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ABSTRACT

A simple moment solution is given for low frequency electromagnetic

scattering and radiation problems. The problem is reduced to the correspond-

ing electrostatic and magnetostatic problems. Each static problem is then

solved using the Method of Moments. The surface of the perfectly conducting

scatterer is modeled by a set of planar triangular patches. Pulse expansion

functions and point matching testing are used to compute the charge density

in the electrostatic problem. For the magnetostatic current a new set of

charge-free vector expansion functions is introduced. The problem is first

formulated assuming the scatterer to be in an unbounded homogeneous region.

Then the presence of an infinite ground plane is incorporated into the

formulation. Scatterers of various shapes, such as the circular disc, the

square plate,the sphere, and the cube are studied. Special attention is

paid to a conducting box with a narrow slot. The computed results are the

scattered fields, the induced charge and current distributions, and the

induced electric and magnetic dipole moments. These are in close agreement

with whatever published data are available.
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Chapter I

INTRODUCT ION

Consider an arbitrarily shaped perfectly conducting body illumi-

i i

nated by an incident electromagnetic field (E H The problem is to

find the scattered field (ES, HS) in the Rayleigh region. The Rayleigh region

is defined [I] to be the range of frequencies for which the maximum dimen-

sion d of the body is much smaller than the wavelength . It has been

shown by Rayleigh [2] that this low frequency scattering problem can

approximately be solved by treating the corresponding electrostatic and

magnetostatic problems separately. Also, it has been established that a

small scatterer [1], (or a small aperture in a perfectly conducting screen

[31) may be approximated by radiating electric and magnetic dipoles. Exact

values for the dipole moments are available in the literature only for

simple shapes, such as the sphere and the circular or elliptical disc (or

aperture)[31-[6]. An extensive bibliography on the low frequency scatter-

ing problem is given in [l].

Our work formulates the electrostatic and the magnetostatic problems

separately. An approximate solution is then obtained for each problem using

the Method of Moments [7]. In the electrostatic problem an integral equa-

tion is solved for the induced charge density on the surface S of the body.

Then the induced electric dipole moment is computed from the induced charge

distribution. Similarly, in the magnetostatic problem an integral equa-

tion is solved for the induced current density on S. The induced magnetic

dipole moment is computed using the induced current density.

S
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In principle, this scattering problem can be handled by solving

an electric field integral equation for the induced current on S. This

is called an E-field solution. However, two static problems require, in

general, less effort. Furthermore, although the E-field solutions give

accurate results in the resonance region, where d is comparable to X, they

may begin to lose accuracy as the frequency decreases. Recently, Mautz

and Harrington [8] nave discussed this problem in detail, and have given a

new E-field solution for bodies of revolution which gives accurate results

* in both the resonance region and the Rayleigh region.

The general formulation is presented in Chapter 2. The formulation

of the electrostatic problem is known and has been used by various investi-

gators [9]. The approach is to first model the surface S by planar triangu-

lar patches and then assume a constant charge density on each patch. An

integral equation for the charge density is obtained by using the conditions

that the total electrostatic potential on S is a constant and that the total

charge is zero. This integral equation is solved approximately by the

Method of Moments.

The same triangulated model of S is used in the magnetostatic

problem. An integral equation for the induced magnetostatic current is

obtained by using the condition that the component of the total magnetic

field normal to the surface S is zero . This boundary condition is bor-

rowed from the dynamic problem, but it holds for perfectly diamagnetic (p =0)

bodies in static fields as well. The surface divergence of the induced

magnetostatic current must be zero. This is assured by introducing a set of

charge-free vector expansion functions for the current.

To compute the scattered fields, space is divided into four regions;

very close to the scatterer, the electric field is computed from the induced
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charge only, and the magnetic field is computed using the induced current

only. At a distance large compared to d, but small compared to X, the

electric field is computed using the static expression for the field of

the induced electric dipole, and the magnetic field is computed using the

static expression for the field of the induced magnetic dipole. In both

of these near-zone cases the electric and magnetic fields are decoupled.

For an intermediate region, where the distance from the scatterer is compa-

rable to X, the exact dynamic expressions are used to compute the fields

from both dipoles. In the far-zone region, where the distance from the

scatterer is large compared to both d and X, far-field expressions are used for

the dipole fields, and the fields are coupled.

In Chapter 3, the general formulation described in Chapter 2 is applied

to various scatterers in free space. Open and closed surfaces are considered.

The incident field is taken to be either a plane wave or is assumed to be

produced by an oscillating electric or magnetic dipole placed near the scat-

terer. Special attention is paid to the case where an electric (magnetic)

dipole is placed normally (tangentially) on a conducting sphere or on the

face of a conducting cube.

Chapter 4 formulates the scattering problem in the presence of an

infinite ground plane. Tn the first part of the chapter, the scatterer is

assumed to be above the ground plane. In the remaining part, the special

problem of a conducting box on a ground plane is considered.

.
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Chapter 2

U GENERAL FORMULATION

In Appendix A we describe how to approximate the problem of low

frequency electromagnetic scattering by the corresponding electrostatic

and magnetostatic problems. In this chapter we introduce the general

procedure for the formulation and solution of these problems separately.

The main objective in an electrostatic problem is to determine the

electric charge distribution induced on a perfectly conducting iso-

lated body when it is placed in a specified impressed static electric

field. Once the charge density is known, other quantities of interest,

such as the induced electric dipole moment and the field produced by the

induced charge , can readily be found.
'I

In the magnetostatic part of the problem we are interested in de-

termining the current distribution induced on a perfectly diamagnetic

body when it is placed in a static impressed magnetic field. Once the

current density is obtained, other related quantities can be solved for

easily.

For each problem we obtain a different integral equation and use

the Method of Moments to approximate this integral equation by a set of

linear algebraic equations. These algebraic equations are then solved by

the methods of linear algebra.

2.1. The Electrostatic Problem

The electrostatic problem has been studied extensively and the general

formulation of the problem in terms of the Method of Moments is well-estab-

lished [7,91. We summarize the formulation here for the sake of complete-

9



5

ness and for quick reference. We will refer to it in the formulation

of the magnetostatic problem in Section 2.2, and also in Chapter 4.

Consider a perfectly conducting body with an arbitrarily-shaped

surface, which is originally charged to a net charge Q, and then is

placed in an impressed field produced by external sources. The problem

consists of finding the induced charge density on the surface.

2.1.1) The Electrostatic Integral Equation

Since the surface of the body defines an equipotential surface, the

total potential produced by the induced and the external sources must be a

constant V on the surface. Also, the net charge on the surface must still

be equal to Q. The fundamental equations governing this electrostatic prob-

lem can be written as

I V(r')

JI 4~~ r - Ids + = on (2-)

S

if c(r') ds' =Q 
(2-2)

S

where

S denotes the surface of the body,

a is the induced charge density on S,

i
$i(r) is the potential produced by the external sources alone,

at a point r,

r and r' denote the position vectors from an arbitrary origin

to a field and a source point respectively, and

C denotes the permittivity of the medium surrounding the

body.
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Equation (2-1) is an integral equation of the first kind for :. It is to

be solved by the Method of Moments, with the auxiliary condition (2-2).

2.1.2) The Expansion Functions for the Ilectrostatic Charge Density

To solve for , we approximate the surface S by planar triangular

.. patches defined by a set of nodes and edges. The vertices of triangles are

referred to as nodes and the sides are referred to as edges (Figure 2.1).

We assume that the charge density is constant on each patch. in other words,

we let

N
. P (r) (2-3)
n1 -n n

where

N is the number of triangular patches,

Crn = 1,2,...,N,are the expansion coefficients to be
n

determined, and

P (r) is a pulse expansion function defined as follows.

1, r in S
n

P (r) = (2-4)

0, otherwise

Here Sn denotes the nth triangle. With this choice of expansion functions,

o directly gives the charge density on S , and (2-2) reads
n n

N
",n =0 (2-5)

n
n=1

where denotes the area of the nth triangle. Substituting (2-3) into

(2-1), we have

N T- (15' 
i

,7 ' . .4. .. 4 .,P (r) r on S (2-6)

n1 n Jjn r-r 4,S )-
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* Fig. 2.1. A triangulated model of a circular disc. No. of the triangular

patches=24, No. of nodes=17, No. of edges=4O, No. of interior no~des=9.
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We could have chosen some other types of expansion functions. For

example, we could choose functions whose charge density is allowed to

vary on each triangle. This might approximate the actual charge density

more closely. We could also choose the expansion functions such that the

total charge associated with each expansion function is zero. Then the

condition (2-2) for Q = 0 would automatically be satisfied. Since we

solve the electrostatic problem as one part of a low frequency scattering

problem,we will take Q = 0.

The pulse expansion functions for the charge density have been

successfully used by other investigators [9], and the results are readily

available. We have the additional advantage that for this choice we can

make use of the moment matrix obtained in the electrostatic problem to

fill the moment matrix of the magnetostatic problem without additional

integrations.

2.1.3) Testing Procedure for the Electrostatic Problem

For the reason mentioned above, and because of its simplicity, we

choose point matching, i.e., we satisfy (2-6) at the centroid of each

triangle, obtaining

aK 4- 47r4 V = - 4c , ml2,.. .,N (2-7)

mn n m 0 (
n=l

where

Ir d s '
K = ds , (2-8)

mn In rm r',

(rm)
* - . .-
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Here r' is the position vector of the differential element of area ds' and

Sm
r is the position vector to the centroid of the mth triangle S . The

integral in (2-8) can be evaluated analytically and the result is given

in [91.

2.1.4) The Moment Equation for the Electrostatic Problem

Using the Method of Moments, we reduce the integral equation (2-1)

to the set of linear algebraic equations given in (2-7). Together with

(2-5) we can write them in the form of matrices as

11 K 12 * KlN -1 1

21 22 K2N - 2

(2-10)

KNI KN2  . KNN -1 'N  N

1 2 N
T1  T TN  0 4"rEVo Q

or as

[K (2-11)

[Tn] 0 4TreV Q

In matrix notation this is

P"= (2-12)

where the moment matrix P is the square matrix of the order (N+I) x (N+I)

on the left-hand side of (2-11), , is the column vector on the left-hand

4
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side of (2-11), and is the column vector on the right-hand side of

(2-11). The solution of (2-12) gives both the charge density and the

total potential of the body.

All types of electrostatic problems can be solved either by using

(2-12) directly or by modifying it slightly. As an example, if Q is

given and is zero, then one can obtain the charge distribution, the

potential Vo, and the capacitance of the body by using (2-12) directly.

In fact, it is easy to show that the capacitance of the body is given by

C = (2-13)

(N+I, N+l)

where P (N+l, N+1) is the element in the (N+l)th row and the (N+l)th

column of the inverse of the matrix P. Another simple and practical appli-

cation of the electrostatic problem formulated here is to find the magnetic

polarizability tensor of a small aperture of arbitrary shape in an infinite

conducting screen [0],[11].

As pointed out earlier, when we solve the electrostatic problem pre-

sented here as a part of a low frequency scattering problem, we take Q=O

in (2-11). Then, once the charge distribution is solved from (2-11), we

obtain the induced electric dipole moment according to [12]

"ind 
(1

.-' _ = j j a(r')r' ds' (2-14)

S

Here r' is the radius vector from an arbitrary origin to a source point

on S. Since the charge density is constant on each triangle, (2-14) reads

tind = '= , n ( r' ds' (2-15)

n=l n
S



Working out the integral in (2-15), we have

N
P = r (2-16)

n=1

n n
Here r is the radius vector to the centroid of the nth triangle and T

is the area of the triangle.

The oscillating electric dipole which is used in computation of

the scattered field is then given by

ind ind
I. jW P (2-17)

where w is the angular frequency of the incident field. The details of the

scattered field computations are given in Section 2.3.

This completes the general formulation of the electrostatic part of

the problem, assuming the body is in an infinite homogeneous medium. Some

applications are given in the following chapter. The formulation of the

electrostatic problem in the presence of an infinite ground plane is given

in Chapter 4.

2.2. The Magnetostatic Problem

As pointed out earlier, the electrostatic problem has been studied

extensively by using the Method of Moments, and the results are available

for an arbitrarily-shaped surface. However, as an approximation to the

4 low frequency scattering problem, the magnetostatic problem has been applied

to only very simple shapes. Tn fact, we are not aware of any such work

using the Method of Moments. Hence, in this section we describe the formu-

}4 lation of the problem in more detail.



r.

12

The magnetostatic problem can be stated as follows. Given a per-

imp
fectly diamagnetic body placed in an impressed magnetic field H , we

want to find the current distribution induced on the surface of the body

such that the normal component of the total magnetic field is zero on

the surface of the body and that the induced current density has zerG

surface divergence.

2.2.1) The Integral Equation for the Magnetostatic Problem.
im

Let the total magnetic field be the sum of the impressed field Himp

and the field H(J) produced by the induced surface current J. Then we

require that

n (H p + H(J)) = 0 on S (2-18)

where S denotes the surface of the body, and is the unit (outward)

normal vector to S. We also require that

J = 0 (2-19)

where 7. denotes the surface divergence operator.-s

We are here assuming a perfectly diamagnetic conductor. Otherwise

the condition that the normal component of the magnetic field is zero does

not hold on the conductor in a static field. One can interpret J in (2-19)

as the zeroth order part of the total current density induced on an elec-

trically small body when the latter is expressed in terms of a power

series in k, where k is the wave number of the incident field [13, also

refer to Appendix Al.

Equivalently, we need to solve for .1 such that

"I () - imp on S (2-20)
n n
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and (2-19) is also satisfied. The subscript n in (2-20) denotes the normal

component. Equation (2-20) represents an integral equation of the first

kind for J which will be solved by the Method of Moments.

2.2.2) The Expansion Functions for the Magnetostatic Current

To solve (2-20), we approximate the surface S by triangular

patches. Although we are free to use any patching scheme, we prefer

to use exactly the same patching scheme used in the electrostatic part.

This allows us to use the same integrations computed in the electro-

static part to fill the moment matrix for the magnetostatic problem.

We let b

J = C.J. (2-21)
i=l

where

Nb is the number of the interior nodes for an open surface.

For a closed surface Nb is equal to the total number of nodes

minus one.

1. is the vector expansion function associated with the-1

ith interior (non-boundary) node, and C. is the ith expansion1

coefficient to be determined.

The expansion function J associated with the Lth interior node

is illustrated in Fig. 2.2. Tt has the following properties:

i) On each triangle attached to node L, the magnitude of J is con-~-L

stant. This magnitude is equal to the length of the edge opposite

node L divided by the area of the triangle.

ii) On each triangle attached to node L, JL is parallel to the edge

opposite to node L. J circulates clockwise about the node L.

: i J .. ...
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E

S B

C

Fig. 2.2. The expansion function J associated with node L.
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In Fig. 2.2 we have five triangles attached to node L. (Note

that each triangle may be in a different plane.) The capital letters

denote the nodes. On the first surface S attached to node L, J is

called J and is given by

l FB (2-22a), LI T LI

Here FB denotes the vector drawn from node F to node B, and T is the
Li

area of the triangle SLl. Similarly, on the fifth triangle SL5 attached

to node L, J is called J and is given by
-L -L5

EF 
(2-22b)L5 T L5

Similar definitions hold for the other triangles.

iii) The component of J normal to an edge common to two triangles is

continuous. Hence, no line charge accumulates on any edge. This com-

component of 'JL is given by

( 2/ c (2-23)
n

where Z is the length of the common edge between two triangles attached
c

to node L.

iv) It is easy to show that

V = 0 (2-24)

So that there is no charge associated with J L Hence, by virtue of (2-21),

we see that the necessary condition in (2-19) is already satisfied by this

choice of expansion functions. Indeed it can be shown that [8,Appendix BI

J n x 17 qL (2-25)
'Lk -Lk z&Lk (-5
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where,,n" is the unit normal vector to the kth triangle SIk, attached

to node L. Here V denotes the surface gradient operator, and 'Lk is a-s ' L

scalar function defined on S 'Tk has a value equal to 2 at the node
Lk U

L, and linearly decreases to zero at the edge opposite to node L. Lk

is discontinuous, because it suddenly drops to zero at the other two

edges on SLk Therefore is impulsive at these edges. However,

the composite function consisting of qLI' 1 ,2 .
' is continuous so

that its surface gradient is not impulsive. In fact, if all triangles

attached to node L are in the same plane, then 1,) defines a pyramid-like

surface centered at node L, with height equal to 2. It has as many side

surfaces as the number of triangles attached to node L. In Fig. 2.3 we

have shown the part of 0 over two triangles, assuming both are in the'L

xy plane. The encircled numbers in the figure denote the nodes.

On the first surface S attached to node L, 'i L is called Ll,

which is given by the planar surface passing through the points (xl,Yl,0),

(x2 ,Y2 ,0),and (0,0,2).

x(y2 - y y(x 2 - x1) - xlY2 + yX 22h = -2 (2-26)

Ll (ylx 2 - xlY2

Similarly, the equation of the plane passing through the points (x2 ,y2 ,0),

(x3 ,Y3 ,0),and (0,0,2) defines L2"

=2x(y, - y 2 ) - y(x 3 - x2 ) - x 2 Y3 + Y2 x3" L2 = 2 - YX _2Y) (2-27)

L2 (y') 3  3

Then

J n ~ x Xi
-LI -L l -s L - sLl

(Y2 - +) (x 2 - X1 )
r (Yl x 2- xlY2 )/ 2 + (yIx 2 - xlY2 )/2 -



L 17

z

(0,0,2)

SLLI

SL2

x

Fig. 2.3. TIllustration of T over two triangular surfaces.

T,---
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where x, y, and denote the unit vectors along the coordinate axes. If

the nodes 1, 2, 3 .... encircle node L in the clockwise direction, as in

Fig. 2.3, then (ylX 2 - xly2)/2 is the area of the triangle SL. As a

result, (2-28) reduces to

Ll 
(2-29a)

IT

where 12 represents the vector drawn from node 1 to node 2, and T is the
LI

area of the triangle SL1. Similar results hold for JL21 h3'

However, if nodes 1,2,3,... were to encircle node L in the counter-

clockwise direction, then the area of the triangle SL1 would be -(y X2 -

x1Y2)/2 and (2-28) would reduce to

12
J (2-29b)

It is evident from (2-29a) and (2-29b) that JLI always flows clockwise about

node L for nLl=Z' Howeverif fLI=- then JLI' being proportional to RLI'

would flow counterclockwise about node L. Therefore, JLI always encircles

in the left-hand sense. (A left-handed screw whose axis is parallel to ^

would advance in the direction of n when rotated in the direction of J1.)
-L1 MLi1

v) The expansion function J can be written as a linear combination of tL

expansion functions used in [14], where an expansion function is associated

with each non-boundary edge. Here tL denotes the number of triangles attached

to node L. Usually the number of interior nodes is less than the number of

interior edges, and hence we have fewer unknowns for the same patching

scheme. On the other hand, each of our expansion functions is defined on

at least three triangles, whereas each of those in [14] is defined on a pair

of triangles. Furthermore, the expansion functions of [141 vary both in
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magnitude and in direction on a triangle, but ours are constant there.

With such a choice for expansion functions, on each triangle there

can be up to three expansion functions associated with the three

nodes of the triangle. On a triangle which has a boundary edge only oneI- expansion function can exist. In patching the surface S, care should be

K, taken so that all triangles have at least one interior node. (For closed

bodies this problem does not exist and there exist exactly three expan-

sion functions on each triangle, except on those triangles attached to a

, specific node where there are exactly two expansion functions.)

vi) It can be shown that Nb expansion functions defined on an open

surface form a linearly independent set. For closed surfaces the number of

n n
nodes N is equal to number of interior nodes. The set of N expansion

functions forms a linearly dependent set, and when we remove one of them

(arbitrarily) we are left with a linearly independent set. For this

b
reason N in (2-21) is taken to mean the number of nodes minus one for a

closed surface.

vii) The constant nature of the current flow with each basis function within

a triangle may be at first disconcerting. Certainly for a large triangle

modeling a curved section of the scattering surface, one would expect the

direction and the magnitude of the actual current to vary within the triangle.

In other words, one migit ask, "Is a superposition of the basis functions

within a triangle capable of representing a prescribed current flowing in

an arbitrary way within the triangle?" Unfortunately the answer to such

a question is "no", but we remind ourselves that this is a low-frequency

C scattering problem where we do not expect a fast variation of the current

SI
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except near the boundaries, or sharp edges, or on the regions very close

to the source. Hence the problem can be overcome by choosing a large

number of small triangular patches to model such regions of the scatterer.

The same procedure should be used in solving the electrostatic problem.

The expansion functions for the current are capable of representing an

arbitrary but fixed direction and an arbitrary magnitude for the current

within a non-boundary triangle. Near an edge (of an open surface) the

component of the actual current normal to the edge must be zero anyway.

With these basis functions, the current on a boundary triangle is guaran-

teed to be tangential to the edge.

Having decided on the expansion functions, we now take the usual

steps in the Method of Moments technique. Substituting (2-21) into (2-20)

we get Nb

H ( N C.J.)- Himp onS (2-30)
n 1  - n

Using the linear property of the operator H we haven

Nb
CiH ni(r) = - HimP(r) , r on S (2-31)

Here, H n(r) denotes the normal component of the magnetic field at a

point r (on S), produced by the current basis function J. associated with

node i.

2.2.3) Testing Procedure and Moment Matrix for the Magnetostatic Problem
-4

We assume a set u;, j=1,2,...,N of scalar testing functions]

such that u. is non-zero only over the triangles attached to node j. Then

we define the symmetric product of u with any function f to be the integral

of their product over the surface S, i.e.,
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t.

<u.,f> = u.fds = 7 H u.fds (2-32)

S Sjk

Here t. is the number of triangles attached to node j and S denotes the
j jk

surface of the kth triangle attached to node j. Taking the symmetric pro-

. duct of both sides ,f (2-31) with each of the testing functions u.,' ' J

b
j=1,2,...N b

, and using the linearity property of the symmetric product de-

fined in (2-32) we arrive at the following matrix equation.

Z: T rV (2-33)

Kb b
where Z is an N x N square matrix such that

!b
Z(j,i) H uj(r) Hni(r) ds i,j=1,2,... , (2-34)

S.

Nb
I is an N x 1 column vector such that

•(i) = C. i = 1,2,...,N (2-35)

b
and V is an N x 1 column vector such that

V(j) = - <u Himp>

. -.= - u.(r) HimP(r) ds (2-36)

- In (2-34) and (2-36),S. denotes the union of the surfaces of all triangles

attached to node j.

Assuming that node j has t. triangles attached to it, we rewrite
J

(2-34) as

-: ---- , :. - - - - - - -.---- ,---
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t.

Z(j,i) = [ u. (r) ii. (r) H.(r)ds (2-37)

m1 J im -- - -..' " jm

Here, H.(r) denotes the magnetic field produced by the expansion function
-1-

J at a point r, i(r) is the normal unit vector to the mth triangle Sm

, which is attached to node j, and ujm(r) denotes the value of u. at the

point r on S. Now using the relationmj

H = 7 < A (2-38)

where A is the magnetic vector potential, we have

t.

Z(j,i) = u. (r)fi. (r) • (7 x Ai(r))ds (2-39)m 1 m - --im .. ..
S.
jm

Here A.(r) is the vector potential produced by 3i' at the point r.

Now, if we decide to choose u. to be identically equal to "m in
jm i1m

(2-25) and make use of Stokes' theorem, we arrive at the following:

Z0.i) (r) 7 p. ) A.(r)ds (2-40)
m I  -m -s jm

S..'. jm

Here we used the fact that the value of C. is zero on the boundarv of the

surface S. composed of t, triangles attached to node J. Then using (2-25)
j

in (2-40), we get

Z(j,i) - .1 (r) •\(r)ds (2-41)m='l Qj -j -i -
m

Since J. is a constant vector which denotes the expansion function ,I. on-- m -1
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the mth triangle attached to node j, we can take it outside the integral.

t.
Z(j,i) = - .1,. • 2-2

A (r). A ds (2-42)

m 1 --jm -S.
jm

We now approximate the integrand in (2-42) by its value at the centroid

of the triangle S. to get
jm

t.

Z(j (. • Ai(r )) T. (2-43)
m=l -jm - -cjm jm

Here A (r )jm denotes the vector potential produced by J at the centroid-i,"cjmi

r . of the tciangle Sjm , and T.m is the area of Sjm

Assuming that the node i has t. triangles attached to it, we write
1

A.(r) as follows:
--. Ir--

A (r) ds'

1

Si%t.
1 1 (r~

ff r-r'ds'
t =-i r - dsIT (2-44)

" Si

The integral in (2-44) is the same as the electric scalar potential at a

point r, produced by a constant surface charge density on the triangular

surface Si. This is the same integral we had in the electrostatic problem

and its analytical evaluation is given in [9].

Substituting (2-44) into (2-43), we get
,..t. t.

Z (jmi) -T. 1 ds ' (2-45)
-=l S jm --

Comparing the integrals in (2-8) and (2-45), we finally have

• .,. . - . - .
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t. t.
Z(ji) T- T. . • ( _ i9)) (2-46)

m=l jm 91

Here K(jm, ik) is the element in the row corresponding to the surface S.

and in the column corresponding to the surface Siz of the matrix K used in

the electrostatic problem (Eq. (2-11)). Hence the moment matrix P of the

electrostatic problem provides the integrals that are required to fill the

V' moment matrix Z of the magnetostatic problem.

Returning to (2-36), we have

t.

V(j) =- f ff *jm(r) Himp(r)ds (2-47)
m=1  S jm- n

impm

If we approximate H (r) by HmP(r.) where r denotes the centroid of'-.n -- n --ejm '-c]M
the triangle Sjm, then

t.
V(j) H- i (r)ds (2-48)

'. S .3m

The integral in (2-48) is equal to the volume of the pyramid-like object

of height 2. Hence,

t.
( 2 3 imp(

V(j - T. n ) (2-49)3M= I Jm n __

The moment equation (2-33) with the defining relations (2-46), (2-35),and

(2-49) is solved to obtain the unknown expansion coefficients, and the

* ' induced current density J is found by (2-21). Once the current distribution

is known, the induced magnetic dipole moment can be obtained [12] from

Mind I

I I x - J(r)ds (2-50)
2 fj

S
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If we have N tr iancilar ,-urfaces and denote hv Jn the total current on

nth triangle, (2-50) reads

2 r Jin (r)ds
|L

, - [n~ V in  i

S n f
=- - ' r ds (2-51)

2s

Here Sn denotes the surface of the nth triangular patch. Working out the

integral in (2-51), we have

Mi = (rn x ,n )Tn (2-52)
-- 2 n=1  -

" n1I

i n n
Here r is the position vector of the centroid of S , and T is the

area of Sn.

The oscillating magnetic dipole used in computation of the scattered

field is then given by

ind = . Mind (2-53)

where w is the angular frequency of the incident field, and ji is the

permeability of the medium surrounding the scatterer.

This completes the formulation of the magnetostatic problem, assuming

the scatterer is in an infinite homogeneous medium. The formulation of the

magnetostatic problem in the presence of an infinite screen is given in

Chapter 4.

Some applications of the niagnetostatic problem formulated here

will appear in the next chapter. A simple and practical application of

the problem is to find the electric polarizability of a small aperture in

an infinite conducting screen.
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2.3. Computation of the Scattered Field

To compute the scattered fields E and _Is we divide the space into

four regions.

i) Very close to the scatterer we compute Es directly from the

induced static charge distribution c as follows

,(r') (r - r')
E- 4 ___ 3 ds'

S r -r

N Tn  (r- r') ds'

n= I n Ir -r

n
N (r-r)n

n1 n 3 (2-54)

Here r denotes the position vector of the field point, r' denotes the

position vector of the differential element of area ds', S n denotes the

n n
surface of the nth triangular patch, T is the area of S $ o is the

computed charge density on S n, and r ndenotes the position vector to the

Similarly we compute the scattered magnetic field H from the in-

duced magnetostatic current ,J as follows:

S 3 1 (r - r')

7 N jn x (r - r')
4 ds

4". s n
n '(r -r n

S

N 1n :(r r n
"- 4 , n,3 (2-55)
n- 1 i

r
- r.
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Here Jn denotes the total induced current density on the nth triangular

patch Sn.

ii) At a distance large compared to the maximum linear dimension d of the

scatterer, but small compared to the wavelength X, we compute Es from the

induced static electric dipole Pind and H8 from the induced static magnetic

inddipole M . The induced dipoles are placed at the origin, and the scattered

fields at a point defined by the radius vector r are given by the following:

3 £(Pind rZ) Pind

ES(r) (2-56)
4r7 r

ind ind
s 3 r(M • - M

H (r) 3 (2-57)

4Tr r

where

r !.l (2-58)

and r
S= -- (2-59)-- r

iii) At a distance large compared to d, but comparable with X, the

scattered fields are computed by replacing the scatterer by the oscillating

electric and magnetic dipoles of (2-17) and (2-53). The exact dynamic

expressions are used to compute the flelds produced by them at a point r

[refer to Appendix B1.

' - ejkr
SS(r) ( .) + (3r(" , . i n d ) ind) k)

~r

md i

" j (K n 
" i)(jk + -)] (2-60)

and

HS(r) - k r  k2 ind r + -]2. nd K ind 1 +S _j4 lr [k (r K i r+ ( r • K
r

ind I
+ j... ( )(j k + (2-61)
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where r and r are as defined in (2-58) and (2-59).

iv) For the far field, we use the far-field expressions for the dipole

fields, neglecting the terms that vanish faster than h/r, i.e.,

,,'7 j kr-
Es (r) = e k × [k(Vind : r) +..! KIind] (2-62)

HS .- jkr k ''k( d + _i 1 (-)

-. H(r) e 4-inr

p Note that while the near fleld problem (cases (i) and (ii)) is

"". "decoupled, that is, E and If re determined completely independentlv,

the field at large distances from the scatterer is not decoupled. In

general, the electric dipole contributes to both the electric and the

magnetic far field, and so does the magnetic dipole. Expressions (2-60)

. and (2-61) for the fields in region iii are also valid in regions ii

and iv. That is, if kr 1, (2-60) and (2-61) reduce to (2-56) and

(2-57), and, if kr 1, (2-60) and (2-61) reduce to (2-62) and (2-63).

i

4
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Chapter 3

SCATTERING FROM SMALL BODIES LN FREE SPACE

In this chapter we use the procedure described in the previous

chapter to compute the distribution of the charge and the current in-

duced on the surface of a small conducting body when it is illuminated

by an electromagnetic wave. We assume the body is placed in free space

(c ,1i0 ) and the incident field is either a plane wave or is produced

by an oscillating electric or magnetic dipole placed near the scatterer.

i i
Given the incident field (E ,Hi), we find i such that

- i !i
E• = - (3-1)

where

Ei = lim E (3-2)
0 k-O

i
and V denotes the gradient operator. We use of (3-1) as the applied

potential in the electrostatic problem (eq. (2-1)). Similarly we let

Himp lim Hi% = -( 3 -3 )

k-0O
Himp

and use H in (2-18) to solve the magnetostatic problem.

If the source of the incident field is an oscillating electric dipole

R2. placed close to the scatterer, then we only need to solve the cor-

responding electrostatic problem. We obtain the electrostatic problem

by replacing -I with a quasi-static electric dipole P such that

19, = . P (3-4)

Here u is the angular frequency of the incident wave in the original

42 . . ... .
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problem. We do not solve any magnetostatic problem because close to an

oscillating electric dipole the magnetic field vanishes in the limit

k - 0. That is, Iimp as defined by (3-3) is zero in this case. Bv a

. similar argument we solve only the magnetostatic problem if the source is

an oscillating magnetic dipole K placed close to the scatterer. We ob-

tain the magnetostatic problem by replacing K' with a quasi-static magnetic

dipole M such that

K;, = M,,',' (3-5)

and assuming the scatterer to be perfectly diamagnetic.

3.1. Plane Wave Scatteringfrom a Small Sphere

The exact results for this problem are summarized in Appendix A.

To apply the method described in the previous chapter, we take the follow-

ing steps:

i) For convenience the sphere is assumed to be of radius I meter and is

placed at the center of a spherical coordinate system.

ii) To approximate the spherical surface with triangular patches, the

surface is first divided uniformly into N slices in the -direction, then

each of these slices is divided into NO +1 patches. The poles (6=0* and

*." e = 1800) are taken to be two nodes. Hence, in each -slice we have two

triangular and N -1 quadrilateral patches. The addition of diagonals to

all quadrilaterals completes the triangulation of the spherical surface.

The resulting model of the spherical surface is shown in Figure 3.1. We

have a total of 2N N triangular patches modeling the surface. The total

number of unknowns for the electrostatic problem is then 2No N + 1. The

number of nodes is N N + 2. Therefore, the number of unknowns in the
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Fig. 3..Atinuaedmdloo perclsrae

No. f paches8O, o. o nod0-12

I.0
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magnetostatic problem is N N + 1. In this grid scheme the triangulated

sphere is always inscribed inside the actual sphere, because the nodes are

taken to be on the actual surface. To get a partially inscribed model we

simply take the nodes to be slightly outside the actual sphere, obtaining

a better representation of the actual surface. Obviously it is impossible

to patch a spherical surface exactly by using a finite number of triangular

patches. However the triangular patches are better than the rectangular

patches in terms of adequately modeling an arbitrary surface, and they are

better than quadrilateral patches in terms of computer description.

For an axially incident plane wave described by

i -jkz
E= 120-: e X (V/m),

i i e (A/m)

we have
i

l= - x 20X (V) (3-6)

imp
H = I (A/m) (3-7)

Figure 3.2 shows the computed current density for this case. Also shown

in the figure is the exact magnetostatic result for comparison. The agree-

ment is good. As we noted earlier, the computed current is a constant

vector on each triangular patch. Hence for 00, as we change 0, Jo varies

"' on the triangular surface. However for 1 90', 1 -, , which is fixed

a on each patch. This is the reason why we have steps in the curve for J of

Figure 3.2. To observe the influence of the patching scheme on the results,

we changed the direction of Ei and 11 The change in the results indicated

that the influence of the triangulation scheme is negligible. Figure 3.3

shows the computed charge density for

-.- .* - -
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EXACT
-4--COMPUTED

p 1.5

SIJe/H'mPI,,o.

1.0-

I- 
0.5-

y

0 30 60 90

0 8 DEGREES

Fig. 3.2. Induced current distribution on a sphere due to an nxially

inc ident plane wave. No. of unknowns =97.
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= =- 120z (V) (3-8)

The exact result [151 is also showrn.

For an impressed magnetic field -p 1 z (A/m) , the

magnqitude of the exact current at 0 = 90 is 1.5 (A/m), and the
;7

computed value is 1.46 (A/m).

With an inscribed model of the surface, the computed dipole moments

are less than the exact values. As we slightly increase the radius of the

triangulated sphere to have a partially inscribed model, we notice that the

induced charge and current distributions do not change, but the induced

dipole moments get closer to the exact values. This is to be expected, since

the dipole moments are proportional to the cube of the radius, whereas the

current and charge density do not depend on the radius. fable 3.1 compares

the computed dipole moments with the exact values. Note that as the radius

of the model surface is increased from 1.0 to 1.01 (or 1.02), the computed

dipole moments increase by a factor (.1.01) 3 (or (1.02) 3). Table 3.2 shows

the progression of the solution as the number of unknowns is increased.

Since the scattered far field is completely defined by the induced

dipoles, we do not need a pattern plot. From the result we have for the

induced dipole moments ( the third line of Table 3.1 ) , the relative error

between the exact and computed far field will be at most three percent.

3.2. Djipole Near a Small Spher

Figure 3.4a represents an arbitrarily oriented oscillating dipole

near a conducting sphere. The exact results, together with some low fre-

quency approximations for this scattering problem, are summarized in

Chapter 10 of [161. We first consider a radially directed electric dipole

near the sphere. Next we solve the problem of a magnetic dipole placed

tangentially on the sphere.
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3.0

EXAC

1.0-

0 30 60 90

9 DEGREES

Fig. 3.3. Induced charge distribution on a sphere due to a z-polarized

incident plane wave. No. of unknowns = V3 c =the speed of light

E 1 377 ^z (V/rn).
-o
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Table 3.1. Comparison of the computed and exact dipole moments for a

sphere, plane wave incidence. N,, = 8, N, = 12, No. of unknowns in

magnetostatic problem 97, No. of unknowns in electrostatic problem = 193.

Exact area = 4I, i]i = 120:.

mind indi -8
Exact = , Exct P 4.18879 x 0

Radius of1  Relative Computed Relative Computed Relative
Patched I. Computed 7' 7
ISphere Area Error mdp Error

Error Errdr

1.0 12.09759 3.73 5.7818 7.98 3.9276 YO 10 6.23

-8
1.01. 12.34075 1.79 5.9569 5.19 4.0466 <10 3.39

;1.02 12.5863 -0.16 6.1354 2.35 4.1680 10 -8 0.49

Table 3.2. Progression of the computed dipole moments for a sphere, with

plane wave incidence, as the number of unknowns is increased. Radius of

patched sphere is taken to be lm.

NS = No. of unknowns in electrostatic problem.

NM = No. of unknowns in magnetostatic problem.

Relative Mind i  Relative. ind Relative
N0  N~ Computed N INN mNS P
. Area Error Computed Error Computed Error

-85 8 11.525 8.28 41 5.202 17.2 81 3.3706x10 19.5

-87 8 11.70675 6.8 57 5.3898 14.2 113 3.4883x10 16.7

-8'7 12 12.0456 4.14 85 5.7249 8.88 169 3.769;, 10 10

8 12 12.09759 3.73 97 5.7818 7.98 193'3.927x10 6.23

a - _
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x

~(a)

z

t'S

X

i (b)

Fig. 3.4. a)An arbitrarily oriented oscillating electric (or magnetic)

dipole near a conducting sphere. b) A radially directed oscillating electric

dipole on a small conducting sphere.

I.'.~r
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3.2.1) Electric Dipole Near a Conducting Sphere

Figure 3.4b shows a radially oriented oscillating electric dipole

I. on a perfectly conducting sphere. In the limit ka -0 0, it is stated

in [16] that the induced dipole moment is twice that of the source dipole.

In fact, the first term in the exact expression for the total far field

is the field of 31 placed at the origin (Eq. (6-118) of [4]). Hence the

far field can be computed by replacing the system in Fig.3.4b by an

electric dipole of moment 3IV placed at the origin. The moment of this

dipole is independent of the radius of the sphere, as long as ka is very

small.

To get more information about the induced dipole moment and the

induced charge density, we used image theory to solve the electrostatic

problem depicted in Figure 3.5a. Here we have a radially oriented static

electric dipole near a perfectly conducting sphere. To apply the method

of images, we assume that the dipole is composed of two point charges

of opposite sign displaced a small distance d such that

lim Qd = P (3-9)

d-O0

The values and the positions of the image charges are shown in Figure 3.5b.

Q3 is used to maintain charge neutrality. In the limit d 0, we have the

following results

z (Z- 2 5a 2 + a(7 ) cos
O4P + I~ 1 (3-10)

Z2 (Z + - 2Zla cos )5 / 2

V - P  (3-11)
0 2

too
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8
"z

j.
x

(a)

z.. +Q 1 0~ ----

(z+d)

b1 = _2  , b2 = a

-I(zl+d)

0. Q 3  (Qj + Q2)
I

b,

1b2

Q3 x

(b)

Fig. 3.5. a)A radially oriented static electric dipole near a conducting

I sphere. b)An approxLmate representation of the problem in (a) , in terms

of the method of images.
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pind =2( 3 P (3-12)

Here a is the induced charge density on the sphere, V is the potential
0

ind
of the sphere, and P is the induced dipole moment. Notice from (3-12)

that for Z I a the induced dipole moment is twice that of source dipole,

independent of the radius a.

To compute an approximate solution for the electrostatic problem

of Fig. 3.5a we patch the spherical surface non-uniformly. By his we

mean the density of triangular patches is increased in the region close to

the source. Since the incident potential varies rapidly in that region,

the induced charge density is expected to do so also. The case where

the dipole is just on the sphere (ZI + a) is treated later. For Z > a

we have taken

= 4 (3-13)

So that the incident potential is given by

I z -Z

(( z + 2 X + y) 3 2 (14

Figure 3.6 shows the induced charge density on the sphere when a = 2

meters and Z = 3 meters. Also shown in the figure is the exact result

of (3-10) for comparison. The agreement is good. Figure 3.7 shows the

variation of the computed potential of the sphere as the dipole moves

away from the sphere. T'he exact result of (3.11) is also shown. The

agreement between both results is again good. Figure 3.8 shows the

g variation of the induced dipole moment with the location of" the source

dipole. The exact result of (3-12) shows very good agreement with the

computed one.

,2-
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Fig. 3.6. Induced charge distributi n on a sphere near an electric dipole.

No. of unknowns 193.
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Fig. 3.7. The variation of the potential of the sphere with the distance Z1 o

No. of unknowns = 193.
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Fig. 3.8. Variation of the induced dipole moment with the distance Z

No. of unknowns =193.
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When the dipole is just on the sphere (i.e.,Z 1 - a), the incident

potential is very large and is changing rapidly over the region close to

the dipole. Hence, the direct use of the point matching scheme does not

give good results. To overcome this difficulty due to the singularity

in the incident potential, we solve an equivalent problem. Here another

dipole is placed just inside the sphere, below the original source dipole.

Figure 3.9 shows the configuration. It is clear that the total potential

produced by the original and the pseudo-image dipole will be approximately

zero on a small region defined by 0 on the spherical surface (Fig. 3.9b).
0

The total incident potential outside this small region will be twice that

produced by the original source dipole, and will vary slowly. The in-

duced charge distribution in this equivalent problem is obviously dif-

ferent from the one in the original problem. The total potential at any

exterior point will be the same in each case, that is

T= i(P) + ,() (3-15)

or

It = i(2P) + () =2 i(p) + ( () (3-16)-- e -- e

THere T denotes the total potential at an exterior point, a and a are the
e

charge distributions in the original and equivalent problems respectively,

*i(p) denotes the incident potential due to an electric dipole P, and 0(a)

and O(ae) denote the potentials produced by the induced charges in the original

and equivalent problems , respectively. The induced dipole moments are related

as follows: pind = pind + p (3-17)

-e

where Pind is the induced dipole in the original problem, Pind is the- --e

induced dipole in the equivalent problem and P is the source dipole in the

original problem.
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We assumed 0 to be five degrees and patched the dashed region ofo

Fig. 3.9b by twelve triangular patches. Hence, the twelve elements of

the excitation vector T of (2-12) corresponding to these triangles are

set to zero. For a = 2 meters and P 47Tz, the computed results are

as follows:

ind
P 2.01125 P

V - 0.2695
0

The exact results are given by the following

ind
P 2 P

V = - 0.25
0

The relative errors in the computed results are 0.56 and 7.8 percent

respectively.

As pointed out earlier, the exact result for the problem shown in

Fig. 3.4b is given in [4]. Figure 3.10 compares the total computed and

exact fields at various distances. The computed field is produced by an

oscillating electric dipole of moment 312 at the origin. The diameter of

the sphere is taken to be 2 meters and the wavelength is 50 meters. The

exact result is obtained by taking the first seven terms of the eigen-

function series given in (6-120) of [41. Note that the fields in the

figure are normalized with respect to the same constant. That is, the

e actual fields are IntU/4-jk times the values shown in the figure. It

is seen that even at a distance equal to a half-wavelength the agreement

between the two results is very good.
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(a)

L oZ

AP!x

Fig. 3.9. a) Original problem. b) An equivalent problem for the exterior

region. The total incident potential is approximately zero over the dashed

region. For small e the dashed region is approximately a planar surface.

D0
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Fig. 3.1-0. The totil field for the problem of Fig. 3.4b
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L.

Figure 3.11 cort: sres the far fields for two different radii. The

radius of the sphere is taken to be 2 meters or 5 meters. The wavelength

is fixed at 50 meters, and the source dipole I? is assumed to be on the

sphere. For both radii the exact induced dipole is 2[9. Hence the far

field computed by replacing the system of Fig. 3.4b with 3T." placed at the

origin will be the same whether the radius is 2 meters or 5 meters. This

is why we have only one curve for the dipole field in the figure. For the

exact far field, the first ten terms of the eigenfunction series are summed

for a = 5 meters and eight terms are taken for a = 2 meters. The curves

shown in the figure are normalized, that is, the true values are

DIP, e-jkr /r times the values shown in the figure. It is seen that if the

diameter/wavelength ratio is more than 0.2, the dipole representation is

not good, evn for the far-field computations.

3.2.2) Magnetic Dipole on a Small Sphere

Figure 3.12a represents an oscillating magnetic dipole K9 tangen-

tially placed on a small conducting sphere. It is stated in chapter 10 of

[16] that the induced dipole moment for this problem (in the limit as ka + 0)

is K9/2. (The problem depicted in Fig. 3.12a may represent an equivalent

problem for computation of the field transmitted through a short and narrow

slot on the conducting sphere.) o solve the corresponding magnetostatic

problem, we use the technique described earlier, that is, we place a

pseudo-image magnetic dipole just below the original one, inside the sphere,

and patch the region near these dipoles densely. If 0 is small enough,

then the normal component of the total magnetic field produced by both

dipoles is approximately zero on the dashed region of Fig. 3.12b. Hence

,- .. -. -.p .
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Fig. 3.11. The far field for two different radii in the problem of Fig. 3.4b.
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Fig. 3.12. a)An osciliaiing magnetic dipole placed tangentially on a small

sphere. b) An approximately equivalent magnetostatic problem.
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the element of the excitation vector in (2-49) corresponding to the

node at the pole (6 = 0) is set to zero, and there is no contribution

from the triangles in the dashed region to the elements of (2-49) corre-

sponding to the nodes on the boundary of the dashed region. We failed

to obtain reasonable answers even to this equivalent problem. We believe

this is due to the fact that the singularity of the magnetic field of

the magnetic dipole is of the third order. Hence the variation of the

incident magnetic field is too fast and the approximation of (2-47) by

(2-48) is not valid in this case. (In the electric dipole case the

singularity of the incident potential was of second order, and we could

obtain reasonable results for the equivalent problem shown in Fig. 3.9b.)

Notice that the singularity of the electric field produced by a magnetic

dipole is of the second order. Hence we use Maxwell's equations and some

vector calculus to express the excitation vector for the magnetostatic

problem (Eq.(2-47)) in terms of the incident electric field. From (2-47),

we have t.

V.j = l j(r) njm Himp(r) ds

J1 if jm J
S.
jm

t. 7 xE
-.. ff jm(r) fi. * as

j - - m jWlm=l s.j
I jm

• t.

-;; _ 1 I (fi. x ) • Eimp ds

Sj m1 jm jm -mlS.

jm

t.

"(, *" E(j(r ) Tjm (3-18)

".',- r l -m - cml

For the dipole of Fig. 3.12a, we have
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E4imp egj kr (Lk + -L) ((z-a) - z y) (3-19)
r r

where
-- 2 2 2

r = x + y + (z-a) (3-20)

and jw1jM = Kki (3-21)

Substituting (3-19) into (3-18) and taking the limit k 0, we have

V )1-~ T.Jz. - a) - z Yc. (3-22).%.t.

V- j • ( z c j m a-- y c j

rn - jm -jm 3(3
m = l rc

Here Zcjm and ycjm represent the coordinates of the centroid of the tri-

angle Sjm , and r cjm is the distance from the dipole to this centroid.

Using (3-22) instead of (2-49) for the excitation vector, we solve the

magnetostatic problem shown in Fig. 3.12b. With dipole moment

M = 0.47x, a=l meter, and 0 = 5 degrees (Fig. 3.12b) the computed ratio

-l of the induced to original dipole moment is 0.4889. The exact result for

this ratio is 0.5. The relative error is 2.2 percent. The number of un-

knowns used for this problem is 97. We have also observed that the computed

*- ratio does not depend on the radius of the sphere.

3.3. The Circular Disc

Figure 3.13a represents a conducting circular disc lying in the xy

plane. The other parts of the figure show various types of electromagnetic

illumination of the disc. The disc problem has been studied extensively

and a summary of the results can be found in Chapter 14 of [16].

-.. Figure 3.14 shows the induced magnetostatic current density on the

disc due to an incident plane wave, as shown in Fig. 3.13b. The radius of

.°°..,



53

A-4-

No 0

00

w

c C

00 W

.'- Q)

X~ 0

04.

Sc



54

x 0 A0

S 41

6 6



55

the disc is taken to be 1 meter, and the number of unknowns used to

compute the current density is 81. The exact result is taken from [17].

It is seen that the computed result is a good step approximation to the

exact one.

Tables 3.3 to 3.5 summarize the results concerning the induced

dipole moments for the disc problem. The exact results are obtained

using the equations (14.185),(14.187),(14.188),and (14.193) of [16].

3.4. The Square Plate and the Bent Plate

Figure 3.15 shows the induced current density on a square plate of

1 meter side length, for two different incident plane waves. The plate is

" placed in the xy plane. Also shown in the figure is the result obtained using

the E-field solution program written by Rao [14], where we let the wave-

length be 56 meters. It is seen from the figure that the magneto-

static part is dominant in the total induced current, even for 0 = 20

degrees. At 0 = 0 degrees (normal incidence) the magnetostatic current

vanishes.

Figure 3.16 shows the induced magnetostatic current density on a
.4,

bent square plate of side length 1.5 meters. The bend is located at a

distance of one third the width from an edge, and a plane wave with the

magnetic field polarized perpendicular to the larger section of plate is

incident. The smaller plate section is bent through an angle of 50

degrees away from the direction of propagation, which is parallel to the

larger section of the plate.

1i

6°
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Table 3.3. Induced dipole moments for the problem of Fig. 3.13b.

Si = 377 (V/m), H = 1 (A/m); N, N
b = No. of unknowns, exact M

in d =

x z,d ^ I07 X

.' -2.66 z , exact P 0.178 x 10 x.

b id ind
iN Computed M Relative % Error N Computed P Relative % Error

z X

37 -2.2853 14.3 85 0.1539 x 10- 7  13.5

149 -2.3407 12.2 109 0.1574 x 10 7  12

181 -2.5162 5.6 181 0. 1685 x 10 7  5.3

Table 3.4. Induced electric dipole moment for the problem of Fig. 3.13c.

No. of unknowns = 109, source dipole P =4Eo0 at (xoyoz).

x y z Computed Pind Exact Pind % Error
0 0 0 y

0 1.5 0 0.335 10-10 03544x10-0 5.5

1.2 1.2 0 0.602 i0-1 1  0.63404x iOI 5

Table 3.5. Induced magnetic dipole moment for the problem of Fig. 3.13d.

No. of unknowns 49, source dipole M = 47i_ at (xo, Yo Z )

;.. ' ind ind

.x v z Computed M Exact M % Error
0 0 Z Z

1.2 1.2 0 0.671 0.678 1.06

0 0 2 -0.456 -0.466 2.2



57

xxx EFIE SOLUTION WITH X=56m
'. MAGNETOSTATIC SOLUTION

4.0-

0

H'
K z E

e k

2.0

0.
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Fig, 3.15. Induced current on a square plate due to two different

incident plane waves.
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Fig. 3.16. Distribution of the magnetostatic current on a bent square plate.

No. of unkowns 77.
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3.5. The Small Conducting Cube

3.5.1) Plane Wave Incidence

Figure 3.17a represents a conducting cube of side length O.I

illuminated by a plane wave. Figure 3.18 shows the induced current

density on the right face, computed using the magnetostatic formulation.
K

Figure 3.19 shows the induced current on the top face. Also shown are

the results obtained by using Rao's [14] E-field solution. Close agree-

ment between the two results is not expected, since the maximum dimension

of the cube is 0.17A in this case. Our result also has some similarity

with the result of [18] obtained using rectangular patches, but a pre-

cise comparison was not possible. Although the current distribution is

not in close agreement with the two results mentioned above, the computed

radar cross section does agree very well with published data. If Ei of
x

• :.Fig. 3.17a is taken to be 120r (V/m), then the computed induced dipoles

for the cube of side length one meter are given by pi = o.5107x_ (C-m)
" Mind ^ ~ 2

and M = -1.57 z (A-r ). The radar cross section obtained using these

dipoles as the source of the scattered field is 0.0031X2 . This result agrees

with the experimental and computational results mentioned in [18]-[19].

In fact, we have obs',rved that the radar cross section obtained using these

dipoles agrees (within less than ten percent) with the published results

[19] even for a side length of 0.2X. Note that in this case the maximum

dimension of the cube is as large as 0.35X.

Finally, we have observed that the induced dipole moments are pro-

portional to the volume of the cube. This is expected , since the induced

charge and current distributions do not depend on the size of the cube.
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k HZ

TOP K-
FAC E

A-FACE

M

M

Fig. 3.17. a)Plane wave normally incident on a small conducting cube. b)An

oscillating magnetic dipole on the top surface of the cube. c) Equivalent

magnetostatic problem for part (b) ; A pseudo-imige magnetic dipole is

placed just inside the cube, below the source dipole IM.
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0-' We have also observed that the induced dipole moments for the cube

are slightly larger than the ones obtained for the sphere, pro-

vided the incident field is the same and the volumes of the sphere and

the cube are equal.

3.5.2) A Magnetic Dipole on the Cube

Consider a cube with some internal sources and a small narrow slot

on one face. The problem is to compute the fields transmitted through

the slot. If the cube is small, then an approximate equivalent problem

is shown in Fig. 3.17b. Here we have a magnetic dipole KZ placed tangen-

tially on the cube at the position of the slot, and the slot is shorted.

To solve the corresponding magnetostatic problem, we use the pseudo-image

technique to obtain the problem depicted in Fig. 3.17c. An image dipole

is placed just below the original one, inside the cube. Hence the normal

(tangential) component of the total magnetic (electric) field produced by the

two dipoles is zero on the face. At any other point on the cube surface

* the field is twice that produced by the original dipole KZ alone. Because

of the singularity problem mentioned in Section 3.2.2, we use (3-18) for

the excitation vector.

The center of the cube is placed at the origin of a Cartesian coordi-

nate system. The side length is assumed to be I meter. The point (x - 0,

Y = 0, z 0.5) defines the center of the top face. The source dipole is

taken to be M = 1 (A-m2 ). Table 3.6 shows the computed induced dipole

- . moment, as the position (xoyoz ) of the source dipole M is changed. From

the table we conclude that a narrow slot at the center of a face of the

cube transmits energy outside less efficiently than a slot closer to the

edges of the face.

S'
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Finally we have the following observations: i) As the size of the

cube is changed keeping the source dipole at the same relative position

the induced dipole moment does not change. For plane wave incidence the

induced dipole moments are proportional to the volume of the cube. ii) When

a magnetic dipole M is placed tangentially at the center of a face of the

cube, the computed induced dipole moment is 0.15 M. This is about three

times smaller than the induced magnetic dipole moment if M were placed

tangentially on a sphere. To see the effect of an electric dipole P placed

normally at the center of a face of the cube, we compute the induced dipole

moment. The computed induced electric dipole moment is 0.65 P. This also

is about three times smaller than the induced electric dipole moment when P

is placed normally on a sphere.

-°

U
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Table 3.6. Induced magnetic dipole moment due to a tangential magnetic

dipole M =1 2(A-rn 2 on the top face of a cube. The top face is at

Z 0.5. M is at (x , Y09 0.5).
0

xo y Induced Dipole Min

0 0 01 .3

0 0 0.225 -. 406

0.45 0 0.36 X^ - 0.27 2^

030 0.22 0.16 4 0 i

0.50 0.36 0.204 2

0 0.45 0.5074

0 0.3 0.24 R .32 .8

0.45 0.45 0.8 k 0.49 -0.57 2
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K Chapter 4

LOW FREQUENCY SCATTERING IN THE PRESENCE OF A GROUND PLANE

Figure 4.la represents an electrically small conducting body Bi,

above an infinite ground plane, illuminated by an electromagnetic source

Si. Using the method of images, we obtain the equivalent problem shown

in Fig. 4.1b. Here we have two bodies BI and B2 and two sources S1 and

S2. The ground plane is removed and the space surrounding the bodies is

characterized by (E,J). B2 is the mirror image of the true body Bl, and

S2 is the image of the true source S1. To use our low-frequency approxi-

mation technique, we assume that the true body BI is close to the ground

plane in Fig. 4.1a. More precisely, it is assumed that we can inscribe the

true body B1 and its image B2 (Fig. 4.1b) in a sphere of diameter d. Then,

provided d is much less than the wavelength of the incident wave, we can

approximate the low-frequency problem shown in Fig. 4.1b by the correspond-

ing electrostatic and magnetostatic problems. The method described in

Chapter 2 can directly be applied to the two body problem of Fig. 4.lb to

compute the induced charge, current and dipole moments. However this leads

to unnecessarily large matrices. In this chapter we describe how to avoid

these large matrices and formulate the problem in terms of moment matrices

which have the same sizes as if the true body Bl were in free space. The

elements of the matrices are, of course, more complicated.

4.1. The Electrostatic Problem in the Presence of a Ground Plane

The problem here consists of finding the induced static charge dis-

tribution on the conducting bodies B1 and B2 of Fig. 4.lb when the incident
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electric field due to Si and S2 is replaced by its electrostatic limit.

Assume for the moment that the true body Bl is strictly above the ground

plane in the original problem, is isolated,and has an initial charge Q on it.

Then the net charge on B2 of Fig. 4.1b is equal to -Q. If the total potential

produced by the sources SI, S2,and the induced charges oI and 02 is VI on

: Bl, then it is -Vl on B2. (Here a1 and 02 are, respectively, the induced

charge densities on BI and B2.) In other words we have the following con-

ditions to be satisfied by the induced charges:

" W +lS2(W) ds' a(r)ds ,  V1, r on SB I

4, Sl(r) +4 S2(r)+ 4 rrr-ir' 2+ f. frcr-r' = (4-1)

' BI SB2 -Vl, r on SB2

if a1 -(ds' = - Ja 2 (r)ds' = Q (4-2)

S Bl B2

Si S2
Here 0' (r) and 4S (r) denote the potentials produced at a point r by the

true source Si and the image source S2, respectively. The integrals in (4-1)

represent the potentials produced by the induced sources, and SBI and SB2

denote the surfaces of Bi and B2, respectively. As in Chapter 2, we

' assume that S is modeled by N triangular patches and the charge density

li

on the nth patch is a constant a . Then S2, being the mirror image of SBI,
n B2

is represented by N triangular patches, and the charge density on the n'th

patch (which is the image of the nth patch on S ) is -O • Hence, following

the same steps used in Section 2.1, we reduce the integral equation (4-1)

to the following set of linear equations:

:.-.;:---~-- - V - .
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Here each subscripted K denotes the potential produced by a

constant charge density of 4"iE coulomb per square meter lying on a tri-

angular patch designated by the second subscript, at the centroid of the

triangular patch designated by first subscript. For example K57 , denotes

the potential at the centroid of the fifth triangle produced by the con-

stant charge density over the 7'th triangle. The 7'th triangle is on SB2,and

is the image of the 7th triangle on S BI denotes the potential pro-
B1" m

duced by the true source S1 at the centroid of the mth triangle. Similarly,
i>" S2S is the potential due to image source S2 at the centroid of the mtih

m

triangle. Observe that
K mn K m n (4-4)mn = m'n

K ,=K, (4-5)

mn mn

and

S1 s2 Sl S2
m +  m =- m' + m') (4-6)

Then it is obvious that (4-3) represents the same N equations written

twice. We approximate (4-2) by

T 1  + +... + TN= Q (4-7)

and combine (4-7) with the first N equations of (4-3) to obtain the

following:

r - S2
K11 Kl, K12 - K '2 ... KIN KI'N 1 1 K

51 S2
K K K K K K 1 2  "Ti +
21 K2 22 2'2 " 2N 2'N - 2 2

' . (4-8)
Sl S2

Kl - l - KN, 2  - KNN - N N4 ($S + N)

-:. -N KN - - N - -' -N -N

,'T. T ... T 0 47EV Q

i
o

..
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In matrix notation this is

[PC] f'G = [PG1 (4-9)

where the moment matrix PG is the square matrix of order (N+l) x (N+I) on

the left-hand side of (4-8), 7G is the column vector on the left-hand side

of (4-8), and DG is the column vector on the right-hand side of (4-8). The

solution of (4-9) gives both the induced charge density a and the potential

V of the true body Bl above the ground plane (Fig. 4-1a). Notice that the

entry in the last row and the last column of the inverse of the matrix PG is

equal to 47c times the reciprocal of the capacitance of the true body above

the ground plane.

Observe that the number of equations to be solved in (4-9) is the same

as the number of equations in (2-12) where we had no ground plane. However,

the matrix elements and the excitation vector elements in (4-9) are more

complicated. Once the charge density is computed, we use (2-16) to compute

the induced electric dipole moment. Note that in this case the induced

dipole radiates in the presence of the ground plane.

Figure 4.2a shows the computed capacitance of a sphere of im radius,

the center of which is a distance d above the ground plane. Also shown are

the exact results [12,Eq.(4-42)]. The agreement is good. We see that the computed

results are less than (at most bv four percent) the exact values. The reason

for this is that the patched surface is taken to be an inscribed model of the

actual spherical surface. As the number of patches is increased, the tri-

angulated model represents the actual surface more closely, and the computed

capacitance approaches the exact value. This can be observed from Figure 4.2b,

which shows the computed capacitance versus the number of patches for the

case d = 2 meters.

We note in passing that the condition that the true body Bl be close

to the ground plane is necessary only if we use the present procedure to
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Fig. 4.2. a) The capacitance of a sphere above a ground plane. b) The

computed capacitance vs. the number of patches for d=2 m.
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approximate a low frequency scattering problem. Obviously, if we are

interested in strictly electrostatic results, that condition is no longer

necessary.

4.2. The Magnetostatic Problem in the Presence of a Ground Plane

Here the problem consists of computing the induced current distri-

bution J on the true body Bl of Figure 4.1a when the incident magnetic field

due to source S1 is replaced by its magnetostatic limit. We again assume that

Rl is strictly above the ground plane. We first formulate the problem as a

two body magnetostatic problem, using the procedure of Section 2.2, and then

use the information provided by the method of images to reduce the number

of equations by a factor of two. For the two body problem shown in Fig.

4.1b, the boundary condition to be satisfied is that the normal component

of total magnetic field produced by the sources Sl and S2 plus the induced

currents on El and B2 must be zero on both SBl and SB2' The condition that

the induced currents on both bodies are charge-free is automatically satis-

fied by the choice of expansion functions, described in Section 2.2.2.

b
Assume that S is patched so that it has N interior nodes. Then

Bl
b

SB2, being the mirror image of SB , has N interior nodes. (For closed

bodies, Nb represents the total number of nodes minus one.) We have Nb

expansion functions on each of S and S Then, corresponding to (2-33),

Bl B2* hn orsodn o(

we have the following set of linear equations for this two body problem:

[[ZBBI [ZBII. "[TBI]

- [VBI (4-10a)

[[ZIB] [ZlIly [IB]

= [VI] (4-10b)
• [til
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b b + 4
Here ZBB, ZBI, ZIB, and ZIT are N x N square matrices; IB, II, VB, and

-. Nb
VI are N x 1 column vectors . ZBB(j,i) is the normal component of the mag-

* netic field produced by the ith expansion function attached to the ith node on

the true body, tested over the domain of the jth expansion function on the true

body, as given by (2-34) and (2-46). Similarly, ZBI(j,i) represents the field

produced by the image of the ith expansion function tested over the domain of

the th expansion function. ZTB(j,i) is the field produced by the ith expansion

function tested over the domain of the image of the jth expansion function, and

finally ZII(j,i) represents the field of the image of the ith expansion function

tested over the domain of the image of the jth expansion function. The ith

element of IB is the expansion coefficient of the ith expansion function,

. and the ith element of II is the coefficient of the image of the ith expansion
-_4-

function. The kth element of VB is the negative of the normal component of

the total impressed magnetic field (produced by S1 and S2) tested over the

domain of the kth expansion function, as given by (2-36). Similarly , the

kth element of VI is the negative of the impressed field tested over the

domain of the image of the kth expansion function. Since SB2 and S2 are the

images of SBI and Sl, and due to (2-46) and (2-49), it is not difficult

to see that

b-""IB(1) = l (i) i = 1,2,..., (4-i

'" ,Nb

VB(k) = VT(k) k = 1,2,... ,N (4-12)

and

ZBB(J,i) + ZBI(j,i) = ZTB(J,i) + ZII(J,i) (4-13)

Hence, (4-10a) and (4-10b) represent the same set of equations. (This is

to be expected, since satisfying the boundary condition mentioned earlier

an S ,(4-10a), automatically satisfies the same condition on SB2  (4-lob)).I~'g.

We rewrite (4-10a) in matrix notation as
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IZGI [I1 = [VaC] (4-14)

where ZG is a square matrix of order Nb x Nb such that

ZG(j,i) = ZBB(j,i) + ZBI(j,i) (4-15)

-. 4.

IG and VG are column vectors which are the same as IB and B of (4-10a),

respectively. The term ZBB(j,i) in (4-15) is equal to Z(j,i) of (2-46),

and ZBI(j,i) is given by the following:

t. t.

ZBI(j,i) - - 1 T. J. ( K(jm, i'Z)) (4-16)
jm jm = 1 iz

Here V represents the value of the image of ith expansion function on the

kth triangle attached to node i, and K(jm,i'Z) represents an element of

the matrix on the left-hand side of (4-3). The row and column of this

element are defined by two triangular surfaces. The row is defined by the

mth triangle attached to node j, and the column is defined by the image of

the kth triangle attached to node i.

Figure 4.3 illustrates the expansion function J., together with its image-1

J!. Here we have three surfaces attached to node i. It is seen that the z-1

component of the expansion function is the same on each surface and its image.

However the x and y components (which are parallel to the ground plane) are

reversed in direction. Keeping this in mind, we have the following expres-

sion for ZG(j,i).

t. t.

ZG(J,i) = - J. • 7 (K(jm, i9) - K(jm, i'Z))S4 --T T -- j m r

M=1 jmj

'((i J.) + _ • Ji.)) + (K(jm , iU) + K(jm, i'Z)) J .

But from (4-5) we have

K(jm, i'VZ) = K(j'm, iU) (4-17)

;..
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Hence,

t. t.

ZG(ji T. J. • {PC(jm,ik)[ (• J.) + ." )J
m=i 3m -jm - -I

+ [K(jm, iZ) + K(j'm, iZ)] (1 j)^ (4-18)

Here PG(jm, ik) is an element of matrix PG in (4-9). The row of this

element is defined by the mth triangular surface attached to node j, and

the column is defined by the fth triangle attached to node i.

Hence, we use the electrostatic matrix PG to compute the magnetostatic

matrix ZG. We also need the sum K(jm, i) + K(j'm, i), but we do not per-

form any integration to find this sum, because both of its terms are by-

products of the calculation of P,.

The jth element of VG is the same as (2-49), with one exception. The

imp
exception is that the term H n(r cjm ) is now taken to mean the normal componentn -j

of the total impressed field (i.e.,produced by the true source plus its

image ) at r-cj m

Once the current distribution is solved for using (4-14), the induced

magnetic dipole is computed using (2-52). This dipole replaces the body

and, strictly speaking, it is above the ground plane. Since the distance

between the ground plane and the body is assumed to be small, we place the

dipole on the ground plane and use image theory to remove the ground plane.

Figure 4.4 shows the induced current density on a square plate which

is vertical to, and 1 c.a above, the ground plane. The plate is 1 meter

by 1 meter and is placed in the yz plane. The ground plane is defined by

z = 0. The incident field (in the presence of the ground plane and in the

absence of the plate ) is a z-polarized, y-traveling, plane wave (grazing

*'Q incidence) with Himp - 1 ̂  Ampere/meter. Comparing the result with Fig. 3.15

( 900 case ), which represents the current when the plate is in

free space, we observe that the presence of the ground plane destroys
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the symmetry about the center of the plate, as expected. The current is

bigger near the edge close to the ground plane. The computed induced
.!.

magnetic dipole is - 0.455 , which is about nine percent bigger (in

".: magnitude) than the induced dipole moment in the free space case (-0.418 ).

• Since the former dipole is above the ground plane, we can conclude the

following using image theory: The magnetic (electric) polarizability of

two such square plates (apertures in an infinite conducting screen) is

larger by about nine percent than the sum of their individual polariza-

bilities.

Consider a small cube of side length 1 meter, placed a distance of

*0.5 meter above a ground plane. The ground plane is at z = 0, and the

top face of the cube is at z = 1.5 meters. When a magnetic dipole is

placed tangentially on any surface of the cube, we use the pseudo-image

method described in Section 3.5.2 to compute the induced magnetic dipole

moment. For excitation vector elements, we use (3-18). However in this

imp
case E of (3-18) is produced by four dipoles; the original source dipole,

the pseudo-image of the original dipole just inside the cube, and the images

of these two dipoles below the ground plane. Figure 4.5 illustrates the

problem when the source dipole is perpendicular to the ground plane. When

an x-directed magnetic dipole of moment Mx = 1 is placed at the center of

the top face of the cube at the point x = 0, y = O,and z = 1.5, the com-

i nd
puted induced dipole is given by Mn = 0.18. If the source dipole is

placed at the center of the right face at the point x = 0, z = 1.0,and

y = 0.5, the induced dipole moment is Mnd 0.2. f a z-directed
X

; ' magnetic dipole of moment M1 = I is placed at the center of the right face,

the induced dipole moment is Min d = 0.21. These dipoles represent the cube
z

........: ?-,. . .:." , - . "- ,i . . , . . - - - . , ., .-. , : i , . . . . .- ,i :
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Fig. 4.5. a) Original problem A magnetic dipole M is placed tangentially

on the right face of a cube above a ground plane. b) Equivalent problem:

is the pseudo-image of M. M' and are the images of M and

respectively.

.. . .,



81

above the ground plane. Since a z-directed magnetic dipole has an image

in the negative z direction, we conclude that, at distances large compared

to the size of the cube, the scattered field will be smallest for the last

case considered. In other words, to prevent radiation from sources

inside the cube to the outside region, a narrow slot vertical to the ground

plane is better than a slot parallel to the ground plane.

4.3 Conducting Box on a Ground Plane

Electronic equipment is usually contained in a conducting box which has

several apertures for input-output connections and for ventilation purposes.

It is desirable to keep the radiation through these apertures as low as

possible. To investigate the effect of these apertures, test measurements

are done in an anechoic chamber with the box usually placed on a ground

%- plane. In this section, we study the problem of a box on a ground plane.

The box is assumed to have a narrow slot, and, for computational purposes,

this slot is represented by a magnetic dipole tangent to the box. Also,

plane wave scattering from the box is studied.

4.3.1) The Electrostatic Problem.

The electrostatic problem in this case is the same as the case con-

sidered in Section 4.1 with two exceptions. Now the potential is zero,

and the net charge is unknown. Hence the moment equation for this case can

be written as

-- 2 - (1 + S2
I ll K1 2  K V 2  KIN KI'N 1  1 +

K K K K- K K ( 42 + 1

21 2'l K2 2  2 2 . . . K2N 2'N! a2  2 + 2 )

.= (4-19)

4(Sl +S2
.KN1 KN'I KN2 - KN' 2  KNN KNN aON N4 (N N

where all quantities appearing in this equation are the same as those

in (4-8).
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Note that in patching the box surface the bottom face (the part of

the surface on the ground plane) is not considered. Hence, the patched

surface will be an open one. For a rectangular box, the boundary of this

open surface is a rectangle on the ground plane. The image of the patched

surface is also an open surface with the same boundary. Hence, the patched

surface together with its image forms a closed surface. It represents a

box of twice the height of the original box.

4.3.2) The Magnetostatic Problem

The moment equation for this problem is the same as (4-14), but we

have the following modification for some expansion functions. Since the

patched surface together with its image represents a closed surface, all the

nodes are considered to be interior nodes. Hence, we associate an expansion

function with each node but one . The image of a node on the boundary

is itself. The expansion function associated with such a node cannot

complete a loop around the node. However, this expansion function together

with its image forms a loop around the node. This is illustrated in Fig. 4.6.

This shows the expansion function associated with node L, which is assumed

to be on the ground plane. An expansion function associated with a node not

on the ground plane is the same as the one illustrated in Fig. 2.2.

Consider a cube of side length lm placed on a ground plane at z = 0.

The top face of the cube is at z = lm, and the right face is at y = 0.5m.

'.. Ei i i
For a plane wave at grazing incidence with Ez = 77 (V/rn) and H x = 1 (A/r), the

-d8 ind
computed induced dipole moments are P ind=0.865xlO8 2 and M =-l.32 • (The

scattered fields can be computed by placing these dipoles on the ground plane.)

We have considered three magnetic dipole excitations for three

different boxes on the ground plane . First , we place a magnetic

2
dipole with dipole moment M = 1 X ( A-m ) at the center of the top
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Fig. 4.6. A face of a conducting rectangular box together with its image in

a ground plane.(The ground plane is at z=O.) The solid arrows indicate the

expansion function associated with node L. The dashed arrows represent the

.* image of the expansion function. The unprimed capital letters denote the

nodes and the primed capital letters denote the images of the nodes in the

ground plane.The expansion function together with its image completes a

loop around the node L.

t.p:'
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face of the box This is referred to as "first excitation." Secondly,

we place M = 1 X at the center of the right face, and thirdly we place

16 .4M = 1 i at the center of the right face. The boxes considered are

i) a cube (W = L = H im), ii) a tall box (W = L = 0.9m, H = 1.25 m),

and iii) a short box (W = L = 1.2 m, H = 0.7 m). The volumes of the

three boxes are almost identical. Table 4.1 summarizes the computed

induced magnetic dipole moments obtained for these three boxes with each

of the three excitations.These dipoles radiate in the presence of the ground

plane.

Table 4.1. The induced magnetic dipole moment due to a tangential

magnetic dipole on a face of a box.

Excitation First Second Third
Box Excitation Excitation Excitation
-BShape

'Cube 0.21 ! 0.25 -0.18 k + 0.31

Tall box 0.25 R 0.30 -0.122 ^ + 0.20

Short box 0.18 k 0.15 c -0.28 + 0.56

!.4

o , , -.
, .. - .

. . . . . . . . .
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APPENDIX A

APPROXIMATION OF THE LOW FREQUENCY SCATTERING PROBLEM

In this appendix we describe how to approximate the problem of low

frequency electromagnetic scattering by the corresponding electrostatic

and magnetostatic problems. The procedure is explained in [11 and is

summarized here for quick reference. An example is given to illustrate

the ideas developed.

Consider a perfectly conducting body placed in an unbounded homogeneous

medium characterized by (rp). Let the body be illuminated by an incident

electromagnetic field (F ,H i) whose wavelength is much larger than the

maximum linear dimension of the body. The problem consists of determining

. the scattered fields (E ,Hs) such that

V xEs jnkH V x H k Es  (A-l)

. V _ = 0 ; V H = 0 (A-2)

_- _ E. a Hs  = - fI•H (A-3)

s iSsS

lir rx (Vjx E krE s =0 ;lim rx (Vx s - jkrH s =0 (A-4)

where

w = angular frequency of the incident wave,

".:'. S denotes the surface of the body, and h is the unit outward

normal vector to S.

Note that in (A-3) the boundary condition on E implies the boundary con-

dition on H
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It is known that all field quantities may be written as

convergent power series in k, provided k is sufficiently small,

that is,

ES' i = S (jkl Es M ss
j= -m ;-k) E mH (jk)m Hs i  (A-5)

M 00 m=0

The mth terms in these expansions may be found by substituting (A-5)

into (A-l)-(A-3) and equating the coefficients of like powers of k.

We find that the first terms, Es and Hs, satisfy
-o -o

V×E s =0 V×H =0 (A-6)
-0- -0

V E = 0 ;H s = 0 (A-7)
- -o 7 -o (

xE =- x Ei H "- Hi  (A-8)

In addition to these we have the following equations

lim r = 0 ; lim rH = 0 (A-9)
r-*° r-KO

These equations were first used by Rayleigh [2] and subsequently veri-

fied by Stevenson [20] and Kleinman [21).

" .Note that the boundary conditions in (A-8) are now independent. This

is due to the fact that equations (A-6) are decoupled. Equation (A-6)

implies that there exists a scalar function s such that

E - s (A-10)

Then the left equations in (A-7) - (A-9) are satisfied if
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,2 s

V2s= 0 (A-Il)

- × = - E  
(A-12)

and

lim r - 0 (A-13)

r.+

It is obvious that (A-Il)-(A-13) define a standard electrostatic Dirichlet

potential problem for the surface S except for a minor detail. The excep-

tion being that the boundary condition in (A-12) may be shown to specify

the boundary values of o within an arbitrary additive constant. But this
0

constant can be evaluated by employing the condition that there is no net

charge on the surface of the body, i.e.,

n E • ds = 0 (A-14)

S

If we replace (E s , H s ) by (Ei , Hi ) in (A-i) and use (A-5), we have

V x E =0 (A-15)

so that
Ei (A-16)
-0

i

where o is a scalar function. Then (A-12) implies that
0

S + pi =v on S (A-17)

where V is a constant.

0

We can think of the problem defined by (A-1I), (A-13), (A-14) with

s5
Es replaced by -Vs, and (A-17) in the following way. A perfectly conducting
-00

isolated body (with net chargo Q = 0) is placed in an impressed electrostatic

i

'..¢

• . .- -
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Ts

c! the body. This charge produces $s. The body, being a perfect conductor,O

is an equipotential surface at an unknown total potential V , i.e.,
00

S(o)+ =v on S (A-18)
0 0 0 0

This represents an integral equation for C . Once it is solved we can
0

obtain o at an arbitrary point r by
0

4= H % ' rds' (A-19)
S

SS

and Es is given by (A-10). The induced electric dipole moment can be o)-
-O

tained by

P a (r)r ds (A-20)

S

In a similar fashion we can interpret the right set of equations in

(A-6) to (A-9) as follows. A perfectly diamagnetic body is placed in an

iimpressed static field H and a sirface current J is induced on it,
-0 -0

which in turn produces H such that the normal component of the total mag-

netic field is zero on the surface, i.e.,

(H + )) = 0 on S (A-21)
-- -- o -O

This represents an integral equation for the induced surface current J .

Additional information about J can be obtained as follows. Consider the-o

continuity equation

V •ind = _ kc ind (A-22)
-5-s

where c = 1/AT- is the speed of light in the surrounding medium, and Jind

i ndand a are respectively the current and charge density induced on the
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surface of the scatterer due to the incident field (Ei  Hi) V. denotes the

surface divergence operator. The induced sources J ind and aind are the
s ind ind

sources of E and H of (A-i) to (A-4). Since J and a are related

(on S) to the total fields Hi + Hs and El + Es,one can argue that Jind and
g ind

F can be expanded into convergent series of the form given in (A-5) if k

is sufficiently small. Then (A-22) gives

V • (jk) i jkc (jk)' ad (A-23)--s m=0 -m0m

Equating the coefficients of like powers of k, we obtain

d.n

.ind = 0 (A-24)

ind ind
V J -- c (A-25)

etc.

Since J of (A-21) must represent J in the limit as k 0 and since
Q-o

d= lim J (A-26)

we conclude that J = Jind and hence
-0 -o

V • J = 0 (A-27)
--s --o

This is the property of stationary currents. That is why we call the

problem defined by (A-21) and (A-27) a quasi-stationary magnetic problem

or simply a magnetostatic problem. Once J is solved for using (A-21) and

(A-27) the scattered field H can be computed using the Biot-Savart law.

The induced magnetic dipole is given by

M = 2 r J (r)ds (A-28)

S
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Following the same argument that led us to (A-27) we conclude that a of
ind

(A-18) and a of (A-25) are identical.

At distances small compared with the wavelength, the scattered field

(Es , Hs) is approximately (E, H ) where E is the quasi-static electric field
-0 __O-0

Sdue to a and H is the quasi-static magnetic field due to J . At distances
0 __ -0

S 5
that are appreciable compared with the wavelength, (Es , Hs) can not be

approximated by (E, H ) because (E 1, H ) is not a propagating field.

s s id
Now, (E , H ) is the field radiated by j .dIn Appendix B, it is shown that,

at distances large compared with the maximum dimension of a small surface, the

field radiated by an arbitrary current distribution J on that surface is the

field of the combination of the electric and magnetic dipole moments of J.

Therefore, at distances large compared with the maximum dimension of
= s.

the scatterer I (Es, Hs) is the field radiated by the combination of the

ind
electric and magnetic dipole moments of J In the limit as k-0, these

dipole moments approach Pind of (A-20) and Mi n d of (A-28).

Notice that depending on the structure of the scatterer and the

ind Mind
polarization of the incident wave P anLor M may vanish. For example,

i
..;. if a plane wave impinges on a plate with Ei (Hi) being perpendicular (tan-

"" pind Md)

gential) to the surface then P (M ) is zero.

We now illustrate the ideas developed in this appendix by the example

of plane wave scattering from a small conducting sphere. Figure A.1 repre-

*" sents a conducting sphere of radius a illuminated by an incident plane wave.

Take the incident wave to be x-polarized and z-traveling, that is,

i -Jkz
E =  oe x (A-29)

' " i

H = -e ° - j k  (A-30)

where
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Ti =Vii c 120 ,
0 0

F: k = 27/X = wave number of the incident

wave, and E is a constant.

The exact results are taken from [4].

j F-0 sin 0 P' (cos 0) P (cos 6)
OSk n n - I
cos a t a j () (A-31)

n=l n 2 )(ka) sin 6 H (2 ) (ka)
fn n

jE o P Il(cos 0) sin 6 P l(cos 6)
.o sin i a [ + n (A-32)

Y1 ka n "(2)' + (2)
n=l sin 0 H (ka) H (ka)

n n

ES jE 0 Cos 12

E.r = (kl bnn(n+l) H((kr) Pl(cos 6) (A-33)
r 2 n n n

(kr) n1l

SEcos H (kr) P(cos 6) ( ,' 6Eo EkrS o [ n s n" H -x(k)n

c n n -jb n n (kr)P (cos O)sin 6]
n=l

(A-34)

E sin fi(2)' (kr)P 1(cos 6)
F o 0 [c H (2)(kr) sinG Pl (cos 6)-jb n n

E =  kr 1 n n n n sin 6

(A-35)

0E 11
a- -. o cos 7 <-(2n + I 6) (A-36)

2 P()n(Cos (-6
,I c(ka) n=l H (ka)

n
%where

J and J denote the 0 and -components of the induced surface

current density respectively,

SEs ES denote the r, O.and 5 components of the scattered

electric field respectively,

u is the induced surface charge density, and c is the speed of light.
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2.n
.a j J-(2n+l)

n n(n+l) (A-37)

SJ'(ka)
b -a nA38
n n fl(2)' (ka)

n

J(ka)
n- (A-39)

n H( 2 ) (ka)
n

n (x) =x jn (x) (A-40)

(2 (x = x h n Wx (A-41)

Here, j and h(2 ) denote the spherical Bessel function and the spherical

n n

Hankel function of the second kind respectively.

The distant scattered field is given by

jE Co pl(cos e)
ESo -jkr Cos jn [b sin P (CosO) n (A-42)kr-n=l n n sin

jE co P (cos) i
o -jkr jn [b n - sinP (cos )] (A-43)'n=l n krn n

Now if we assume that k is small such that (ka) << 1, then we have

Ei  E (1 - jkz + (jk)2 z 2 +

- o 2
E 2 (A-44):i i  - (1 - jkz + (jk) 2  +

Comparing (A-44) and (A-5) we have

E= i E - V(-x E ) (A-45)- - 0 0

Hi = y E In (A-46)
-0 0

--O A:

- . .
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.5

From (A-16) and (A-45) we have

ti = x E (A-47)
0 0

Similarly for small (ka) we obtain
E
Eo 3 7a

Cos -- ( - cos , + . (A-48)

E 03 3 5-o sin 0 cos e - (jk)a (- + cos 2e) + ... ] (A-49)

E' 5 a C s +( - 0

co -.2 sin e cos 0[3 - (jk) - o + .. (A-5O)

Comparing (A-48) - (A-50) with the series representations of Jind and

F ain d in (A-23), we obtain

-2 E

ind - r- cos0 + cos 0 sin (A-51)

Eaind E 7 3 5
[Z co cos _ sin ( 0 + w cos 20) _$], (A-52)

and E

= - 3sin 0 cos (A-53)
0 Tnc

The symbols 0 and C denote the unit vectors in the 0 and P directions

respectively.

Note that

V ind =0 (A-54)

and

V •_ind cind! -V -- J l = - c c o ( A - 5 5 )

ind
in agreement with (A-24) and (A-25). Observe that 1i of (A-53) is the

0

static charge distribution induced on the sphere due to the impressed

ind ind
static electric field given in (A-45). Using J and a given above

-o 0

we compute the induced dipole moments to obtain

. ..° .
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" ind a ind E 3
| a (r) r ds = anc

sphere
so that

. n 47 E 0(ka)3

I = jpin =X F o (A-56)
Ti k

and

ind 1 H md
- = J r x (r)ds

sphere

3 E
= - 27 a -

so that
~2- E

K = Jo Mind 0 (ka)3 (A-57)
jk (a

Now consider the distant scattered field. For small (ka),(A-42) and

(A-43) reduce to

s -" -jkr
F5 -" E e (rka)3

o kr cos $ (cos e - 1/2) (A-58)-6 or kr

ka*O

-jkr
E 5 - E e (ka)3 sin 1-Cos -) (A-59)
Ekr- o kr 2

ka-+'O

The field given by (A-58) and (A-59) is the far field of the combination

of the dipoles (A-56) and (A-57). This is in agreement with the fact

that the scattered far field of a small body can be expressed in terms

of an electric and/or a magnetic dipole.

Now consider the expressions given in (A-33) - (A-34). Assume

ka is small enough such that

. . .

.. . . . . . . . . ..1
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b -------- n+l r2n(n-l)' 2 (ka) 2 n 1+lbc-*--c (A-60)
n ka- 0 n n ka- O (2n)! .n+l

Then it is easy to show that for any kr the first term in (A-33) is the

field of IZ in (A-56). Hence as ka*O, Es is determined by I. only.
r

Figure A.2 shows the scattered field Es for the case ka = 0.2. The solid

curves represent the exact solution which was obtained by summing the first

six terms of (A-34). The dashed curves represent the field of the two dipoles

given in (A-56) and (A-57) placed at the origin. The fields are normalized

with respect to E cos t. It is seen from the figure that the exact fields and
0

the dipole fields are in close agreemei.- even at a distance equal to twice

the radius. We believe this is due to the symmetrical structure of the sphere.

"-'V

. . . . . . . . . . . . . . . . . .
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Fig. A.2. Plane wav ca~ttering from a small sphere.
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APPENDIX B

DIPOLE REPRESENTATION OF THE FIELDS DUE TO ELECTRIC AND MAGNETIC

CURRENTS FLOWING ON A SMALL SURFACE

Consider a time-harmonic surface density of electric current J on

the surface S whose maximum dimension D is appreciably smaller than the

wavelength. This electric current produces an electromagnetic field

(ES,HS). For convenience, the coordinate origin is chosen such that the

distance r' from the origin to any point on S is less than D. In Appendix

B, it is shown that, whenever the distance r to the point of observation

of (ES ,Hs) is large compared with D, (ES,H s) reduces to the electromagnetic

field of the combination of an electric dipole and a magnetic dipole, both

dipoles being located at the origin. From inspection of this dipole repre-

sentation of the electromagnetic field (ES,H s) due to the electric current J,

a dipole representation of the electromagnetic field (ESm,H sin) due to a

magnetic surface current Jm on S is easily obtained.

Jones [22, pp. 530-532] has shown that the dipole representation is

valid under the more restrictive conditions that S is closed and perfectly

conducting and that r is not only large compared with D but also large

compared with the wavelength. Not assuming that S is perfectly conducting

but assuming that S is closed, Kleinman [23,24], in a long but straight-

forward presentation, has obtained a dipole representation for the electric

field Es far outside S due to an electromagnetic field (E,H) existing on S.

According to the equivalence principle [4, Sec. 3-5], this Es can be viewed

as the electric field due to the combination of the electric surface current

n x H and the magnetic surface current E ' n where n is the unit vector

.o°-
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which points outward from S. In order to obtain his final result [24,

Eqs. (16)-(18)], Kleinman had to assume that r is large compared with the

wavelength.
V.

The dipole representations of Appendix B are obtained without

assuming that S is perfectly conducting and without assuming that S is

closed. These representations are valid whenever r is large compared

with D, no matter how r compares with the wavelength.

In search of the dipole representation for the electric field

Es due to the electric current J, we write [4, Eqs. (3-63)]

E= (V(v A) + k2A) (B-I)

J ) -jklr-r' I
A = -rds' (B-2)

S

In (B-2), r' is the radius vector (from the origin) to the point at

which the differential element of area ds' is located and r is the

radius vector to the point at which A is evaluated.

Since r' is on S,

r' < D (B-3)

where r' is the lenth of the vector r'. If it is assumed that r, the

length of r, satisfies

r D> (B-4)

then

r' << r (B-5)

Thanks to (B-5), we obtain

r r'! r r r' (B-6)

1 1 -r
-- ) (B-7)
r-r r r
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p.

where f is the unit vector in the r direction. Substitution of (B-6)

and (B-7) into (B-2) gives

-jkr rrr'AJ' + -)e ds' (B-8)

S

Because D was assumed to be appreciably smaller than the wave-

length, it is evident from (B-3) that

Equation (B-9) authorizes the approximation

jki• r'
e -- :1 + jk r' (B-10)

Substituting (B-10) into (B-8) and neglecting the second order term,

we obtain

A- 4- J(r')ds' + (jk + 1 (f r') J(r')ds'] (B-il)

S S

The first integral in (B-Il) is called II .

I - (r')ds' (B-12)

S

The dot product of (B-12) with an arbitrary constant vector a is

a• 1  - a J(r')ds' (B-13)

Now,

a 7 V'(a r') (B-14)

where V' is the 7 operator with respect to the coordinates of r'.

Substitution of (B-14) into (B-13) gives
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a 1 = FF (7'(a r')) J(r')ds' (B-15)

S

The form of the integrand in (B-15) suggests the identity [8, Eq. (A-1)]

7' W Wds' = - W)ds' + f (W • 4)d9' (B-16)

S S C

In (B-16), W is tangent to S, and V'- is the surface divergence on S
s

dith respect to the coordinates of r'. If S is closed, the integral over

C is to be deleted from (B-16). If S is open, C is the contour that

bounds S, d' is the differential element of length along C, and ub is

the unit vector tangent to S and normal to C. The direction of 2b is

away from S. Application of (B-16) to the integral on the right-hand

side of (B-15) gives

a • --- (a • r')V' • J(r')ds' + j (a r')(J(r') u )dQ' (B-17)I1 - - s -= Ub d '

S C

Since no line charge can exist on C, it follows that

J (r') = 0 on C (B-18)

In view of (B-18) and the fact that a is arbitrary, (B-17) implies that

S

The second integral in (B-11) is called 12

.-.12 = ( •r')J(r')ds' (B-20)

S

The identity formed by substituting (B-12) for I1 in (B-19) is also

valid with J(r') replaced by (C r')J(r'). As a result,

.- '1 _ _7-
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. s
S

. The V'. term in (F-21) suggests the identity [8, Eq. (A-4)].
s

' (,W) = W • V' s + 7' • W (B-22)

In (B-22), W is tangent to S, and V' is the surface gradient on S with
5

respect to the coordinates of r'. Application of (B-22) to the integrand

on the right-hand side of (B-21) gives

= r'(J(r') • ( r))ds' - r'(U • r') Vs • J(r')ds' (B-23)
s si-12 -f V'( rfjs

S S

Since J(r') is tangent to S, the surface gradient V' in (B-23) can be
s

replaced by the ordinary gradient V'. Using (B-14) with a replaced by

i to simplify this gradient, we obtain

-12 - J r'(J(r') • i)ds' - r'(£ r') V' J(r')ds' (B-24)

S S

Next, 12 is expressed as half of the sum of the right-hand sides of

(B-20) and (B-24).

1 - _" i_ _ I , ,--
.12 - r')J(r') - r'(J(r') •))ds' - 2 r(i r')" J(r')ds'

S S _(B-25)

Thanks to the vector identity [4, last of Eqs. (A-13)], the Lntegrand

of the first integral on the right-hand side of (B-25) is - x (r' x J).

As a result, (B-25) becomes

4::. .....-.-..- ..- -.:.. ...:... .. .-. . . -.-.-



103

-fJ ' ~*)s r (P~ r')is *J(r')ds' (B-26)

S

The equation of continuity is

J(r') j -. wo(r') (B-27)

where a is the surface density of electric charge on S. In view of

(B-27), substitution of (B-19) and (B-26) into (B-li) gives

ejkr [j,, r' Y(r') (l1 (k+ ) r') )ds'-

S

(jk + 1) ?X -j r' >i (r')ds'] (B-28)

S

It is evident from (B-5) and (B-9) that

-(j k+ )(i~ r') << (B-29)

As a result, (B-28) reduces to

k[ e j k r'a(r')ds' - (k + -Wj r' x _~'d (B-30)
- 47rr Jr r- 2j Jr~s

S S

If kr> 1, (B-30) reduces to the electric and magnetic dipole terms in

[25,Eq. (14) without the factor i]0 Expression (B-30) can be rewritten

as

-jkr r'c(')s ( jkr 1

-b 7r)s +Tr (V -47-r ) r'x J(r')ds' (B-31)

S S

*Thanks to the vector identity [4, sixth of Eqs. (A-14)], (B-31) becomes
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A + V x (B-32)

where

'!:-jkr ,,!f r' (-(r')ds' (B-33)

S

,=e -j k r  j'jff r' x J(r')ds' (B-34)
""-- 4 .r 2 fl

S

Substituting (B-32) for A in (B-I), we obtain

s 1 2-) 2- VX
E = E 1 (V(7A) + k) -V F (B-35)

According to [4, first of Eqs. (3-83)], the right-hand side of (B-35)

is the electric field of the combination of the magnetic vector potential

A and the electric vector potential P. Now, (B-33) can be expressed as
e -jkr

A- -- 4Tr (--3-)

where

I_ jW r' a(r')ds' (B-37)

Since A is a magnetic vector potential, 19. can be viewed as an electric

current element located at the origin. Equation (B-34) is recast as

w -jkr (B-38)

where

KZ r' J(r')ds' (B-39)

S

Since is an electric vector potential, KZ. can be viewed as a magnetic

current element located at the origin.

Substituting (B-36) and (B-38) for _ and in (B-35), we obtain

.- * .. * -. * . .

S. .. .

n-- - - - - - - n- -4 -
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e. ejkr -Jkr -Jkr

s ,.1I 2 -
. ) + k - ,) (B-40)we (7 -(VT r r "r

When the differential operations in (B-40) are performed, (B-40)

expands to

-jkr
": s  .e [ 2  2 ^^1

E k [k ( I) xf + (f + 1)(3(IZ • r)r -1) + jEk )( xK".)]
r

(B-41)

According to (B-35), the electric field Es due to J is the electric

field due to the combination of A and F. Hence, the magnetic field Hs due

to J must be the magnetic field due to the combination of A and F. This

magnetic field is given by [4, second of Eqs. (3-83)]

H((7 ") F) + V A (B-42)

Substituting (B-36) and (B-38) for A and F in (B-42), we obtain

1 K. ejkr KZ ejkr19 e-jkr

Hs  i (V(7 • - + k + jw iV x (B-43)
- 4 4j r r r

Since (B-43) is similar to (B-40), it is evident from inspection of (B-41)

that (B-43) expands to

~-jkr
- -jr ,-)(3(K -K)-jwi(jk+-1)(i I)]
H8  [k2  k 1k x1

4Tlrjwijrr r2r

(B-44)

An electric charge dipole P is implicitly defined in terms

of It by

.= jWP (B-45)

The factor jc, appears in (B-45) because electric current is the product

of j,% with electric charge. For brevity, P is called an electric dipole.
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Alternatively, P can be called the electric dipole moment of the electric

current J. Comparison of (B-45) with (B-37) gives

P = r' o(r')ds' (B-46)

S

where a is the electric charge associated with J.

A magnetic pole charge dipole M is implicitly defined in terms

of KQ by

K. = jwp M (B-47)

Magnetic pole charge is magnetic charge divided by p. The factor jwoj

appears in (B-47) because magnetic current is the product of jwP with

magnetic pole charge. For brevity, M is called a magnetic dipole.

Alternatively, M can be called the magnetic dipole moment of the electric

current J. Comparison of (B-47) with (B-39) gives

- .r 2 _ X J(r')ds' (B-48)

S

Consider a surface density of magnetic current Jm on S. The

sm m
electric field E due to J is given by [4, Eqs. (3-4) and (3-5)]

Esm V F (B-49)

m e-jk r-r'l

-- r-r' ds' (B-50)

S

On the other hand, the magnetic field Hs due to the electric current J

is given by [4, Eqs. (3-4) and (3-5)]

..".. x A (g-51)

..-

where A is given by (B-2). The pair of equations (B-49) and (B-50) is

sm
similar to the pair of equations (B-51) and (B-2). If the E in (B-49)
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and (B-50) is called E sm(Jm) and if the HS in (B-51) and (B-2) is called

H S(j), then

E sm(j) = Hs (Jm) (B-52)

Directed by (B-52), we reverse the sign of the right-hand side of (B-44)

and replace J by Jm therein to obtain

E -jkri I -~Esm=4jor [k2(×,m x r+ (-+_-1)(3(I-i,)P -lIm) +jwC (jk + x( Kkm]

- 4Trjwcr 's-r 2 - -r -

r
(B-53)

we lkm = _ Ijc r' X Jm(r')ds '  (B-54)

S

K' = Jwl r' am(r')ds '  (B-55)

S

m
In (B-55), a is the surface density of magnetic charge associated

with J

V jm(r') - jwum(r ') (B-56)

Note that E sm of (B-53) is Es of (B-41) with Ik and KZ replaced

m:m sm-m
by 19. and KZm, respectively. Hence, the magnetic field H due to J

can be obtained from inspection of (B-44).

Hsm e [ m ) j( 3 (KZm r1
- 4zjw-r ( _K m) r- + ( + 2 __ r)r-K) -jwjI(jk+ )( x l )]

r

(B-57)

An electric charge dipole Pm is implicitly defined in terms of

. 9Im by

m m
= j pm (B-58)
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Comparison of (B-58) with (B-54) gives

Pm C - r' x Jm(r')ds' (B-59)

S

A magnetic pole charge dipole M is implicitly defined in terms

of M in by

mm
K& j , 4M (B-60)

Comparison of (B-60) with (B-55) shows that

M m ± r' cT (rI)dsl B-1

S
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