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ABSTRACT

A simple moment solution is given for low frequency electromagnetic
scattering and radiation problems. The problem is reduced to the correspond-
ing electrostatic and magnetostatic problems. Each static problem is then
solved using the Method of Moments. The surface of the perfectly conducting
scatterer is modeled by a set of planar triangular patches. Pulse expansion
functions and point matching testing are used to compute the charge density
in the electrostatic problem. For the magnetostatic current a new set of
charge-free vector expansion functions is introduced. The problem is first
formulated assuming the scatterer to be in an unbounded homogeneous region.
Then the presence of an infinite ground plane is incorporated into the
formulation. Scatterers of various shapes, such as the circular disc, the
square plate,the sphere, and the cube are studied. Special attention is
paid to a conducting box with a narrow slot. The computed results are the
scattered fields, the induced charge and current distributions, and the
induced electric and magnetic dipole moments. These are in close agreement

with whatever published data are available.
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Chapter 1

INTRODUCTION

Counsider an arbitrarily shaped perfectly conducting body illumi-
nated by an incident electromagnetic field (E?, Ei). The problem is to
find the scattered field (ES, Es) in the Rayleigh region. The Rayleigh region
is defined [1] to be the range of frequencies for which the maximum dimen-
sion d of the body is much smaller than the wavelength A. It has been
shown by Rayleigh [2] that this low frequency scattering problem can
approximately be solved by treating the corresponding electrostatic and
magnetostatic problems separately. Also, it has been established that a
small scatterer [l1], (or a small aperture in a perfectly conducting screen
[3]) may be approximated by radiating electric and magnetic dipoles. Exact
values for the dipole moments are available in the literature only for
simple shapes, such as the sphere and the circular or elliptical disc (or
aperture)[3]-[6]. An extensive bibliography on the low frequency scatter-
ing problem is given in [1].

Our work formulates the electrostatic and the magnetostatic problems
separately. An approximate solution is then obtained for each problem using
the Method of Moments [7]. In the electrostatic problem an integral equa-
tion is solved for the induced charge density on the surface S of the body.
Then the induced electric dipole moment is computed from the induced charge
distribution. Similarly, in the magnetostatic problem an integral equa-
tion is solved for the induced current density on S. The induced magnetic

dipole moment is computed using the induced current density.
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In principle, this scattering problem can be handled by solving
an electric field integral equation for the induced current on S. This
is called an E-field solution. However, two static problems require, in
general, less effort. Furthermore, although the E-field solutions give
accurate results in the resonance region, where d is comparable to X, they
may begin to lose accuracy as the frequency decreases. Recently, Mautz
and Harrington [8] nhave discussed this problem in detail, and have given a
new E-field solution for bodies of revolution which gives accurate results
in both the resonance region and the Rayleigh region.

The general formulation is presented in Chapter 2. The formulatien
of the electrostatic problem is known and has been used by various investi-
gators [9]. The approach is to first model the surface S by planar triangu-
lar patches and then assume a constant charge density on each patch. An
integral equation for the charge density is obtained by using the conditions
that the total electrostatic potential on S is a constant and that the total
charge 1s zero. This integral equation is solved approximately by the
Method of Moments.

The same triangulated model of S is used in the magnetostatic
problem. An integral equation for the induced magnetostatic current is
obtained by using the condition that the component of the total magnetic
field normal to the surface S is zero . This boundary condition is bor-
rowed from the dynamic problem, but it holds for perfectly diamagnetic (u =0)
bodies in static fields as well. The surface divergence of the induced
magnetostatic current must be zero. This is assured by introducing a set of
charge-free vector expansion functions for the current.

To compute the scattered fields, space is divided into four regions;

very close to the scatterer, the electric field is computed from the induced
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charge only, and the magnetic field is computed using the induced current

only. At a distance large compared to d, but small compared to A, the

electric field is computed using the static expression for the field of

the induced electric dipole, and the magnetic field is computed using the

static expression for the field of the induced magnetic dipole. In both

of these near-zone cases the electric and magnetic fields are decoupled.

For an intermediate region, where the distance from the scatterer is compa-
rable to A, the exact dynamic expressions are used to compute the fields

from both dipoles. 1In the far-zone region, where the distance from the
scatterer is large compared to both d and A, far-field expressions are used for
the dipole fields, and the fields are coupled.

In Chapter 3, the general formulation described in Chapter 2 is applied
to various scatterers in free space. Open and closed surfaces are considered.
The incident field is taken to be either a plane wave or is assumed to be
produced by an oscillating electric or magnetic dipole placed near the scat-
terer. Special attention is paid to the case where an electric (magnetic)
dipole is placed normally (tangentially) on a conducting sphere or on the
face of a conducting cube.

Chapter 4 formulates the scattering problem in the presence of an
infinite ground plane. Tn the first part of the chapter, the scatterer is
assumed to be above the ground plane. In the remaining part, the special

problem of a conducting box on a ground plane is considered.
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GENERAL FORMULATTON

Pl )

In Appendix A we describe how to approximate the problem of low

frequency electromagnetic scattering by the corresponding electrostatic

B8 D4

and magnetostatic problems. 1In this chapter we introduce the general

P
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procedure for the formulation and solution of these problems separately.
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The main objective in an electrostatic problem is to determine the
electric charge distribution induced on a perfectly conducting iso-
lated body when it is placed in a specified impressed static electric
field. Once the charge density is known, other quantities of interest,
such as the induced electric dipole moment and the field produced by the
induced charge , can readily be found.

In the magnetostatic part of the problem we are interested in de-
termining the current distribution induced on a perfectly diamagnetic
body when it is placed in a static impressed magnetic field. Once the
current density is obtained, other related quantities can be solved for

easily.

For each problem we obtain a different integral equation and use
the Method of Moments to approximate this integral equation by a set of
linear algebraic equations. These algebraic equations are then solved by

the methods of linear algebra.

2.1. The Electrostatic Problem

The electrostatic problem has been studied extensively and the general

formulation of the problem in terms of the Method of Moments is well-estab-

lished [7,9]. We summarize the formulation here for the sake of complete-
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ness and for quick reference. We will refer to it in the formulation
of the magnetostatic problem in Section 2.2, and also in Chapter 4.
Consider a perfectly conducting body with an arbitrarily-shaped
surface, which is originally charged to a net charge Q, and then is
placed in an impressed field produced by external sources. The problem

consists of finding the induced charge density on the surface.

2.1.1) The Electrostatic Integral Equation

X
ata

Since the surface of the body defines an equipotential surface, the

R

total potential produced by the induced and the external sources must be a

L

constant Vo on the surface. Also, the net charge on the surface must still

be equal to Q. The fundamental equations governing this electrostatic prob-

P
.o . ¢
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lem can be written as

. o(r") .
! ” 4rc|r - r'lds' * ¢1<£) = Vg LonS -1
» S -
H o5(c') ds' = Q (2-2)
S

where
S denotes the surface of the body,
o] is the induced charge density on S,
¢i(£) is the potential produced by the external sources alone,
at a point r,
r and r' denote the position vectors from an arbitrary origin
to a field and a source point respectively, and
£ denotes the permittivity of the medium surrounding the

body.
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Equation (2-1) is an integral equation of the first kind for 3. It is to

be solved by the Method of Moments, with the auxiliary condition (2-2).

2.1.2) The Expansion Functions for the Flectrostatic Charge Density

To solve for J, we approximate the surface S by planar triangular

patches defined by a set of nodes and cdges. The vertices of triangles are

referred to as nodes and the sides are referred to as edges (VFigure 2.1).

We assume that the charge density is constant on each patch. In other words,

we let

1
L

“(r) = nzl T P (2-3)
where

N is the number of triangular patches,

On,n =1,2,...,N,are the expansion coefficients to be

determined, and
Pn(z) is a pulse expansion function defined as follows.
1, r in Sn
D = p—
P (1) (2-4)
-0, otherwise

n . . . . . .
Here S denotes the nth triangle. With this choice of expansion functions,

On directly gives the charge density on Sn’ and (2-2) reads

T~12

st =0 (2-5)
n
n=1

n ; , . . .
where T denotes the area of the nth triangle. Substituting (2-3) into

(2-1), we have

T = AVFV” - Avﬁ®1(£), r on § (2-6)
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Fig. 2.1. A triangulated model of a circular disc. No. of the triangular

patches=24, No. of nodes=17, No. of edges=40, No. of interior nodes=9.
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We could have chosen some other types of expansion functions. For
example, we could choose functions whose charge density is allowed to
vary on each triangle. This might approximate the actual charge density
more closely. We could alsc choose the expansion functions such that the
total charge associated with each expansion function is zero. Then the
condition (2-2) for Q = 0 would automatically be satisfied. Since we
solve the electrostatic problem as one part of a low frequency scattering
problem,we will take Q = 0.

The pulse expansion functions for the charge density have been
successfully used by other investigators [9], and the results are readily
available. We have the additional advantage that for this choice we can
make use of the moment matrix obtained in the electrostatic problem to
fill the moment matrix of the magnetostatic problem without additional

integrations.

2.1.3) Testing Procedure for the Flectrostatic Problem

For the reason mentioned above, and because of its simplicity, we
choose point matching, i.e., we satisfy (2-6) at the centroid of each

triangle, obtaining

N

Z K 0 = 4w V. = - 4nc¢1 , m=1,2,...,N (2-7)
q=1 M0 n o m
where

f '

el (2-8)
J 1
gn l_]" - r

(;l = (fl(rm) (2-9)

m .
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Here r' is the position vector of the differential element of area ds' and
m . . . , m

r 1is the position vector to the centroid of the mth triangle S, The

.3 integral in (2-8) can be evaluated analytically and the result is given

in [9].

2.1.4) The Moment Equation for the FElectrostatic Problem

Using the Method of Moments, we reduce the integral equation (2-1)
to the set of linear algebraic equations given in (2-7). Together with

(2-5) we can write them in the form of matrices as

( i i
S Ko KN , -1 7 -4ned,
, _ _ i
K21 k22 K2N 1 02 4ﬂ€¢2
' - (2-10)
. i
Y K Ko Y —AWE¢N;
- ——— —— - e e e s e |‘
! 72 o 0 AnEVJ Q i
or as
[ [ .
”, 1
(k1 -11] | (o) [-4meg )
= (2-11)
(") 0 4meV Q
(o)
é? In matrix notation this is
> -
Fl P = (2-12)

where the moment matrix P is the square matrix of the order (N+1) x (N+1)

on the left-hand side of (2-11), ? is the column vector on the left-hand
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side of (2-11), and $ is the column vector on the right-hand side of
(2-11). The solution of (2-12) gives both the charge density and the
total potential of the body.

All types of electrostatic problems can be solved either by using
(2~12) directly or by modifying it slightly. As an example, if Q is
given and ¢i is zero, then one can obtain the charge distribution, the
potential Vo’ and the capacitance of the body by using (2-12) directly.

In fact, it is easy to show that the capacitance of the body is given by

4Te

¢ = 4T (2-13)

p-]
(N+1, N+1)

where P_l(N+1, N+1) is the element in the (N+1)th row and the (N+1)th
column of the inverse of the matrix P. Another simple and practical appli-
cation of the electrostatic problem formulated here is to find the magnetic
polarizability tensor of a small aperture of arbitrary shape in an infinite
conducting screen [10],[11].

As pointed out earlier, when we solve the electrostatic problem pre-
sented here as a part of a low frequency scattering problem, we take Q=0
in (2-11). Then, once the charge distribution is solved from (2-11), we

obtain the induced electric dipole moment according to [12]
ind
Here r' is the radius vector from an arbitrary origin to a source point
on S. Since the charge density is constant on each triangle, (2-14) reads

Pind -

-1

1 anjn B

n= S

P P A N . . e et e - P PN I AP L PRI PR WA PP T

P = Jjo(gf)g' ds' (2-14)

o [f r' ds' (2-15)
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Working out the integral in (2-15), we have
ind N
prid o U g (2-16)
r . a
n=1
Here Ln is the radius vector to the centroid of the nth triangle and ™
is the area of the triangle.
The oscillating electric dipole which is used in computation of
the scattered field is then given by
lklnd = jw 13lnd (2-17)

where w is the angular frequencv of the incident field. The details of the
scattered field computations are given in Section 2.3.

This completes the general formulation of the electrostatic part of
the problem, assuming the bodv is in an infinite homogeneous medium. Some
applications are given in the following chapter. The formulation of the
electrostatic problem in the presence of an infinite ground plane is given

in Chapter 4.

2.2. The Magnetostatic Problem

As pointed out earlier, the electrostatic problem has been studied
extensively by using the Method of Moments, and the results are available
for an arbitrarily-shaped surface. However, as an approximation to the
low frequency scattering problem, the magnetostatic problem has been applied
to only very simple shapes. Tn fact, we are not aware of any such work
using the Method of Moments. Hence, in this section we describe the formu-

lation of the problem in more detail.
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The magnetostatic problem can be stated as follows. Given a per-
fectly diamagnetic body placed in an impressed magnetic field aimp’ we
want to find the current distribution induced on the surface of the body
such that the normal component of the total magnetic field is zero on

the surface of the body and that the induced current density has zerc

surface divergence.

2.2.1) The Integral Equation for the Magnetostatic Problem.
Let the total magnetic field be the sum of the impressed field Eimp

and the field H(J) produced by the induced surface current J. Then we

require that

i @™ 4 HU)) = 0 on S (2-18)

where S denotes the surface of the body, and 0 is the unit (outward)

normal vector to S. We also require that
*d=0 (2-19)

where Zé denotes the surface divergence operator.

We are here assuming a perfectly diamagnetic conductor. Otherwise
the condition that the normal component of the magnetic field is zero does
not hold orn the conductor in a static field. One can interpret J in (2-19)
as the zeroth order part of the total current density induced on an elec-
trically émall body when the latter is expressed in terms of a power
series in k, where k is the wave number of the incident field [13, also
refer to Appendix Al.

Equivalently, we neecd to solve for J such that

- imp _
HO() = = H on S (2-20)
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and (2-19) is also satisfied. The subscript n in (2-20) denotes the normal
component. Equation (2-20) represents an integral equation of the first

kind for J which will be solved by the Method of Moments.

2.2.2) The Expansion Functions for the Magnetostatic Current

To solve (2-20), we approximate the surface S by triangular

patches. Although we are free to use any patching scheme, we prefer

to use exactly the same patching scheme used in the electrostatic part.
This allows us to use the same integrations computed in the electro-
static part to fill the moment matrix for the magnetostatic problem.

We let b

J= ) c.J, (2-21)

where

b . . .
N~ is the number of the interior nodes for an open surface.

For a closed surface Nb is equal to the total number of nodes

minus one.
J. is the vector expansion function associated with the
ith interior (non-boundary) node, and Ci is the ith expansion

coefficient to be determined.

The expansion function JL associated with the Lth interior node

is illustrated in Fig. 2.2. Tt has the following properties:

i) On each triangle attached to node L, the magnitude of JL is con-
stant. This magnitude is equal to the length of the edge opposite

node L divided bv the area of the triangle.

11) o0On each triangle attached to node 1., J 1is parallel to the edge

L

opposite to node L. 1, circulates clockwise about the node L.

<
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Fig. 2.2. The expansion function il associated with node L.
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In Fig. 2.2 we have five triangles attached to node L. (Note
that each triangle may be in a different plane.) The capital letters
denote the nodes. On the first surface SIl attached to node L, JI is
called £1l and is given by
[
Iy = (2-22a)
L1 TLl
Here FB denotes the vector drawn from node F to node B, and TLl is the
area of the triangle SLl' Similarly, on the fifth triangle SLS attached
to node L, J_  is called J and is given by
—L —L5 .
EF
JLS =T (2-22b)
L5

Similar definitions hold for the other triangles.

iii) The component of iI normal to an edge common to two triangles is
continuous. Hence, no line charge accumulates on any edge. This com-
component of JL is given by

J,) = Z/QC (2-23)

L
n

where Qc is the length of the common edge between two triangles attached

to node L.

iv) 1t is easy to show that

Y «J =0 (2-24)
—s =1

So that there is no charge associated with JL' Hence, by virtue of (2-21),

we see that the necessary condition in (2-19) is already satisfied by this

choice of expansion functions. Indeed it can be shown that [8,Appendix B}

~

T = ok X Zsbrk (2-25)
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where ﬁLk is the unit normal vector to the kth triangle SIk’ attached
to node L. Here ys denotes the surface gradient operator, and WLk is a

scalar function defined on slk' ka has a value equal to 2 at the node

L, and linearlyv decreases to zero at the edge opposite to node L. ka

is discontinuous, because it suddenly drops to zero at the other two

edges on SL Therefore 7 is impulsive at these edges. However,

K’ s Y1k

the composite function | consisting of is continuous so

1, L1’ ‘L2t

that its surface gradient 1is not impulsive. 1In fact, if all triangles
attached to node L are in the same plane, then wL defines a pyramid-like
surface centered at node L, with height equal to 2. It has as many side
surfaces as the number of triangles attached to node L. In Fig. 2.3 we
have shown the part of UL over two triangles, assuming both are in the
xy plane. The encircled numbers in the figure denote the nodes.

On the first surface S attached to node L, . is called ¥

L1 L L1’

which is given by the planar surface passing through the points (xl,yl,O),

(xziyZ)O)’ and (0)0)2)'

A TS U A Tl U L TR

v - (2-26)
Ll (ylx2 xlyz)

similarly, the equation of the plane passing through the points (xz,yz,O),
(x3,y3,0).and (0,0,2) defines sz-

x(y. =y, - y(x3 = Xp) = X,¥q F Y,Xg

2 - (2-27)

b, = _ ;
L2 (yzx3 x2}3)

Then

(v, = ¥y » (x, = %)

o+ : 2-28)
(y1 Xy = xlyz)/Z A (ylx2 - xlyz)/z (

| %>
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(D (x|'Y|rO)

® (x3,75,0) @ (x272:0)

4

Fig. 2.3. Tllustration of WI over two triangular surfaces.
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where X, ¥, and Z denote the unit vectors along the coordinate axes. If
the nodes 1, 2, 3,... encircle node L in the clockwise direction, as in
Fig. 2.3, then (ylx2 - xlyz)/Z is the area of the triangle SLl' As a

result, (2-28) reduces to

12

J o= (2-29a)
3 11 TLI
;1 where 12 represents the vector drawn from node 1 to node 2, and TLl is the
f i . Simi . e
E' area of the triangle SLl Similar results hold for lLZ’ £L3’

= However, if nodes 1,2,3,... were to encircle node L in the counter-

3: clockwise direction, then the area of the triangle SLl would be -(ylx2 -
:’ le2)/2 and (2-28) would reduce to
|~‘i l_é_
. 111 =TT (2-29b)
) L1

It is evident from (2-29a) and (2-29b) that QL always flows clockwise about

1

=§. However,if_ﬁ =ﬁ2, then ng, being proportional to ﬁLl’

node L for n 11

11

would flow counterclockwise about node L. Therefore, I always encircles ﬁLl

in the Jleft-hand sense. (A left-handed screw whose axis is parallel to ﬁLl

would advance in the direction of ﬁLl when rotated in the direction of ng.)

v) The expansion function J. can be written as a linear combination of &‘

=L
expansion functions used in [14], where an expansion function is associated
with each non-boundary edge. Here cL denotes the number of triangles attached
to node L. Usually the number of interior nodes is less than the number of
interior edges, and hence we have fewer unknowns for the same patching

scheme. On the other hand, each of our expansion functions is defined on

at least three triangles, whereas each of those in {14] is defined on a pair

of triangles. Furthermore, the expansion functions of [14] vary both in
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magnitude and in direction on a triangle, but ours are constant there.
With such a choice for expansion functions, on cach triangle there

can be up to three expansion functions associated with the three
nodes of the triangle. On a triangle which has a boundary edge only one
expansion function can exist. In patching the surface S, care should be
taken so that all triangles have at least one interior node. (For closed
bodies this problem does not exist and there exist exactly three expan-
sion functions on each triangle, except on those triangles attached to a

specific node where there are exactly two expansion functions.)

. b . . .

vi) It can be shown that N~ expansion functions defined on an open

surface form a linearly independent set. For closed surfaces the number of
n . . n .

nodes N is equal to number of interior nodes. The set of N expansion

functions forms a linearly dependent set, and when we remove one of them

(arbitrarily) we are left with a linearly independent set. For this
b, . .

reason N in (2-21) is taken to mean the number of nodes minus one for a

closed surface.

vii) The constant nature of the current flow with each basis function within

a triangle may be at first disconcerting. Certainly for a large triangle
modeling a curved section of the scattering surface, one would expect the
direction and the magnitude of the actual current to vary within the triangle.
In other words, one might ask, "Is a superposition of the basis functions

within a triangle capable of representing a prescribed current flowing in

[~ an arbitrary way within the triangle?" Unfortunately the answer to such
a question is "no", but we remind ourselves that this is a low-frequency

scattering problem where we do not expect a fast variation of the current
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except near the boundaries, or sharp edges, or on the regions very close
to the source. Hence the problem can be overcome by choosing a large
number of small triangular patches to model such regions of the scatterer.
The same procedure should be used in solving the electrostatic problem.
The expansion functions for the current are capable of representing an
arbitrary but fixed direction and an arbitrary magnitude for the current
within a non-boundary triangle. Near an edge (of an open surface) the
component of the actual current normal to the edge must be zero anyway.
With these basis functions, the current on a boundary triangle is guaran-
teed to be tangential to the edge.

Having decided on the expansion functions, we now take the usual
steps in the Method of Moments technique. Substituting (2-21) into (2-20)
we get b
H ( _Z_ c,J) = - Hi‘“p on S (2-30)
Using the linear property of the operator Hn’ we have

Nb

YCH .(r) =-H"(r), r onSs (2-31)
=l 1 nil n - -

i
Here, Hni(z) denotes the normal component of the magnetic field at a
point r (on S), produced by the current basis function gi associated with

node 1i.

2.2.3) Testing Procedure and Moment Matrix for the Magnetostatic Problem

; b . .
We assume a set ‘ui;, i=1,2,...,N of scalar testing functions
such that uj is non-zero onlv over the triangles attached to node j. Then

we define the symmetric product of uj with any function f to be the integral

of their product over the surface S, i.e.,
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t,
<uj,f> = JJ ujfds = g JJ ujfds (2-32)

Here tj is the number of triangles attached to node j and Sjk denotes the
surface of the kth triangle attached to node j. Taking the symmetric pro-
duct of both sides of (2-31) with each of the testing functions uj,
j=1,2,...Nb, and using the linearity property of the symmetric product de-

fined in (2-32) we arrive at the following matrix equation.
> >
ZTI=V (2-33)

. b b .
where Z is an N~ » N~ square matrix such that

. ( .. b
Z(J’l) = JJ UJ(}:) Hnl([) ds 193_192’-"aN s (2-34)
S.
J
> b
I is an N x 1 column vector such that
. . b
I(1) = ¢, i=1,2,...,N (2-35)
e b
and V is an N x 1 column vector such that
Y = _ imp>
V(i) uj, Hn
|
= - ” u (r) Hrllmp(g) ds (2-36)
s
]

.In (2-34) and (2—36),5j denotes the union of the surfaces of all triangles

attached to node j.
Assuming that node j has tj triangles attached to it, we rewrite

(2-34) as
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[f A :
. /] ”1m(—r—) _qjm(g) H. (r)ds (2-37)
S,

Jm

Z2(j,i) =

TR T

m

Here, ﬂi(g) denotes the magnetic field produced by the expansion function
ii at a point r, ﬁim(z) is the normal unit vector to the mth triangle Sjm

which is attached to node j, and ujm(g) denotes the value of uj at the

point r on Sjm' Now using the relation

H=9 <A (2-38)

where A is the magnetic vector potential, we have

jm = =jm

t.
2 = T ” u, (DA, (r) « (7 x A, (£))ds (2-39)
m=1 4 !

[

Jm

Here éi(g) is the vector potential produced by li’ at the point r.
Now, if we decide to choose ujm to be identically equal to wim in

(2-25) and make use of Stokes' theorem, we arrive at the following:

trj .
iy

jm

2(3,i) = - j( (B, (r) < T ). ) * A (D)ds (2-40)

m —lm — —S Jm

Here we used the fact that the value of wj is zero on the boundary of the
surface Sj composed of tj triangles attached to node j. Then using (2-25)

in (2-40), we get
t,
(j,1) ) rr1() \, (r)d (2-41)
2(j,i) = - 3, (r) » A,(r)ds 2-
j o)t \ (r
S,
jm

Since gjm is a constant vector which denotes the expansion function {i on
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the mth triangle attached to node j, we can take it outside the integral.

Z(j,i) = - Jooo jJ éi(g)ds (2-42)

We now approximate the integrand in (2-42) by its value at the centroid

of the triangle Sim to get

-7 W AT (2-43)

el dm Tieim jm

e

Z(j,1)

Here éi(Ecjm) denotes the vector potential produced by ii at the centroid
r . of the triangle S, , and T. 1is the area of S,
—cjm m jm jm

Assuming that the node i has ti triangles attackted to it, we write

A,.(r) as follows:
Al

]
o~
5=
—
—_—
- [(__,
Rl
~~
[ Lat
i~
o
1]

A (D)
Si
t
i J., ("
-1y JJ ! 7T ds'
4 021 r-r
=1 ¢
i
t,
i
_ 1 ds'
Si

The integral in (2-44) is the same as the electric scalar potential at a
point r, produced by a constant surface charge density on the triangular
surface SiQ' This is the same integral we had in the electrostatic problem
and its analytical evaluation is given in [9].

Substituting (2-44) into (2-43), we get

1
z(j,i) = z% i im im (jl T “ T———-T (2-45)

= 19

Comparing the integrals in (2-8) and (2-45), we finally have
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t,
1
T . (921 I, K(m, 1)) (2-46)

N
—~
[}
-
H
~
[
£
r
[\/l_J

. i.m
m=1 T J

Here K(jm, i%2) is the element in the row corresponding to the surface Sjm
and in the column corresponding to the surface siQ of the matrix K used in
the electrostatic problem (Eq. (2-11)). Hence the moment matrix P of the
electrostatic problem provides the integrals that are required to fill the
moment matrix Z of the magnetostatic problem.

Returning to (2-36), we have

t.
vy = - 1 ” Ui (0 KT ()ds (2-47)

m=1
jm
P

If we approximate Hlmp(r) by 1P (r . ), where r . denotes the centroid of
n — n —cjm —cjm

the triangle S, , then
jm

VG - T TALICI ”r::jm@ds (2-48)
m=1
im

The integral in (2-48) is equal to the volume of the pyramid-like object

of height 2. Hence,

t.
Gy oz 2 : imp
V) = -3 ) Tim o (Ecjm) (2-49)
m=1
» The moment equation (2-33) with the defining relations (2-46), (2-35),and

(2-49) is solved to obtain the unknown expansion coefficlents, and the

F P A

induced current density J is found by (2-21). Once the current distribution

vy,

is known, the induced magnetic dipole moment can be obtained {12] from

B
sttt

b A

(J r * J(r)ds (2-50)
S

:JUTJS;ECTH;f.pj-j;E'
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. . n
If we have N trianvular surfaces and denote by J  the total current on

nth triangle, (2-50) reads

ind 1 § 0 n
M =, ), r- J 7 (r)ds
n=1 éh
N (¢
= - E Can ,' r ds (2-51)
“ n=1 Ih

n . ,
Here S denotes the surface of the nth triangular patch. Working out the

integral in (2-51), we have

~12
—~
=
3
o

Mmd 1 roox 0T (2-52)

1
e

n
n . I . n n .
Here r 1is the position vector of the centroid of S, and T is the
n
area of S .
The oscillating magnetic dipole used in computation of the scattered
field is then given by

d

llnd = Swu &1n (2-53)

K2

where w is the angular frequency of the incident field, and 1 is the
permeability of the medium surrounding the scatterer.

This completes the formulation of the magnetostatic problem, assuming
the scatterer is in an infinite homogeneous medium. The formulation of the
magnetostatic problem in the presence of an infinite screen is given in
Chapter 4.

Some applications of the magnetostatic problem formulated here
will appear in the next chapter. A simple and practical application of

the problem is to find the electric polarizabilitv of a small aperture in

an infinite conducting screen.
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2.3. Computation of the Scattered Field

To compute the scattered fields ES and Eﬁ, we divide the space into

four regions.

i) Very close to the scatterer we compute E  directly from the

induced static charge distribution T as follows

s_ 1[I :
_h B L4Te }J ?r _ r'|3 ds
S I —.
1 N ( (r - ¢'") ds'
fe 00 J 3
e oy o i It - ¢!
S
1 3 n (I-_ IP)
o LT T (2-56)
n=1 r-r|

' denotes the

Here r denotes the position vector of the field point, r
- . . n

position vector of the differential element of area ds', S denotes the
. n , n .

surface of the nth triangular patch, T 1is the area of S, On is the
. n n .

computed charge densityv on S, and r denotes the position vector to the

: .n
centroid of S .

: . S .
Similarly we compute the scattered magnetic field H® from the in-

duced magnetostatic current J as follows:

. - 1
S 1 ” ! (£ T ) '
H = 55 — ds
TR e
g [
, _ ot
N ( Jox(xr-1") ‘
= ) - — T ds
*on=1 fr = r'|
1Y on AR
R e (2-55)

o~
3
w
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Here J denotes the total induced current density on the nth triangular

-

patch s™,

ii) At a distance large compared to the maximum linear dimension d of the

T
B

s
scatterer, but small compared to the wavelength A, we compute E° from the
, . . . ind 8 . . .
induced static electric dipole P and H from the induced static magnetic
. i . . ..
dipole M nd. The induced dipoles are placed at the origin, and the scattered

fields at a point defined by the radius vector r are given by the following:

] 3 f(Elnd . i) _ F_1nd
E"(r) = 3 , (2-56)
4Te 1
. 3 IA‘_(ﬂlnd - P - Mind
H (r) = 3 (2-57)
4T r
where
and -
£ = %4 (2-59)

iii) At a distance large compared to d, but comparable with A, the
scattered fields are computed by replacing the scatterer by the oscillating

electric and magnetic dipoles of (2-17) and (2-53). The exact dynamic

expressions are used to compute the fields produced by them at a point r

- [refer to Appendix B].

: —jkr . ) . .
- s e 2. ind, | . ~ ind ind, , 1 jk

n = ————— . » . g - ¢ —_— —

2] E (r) T T (k(r < 1.77) » o+ GBr(z10 ) - I8 (75 +7)
o) : r
o

;; ~es O H Ko+ %)] (2-60)
5 and

9]

[~ -jkr ; . ;

= s _ e ol poindy o 2 op poindypeindy 10 gk

X H(r) JwhiTr [k"(r X )rr 4 BrreKE) K& )(r2 r)

p. * :

A

S .ind ~ 1
+en M By Gk o+ 1 (2-61)
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where r and r are as defined in (2-58) and (2-59).
iv) For the far field, we use the far-field expressions for the dipole
fields, neglecting the terms that vanish faster than l/r, i.c.,
-jkr . .

ES(r) = Sk £ x [k(r™ gy o kI (2-62)

- = jwbhrer =~ — = -

s e—jkr ind ind

HO(r) = S ke e )+ 1 (2-63)

Note that while the near ficld problem (cases (i) and (ii)) is
"decoupled," that is, ES and ﬂs are determined completely independently,
the field at large distances from the scatterer is not decoupled. 1In
general, the electric dipole contributes to both the electric and the
magnetic far field, and so does the magnetic dipole. Expressions (2-60)
and (2-61) for the fields in region iii are also valid in regions ii
and iv. That is, if kr “< 1, (2-60) and (2-61) reduce to (2-56) and

(2-57), and, if kr > 1, (2-60) and (2-61) reduce to (2-62) and (2-63).
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Chapter 3

SCATTERING FROM SMALL BODIES IN FREE SPACE

In this chapter we use the procedure described in the previous
chapter to compute the distribution of the charge and the current in-
duced on the surface of a small conducting body when it is illuminated
by an electromagnetic wave. We assume the body is placed in free space
(CO,UO) and the incident field is cither a plane wave or is produced
by an oscillating electric or magnetic dipole placed near the scatterer.

Given the incident field (El,ﬂl), we find ¢ such that

i_ - _
EO c (3-1)
where
i . i
E =1limE (3-2)

k>0
and V denotes the gradient operator. We use ¢1 of (3-1) as the applied

potential in the electrostatic problem (eq. (2-1)). Similarly we let

B = vim W (3-3)

k>0

and use E}mp in (2-18) to solve the magnetostatic problem.

Tt the source of the incident field is an oscillating electric dipole

I placed close to the scatterer, then we only need to solve the cor-
responding electrostatic problem. We obtain the electrostatic problem

by replacing I’ with a quasi-static electric dipole P such that

19 = ju P (3-4)

Here w is the angular frequency of the incident wave in the original
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problem. We do not solve anv magnetostatic problem because close to an
oscillating electric dipole the magnetic field vanishes in the limit
k - 0. That is, Himp as defined by (3-3) is zero in this case. Bv a
similar argument we solve only the magnetostatic problem if the source is
an oscillating magnetic dipole K% placed close to the scatterer. We cob-
tain the magnetostatic problem by replacing KI with a quasi-static magnetic
dipole M such that

KL= jou M (3-5)

and assuming the scatterer to be perfectly diamagnetic.

3.1. Plane Wave Scattering from a Small Sphere

The exact results for this problem are summarized in Appendix A.

To apply the method described in the previous chapter, we take the follow-
ing steps:

i) For convenience the sphere is assumed to be of radius 1 meter and is

placed at the center of a spherical coordinate system.

ii) To approximate the spherical surface with triangular patches, the
surface is first divided uniformly into N¢ slices in the ¢-direction, then
each of these slices is divided into N0 +1 patches. The poles (8=0° and

® = 180°) are taken to be two nodes. Hence, in each ¢-slice we have two
triangular and NH -1 quadrilateral patches. The addition of diagonals to
all quadrilaterals completes the triangulation of the spherical surface.
The resulting model of the spherical surface is shown in Figure 3.1. We
have a total of ZNPthriangular patches modeling the surface. The total

number of unknowns for the electrostatic problem is then 2N8N¢ + 1. The

number of nodes is NﬁN¢ + 2. Therefore, the number of unknowns in the

a ._J_J
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- Fig. 3.1. A triangulated model of a spherical surface. N¢=8, Ng=5,

=

No. of patches=80, No. of nodes=42.
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magnetostatic problem is NOV

b

sphere is always inscribed inside the actual sphere, because the nodes are

+ 1. In this grid scheme the triangulated

taken to be on the actual surface. 7To get a partially inscribed model we
simply take the nodes to be slightly outside the actual sphere, obtaining
a better representation of the actual surface. Obviously it is impossible
to patch a spherical surface exactly by using a finite number of triangular
patches. However the triangular patches are better than the rectangular
patches in terms of adequately modeling an arbitrary surface, and they are
better than quadrilateral patches in terms of computer description.

For an axiallv incident plane wave described by

jil = 120+ e—sz X /m),
El - e—sz 2 (A/m)
we have
b = - 1207 x W (3-6)
g™ - (A/m) (3-7)

Figure 3.2 shows the computed current density for this case. Also shown

in the figure is the exact magnetostatic result for comparison. The agree-

ment is good. As we noted earlier, the computed current is a constant '
vector on each triangular patch. Hence for ¢ = 0°, as we change ¢, J, varies
on the triangular surface. Howcver for ¢ = 90°, J¢ = - Jx’ which is fixed

on each patch. This 1is the reason why we have steps in the curve for J¢ of

Figure 3.2. To observe the influence of the patching scheme on the results,

we changed the direction of Ei and Hi. The change in the results indicated

that the influence of the triangulation scheme is negligible. Figure 3.3

shows the computed charge density for
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— EXACT
oo COMPUTED

1 !
0 30 60 90
8 DEGREES

Fig. 3.2. Tnduced current distribution on a sphere due to an axially

incident plane wave. No. of unknowns = 97.




ol = = 120mz (V) (3-8)

The exact result {15} is also shown.

imp

For an impressed magnetic field H = 1_2 (A/m) , the

magnitude of the exact current at 8 90° is 1.5 (A/m), and the

computed value is 1.46 (A/m).

With an inscribed model of the surface, the computed dipole moments
are less than the exact values. As we slightly increase the radius of the
triangulated sphere to have a partially inscribed model, we notice that the
induced charge and current distributions do not change, but the induced
dipole moments get closer to the exact values. This is to be expected, since
the dipole moments are preoportional to the cube of the radius, whereas the
current and charge density do not depend on the radius. Table 3.1 compares
the computed dipole moments with the exact values. Note that as the radius
of the model surface is increased from 1.0 to 1.01 (or 1.02), the computed
dipole moments increase by a factor (.1.01)3 (or (1.02)3). Table 3.2 shows
the progression of the solution as the number of unknowns is increased.

Since the scattered far field is completely defined by the induced
dipoles, we do not need a pattern plot. From the result we have for the
induced dipole moments ( the third line of Table 3.1 ) , the relative error

between the exact and computed far field will be at most three percent.

3.2. Dipole Near a Small Spherc

Figure 3.4a represents an arbitrarily oriented oscillating dipole
near a conducting sphere. The exact results, together with some low fre-
quency approximations for this scattering problem, are summarized in
Chapter 10 of [16]. VWe first consider a radially directed electric dipole

near the sphere. liext we solve the problem of a magnetic dipole placed

tangentially on the sphere.

a e . m =l alw = & e 4. B s - » .z . .2 . _a m _-A..a,....n_;.J
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Fig. 3.3. Induced charge distribution on a sphere due to a z-polarized

incident plane wave. No. of unknowns = 193 , ¢ = the speed of light ,

§;=377 2 (V/m).
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Table 3.1. Comparison of the computed and exact dipole moments for a

sphere, plane wave incidence. N, = 8, N, = 12, No. of unknowns in
)

magnetostatic problem = 97, No. of unknowns in electrostatic problem = 193.

Exact area = 41, lﬁ1| = 120,

Exact MM = 20 kxace (p1™7 - 418879 % 1078,

, 1 o T , l T *_“ ) A
iRadius Of: Relative Computed Relativ% Computed Relative
‘Patched y Computed ¥ ind. % ind VA
'Sphere ! Area Error . (M = Error P17 | Error

] I | Py i
ll.O . 12.09759 3.73 5.7818 7.98 3.9276 ¥ 10 . 6.23

;1.01 §12.34075 1.79 5.9569 5.19 . 0466 <10_8 3.39

’ v

11.02 512.5863 -0.16 6.1354 2.35 Q.l680>‘10_8 0.49

Table 3.2. Progression of the computed dipole moments for a sphere, with
plane wave incidence, as the number of unknowns is increased. Radius of
patched sphere is taken to be 1m.

NS = No. of unknowns in elecctrostatic problem.

NM = No. of unknowns in magnetostatic problem.

?NQ N¢ 2 Cozzzied Rel;tive‘ M l@ind‘ ' Rel;tivei NS \Pindl Relitive
| Error Computed Error ! Computed Frror
{5 8 11.525 8.28 a 5.200 17.2 . 81 3.3706x108 19.5
?7 8 11.70675 .8 57 5.73898 14.2 113 3.4883X10_8 16.7

|

l7 12 : 12.0456 4.14 85 5.7249 8.88 E169 3.769?10_8 10

| . .

8 12 12.09759 3.73 97 5.7818 7.98 ]93'3.927*10—8 6.23
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Fig. 3.4. a)An arbitrarily oriented oscillating electric (or magnetic)

dipole near a conducting sphere. b) A radially directed oscillating electric

dipole on a small conducting sphere.
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3.2.1) Electric Dipole Near a Conducting Sphere

Figure 3.4b shows a radially oriented oscillating electric dipole

I% on a perfectly conducting sphere. In the limit ka > 0, it is stated

in [16] that the induced dipole moment is twice that of the source dipole.

In fact, the first term in the exact expression for the total far field
is the field of 317 placed at the origin (Eq. (6-118) of [4]). Hence the
far field can be computed by replacing the system in Fig.3.4b by an
electric dipole of moment 3I¢ placed at the origin. The moment of this
dipole is independent of the radius of the sphere, as long as ka is very
small.

To get more information about the induced dipole moment and the
induced charge density, we used image theory to solve the electrostatic
problem depicted in Figure 3.5a. Here we have a radially oriented static
electric dipole near a perfectly conducting sphere. To apply the method
of images, we assume that the dipole is composed of two point charges

of opposite sign displaced a small distance d such that

lim Qd = P (3-9)

d»0

The values and the positions of the image charges are shown in Figure 3.5b.

Q3 is used to maintain charge neutrality. In the limit d > 0, we have the

following results

7 (Z2 - 532) + a(7,2 + 3&2) cos
R e S I — ] (3-10)
a Z (Zz7 + a~ - 27Z_.a cos 0)
1 1 1
v ==F (3-11)
o 2
4me Zl




------

(b)

Fig. 3.5. a)A radially oriented static electric dipole near a conducting
sphere. b)An approximate representation of the problem in (a) , in terms

of the method of images.
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pind _ 9243 p (3-12)
2y

Here 0 is the induced charge density on the sphere, Vo is the potential
of the sphere, and Pind is the induced dipole moment. Notice from (3-12)
that for Zl » a the induced dipole moment is twice that of source dipole,
independent of the radius a.

To compute an approximate solution for the electrostatic problem
of Fig. 3.5a we patch the spherical surface non-uniformly. By :his we
mean the densitv of triangular patches is increased in the region close to
the source. Since the incident potential varies rapidly in that region,
the induced charge density is expected to do so also. The case where
the dipole is just on the sphere (Z1 + a) is treated later. For Z1 > a

we have taken

E = ATTEO—Z,: (3—13)

So that the incident potential is given by

ol = . (3-14)

Figure 3.6 shows the induced charge density on the sphere when a = 2
meters and Zl = 3 meters. Also shown in the figure is the exact result
of (3-10) for comparison. The agreement is good. Figure 3.7 shows the
variation of the computed potential of the sphere as the dipole moves
away from the sphere. The exact result of (3.11) is also shown. The
agreement between both results is apain good. TFigure 3.8 shows the
variation of the induced dipole moment with the location of the source

dipole. The exact result of (3-12) shows very good agreement with the

computed one.

i a e ta ot PRI P ULE - 1 WP . SN AP - . P P W Y P

@ e e LT el e



41

EXACT
% xxXxxX COMPUTED

4.0

o x 10" (coul/ m?)
N
o
T

1.0

| . | | |
10 20 30 40

O DEGREES

Fig. 3.6. Induced charge distribution on a sphere near an electric dipole.

No. of unknowns = 193,
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Fig. 3.7. The variation of the potential of the sphere with the distance Zl'

No. of unknowns = 193,
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Fig. 3.8. Variation of the induced dipole moment with the distance Zl'

No. of unknowns = 193,
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When the dipole is just on the sphere (i.e.,Z1 <+ a), the incident
potential is very large and is changing rapidly over the region close to
the dipole. Hence, the direct use of the point matching scheme does not
give good results. To overcome this difficulty due to the singularity
in the incident potential, we solve an equivalent problem. Here another
dipole is placed just inside the sphere, below the original source dipole.
Figure 3.9 shows the configuration. It is clear that the total potential
produced by the original and the pseudo-image dipole will be approximately
zero on a small region defined by 60 on the spherical surface (Fig. 3.9b).
The total incident potential outside this small region will be twice that
produced by the original source dipole, and will vary slowly. The in-
duced charge distribution in this equivalent problem is obviously dif-
ferent from the one in the original problem. The total potential at any

exterior point will be the same in each case, that is

¢T

[}

o1 (@) + $(0) (3-15)

or

¢ = 6t p) + 6 = 267 @ + 800 (3-16)
Here ¢T denotes the total potential at an exterior point, 0 and Ge are the
charge distributions in the original and equivalent problems respectively,
¢i(£) denotes the incident potential due to an electric dipole P, and ¢(0)
and ¢(ce) denote the potentials produced by the induced charges in the original
and equivalent problems , respectively. The induced dipole moments are related

as follows: ind ind (3-17)

Rae)
1]
e~
+
]

d is the

where gi“d is the induced dipole in the original problem, E:n
induced dipole in the equivalent problem and P is the source dipole in the

original problem.
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We assumed 80 to be five degrees and patched the dashed region of
Fig. 3.9b by twelve triangular patches. Hence, the twelve elements of
the excitation vector 3 of (2-12) corresponding to these triangles are

set to zero. For a = 2 meters and P = Aﬂaog, the computed results are

as follows:

pind 201125 p

vV = - 0.2695
o

The exact results are given by the following

% P =2

o]

. vV =-0.25

N )

:}t The relative errors in the computed results are 0.56 and 7.8 percent

respectively.

As pointed out earlier, the exact result for the problem shown in
Fig. 3.4b is given in [4]. Figure 3.10 compares the total computed and
exact fields at various distances. The computed field is produced by an
oscillating electric dipole of moment 317 at the origin. The diameter of

the sphere is taken to be 2 meters and the wavelength is 50 meters. The

exact result is obtained by taking the first seven terms of the eigen-
;: function series given in (6-120) of [4]. Note that the fields in the

- figure are normalized with respect to the same constant. That is, the

t_! actual fields are InI-”/lr‘jkf times the values shown in the figure. It
D,"'

R is seen that even at a distance equal to a half-wavelength the agreement
b :

L between the two results is very good.
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Fig. 3.9. a) Original problem. b) An equivalent problem for the exterior
region. The total incident potential is approximately zero over the dashed

region. For small 8 _ the dashed region is approximately a planar surtface.

0

P AP R U . S R . .
PR TN S SR QN TP Y P P S S SR SR SL P DI SUT NIT JOUT TP USRI ST TSI S S PR SR D N AP A AL S A




0.004

: "
h £ 0.003
8 -
n:'A Q
-
(5
~
= 0.002
k
<
L
w

0.00lI

47

EXACT

XxxX COMPUTED

Fig. 3.10. The total field for the problem of Fig. 3.4b .
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Figure 3.11 conrares the far fields for two different radii. The
radius of the sphere is taken to be 2 meters or 5 meters. The wavelength
is fixed at 50 meters, and the source dipole I? is assumed to be on the
sphere. For both radii the exact induced dipole is 2[2. Hence the far
field computed by replacing the system of Fig. 3.4b with 31/ placed at the
origin wili be the same whether the radius is 2 meters or 5 meters. This
is why we have only one curve for the dipole field in the figure. For the
exact far field, the first ten terms of the eigenfunction series are summed
for a = 5 meters and eight terms are taken for a = 2 meters. The curves

shown in the figure are normalized, that is, the true values are

-jkr . . . . .
ni? e J /Tt times the values shown in the figure. It is seen that if the
diameter/wavelength ratio is more than 0.2, the dipole representation is

not good, even for the far-field computations.

3.2.2) Magnetic Dipole on a Small Sphere

Figure 3.12a represents an oscillating magnetic dipole K tangen-
tially placed on a small conducting sphere. It is stated in chapter 10 of
[16] that the induced dipole moment for this problem (in the limit as ka -+ 0)
is K9/2. (The problem depicted in Fig. 3.12a may represent an equivalent
problem for computation of the field transmitted through a short and narrow
slot on the conducting sphere.) To solve the corresponding magnetostatic
problem, we use the technique described earlier, that is, we place a
pseudo-image magnetic dipole just below the original one, inside the sphere,
and patch the region near these dipoles densely. If ﬂo is small enough,
then the normal component of the total magnetic field produced by both

dipoles is approximately zero on the dashed region of Fig. 3.12b. Hence

A & sa5
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Fig. 3.11. The far field for two different radii in the problem of Fig. 3.4b.
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(a)

(b)

Fig.3.12. a)An oscillating magnetic dipole placed tangentially on a small

sphere. b) An approximately equivalent magnetostatic problem.
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the element of the excitation vector V¥ in (2-49) corresponding to the
node at the pole (8 = 0°) is set to zero, and there is no contribution
from the triangles in the dashed region tothe elements of (2-49) corre-
sponding to the nodes on the boundary of the dashed region. We failed
to obtain reasonable answers even to this equivalent problem. We believe
this is due to the fact that the singularity of the magnetic field of
the magnetic dipole is of the third order. Hence the variation of the
incident magnetic field is too fast and the approximation of (2-47) by
(2-48) is not valid in this case. (In the electric dipole case the
singularity of the incident potential was of second order, and we could
obtain reasonable results for the equivalent problem shown in Fig. 3.9b.)
Notice that the singularity of the electric field produced by a magnetic
dipole is of the second order. Hence we use Maxwell's equations and some
vector calculus to express the excitation vector for the magnetostatic
problem (Eq.(2-47)) in terms of the incident electric field. From (2-47),

we have

(m]

V() = - H Uyn(@ By 0 BT ds

wn

v xE1mp

W A, « ———d
1 H l”jm(z) Zim Juwn °

I
e~

j(A)U

Ssm

rt

-1

Jrop m

imp
i * B i) Ty (3-18)

"ne

1

For the dipole of Fig. 3.12a, we have
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g™ - JupM -jkr Jk 1, (9(z-a) - 2 y) (3-19)
4 2 r3
where
5
r= x4+ yo o+ (z-a)2 (3-20)
and .
jwuM = K2 (3-21)
Substituting (3-19) into (3-18) and taking the limit k+ 0, we have
t A~ ~
j y(z . -a) -2y,
oy M ZJ . (. cjm — “cim _
V() = 37 L ij %-m ¢ 3 ) (3-22)
m=1 r .
cjm

Here chm and yij represent the coordinates of the centroid of the tri-
angle Sjm’ and rc.m is the distance from the dipole to this centroid.

Using (3-22) instead of (2-49) for the excitation vector, we solve the
magnetostatic problem shown in Fig. 3.12b. With dipole moment

M = 0.4m%, a=1 meter, and 60 = 5 degrees (Fig. 3.12b) the computed ratio

of the induced to original dipole moment is 0.4889. The exact result for
this ratio is 0.5. The relative error is 2.2 percent. The number of un-
knowns used for this problem is 97. We have also observed that the computed

ratio does not depend on the radius of the sphere.

3.3. The Circular Disc

Figure 3.13a represents a conducting circular disc lying in the xy
plane. The other parts of the figure show various types of electromagnetic
illumination of the disc. The disc problem has been studied extensively
and a summary of the results can be found in Chapter 14 of [16].

Figure 3.14 shows the induced magnetostatic current density on the

disc due to an incident plane wave, as shown in Fig. 3.13b. The radius of
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the disc is taken to be 1 meter, and the number of unknowns used to
compute the current density is 81. The exact result is taken from [17].
It is seen that the computed result is a good step approximation to the
exact one.

Tables 3.3 to 3,5 summarize the results concerning the induced

dipole moments for the disc problem. The exact results are obtained

using the equations (14.185),(14.187),(14.188),and (14.193) of [16].

3.4. The Square Plate and the Bent Plate

Figure 3,15 shows the induced current density on a square plate of
1 meter side length, for two different incident plane waves. The plate is
placed in the xy plane. Also shown in the figure is the result obtained using

the E-field solution program written by Rao [14], where we let the wave-

length be 56 meters. It is seen from the figure that the magneto-
\

static part is dominant in the total induced current, even for 6 = 20
degrees. At 0 = 0 degrees (normal incidence) the magnetostatic current
vanishes.

Figure 3.16 shows the induced magnetostatic current density on a
bent squére plate of side length 1.5 meters. The bend is located at a
distance of one third the width from an edge, and a plane wave with the
magnetic field polarized perpendicular to the larger section of plate is
incident. The smaller plate section is bent through an angle of 50
degrees away from the direction of propagation, which is parallel to the

larger section of the plate.
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Table 3.3. Induced dipole moments for the problem of Fig. 3.13b.
i b

Ei = 377 (V/m), Hz =1 (A/m); N, N

in
No. of unknowns, exact M =

56

d

-2.66 3 , exact PI" = 0,178 x 107
i ! i i T i
{Nb i Computed M;nd Relative % Error Computed P;nd Relative 7% Error
l : i J.
537 - =2,2853 14.3 0.1539 KlO—7 13.5
| .
| - .
149 -2.3407 12.2 0.1574 x 10 / 12
i '
81 . -2.5162 5.6 0.1685x 107’ 5.3 ;
Table 3.4. Induced electric dipole moment for the problem of Fig. 3.13c.
No. of unknowns = 109, source dipole P 4“€0X at (xo,yo,zo).
X y z Computed pn Exact P1nd % Error
0 o 0 y y 1
—~
0o 1.5 0 0.335 10710 0.3544x10" 0 5.5 |
- 11 i
1.2 1.2 0 0.602 10711 0.63404 x 107 5 :

Table 3.5. Induced magnetic dipole moment for the problem of Fig. 3.13d.

No. of unknowns =

49, source dipole M = 47% at (x> Yo 2.)

X y z Computed Vit Exact Mlnd 3 % Error
(o] o) o] z Z i i
|
1.2 1.2 0 0.671 0.678 g 1.06
L0 . 0 2 -0.456 -0.466 ; 2.2
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Fig. 3.15. Induced current on a square plate due to two different
incident plane waves.
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Fig. 3.16. Distribution of the magnetostatic current on a bent square plate.




MLl S S i e avat am T e e RSN O R A e R

: >

3.5. The Small Conducting Cube

! 3.5.1) Plane Wave Incidence

Figure 3.17a represents a conducting cube of side length 0.1X
illuminated by a plane wave. Figure 3,18 shows the induced current
density on the right face, computed using the magnetostatic formulation.
Figure 3.19 shows the induced current on the top face. Also shown are
the results obtained by using Rao's [14] E-field solution. Close agree-
ment between the two results is not expected, since the maximum dimension
of the cube is 0.17) in this case. Our result alsoc has some similarity
with the result of [18] obtained using rectangular patches, but a pre-
cise comparison waé not possible. Although the current distribution is
not in close agreement with the two results mentioned above, the computed
radar cross section does agree very well with published data. If Ei of
Fig. 3.17a is taken to be 1207 (V/m), then the computed induced dipoles
for the cube of side length one meter are given by gind = 0.115x10-7£ (C-m )

and Mind = =1.57 2_(A—m2). The radar cross section obtained using these

dipoles as the source of the scattered field is 0.0031)\2 . This result agrees
with the experimental and computational results mentioned in [18]-[19].
In fact, we have observed that the radar cross section obtained using these
dipoles agrees (within less than ten percent) with the published results
[19] even for a side length of 0.2X. Note that in this case the maximum
dimension of the cube is as large as 0.35).

Finally, we have observed that the induced dipole moments are pro-

portional to the volume of the cube. This is expected , since the induced

charge and current distributions do not depend on the size of the cube.
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Fig. 3.17. a)Plane wave normally incident on a small conducting cube. b)An
oscillating magnetic dipole on the top surface of the cube. c) Equivalent
magnetostatic problem for part (b) ; A pseudo-imnge magnetic dipole is

placed just inside the cube, below the source dipole M.
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We have also observed that the induced dipole moments for the cube

are slightly larger than the ones obtained for the sphere, pro-

vided the incident field is the same and the volumes of the sphere and

el s

. the cube are equal.

’
' .
N
be

3.5.2) A Magnetic Dipole on the Cube

Consider a cube with some internal sources and a small narrow slot
on one face. The problem is to compute the fields transmitted through
the slot. 1If the cube is small, then an approximate equivalent problem
is shown in Fig. 3.17b. Here we have a magnetic dipole K& placed tangen-
tially on the cube at the position of the slot, and the slot is shorted.
To solve the corresponding magnetostatic problem, we use the pseudo-image
technique to obtain the problem depicted in Fig. 3.17c. An image dipole
is placed just below the original one, inside the cube. Hence the normal
(tangential) component of the total magnetic (electric) field produced by the
two dipoles is zero on the face. At any other point on the cube surface
the field is twice that produced by the original dipole E& alone. Because

of the singularity problem mentioned in Section 3.2.2, we use (3-18) for

the excitation vector.

> The center of the cube is placed at the origin of a Cartesian coordi-
nate system. The side length is assumed to be 1 meter. The point (x = 0,
L:i y = 0, z = 0.5) defines the center of the top face. The source dipole is
‘ taken to be M = 1% (A—mz). Table 3 6 shows the computed induced dipole

moment, as the position (xo,yo,zo) of the source dipole M is changed. From

the table we conclude that a narrow slot at the center of a face of the
cube transmits energy outside less efficiently than a slot closer to the

edges of the face.
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Finally we have the following observations: 1)

As the size of the

cube is changed keeping the source dipole at the same relative position ,

the induced dipole moment does not change.

induced dipole moments are proportional to the volume of the cube.

For plane wave incidence the

ii) When

a magnetic dipole M is placed tangentially at the center of a face of the

cube, the computed induced dipole moment is 0.15 M.

This is about three

times smaller than the induced magnetic dipole moment if M were placed

tangentially on a sphere.

To see the effect of an electric dipole P placed

normally at the center of a face of the cube, we compute the induced dipole

moment. The computed induced electric dipole moment is 0.65 P.

This also

is about three times smaller than the induced electric dipole moment when P

is placed normally on a sphere.
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] Table 3.6. Induced magnetic dipole moment due to a tangential magnetic
dipole M = 1 g (A—mz) on the top face of a cube. The top face is at
z = 0.5. Mis at (xo, Yo 0.5).
| T )
' ! X E Yo Induced Dipole ﬂlnd
0 0 0.15 X
| 0.2 0 0.18 % - 0.237 2
0.3 0 0.22 X - 0.406 Z
0.45 0 0.36 X -~ 0.716 2
0 0.2 0.164 X
. 0 0.3 | 0.204 %
0 0.45 0.507 R
0.3 0.3 | 0.266 % - 0.33 § - 0.382 3
0.45 0.45 0.8 % - 0.499 - 0.57 Z
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Chapter 4

LOW FREQUENCY SCATTERING IN THE PRESENCE OF A GROUND PLANE

Figure 4.la represents an electrically small conducting body Bl,
above an infinite ground plane, illuminated by an electromagnetic source
S1. Using the method of images, we obtain the equivalent problem shown
in Fig. 4.1b. Here we have two bodies Bl and B2 and two sources S1 and
S2. The ground plane is removed and the space surrounding the bodies is
characterized by (e,u). B2 is the mirror image of the true body Bl, and
S2 is the image of the true source S1. To use our low-frequency approxi-
mation technique, we assume that the true body Bl is close to the ground
plane in Fig. 4.la. More precisely, it is assumed that we can inscribe the
true body Bl and its image B2 (Fig. 4.1b) in a sphere of diameter d. Then,
provided d is much less than the wavelength of the incident wave, we can
approximate the low-frequency problem shown in Fig. 4.1b by the correspond-
ing electrostatic and magnetostatic problems. The method described in
Chapter 2 can directly be applied to the two body problem of Fig. 4.1b to
compute the induced charge, current and dipole moments. However this leads
to unnecessarily large matrices. In this chapter we describe how to avoid
these large matrices and formulate the problem in terms of moment matrices
which have the same sizes as if the true body Bl were in free space. The

elements of the matrices are, of course, more complicated.

4.1. The Electrostatic Problem in the Presence of a Ground Plane

The problem here consists of finding the induced static charge dis-

tribution on the conducting bodies Bl and B2 of Fig. 4.1b when the incident
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electric field due to S1 and S2 is replaced by its electrostatic limit.
Assume for the moment that the true body Bl is strictly above the ground
plane in the original problem, is isolated,and has an initial charge Q on it.
Then the net charge on B2 of Fig. 4.1b is equal to -Q. If the total potential
produced by the sources S1l, S2,and the induced charges 01 and 02 is V1 on

Bl, then it is -V1 on B2. (Here oy and 0, are, respectively, the induced
charge densities on Bl and B2.) In other words we have the following con-

ditions to be satisfied by the induced charges:

Bl
s1 s2 o, (x") ds' o (xyas' Vb L onS
¢ () + ¢ () + ” pres el i “ e T 4-1)
SBl SBZ £Vl, r on SB2
JJ UI(E)dS' =- JJ OZ(E)dS' =Q (4-2)

Here ¢Sl(£) and ¢SZ(£) denote the potentials produced at a point r by the
true source S1 and the image source S$2, respectively. The integrals in (4-1)

represent the potentials produced by the induced sources, and SBl and SBz

denote the surfaces of Bl and B2, respectively. As in Chapter 2, we
assume that SBl is modeled by N triangular patches and the charge density
on the nth patch is a constant On. Then SBZ’ being the mirror image of SBl’
is represented by N triangular patches, and the charge density on the n'th
patch (which is the image of the nth patch on SBl) is ~C,* Hence, following
the same steps used in Section 2.1, we reduce the integral equation (4-1)

to the following set of linear equations:

_________
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Here each subscripted K denotes the potential produced by a

constant charge density of 4mne coulomb per square meter lying on a tri-
angular patch designated by the second subscript, at the centroid of the
triangular patch designated by first subscript. For example K57, denotes
the potential at the centroid of the fifth triangle produced by the con-
stant charge density over the 7'th triangle. The 7'thtriangle is on SBZ,'and

is the image of the 7th triangle on S ¢§1 denotes the potential pro-

Bl®
duced by the true source S1 at the centroid of the mth triangle. Similarly,

¢22 is the potential due to image source $2 at the centroid of the mtn

triangle. Observe that

Kmn - Km'n' (4-4)
Kmn' B Km'n (4-5)
and
s1, ,S2 _ s1 ., .S2
¢m + ¢m - = ((bm' + (bm') (4_6)

Then it is obvious that (4-3) represents the same N equations written

twice. We approximate (4-2) by

1 2 _
T01+T02+...+T0N—Q (4-7)

and combine (4-7) with the first N equations of (4-3) to obtain the

following:
. .- .
; _ _ _ _ t _ Sl 52
:Kll Kpop  Kpp = Kpog ooe Ky =Ky =1t o) | Tametoyt + 679

!

, : S1 S2
5K21 Ky Ky m Koy s Ko = Koy -1 Oy —4ns(¢2 +4,7)
P o= (4-8)
f o sl S2
o T KB S T K Koy = Koy 7 o AT+ o)
! T1 T2 TN 0 4nevl Q
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In matrix notation this is

(PC] [TG] = [9G] (4-9)

where the moment matrix PG is the square matrix of order (N+1) x (N+1) on
the left-hand side of (4-8), §G is the column vector on the left-hand side
of (4-8), and gG is the column vector on the right-hand side of (4-8). The
solution of (4-9) gives both the induced charge density O and the potential
V1 of the true body Bl above the ground plane (Fig. 4.la). Notice that the
entry in the last row and the last column of the inverse of the matrix PG is
equal to 47¢ times the reciprocal of the capacitance of the true body above
the ground plane.

Observe that the number of equations to be solved in (4-9) is the same

as the number of equations in (2-12) where we had no ground plane. However,

the matrix elements and the excitation vector elements in (4-9) are more
complicated. Once the charge density is computed, we use (2-16) to compute
the induced electric dipole moment. Note that in this case the induced
dipole radiates in the presence of the ground plane.

Figure 4.2a shows the computed capacitance of a sphere of 1m radius,
the center of which is a distance d above the ground plane. Also shown are
the exact results [12,Eq.(4-42)]. The agreement is good. We see that the computed
results are less than (at most by four percent) the exact values. The reason
for this is that the patched surface is taken to be an inscribed model of the
actual spherical surface. As the number of patches is increased, the tri-
angulated model represents the actual surface more closely, and the computed
capacitance approaches the exact value. This can be observed from Figure 4.2b,
which shows the computed capacitance versus the number of patches for the
case d = 2 meters.

We note in passing that the condition that the true body Bl be close

to the ground plane is necessary only if we use the present procedure to
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Fig. 4.2. a) The capacitance of a sphere above a ground plane. b) The

computed capacitance vs.

the number of patches for d=2 m.
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approximate a low frequency scattering problem. Obviously, if we are

interested in strictly electrostatic results, that condition is no longer

necessary.

4.2, The Magnetostatic Problem in the Presence of a Ground Plane

Here the problem consists of computing the induced current distri-

bution it on the true body Bl of Figure 4.la when the jpncident magnetic field

due to source Sl is replaced by its magnetostatic limit. We again assume that

Bl is strictly above the ground plane. We first formulate the problem as a
two body magnetostatic problem, using the procedure of Section 2.2, and then
use the information provided by the method of images to reduce the number

of equations by a factor of two. For the two body problem shown in Fig.
4.1b, the boundary condition to be satisfied is that the normal component

of total magnetic field produced by the sources Sl and S2 plus the induced
currents on El1 and B2 must be zero on both SBl and SBZ' The condition that
the induced currents on both bodies are charge-free is automatically satis-
fied by the choice of expansion functions, described in Section 2.2.2.

Assume that SB is patched so that it has Nb interior nodes. Then

1

SBZ’ being the mirror image of SBl’ has Nb interior nodes. (For closed
bodies, Nb represents the total number of nodes minus one.) We have Nb
expansion functions on each of SBl and SBZ' Then, corresponding to (2-33),

we have the following set of linear equations for this two body problem:

[(zBB]  [zBI]. [TB1]

= [VB] (4-10a)

(1)

[(z1p]  [z11] "[T8B]
= [V1] (4-10b)

[T1]
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Here 2ZBB, ZBI, ZIB, and ZII are Nb x Nb square matrices; Iﬁ, IT, VE, and
VT are Nb x 1 column vectors . ZBB(j,i) is the normal component of the mag-
netic field produced by the ith expansion function attached to the ith node on
the true body, tested over the domain of the jth expansion function on the true
body, as given by (2-34) and (2-46). Similarly, ZBI(j,i) represents the field
produced by the image of the ith expansion function tested over the domain of
the :th expansion function. ZIB(j,i) is the field produced by the ith expansion
function tested over the domain of the image of the jth expansion function, and
finally ZII(j,i) represents the field of the image of the ith expansion function
tested over the domain of the image of the jth expansion function. The ith
element of IB is the expansion coefficient of the 1ith expansion function,

and the ith element of 1T is the coefficient of the image of the ith expansion
function. The kth element of VE is the negative of the normal component of

the total impressed magnetic field (produced by S1 and S2) tested over the
domain of the kth expansion function, as given by (2-36). Similarly , the

kth element of VI is the negative of the impressed field tested over the

domain of the image of the kth expansion function. Since SB2 and S2 are the

images of SBl and S1, and due to (2-46) and (2-49), it is not difficult

to see that

IB(1) = TI(i) £=1,2,...,8°, (4-11)
VB(K) = VI(k) k= 1,2,...,N, (4-12)

and
ZBB(j,1) + 7ZBI(j,i) = ZIB(j,i) + Z21I1(3,1) (4-13)

Hence, (4-10a) and (4-10b) represent the same set of equations. (This is

to be expected, since satisfying the boundary condition mentioned earlier

on SBl , (4-10a), automatically satisfies the same condition on SBZ , (4-10b)).

We rewrite (4-10a) in matrix notation as
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(zc] (181 = (V) (4-14)

where ZG is a square matrix of order Nb X Nb such that
Z2G(j,1i) = ZBB(j,1i) + ZBI(j,1i) (4~15)

IE and VG are column vectors which are the same as IB and VB of (4-10a),
respectively. The term ZBB(j,i) in (4-15) is equal to Z(j,i) of (2-46),

and ZBI(j,i) is given by the following:
t,

1 T
ZBI(j,1i) = - in mgl ij gjm (221 Jip K(m, 1 2)) (4-16)

Heregi2 represents the value of the image of ith expansion fuynction on the
Lth triangle attached to node i, and K(jm,i'f) represents an element of
the matrix on the left-hand side of (4-3). The row and column of this
element are defined by two triangular surfaces. The row is defined by the
mth triangle attached to node j, and the column is defined by the image of
the fth triangle attached to node i.

Figure 4.3 illustrates the expansion function ii’ together with its image
i;. Here we have three surfaces attached to node i. It is seen that the z
component of the expansion function is the same on each surface and its image.
However the x and y components (which are parallel to the ground plane) are
reversed in direction. Keeping this in mind, we have the following expres-
sion for ZG(j,1).

t

J o (K(§m, i2) = K(jm, i'2))

t,
7c(ji)=-ifT T,
N L

I
X

GG ) + 3G+ I+ KUm , 10 +KGm, i'0) &+ 1,))]

But from (4-5) we have
K(jm, i'Q) = K(j'm, i2) . (4-17)
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Hence,
t, t,
.. 1 51 > ovrars oA
26(j,1) = - - 1 Tin Lim !Lzl{ PG(Im,i0) [R(X * J,0) + 94§ + 3.)]
+ [K(Gm, i2) + K(G'm, 1)1 (Z *» 3. )3} (4-18)
—34°—

Here PG(jm, i) is an element of matrix PG in (4-9). The row of this
element is defined by the mth triangular surface attached to node j, and
the column is defined by the f%th triangle attached to node i.

Hence, we use the electrostatic matrix PG to compute the magnetostatic
matrix ZG. We also need the sum K(jm, i) + K(j'm, i), but we do not per-
form any integration to find this sum, because both of its terms are by-
products of the calculation of PG.

The jth element of VG is the same as (2-49), with one exception. The

R ; im .
exception is that the term Hn p(£» ) is now taken to mean the normal component

cjm
of the total impressed field (i.e.,produced by the true source plus its
image ) at Ecjm“
Once the current distribution is solved for using (4-14), the induced
magnetic dipole is computed using (2-52). This dipole replaces the body
and, strictly speaking, it is abcove the ground plane. Since the distance
between the ground plane and the body is assumed to be small, we place the
dipole on the ground plane and use image theory to remove the ground plane.
Figure 4.4 shows the induced current densit; on a square plate which
is vertical to, and 1 cu above, the ground plane. The plate is 1 meter
by 1 meter and is placed in the yz plane. The ground plane is defined by
z = 0. The incident field (in the presence of the ground plane and in the
absence of the plate ) is a z-polarized, y-traveling, plane wave (grazing

incidence) with ﬂlmp = 1 X Ampere/meter. Comparing the result with Fig. 3.15

(6 = 90° case ), which represents the current when the plate is in

free space, we observe that the presence of the ground plane destroys
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the symmetry about the center of the plate, as expected. The current is
bigger near the edge close to the ground plane. The computed induced

. . ind ~ . . . .
magnetic dipole is ﬂln = - 0.455 X, which is about nine percent bigger (in

magnitude) than the induced dipole moment in the free space case (-0.418 2.
Since the former dipole is above the ground plane, we can conclude the
following using image theory: The magnetic (electric) polarizability of
two such square plates (apertures in an infinite conducting screen) is
larger by about nine percent than the sum of their individual polariza-
bilities.

Consider a small cube of side length 1 meter, placed a distance of
0.5 meter above a ground plane. The ground plane is at z = 0, and the
top face of the cube is at z ='1.5 meters. When a magnetic dipole is
placed tangentially on any surface of the cube, we use the pseudo-image
method described in Section 3.5.2 to compute the induced magnetic dipole
moment. For excitation vector elements, we use (3-18). However in this
case Eimp of (3-18) is produced by four dipoles; the original source dipole,
the pseudo-image of the original dipole just inside the cube, and the images
of these two dipoles below the ground plane. Figure 4.5 illustrates the
problem when the source dipole is perpendicular to the ground plane. When

an x-directed magnetic dipole of moment Mx = 1 is placed at the center of

I

the top face of the cube at the point x 0, vy = 0,and z = 1.5, the com-

puted induced dipole is given by Mind = (0.18. If the source dipole is

placed at the center of the right face at the point x = 0, z = 1.0,and

y = 0.5, the induced dipols moment is M;“d = 0.2. If a z-directed

magnecic dipole of moment M7 = 1 is placed at the center of the right face,
ind
the induced dipole moment is M;n = (0.21. These dipoles represent the cube
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Fig. 4.5. a) Original problem : A magnetic dipole M 1is placed tangentially
on the right face of a cube above a ground plane. b) Equivalent problem:
El is the pseudo-image of M, M' and M]' are the images of M and ﬁl'
respectively.
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Since a z-directed magnetic dipole has an image

above the ground plane.
in the negative z direction, we conclude that, at distances large compared
to the size of the cube, the scattered field will be smallest for the last
case considered. In other words, to prevent

radiation from sources

inside the cube to the outside region, a narrow slot vertical to the ground

plane is better than a slot parallel to the ground plane.

4.3 Conducting Box on a Ground Plane
Electronic equipment is usually contained in a conducting box which has
several apertures for input-output connections and for ventilation purposes.
It is desirable to keep the radiation through these apertures as low as
possible. To investigate the effect of these apertures, test measurements
are done in an anechoic chamber with the box usually placed on a ground
plane. In this section, we study the problem of a box on a ground plane.
The box is assumed to have a narrow slot, and, for computational purposes,
this slot is represented by a magnetic dipole tangent

to the box. Also,

plane wave scattering from the box is studied.

4.3.1) The Electrostatic Problem.

The electrostatic problem in this case is the same as the case con-
sidered in Section 4.1 with two exceptions. Now the potential is zero,
and the net charge is unknown. Hence the moment equation for this case can

be written as

) VI s1, s2.1
STIRL I PR CF AR L U S hre (e +¢17)
o s1  .S2.!
Koy = Kprp Koy = Kpug oo e Koy = Kpugt 19, ~hme (0, + 4, 0)
i

= ; (6-19)

Kvi ~ Kyra

52

N |

|
E)

Ko = Kyr2

‘ -4we(¢§1 + ¢

N

where all quantities appearing in this equation are the same as those

in (4-8).
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Note that in patching the box surface the bottom face (the part of
the surface on the ground plane) is not considered. Hence, the patched
surface will be an open one. For a rectangular box, the boundary of this
open surface is a rectangle on the ground plane. The image of the patched
surface is also an open surface wich the same boundary. Hence, the patched
surface together with its image forms a closed surface. It represents a

box of twice the height of the original box.

4.3.2) The Magnetostatic Problem

The moment equation for this problem is the same as (4-14), but we
have the following modification for some expansion functions. Since the
patched surface together with its image represents a closed surface, all the
nodes are considered to be interior nodes. Hence, we associate an expansion
function with each node but one . The image of a node on the boundary
is itself. The expansion function associated with such a node cannot
complete a loop around the node. However, this expansion function together
with its image forms a loop around the node. This is illustrated in Fig. 4.6.
This shows the expansion function associated with node L, which is assumed
to be on the ground plane. An expansion function associated with a node not
on the ground plane is the same as the one illustrated in Fig. 2.2,

Consider a cube of side length 1m placed on a ground plane at z = 0.
The top face of the cube is at z = lm, and the right face is at y = 0.5m.

For a plane wave at grazing incidence with Ei = 377 (V/m) and H; =1 (A/m), the

- A id
computed induced dipole moments are g}“d=o.865x10 8 z and y_“

=-1.32 X . (The

scattered fields can be computed by placing these dipoles on the ground plane.)
We have considered three magnetic dipole excitations for three

different boxes on the ground plane . First , we place a magnetic

dipole with dipole moment M =1 X ( A—mz ) at the center of the top
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* z

/ / /z;o PLANE

Fig. 4.6. A face of a conducting rectangular box together with its image in
a ground plane.(The ground plane is at z=0.) The solid arrows indicate the
expansion function associated with node L. The dashed arrows represent the
image of the expansion function. The unprimed capital letters denote the
nodes and the primed capital letters denote the images of the nodes in the
ground plane.The expansion function together with its image completes a

loop around the node L.
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¥ face of the box . This is referred to as "first excitation." Secondly,

Thanl’,

we place M = 1 X at the center of the right face, and thirdly we place

rer-rvn
hbh2 4

M=1 é,at the center of the right face. The boxes considered are

E_’.

i) acube W=L=H=1m), ii) a tall box (W=1L = 0.9m, H = 1.25 m),

and iii) a short box (W=L =1.2m, H= 0.7 m). The volumes of the

three boxes are almost identical. Table 4.1 summarizes the computed
induced magnetic dipole moments obtained for these three boxes with each

of the three excitations.These dipoles radiate in the presence of the ground
plane.

Table 4.1. The induced magnetic dipole moment due to a tangential

magnetic dipole on a face of a box.

‘ Excitation First Second Third :
Box Excitation Excitation Excitation i

: Shape j

- - {

! Cube , 0.21 % 0.25 & -0.18 § + 0.31 2

' Tall box | 0.25 % 0.30 8  -0.122 § + 0.20 2 |

" Short box 0.18 0.15%  -0.28§ + 0.56 3
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APPENDIX A

APPROXIMATION OF THE LOW FREQUENCY SCATTERING PROBLEM

In this appendix we describe how to approximate the problem of low
frequency electromagnetic scattering by the corresponding electrostatic

and magnetostatic problems. The procedure is explained in [1] and is

Ol LU P

summarized here for quick reference. An example is given to illustrate
the ideas developed.

Consider a perfectly conducting body placed in an unbounded homogeneous

-".
[
s
A
3
.
[

medium characterized by (¢,1). Let the body be illuminated by an incident
electromagnetic field (Eé,ﬂi) whose wavelength is much larger than the
maximum linear dimension of the body. The problem consists of determining
the scattered fields (Eé,ﬂs) such that

]

7 x E° = - jnki® ; IxE =3 E (a-1)
v E =0 ; VeH =0 (A-2)
~ " A i A S‘ _ ~ i
AxE|l =-0xE ; a-Hy =-n0-H (A-3)
S 'S S S
lim rx (¥xE%) - jkrE® = 0 ; lim £x (UxH®) - jkrH® = 0 (A-4)
- -+
where
n=vwlke ,
k =w /EE s

w = angular frequency of the incident wave,
S denotes the surface of the body, and fi is the unit outward
normal vector to S.
Note that in (A-3) the boundary condition on ES implies the boundary con-

dition on ﬂ?.
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It is known that all field quantities may be written as
convergent power series in k, provided k is sufficiently small,
that is,
£3 e 3 » oo 3
'Es,l - Z (jk)m gSoi : ‘ES,I - X (jk)m yS»1 (A-5)
—m —m
m=0 m=0
The mth terms in these expansions may be found by substituting (A-5)
into (A-1)-(A-3) and equating the coefficients of like powers of k.
We find that the first terms, Ez and ﬂs, satisfy
VxE =0 ; v xH =0 (A-6)
- o - =0
VeE =0 : 7. H =0 (A-7)
- o - -0
_ﬁ_in =—§><_z 3 ﬁ.HSI =_.E".H1 (A-8)
S S —°'s s
In addition to these we have the following equations
limrE°=0 ; limrH =0 (A-9)
-0 a)

r > >

These equations were first used by Rayleigh [2] and subsequently veri-

fied by Stevenson [20] and Kleinman [21].

Note that the boundary conditions in (A-8) are now independent. This

is due to the fact that equations (A-6) are decoupled. Equation (A-6)

. . s
implies that there exists a scalar function ¢O such that

S _ _ u,8 -
ES = - v? (A-10)

Then the left equations in (A-7) - (A-9) are satisfied if

VT

P T O O PIL E L -
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vchz =0 (A-11)
-4 x Vo =-10xE (A-12)
O{s s
and s
CL
lim r 3 =0 (A-13)

T-roe
It is obvious that (A-11)-(A-13) define a standard electrostatic Dirichlet
potential problem for the surface S except for a minor detail. The excep-

tion being that the boundary condition in (A-12) may be shown to specify

Sretes
S

1

S ... . . .
the boundary values of ¢O within an arbitrary additive constant. But this

Xy M)
tegr ey
s & 1

F‘ constant can be evaluated by employing the condition that there is no net

;: charge on the surface of the body, i.e.,

;:; . S

[-.1 JJ i« E ds =0 (A-14)
“ - ~v
"

If we replace (gs, Es) by (E}, El) in (A-1) and use (A-5), we have

i
2 X _}_.:0 = 0 (A—lS)
so that
i _ i
E = -9 (A-16)

where ¢3 is a scalar function. Then (A-12) implies that

¢0 +¢ =V on S (A-17)

where Vo is a constant.

We can think of the protlem defined by (A-11), (A-13), (A-14) with
Ez replaced by jy¢§, and (A-17) in the following way. A perfectly conducting
isolated body (with net charge Q = 0) is placed in an impressed electrostatic

i . .
potential ¢o and a surface charge density qo is induced on the surface

BT IR T T P - ot e
R UG A S P P SR SR S S T P U G SEJ0 ST S S ST U AL

CCIR
e tala
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c: the body. This charge produces ¢§. The body, being a perfect conductor,

is an equipotential surface at an unknown total potential VO, i.e.,
65 ) + o' = v on S (A-18)
o o o o

This represents an integral equation for GO. Once it is solved we can

. s . ,
obtain ¢O at an arbitrary point r by

¢S

fo) 4e J

O (r )
1 (f 4
,a l!' _ rT‘ S (A—lg)
and Ei is given by (A-10). The induced electric dipole moment can be o0>-

tained by

pind _ H o_()r ds (A-20)
S

In a similar fashion we can interpret the right set of equations in
(A-6) to (A-9) as follows. A perfectly diamagnetic body is placed in an
impressed static field Ei and a s.irface current go is induced on it,
which in turn produces g: such that the normal component of the total mag-

netic field is zero on the surface, i.e.,

~ i 5 L=
A e (Eo + EO(QO)) 0 on S (A-21)

This represents an integral equation for the induced surface current go

Al
o . e,

1a'

R R S RN

o

Additional information about go can be obtained as follows. Consider the

continuity equation

Sh g
L R

v J1nd = - ke O1nd (A-22)
’s 2

AR

where ¢ = 1/V/ue 1s the speed of light in the surrounding medium, and ilnd

and oind are respectively the current and charge density induced on the
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surface of the scatterer due to the incident field (Ef, ﬂ}). Yg denotes the
» . . ind ind
> surface divergence operator. The induced sources J and © are the
W - . N
sources of ES and ﬂs of (A-1) to (A-4). Since ilnd and Olnd are related
(on S) to the total fields E} + ﬂs and E} + E?,one can argue that J}nd and
oind can be expanded into convergent series of the form given in (A-5) if k
is sufficiently small. Then (A-22) gives
v ind v ind
N ! . .
voe TG I s - ke T GRO™ (A-23)
-5 -m m
m=0 m=0
Equating the coefficients of like powers of k, we obtain
v . gty (A-24)
s o
ind _ ind
E; 31 = c OO (A-25)
etc.
Since go of (A-21) must represent J in the limit as k > 0 and since
gind _qyq gind (A-26)
B k>0
we conclude that J = Jlnd and hence
~0 -0
V «J =20 (A-27)

This is the property of stationary currents. That is why we call the

e problem defined by (A-21) and (A-27) a quasi-stationary magnetic problem
or simply a magnetostatic problem. Once io is solved for using (A-21) and
(A-27) the scattered field ﬂz can be computed using the Biot-Savart law.

The induced magnetic dipole is given by

ind :

<
1| =

J[ r % io(g)ds (A-28)
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Following the same argument that led us to (A-27) we conclude that 00 of
(A-18) and ooind of (A-25) are identical.
!. At distances small compared with the wavelength, the scattered field
i? (E?, g?) is approximately (go, ﬂo) where Eo is the quasi-static electric field
due to 00 and Eo is the quasi-static magnetic field due to go . At distances
that are appreciable compared with the wavelength, (ES, ﬂs) can not be
) is not a propagating field.

Now, (ES, E?) is the field radiated by g}“d.

approximated by (Eo’ go) because (go, go
In Appendix B, it is shown that,
at distances large compared with the maximum dimension of a small surface, the
field radiated by an arbitrary current distribution J on that surface is the
field of the combination of the electric and magnetic dipole moments of J.
Therefore, at distances large compared with the maximum dimension of

the scatterer , (ES, EF) is the field radiated by the combination of the

d . In the limit as k>0, these

d

electric and magnetic dipole moments of iln

d

dipole moments approach Bln of (A-20) and Mln of (A-28).

Notice that depending on the structure of the scatterer and the
. ind - ind .
polarization of the incident wave P anc,or M may vanish. For example,
if a plane wave impinges on a plate with E} (ﬂl) being perpendicular (tan-

d (Mind) is zero.

gential) to the surface then Ein
We now 1llustrate the ideas developed in this appendix by the example

of plane wave scattering from a small conducting sphere. Figure A.1 repre-

sents a conducting sphere of radius a illuminated by an incident plane wave.

Take the incident wave to be x-polarized and z-traveling, that is,

E = Eoe’jkz £ (A-29)
E .
.[-_{_i = }].9_ e_sz i (A-30)

where

fa Yoy Nt e BRI el - - c . - .. . - . . L
e N N e e e e e O e . ) - R L . . : .
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Fig. A.l. Plane wave incident on a conducting sphere.
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n= u /e =120mw,
o o
k = 27/) = wave number of the incident
wave, and Eo is a constant.
The exact results are taken from [4].
. , 1’ 1
JEO cos ¢ o sinH® P~ (cos A) P" (cos B)
T e Lo e fi ey ] (4-31)
n=1 Hn (ka) sin()Hn (ka)
jE in ¢ 0 Pl(cos 8) sin 6 Pl'(cos 8)
Jy = —2 S22 F T 4 Y + L ] (A-32)
¢ n ka n=1 " sin 0 Héz) (ka) Hﬁz)(ka)
jE cos ¢ = .
ES= -2 7 boam+) 82 k) Plicos 8) (A-33)
r 2 n n n
(kr) n=1
~(2) 1
E cos ¢ o H (kr) P (cos 9) ‘
s _ ) n n Lo (2! 1 .
Ee = - T nzl (e " —an Hn (kr)Pn (cos B)sin 0]}
(A-34)
~ '
s Eosin ¢ ™ - (2) 1 H(z) (kr)Pi(cos 6)
E¢ = = - nzl [cn Hn (kr) sin®f Pn (cos 6)-an <in 6 ]
(A-35)
E Y 3 "n+ b1
o=-2 L5t 5 LonE Dy (cos 0) (A-36)
c(ka)” n=1 H (ka)
where
J8 and J¢ denote the 8 and ¢-components of the induced surface

current density respectively,

S S S
Eos Egs Ey

electric field respectively,

denote the r, 6,and 9 components of the scattered

o is the induced surface charge density, and ¢ is the speed of light.

v W N

|
I
i
|




A AR St A A i b At i A e A ”“f-'n*n“.'f‘f’
. . . . C . B . . . L “ "o PRSIV S . N4 - . .. . EE

. 93
-
- -n
5 o ] (2n+1)
fl ®n T Tn(atD) (a-37)
¥ 3! (ka)
B by = -a —myr—— (A-38)
B n n H(2) (ka)
n
J_(ka)
c = - 3 = (A‘39)
n n H(z)(k )
n
Jn(x) = x jn(x) (A-40)
(2) _ (2)
Hn (x) = x hn (x) (A-41)
Here, jn and héz) denote the spherical Bessel function and the spherical
Hankel function of the second kind respectively.
The distant scattered field is given by
) 1
. JE_ —ikr o n 1 Pn(cos 8)
Ee e ¥ © cos ¢ ngl ] [bnSI'n 8 P'n (cos 8) - ¢ Tsind ] (A-42)
s 3B, _jkr S o Prlm(°°s ®) 1
E¢ s ko © sin ¢ nzl i [bn ~sind " ¢, sin B Pn (cos 6)] (A-43)

Now if we assume that k is small such that (ka) << 1, then we have

. 2
E =% E (1 - jkz + (jk)ZZT+ e))
i E 2 22 (hmtt)
H = 9§ —= (1 - jkz + (jk)° 2+ ...)
ki 2 n 2
Comparing (A-44) and (A-5) we have
1 < = - - -
E =XE V(-x Eo) (A-45)
i ~
H =9V E /n (A-46)
- 7 Yo
|
|
!
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From (A-16) and (A-45) we have
@i = -x E
o o (A-47)
Similarly for small (ka) we obtain
Eo 3 7a
= 0° T3 oy 28 a
J8 - cos ¢ 2 + (jk) 3 €os + ...] (A-48)
J. = =2 sin ¢{= cos B8 - (jk)a (2 +-é cos 26) + ] (A-49)
® r 2 2 6
Eo 5
co = - sin 6 cos ¢[3 - (jk) 7;-005 8+ ...] (A-50)
Comparing (A-48) - (A-50) with the series representations of iind and
oind in (A-23), we obtain
ind 3 EO ) ~
== — [- cos s i -
gﬂ 5 5 i-co ¢ 8 + cos 6 sin ¢ 9] , (A-51)
E a
ind _ o~ (7 A _ ax 3,5 N
il = [3 cos ¢ cos 9 € - sin ¢ (2 + g €S 20) ¢1, (A-52)
and ind Eo
o e 3 sin 8 cos ¢ (A-53)
The symbols ﬁ.and é denote the unit vectors in the 6 and ¢ directions
respectively.
Note that
v . gind g (A-54)
-s o
and
ind ind
ZS ll =~ co (A-55)

in agreement with (A-24) and (A-25). Observe that g;nd of (A-53) is the

static charge distribution induced on the sphere due to the impressed

nd

static electric field given in (A-43). Using génd and o; given above

we compute the induced dipole moments to obtain
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;‘4;: E
ind - [f olnd(r) rds = £ -2 47 a3
{ J Y = nc
~~ sphere
~
Rt so that
3
& 3
' ind 4m Eo(ka)
12 = _]wg = _)E j s B (A-56)
:3 n k
F and
'é M1nd =.l JJ r x Jlnd(r)ds
= = 2 X, &
\ sphere
\.: E
o = -ma 2y
\_: '
N
T so that
27 E
p . ind N
: K2 = juu M0 =y —0 (ka)’ (4-57)
o .
. ik
E Now consider the distant scattered field. For small (ka), (A-42) and
. (A-43) reduce to
- .
ﬁ?: ES E e 77 (ka)3 cos ¢ (cos 6 - 1/2) (A-58)
o 8 kr»>> "o kr
-5 ka0
‘-'
o -jkr
A s L€ 3 1 -
L E¢ 5 B, T (ka)” sin ¢ (5 cos 6 - 1) (A-59)
~.::1 ka~0
X2
et The field given by (A-58) and (A-59) is the far field of the combination
,i:: of the dipoles (A-56) and (A-57). This is in agreement with the fact
}i;: that the scattered far field of a small body can be expressed in terms
- of an electric and/or a magnetic dipole.
A
{i- Now consider the expressions given in (A-33) - (A-34). Assume
'iﬁz ka is small enough such that
R
o

»
-
«
.
P
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2 (ka) 2n+1

n+l 2" (n-1)! ]
(2n)! jn+l

bn ka0 ~ n Cn ka0 [

(A-60)

Then it is easy to show that for any kr the first term in (A-33) is the

field of lQ in (A-56). Hence as ka0, Ei is determined by IZ only.

Figure A.2 shows the scattered field Ei for the case ka = 0.2. The solid
curves represent the exact solution which was obtained by summing the first
six terms of (A-34). The dashed curves represent the field of the two dipoles
given in (A-56) and (A-57) placed at the origin. The fields are normalized
with respect to Eocos 4. It is seen from the figure that the exact fields and
the dipole fields are in close agreemew.. even at a distance equal to twice

the radius. We believe this is due to the symmetrical structure of the sphere.
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—— EXACT FIELD
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Fig. A.2. Plane wave scattering from a small sphere.
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APPENDIX B

! DIPOLE REPRESENTATION OF THE FIELDS DUE TO ELECTRIC AND MAGNETIC

CURRENTS FLOWING ON A SMALL SURFACE

Consider a time-harmonic surface density of electric current J on
. the surface S whose maximum dimension D is appreciably smaller than the
M wavelength. This electric current produces an electromagnetic field
(E »H ). For convenience, the coordinate origin is chosen such that the
distance r' from the origin to any point on S is less than D. In Appendix

B, it is shown that, whenever the distance r to the point of observation

of (EF,ES) is large compared with D, (EF,ES) reduces to the electromagnetic

e field of the combination of an electric dipole and a magnetic dipole, both

:E dipoles being located at the origin. From inspection of this dipole repre-
sentation of the electromagnetic field (Es,gs) due to the electric current J,

) a dipole representation of the electromagnetic field (Esm’ﬂsm) due to a

;% magnetic surface current gﬁ on S is easily obtained.

‘ Jones [22, pp. 530-532] has shown that the dipole representation is
_g valid under the more restrictive conditions that S is closed and perfectly
.s conducting and that r is not only large compared with D but also large
‘ compared with the wavelength. Not assuming that S is perfectly conducting
}3 but assuming that S is closed, Kleinman [23,24], in a long but straight-

E:E forward presentation, has obtained a dipole representation for the electric
field E? far outside S due to an electromagnetic field (E,H) existing on S.
i}. According to the equivalence principle [4, Sec. 3-5], this g? can be viewed

as the electric field due to the combination of the electric surface current

N x H and the magnetic surface current E v n where n is the unit vector
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which points outward from S. 1In order to obtain his final result [24,
Eqs. (16)-(18)], Kleinman had to assume that r is large compared with the
wavelength.

The dipole representations of Appendix B are obtained without
assuming that S is perfectly conducting and without assuming that S is
closed. These representations are valid whenever r is large compared
with D, no matter how r compares with the wavelength.

In search of the dipole representation for the electric field

ES due to the electric current J, we write [4, Egs. (3-63)]

B - 00w 4 ) 3-1)
1 (( J(r") e"‘]klr‘-l—-'l
22— i ' -7
A% ) [x-r'] ds (B-2)
S

In (B-2), r' is the radius vector (from the origin) to the point at
which the differential element of area ds' is located and r is the
radius vector to the point at which A is evaluated.

Since r' is on S,

r' <D (B-3)

where r' is the length of the vector r'. If it is assumed that r, the

length of r, satisfies

r >> D (B-4)
then
r' <<r (B-5)
Thanks to (B-5), we obtain
r-r'l-r-x-x' (B-6)
1 1 £er
N D (8-7)
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where f is the unit vector in the r direction. Substitution of (B-6)
and (B-7) into (B-2) gives
-jkr (( rer' . . '
= & ! ' - jk r-*r ' _
A ) Jx"HQa + e ds (B-8)
S
Because D was assumed to be appreciably smaller than the wave-~
length, it is evident from (B-3) that
kr' << 1 (B-9)
Equation (B-9) authorizes the approximation
e . ot
D h gk e (B-10)
Substituting (B-10) into (B-8) and neglecting the second order term,
we obtain
e_jkr ( 1
- 1 ' . 1 o . [} [} [} _
A== [Jfg(; dds' + (jk + ) ” (x - r') J(x"ds'] (B-11)
S S
The first integral in (B-11) is called 11.
I, = [j J(r")ds' (B-12)
S
The dot product of (B-12) with an arbitrary constant vector a is
a1 - He_ © I(xds' (B-13)
S
Now,
a=%7"(a-r") (B-14)

where V' is the 7 operator with respect to the coordinates of r'.

Substitution of (B-14) into (B-13) gives

e te DI T PR . . LT . e
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a1, = H (V'(a * x")) + J(x")ds’ (B-15)
S

The form of the integrand in (B-15) suggests the identity [8, Eq. (A-1)]

” W e Vigds' = - ”d:(Vé * Wds' + J O + u)dr (B-16)
s S C

In (B-16), W is tangent to S, and V;- is the surface divergence on S
with respect to the coordinates of r'. If S is closed, the integral over
C is to be deleted from (B-16). If S is open, C is the contour that
bounds S, d' is the differential element of length along C, and u

b

the unit vector tangent to S and normal to C. The direction of uy is

away from S. Application of (B-16) to the integral on the right-~hand

is

side of (B-15) gives

—_—

f
a1 =- Jf (@ xhv - J@hds' + | @ U - gid'  (B-1D)

) C

Since no line charge can exist on C, it follows that

-’\ I +u =0 on C (B-18)
-:“

o In view of (B-18) and the fact that a is arbitrary, (B-17) implies that

-

i = - vy "Yds' -

T:-' S

o The second integral in (B-11) is called I,.

-] @ e
fi S

}: The identity formed by substituting (B-12) for Il in (B-19) is also

'@

b valid with J(r') replaced by (£ « r')J(r'). As a result,

=

I.J

"

~
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12 = - J( r' V' e ((f s TI(r'))ds’ (B-21)
E3 ;o= s r *r)Ji\r
L S
;; The V;~ term in (B-21) suggests the identity [8, Eq. (A-4)].

) \VA NN J = e TV L -
! 7L (GW) = W - V16 + 4T - W (B-22)

In (B-22), W is tangent to S, and V; is the surface gradient on § with
respect to the coordinates of r'. Application of (B-22) to the integrand

on the right-hand side of (B-21) gives

1, =- ” '@ - VIE - x'))ds' - ” r'(E + ') V- J(x')ds’ (B-23)
S
Since J(r') is tangent to S, the surface gradient V; in (B-23) can be
replaced by the ordinary gradient V'. Using (B-14) with a replaced by

T to simplify this gradient, we obtain

1,=- ” r'(@(') ¢ £)ds' - ” '@ - r) V- J(x')ds' (B-24)
S

Next, I, is expressed as half of the sum of the right-hand sides of

2
(B-20) and (B-24).

I, = 1 JJ (&€ = e"HJ(") - r'J(") ¢+ £))ds' - % {J (& .E')vé  J(x')ds’

=2
S S

N

(B-25)
Thanks to the vector identity [4, last of Eqs. (A-13)], the .ntegrand
of the first integral on the right-hand side of (B-25) is -t * (r' x J).

As a result, (B-25) becomes
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I, = - 1 £ [( r' x J(r')ds' - 1 r'(Fer")V' «J(r')ds' (B-26)
=2 S == 2 - = =7 == -
S S
The equation of continuity is
V; ¢ J(x") = -jwo(x") (B-27)
where 0 is the surface densitv of electric charge on S. In view of
(B-27), substitution of (B-19) and (B-26) into (B-11) gives
e_jkr ( ' ' 1 1
= e { =(3 — ¥ e ' t
A e Liu JJ ' o) + 3Gk + 2)(E - 1'))ds
S
. 1, . .Y [, ey
Gk + ;) rx5 j r' x J(r')ds'] (B-28)
S
It is evident from (B-5) and (B-9) that
| 1., .
As a result, (B-28) reduces to
e._jkr 1 1
= :, ' ' v (s V% = ' ' ' _
é Lt [J.J) JJ r O(E )ds (Jk + r)r_ X 5 JJ r' x _J.(£ Yds'] (B-30)
S
If kr >> 1, (B-30) reduces to the electric and magnetic dipole terms in
[25, Eq. (14) without the factor uO]. Expression (B-30) can be rewritten
as
A= eI ju [ r' a(x')ds' + (¥V e—Jkr) « L f r' x J(r')ds' (B-31)
- 4mr ] - - 4rr 2 J - = =
S S

Thanks to the vector identity [4, sixth of Eqs. (A-14)], (B-31) becomes

RERRRIS? |
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A=A+ 7 x§ (B-32)
—_— _— j“\u —_
where
e-jkr (
A = : LI ' v -
A e jw JJ x 7(}'_ )ds (B-33)
S
; o e_jkr juwu
. = ' ' ' -
- £ bar 2 JJ ' x I(x')ds (B-34)
f - S
z. Substituting (B-32) for A in (B-1), we obtain
] b Ry -7
[~ ES = J% (V(7-4A) + kzé) -VxF (B-35)

According to [4, first of Eqs. (3-83)], the right-hand side of (B-35)

is the electric field of the combination of the magnetic vector potential

é and the electric vector potential E. Now, (B-33) can be expressed as

. e—jkr
A=Li7m (B-36)
where
IL = jw (J r' o(r')ds' (B-37)
J
S

Since A is a magnetic vector potential, I/ can be viewed as an electric

current element located at the origin. Equation (B-34) is recast as

e—jkr
F=K 4mr (B-38)
where
KL = __‘_j_fziil. }[r)r _I_" o _‘I.(_r_')ds' (B~39)
S

Since 2 is an electric vector potential, K% can be viewed as a magnetic
current element located at the origin.

Substituting (B-36) and (B-38) for é and E in (B-35), we obtain

AP . et e e v te®ateteTata et o e .
o et e e =
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1 1L e-Jkr ) 1L e-jkr KL e-jkr
AT 0 (V(V- — ) + k — - waVX—~—?———‘—) (B-40)

E° =

'l’*' 'n
.

When the differential operations in (B-40) are performed, (B-40)

..l-.'.—.l A -{'

expands to

S = e—Jkr

= = 47juEr

[kz(ﬁ'*yo Xt + (J—rk- + —17)(3(1_9, “T)T-12) + jwe (jk +%) (£ <K2)]
r

(B-41)

According to (B-35), the electric field E? due to J is the electric
field due to the combination of é and F. Hence, the magnetic field ﬂs due
to J must be the magnetic field due to the combination of é and g, This

magnetic field is given by [4, second of Eqs. (3-83)]
s A 2’\ “ N
H =+— (V(V * F) +k'F) +V x A (B-42)

Substituting (B-36) and (B-38) for é and E in (B-42), we obtain

N
5 . . .
Eﬂ . ) 5£ e—]kr ) E& e jkr l& e—Jkr
i H = 4TI V(7 - —r——_) + k - + jwuV x —r) (B-43)
b -
- Since (B-43) is similar to (B-40), it is evident from inspection of (B-41)
P:‘.'
::{ that (B-43) expands to
> -jkr .
o~ s _ e 2.4 a jk 1 Qe £YPKL) = 3 RD TNPPN
o B = myar K (EXKRE) XL + (5 rz)(3(K; DE-RY) - jun(Gk +2) (£ x 18)]
T{ (B-44)
% An electric charge dipole P is implicitly defined in terms
kS of I by
i 18 = jup (B-45)
o

The factor ju appears in (B-45) because electric current is the product

:3 of ju with electric charge. For brevity, P is called an electric dipole.
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N
3i Alternatively, P can be called the electric dipole moment of the electric
.:\
;f' current J. Comparison of (B-45) with (B-37) gives
N f
- P = IJ r' o(r')ds' (B-46)
s - J - -
< g
where 0 is the electric charge associated with J.
éi A magnetic pole charge dipole M is implicitly defined in terms
; of K¢ by
v KL o= jwu M (B-47)
if Magnetic pole charge is magnetic charge divided by u. The factor jwu
L appears in (B-47) because magnetic current is the product of jwu with
ffb magnetic pole charge. For brevity, M is called a magnetic dipole.
}l{ Alternatively, M can be called the magnetic dipole moment of the electric
- current J. Comparison of (B-47) with (B-39) gives
3
:-'._: M = _]; ([ ' ] ' (3-48)
28 o) oE < s
i{{ S
- Consider a surface density of magnetic current QP on S. The
;:; electric field gém due to g? is given by [4, Eqs. (3-4) and (3-5)]
_ —Sm =-VxF (B-49)
3 ';An' - . - ‘
..:: ) Jm(rl) Jklr r l
L = — i ' -
-..':-: E W [J IE—I_'] ds (B 50)
T S
; .
s On the other hand, the magnetic field H  Jue to the electric current J
;in is given by [4, Eqs. (3-4) and (3-5)]
'.'-;‘: s -
e .}_{ = , X é (B-Sl)
i
ﬁ;f where A is given by (B-2). The pair of equations (B-49) and (B-50) is
BN sm
- similar to the pair of equations (B-51) and (B-2). 1If the E* in (B-49)
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and (B-50) is called E°"(J™) and if the H® in (B-51) and (B-2) is called

H°(J), then

"™ = - 5™ (B~52)

pDirected by (B-52), we reverse the sign of the right-hand side of (B-44)

and replace J by gﬁ therein to obtain

~jkr

sm e 2, . .m ~ jk , 1 M Ava m X ) 1,4
E = Gmjeer [k™(rx It )X£+(T+r—2)(3(1_ﬁ *E)E -1 )+Ju)E(Jk+';)(£ xﬁm)]
(B-53)
where m - f m
w3 [ e s (8-56)
S
~m : f( v My '
K = ijj r' o (r')ds (B-55)
S
In (B-55), o" is the surface density of magnetic charge associated
with J".
v - 3" = - juo™(x") (B-56)

Note that_gsm of (B-53) is ES of (B-41) with I2 and K{ replaced
by 1&? and 5&?, respectively. Hence, the magnetic field E?m due to g?

can be obtained from inspection of (B-44).

Hsm e-j kr

=~  4Tmjwer

@™+ A+ DHEE™ - £2 - k™ - juulik+D Ex M)
r

(B-57)

An electric charge dipole g? is implicitly defined in terms of

18" by

~>

™o o™ (B-58)
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! Comparison of (B-58) with (B-54) gives
L ” £t x J(r)ds! (B-59)
S
A magnetic pole charge dipole ﬂm is implicitly defined in terms
of K" by
K" = ou M (B-60)
Comparison of (B-60) with (B-53) shows that
m 1 S | '
M = m r' o (r")ds (B-61)
S
2
P_;‘-:
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