE (6.)) MMX.JTO(ZM(J)%JUI.MMXI
WRITE (Got) MMX*JT.(XM(J)%431.MMX)

Fig. 26--Tube scattering computer
program statement listing.



ALmOoO 82
NsN
00 52 Joi.Mmx
00 92 McI .NX
Al ~j#M#N)ml09. 0.)
AlE JMt4)(0. .0.)
A3f4,.N)u (0. .0.)
A4 IJoMN)a 10. .0.
A5(JMNJa(O. .0.)
A6(JsMvN)sl0. .0.)
A7(JoMvN)s (60 .0
A8(JsMoN)UEO. .0.
A9fJ9MbN)u (0. .0.)
9I (JoMqN)m(0..0,)
82fJ#M#N)z(0. .0.)
831J9MaN)2(0o9.0.)
84(J.M.Nzs0. .0.)
s5(JqMqN)3(0..0.)

e6J.M9Nx(0.#0s.
g7(joMON)a(beo...I

89(JMsN)w(O. .0.)
52 CONTINUE

C THE SYMMETRY OF THE TUBE IS USED SO INTEGRATION IS NEFOEO OVER****

C ***~ONLY ONE HALF OF THE TUBE
.JT2&IJT+I)/2 '

AluA-T/2.

DO 50 Jlul.JT2
JWW J I
TIvJI
21. (Tl*DL )-OL/2.
HANX- I

CALL PING (N.MI.AIZliAL.T.TL*DL)
N .NX
00 55 Juls.MX
00 55 iMul.MK
At(JoMoN~mAIIJ#M#N)+AAI(J*M9N)
*24 J*M.N) uA2( J.M N) ,AAZ( J. 4.N)
A3(JoMNlmA3.J.# .N)+AA3(JMN
AO(J*M#N) .A4(*M*N)+AA4cJtM.N)
AStJ*t4,N)uAS(J*M*N)+AA5(J*M*N)
A6(J*MvN)UA61J*MoN)4AA6(JM*NI
A7IJoM.NuA7tJM.N4)#AA7(JeM*N)

A9(JoM*NI uA9CJ.AM.N)+AA9(JqMeN?

821 Ja N) * Ij, M N1)+8 It Ja NI
83fJoM.N)vB2(J#M.N)+8B2(jm#NI
841J.R4.N)-a4(JqM*N).8831JoMsN)
l39fJ.M*NI.84(JMsN)4BBA(JMsN)

6:J:MN3:85J:M:N)+8961J..N)
87 J.MN) 387 J M N)+13871JM.Nl
S*IJ.M.N) .88(J.M*N)+8O8(JtM*Nl
89(JMNlx89(JNI.N)+B89(JM.N)

65 C ONTI1NUE
60 CONTINUJE

00 60 Jul .MMX
00 60 MuI.MX
WRITE 16*81 J*M
WRITE 166.1)
WRITE (6.5) Al 1J.M.N).A2(J.MtN).A3(4.N.N).A4tJMN.AS(JMt4I,4lA

261J,NNA71J.MoN).AS(J.MN).A9(J.M.N)
WRITE (6.12)
WRITE (6.69I9.1d.2J..16f..I8(.MN.gJMN.6,

Fig. 26--(cntinued).



2.M.N) .87(j.M.Np .881 J.M.N) .9 (JM.Np 8
60 CONTINUE

It ER- I. l

C NEXT STEP IS CALCULtATION OF THE COEFFICIENT MATRIX*
00 70 JIBIOMMX
00 70 MIwI.MX

C THE-FOLLOWING SETS UP THE COEFFICIENT MATRIX.
C rHE MATRIX IS FILLED IN FROM LEFT TO RIGHT.
C THE SMALLEST VALUE OF M IS TO THE LEFTsM INCREASES TO THE RIGHT.

tMuMI-I

JUJI-I
CM=COS(6.28319*TI*ZM(JI )
%MuSINI6e283I9*TI*ZMCJI II
I S06*J
IF (MI.EO.II KSwO
IF (MIoGE92) KSsl2*M-6
1 taIS+I
12a 1542
13mIS+43
*41S4
IS. IS4S

9(Im9S+l

9(3.9(+3
K**.9(+4

9(689(+6

KS~uKS+8
9939+9

K(1 u9(S+1I
I(I2.IS+12
C(II9I.9(1CM-E*Al(JIoMIsN,

CIII .93)u-E*A3(JI .MI .Nl
C(IIIK49(I0oO9
CIII.9K5)&-E*A2IJI#MI .N)
CIII.9(61.(0.,O. p
IF IMI.EO.I) GO TO 500
CfII 9K7)aSM-E*BI (JI .MI .N)

C(II .9)m-E*83fJ1 .MI .N)

.CIIsI. ( 0 U(0&s,0.

C(ImI.9I I -E88t2(JI9MIsN)
C(IItI .9110. .0.)

500 CONTINUE
Ctt2*K1 IS(O.*Oep
CIIE.9K2.CII..cI
C(I2.9(3iw(0..0. p
C(lI.9(4 2-Ct II .93)

C112.9(6)=C( II .9()
IF 1141.EO91) GO TO 501

C(12sK(SlwC(IIo.97)

CE 1291010-C*11009

CI III(I2sC(I11.9(1)

501 CONT INUE

Fig. 26--(continued).



C(13.K3)&CM-E*A6(Jl .MI.N) A
Cl13,KS5.E*A45(Jt.Mj.N)

IF CMI*EO.I) GO TO 502

CC 13*K8)u (O* *)

C(139II)ftE4e-(jl4I .N)

502 CONTINUE

CC 14.K2Z u-C(C13.KI I
C24.9(3)* CO. , 0

CC 24oK4)-CC 13.9(3)
CC 34.(5 )*fC0.s , 

IF (MIOEO*I, GO TO 53
Cf14*9(7 U O.,. I
C(I4*K8S P-CC 13.9(7p

CC14.9(11 )uC0f.O.j

C(14*K(12)*-CctlKttI)
503 CONTINUE

C(t5.(I )--E*A7(jlstl.N4)
CCI5.9~i(O..o. I
Ct59(3)2..E*A9C4I*. N)
C 159K4)3(0. *0.)
C 9 *S) R5CM-E*Aft j 1 .M 1.N,
C(I5961z0.#..
IF CMI*EQ.1) GO TO 504

C ( I'S * 7 2-E*i9ji (,I s1vN)
CC I 5.9K8 ).O. .0.

C(I59KI I ISM-E*S8.jI..qN,
CC1S,9(12)mCO..O. I

504 CONTINUE
C~t(1K)vCO.O.)

C(ta.9(3)uCO..O.)
CC tO .94)u -C IS.K93)
CC 169K5) (0. .0.1
CfIG.9(8)-CC 5.9(5)
IF( MI*EO.I) GO TO 505

ClCI6*K8SuCf 35.9(7,

CC 16s99 0.. 0. 1
CCRG.9(tMl.-CC 2599)
CC 289K11)mf O. .0.)

505 CONTINUE
70 CONTINUE

MX). C6*NMX)+1
C DOWN TO 8O IS CALC. TME LAST COLUMN OF THE AUG#4ENTED MqATRIX.

DO 80 JIm) .Mtx

SmQ36*2a39 *1jI
Fig. 26--(continupd).
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;4lIS+4
5IS+5
16C JS+6
CC3IMXI )=CEXPC-ARG)

CfI3%MXI.)=-CEXP(-AQG)

C(159MX1 310. .0*)
CfI 6.MX1 3 (0. 0.)
IF IJ.EO.1) WRITE (6.13 J..j*ARGC(I*MXI).C(3eMXl)

8O CONTINUE
JJJ-6*MIX

WRITE (6.23)
00 82 J-19JJJ
WRITE (6.8) J
WRITE (6.5) (CIJ.M)*M-I.JJJII

82 CONTINUEI

C THE COEFFIECENT MATRIC IS 6*MMX By 6*MMX,
C THE AUGMENTED MATRIX IS 6*MMX BY (6*MMX+12
C THE FOLLOWING IS THE CROUT REDUCTION OF THE COEFFICIENT MATRIX.

MXXc6*MMX
NNxMXX+I
DO 128 L-IMXX
I LL=LI
DO 328 IC=L.MXX

IF (LLL.EO*O) GO TO 2171
DO 227 Ka3.LLL
C(IC*L)uCIIC*L)-C(IC.K)*C(K*L')

117 ClL*II)=CfL9II)-C(L*K)*CIKsIl)
1271 CONTINUE
118 C(L#11)uCILqII)#'CILvL)

WRITE (6914)
*WRITE (6.4) MXX

00 220 J32.MXX
WRITE 16922) J

WRITE (6#2) (CIJ.I).IUI.MXX)
120 CONTINUE

IF (MXX.EO0.I) GO TO 124
D0 123 12.MXX
I CmNN-L

00 322 KIII.MXX

122 Cl ICNN)sC( IC.NN)-CI IC.K)*C(NN)
123 CONTINUE
224 0O 226 ,3m2'MXX

WRITE (693) CfJNN)
226 CONTINUE

C THE FOLLOWING COMMENTS APPLY FOLLOWING THE CROUT REDUCTION.

C Cfl*NN)nA(0*I) SUPER(TAU2
C Cf2qNN)sstoq2) SUPER (TAU)
C Cf3#NN)2B(Oo2)SUPER(PhI)
C Cf4.NN)uA9O,2 )5tPER(PHt)
C Cf5*NN)wA(0oI) SUPER (L)
C Cf6.NN)zB(O.2) SUPER (L)
C CfN.NN)VASIOo2) SUPER (TAU)
C Cf8*NN)xBS2O9I3 SUPER (TAU)

C AND SO ON
C NEN IS THE INDEX OF THE LAST COLUMN OF THE REDUCED MATRIX.

WRITE 26.7) C(2.N4N).C13.NN),C17.NN),C(9.NN)

-. C THE REST IS CALC. OF THE SCATTERING CREOSS-SECTIONS

Fig. 26--(continued).
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wpS 0. 0

ITHS O.0

DO 201 MIM

MM.m~ .- I

IF* (MOEO.I) MSuO
IF (M.GE.?) MSal2*MM-6

MS3mMS+j

M S4 MS+4
MS7UMS+7

M S9wMS+9
DO 200 JuoIJTTTT

2.4, TI*OL 1-OL/2*
ARG I'6.283 19*Z
ARG2uCMPLX(0. .- ARGII
EXsCEXP (ARG2)
CMwCOS(2.*T2*3. 24159*Z)
%;:9;N(2e*T2*1*1 I 19*Z)
W F F+C4*EX

vSaPS*s4*rX
200 CONT1NUE

WTHSFTH,(C(MSI .NN)-C(MSI.NNI )*PF

IF (M*EQ.I) GO TO 2022
WTHSmFTHS *(C(MS7*NNI-C(MS9,NN),*FS

9011 CONTINUE
WRITE (6a2) FF*PS*PTHoPTHS

PflI CONT INUE
C NN IS THE INOEX OF THE LAST COLUMN OF THE REDUCED MATRIX.

COtu4.**3.i4lS9**5I*((T*OL*A)**2)
C02s(CA8SfI*-SQ) )**2
%lGsCOIeCO2* (CABS(FTH4PTHSD)**21
WRITE 16*6) ERvT*TL.o4*WAV9FRvSIG

2M)2 CONTINUE
4tTOP
END

-stewre OECCKI 'NOOECK
qUsROUTJNE RING (NXqMI ,A.zI ALeT*TLoDL)

C ALL DIMENSION ARE IN WAVELENGTHS-
C NX IS THE MAXIMUM PHI MODE INDEX.
C MI IS THE MAXIMUM 1.-MODE INDEX.
c 21 1S THE Z-CORDINATEf OF THE CENTER OF THE INNER SURFACE.
C AL410*O IN ALL CASES.
C AL IS THE VALUE OF ALPHA AT THE RING BEING INTEGRATED OVER HERE.
C A IS THE INNER SURFACF RADIUS OF THE RING REING INTEGRATEO OVER.
C T IS THE RING THICKNESS NORMAL TO THE SHELL SURFACE.
C OL IS THE IN4CREMENTAL ARC LENGTH ALONI THE SHELL.

REAL LqLJ
COMMON /KXX#X/ (~inlo204ID)

C 140.20 ARE THE MATCHING POINT COORDINATES.
COMMON /JWW/ JWW
'4XuMI+I
MIRR*MX-I

C '41 IS THE NUMBER OP MATCHING RINGS OVER THE TUMe

DI1MENS ION 5 TC5) 1 sSP 191 -SL ( 4)
COMPLEX XP.P.O.PI f3).P2(3).P3E3).PA(3))PS(3).P6h1).P~I.093)

Fig. 26--(continued).
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COMPLEX 09(3).PIO(3).PII (3l.Pl2(11.Pil(1.PI4(1).PI5(1).PI6(3)
COMMON Pl.P2.P3.P4.P5.P6.=7.p8.p9.pla.plI.PIZ.PI3.PI4.Pl5.PI6
COMPLEX VI(5.21.V2(5.2).V3('5.?1.V4(5.2).V9(S.21.V6(5.2l.V7(5.2)
COMPLEX VS(5.21.V9(5.2).VIO(592).Vii (5.2).V12(5.21.VI2(S.21
COMPLEX Vj4 (5.2) .VI S5.a) .V16(5.?
COMPL.EX XPP.XPO
COMPLEX Al (6.3.2).A2(6.3.21.A3(6.3.21.A4(6.3.2),A5(6.3,t21
COMPLEX A6(6.3.2).A7(6.3.21 .A8(6.3.2 l.Ag(6.3.2)
COMPLEX 8 632.2632.3632.4632.5G32
COMPLEX 86(6.3.?) .8716.1.2) .88(6.3.21 .96.392)
COMMON /AAA/ AI.A2.A3.A4.AS.A6.A7.A8.A9.81 .82o3.84.F3i.B6.87,80.B9

C FIRST SUBSCRIPT IN Al ETC. IDENTIFIES THE MATCHING RING.
C SECOND SUBSCROT IS THE L-MOOE INDEX PLUS I
C THE THIRD SURSCRIPT IS THE PHI-MODE INDEX PLUS to

00 50 N1.eNXI

00 50 121.MI
VI(IoNI u(O.o'0.1
V2(I.N) s(0.90.) f

V311*NI =0.90.)
V4(f1NI e...
VS ( I N) a(30. 0

V6(I.N) u(0.*0.)

V8(ION) 2(0690)
V9(f1NI s(0..O.1
VIOC I *N1(Q0.00
VII (I .N1 (0..0.)

V13( I N)a(0..01.1
* V13E1.N13(0o...)

Vl5CI*Nlw(O..O.)
V16( IoN)x (0.o~0.l

50 CONTINUE
D0 55 Jo1.mI
00 55 M-I.MX
00 55 NNIINXI
Al (JM.N~u(0. .0.)
A2(JsMoN)u(O. .0.1
A3(JoM.NI.(0oono)
AA(j.MqN)uf0. .0.1
A5(JMNIs(O. 0.1
A6IJ.M.N~m(0~. 0
A7(J*M.N1 3(0. .0.1
AS (J.MvN) sf0. .0.
A9fJvM.N)3 (0. .0.1

82(JsMsNIS(O. .0.1
83(JtM.N4) a(0. %.0.1
9A(J*MoN1.(O. .0.1

86(JMeNlufO.,o. 1
9S(jmN1 sf0. .0.

55 CONTINUE
00 100 Jst.m(

C j HERE RUNS OVER THE NUMSEP OF MATCHING RINGS ON THE MO0Y (SHELL$.
C ALPHA MEASURED-FROM TANGENT TO Z-AXIS* CCV IS POSITIVF. CV IS NEG.

RCmIA/COSfALl)+)T/2o
ACaRCOCOS (AL)
zcuzt~tr/2. )*SINf AL)
xcsAC
mNm33. 4159*AC/n.OI
IF tNO.tT.30) NO.30

1. Fig. 26-- (continuLj;
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flPHI .3. 45'9jTTl
DV*?4OL4AC

4
O0HI /6.28319

QESTusOxiTt(xc-xo(j)**2.(ZC-Zn(j)I**2)
00141*1 

4
0L

0020.*1 *OL
IF (PTEST*LT#O02) K0211

IF QRTEST*LT.001) K(0216
IF IRTESjT*LT*0.001l K0222
IF CRTEST*GT.002) K061

c DOWN TO 200 IS CALCtULATEO THE CONTqIA* OF TH4E FAR PARTS OF RING*
NO! mNO I
00 200 '(*K(0NflI
TTj.'(-I
DM.(OPI/.#,)+TTI *00H1
COCOS (PH 1

*S IN (P# I
x.KO~j I-AC*C
YU-'AC*S
rZoCJI-ZC
IF (Z*LT*0.fl W1IT.O.666667*((OL/2*)**3)
IF (Z*GT.6003) WYTuz*Zf
Q&SOT I X**2.Y**2+Z**2)
AQN6*26J 19*R
AQSmAR**2

C I -AR/'R3
PECP4PLXCPR.pI)
OR. (3.-ARS)/R5
at s3**AR/R5
OUCMPLX(OR4OI)
XP*CMPLX(COSAR,*-SIN(AR)
Xppexp*P

no 200 NwI*NxI
TT2.N-I
C~aCOS(TT2*PHI
%N.SIN(TT2*PH)
VI (J*NIUVI(JoNI+CN*C*0V*XPP
V2(J*NI uVZ(JoN)+SN*S*DV*XPP
V3(J.NI .V3(jNP+x(&X*CN*c*flv~xPO
V4(J.N)aV4 (J.N4),X*X*SN*S*DV*XPO
V5(joNl* V5(J#N)+X*Y*CN*S*DV*XPO
V6 (J.N )RV61J.N ),X*Y*SN.CODV*XPO
V7fjoN)uV7(J.N).X*Z*CN*DV*XPO
VSIJ*N).VS(J*N) f*Y4SN*',*DV*XPO

V9(J*N)BV9 JN )+V*Y*CN*C*OVeXPO
VIOIJ.N)uVIOCJ*N)*Y*ZOSN*OVOXPO
VII fJ*NIUVI IIJ*N)+CN*DV*XPP
V12(j.N)UV12(JN)+Z*X*CN*C*0VEXPO
V131J.N,.V13(JN)4Z*x*SN*S*nv*xPO
VI. IJ.N)UVlA(J.N),Z*V*CN*S*OV*XPO
VIg(JN).VIS(J.N).Z*Y*SN*C*nV*XPQ
V16(J*N3svl6tJ.N)+wTT*CNODVOXPO

200 c ONT IN~jE
00 201 NuI*NXl

I WOI4AT (//*SX.4151
2 WORMAT 5SX.8FII.8./,5X.AFII.6./.SX.6FiI.6,/.5X.SFIl.6.//I
WRITE (691) J.N
WRITE (6.2) VI (J.N) .VP(J.N).V3tJNIV4(J.NiqVISEJ.Np.V~IJ.N).V7(J.N

21JeN)oV16(J.Nl

Fig. 26--(continued).
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211 CONTINUE

IF (IO.EO.I) GO TO 71
IF (KO.EQ.II) NIzZ
IF IKO*EO#)6) 14123
IF (KO*EO.221 N1-4

C NOTE THAT KOai OR NIZ,93e4.
C IF KOxI- THE MATCH POINT IS FAR* NRCELL SUBROUTINE IS NOT NEEDED*

DIM4ENSION P4Z(4)
IF INI.W-92) GO TO 61
MZ(1 )=4
MZ(2)u4
GO TO 63

61 IF ENI*NE*3) GO TO 62
MZ(I) )=O
MZ(2)24
MZ(31=4
GO TO 6J

62 'dZ(IuZO
MZ(2)=10 I

MZ(3)=4[
MZ(4 )u4

63 CONTINUE
DO 70 Isl.NI
TT3S I-I
OPNUS**P4I
IF (NI*ft~e4) GO TO 65
PHI uOPHIOPH/2.,TT3*OPH
0O TO 66

65 PHI uOPH/2*+TT3*DPH
6CONTINUE

XCS AC *COS(IPH 1
YCmAC*SIN (PHI)
rcuzc
XM=XotJ)
YMwO.O
ZMuZO IJ)
AA=T
BssopH
CCwOL
MMUmz II,
CALL NR ELL(MMACP1ZCALNX.'y4.YM.ZM.AA.8BCC)
00 70 NuItNxI
VI IJ*N) wV) eN) +PI IN)
V2(J*N)NV2(J*N)+P2(N)
V31J*NjwV3(J9N)*P3(N)
V4(J*N)uVAIJ*N)+P4 (N)
V5( J N ) V5 I J*N) P(N )
V6 (J*N I VO (4.1.4 P6 (N
V7 lieN I V7 Ii N )P7 IN)

VSIJ*N)aV8(J.N)+PSINI
v91JsN)sV9(J.Ni+P9(Nl
VIo~jqNIUVI0IjqN).PI DN)
VII(JsN)mVIIIJsN)+PIIfN)
Vie IJ*N)wVI214,N)+P12(N)

V13(JsN)vVI3(J*N)+Pt3(N) Fig. 25 -- (continued)

VISIJVN)6VIsIJqN)+PS5(N)
V16 IJvN InVI6I J.N 4P 6 N)
WRITE (691) t*JN
WRITE 1602) P1IN).P2(N,.031N).941N).PSINP.P6EN).P7EN).POIN).P9IN),

I@tO (N ) ePiIN) .9)2 N .9I.I(N) .94 (N ePIS(IN 1,96 (N)
WRITE (6.2) VI IJN).V2(J.NIV3(J.N).V4(JNIVSIJeN).V6(JeN).V7(JN

2) eVOIJeN) .V9(JeN) .V O(J.NeI viIJ.N),VI 2(J.N eVi3I JN) ,VIA J.N) .VIS

Fig. 26--(continued).
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2CJsN)sV16(J#N)

70 CONTINUE
71 CONTINUE

IF (KO.LT.292) GO TO ao
C IF KOm22* THPR mATCHING POINT It IN THIS PING ITSELF.

C DOWN TO Sn IS THE SINGULAR CELL CONTOISUIONs
A I '/2.
SI 'ACOIDPHI
Ct'OL/2.
4kOwSQQTCAI **2+SI**24CI0*2)
TT~u2e/Je14159
tT(Jlu-I.,WTe*(ATANUAt*C)/(BI*SO))ATANIA*jiI/(Cl4SQf))
9P(JU-I.+TT2*(ATANU(S.AI/CI*SQIATANCI*.,)/IAI.SO)))
5LEJIu-1.+TT24(ATAN((Ct*8I)/(AI'SQ2S*ATA4(C1EAIII8*SQI))

WRITE 16.#1 J
WRITE (6.3) AT(J)#SPCJ1.SL(J)
GO To es

60 CONTINUE
%t(J)U0.0

* FORMAT (eFIO#6i
PUNCH SoJWWoJ.N
PUNCH 6.ST(J),SP(J1.SLLJI.VI I4.N).V21J.N),V3(J.N).VA(J.N).VS(J.N),
PVG(J.N).V7(J.N).va(JN).V9(J.N,.VIO(J.Nl.VI1IJ.NleVI2fJ.N,.VI3(J.N
21 eVl4IJ6NI.VI5(JeN) .V16(JsN)

C JWW IS THE PING INOEXsJ THE H.P. tNOEXN THE PHI-MODE INDEX***

CsCOS (ALP IJ))qs lIALP Ii)
CAsCOS (AL)
4IAftS NCAL P

300 CONTINUE
L m'rLIZI I

C 0020~ 1S A FUNCTION GiviNG L, AS A FUNCTION OF 2.
00 90 NsleNXt
DO 90 Hal .mX
115aM- I
*aTTS5i. 14159
CM.C.OS(2e*GeL)
qMNSIN(2**G*L)
COMPLEX 11 ,TZT3.T4.TSOTG.T7.tS.T9.TIO.?I I ,T2.T13.Tl4.tlS.Tp6
lIeVI (J*N)
T22V2(49N)
T3mV3(J9N)
T4oV4 (J*Nl
T5sVS IJ*NP
YS'V6(J*N)

TOV7(J*Nl
leaVe(JON)

TlOuVIO(JsN)
TIIOVII (J.Nl)
TI~uVl2(JsN)
T13sVl3(JsN)
714sV1 AIJ*N)
tl90VIS(JONP

AI(J.M.NluCA9*(rlT3+TS54,TIJP)*AI(J.M.NP
A2(JsM*N)wCM4T?,A2(J.MNl
A3(JMN)uC4* (-T2-T4*T6 IA3 (JeMeNI

Fig. 26--(contlnued).
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A4 (I, Me NIC9* T2+ T6+ T8 I+A4 ( .2M.N )
A'I(J MN sCM*T ,OA9 (J*M.N)
&61 JiM.N)I CM* (TI-TS+T9+,P (Jl)+A6 (J.M.N)

A7(J.MNIaCM*(T12+T141+A?(J.M.NI
AS(J.M.N).CM*(TII.TI6.SL(J))4A8(J.M.NI
A9(JM.NI=CM* (-TI3+rIs 2,A9(J.M.NI

8,(J.M.N)sSM*(Tl+T3+T5+ST(J))+I(JMN)
82(J*M.N)sSMeT7+2.J.M9N)

83(J.M.NI-SM"(T2-4+T6)+83JMN)
84 I J. 4 N) .SM4 IT?4T6+TS 1+84 1 .M N
85fJsM.N)-SM#TI0+8351 JMN)

B6(JMN)=SMe(TI-TS+T9+',P(J) )+86(J.MNI
187IJ.M.N.*SM*(T12+T1+87(J.MN)
B8(J.M.NI*SM*(TII+TI6+SL(J))488(JM.N)
s9(jem.Nj aS4v* (-r I3+TI 5?,891J.M*N)

C THE FOLLOWING USES THE MIRROR IMAGE SYMMETRY TO CALCe ALI. THE A*S.
IF ((ABSIZI-(TL/2.1)).LTo.Ci.0I1 GO TO 90
JJUMI -J+I
& JNTL-L
CMJwCOS 12.*TT5*3.J2*159*LJ)
9MJ'SINY(2**TT5E3* 14159*LJ)
AIIJJ.M.N)WCMJ4(TIT3T5STJJ+AIJJoM.N)
£26 JJ9M.N)%C4J*(-T7)+A2(JJIq.Nl
A3tJJ.MN)UCMJ*t-T2-TA+T6 ,,A3(JJM.N)
A4(JJ.14.N).CWJ4(T2+T6+TB),A4(JJ.MNI
AS(JJ.M.N).C4,J*f-T20)+AS(JJMN)
A6(JJ.M.N).CMJ*(tt-T5+T9,SPtJ))+A6(JJ.MN)
A7(JJ.M.N)'CMJ+(-T12-T[1 +A71JMoN)
AS(JJ.MN)uCMJ*(TII+716,%L(J))+AS(JJ.M.NI
A9(JJ.M.N)OCMJ*( TI 3-TI5).A9( JJ.MN)
SI I JJ.M eN I SMJ* ITIeT 3+TS+ST(J.) +9 itJJ22.MeNI

B2fJJ.MsNmSMJ*I-T7)+B2(JJsMeN)
8314J.M.N).SM.J*#-T2-T4+6),831JJ.MN)
841JJ.MN)USMJ*(T2.T6+TS),84(2J.M.NI
Sg5(jj.MN),SMJ*(-TIO0)+BS(JJeM.NI
86(JJ.MeN)wS1J*(TI-TS+T9+SP(J))+B6(JJeMNI
871J4.MN)uSMJ*(-TI2-TI, 2+87 (JJ.MN)
SS(J.JsMN)USMJITII*T)6,SL(J))4BS(JJM.N)
89(Jj.eNjvSmj*(T13-TIS)+89(JJ.N)

90 CONTINUE
1OO CONTINUE
* FORMAT (5X,.37HTHE A,$ (FROM RING SURROUTtNEI FOLLOW)
9 FORMAT ISX93TH7HE 8.5 (FROM RING SUBROUTINE) FOLLOW)
10 F'ORMAT(5X.3i3.6E28.7./.5X.6El6.7,/e5X.6E16.7e/)

00 101 1.1.141
00 101 JmIeMX
00 101 KwIsNXI
WRITE (6.8)
WRITE (6.20) I ,J.ICAI(IJ.K).A2(IJIC)eA3(IeJeIC)eA4(1,J.9C,.AS(IJo

fgC).A61I.jo).A7(I.JolC).AS(IJ.K)eA9(1,J.K)
WRITE (6,9)
WRITE (691m') I.J.K.81(i.JeI(o2.2IJ.K).fl3II.Je'C).,(I,JIC).SS(IJ.

101 CONTINUE
RETURN
EP40

OISFTC OEC2 NODEC
AUBROUTINE NRCELL(M.RCePC.ZCAL.NXI .XM.YM.ZMAA,88,CC)

C 1011 IS THE MAXIMUM PHI-MODE IND0EX PLUS to
C RC*PC*ZP IEFINE THE CFNTFR OF TH4E NEAR CELL

c XM.#YMoZM ARE THE MATH POINT COORDINATES.

C CELL DIMENSIONS ARE RmAAs PH1888o L8CCo
C 01 THROUGH P16 ARF THE VAPIOUr, INTEGRALS,
C M14 I THE NUMBER OF 'UBCELLS A ONG EACH EDGE OF THE MAIN CELL.

Fig. 26--(continued).
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C N*m*m IS vHt TOTAL NO. 00 SUBCELLS. '4 IS EVEN
COMPL~EX XP.0.C)
COM4PLEX P) t3).P2(3),P3(tP(3,0(3.P6C3I.07(3).P6I3).P9(3I
COMPLEX PI0(3),Pl (3).Pt2(3).P13(3,.PI13).PIS(3).PtG(3I

COMMON PIP2.P3.P4oP5.P6,P70P8,P9,PIO0PI)4Pl2,PI3IPt~,PIS.Pt6
CoMtPtX XpPxPO
REAL LoI-S
no 50 Nut .NXI

et (N). (0e.O.)

04 EN) u(0.000)
05(N). 1000)

07(N)U(O. .0.)

D9(N)v(0*#3o$

010 (NJ. (0. .0*

Ott (N)N(O*#O*.
P1N). (0. .0*

016(N)s(O.,2.)
5O CONTINUE

T I SM

T20M2

8.*88/Tt

RAOSaPC- (12-0.500 )*A
PtISPC-(TZ0.500 ('8
t $It- fT2-0 &'5'13 C
D100 tOO I*M
TiaE-I
PsPHI 1S+'1 *8
CI .COS (PH I)
r)I wSIN(PHI )I

00 300 JoI.m
T.1.-I

OADsRAOS+T I*4
00 tO0 KsI.M
TI sCK- I
t OLS+T]*C
X.XM-(RAO*COS(AL)-L*SlN(ALI ('COSIPHI)
VUVM-(AOCOSIAL)-L*SINCAL, )4$IN(PNlI

ZNZM-tCZr+L*COS(ALI I

PRe(-I*AO*A4)/03

0I.1-AQ*Ap/3

Ot m360APea5
OOCMPLX(00,0Il
APuRA0*POS (AL)
OVwAP*9*A*C/6*283I9

XPmCMPLX(COS(AP) ,-SIN(Al)
XPPftXP*P

00 100 Nst.NXt

Fig. 26--(continued).
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is

CN&COS'T20P~H,
%N.S1N(TZ*PH1)
CND:CN*OV
%ND SN*DV
PtI(N)BPI (N)+CI*CND*XPP
P24N)*P2(N)+S1*SNO*XPP
P3(NPOPJ (N)+X*X*C]*CN1D*XPO
04(N).P4 (N,,X*X*S1*SNO*XPO

05(N)=PS(N)4X*Y*SI *CNO*XPO
06(N)RP6CNl4X*Y*Cl *SND#)CPO

07(N *P7 (N +X*Z*CND*XPO
PS(N )nPS (N)+Y*Y*S1 *SND*XPO
09(N)uP9 (N )+Y*Y*CI*CND*)CPO
DIOIN)*P1 (N),Y*Z*SND*XP0
O1 I(N)UPII(N)+CND*XPP
012(N)aP124N)+Z*X*CI*CNO*XPO
P13(NIOPI 3(N)+Z*X*SI 4SND*XPO
*tA (N) aPI.(N ) Z*Y*51*CNO*XPO

PIS(N)*PlSCNI*V*CR #SND*XPO
0PIGW)ap6(N)Z*Z*SND*XPO

100 CONT INUE
RETURN

SIS7TC 0ECK3 NOWCK
WUNCT ION FL(Z)
PLEZ
RETURN
ENO

SOATA
1 2 06450 04100 1.570 6;230 2*540 0.000

11 2 4 6 a to

Fig. 26--(contlnued).
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