
7RD-RA128 631 A SIMPLE MODEL OF CIRCUIT DESIGNCU) MASSACHUSETTS INST /
OF TECH CAMBRIDGE ARTIFICIAL INTELLIGENCE LAB
G L ROYiLANCE MAY 86 RI-TR-783 N8814-88-C-8505

UNCLASSIFIED F/C 9/2 N

". r r r W - , , .. .- " , . .- . . ., - . . . , .L.--.

4

LuI.

I i 1.0 .J _

Q 16

liii1" ~ Uo 112.0

1.2 111111.4

~MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS-1963-A

'II

_'L
______114t_.

111
.1 i " • • - " ° o . * . o. . - - . *, o . o ° . o

;' ; ;V.,..'.'.V V,' ... ,.' ".."MICROCOPY" RESOLUTIO TEST, CHART "

r" NATIONAL--. " <. : -' " , BUREAU'" OF STAN "ARO -!, -A", ,- .-- _

i i (Technical Report No. 703

A
Simple Model

OfA

Circuit Design

Gerald Roylance
MIT Artificial Intelligence Laboratory

C". EL!ECTE

P~ 2 4 f

This document has b0on approved

S0 5 23 195

*.- .'i... '...'." - :., ." .- " ' .' - " " " -" " "." " " " " " " " "

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

TR-703 D i-/ X(" 3/
4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED

A Simple Model of Circuit Design Technical Report
,. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) 6. CONTRACT OR GRANT NUMBER(s)

N00014-80-C-0505
Gerald Roylance 0

N00014-80-C-0622
9. PERFORMING ORGANIZATION NAME AND ADDRESS I0. PROGRAM ELEMENT. PROJECT. TASK

Artificial Intelligence Laboratory AREA& WORK UNIT NUMBERS

545 Technology Square
Cambridge, Massachusetts 02139 _ __-.._

I I. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE .0

Advanced Research Projects Agency May 1980
1400 Wilson Blvd 13. NUMBEROF PAGES

Arlington, Virginia 22209 Pages 65
14. MONITORING AGENCY NAME & AODRESS(II different from Controllnd Office) 15. SECURITY CLASS. (of this report)

Office of Naval Research UNCLASSIFIED
Information Systems __._

Arlington, Virginia 22217 Isa. DECLASSIFICATION/OWNGRADINGSCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Distribution of this document is unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20. It different from Report)

Distribution is unlimited.

IS. SUPPLEMENTARY NOTES

None

I9. KEY WORDS (Continue on re..,re aide If necessary and Identify by block number)

Expert Systems
Design Automation

20. ABSTRACT (Continue on reveree side If necesary id identify by block number)

A Simple analog circuit designer has been implemented as a rule based system.
The system can design voltage followers, Miller integrators, and bootstrap ram]

generators from functional descriptions of what these circuits do. While the
designers works in a simple domain where all components are ideal, it demonstra es
the abilities of skilled designers. Whilethe domain is electronics, the design
ideas are useful in many other engineering domains, such as mechanical engineer: ng
chemical engineering, and numerical programming. - CON'T

DD IRJAN 73 1473 EDITION OF INOV65 IS OUSOLETE UNCLASSIFIED
S/N 0:02-014" 6601

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

i

Most circuit design systems are given the circuit schematic and use arithmetic
constraints to select components values. This circuit designer is different
because it designs the schematic. The designer uses a unidirectional CONTROL
relation to find the schematic. The circuit designs are built around this relation;
it restricts the search space, assigns purposes to components, and finds design
bugs.

m- .°.

U A Simple Model of Circuit Design

*(by

Gerald L.afacl Roylance

I,

IAiS

Accession For

NTIS GRA&I
DTIC TAB
Unannounced 0

Ji stificatio
Copyright Massachusetts Institute of Technology 1983

BDistribution/

Availability Codes
iAvail and/or-

Di~t jSpecial

Revised version of a Master of Science Thesis submitted to * *'

ie Department of Electrical Engineering and Computer Science i , I..
in May 1980.

'NIis report dc.ribes iesearch done at the Artificial Intelligence
"L.aboratory of the MassachusctLs Institute of Technology. Support for

the laboratory's artificial intelligence rcsearch is provided in part by
the Advanced Research Projects Agency of the l)cpartmcnt of I)cfcnse under

'p* Office of Naval Research contracts NO014-80-C-0505 and N00014-80-C-0622.

ll~~~~~~~ . .l . .l .I • ., . ., _ . -

2

-' A Simple Model of Circuit Design

by

Gerald Lafael Roylance

* Abstact
,.1

A simple analog circuit designer has been implemented as a rule based system. The system can
design voltage followers. Miller integrators, and bootstrap ramp generators from functional descriptions of
what these circuits do. While the designer works in a simple domain where all components are ideal, it
demonstrates the abilities of skilled designers. While the domain is electronics, the design ideas are useful in

*i many other engineering domains, such as mechanical engineering, chemical engineering, and numerical
.* programming.
., Most circuit design systems are given the circuit schematic and use arithmetic constraints to select
* components values. This circuit designer is different because it designs the schematic. The designer uses a

unidirectional CONTROL relation to find the schematic. 'he circuit designs are built around this relation; it
restricts the search space, assigns purposes to components, and finds design bugs.

i.~~~...°... °. -. . ,.

I'd like to thank Johan dc Kicer for his perspective on life and research at MIT. lie kept mc sane in bedlam.
Gerald Sussman, my advisor, for his suggestions -- both good and bad. Johan. again, for telling me which
were good and which were bad. Dick Waters and I)avc McAllester pro% ided helpful criticism.

I stole the rule interpreter from Jon Doyle and Howard Shrobe.

Several programs helped prepare this report: Richard Stallman's FMACS did the text editing, the program R
(written and maintained by Alan Snyder and Elliot Moss) did the typesetting, and SII. and PRIESSIDIT
(running on a Xerox Alto computer) prepared and merged the illustrations. 'The result Was printed on a
Xerox Dover printer. Xerox Corporation graciously donated the Alto computers and the Dover printer to
MIT.

And I like to thank Susan Burkhardt for helping me through some difficult times.

./

M .I. 01: cONTENIS 3

CONTENTS

1. Designing Circuits... 6

1.1 Introduction... 6
1.2 Design Strategy ... 7
1.3 What's Ahead... 9

*2. A Ramp Gencrator... 10

2.1 Basic Rules... 10
2.2 Design Rules... 16
2.3 Design of a Ramp Generator .. 17
2.4 Loose Ends... 24

3. KCL, and Feedback... 25

3.1 A Design Bug.. 25
3.2 A Closer Look at KCL.. 26
3.3 T'he Feedback Rule ... 30
3.4 Another Design ... 34
3.5 Still More Generators .. 37
3.6 Summary... 42

4. Discrete State .. 43

4.1 Introduction ... 43
4.2 Design of Independent States.. 43
4.3 Design of Dependent States.. 50
4.4 Summary... 56

5 . Literature ... 57

6. Conclusions.. 60

6.1 The Imperfect Past.. 60
6.2 The Insufficient Present .. 61
6.3 'ieAbsolutely Pecrfect Future... 62

U W *--h. .-- *.., -,. -. L. . : . 'j -- - * * .- * . b r r. . U . fl.- u, . . . * .-. .- . - . .

lIII F O1: ON II NtS 4

7. Bibliography .. 63

....... :1

I I)I'SIGNING CIRCUITS 6

. 1. Designing Circuitsi
1.1 Introduction

Many people have made mechanical experts that solve difficult problems. Some of these expert
programs are mathematicians who discover mathematical ideas (i.cnat>, programmers who write code

<Manna> <Barstow>, physicists who solve mechanics problems <de Kiecr-l>, chemists who synthesize organic
"' molecules <Sridharan>, consultants who diagnose medical problems <Shortliffe>, and electrical engineers who

design circuits <Mci)ermott-2>.

This thesis is also about circuit design and describes a simple rule based circuit designer for
operational amplifier circuits. It starts with a few circuit design ideas that mimic the behavior of human

designers. These ideas are encoded in a computer program, and several classic circuit designs come out. The
, resulting circuit design system is different from most other circuit design programs because it designs circuits:

it chooses the components and how to connect them together. Most other programs start with the connected
components and solve for component values using arithmetic constraints.1 Finding a circuit topology is a
more creative task.

Creating an automated circuit designer is beneficial for several reasons: (1) human experts are scare
-- we'd like to replace them with more available computer experts <Gorry>. (2) Automated experts are
economical. Expert circuit designers are scarce and specialized. Every circuit designer does not know how to
design every circuit. Only a few designers, for example, can design high speed analog switches. If an
expertise can be incorporated into a widely-distributed automated expert, then human designers could make
use of the expertise without learning its details. (3) If we can teach a computer to do a task, then we should be
much better at teaching people to do the same task.

Another benefit of an automated circuit designer is due to the disparty between what we can afford
to build and what we can afford to design. Today's electronics technology makes it possible to cheaply build
many circuits. Microprocessors, for example, cost under $10. Unfortunately there is a barrier to this cheap
technology: the cost of designing a circuit far outweighs the cost of its compon,-rts. Several years and
hundreds of thousands of dollars can be spent designing a circuit that costs less than a thousand dollars. This

problem is the hardware analog of Winograd's complexity barrier in software engineering <Winograd>.

To demonstrate that it is possible to build an automated designer, some simple rules have been
developed that capture some of what an analog circuit designer knows. These rules design circuits from
problem descriptions about what the circuits do and not about what parts to use or how to connect them

together. Some of these rules have run in an interpreter and have designed voltage followers, current sources,
Miller ramp generators, and bootstrap ramp generators. The thesis will describe these rules and discuss some

aspects of their implementation. The program fragments and rules given in the text are somewhat different
from the actual program because the distinction between causality and constraint was not clear in tie original

1. <McDermott-2) is a notable exception.

% .' - , - ,f o - • ". . . .

]A I INI ROIUAION 7

implementation. The section on switches was not completely implemented. More will be said about this

later.

This work address only simple design issues and ignores many others. My rules do not attempt to

-produce a "best" design. When my program must decide among alternatives, it asks the user to choose one.

If the program detects a mistake, then the user is told to select one of the other alternati es. This method was

chosen because it is simple and allowed me to explore different solutions. Ihe system shows how a machine

can generate plausible designs. An expert designer will sit down at his desk and in the course of an hour or so

will make several rough schematics. It is the knowledge involved in the delopment of these schematics,

made without lengthy calculation, that these rules are intended to capture.

1.2 lDsign Strategy

Dsign problems can be simple or difficult. Simple problems can be solved directly (figure 1).

More complicated problems must be decomposed into simpler parts that can be solved individually and then

the partial solutions composed into a total solution. 'T7his strategy (and its recursive generalization) is not new:

it travels under names such as divide and conquer or linear decomposition. The central problem in building

an expert design system is understanding how experts break problems up and compose solutions.

Fig. 1. Design Strategy

ORIGINAL PROBLEM CIRCUIT DESIGN
direct path

• . ompo 1eompose

ld.. indirect path I

SIMPLER PROBLEM 0- SIMPLE CIRCUIT DESIGN
solve

TEK1201

Some of the simple problems that designers can solve easily are listed below. Some problems are

low level -- such as turning a current into a voltage by forcing it through a resistor -- and others are more

general strategies -- such as using feedback to make two voltages equal. 'hese design rules are used

unidirectionally -- the current through the resistor CONTROLs the voltage across the resistor. The

CONTROL. relation is transitive and acyclic. 'Te designer uses the rules unidirectionally to create

mechanisms where the inputs control the outputs. Some example rules, expressed in English, are:

'-o make one terminal current control another, connect (he two terminals together. KCI, will

insure the currents are equal.

1.2 IWISIGN SiRATI'GY 8

'wo terminal voltages can e made equal by wiring the terminals together.

Negative feedback will copy one node voltage (phase angle, current, time) to another node
voltage (phase angle, current, time).

Resistors convert voltages into currents or currents into voltages.

Capacitors take derivatives and integrals.

Switches let two different things CONTROL the same thing at different times.

Circuit goals in different discrete states can he achieved independently except for the
continuous state information stored in capacitors.

An initial condition in one state is a final condition of the immediately preceding state.

These design rules and some more detailed analysis rules are organized into a compulsive deb
system. The system is compulsive because it tries to do as much as it can based on local informatioi,
analysis rules keep the system honest, however, by checking up on what has been done. When mistakes in the
design are found, they are removed. Debugging is a classic technique in the Al literature <Sussman-1> and

" has advantages over systems that don't produce bugs. Debugging systems are easier to write because the rules
are local -- they do not have to anticipate all the consequences of their actions. Debugging systems, for similar
reasons, are also modular. 1'he simplicity of the local rules makes them less likely to have mistakes. Bugs also
serve as a focus for design problems: the circuit designer described here expects to see design bugs in several
situations. The designer effectively says, "Let's see if I can get away with using a wire here -- if I can't, then
the analyzer will point out a design bug and I'll use a more complex method." Some components -- switches --
are only introduced to fix design bugs. Debugging is also a reasonable model of how people solve problems.
'These advantages do not mean, however, that debugging systems will compensate for poor organization or
stupid rules.

--. -i:. I --

1.3 WI IA I"S AlI AlD 9

1.3 What's Ahead

he following chapters describe some electronic design skills in a rule based systcm. I assume the
reader is familiar with such systems (see <Winston>) and has a modcst knowledge of clcctronics. Chapter 2

'* designs a simple ramp generator using design rules based upon the simple network theory concepts of device
" voltage and current constraints (VICs), Kirchoffs voltage law (KVI.). and Kirchoffs current law (KCI.).

Chapter 3 uses a feedback design rule to design a couple variations on the simple ramp generator circuit.
Chapter 4 introduces discrete states and switches. The final chapters discuss the literature and conclusions.

r°.

4

* 2 A RAM P I-\I.RA IOR 10

2. A Ramp Generator

- 2.1 Basic Rules

A designer is skilled in the use of various devices and design strategies. My automatic design system
* encodes these design skills as a collection of facts and rules. A rule interpreter applies this knowledge to the

design of particular circuits. This chapter describes some simple design and analysis rules and shows how
- they result in the design of circuits.

'l'he design rules must not only capture the purely mathematical constralints given by VICs, K VI..

*? and KCI, but also how those constraints can implement mechanism. Mathematical constraints tell us an
amplifier's input and output voltages are related. I)esigners also need a notion of mechanism or control (hat

" says the amplifier's input controls its output. The design rules use CON IROI extensixely to organi/e the

search for a circuit topology. More will be said about CONIROI. later.
The design system uses Shrobe's rule interpreter <SIIROBl.. It is derived from the original

-." AMORI) <l)oylc> <de Kleer-3) hut hts slightly different conventions for defining rules. In addition, Shrobe

has implemented a skeletal task agenda. Both interpreters are built upon belief maintenance systems that

. provide backtracking and maintain justifications for assertions in th. database. Ihese justifications are useful

not only for "dependency directed backtracking" <Stallman>, but also for explaining deductions and

debugging bad rules.
This chapter uses a ramp generator as a design example. A ramp generator is a circuit with no inputs

- and one output that produces a rising voltage as shown in figure 2. A ramp generator's output voltage has
constant slope. The rules given in this chapter will design the simple circuit that is also shown in the figure.
Here is a brief description of how the circuit works: the constant current generator (GEN-I) forces a constant

-" current through the capacitor (CAlI-1); the constant current forces the voltage across the capacitor to increase
linearly with time, thus producing a constant slope at the output. The VICs (voltage and current constraints)
for a capacitor, KVI., and KCI. are central elements in the understanding of this circuit, and therefore will be
given in detail. The capacitor will be covered first.

The VIC for a capacitor is

d

dt C

* where v is the branch voltage across the capacitor, i is the branch current through the capacitor, and C is the
!4 capacitance. This equality is expressed in the design system as

(- (D-DT (BRV CAP-i)) (// (BRI CAP-i) (CAPACITANCE CAP-I)))

"[bough this equation is correct, it does not captlre how a designer uses a capacitor because an equation does
not capture the notion of mechanism. While the absence of mechanism is a feature of network theory, it is a

weakness in design where designers use equalities unilaterally to set values <de Kleer-5>.

1 2. ASIC RUIS

Fig. 2. A Ramp Generator

Ramp Generator output outputvoltage

time

GEN.1

output

CAP-1~T

ground

TEK2111

Control is an important distinction: either the current sets the branch voltage or the branch voltage

sets the current, but they are not simultaneously constrained. A designer uses control because he wants the

. inputs to determine the outputs, not vice versa. A unity gain amplifier, a circuit whose output voltage should

" equal its input voltage, should not enforce that equality by controlling its input voltage to be equal to its
,l output. The direction of control is expressed using the CONTROLS relation:

(CONTROLS (O-OT (BRV CAP-i)) (BRI CAP-i))

(CONTROLS (BRI CAP-I) (O-OT (BRV CAP-I)))

',-', Only one of these assertions can be active at one time. The first relation says that the derivative of v controls

the current i. The second relation says the current i controls the derivative. These are ways a capacitor can be

, used in a circuit. The arguments of CONTROLS are signals -- voltages and currents. 'he capacitance C does
'" not appear in the CONTROLS relation because the capacitance is just a parameter; it is not set by any voltage

or current in the circuit but is set when the capacitor is manufactured.
The CONTROLS relation is transitive, that is, if A controls B and B controls C, then A controls C.

This transitivity is presented in the first rule:

(DEFRULE CONTROL-TRANSITIVITY

((?Fi (CONTROLS ?X ?Y))

(?F2 (CONTROLS ?Y ?Z)))

(ASSERT '(CONTROLS ?X ?Z) '(CONTROL-TRANSITIVITY ?F1 ?F2)))

- DEFRUI.E defines a rule. In this case, the rule name is "control-transitivity". The second argument of

". . •*" • • - . *----- -- " - - ".- - -

21 AS(I ' R1UI ES 12

.1EFIU1E is a list of patterns: each pattern has the form (<factname> <fact)). The "?" prefix denotes a
pattern variable. '[his particular rule looks for an assertion of the form (CONIROLS ?X ?Y): when it finds

K one, the rule binds ?X and ?Y to the corresponding fields of the assertion and ?l to the unique factname of

*.] that assertion. le rulc then looks for an assertion (CONTROl S ?Y ?Z) and if it finds one will bind ?Z to the

!* appropriate value and ?F2 to tie unique name for that assertion. If both matches are found, the body of the

rule is executed: in this case a new assertion, (CONTROIS ?X ?Z), is made. The second argument to

ASS-RT records the assertion's support that is used in backtracking. The new assertion depends on facts ?FI

and ?F2. If either fact is not believed at some later time, then die new assertion will be withdrawn. The

database maintains this consistency. For more information about the rule interpreter, sce <SIIROBE>

The capacitor rule (figure 3.) is more complicated than die transitivity rule because some

bookkeeping has to be done.

Fig. 3. Capacitor-VIC1-

t terminal current

NODE-1 = (TC (T1 CAP-i))

CAP-1 branch voltage

NODE-2 = (BRV NODE-1 NODE-2)

TEK2112

(DEFRULE CAPACITOR-VIC-1

((?Fl (CIRCUIT-PART CAPACITOR ?CAP))

(?F2 (CONTROLS ?X (BRV [(CONNECT (Ti ?CAP)))
[(CONNECT (T2 ?CAP) ;)J))))

(IF (... non-circularity test ...)

(ASSERT '(CONTROLS (0-OT (BRV [(CONNECT (TI ?CAP))]
[(CONNECT (T2 ?CAP))))

(TC (TI ?CAP)))

'(CAPACITOR-VIC ?F1 ?F2))))

The first pattern looks for a capacitor ("(CIRCUI'I'-PART CAIPACITOR ?CAP)") and binds the

name of the capacitor to ?CAP (all circuit components are given a reference name). The CIRCUIT-PART

assertion associates parts such as resistors, capacitors, and amplifiers with reference names. The next pattern

finds some ?X that controls the branch voltage ("(BRV <node> <node))") across the capacitor: the syntax of

the bracket expressions ("[I") will be discussed shoitly. When die rule Finds an ?X. it asserts that the

derivative of the branch voltage controls the capacitor's terminal current ("(TC (TI ?CAP))"). TC refers to

terminal current; Ti1 and 2 refer to the two terminals of a capacitor. 'The idea behind CAIPACIIOR-VIC-l

21 BASIC RUI .S 13

is that if some external thing controls a capacitor's branch voltage, then the causality in the capacitor will be

from the branch voltage to the terminal current, not the other way around.

The tF statcment is there to watch out for a circular CONTROLS loop (we don't want to loose the

distinction between CONTROI.S and =). It prcvents the system from thinking both

(CONTROLS (BRV NODE-1 NOOE-2) (TC (TI CAP-I)))

(CONTROLS (TC (TI CAP-I)) (BRV NODE-I NOOE-2))

In fact, a good idea would be to look for circular CONTROI.S loops because they mean something is wrong

F.:: (figure 4.).

Fig. 4. Circular CONTROIS Rug

(DEFRULE CIRCULAR-CONTROLS-LOOP

((?Fl (CONTROLS ?X ?X)))

(ASSERT '(BUG CIRCULAR-CONTROLS-LOOP) '(CIRCULAR-LOOP-CHECK ?Fl)))

'fhe expressions in square brackets ("[]") refer to the nodes to which the capacitor is connected. The
. assertion (CONNECI (I CAP-I) NODE-I) means terminal TI of component CAP- is connected to node

NOI)E-1, and the bracket expression [(CONNECT (I CAP-I) *)] would then refer to NODE-1. In general,
if(P X Y), then [(PX *)Y.

If there is no (CONNECT(TiCAP-i)NODE-1), then the reference expression creates an

anonymous node. Later this node may be identified with another node, in which case

(ID <node-namel> <node-name2>)

is asserted. 'his assertion causes one of the two node names to be chosen and all assertions that use the other

name are reasserted using the selected name. The assertions using the old name will no longer trigger any

rules. This naming mechanism is also in Shrobe's interpreter.

A short digression on naming conventions is in order. Instances of generators, resistors, capacitors,

and nodes are given names such as GEN-1, RES-l, CAP-I. and NODE-I1. Some instances of nodes arc given
more descriptive names such as INPUT and OUTPUT. Variable names (names inside of rules) refer to these

parts as GN, RES, CAP, and NODE (or sometimes NI)). When more than one variable is needed, names

*i such as NOIE1 and NODE2 (no hyphen) are used. A name ending with a hyphen followed by a number is

an instance, not a variable.

Device terminals are denoted by functions on an instance (which might be represented by a

variable): ('T1 CAP-I) is one terminal of capacitor CAI-I and (T2 CAP-I) is the other. TI and '12 are used

for all 2 terminal devices. Amplifiers have terminal designators I+, I-, and OUT. Values of device

parameters such as resistance and capacitance are referred to by (RESISTANCE IR1S-) or

°.

.- , 4, ..- :- - . -". ' . " .' " " ;. "- : " " - -° " .,"' .-" ." '- .' ' .. - " " - -* " . . -

2.1 IIASICRUI.FS 14

(CAPACI'TANCE CAP-]). Currents flowing into terminals are called terminal currents and are designated
<(TC terminal>). Voltages are represented by functions on nodes: (I1RV NOI)I'-I NOt)E-2) is the branch

voltage from NOI)E-1 to NOI)E-2 and (NI)V NODF-1) is die node voltagc of NOI)0-1.
'[he capacitor-VIC-I rule only considers the case %hcn an imposed branch %oltage sets the

capacitor's branch current. Capacitor-VIC-2, shown in figure 5, covers the other case of dhe branch current
controlling the branch voltage.

Fig. 5. Capacitor-VIC-2

(DEFRULE CAPACITOR-VIC-2

((?Fl (CIRCUIT-PART CAPACITOR ?CAP))

(?F2 (CONTROLS ?X (TC (TI ?CAP)))))

(IF (... non-circularity test ...

7' (ASSERT '(CONTROLS (TC (Ti ?CAP))

(D-DT (BRV [(CONNECT (Ti ?CAP)))
[(CONNECT (T2 ?CAP) *)J)))

'(CAPACITOR-VIC ?F1 ?F2))))

Figure 6 shows some nles that relate terminal currents, VICs, and wiring.
In addition to the CONTROLS constraint, there are also arithmetic constraints (=) that do not have

the restrictions of causality that CONTROLS has. These arithmetic constraints not only refer to branch
voltages and terminal currents, but also to parameter values such as resistance and capacitance. CONTROLS
constraints are included to find mechanism: arithmetic constraints are included to find values for different
component parameters. This discussion will focus on CONTROLS and largely ignore the arithmetic
constraints except to write down some important constraints from time to time. CONTROLS is important for

*.' finding the topology of a circuit, others (<de Kleer-4> <Sussman-4>) have discussed how to use arithmetic
* -. "constraints. My program does not actually use the form of the constraints shown here: instead it put

descriptive markers on the CON'IROLS assertions. That approach is limited; the ideas of constraint and

I

coto r needn n hol esprt eutos

-- - - - - - - --..-.- '. - 22.±~. .

2.1 BASIC RULLS 15

Fig. 6. Trrminal Currents

(DEFRULE CAP-VIC-3
((?Fl (CIRCUIT-PART CAPACITOR ?CAP))

j (MF (CONNECT (TI ?CAP) ?NDI))

(MF (CONNECT (T2 ?CAP) ?ND2)))
(ASSERT '(- (TC (Ti ?CAP))

(- (CAPACITANCE ?CAP) (0-OT (BRV ?NDI ?N02))))

* (CAPACITOR-VIC ?FI ?F2 ?F3))
(ASSERT '(- (IC (TI ?CAP)) (- (TC (T2 ?CAP))))

(CAPACITOR-VIC ?FI ?F2 ?F3)))

(DEFRULE TERMINAL-CURRENT-C

((?Fl (CIRCUIT-PART ?TYPE ?COMP)))
(ASSERT '(- (TC (TI ?COMP)) (- (TC (T2 ?COMP))))

* (TERn4IWAL-CURREIET ?F1)))

(DEFRULE TERMINAL-CURRENTS-i

((?Fl (CONTROLS ?X (IC (TI ?COMP)))))
(IF (. .. non-circularity-test ..

(ASSERT '(CONTROLS (IC (Ti ?COMP))
(IC (12 ?COMP)))

(KCL ?Fl))))

(DEFRULE TERMINAL-CURRENTS-2

((?Fl (CONTROLS ?X (IC (T2 ?COI4P)))))
(IF (. .. non-circularity-test ..)

(ASSERT '(CONTROLS (IC (T2 ?COMP))

(IC (TI ?COMP)))
(KCL ?F1))))

" 2.2 I)I.S1(jN RULIS 16

-- 2.2 Design Rules

All of the rules given so far are analysis rules. They notice the CIRCUIT-PARTs and

SCONNECFions of a circuit and deduce the controlled currents and voltages. To design, there should be

, design rules that start with goals for controlling current and oltages and deduce the appropriate

CIRCUIT-PARTs and CONNt'CTions needed to achieve those goals. A design rule is generally the inverse

of an analysis rule: the design rule adds the CIRCUIT-PARTs and CONN-CTions that will cause the

analysis rule to deduce the goal.
Figure 7 shows the first design rule: it is the inverse of an analysis rule given earlier (rules usually

come in design-analysis pairs).

Fig. 7. Capacitor-Design-I

(DEFRULE CAPACITOR-DESIGN-1

((?FI (GOAL (CONTROLS ?X (D-DT ?Y)))))

(PROPOSE-METHOD (?Fl) ?F2

(LET ((CAP (GENPREFIX 'CAP)))

(ASSERT '(CIRCUIT-PART CAPACITOR ,CAP)

'(CAP-DESIGN ?F2))

(GOAL-ASSERT '(CONTROLS ?X (TC (TI ,CAP)))

' (CAP-DESIGN ? Z})

(GOAL-ASSERT '(CONTROLS (BRV [(CONNECT (TI ,CAP))J
[(CONNECT (TZ .CAP) "))

?Y)

'(CAP-DESIGN ?F2)))))p
L. This rule looks for the GOAL of something (?X) controlling the derivative of something else (?Y). The body

of the IlET creates a capacitor (giving it a unique name with the GENPREFIX function) and then asserts two

subgoals with GOAL-ASSERT. The method associates ?X with the capacitor's terminal current and ?Y with

the capacitor's branch voltage because of the possibility of using the capacitor VIC to establish the required
-. behavior between the terminal current controlling the derivative of the capacitor branch voltage and ?X

controlling the derivative of ?Y. The rule uses the capacitor's VICs to take a derivative. The subgoals try to

make causal links between ?X and the branch current and between the branch voltage and ?Y. This design
rule may not he the only design rule that can achieve the goal; there may be many others.

PIROOOSE-MF1lIO) suggests a method to achieve the goal. In general, several methods may be
proposed for one goal; the task controller will select one and execute its body. PROPOSI-MITIlOl) has the

form

2.2)I:SIGN RUIIS 17

(PROPOSE-METHOD <list of factnames justifying proposing the method>

Sd) <factname justifying selection of the method>
, .. .<body>)

l'he list of factnames labels the support for proposing thc method. The task controller. howcer. decides if

the method will be used: thc second argument of PROPOSI-MEIIlOI) is the reason for proposing the

method. The body is a list of expressions to execute when the method is selected.

A design rule proposes one or more methods to achieve a goal. A task controller selects one of the

proposed methods and runs it. The method may add circuitry or spawn subgoals. If the desired goal is

achieved, then the method was successful and some other goal can be pursued. If the desired goal is not

achieved, then the method failed and all the circuitry and deductions it made are retracted (by virtue of the

truth maintenance system) and a different method of achieving the goal is tried. If all the methods fail, then

the designer fails to achieve the goal: it must discard that goal and work on another. This backtracking is

under the control of task agenda portion of Shrobe's interpreter.
L:

I2.3 Design of a Ramp Generator

It's time to jump in and design that ramp generator mentioned in the first part of this chapter. T'he

ramp generator is a circuit with an output that has a constant slope; this goal is shown in figure 8. Also shown

in the figure are the deductions that the capacitor design rule makes when it is triggered by the goal.

The GOAL-ASSERT and ASSERT specify the design goal. The ramp generate- has no inputs, so

nothing (Nil.) CONTROLs the output. The capacitor design rule notices the goal and, when the task

controller lets it, runs. It makes capacitor CAP-I whose two terminals are connected to NO1)E-1 and

NODE-2 and establishes two subgoals to fill in the design. The first is to set the current through the capacitor

and the second is to make the capacitor branch voltage appear between OUTiPUT and GROUND.

.-'To achieve the first subgoal, some method of setting the capacitor's terninal current must be found.

It shouldn't matter which terminal of the capacitor is controlled but right now the only goal is to control TI of

CAP-1. Tl7he rules shown in figure 9 correct this situation. They say if there is a goal to control '1 ('12), then

propose achieving that goal by controlling the T2 (Ti), the other temiinal. These rules are the design versions

of the earlier terminal current analysis rules.

In the case of the ramp generator design, TC-DESIGN-1 proposes solving

(GOAL (CONTROLS NIL (TC (Ti CAP-i))))

by achieving

(GOAL (CONTROLS NIL (TC (T2 CAP-i))))

UI

U..

*2.3 IISlIUN 01: A RA.M!' GFNI;RATR 18

Fig. 8. Ramp Generator Decductions

terminal current

* NODE1 (TO (TI CAP-i1))

CAP-1i branch voltage

* NODE-2 =(BRV NODE- I NODE-2)

TEK2317

(goal-assert '(Controls NIL (d-dt (ndv output)))

(premise))

(assert '(- (d-dt (ndv output)) mn)

(premise))

(GOAL (CONTROLS NIL (D-DT (NOV OUTPUT))))

(= (-OT (NOV OUTPUT)) M)

(CIRCUIT-PART CAPACITOR CAP-i)

(CONNECT (TI CAP-i) NODE-i)

(CONNECT (T2 CAP-i) NODE-2)
(GOAL (CONTROLS NIL (TC (TI CAP-i))))

(GOAL (CONTROLS (BRV NODE-i NODE-2) (NOV OUTPUT))
((TC (TI CAP-i)) (- (CAPACITANCE CAP-i) (D-DT (BRV NODE-i NODE-2))))

* Fig. 9. Tlerminal Current Decsign Rules

(DEFRULE TC-DESIGN-i
((?Fl (GOAL (CONTROLS ?X (TC (Ti ?COMP))))))'

(IF (..-. circularity test ..

(PROPOSE-METHOD (?Fi) ?F2

(GOAL-ASSERT '(CONTROLS ?X (TC (T2 ?COMP))) '(TC-DESIGN ?F2)))))

(DEFRULE TC-DESIGN-2
((?Fl (GOAL (CONTROLS ?X (TC (T2 ?COMP))))))

(IF (... circularity test ...-

(PROPOSE-METHOD (?Fi) ?F2

(GOAL-ASSERT '(CONTROLS ?X (TC (Ti ?COMP))) '(TC-DESIGN ?F2)))))

2.3 11) SI\ 01: A RAXI' [FNIRAIOR 19

This is, however, only a proposal that tile task controller would have to accept. Since both the goal and the
subgoal are similar, we (not the program) will ignore the subgoal while other methods of setting a terminal

current goal are considered. Later, in the next chapter, we will return to this proposal and examine the
designs that stem from it.

KCI. can be used to set the terminal current of (T1 CAP-). Simple versions of the KCI. design and
analysis rules are shown in figure 10: the next chapter discusses these rules more thoroughly. KCI. requires
the current flowing into a node equal the current flowing out of the node, so if some other terminal forces

some current into (TI CAP-I)'s node, then that current must flow out of the node and into (TI CAP-I). The

- KCI. design rule proposes to set a terminal current by setting the current flowing into a node. This current
flowing into or out of a node is denoted (NC <node>). The KCI. rule assumes there are no other terminals
connected to the node that might siphon off some current that is supposed to go to (T1 CAP-l). If that

assumption is false, then there is a design bug: that bug, how to fix it, and how to use it to advantage, will be
taken up in the next chapter.

Fig. 10. KCL Rules

(DEFRULE KCL-ANALYSIS-O

((?Fl (CONTROLS ?X (TC ?TERM))%

(?F2 (CONNECT ?TERM ?NODE)))

(IF (... circularity test ...)

(ASSERT '(CONTROLS (TC ?TERM) (NC ?NODE))

'(KCL ?Fl))))

(DEFRULE KCL-ANALYSIS-1

((?F1 (CONTROLS (TC ?TERM1) (NC ?NODE)))

(?F2 (CONNECT ?TERMl ?NODE))

(?F3 (CONNECT ?TERM2 ?NODE)))

. (IF (NOT (EQUAL ?TERM1 ?TERM2))

(PROGN (ASSERT '(CONTROLS (NC ?NODE) (TC ?TERM2))

'(KCL ?F1 ?F2 ?F3))

(ASSERT '(- (TC ?TERM1) (- (TC ?TERMZ)))

'(KCL ?Fl ?F2 ?F3)))))

(DEFRULE KCL-OESIGN

((?FI (GOAL (CONTROLS ?X (TC ?TERMINAL))))

(?F2 (CONNECT ?TERMINAL ?NODE)))

(PROPOSE-METHOD (?F1 ?F2) ?F3

(GOAL-ASSERT '(CONTROLS ?X (NC ?NODE))

'(KCL-DESIGN ?F2 ?F3))))

4i 'lbe idea of a node current (NC) is based on causality and is independent of assigning arbitrary
reference directions for currents and voltages. A node current says that some branch sets the current being

-.

2.3 DUSIGN 01: A RAM I GENFRA'lOR 20

pushed into or pulled out of a node and the remaining branches receive that current. 'nat current is called

the node current. The branches that set the node current causally control the branches that receive it.

Applying the KCI.-IESIGN rule to

(GOAL (CONTROLS NIL (TC (T1 CAP-i))))

leaves our last subgoal on this branch of the goal tree,

(GOAL (CONTROLS NIL (NC NODE-i)))

'[his goal is achieved by the constant current generator rule shown in figure 11.

Fig. 11. Current Generator

terminal current

NODE-1 = (TC (TI GEN-1))

GEN-1

NODE-2

TEK2320

(DEFRULE CURRENT-GENERATOR-ANALYSIS

((?Fl (CIRCUIT-PART CURRENT-GENERATOR ?GEN)))

(ASSERT '(CONTROLS NIL (TC (TI ?GEN)))

*(CURRENT-GENERATOR ?Fi))

(ASSERT '(- (STRENGTH ?GEN) (TC (T1 ?GEN)))

'(CURRENT-GENERATOR ?Fl)))

(DEFRULE CURRENT-GENERATOR-DESIGN

((?Fl (GOAL (CONTROLS NIL (NC ?NODE)))))

(PROPOSE-METHOD (?Fi) ?F2

(LET ((GEN (GENPREFIX 'GEN)))

(ASSERT '(CONNECT (TI ,GEN) ?NODE)

'(CURRENT-GENERATOR ?F2))

(ASSERT '(CONNECT (T2 ,GEN) [(CONNECT (T2 ,GEN)))

'(CURRENT-GENERATOR ?F2))

(ASSERT '(CIRCUIT-PART CURRENT-GENERATOR ,GEN)

'(CURRENT-GENERATOR ?F2)))))

T'lhe current generator satisfies the above goal and allows the goal stack to unwind as analysis rules

fire and deduce the achievement of the goals (figure 12).

The only remaining subgoal is making capacitor CAP-I's branch voltage control the ramp

2.3 I)I-SIGN 01: A RAMP GINIRAI'OR 21

Fig. 12. Current Generator Deductions

(GOAL (CONTROLS NIL (TC (TI CAP-i)))) ;Capacitor Design

(GOAL (CONTROLS NIL (NC NODE-I))) ;KCL Design
*t . (CONNECT (TI GEM-i) NODE-I) ;Current Generator

(CIRCUIT-PART CURRENT-GENERATOR GEN-i)

(CONTROLS NIL (TC (TI GEN-i))) ;KCL Analysis

(CONTROLS (TC (Ti GEN-i)) (NC NODE-i))

(CONTROLS NIL (NC NODE-i)) ;satisfies goal

(CONTROLS (NC NODE-i) (TC (Ti CAP-i)))

(CONTROLS NIL (TC (TI CAP-i))) ;satisfies goal

(- (STRENGTH GEN-1) (TC (Ti GEN-1))) ;Current generator

(- (TC (TI GEN-1)) (- (TC (T2 GEN-1)))) Terminal Current

(. (TC (TI GEN-i)) (- (TC (TI CAP-i)))) ;KCL

(- (STRENGTH GEN-1) (- (TC (Ti CAP-i)))) :math

generator's output node voltage. A node voltage is just a branch voltage between the node and ground, so

converting a branch voltage into a node voltage involves referencing one of the nodes of the branch to ground
and having the other node of the branch be the node voltage. T e conversion rule is shown in figure 13. It
creates two subgoals, one to reference one side of the branch voltage to ground and the other to get the other

side of the branch voltage controlling the node voltage. Another rule is needed to tell how to achieve these
subgoals.

Fig. 13. BRV to NDV Conversion

(DEFRULE BRV-TO-NDV-OESIGN

((?Fi (GOAL (CONTROLS (BRV ?NODE1 ?NODE2) (NDV ?NODE3)))))

(PROPOSE-METHOD (?Fi) ?F2

(GOAL-ASSERT '(CONTROLS (NOV GROUND) (NOV ?NODE2)) '(BRV-TO-NDV ?F2))

(GOAL-ASSERT '(CONTROLS (NOV ?NOOEI) (NOV ?NODE3)) '(BRV-TO-NDV ?F2))))

(DEFRULE BRV-TO-NDV-ANALYSIS

((?F1 (CONTROLS (NOV GROUND) (NOV ?NODE2)))

(?F2 (CONTROLS (NOV ?NODEi) (NOV ?NODE3))))
(ASSERT '(CONTROLS (BRV ?NODE1 ?NODE2) (NOV ?NODE3))

'(BRV-TO-NDV ?Fi ?F2)))

4

2.3 I)[SIGN 01- A RAMP GENI-RATOR 22
r.

Thc wire rule, shown in figure 14, is the simplest method of making one node voltage equal to

another. It works by making the nodes identical with an 11) assertion. The (SATISFIEI) ?Fl) tells the task

controller that the goal was achieved without asserting a troublesome

*' (CONTROLS (NOV ?NODEI) (NOV ?NODE2))

which the I1) assertion would turn into

(CONTROLS (NOV ?NODEI) (NOV ?NODE1))

-- which is a circular CONTROLS bug (something cannot CONTROL itself).

Fig. 14. Wire Rule

(DEFRULE WIRE-RULE-ANALYSIS

((?F1 (GOAL (CONTROLS (NOV ?NODE1) (NOV ?NODE2))))

(?F2 (ID ?NODE1 ?NODE2)))

(ASSERT '(SATISFIED ?F1) '(WIRE ?F2)))

(DEFRULE WIRE-RULE

((?F1 (GOAL (CONTROLS (NOV ?NOOEI) (NOV ?NODE2)))))

(PROPOSE-METHOD (?F1) ?F2

(ASSERT '(ID ?NODE1 ?NODE2)

'(WIRE-RULE ?F2))))

The result of the wire rule is shown in the next figure. This circuit is the one mentioned at the

beginning of the chapter. The arithmetic constraints relate the strength of the current generator GENI, the
capacitance of CAP-, and the desired slope of the ramp M.

2-3 I)I.SIGN 1 ,A RANI GINIFRA'IOR 23

Fig. 15. Simple Sweep Circuit

GEN-1i

NODE-1 Output

CAP-i 1

ground

TEK23?2

(GOAL (CONTROLS (BRV NODE-1 NODE-2) (NDV OUTPUT))) ;original subgoal

- (GOAL (CONTROLS (NOV GROUND) (NDV NODE-?)))

(ID GROUND NODE-2) ;satisfies goal

(GOAL (CONTROLS (NOV NODE-I) (NOV OUTPUT)))

(ID NODE-I OUTPUT) ;satisfies goal

(CONTROLS (BRV NODE-1 NODE-2) (NOV OUTPUT)) ;satisfies goal

(CONTROLS (BRV OUTPUT GROUND) (NDV OUTPUT)) ;because IDs

(CONTROLS (TC (TI CAP-i)) (D-DT (BRV OUTPUT GROUND)))

(- (STRENGTH GEN-i) (- (TC (TI CAP-i)))) ;previous deduction

(- (TC (TI CAP-i)) ((CAPACITANCE CAP-i) ;capacitor

(D-DT (BRV OUTPUT GROUND))))

(- (BRV OUTPUT GROUND) (NDV OUTPUT)) ;definition

(N (D-DT (NOV OUTPUT))) ;original specification

(-(STRENGTH GEN-i)(- (*)(CAPACITANCE CAP-i) ;math

N))

a

a'

-°-

2.4 IOOSEINDS 24

-- 2.4 Loose Ends

Designs are not unique because there are several methods to achieve the same goal and those

methods produce different circuits. "ib1is %ariety should not be surprising. The system described here does

" not assume one design is any better than any other. It can be told to produce several designs -- and in the next

* chapter more designs will be covered. 'Te systcm does not, however, try to produce a best design.

The ramp generator designed in this chapter is the simplest of many possible circuit designs. The

next chapter introduces the feedback rule and uses it to design several other ramp generators. This next

chapter also takes up the discussion of the KCL expert that was put off in this chapter.

°,. -*

[,,rrr.r-

3 KUI AM) I II DBACK 25

3. KCL and Feedback

3.1 A Design Bug

The ramp generator of the last chapter doesn't work with a resistor (or some other load) connected

to its output. This chapter shows that the addition of the resistor violates an assumption of the KCI. design
rule. The chapter also shows how to design with feedback without violating the KCI design rule

assumptions.
Figure 16 shows the simple generator designed in the last chapter with a load resistor connected to

its output. 'lhe circuit's output voltage is not the desired ramp but a rising exponential as shown in the figure.

Fig. 16. Problems with a Load

GEN-1 Output

Output Voltage

" KCL Bug
CAP-1 RL caused by TC

Ground time

TEK3 110

"The output is different because the load resistor violates an assumption that the designer used to set
the current flowing through the capacitor. The designer assumed that all of the current from the current
source GEN-1 would flow through capacitor CAP-1. but the load resistor Rl steals some of this current.
When a component steals another's current, then the design has a KCL bug.

KCI. bugs must be fixed or the design won't work. There are four ways to remove KCI. bugs: (1)

tolerate the connection, (2) cancel the adverse effect, (3) switch out the connection, or (4) abandon the present
design and find another. Some connections can be tolerated -- that is they can be left connected because their
effect on the design is insignificant. If, for example, the load resistor never stole more than one percent of the

constant current generator's current, then the capacitor current would only be in error by one percent. If such
an error is acceptable, then the resistor could be left connected.) If the error has a significant effect, it may be

I. Some external constraint would have to bound the output voltage of the ramp generator. As specified. the ramp generator's
output would grow until the current through the resistor became arbitrarily large. Practically speaking, though, something would be
resetting the ramp before the voltage gets too large.

."

3.1 A IDl-SIGN BUG 26

possible to cancel out the error with another connection that supplies the same amount of current that the
resistor steals. If a connection cannot be tolerated or canceled. it may be possiblc to tcmporarily remove the

connection without affecting the operation of the circuit. The chapter on switches will say more about this
method of resolving the bug. Finally. the KCI. bug may not be fixable and the present design should be

abandoned. For example. some resistors cannot be canceled out because their resistance is not known or may
* change.

3.2 A Closer Look at KCL

What is a KCL bug? How is it found? How is it fixed? A KCI. bug occurs when a KCI. constraint
is used to set a terminal current but another terminal steals some of that current. KCI. bugs are found by

rules that explicitly look for them. The last section listed f6ur ways that the bug might be resolved, this
chapter considers three of them: tolerating connections, canceling connections, and abandoning designs.

* Another chapter considers switching the connection out. This section will examine KCI. more closely.

To answer the question about what a KCL bug is, we first have to examine how KCL is used. KCL

is used to set a terminal current of a device. The model that the KCL rule has is that it can set a terminal

* current by forcing a current into a node; that current will then flow out of the node and into the the desired

terminal (figure 17).

Fig. 17. Setting a Terminal Current
.' (make nodes line up)

GOAL: device setting node current

NODE

+TC NODErE I
device receiving node current

TEK3210

The current flowing out of the node is called the node current or NC. Some other device must
supply the node current; in the sweep generator this device was a current generator, but it could have been a
resistor or some other component. 'he design rule assumes that there are only two important terminals

. 32A CI OSR LOOK A KCL 27

'..

connected to the node where KCI. is being used -- the one that supplies the node current and the one that
receives it. Other terminals that are connected to the node may cause KCI, bugs. Frequently a design will
have more than two terminals connected to a node, but the extra terminals can be tolerated because they draw

- so little current. Operational amplifier inputs, for example, are always tolerated at a node (figure 18).

* - Fig. 18. A Terminal can be Tolerated

I-. device setting node current

+device receiving node current

TEK3220

Sometimes there are two extra connections to a node but because one adds the same amount of
current that the other takes away, there is no net effect on the node's KCL. The pair of terminals cancel each
other out. This circumstance is shown in figure 19.

Fig. 19. rwo Terminal Currents Can Cancel Out

device setting node current

NODE device currents
cancel each other

4 device receiving node current

TEK3225

Ilie terminal that sets die node current and the terminal that receives the node current are important

1[

3.2 A CIOSI:R I OOK AT KCL 28

terminals to know. The new KCI. analysis and design rules are shown in figure 20. These rules are similar to

the ones given in the previous chapter except they know about other connections to a node. These other

connections are not tolerated until proven otherwise.

L:.

NFig. 20. KCL Rules

V, (DEFRULE KCL-ANALYSIS-O

((?F1 (CONTROLS ?X (TC ?TERM)))

(?F2 (CONNECT ?TERM ?NODE)))

(IF (... circularity test ...

(LET ((F3 (ASSUME '(NOT (TOLERATED ?TERM))

'(PREMISE))))

(ASSERT '(CONTROLS (TC ?TERM) (NC ?NODE))
'(KCL ?F1 ?F2 ,F3))

(DEFRULE KCL-ANALYSIS-1

((?Fl (CONTROLS (TC ?TERMI) (NC ?NODE)))

(?F2 (CONNECT ?TERM1 ?NODE))

(?F3 (CONNECT ?TERM2 ?NODE)))
(IF (NOT (EQUAL ?TERM1 ?TERM2))

(LET ((F4 (ASSUME '(NOT (TOLERATED ?TERM2))

(PREMISE)))
(ASSERT '(CONTROLS (NC ?NODE) (TC ?TERM2))

'(KCL ?F1 ?F2 ?F3 ,F4))

(ASSERT '(= (TC ?TERM1) (- (TC ?TERM2)))

'(KCL ?F1 ?F2 ?F3 ,F4)))))

(DEFRULE KCL-DESIGN

((?Fl (GOAL (CONTROLS ?X (TC ?TERMINAL))))

(?F2 (CONNECT ?TERMINAL ?NODE)))

(PROPOSE-METHOD (?F1 ?F2) ?F3

(GOAL-ASSERT '(CONTROLS ?X (NC ?NODE))

'(KCL-DESIGN ?F2 ?F3))))

The previous rules assume that KCI. used properly -- one terminal controls the node current and

one terminal is controlled by the node current. There are monitors that check whether KCI. is used properly
and issue a BUG report when it isn't. ']'here are three kinds of KCI. bugs: (1) 2 or more terminals

CONTROL.ling a node current; (2) 2 or more terminal currents being CONTRO~led by a node current: and
(3) a zero impedance terminal connected to a KCI. design rule node. The third bug says that KCI. cannot be

,-, used to control any terminal currents when the node is connected to a power supply. Tlie monitors are shown

in figure 21. 'these KCI. bugs don't mean that the circuit violates KC. -- it certainly doesn't. lhey mean that

the designer cannot use KCI. to set terminal currents at that node.

3.2 A (1lOSER IlOOK Al KC1. 29

Fig. 21. KCL Monitors

(DEFRULE KCL-MONITOR-1I ((?F2 (CONNECT ?TERMI ?NODE))
(?F3 (CONTROLS (TC ?TERMI) (NC ?NODE)))
(7F4 (CONNECT ?TERI42 ?NODE))

(?F5 (CONTROLS (TC ?TERN2) (NC ?NODE))))

(IF (NOT (EQUAL ?TERM1 ?TERM2))

(ASSERT '(BUG KCL ?NODE ?TERMI ?TERM2)

(KCL-MONITOR ?F2 ?F3 ?F4 ?F5))))

(DEFRULE KCL-MONITOR-2

((?F2 (CONNECT ?TERMl ?NODE))

(7F3 (CONTROLS (NC ?NODE) (TC ?TERI)))

(?F4 (CONNECT ?TERM2 ?NODE))

(?F5 (CONTROLS (NC ?NODE) (TC ?TERM2))))

(IF (NOT (EQUAL ?TERMI ?TERM2))

(ASSERT '(BUG KCL ?NODE ?TERMI ?TERM2)

'(KCL-MONITOR ?F2 ?F3 ?F4 ?F5))))

(DEFRULE KCL-MONITOR-3

((?F2 (ZERO-IMPEDANCE ?TERMI))

(?F3 (CONNECT ?TERMI ?NODE))

(?F4 (CONNECT ?TERM2 ?NODE))

(?F5 (CONTROLS (NC ?NODE) (TC ?TERM2))))

(IF (NOT (EQUAL 7TERMl ?TERM2))

(ASSERT *(BUG KCL ?NODE ?TERM1 ?TERN2)

(KCL-MONITOR ?F2 ?F3 ?F4 ?F5))))

33111 Ii-II)BACK RULE 30

3.3 'lhe Feedback Rule

If the KCI. bug cannot be resol'ed, then the designer must remove the connection and find some
other melod to achieve the design goal. In the case of the ramp generator with ie load resistor, the WIRE

* ;rule was trying to achieve the goal:

(GOAL (CONTROLS (NOV NODE-i) (NOV OUTPUT)))

The WIRE rule fails to achieve this goal because of the KCI. bug. Backtracking from the failure of die WIRE
rule leaves the design problem as shown in figure 22.

* Fig. 22. Old Problem
*: (GOAl. (CONTROLS (NDV NODE-1) (Ni)V OUTPUT)))

GEN-i

NODE-i Output

DCAP-1 AL

Ground

TEK3310

The WIRE rule failed because the load resistor stole current that was supposed to go to the
capacitor. Somehow the load resistor must be prevented from stealing the current. A human circuit designer

would say that NODE-I must be isolated from OUTPUT and would suggest using a buffer amplifier (figure
23). While the buffer amplifier also makes a connection to NODE-1 and thus causes a KCI. bug, that bug can
be resolved easily because an ideal amplifier input draws no input current and therefore does not disturb the
KCL constraint at NODE-I. l'he amplifier also supplies the load resistor with all the current it needs. 'he
design system makes these deductions with 2 rules, one for negative feedback and the other for operational

amplifiers. "ihe two steps allow additional flexibility that will be used in later designs. The feedback rule is

shown in figure 24.

The feedback rule solves the same problem as the WIRE rule, but it isolates the two nodes involved.
Fcc'dback looks at the voltage difference between the two nodes (that is, the branch voltage) and then adjusts

3.3 IllF IELJ)IIACK. RULE 31

Fig. 23. Ramnp Generator with Buffer Amplifier

GEN-11

NODEA i

CAP-i R

ground ground

TEK3320

Fig. 24. Fecdhack Rule

fldl nd2

Compare

& Change

TEK3330

(DEFRULE FEEDBACK-DESIGN

((?Fl (GOAL (CONTROLS (Nov ?ND1) (NOV ?N02)))))
(PROPOSE-METHOD (?F1) ?F2

(GOAL-ASSERT '(CONTROLS (BRV ?NDl ?N02) (NOV ?N02))
'(FEEDBACK ?F2))))

(DEFRULE FEEDBACK-ANALYSIS
((?Fl (CONTROLS (BRV ?ND1 ?ND2) (NOV ?ND2))))

(ASSERT '(CONTROLS (NOV ?NDI) (NOV ?ND2))

'(FEEDBACK ?F1)))

th ecn nd voltage to drive the voltage difference to zero.1

The feedback rule produces a goal for a branch voltage to control a node voltage; another

1. Thc feedback rule assumes an infinice fccdback loop gain. An extendcd rJTPI)IACK-ANALYSIS rulc should calculate the loop
pin and check that it is large enough to keep the errors small. Such a check is difficult because thc loop gain is frequency dependent. In
the interest ol'simplicity, this test has been ignored. A simple but not complete test would check if the CONTROl S relation depended
upon an operational amplifier.

3.3 1 II)lIACK RULE 3

component, an operational amplifier, is needed to achieve that goal. 'l'hc operational amplifier rules (figure

25) provide the match for this CONTROLS goal.

Fig. 25. Operational Amplifier Rules

(DEFRULE OPERATIONAL-AMPLIFIER-ANALYSIS

((?Fl (CIRCUIT-PART OP-AMP ?AMP))

(?F2 (CONNECT (I+ ?AMP) ?ND1))

(?F3 (CONNECT (I- ?AMP) ?ND2))

(?F4 (CONNECT (OUT ?AMP) ?N03)))

(ASSERT '(CONTROLS (BRV ?NDI ?ND2) (NOV ?N03))

'(OP-AMP-VIC ?F1 ?F2 ?F3 ?F4))

(ASSERT (=(NOV ?N03) (0 INF (BRV ?NO1 ?ND2)))

'(OP-AMP-VIC ?FI ?F2 ?F3 ?F4))

(ASSERT '(- (TC (I+ ?AMP)) 0)

(OP-AMP-VIC ?Fl))

(ASSERT '(- (TC (I- ?AMP)) 0)

'(OP-AMP-VIC ?Fl))

(ASSERT '(ZERO-IMPEDANCE (OUT ?AMP))

'(OP-AMP-VIC ?F1)))

(DEFRULE OPERATIONAL-AMPLIFIER-DESIGN

((?Fl (GOAL (CONTROLS (BRV ?NDI ?NDZ) (NOV ?N03)fl'j

(PROPOSE-METHOD (?FI) ?F2

(LET ((AMP (GENPREFIX 'AMP)))

(ASSERT '(CIRCUIT-PART OP-AMP ,AMP) '(OP-AMP ?F2))

(ASSERT '(CONNECT (I+ .AMP) ?ND1) '(OP-AMP ?F2))

(ASSERT '(CONNECT (I- .AMP) ?N02) '(OP-AMP ?F2))

(ASSERT '(CONNECT (OUT .AMP) ?N03) '(OP-AMP ?F2)))))

Figure 26 shows what happens when the feedback and operational amplifier rules work on the first

goal shown in the figure. The feedback rule first transforms the goal into another one. The operational

amplifier design rule then runs; the pattern variables and circuit nodes are paired as (?NIl, NODE-I),

(?NI)2, OUTPUT'), and (?NI)3, OUTPUT). In this case the operational amplifier rule is more general than it
needs to be because ?NI)2 and ?ND3 are paired with die same node. With this special pairing, the rule will

make a voltage follower.' 'f'lie dcsign rule also pairs, nodes with tenninals: (NOI)E-l. 1+), (OUTP~UT, I-),

and (OUrIPU'[, OUT). After all the connections are made, the circuit looks as in figure 26. T'he operational

amplifier satisfies the subgoal for feedback, feedback satisfies the goal for controlling a node voltage, and

together they satisfy the goal for making the capacitor's branch voltage control the output node voltage. Ilhis

new design isolates NO-Il (where KCI. sets the capacitor CAP-is current) from the output node (where

1. It is a feature or the representation that sc% cral special case circuits rail out general purpose ideas.

4.

13.3 111: Hi E[)11A('K RUI 1- 33

the load resistor draws some current) and therefore doesn't violate the protect-KCI- monitor.

Fig. 26. Sweep wiith Follow~er Aimpl ifier

GEN-i

NODE-i

CAP-i R

ground ground

TEK3335

(GOAL (CONTROLS (NDV NODE-I) ;subgoal wire couldn't do

(NOV OUTPUT)))
(GOAL (CONTROLS (BRV NODE-i OUTPUT) ;feedback reformulation

(NOV OUTPUT)))

(CIRCUIT-PART OP-AMP AMP-i) top-amnp design

(CONNECT (I+ AMP-i) NODE-I)
(CONNECT (I- AMP-I) OUTPUT)
(CONNECT (OUT AMP-i) OUTPUT)
((NOV OUTPUT) (* INF (BRV NODE-i OUTPUT)))

((TC (I+ ?AMP)) 0)
((TC (I- ?AMP)) 0)

(ZERO-IMPEDANCE (OUT AMP-N)

;op-aUp analyze
(CONTROLS (BRV NODE-I OUTPUT) ;satisfies goal

(NOV OUTPUT))

;feedback analyze
(CONTROLS (NOV NODE-i) (WDV OUTPUT)) ;satisfies goal

3.4 ANOI IIR MI-SIGN 34

3.4 Another Design

Figure 27 shows the two ways that a currcnt generator can be connected to control the capacitor

current of a ramp generator. The second configuration is a consequence of an earlier tcnninal current rule

. stating that (TC (TI ?X)) could be controlled by controlling (TC (T2 ?X)). Other circuit designs come from

* the second configuration: these designs will use the feedback rule.

. Fig. 27. Setting Capacitor Current

GEN-1 CAP-1

NODE-2 NODE-2

CAP-1 GEN-1

T
TEK3436

Setting the current through the capacitor is only one of the design goals of making a ramp generator.

The second is turning the capacitor's branch voltage into a node voltage. In the previous ramp generators that
was done with the BRV-TO-NDV rule that created two subgoals:

(GOAL (CONTROLS (BRV NODE-1 NODE-2) (NOV OUTPUT)))
leads to ...

(GOAL (CONTROLS (NDV NODE-i) (NDV OUTPUT)))

(GOAL (CONTROLS (NDV GROUND) (NOV NODE-2)))

*.In the first ramp generator (the one without an amplifier) both of these subgoals were accomplished by wiring

the nodes together. While this technique works for the subgoal to control the output node voltage when the

current generator is connected to (T2 CAP-i), it doesn't work for the node that ground is to control (figure

28). The problem is another instance of the KCL bug -- the connection upsets KCI. at the node and prevents

the current generator from controlling the capacitor current. 'hlere is no way to fix this bug, so the wire rule

must be discarded.
Ilie feedback rule can be used instead. A direct application of the FEl)IBACK rule creates a new

CONTROILS goal:

(GOAL (CONTROLS (BRV GROUND NODE-2) (NOV NODE-2)))
.1

Unlike the last application of the I"FI'I)BACK nile, an operational amplifier cannot achieve this goal directly

because it also suffers from the KCI. bug (figure 29). The output of the operational amplifier would steal

3.4 ANOI IIFR I)ISIGN 35

Fig. 28. Wire causes KCL Rug

Output

CAP-1 L

K-L bug
i:". GEN-1

Ground

TEK3437

current from the current generator and prevent it from controlling the capacitor current.

Fig. 29. Using an Amplifier Fails

output

NODE-2 KCL bug

GEN-1

~Ground

TEK3438

Though the operational amplifier cannot be used directly, the FEEDBACK rule is not abandoned

because there is another method of achieving

(GOAL (CONTROLS (BRV GROUND NODE-2) (NDV NODE-2)))

This other method uses the transitivity of the CONTROLS relation to turn the present goal into an equivalent

*: goal. The idea is that there might be another way to control (NDV NODE-2) without connecting directly to
NODE-2. The rule is shown in figure 30.

'"ihis rule needs an intermediate signal (?Y) to control. A human designer knows that changing the
voltage on one end of a capacitor will probably change the voltage on the other end. <de Kleer-5> called this

property the KVL-I leuristic. If this property is assumed for the moment, then there would be an assertion:

34 ANOIII:R I)SIGN 36

- Fig. 30. Transitivity Design

(DEFRULE TRANSITIVITY-DESIGN

((?Fl (GOAL (CONTROLS ?X ?Z)))

(?F2 (CONTROLS ?Y ?Z)))

(IF (... circularity test ...)

(PROPOSE-METHOD (?F1 ?FZ) ?F3

(GOAL-ASSERT '(CONTROLS ?X ?Y) '(TRANSITIVITY ?F3)))))

(CONTROLS (NDV OUTPUT) (NOV NODE-?))

'This assertion in conjunction with the transitivity design rule produce the goal in figure 31. An operational
amplifier will satisfy this goal: the resulting circuit is also shown in the figure.

A key step in the design of this circuit is noticing that the node voltage of OUTPUT controls that of

*"• - NOL)E-2. 'l'he rule in figure 32 is responsible for noticing this relation. If there is a goal to control the node

' Fig. 31. Miller Integrator

CAP-1

NODE-2 output

GEN-1Ground

TEK3440

(GOAL (CONTROLS (NOV GROUND) (NDV NODE-2))) ;wire fails on this goal

(GOAL (CONTROLS (BRV GROUND NODE-2) (NDV NODE-2))) ;feedback design

(CONTROLS (NDV OUTPUT) (NOV NODE-2)) ;brv-to-ndv

(GOAL (CONTROLS (BRV GROUND NODE-?) (NOV OUTPUT))) ;KVL heuristic

(CIRCUIT-PART OP-AMP AMP-i) ;op-amp

(CONNECT (I+ AMP-i) GROUND)

(CONNECT (I- AMP-i) NODE-?)

(CONNECT (OUT AMP-I) OUTPUT)

(CONTROLS (BRV GROUND NODE-?) (NDV OUTPUT)) ;op-amp

(GOAL (CONTROLS (BRV GROUND NODE-2) (NOV NODE-?))) ;transitivity

(GOAL (CONTROLS (NDV GROUND) (NOV NODE-2))) ;feedback succeeds

3.4 AN01I I lR i)1 SI(N 37

| •-

voltage at one end of a capacitor, then this rule suggests controlling the other end.

Fig. 32. Johan's Heuristic

(DEFRULE JOHANS-HEURISTIC-2

((?F1 (CIRCUIT-PART CAPACITOR ?COMP-NAME))

(?F2 (CONNECT (TI ?COMP-NAME) ?NODE1))

(?F3 (CONNECT (T2 ?COMP-NAME) ?NODE2))

(?F4 (GOAL (CONTROLS ?X (NDV ?NODE2)))))

(IF (... circularity test ...)

(ASSUME '(CONTROLS (NDV ?NODEI) (NDV ?NODEZ))

*(JOHANS-HEURISTIC ?F1 ?F2 ?F3 ?F4))))

3.5 Still More Generators

The previous ramp generators used a constant current source to set the current flowing through the
capacitor. A resistor can be used instead. The resistor rule, which is similar to the current generator rule, is
shown in figure 33.

The resistor rule creates the partial ramp generator design shown in figure 34. To make the resistor's
branch current (BRI) constant, the design must impose a constant branch voltage across the resistor. A
battery can be used: the following figure show the battery rules.

Using the WIRE rule twice would connect the battery directly across the resistor but also causes a
KCL bug at the junction of the resistor and capacitor (figure 36). The fix to this bug is not to use the wire rule
but to use feedback instead -- as we've done twice before. The bootstrap ramp generator is the resulting
circuit.

An interesting point about the ramp circuit is that now there are three different nodes that satisfy i
design goal -- the voltage at the capacitor, the voltage at the operational amplifier, and the voltage at the other
end of the battery. While any one of these three voltages meets the goal, therc should be some preference
placed on the last two because they are low impedance outputs and are immune to the loading problems
previously discussed. Nothing has been done to consider this preference.

U'

I "

Il

3-55S111.1. MORE GENURATORS 38

Fig. 3-3. Resistor Rules

(DEFRULE RESISTOR-ANALYSIS-a

((?Fl (CIRCUIT-PART RESISTOR ?RES))

(?F2 (CONNECT (TI ?RES) ?NODEi))

(?F3 (CONNECT (T2 ?RES) ?NODE2)))
(ASSERT '(- (TC (TI ?RES)) (// (BRV ?NODEi ?NODE2)

(RESISTANCE ?RES)))

'(RESISTOR ?F1 ?F2 ?F3)))

(DEFRULE RESISTOR-ANALYSIS-i

((?Fi (CIRCUIT-PART RESISTOR ?RES))

(?F2 (CONNECT (TI ?RES) ?NODEi))

(?F3 (CONNECT (T2 ?RES) ?NODE2))

(?F4 (CONTROLS ?X (BRV ?NODEi ?NODE2))))

(IF (. ... circularity test ...

(ASSERT '(CONTROLS (BRV ?NODEI ?NODE2) (TC (Ti ?RES)))

'(RESISTOR ?Fi ?F2 ?F3 ?F4))))

(DEFRULE RESISTOR-DESIGN-i

((?Fl (GOAL (CONTROLS ?X (NC ?NODE)))))

(PROPOSE-METHOD (?Fl) ?F2

(LET ((RES (GENPREFIX 'RES)))

(ASSERT '(CONNECT (Ti ,RES) ?NODE)

'(RESIZTOR ?F2))

(ASSERT '(CONNECT (T2 .RES) ((CONNECT (T72 .RES) el
'(RESISTOR ?F2))

(ASSERT '(CIRCUIT-PART RESISTOR ,RES)
'(RESISTOR ?F2))

(GOAL-ASSERT '(CONTROLS ?X (BRV ?NODE [(CONNECT (T2 ,RES) 0)]))

'(RESISTOR ?F2)))))

3.5 S11l] MOld GL"NI:RAIORS 39

Fig. 34. Resistor Current Source

* NODE-3

want constant BRV
RES-1 to supply constant TC

Output

CAP-1 I
Ground

TEK3510

(CONNECT (TI RES-i) NODE-i)

* (CONNECT (T2 RES-i) NODE-3)

(CIRCUIT-PART RESISTOR RES-i)

(GOAL (CONTROLS NIL (BRV NODE-i NODE-3)))

((TC (TI RES-i)) (I(BRV NODE-i NOOE-3) (RESISTANCE RES-i)))

3.5 SI111 I MORtGI:NIRAIORS 40

* Fig. 35. Battery Rules

T1 nodel

* BRV

T2 * node2

TEK35ZO

(DEFRULE BATTERY-ANALYSIS

((?Fl (CIRCUIT-PART BATTERY ?BAT))

(?F2 (CONNECT (TI ?BAT) ?NODE1))

(?F3 (CONNECT (T2 ?BAT) ?NODE2)))

(ASSERT '(CONTROLS NIL (BRV ?NODE1 ?NODE2))

'(BATTERY ?F1 ?F2 ?F3))

(ASSERT '(- (BRV ?NODE1 ?NODE2) (STRENGTH ?BAT))

'(BATTERY ?F1 ?F2 ?F3)))

(DEFRULE BATTERY-DESIGN

((?F1 (GOAL (CONTROLS NIL (BRV ?NODE1 ?NODE2)))))

(PROPOSE-METHOD (?FI) ?F2

(LET ((BAT (GENPREFIX 'BAT)))

(GOAL-ASSERT '(CONTROLS (NDV ?NODE2) (NOV [(CONNECT (T2 .BAT))1))
'(BATTERY ?F2))

(GOAL-ASSERT '(CONTROLS (NOV [(CONNECT (TI .BAT))3) (NOV ?NODE1))

'(BATTERY ?F2)))))

3.5S111 I MORI:GINI1RAIORS 41

Fig. 36. Bootstrap Circuit

NODE-3

RES-l BAT-i1

KCL BugjOutput

CAP- 1l
Ground

NODE-5
NODE-3

BAT-i1
RES-1

NQDE-6

NODE-i
+ M-

CAP-i output

Ground
TEK3530

(GOAL (CONTROLS NIL (BRV NODE-3 NODE-i))) ;from resistor rule
(CIRCUIT-PART BATTERY BAT-i) ;battery design
(GOAL (CONTROLS (NOV NODE-i) (NOV NODE-6)))
(GOAL (CONTROLS (NOV NODE-5) (NDV NODE-3)))-
(ID NODE-3 NODE-5) ;wire

(GOAL (CONTROLS (BRV NODE-I NODE-6) (NOV NODE-6))) ;feedback design
(CIRCUIT-PART OP-AMP AMP-i) ;op-amp
(CONTROLS (BRV NODE-I NODE-6) (NOV NODE-6))
(CONTROLS (NOV NODE-i) (NOV NODE-6)) ;feedback analysis
(CONTROLS NIL (BRV NODE-3 NODE-i))

S3.b SUMMARY 42

.

3.6 Summary

This chapter presented several common ramp generators that are known to human designers by
names such as Miller integrators and bootstrap generators. each started with the fundamental idea of forcing

a constant current through a capacitor, but used different methods of providing that current and transforming

" the capacitor's branch voltage into an output node %oltage. The current was supplied to tI or t2 of the

capacitor by either a current generator or by a resistor. Wires and feedback set node voltages. The choice of

these different methods is often dictated by design bugs that are uncovered as the design progresses. Wires,
. for example, were acceptable if there was no load, but feedback had to be used if a load was present.

'Ihe system generates many designs: it is not selective about these designs -- as long as they conform

to the design specifications. The circuits that have been discussed are not designs that have been stored and
., will be called up when needed, but instead result from the application of fundamental rules about capacitors,

resistors, operational amplifiers, and feedback. Using rules rather than specific designs allows the system to
-.; design not only these common circuits but also variations on them. These rules and others will design some

variations in the next chapter.

-N

N

2. 4 I)IS'RI'1I SfAI1 43

4. Discrete State

4.1 Introduction

Sonic circuits have several distinct modes or behaviors. A practical ramp generator, for example,

might have a switch that selects two different output slopes. These different modes are the circuit's discrete
I states. A circuit may also possess continuous state, for example, in the voltage on a capacitor. The methods of

the past couple chapters design circuits with continuous state. This chapter considers some methods that are
needed to design circuits with discrete state. In general, discrete state designs need switches and the design
rules wi!' discover where and why a switch is needed by finding KCI. and KVI. bugs.

To keep the design of circuits with discrete state as simple as possible, the different discrete states are

-. assumed to be independent. '[his assumption lets the designer use the design rules of the previous chapters to

* design a circuit for each of the discrete states. If the assumption holds, the complete circuit is just the
-. combination of these individual designs plus a few switches to keep the differert designs from disturbing each
- other. Unfortunately, the assumption of state independence is not always valid because capacitors carry

continuous state information across discrete state boundaries. This chapter shows examples of both

7 independent and dependent discrete state designs.

4.2 Design of Independent States

This first section will consider independeit discrete states; the next section will consider dependent

ones. Independence means that each state does not affect any other state. A dual rate ramp generator will be
used as an example. It has two discrete states, (FAST) and (SLOW); the generator's output slope is different
during each state. A block diagram and the specifications for this circuit are shown in figure 37. The

-" specifications for the dual rate ramp generator are different from the single rate generator in two respects;
*- both of these differences concern discrete state. The first difference is a CONI) statement in the specifications
- to denote conditional values. The second difference is the appearance of situation tags <McCarthy> on

% assertions to signify when they are valid.
- The COND statement is similar to the ordinary LISP COND with the exception of how the

condition tests are interpreted. Here they are not evaluated but just refer to the state (or situation). The goal
• assertion means that during the (FAST) state, Nil. controls the slope of the output and during the (SLOW)

state. Nil. controls the slope of the output. The reason for this strange construction is that the state of the
circuit is changed (hence the COND), but in each state no signal controls the output slope (hence the NILs).

The situation tag describes in what situation an assertion holds. A situation is almost the same as a
*discrete state except that situations sometimes refer to finer divisions of states. In the next section there will

*. be a situation (INITIAl. SWI:PING) that refers to the initial instant of the (SWI.PING) state. Rules must
be aware of situation tags and only make their deductions if the situation tags of the antecedents are

*compatible. Situation tags were not shown in the previous rules because only one situation was relevant then.

'- 4.2 DISIGN 01: INI)I-FiiPENI)I-NI" SI'A'I'-S 44

Fig. 37. Dual Rate Ramp Generator

BLACK output fast/slow;::: IBOX

fast/slow output

. time

TEK421O

(GOAL ((CONTROLS (COND ((FAST) NIL)

((SLOW) NIL))
(O-OT (NOV OUTPUT)))

NIL)) ;situation tag

((- (COND ((FAST) MI)
((SLOW) M2))

(D-OT (NOV OUTPUT)))

. NIL) ;situation tag

COND statements and situation tags are related. A COND statement can be specialized to a

,. particular situation by replacing the COND with the consequent clause for the particular situation.

Alternatively, some assertions true in different situations can be generalized to one COND statement. This

property will be used in the SPLIT-STATES design rule to simplify goals that involve more than one

situation.

Doing this specialization at different stages in the design of a circuit can give rise to different circuits.

* Two simple designs of the dual rate ramp generator are shown in figure 38. The first design is developed by

immediately specializing the COND and the second by specializing the CONI) later in the design. Each of

these designs will be discussed.

For thr first design the SPLIT-STATES rule notices the CONI) in the design specification and

specializes the original goal containing the CONI) into two subgoals, one for each clause (see figure 39).

These subgoals are made by literally substituting the consequent of a clause for the original COND. The

situation tags of these new subgoals specify that they only apply during particular situations and not in

- general. Tlhe most general situation tag is Nil. (the assertion is true all the time)- when a CONI) is

specialized, the situation tag of the component is made by appending the condition to the front of tie

* situation tag for the assertion containing the CONI).

.he ncw suhgoals that are created by SPLIT-STATIS, which are identical to previous goals for

designing ramp generators except for the situation tags, are then achieved using the previous methods for

I .

*4.2 DI. SIGN 01 INI)Il'lNIW I SIAMIS 45

Fig. 318. i'iwo Ramp Generator Designs

Output

NODE-i NODE-131

CAP-5 Fat0 CAP-6So
sw- 1SW-2

NODE-8 NODE- 14

GEN-5GE6AM.

Ground N6Ground

.
Fast CP8 Slow

NODE-22 output
+>

AMP-8

Ground

GEN-8

TEK4220

4.2 DFSIG N OI: IN I1F.INDENT STAI'S 46

Fig. 39. Result of SPLIT-STATES

(GOAL ((CONTROLS (CONO ((FAST) NIL)

((SLOW) NIL))

(O-OT (NOV OUTPUT)))

NIL)) ;original situation tag

((4 (COND ((FAST) MI)

((SLOW) M2))

(D-OT (NOV OUTPUT)))

NIL)

become

(GOAL ((CONTROLS NIL (D-OT (NOV OUTPUT)))

(FAST))) :specialized situation tag

(GOAL ((CONTROLS NIL (D-DT (NOV OUTPUT)))

* (SLOW))) ;specialized situation tag

I((- N (D-DT (NOV OUTPUT)))

(FAST))

((1 M2 (D-OT (NOV OUTPUT)))

(SLOW))

* designing ramp generators. Any of the circuits considered so far could be used the constant current, Miller
*-i integrator, or the bootstrap. Let's use the Miller integrator. The designs for the (FAST) and (SLOW) states

and some important assertions about the designs are shown in the next two figures. Situation tags have been
included in the figures because they will be important when the two designs are merged. Some assortions,

such as CIRCUIT-PART, are not given situation tags because they are not affected by state changes.

Capacitor CAP-5 doesn't become something different when the state changes from (FAST) to (SLOW).
Though the deductions could be different for the two states (one state could use a Miller circuit and the other

a bootstrap circuit), here they are chosen to use the same circuit.
The designs for the (FAST) and (SLOW) states will work in isolation from each other; they must

*. now be merged to achieve the design goal. The simple approach assumes that all the connections are actually
present during both states. this brash assumption implies that the complete circuit looks as in figure 42.

'lhis combined circuit is almost right except for a KVI. bug caused by two operational amplifier
outputs trying to control the same output node voltage. The KVI. bug is analogous to the KCI. bug but

instead of two signals trying to control a node current, there are two signals trying to control a node voltage.

The guilty parties are:

((CONTROLS (BRV OUTPUT NODE-8) (NOV OUTPUT)) (FAST))

((CONTROLS (BRV OUTPUT NODE-14) (NOV OUTPUT)) (SLOW))

Switches can fix KVI. bugs when the CONTROLS constraints causing the bugs don't have to be true during

4.2 I)1SIGN OF INI)II-'PNDIN I' SIA'II 47

F::

Fig. 40. Fast Generator

NODE-7 FaL

;-CAP-5 Fast

i:NODE-8 output

GEN-5 5

: " Ground

TEK4230

(CIRCUIT-PART CAPACITOR CAP-B)

(CIRCUIT-PART CURRENT-GENERATOR GEN-5)

(CIRCUIT-PART OP-AMP AMP-5)

((ID NODE-7 OUTPUT) (FAST)) ;wire

((CONTROLS (BRV GROUND NODE-S) (NOV NODE-8)) (FAST)) ;feedback

((CONTROLS (NOV GROUND) (NOV NODE-S)) (FAST)) ;brv-to-nldv

((CONTROLS (BRV NODE-7 NODE-$) (NOV OUTPUT)) (FAST)) ;capacitor

((CONNECT (TI CAP-S) OUTPUT) (FAST))

((CONNECT (T2 CAP-5) NODE-8) (FAST))

((CONNECT (I+ AMP-B) GROUND) (FAST))

((CONNECT (I- AMP-B) NODE-8) (FAST))

((CONNECT (OUT AMP-5) OUTPUT) (FAST))

((CONNECT (Ti GEN-5) NODE-a) (FAST))

((- (TC (TI GEN-B)) (TC (TI CAP-5))) (FAST))

((. (STRENGTH GEN-5) (* (CAPACITANCE CAP-B) M1)) (FAST))

the same state. For the two CONTROLS constraints above, one must be true in the (FAST) state and one

must be true in the (SLOW) state, but they don't both have to be true in either state.

A KVL bug signals trouble at a node; the first thing to do is find all the components connected to

the node. These connections are:

((CONNECT (OUT AMP-B) OUTPUT) (FAST))

((CONNECT (TI CAP-B) OUTPUT) (FAST))
7 ((CONNECT (OUT AMP-B) OUTPUT) (SLOW))

((CONNECT (TI CAP-B) OUTPUT) (SLOW))

To remove the bug, each of these connections are considered from the view point of each state.

During the (FAST) state, those connection with the (FASI') situation tag must be present. 'le output of

4.2 DFSIGN O[INDIWPFNI)I.ENT STATES 48

Fig. 41. Slow Generator

3 NODE1
CAP-6

i NODE-14 output

GEN-6 0 6

Ground

TEK4240

(CIRCUIT-PART CAPACITOR CAP-6)

(CIRCUIT-PART CURRENT-GENERATOR GEN-6)

(CIRCUIT-PART OP-AMP AMP-6)

((ID MODE-13 OUTPUT) (FAST)) ;wire

((CONTROLS (BRV GROUND NODE-14) (NDV NODE-14)) (FAST)) ;feedback

((CONTROLS (NDV GROUND) (NOV NODE-14)) (FAST)) ;brv-to-ndv

((CONTROLS (BRV NODE-13 NODE-14) (NDV OUTPUT)) (FAST)) ;capacitor

((CONNECT (Ti CAP-6) OUTPUT) (FAST))

((CONNECT (T2 CAP-6) NODE-14) (FAST))

((CONNECT (I+ AMP-B) GROUND) (FAST))

((CONNECT (I- AMP-6) NODE-14) (FAST))

((CONNECT (OUT AMP-6) OUTPUT) (FAST))

((CONNECT (TI GEN-6) NODE-14) (FAST))

((- (TC (TI GEM-B)) (TC (TI CAP-B))) (FAST))

((- (STRENGTH GEN-6) (0 (CAPACITANCE CAP-6) M1)) (FAST))

AMP-6 cannot be connected, though, because it causes a KVL bug. A switch will prevent the bug; all those
connections that must be made during the (FAST) state are lcft connected to the OUTPUT. All the

connections that are needed only when AMP-6 controls the output are then grouped together and put on the

far side of a switch (SW-2 in the figure). Then all the connections are considered from the (SLOW) state.
Switch SW-2 isolates those connections to the OUTPUT that only had to be made during the (FAST) state.

Switches don't have to be used all the time; shortly there will be an example where a switch is needed for one
state, but the connection can be tolerated in the other.

Another design (figure 44) for the dual ramp generator switches components instead of complete

sweep circuits. The switches in this design come about because conditional values arc calculated for devices

that can only have one value. If the SPIIT-STATFS rule is not applied immediately to the dual ramp design
problem, then the a complete ramp generator could be deduced: the deductions would be similar to those for

......................- .::: :-:.:. i . - . . : i , ., ,..

4.2 11 SIN 01:IIIEIN[S A'1'liS 49

Fig. 42. Output K'.'L Bug

U Output
.4 KVL BUG

NODE-7 NODE-13

CAP-S as CAP-6 So

NODE-B NODE-14

GEN-5 +M- M-GEN-6AM-

Ground Ground

TEK4250

Fig. 43. Fixing a KIT Bug with a Switch

Output

NODE-7NOE1

CAP-5 as CAP-6 So

SW-1 SW-2NODE-B

O E1
GEN-5

M - E -+
P 6J>AMP J GENP-

Ground Ground

TEK4260

the (SLOW) gencrator shown previously except that the CONI) statements arc carrid around in some of the
expressions.

Once the basic Miller circuit has been designed, then SPLIU-Si'ATES is used to simplify the
CONrs. Not until values of currents and capacitance arc deduced is there any trouble. Once the CONI~s are
removed, then the following deductions could be wiade.

(((STRENGTH GEN-8) ((CAPACITANCE CAP-8) Nl)) (FAST))
(((STRENGTH GEN-8) ((CAPACITANCE CAP-a) M2)) (SLOW))

The trouble here is thc STRENGTH and the CAPACITANCE cannot both be constants if MlI is different
e from M2. Currents and capacitors cannot have conditional values and so trying to assign them conditional

4.2 I)ISIGN OF INI)PENI'iNI S'ATs 50

*. Fig. 44. Switched Dual Ramp Generator

I CAP-8

Fast Slow

ND.2Output" NIODE-22

AMP-8

Ground

GEN-8

TEK4270

values causes a bug. This bug is easily remedied, however, by using two different current generators and two

different capacitors and switching them in during the appropriate state of the conditional, as shown in the

figure.

:* 4.3 Design of Dependent States

Capacitors can destroy the idea of independent discrete states because capacitors carry continuous

state across discrete state boundaries. A capacitor's voltage does not change instantaneously and so does not

change when there is a discrete state change. Consequently constraints on the initial values of a capacitor
branch voltages must be achieved in the preceding state. The dependence of one state upon another implies

that states cannot be designed in isolation from each other.
This section uses an oscilloscope sweep circuit as a design example. The triggered sweep problem,

which was outlined in the first chapter, is to design a circuit with two states, sweeping and waiting, that has

two completely different behaviors during those states (see figure 45.). When the circuit is in the sweeping

state, it produces a ramp output just as the ramp generators discussed previously do. l)uring the waiting state,

the output voltage should follow the input voltage. The crucial additional constraint is that the output voltage

should be continuous during the transition between the waiting state and the sweeping state, or, equivalently,
the initial output voltage during the sweeping state equals the input voltage. Ilic specifications of the sweep

circuit are also shown in figure 45. The situation tag (INITIAL. SWEPING) specifies the initial instant of

the (SWEEPING) state.

4.3 1)I.SIGN 01 I)IPI:NI)I-N SIAI-S 51

Fig. 45. Triggered Sweep Problem

i BOX

sweeping/waiting

~sweeping /waiting

input

output

time

TEK4310

(GOAL ((CONTROLS NIL (o-oT (NOV OUTPUT))) (SWEEPIWG)))
(GOAL ((CONTROLS (NOV INPUT) (NOV OUTPUT)) (INITIAL SWEEPING)))

(GOAL ((CONTROLS (NOV INPUT) (NOV OUTPUT)) (WAITING)))

((- N (D-DT (NOV OUTPUT))) (SWEEPING))

((- (NOV OUTPUT) (NOV INPUT)) (INITIAL SWEEPING))

((- (NOV OUTPUT) (NOV INPUT)) (WAITING))

If the continuity requirement is ignored for the moment, then the goal during the waiting state is a

simple one,

(GOAL ((CONTROLS (NOV INPUT) (NOV OUTPUT)) (WAITING)))

The direct way of achieving this goal is to use the WIRE rule, although FEEDBACK could be used instead.

The goal during the sweeping state is the familiar ramp generator problem:

(GOAL ((CONTROLS NIL (D-DT (NOV OUTPUT))) (SWEEPING)))

Figure 46 shows the circuit made from a wire and a Miller ramp generator, one of the possible circuits for a

ramp generator. When the wire and Miller circuits are merged, a KVI. bug introduces a switch at the output

as it does in one of the dual rate ramp generators. The KVI. bug occurs because both

6..

4.3 DFSIGN 01: DI'PFINDI)I'.+NT STATES 52

((CONTROLS (NOV INPUT) (NOV OUTPUT)) (WAITING))

((CONTROLS NIL (NOV OUTPUT)) (SWEEPING))

try to control the output node voltage. Because these assertions have different situation tags, switches can be
". used to isolate the bugs.1

The trouble with this design is that there is no constraint on the initial voltage of the ramp generator.
The ramp is always ramping and the switch just samples its output every once in a while. Some changes must

be made to the ramp generator to set the initial voltage of the ramp in the (SWlFPING) state. That is the
purpose of the goal regarding the (INITIALSWI'EPING) situation. "Ibe next rules describe ways to

accomplish this goal.
'Ibe general strategy for achieving an initial condition is to convert it into a final condition in the

immediately preceding state. Achieving the final condition also achieves the initial condition.
The INITIAI.-CONI)ITION analyze and design rules shown in figure 47 carry the initial condition

constraint between neighboring states. The assertion

(NEXT-STATE ?STATEO ?STATEI)

says that ?STATE1 immediately follows S'[ATF0. An initial condition in ?STATEI is translated to a final
condition in ?STATE0. The final instant of ?STATE0 is the same as the initial instant of ?S''A'[E1

,'.. (remember capacitor voltages do not change instantaneously). If anything controls the final value of a

capacitor's branch voltage in ?STATEI'0, then it controls the initial branch voltage in ?STATE1.
To set an initial condition in ?STATE1, the capacitor that controls the initial condition must be

found because it will carry the continuous state information between neighboring states. In the case of the
sweep generator, we want

(GOAL ((CONTROLS (NOV INPUT) (NOV OUTPUT)) (INITIAL SWEEPING)))

* That is, an initial condition is placed on (NDV OUTPUT). The initial condition is really a constraint on the
capacitor branch voltage that controls the output node. The deductions based on this initial condition are

" shown in figure 48.
Now we have a goal to achieve a final condition of a state. One method to achieve the final

condition is to generalize the final condition goal for the entire state. If something is true for the entire state,
, .it is certainly true for the last instant. The rules in figure 49 change a final condition goal into a goal for the

entire state. 2 The analyze rule says that if something controls a capacitor branch voltage for an entire state,
then it also controls the final value. The design rule does the inverse.

1 l. The bug must be handled differently than before, though, because the asscrtion
"-. (CON] RO S (NI)V INLUT)(NI)V OtI'PU'I)) is never made b) the wire rule The problem is that terminals are casil) connected to

nodes, but connecting nodes together requires making an equivalence class.
2. Another method is to have the state transition occur when the final condition is met. if for example. the state changes when

" the output of a ramp generator is equal to some input voltage, then the input %ollage controls the final %aluc of thc statc without it being
necessary for the input voltage to control the output value of the state Ihis approach to setting the final condition or a state is frequently
used in oscillators.

4.3 I)ISIUN 01: 1)lP.I-N)[N F srA'I':S 53

Fig. 46. Naive Sivccp Design

* Output

iutput

NOtime

CAP-212

NOE2

-. ~~~~7 .7 -. - --

4.3 IWSIGN OU; I)IEPEiNI)IIE SIAlES 54

Fig. 47. Initial Conditions

(DEFRULE INITIAL-CONDITION-ANALYZE

((?Fl (CIRCUIT-PART CAPACITOR ?CAP))

(?F2 ((CONNECT (TI ?CAP) ?NDI) ?STATEO))
(?F3 ((CONNECT (T2 ?CAP) ?N02) ?STATEO))

(?F4 ((CONTROLS ?X (BRV ?ND1 ?ND2)) (FINAL ?STATEO)))
(?F5 (NEXT-STATE ?STATED ?STATEI))

(?F6 ((CONNECT (TI ?CAP) ?ND3) ?STATE1))
(?F7 ((CONNECT (TZ ?CAP) ?ND4) ?STATEI)))

(ASSERT '((CONTROLS ?X (BRV ?ND3 ?ND4)) (INITIAL ?STATE1))
'(INITIAL-CONDITION ?F1 ?F2 ?F3 ?F4 ?F5 ?F6 ?F7)))

(DEFRULE INITIAL-CONDITION-DESIGN

((?Fl (GOAL ((CONTROLS ?X ?Y) (INITIAL ?STATEI))))
(?F2 (CIRCUIT-PART CAPACITOR ?CAP))

(?F3 ((CONNECT (Ti ?CAP) ?NDI) ?STATEI))
(7F4 ((CONNECT (TZ ?CAP) ?ND2) 7STATE1))

(?F5 ((CONTROLS (BRV ?ND1 ?ND2) ?Y) ?STATE1))
(?F6 (NEXT-STATE ?STATEO ?STATE1))

(?F7 ((CONNECT (TI ?CAP) ?ND3) ?STATEO))
(?F8 ((CONNECT (TZ ?CAP) ?ND4) ?STATEO)))

(PROPOSE-METHOD (?F1 ?F2 ?F3 ?F4 ?F5 ?F6 ?F7 ?F8) ?F9

(GOAL-ASSERT '((CONTROLS ?X (BRV ?NDI ?ND2)) (FINAL ?STATED))
'(INITIAL-CONDITION ?F2 ?F3 ?F4 ?F5 ?F6 ?F7 ?F8 ?Fg))))

Fig. 48. Initial Conditions of Sweep Circuit

(GOAL ((CONTROLS (NOV INPUT) (NOV OUTPUT)) (INITIAL SWEEPING)))
((CONNECT (TI (CAP-21)) NODE-21) (SWEEPING))

((CONNECT (T2 (CAP-21)) NODE-22) (SWEEPING))
((CONTROLS (BRV NODE-21 NODE-22) (NOV OUTPUT)) (SWEEPING))

(NEXT-STATE (WAITING) (SWEEPING))

(GOAL ((CONTROLS ?X (BRV NODE-21 NODE-22)) (FINAL WAITING)))

4.3 I)I:SIGN 01: I)II:NL)F.NT STATIFS 55

Fig. 49. Final Condition Rules

(DEFRULE FINAL-CONDITION-ANALYZE

((?F2 (CIRCUIT-PART CAPACITOR ?CAP))

(?F3 ((CONNECT (TI ?CAP) ?NDI) ?STATE))

(?F4 ((CONNECT (T2 ?CAP) ?ND2) ?STATE))

(?F5 ((CONTROLS ?X (BRV ?ND1 ?ND2)) ?STATE)))

(IF (NOT (MEMO (CAR ?STATE) '(INITIAL FINAL)))

(ASSERT '((CONTROLS ?X (BRV ?ND1 ?ND2)) (FINAL ?STATE))

'(FINAL-CONDITION ?F2 ?F3 ?F4 ?F5))))

(DEFRULE FINAL-CONDITION-DESIGN

((?F1 (GOAL ((CONTROLS ?X ?Y) (FINAL ?STATE))))

(?F2 (CIRCUIT-PART CAPACITOR ?CAP))

(?F3 ((CONNECT (TI ?CAP) ?NDI) ?STATE))

(?F4 ((CONNECT (T2 ?CAP) ?ND2) ?STATE))

(?F5 ((CONTROLS (BRV ?ND1 ?NO2) ?Y) ?STATE)))

(PROPOSE-METHOD (?F1 ?F2 ?F3 ?F4 ?F5) ?F6

(GOAL-ASSERT '((CONTROLS 7X (BRV 7ND1 ?NO2)) ?STATE)
'(FINAL-CONDITION ?F2 ?F3 ?F4 ?F5 ?F6))))

The final condition rules transform the goal

(GOAL ((CONTROLS (NDV INPUT) (BRV OUTPUT NODE-22)) (FINAL WAITING)))

into

(GOAL ((CONTROLS (NOV INPUT) (BRV OUTPUT NODE-22)) (WAITING)))

This goal is entirely within one state and design ideas of the previous chapters can be used to design the

circuit.

The next figure gives some of the deductions in the design of the sweep circuit. The basic goal is to
set the branch voltage of the capacitor from the input node voltage. Two subgoals are undertaken to do that.

'The first pegs one terminal of the capacitor at ground; this goal is already satisfied because the Miller sweep
circuit did that in the (SWEEPING) state and, if the connections are carried over into the (WAi'I'ING) state,

it will still be true.

The second subgoal is to use the input node voltage to set the output node voltage. The wire rule
would be a candidate for this job, but it will cause a KVI. bug. Feedback is another way to do the job.

Connecting the output of an operational amplifier to the output node will also cause a KVI. bug, so we have
.. to be clever about controlling the capacitor branch voltage. We are trying to control the node voltage of one

*! terminal of the capacitor; the other terminal of the capacitor is at ground. so the node voltage could be set by
setting the capacitor branch voltage. 'Pe capacitor branch voltage is controlled by tie its terminal current, so

*the KCI. rules propose setting the node current into either '1 or T2 of the capacitor; Ti cannot be used
because of an irresolvable KCI. bug. T2 can be used. The problem is to find a component whose output

-- --- :: ' . . 3. A. _____

4.3 DESIGN OF)EPENDENT STATES 56

current is controlled by a branch voltage; an operational transconductance amplifier is one possibility:
another would be a resistor with a branch voltage imposed across it. The operational transconductance
solution is shown in the figure and all of the goals follow from using it.

m Fig. 50. Sweep Generator Deductions

(GOAL (CONTROLS (NOV INPUT) ;goal for initial condition

(BRV NODE-21 NODE-22))))

(GOAL (CONTROLS (NOV GROUND) (NDV NODE-22))) ;true by prior work
(GOAL (CONTROLS (NOV INPUT) (NOV OUTPUT)))

;wire rule wont work

(GOAL (CONTROLS (BRV INPUT NODE-21) (NOV NODE-21))) but feedback will
(GOAL (CONTROLS (BRV INPUT NODE-21) (BRV NODE-21 NODE-22)));a KVL law

(GOAL (CONTROLS (BRV INPUT NODE-21) (TC (T2 CAP-21))) ;capacitor VIC
(GOAL (CONTROLS (BRV INPUT NODE-21) (NC NODE-22))) ;KCL
(CIRCUIT-PART OTA OTA-21)

4.4 Summary

This chapter discussed discrete state design. Sometimes the discrete states of a circuit are
independent of one another: in that case the design for each state can be done without worrying about the
other states. When the discrete states are not independent, then attention is paid to the transitions between
the states. The initial conditions in a state must be present at the state transition and that implies setting them

up in the previous state. Whether the states are independent or not, the designs for the individual states must
combined to make a complete circuit. Switches are often needed to isolate different parts of a circuit. The
designer deduces where these switches belong from KVI. and KCL bugs.

5 l1 !RAruRE 57

5. Literature

The literature on electronic design can be crudely broken into the numeric and the symbolic

- approaches. Each of these approaches can be further broken down according to its emphasis being either

analysis or synthesis. In general. more work has been done on analysis. In almost all work the computer is

given a fixed circuit topology: my work is different because the computer develops the circuit topology.

T[he numerical approach to analysis is a straight forward application of network theory. These

programs take a circuit, write the numerical equations of VICs, KCI., and KVL. and solve the equations

numerically using matrix methods and numerical integration techniques <Chua>. 'hese programs use

sophisticated numcrical techniques to produce accurate simulations or frequency analyses of real circuits. A

human designer us's these programs to check his design without building it.

Some syntli. is programs have been built on top of numerical analysis procedures <Director>. Such

programs start with a circuit topology, initial component values for that topology, and an objective function

that "grades" the output of the circuit. An analysis program finds the output of the circuit, the objective

function grades that output, and then the synthesizer adjusts component values to improve the grade. This

design methodology starts with a given topology: it does not create one. During the above optimization

procedure, though, some components may "disappear" because their values go to zero (eg, for a capacitance)

or to infinity (eg, for a resistor). One could argue that a topology could be found by optimizing a set of nodes

that is fully connected with all possible components, but such an argument is not a satisfying explanation of

how humans design circuits. An expert circuit designer must create the circuit in a reasonable and intelligent

manner.

There are procedures that do some form of topological design. Lin and Chua <[in> noticed some

* interesting properties of vo.tage n-tuplers and used those properties to enumerate a class of n-tupler circuits.

Their design algorithm is specific for n-tuplers and could not be used for operational amplifier circuits.

Some procedures do topological design by examining the specified admittance matrix for the desired

circuit <Daniels> <Yanagisawa> <Stevenson>. These procedures look for patterns of terms in the matrix and

- infer particular components based on those terms; the goal is to change the admittance matrix into one that

*". can be made from simple admittances (resistors, capacitors. and inductors). The matrix is changed with some

simple row and column operations that imply the use "norators" and "nullators" in the final circuit design. A

nullator-norator pair can be made with an ideal operational amplifier, though at the end of the procedure it is

not obvious which nullators go with which norators or whether the amplifier gain should be plus infinity or

minus infinity.' Tliis design procedure is more appealing than the optimization strategy because it introduces

new nodes and components only when there is reason to do so. The procedure can design circuits with an

. arbitrary linear admittance matrices for any number of inputs and outputs, but cannot handle independent

sources and switches.

1. This ambiguity exists% because the procedure deals only with arithmetic constraints and does not have an idea of causality. It
assumes the inputs or an operational amplifier are at equal potentials (the nullator constraint) but doesn't know which norator
(operational amplifier output) enforces that equality.

5 [J'IIRATURE 58

."e symbolic approach to circuit analysis tries to mimic the problem solving behavior of a person.

These systems also have the desirable property that the deductions can be made from local information and

therefore the rules are simple to write down. Examples of these programs are in <Stallman> and
- <de Kleer-4>. Some advantages of these programs are that they solve as much of a problem as they can as
"* information becomes available, they allow parameters to be changed and will remove all the deductions based

*on the old values, and provide simple explanations of how parameter values were deduced. An offshoot of
the development of these analysis programs is the development of truth maintenance systems (TMS)

* <Stallman> <Doyle> <de Kleer-3> <McAlIester> that make the incremental addition and retraction of facts

- easy to do. My research used Doyle's TMS.
-i The use of symbolic expressions allows these analysis programs to do synthesis under the guiding

hand of a human designer. The systems do not care if they know the current and the resistance and solve for

the voltage or know the voltage and current and solve for the resistance. Thus by specifying desired voltages
and currents these programs will calculate the component values needed for a particular circuit. (Some care is

needed because the system may find ridiculous values in some cases, but if the designer notices a mistake, he
can retract the bad values.) This approach is powerful. For example, Sussman's EFSYS <Sussman-4> can
easily find the transfer function implemented by a particular filter circuit. If the desired transfer function is

* then specified, EESYS (when augmented with polynomial coefficient matching and root finding routines)1

will calculate the needed values of resistance and capacitance to make the circuit implement that particular

transfer function.
These analysis programs do not view the circuit through a fixed pair of glasses as the classical

*. analysis program does. Instead there are several aspects that the programs consider -- the DC and AC models,
for example. These different models interact with each other by passing information between them. The DC

. model, for example, is used to calculate the transconductance that is used in the AC model. Sometimes
equivalent models of a circuit fragment can pool their information to solve an analysis problem that neither

• .could do individually <Sussman-3>. The answers are not necessarily exact, but engineers use the same
" techniques.

These analysis programs, though they do make use of several modeling aspects, rely heavily on

algebraic manipulation to provide their answers. This manipulation, while needed to get particular answers, is
not an essential part of design knowledge. De Klcer's NEWTON <de Kleer-l> shows how qualitative

, knowledge can be used to set up later algebraic computations. His Ph.D. thesis <de Kleer-5> shows that
circuit mechanisms can be described with a simple qualitative algebra that does not include numbers. These

results are reassuring because it is difficult to believe that people understand circuits by reducing them to

algebraic expressions.
Brown's thesis <Brown> on debugging circuits doesn't fit into the classification of analysis or design

but it is interesting because it mimics human behavior. His program uses debugging strategies such as signal
* tracing and a detailed description of a radio to fix receivers that do not work. His system zeros in on a fault by

1. I did thi

5 tERArURE 59

making hypotheses about the source of trouble and checking those hypotheses with measurements of the
faulty radio. The program intelligently proposes only hypotheses consistent with the symptoms of the fault

and the measurements that have already been made.

These symbolic programs all deal with a given topology. McDermott <McDermott-2> is one of the
*:. few who design circuit topology. McDermott, while working fundamentally on the organization of a general

purpose problem solver, undertook the design of electronic circuits as his microworld. His approach to

designing filters and transistor amplifiers uses qualitative descriptions to suggest particular circuit fragments

and then glues the fragments together. His system is promising and has several good ideas, but unfortunately

it works in a difficult design domain without the aid of simplifying abstractions. The system falls into the trap

of simultaneously trying to design a transistor amplifier and a bandpass filter. A human designer would
divide the tasks into first designing an acceptable filter transfer function, then a filter circuit with ideal
amplifiers, and then the transistor versions of the ideal amplifiers. My present work stays in one of these tasks

-- using ideal components. Future work should manage all three tasks.
In addition to the above work, some basic works on problem solving and on automatic programming

have influenced me. The idea of debugging originates in HACKER, Sussman's Blocks World planner
<Sussman-l> <Sacerdoti-1-2-3>. The idea of debugging lets problem solving (or design) rules be simpler than
they would be if they had to anticipate the interactions with other rules.

Modifying the behavior of electronic circuits with the aid of switches is not discussed in the
literature of circuit design. The problem is, however, similar to the problem of putting conditional code in
programs and so the literature on automatic programming is relevant. The ideas behind introducing switches

in a circuit design have been borrowed from Manna and Waldinger's <Manna> "Conditional Formation" rule

that their programming system uses to introduce conditional clauses. Circuit design and computer

programming share a lot of common problems. Manna and Waldinger's other rules about recursion

formation, well founded orderings, procedure formation, generalization, and simultaneous goals have also
affected my views about how circuits should be designed.

6 CONCLUSIONS 60

6. Conclusions

6.1 The Imperfect Past

Katz Maxim No. g.1
Try to find the real tense of the report you are reading: Was it done, is it being done. or is it something to be done? Reports
are now written in four tenses: past tense, present tense, future tense, and pretense. Watch for novel uses of CONGRAM
(CONtractor GRAMmar), defined by the imperfect past, the insufficient present, and the absolutely perfect future.

the This work tries not only to design circuits but also to mimic the way humans design them. The focus
of the circuit design is on circuit topology: finding suitable components and discovering how to connect them
together. Design systems that start from a known topology and only compute component values bypass the

question of how the circuit originated in the first place. To mimic human designers, the system must do
topological design.

There are alternatives to the topological design of circuits. One possibility is an extensive library of

practical circuits that can be used for a variety of problems. Certainly a human circuit designer uses such a
library: when a designer needs an electrical filter with a particular transfer function, for example, he will look

in a catalog of filter circuits and choose an appropriate one. The catalog provides design equations so the
engineer's task is little more than selecting a circuit and plugging numbers into equations. The chief
drawback of this alternative to topological design is its lack of flexibility: if the problem is not listed in the
catalog, then it cannot be solved. Contrast this drawback with the design of the triggered sweep circuit where,
through a modification of the circuit topology, a new circuit performs both as a ramp generator and as an

amplifier. It is unlikely that such a circuit would exist in a library.
The use of a library or catalog of circuits is not a satisfying model of human circuit designers. While

people do know several circuits that perform a particular function -- such as constant current, bootstrap, and
Miller ramp generators -- I doubt they depend on these stereotypical circuits in real design. I do not
remember the formulas for even simple circuits like the inverting amplifier instead I deduce the formulas
from ideas about virtual grounds, flowing currents, and Ohm's law. "lbe advantage of this mode of thinking is
that it not only provides the design formulas for a circuit, but it also clearly outlines how the circuit works;
knowing how a circuit works implies that modifying it is just a few steps away. Circuit designers give names
to circuits so they can talk about them and the ideas behind their design, but the names are not indices to
specific circuit designs. When a human designer stumbles across a new circuit, he does not try to remember
that circuit component for component and node for node. Instead he looks for how the circuit works so he
can use the idea in other circuits even though the original circuit would be useless. The best example of this

*' kind of idea is feedback: once one has learned how a feedback amplifier works, he can apply the idea to such

diverse circuits as ramp generators or phase locked loops.

1. Amrom Katz. "A Guide for the Perplexed, or a Minimal/Maxim-al Handbook for Touriss in a Classified Bureaucracy", Aik
ForcelSace Des, November 1%7. Quotcd in j Official RUle, Paul l)ickson, I)cll Publishing Co., New York, 1978.

.. - -M - . "

61

t '' 6.2 The Insuffcient Present

6.2 .:The circuit design techniques discussed in this paper are restrictive. '1hC techniques arc suited to

designing circuits that have only unity gain, have no DC bias, and are direct coupled. Feedback is assumed to
always work. Circuits with simultaneous constraints such as gyrators and impedances are not handled. The

S"techniques are generally suitable for circuits such as sweep generators. function generators, and multiplexers.
These restrictions are not viewed as difficult to surmount: the ability to achieve simultaneous constraints

needs rules that know how to deal with superposition. Such an additional rule would not be a radical change
from the methods presented here. It is sometimes surprising to realize how close the rules are to designing

another kind of circuit. The triggered sweep circuit is actually a sample hold circuit if the slope of the ramp is

set to zero.

How much of the system is coded and works? The design system described here, as mentioned

earlier, separates the arithmetic constraints from the control constraints. The actual program kept them
together as a control constraint and a qualitative descriptor of the sign and magnitude of the arithmetic
constraint. This was done to guarantee large loop gains and the appropriate sign when feedback loops were

used. The program designed voltage followers, several ramp generators, and specialized COND clauses, but it
did not introduce switches after the KVI. and KCL bugs were found. 'lhe approach was cumbersome and

limited; the separate propagation of control and arithmetic constraints described here is better.
The rules have no information about which rule would be best to apply next because there is no idea

of the cost of certain design choices. It appears, though, that the simple idea of doing that which is easiest
would work well. The wire rule and the feedback rule, for example, both achieve the same goal. While the

system has no bias for either one, the wire rule, because it is cheaper, is almost always the rule to try first; if it
S-.fails then feedback can be used. This path of least resistance approach is effective and probably should be

included in the interpreter.

For further work a better problem solving language needs to be developed. The current rules used

AMORD because AMORD was available. A better language would understand simple mathematical
expressions and compute upper and lower bounds: a full algebra system should not be necessary. The
required mathematics is similar to problems in linear programming. T'he rules should also be embedded in

some form of hierarchy: circuit design usually occurs at several levels. During one level an amplifier might be
*an atomic object; later, when a scheme using an amplifier has proved successful, the amplifier can be

designed using transistors and resistors. During this second level of design, most of the rules and assertions

from the first level are irrelevant and should not be considered in the design. Presently the design is done

depth first: one path being completely explored before any other method is considered.

a

'•

6.3 THE ABSOLUTELY PERFECT FUTURE 62

6.3 The Absolutely Perfect Future

Circuit design, which comprises several different skills, might be broken down into 3 broad areas:

(1) analog design, (2) finite state machine design, and (3) signal processing. There is a lot that can be done in

all three of these areas. Analog design, the subject of this paper, involves building circuits from electronic

components such as amplifiers, capacitors, and switches. The rules of this paper are simplistic and incomplete
and could be improved and expanded. Devices such as transistors, comparators, and diodes (which have not
been considered here) have a wealth of design problems and design procedures that beg to be put into rules.
There are constraints on voltage and current limits that must be obeyed. Some simple rules that relate
gain-bandwidth and frequency response or gain and collector current could decide when operational
amplifiers are inadequate and discrete transistor amplifiers need to be used. Some transconductance
calculations can show that one stage provides inadequate gain and thus demand that two or more states be
used. 'There are several possibilities. I've studied the design of the Tektronix 465 oscilloscope sweep
generator and found that rules like those described above can design most of its transistor amplifiers and
transistor switches.

The second broad area is finite state machine (FSM) design. Little has been done in this area (but

see <Grinberg>). The basic task in FSM design is to take a problem description, say the measurement of a
time interval, and find an appropriate FSM to solve the problem. The finite state machine has to insure
several constraints that are not explicitly stated in the original problem. A time interval, for example, is just a
number that the FSM must find a way to compute. The finite state machine will need several states --
perhaps one to clear a counter, another to wait for the start of the interval, another to wait for the end of the
interval, and a state to signal that the number is valid. Finding these different states and deciding how they
should be implemented is the task of a FSM designer. Such a system would be a simple logic designer.
Classic logic design has not focused on specifying an initial machine. Furthermore, classic synthesis
techniques don't utilize the variety of parts available and thus produceinferior designs.

The third area is signal processing. There are some fields of circuit design that are so specialized that
they need their own models that are independent of component VICs, KVL, and KCL. FSM design is one
such field; another is signal processing. Frequency compensation of amplifier and specifying the poles and
zeros of filters are tasks that need models in the time and frequency domains. Expert design rules are needed
in this area before a practical circuit could be designed. Unfortunately, this area is the most difficult of the
three because the the mathematics can be complex.

There are interesting problems in each of these areas and some progress can be made in each. The
best area for future work is undoubtably finite state machines because new integrated circuit technology
strains a human designer's ability to make quick, error-free, designs. An automated designer is better suited
for the tedium of these designs but it must be involved in the design stage if it is to understand the purpose of
the different circuits and effectively apply its potential. If it knows that a counter is being used to measure an
interval then it can insure that the clear and count commands occur at the proper times; if it does not know
the purpose of the counter, then the signals are meaningless and nothing can be checked.

7 BIBLIOGRAPIIY 63

- 7. Bibliography

Brown Brown, A., Jr., Qualitative Knowledge, Causal Reasoning, and the Localization of Failure,
MIT AI-TR-362, 1977.

Barstow Barstow,)., Automatic Construction of Algorithms and Data Structures Using a Knoledge
Base of Programming Rules, Stanford Artificial Intelligence Laboratory Memo AIM-308,
Nov. 1977.

" Bundy Bundy, A., "Analyzing Mathematical Proofs," Advance Papers of the 4th International Joint
Conference on Artificial Intelligence, pp 22-28.

.. Chua Chua, L., and P. [in, Computer-Aided Analysis of Electronic Circuits: Algorithms and
Computational Techniques, Prentice-Hall, Englewood Cliffs. New Jersey, 1975.

* Daniels Daniels, R, "A Nullator-Norator Synthesis Procedure Applied to Gyrators." Proceedings of
the IEEE 12th Midwest Symposium on Circuit Theory, Texas, April 1969, pp. IX.3.1-IX.3.8.

- de Kleer-I de Kleer, J., Qualitative and Quantitative Knowledge in Classical Mechanics, MIT
AI-TR-352, 1975.

. de Kleer-2 de Kleer, J., "Local Methods for Localizing Faults in Electronic Circuits," MIT Al Memo
394, 1976.

de Kleer-3 de Kleer, J., J. Doyle, C. Rich, G. Steele, G. Sussman, "AMORD = A Deductive Procedure
System," MIT Al Memo 435, Jan. 1978.

de Kleer-4 de Kleer, J. and G. Sussman, "Propagation of Constraints Applied to Circuit Synthesis,"
MIT Al Memo 485, September. 1978.

de Kleer-5 de Kleer, J., Causal and Teleological Reasoning in Circuit Recognition, MIT AI-TR-529,
1979.

Director Director, S., "Towards Automatic Design of Integrated Circuits," in Basic Questions of
Design Theory, W. Spillers, ed., American Elsevier, New York, 1974, p 303.

Doyle Doyle, J., Truth Maintenance Systems for Problem Solving, MIT AI-TR-419, January 1978.

Gorry Gorry, G. Anthony, "Research on Expert Systems," Project MAC Technical Memo 56,
Laboratory for Computer Science, Massachusetts Institute of Technology, Cambridge, MA,
December 1974.

Graeme-1 Graeme, J., et al, Operational Amplifiers, McGraw-Hill, New York, 1971.

Graeme-2 Graeme, J., Applications of Operational Amplifiers, McGraw-Hill, New York, 1973.

Gray Gray, P., and C. Searle, Electronic Principles: Physics, Models, and Circuits, John Wiley &
Sons, New York, 1969.

Grinberg Grinberg, M., "Semi-Automatic Digital Designer System," Ph. D. proposal, TR-685,
Computer Science Center, University of Maryland, College Park, Maryland, June 1978.

.4

7 BIBLIOGRAPHY 6

Lenal Lcnat, D., AM: an Artificial Intelligence Approach to Discovery in Mathematics as
Heuristic Search, Stanford University Artificial Intelligence Laboratory Memo AIM-286,
1976.

Lin Lin, P, and L. Chua, "Topological Generation an Analysis of Voltage Multiplier Circuits,"
IEEE Transactions on Circuits and Systems, Vol CAS-24, No 10, October 1977, pp 517-530.

Manna Manna, Z., and R. Waldingcr, Synthesis: Dreams => Programs, Stanford University
Artificial Intelligence Laboratory Memo AIM-302, Stanford. California, November 1977.
Also "Synthesis: Dreams => Programs", IEEE Transactions on Software Engineering,
Volume SE-5 Number 4, July 1979, pp. 294-328.

McAllester McAllester, D., The Use of Equality in Deduction and Knowledge Representation, MIT
AI-TR-550, January 1980.

McCarthy McCarthy, J., and P. Hayes, "Some Philosophical Problems from the Standpoint of Artificial
Intelligence" in Machine Intelligence, Volume 4, pp 463-502, ed. by B. Meltzer and D.
Michie, American Elsevier, New York, 1969.

' AfcDernott-I McDermott, D., and G. Sussman, "The Conniver Reference Manual," MIT Al Memo 259a,
Jan. 1974.

McDennott-2 McDermott, D, Flexibility and Efficiency in a Computer Program for Designing Circuits,
MIT AIl'R-402, December 1976.

" Refai Refai, S., "Application of Mason-Coates Graph in Linear Active Network Synthesis,"
Proceedings of the IEEE 22nd Midest Symposium on Circuits and Systems, Philadelphia,
June 1979, pp 284-88.

Rich Rich, C., and H. Shrobe, Initial Report on a LISP Programmer's Apprentice, MIT
Rere AI-TR-354, December 1976.

Roberge Roberge, J. K., Operation Amplifiers: Theory and Practice, John Wiley, New York, 1975.

Sacerdoti-! Sacerdoti, E., "Planning in a Hierarchy of Abstraction Spaces," Proceedings of the Third
International Joint Conference on Artificial Intelligence, pp 412-422, August, 1973.

Sacerdoii-2 Sacerdoti, E., "The Nonlinear Nature of Plans," Advance Papers of the Fourth International
*Joint Conference on Artificial Intelligence, pp 206-214, 'Ibilisi, Georgia. USSR, September

1975.

Sacerdoi-3 Sacerdoti, E., A Structure for Plans and Behavior, Stanford Research Institute Artificial
Intelligence Group Technical Note 109, Menlo Park, California. Also American Elsevier,
New York, 1977.

Shrobe Shrobe, H., Dependency Directed Reasoning for Complex Program Understanding, MIT
AI-TR-503, April 1979.

Shorliffe Shortliffe, E., et al, "A Computer-Based Approach to the Promotion of Rational Clinical Use
of Antimicrobials," in Clinical Pharmacy and Clinical Pharmacology, Goveia et al, editors,
Elsevier/North Holland, 1976. pp 259-273.

7 BIBLIOGRAPHY 65

Sridharan Sridharan, et al, "A Heuristic Program to Discover Syntheses for Complex Organic
Molecules," Stanford Al Memo AIM-205, June 1973.

Stallman Stallman, R., and G. Sussman, "Forward Reasoning and Dependency-Directed Backtracking

in a System for Computer-Aided Circuit Analysis", MIT Al Memo 380, September 1976.

Steele Steele, G. L., Jr., and G. Sussman, "Constraints", MIT Al Memo 502, Nov. 1978.

Stevenson Stevenson, J., "Network Synthesis by Admittance Matrix Expansion," Colloquium on
r-... Electronic Filters, Institution of Electrical Engineers Conference Publication Number 167,

London, June 1978.

Sussmnan-I Sussman, G., A Computer Modl or Skill Acquisition, American Elsevier, New York, 1975.

Sussmnan-2 Sussman, G., and R. Stal!nan, "Heuristic Techniques in Computer Aided Circuit Analysis,"
MIT AI Memo 328, Mar. 1975.

* -' Sussman-3 Sussman, G., "SLICES: At the Boundary between Analysis and Synthesis." MIT Al Memo
433, July, 1977.

Sussmnan-4 Sussman, G., EESYS is a collection of programs written for a course at MIT.

Tektronix-I 465 Oscilloscope Service Instruction Manual, Tektronix, Inc., Beaverton, Oregon.

Tektronix-2 475A Oscilloscope Service Instruction Manual, Tektronix, Inc., Beaverton, Oregon, 1976.

Wakerly Wakerly, J. F. LOGIC DESIGN PROJECTS Using Standard Integrated Circuits, John
Wiley, New York, 1976.

Winograd Winograd, T., "Breaking the Complexity Barrier (Again)," ACM SIGPLAN Notices, 1975,
10, pp 13-30.

Winston Winston, P., Artificial Intelligence, Addison-Wesley, Reading, Massachusetts, 1977.

Yanagisawa Yanagisawa, T., and N. Kanbayashi, "Realization of Arbitrary Conductance Matrix Using
Operational Amplifiers," Proceedings of the IEEE lIternational Symposium on Circuits and
Systems, Munich, West Germany, April 1976, pp 532-35.

ZJ4,

ItI

1A,.

