
AD-A128 629 EVENT-BASED SPECIFICATION AND VERIFICATION OF I/
DISTRIBUTED SYSTEMS(U) MARYLAND UNIV COLLEGE PARK DEPT
OF COMPUTER SCIENCE B CHEN 1982 AFOSR-TR-83-0388

NCLASSIFIED F49620-80-C-0001 F/G 9/2 NL

Immllllllllllu
EIIIIIIIIIIIIu
IIIIIEIIIIIIIE
IIIEIIIEEIIII
IIIEIIIIIIIII
IIIIIIIIIIIIII

1111 WQ 12 0

111111-5 JJJL

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU Of STANDARDS -1963-A

DTI

I TECNICALREPOR SRIES T

>mmm

UNIERSTYOF ARYAN

AI

chi-, f-. 7-12.

EVENT-BASED

I SPECIFICATION AND VERIFICATION OF

DISTRIBUTED SYSTEMS

j by

Be-Shoe Chen

I!

Accession For

NTIS GRA&I
DTIC TAB
Unannounced
Justification

Avi--,', ..t,7 Codes

Dis

Dissertation Submitted to the Faculty of the Graduate School

of the University of Maryland in Partial Fulfillment
IT of the Requirements for the Degree of Doctor of Philosophy 1982

(This work was supported in part by the Air Force Office of Scientific
SResearch Contract I. F49620-80-C4301 to the University of Maryland.)

__ _ .

UNCLASSIFIED
%ECURITY CLASSIFICATION OF THIS PAGE(han Data geret.)

ITEM #20, CONTINUED: view) of distributed systems. The specification tech-
nique has a rather wide range of applications. Examples from different classes

of distributed systems, including communication systems, transaction-based

systems and process control systems are demonstrated.

Both control-related and data-related properties of distributed systems are
specified using two fundamental relationships among events: the "precedes"
relation, representing time order; and the "enables" relation, representing
causality. No assumption about the existence of a global clock is made in the
specifications.

The correctness of a design can be proved before implementation by checking the
consistency between the behavior specification and structure specification of a
system. Important properties of concurrent systems such as "mutual exclusion",
"concurrency", "process coordination", and other "safety" and "liveness"
properties can be specified and verified.

Moreover, since the specification technique defines the orthogonal properties
of a system separately, each of them can be verified independently. Thus, the
proof technique avoids the exponential state-explosion problem found in state-
machine specification techniques.

INCLASSIFIED
aSCUmITY CLASSIFICATION OP THIS PAGE(WheA Date Etm0F9J_

. 4

UNCLASSIFIED
SECURITY CLASSIFICATION OF THiS PAGE (When Does £nle

REPORT DOCUMENTATION PAGE RZAo IOUTIOS
13ZFORZ COMPLETING FORM

i. REPORT NUMBER 2. GOVT ACCESSION NO. S. RECIPIENT*$ CATAG NUMER

AF ITR. ,]S. TYPE OF • oq
4. TITLE (and Subtitle) COVD

EVENT-BASED SPECIFICATION AND VERIFICATION OF TECHNICAL
DISTRIBUTED SYSTEMS

6. PERFORMING ORG. REPORT NUMmER

7. AUTHOR(s) 9. CONTRACT OR GRANT NUMUER(8)

Bo-Shoe Chen F49620-80-C-0001

S. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

Department of Computer Science AREA • WORK UNIT NUMBERS

University of Maryland PE61102F; 2304/A2
College Park MD 20742

1I. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Mathematical & Information Sciences Directorate 1982
Air Force Office of Scientific Research 13. NUMBER OF PAGES

Bolling AFB DC 20332 180

_f.' MONITORING AGENCY NAME & ADDRESS(I different from Controlling Office) IS. SECURITY CLASS. (of this report)

UNCLASSIFIED
ISs. DECL ASSIFICATION/DOWN GRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Apprcved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (at Ihe abstract entered in Block 20, it different from Report)

IS. SUPPLEMENTARY NOTES

1S. KEY WORDS (Continue on reverse side if necessary and identify by block number)

20. ABSTRACT (Continue an rev ero side If necessaey and Identily by block number)

Computations of distributed systems are extremely difficult to specify and
verify using traditional techniques because the systems are inherently concur-
rent, asynchronous and nondeterministic. Furthermore, computing nodes in a
distributed system may be highly independent, and the entire system may lack
an accurate global clock.

In this thesis, the author develops an event-based model to specify formally
the behavior (the external view) and the structure (the internal (CONTINUED)

CC ' N' 147 UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Enrered)

1"j ' %

ABSTRACT

i.

Title of Dissertation: Event-Based Specification and Verifi-

cation of Distributed Systems

Bo-Shoe Chen, Doctor of Philosophy, 1982

-Dissertation Directed by: Dr. Raymona T. Yeh, Professor,

Department of Computer Science

Computations of distributed systems are extremely dif-

ficult to specify and verify using traditional techniques

because the systems are inherently concurrent, asynchronous

and nondeterministic. Furthermore, computing nodes in a dis-

S tributed system may be highly independent, and the entire

system may lack an accurate global clock.

- In this thesis, -we developNan event-based model to

£specify formally the behavior (the external view) and the
structure (the internal view) of distributed systems. The

specification technique has a rather wide range of applica-tions. Examples from different classes of distributed sys-

tems, including communication systems, transaction-based

systems and process control systems are demonstrated.

Both control-related and data-related properties of

distributed systems are specified using two fundamental

relationships among events: the 2-precedes' relation,

representing time order; and the 'enables'- relation,

11

i

representing causality. No assumption about the existence

of a global clock is made in the specifications. .

The correctness of a design can be proved before imple- j
mentation by checking the consistency between the behavior

specification and structure specification of a system. .
Important properties of concurrent systems such as "mutual

exclusion", "concurrency", "process coordination", and other

"safety" and "liveness" properties can be specified and ver-

if ied.

' moreover, since the specification technique defines the

orthogonal properties of a system separately, each of them

can then be verified independently. Thus, the proof tech-

nique avoids the exponential state-explosion problem found

in state-machine specification techniques.

I.

-i,

! L

ACKNOWLEDGEMENT
S.

I wish to express my sincere thanks and appreciation to

my advisor, Professor Raymond Yeh, for his guidance,

encouragement, and support during my graduate studies. His

thirst for simplicity and his wide-ranging interests gave

excellent guidance for shaping my half-baked ideas.

I am indebted to my dissertation committee members,

Professors Bing Yao, Harlan Mills, John Gannon, Satish Tri-

pathi, and Virgil Gligor, from whom I gained different per-

spectives on many topics. Dr. Gannon, in particular, made

many valuable suggestions for improving the final document's

readability.

With pleasure I acknowledge the advice and encourage-

2. ment I received from Professor Tung Chi-Sung during his

visit to UMCP in the summer of 1981. Thanks also go to my

9 colleagues and readers, Bob Arnald, Gary Luckenbaugh, Joy

JJ Reed, and Larry Morell, for their critiques.

My special thanks go to my father and mother, whose

love from Taiwan has constantly supported me spiritually.

Finally, my warmest thanks and gratitude go to my wife,

Jane, whose love, tenderness and inspiration has pushed me

through my work.

TABLE OF CONTENTS

Chapter 1. Introduction 1
1.1 Distributed Systems 1
1.2 Advantages of Distributed Systems 2
1.3 The Software Specification and Verifica-

tion .. 5
1.4 Criteria for the Specification of Distri-

buted Systems 7
1.5 Our Approach 9
1.6 An Overview of The Theses 0....10

Chapter 2. Event-Based Behavior Specif.13
2.1 The Conceptual Modeling 13
2.2 The Event Model 14
2.3 The Event-Based Specification Language

(EBS) 20
2.4 Example Distributed Systems and Their

Specifications 22
2.5 Conclusions and Comparisons to Other Ap-

proaches 39
Chapter 3. Structure Specifications and Verifica-

tions.................................... 42
3.1 Introduction 42
3.2 System Constructs 43
3.3 Example 1: A Tandem network 45
3.4 Example 2: an Alternate-Bit Protocol 51
3.5 Example 3: A Distributed Prime Number Gen-

erator 64

Chapter 4. Transaction-Based System Specifica-
tions and Verifications 78

4.1 Transactions 78
4.2 Examples: A Bounded-Buffer and A Reader-

Writer Database 81
4.3 Dijkstra's P and V Semaphores 82
4.4 Hoare and Brinch Hansen's Monitors 84
4.5 ADA's Rendezvous 89
4.6 Path Expressions 94
4.7 The Transaction-Based Specification (TBS) 100

~4.8 The Semantics of TBS........................ 1ii11

4.9 Structure Specifications and Verifications
in TBS 112

Chapter 5. Event Coordinations 118
5.1 Coordinations 118
5.2 An Adder Circuit............................ 118
5.3 Petri Nets.................................. 118
5.4 A Solution in ADA's Rendezvous 121

-ii-

5.5 The Coordination-Based Specification
Language (CBS) 123

5.6 The Expressive Power of CBS................... 135
5.7 The Semantics of CBS 137
5.8 The Structure Specification and Verifica-

tion in CBS 139
Chapter 6. Conclusions and Further Research 145

6.1 Comparisons with Other Approaches 145
6.2 Further Researches 153
6.3 Conclusions 156

Appendix A. A Semantics Interpreter 167
1.1 The First Order Predicate Language 167
1.2 A Centralized Processor Interpretation 169
1.3 A Multiprocessor Interpretation 174

Appendix B. A Formal Proof of Theorem 3.1 178

I

.9'

I

I

-! - - W

CHAPTER 1

INTRODUCTION

1.1. Distributed Systems

Computer systems should reflect the structure and

needs of the problems to which they are applied. For many

applications, a distributed computer system represents a

natural realization. Examples are flight reservation,

banking, and ballistic missile defense systems. For both

technical and economic reasons, it is likely that for many

existing applications, distributed computer systems will

replace conventional computer systems built around a large

central processor, and that new applications will emerge I
based on distributed information processing.

The richness of variation on the general theme makes

it impossible to define distributed processing rigorously.

However, one can characterize the kinds of systems which

interest us and demonstrate some general attributes.

A fundamental characteristic of a distributed system

• is that there is more than one processing unit called a

node, in the system. One form of this involves a complex

of two or more complete computer systems. Each has its own

processor, clock, memory and secondary storage devices. In

-1-

* - .. - - - ~ - - - -

" .k . . . _I

1? --. ...

1.

a. -2-

addition, each processing unit may have a local complement

of printers, tapes and other peripheral devices.

A second characteristic is that the system is formed

by interconnecting these nodes by a communication network

so that information may flow between them. The communica-

tion network may be a long-haul network such a. ;.ie

ARPANET [ROB70], a local network (CLA78], or a sui '.e

combination of these two types. The communication -v

may be highly variable and unpredictable. Each node ,as

access to its own memory only; that is, inter-node commun-

ication is possible only by exchanging messages, not by

sharing memory.

We infer from the discussion above that distributed

processing is inherently concurrent, asynchronous, and

nondeterministic. Furthermore, the computing nodes in a

distributed system may be highly independent of each

other, and the entire system may lack an accurate global

Fclock (LAM78b]. The basic problem in distributed systems

is to provide coherence (i.e., synchronization and coordi-

nation) in communication between the nodes while allowing

them to retain their autonomy.

1.2. Advantages of Distributed Systems

The trend toward distributed systems has been sup-

ported mainly by the rapidly falling cost of computing

-3-

hardware and the increasing power and flexibility of mini

and micro computers. The steadily decreasing entry cost

of acquiring and operating a free-standing, complete com-

puter system encourages lower-level units within a large

organization to acquire their own computers dedicated to

their own applications. The computers operate somewhat

independently and autonomously from one another, while

being at least loosely coupled into a cooperating con-

federacy that serves as the information system of the

organization.

The technical advantages distributed systems offer

over centralized ones include the following:

(1) Availability. Availability of information can be

increased by replicating it at several nodes. This

arrangement not only increases the access bandwidth

to the information but in case of a failure of one of

the nodes or communication links, the information

remains accessible.

(2) Protection. This advantage arises from the actual

physical separation of independent or loosely coupled

computations and information that belong to different

users. The physical boundaries of an individual node

prevent propagation of errors originating in a par-

ticular node to the rest of the system and protect NB

[l~-_.

* . -4-

I information stored at individual nodes from urauthor-

ized access or modification by other nodes.

(3) Expandability. As more users join the system or new

I services are added, it is not necessary to make any

physical replacements in a distributed system.

Rather, when one or more new nodes need to be added

to the system, if the system is designed properly, it

may be possible to accomplish this without interrupt-

ing the service of the existing system. Thus, distri-

buted systems offer a potential for a more gradual

and smoother growth than systems with a large central

'1 processor.

Thus, there are many sound reasons why applications

should be implemented as distributed systems. However,

though it has been successfully demonstrated that it is

not very difficult to interconnect remote computers at

the electric and bit level, the effective utilization of

"* such a network at a higher application level is still

missing.

This dissertation is aimed at providing tools for the

development of application software for distributed sys-

tems. In particular, the goal of this dissertation is to

develop a behavior specification language to support

well-structured design verification of distributed sys-

.L. .

-5-

tems.

1.3. The Software Specification and Verification

Of serious concern in software construction are tech-

niques that permit us to recognize whether a given program

is correct. Although we are beginning to realize that

correctness is not the only desirable property of

software, it is surely the most furdamental: if a program

is not correct, then its other properties (e.g., effi-

ciency, fault tolerance) have no meaning since we cannot

depend on them.

Programs that implement distributed systems can exhi-

bit extremely complicated behavior for they must cope with

concurrent, asynchronous, non-deterministic computations,

and the possibility of failures in nodes or in communica-

tion networks. In such a complicated environment, informal

techniques such as testing, debugging or program walk-

through for establishing the correctness of programs are

inadequate. Not only is the investigation of the program

properties incomplete and the steps in the reasoning place

too much dependence on human ingenuity or intuition, but

also a distributed computation is generally non-

reproducible, i.e., running the same distributed program

on the same data at different times does not always pro-

duce the same results.

.___

-6-

Thus, we turn to the techniques for verifying the

correctness of distributed programs. However, before a

formal verification can be done, a formal specification

that describes what the program is supposed to do must be

provided. The correctness of an implPmentation is then

demonstrated by showing its equivalence to the specifica-

tion by formal, analytic means.

Formal specifications are of interest even if they

are not followed by a formal proof. The importance of

software specification and its potential impact on the

reliability of software systems has long been recognized

and discussed (BOE74, LIS77, YEH80]. Formal specifica-

tions make code "public" by serving as a communication

medium between different groups of people (users, experts,

analysts and designers) [YEH80], and permit consistency

and completeness to be judged in a well-defined manner.

The result of a successful specification methodology cou-
4-

pled with an advanced design and programming methodology

*should result in a reduction of the total cost of software

development and operation, and the fast release of an

operational system [RAM79]. In particular, formal specif-

ication together with a hierarchical construction metho-

dology could lead to programs that are correct by con-

struction [LIS77].

.7T-

-7-

1.4. Criteria for the Specification of Distributed Sys-

tems

An approach to specification must satisfy a number of

requirements if it is to be useful. [BAL79] gives an

j excellent discussion on the general requirements for

specification languages. We discuss in this section the

criteria particular for the specification of distributed

systems.

It should be possible using the specification method

to construct specifications which descr4.be only the

interesting properties of a system and nothing more. The

properties of interest must be described precisely, unam-

biguously and in a way which adds as little extraneous

information as possible. This c~iterion is called the

"minimality" requirement. One reason for this criterion is

that there are usually so many possible designs that it is

better to leave as much freedom as possible to the

designers. In some applications, the real-time con-

straints are so strong that early (extraneous, unneces-

* sary) decisions dictated by a specification may make all

possible designs infeasible. Another reason for this

"minimality" criterion is the desire to minimize correct-

ness proofs by reducing the number of properties to be

proved.

r

-8-

It is desirable that a minimal change in a concept

result in a similar small change in its specification.

This criterion is called the "modifiability" (YEH80] or

"extensibility" [LIS77] of specification techniques. An

approach to modifiability is to specify independent pro-

perties separately and come up with "orthogonal" specifi-

cations.

Associated with each specification technique, there

is a representational bias [LIS77]: the extent to which

the specifications suggest a representation or implementa-

tion for the abstractions being defined. The representa-

tional bias of a technique determines, in large measure,

its range of applicability. Techniques having a represen-

tational bias will be limited primarily to those abstrac-

tions which are naturally expressed in the representation;

within this range, however, specifications will be rela-

tively easy to construct and comprehend. Concepts outside

of the technique's range of applicability can only be

defined with difficulty, if at all. Petri Nets, for exam-

ple, have a control-oriented representational bias. It is

quite difficult to specify data-related properties with

them.

A distributed system, as discussed in Section 1.1.,

is inherently concurrent, asynchronous, and nondeterminis-

tic. Our last criterion for a specification technique for

-9-

distributed systems is that it should be able to express

accurately these key characteristics of distributed sys-

tems. Traditional specification techniques for abstract

data types or sequential programs are not applicable

according to this criterion.

1.5. Our Approach

According to the criteria in Section 1.4., we develop

an event-based model to specify formally the behavior (the

external view) and the structure (the internal view) of

distributed systems. The specification technique has a

rather wide range of applications: examples from different

classes of distributed systems, including communication

systems, transaction-based systems and process control

systems are demonstrated.

Both control-related and data-related properties of

distributed systems are specified using two fundamental

relationships among events; the "precedes" relation,

representing time order; and the "enables" relation,

representing causality. No assumption about the existence

- of a global clock is made in the specifications. The

correctness of a design can be proved before implementa-

tion by checking the consistency between the behavior

specification and structure specification of a system.

1.. -10-

11 1.6. An Overview of the Thesis

1. Chapter 2 describes the event model and the behavior

specification language, called the "Event-Based Specifica-

I tion Language (EBS)", based on the event model. The

behavior of several distributed system examples is then

specified in EBS to show its expressive power.

T
1- Chapter 3 describes a distributed system from its

internal view. Such a description is called a structure

specification. Since we use the same notations (i.e.,

first order logic) in both behavior and structure specifi-

cations, the verification of a structure specification

I with respect to a behavior specification is carried out as

I proofs of theorems. The structure specifications of a

data-transfer protocol [STE761 and a distributed prime

j number generator [MIS81], together with their verifica-

tions, are demonstrated.

In Chapter 4, the event model is extended to handler
transaction-oriented system specifications. By a transac-

tion we mean that, when it is executed alone, the sequence

of events in it transforms the system from a consistent

state into a new consistent state; that is, transactions

.preserve consistency. A transaction, by this definition,

is also a basic unit for crash-recovery. We develop a

language called Transaction-Based Specification Language

iiiiiJ

(TBS), to specify such transaction-oriented systems.

While a transaction represents a sequence of events

caused by an enabling event, event coordination represents

the cooperation of two (independent) events to enable a

third event. We extend the relations in the event model

to specify this kind of event coordination, and call the

specification language, Coordination-Based Language (CBS).

Properties of CBS, together with examples are given in

Chapter 5.

Finally, we summerize the advantages of using EBS as

a specification language and highlight several further

research topics in Chapter 6.

In Appendix A we discuss the formal semantics of EBS.

In particular, the semantics of EBS are given in two dif- I
ferent ways: using a centralized processor and using mul-

tiprocessors.

Comparisons of our specification technique to other

approaches are discussed in each chapter. We compare EBS

with SPECIAL [ROB77], AFFIRM [TOM80] (for communication

systems), and RSL [ALF77] (for real-time systems) in

Chapter 2; TBS with Monitors [HOA74], ADA's Rendezvous

[ICH79] and Path Expressions [CAM80] in Chapter 4; CBS

with Petri Nets [PET77] in Chapter 5; our whole technique 1
with Temporal Logic [LAM80, OWIB0], Actor Models [HEW77,

6L _ _ _ _ _ _ _-.....

6. -12-

* BAK781 and the Trace approach [HOA78b, ZHO81, MIS81] in

Chapter 6.

1'M

CHAPTER 2

EVENT BASED BEHAVIOR SPECIFICATION

2.1. The Conceptual Modeling j

A distributed system may be described from two dif-

ferent points of view. From a designer's viewpoint, it

consists of local processes interacting with users and

communicating among themselves via a communication medium.

Each local process can be described by the operations

responding to users' commands, messages from other

processes or internal clocks. The structure is depicted in

Figure 2.1.

From a user's viewpoint, a distributed system is a

black box, or a shared server with only the interfaces

visible to him, as shown in Figure 2.2. In this case,

except for performance issues, there is no essential

difference in functionality between a distributed system

and a centralized one.

The distinction between a user's view and a

designer's view is quite crucial. The only things

interesting to a user are the kind of messages or events

that may happen in the interfaces and the relationships

among those messages or events. We call this kind of

-13- H

1.

Environment

3.

A Distributed System
User User

/ Process Process

Z! 'Medium

C\mm /

IClock

II Pro~cess
L /

User

-' Figure 2.1. A Distributed System:
a Designer's View

I
!S

- -- _ __ _ __ _-- -----

Environment

User A Distributed System Us -er

Information Transformation
and /

-~ Event Sequencing

Ilnterface,

User

Figure 2.2. A Distributed System:
- User's or a System
Arlalysist's View

-14-

interface description of a system, its behavior specifica-

tion.

There are two fundamental issues in the behavior

specification of a distributed system, namely, the notions

of time and concurrency. The use of synchronization prim-

itives such as monitors, in our opinion, are design deci-

sions which are suitable from a designer's viewpoint, but

are at too low a level for behavior specifications. The

computation of a system consists of a set of events. By

precisely describing the relationships between these

events occurring in time, we can characterize the behavior

of a system.

1 2.2. The Event Model

We consider the behavior of a system to be character-

ized by a set of events. The model upon which our specif-

ication is based therefore consists of events and their

relationships.

2.2.1. Events

u An event is an instantaneous, atomic state transition

1 in the computation of a system. Examples of events are

the sending, the receiving, and the processing of mes-

Isages. By "instantaneous" we mean an event takes zero-time
to happen. By "atomic" we mean an event happens completely

I

-15-

or not at all. Since time is continuous, the probability

that any two or more events happen simultaneously is zero.

This assumption allows us to order events totally in a

local area computation. Furthermore, we assume that the

number of events between any two events is always finite. j
This criterion rules out infinitely fast machines, which

are physically infeasible [HEW77].

2.2.2. Event Relationships

2.2.2.1. The Precedes Relation ->

In describing the time ordering among events, a

system-wide reliable clock is usually assumed to order

totally the events in a centralized system. Unfortunately,

the assumption of a global clock is too strong in describ-

ing the computation of a distributed system. Theoreti-

cally speaking, it is impossible to order two events

totally in some extreme case when they happen in two geo-

graphically separated places. Practically speaking,

implementing such a global clock is quite expensive and

unnecessary in a distributed system having highly auto-

nomous computing nodes. We give up the global clock

assumption and adopt a partial ordering relation- the

"precedes" relation, denoted by "->", to represent the

time concept [GRE77, LAM78].

• . .. - -=I II I I ' - ... u ll , l ll ll '"....

1 Process Process Process

p Q R

qI

S /

Time

i / q3

.1/

/ q4

q/ /

pr2

~q6

~Eigure 2.3. Precedes Relation between
Events in Distributed Systems

I'x .,
U

\ f
'II \

-16-

The interpretation of "->" as a time ordering means

that, if el and e2 are events in a system and el->e2, then

el "precedes" e2 by any measure of time. To understand

the meaning of "->", let us look into Figure 2.3. Each

vertical line in Figure 2.3. represents the computation

history of a (sequential) "process". By a "process" we

mean an autonomous computing node having its own "local"

clock; different processes may use different time scales.

The dots denote events and the dotted lines between events

denote messages. The relation "->" has the following pro-

perties:

(1) If el and e2 are events in the same process, and el
comes before e2 then el->e2 (e.g., pl->p2 in Figure
2.3.);

(2) If el is the event of sending a message by one pro-
cess and e2 is the event of receiving the message by
another process then by the law of "causality", el-
>e2 (e.g., pl->q2 in Figure 2.3.);

(3) (Transitivity property) If el->e2 and e2->e3 then
el->e3 (e.g., pl->r2 in Figure 2.3.);

(4) (Irreflexivity property) For all events, -(e->e);

(5) (Antisymmetry property) If el->e2 then ~(e2->el)

2.2.2.2. The Concurrency Relation:

Two distinct events, say el and e2, are concurrent,

denoted by el//e2, iff ~(el->e2) and ~(e2->el). In Figure

2.3., for example, although pl->q2 and ql->p2, there is no

way to tell whether pl or ql comes first; they may be con-

current.

•7 . -" - - - - - ---

1 -17-

2.2.2.3. The Enables Relation =>

An important class of properties in communication

systems is the guaranteed service of message transmission.

*These properties can be specified by the introduction of

the enables relation, denoted by "=>, among events. Two

* events, say a and b, satisfy the relation a=>b iff the

existence of event a will cause the occurrence of event b

in the future. The relation => has the following proper-

ties:

(1) Future-enabling:

if a => b then a -> b

(2) Anti-symmetry:
if a => b then -(b => a)

(3) Irreflexivity:
-(a => a)

(4) Transitivity:
if a => b and b => c then a => c

I Properties (2) and (3) can be derived from (1) and the

Fproperties of relation "->", while (1) and (4) are

essential axioms for the relation "=>".

F 2.2.2.4. The System, the Environment, and Ports

Since the event space in a computation is usually

very large, it is convenient to categorize events into

some disjoint domains. We identify three domains: the

[system, the environment and the interface ports.

* [

- .- - - -

/ N

ENVIRONMENT

INPORTS OUTPORTS

I I
SYSTEM

Figure 2.4. System, Environment and

and Their Interfaces

Il

h,.L _ _.B

1 -18-

J]A system interacts with its environment by exchanq-

ing messages through unidirectional interfaces called

1 ports, as depicted in Figure 2.4. An inport (outport)

directs messages from the environment (system) to the sys-

tem (environment). The sending or receiving of messages

J are called interface events. We denote each port event

set by the name of the port in capital letters and denote

I the contents of the messages carried by an interface event

e by e.msg. In response to the interface events the sys-

tem or the environment may change its state; such a state

change is called a system or an environment event. We

denote the system or environment event set by SYS or ENV,

I respectively. For example, in a banking system, a

transfer command (an interface event) moves money from one

account to another (a system event); and in an engine-

monitoring system, a ring-bell message (an interface

event) from the system will turn on a bell (an environment

I event) in the environment.

[Events in the system or in the environment are only

partially ordered, i. e., there is no assumption of a glo-

Ibal clock either in the system or in the environment.

I fHowever, we do require the total ordering among events in

each port. This assumption is justified since that the

probability that two events happen at the same time is

zero and there is usually a local clock associated with

i'1

< .- .\.

-19-

each port. This assumption allows us to identify uniquely

each interface event in a port history by an integer,

called the ordinal number. If e is in a history H then

its ordinal number can be defined recursively as follows:

ord(e, H)=
IF (e-car(H)) THEN 1

ELSE ord(e, cdr(H))+l

where car(H) represents the first event in H and cdr(H)

represents the rest of the events in H. See Appendix A for

details about formal definitions.

For convenience, we use ord(e) to abbreviate ord(e,

H) when H can be understood from the context. A port his-

tory is bounded if the length of events in it is finite;

otherwise, it is unbounded. Formally, a history H is

unbounded iff

V n* N + e* H [i]
ord(e)> n

where N is the set of natural numbers, or equivalently

+ e* H)

V e14 H + e24 H
el-> e2)

which says that every event in H has a successor event and

[11 See Section 2.3.1. for notation abbreviations.

-20-

that there is at least one event in the history H.

The concept of unbounded history is important when we

want to specify a non-zero probability of message

transmission over an unreliable transmission medium. (See

Example 2.3.)

2.3. The Event-Based Specification Language (EBS)

Based on the notions of events, event relationships,

together with first order predicate calculus, we develop a

specification language called the Event-Based Specifica-

tion Language (EBS).

2.3.1. First Order Predicate Calculus

I The behavior specification laaguage is the first

order predicate calculus with equality. See Appendix A for

the definitions of expressions, terms, atomic formulas,

Jand well-formed formulas. We give here the precedence

rules among symbols and the abbreviation rules.

T2.3.1.1. Precedence Rules

The precedence among symbols are as follows:

(1) * (belongs to), ->, =, = (Equals to)(2) V (for all), 3 (there exists), - (logical not)

(3) (logical and) , v (logical or)
(4) #> (logical implication)
(5) when one connective is used repeatedly, the expres-

sion is grouped to the right, for example A#> B #>
C is A#> (B#> C).

I

- -t

-21-

2.3.1.2. Abbreviation Rules

We use the following notation abbreviation rules:

(1) V x* A S abbreviates Vx (x* A #> S)
(2) V x, y4 A S abbreviates Vx Vy (x4 A ^ y* A #> S)A
(3) V x* A, y* B S abbreviates Vx Vy (x4 A ^ y4 B #> S)
(4) + x* A S abbreviates +x (x4 A ^ S)
(5) j x, y* A S abbreviates +x +y (x4 A y4 A S)
(6) j x4 A, y* B S abbreviates +x 4-y (x* A ^ y* B ^ S)
(7) a-> b-> c abbreviates a-> b b-> c
(8) a=> b=> c abbreviates a=>b b=> c I
(9) x= y abbreviates
(10) Similar rule for other two-place predicates
(11) x<> y abbreviates - = x y I
(12) Outermost parenthesis may be dropped

2.3.2. The Syntax of EBS

The syntax of EBS is defined in extended BNF as fol-

lows:

<system>::= System <head>
<message type definition list>
<behavior>
<structure>

End system.
<head>::= <id> ({<parameter>;} <parameter>);
<parameter>::= <id> : <parameter type>
<parameter type>::= inport I outport I function

I predicate
<message type definition list>

= Messagetype

[message type definition;]
End messagetype; I <empty>

<message type definition>::= <id> : <data type>
<data type>:: = <simple type> I <structure type>
<simple type>::= integer characterj

real I boolean
<structure type>::= record

[<id> : <data type>;]
end

<behavior>::= Behavior
[<wff>;)

End behavior; I <empty>
<structure>::= Structure

[<subsystem>;]

~ IL* ____J

-22-

<network>;
<interface>;

End structure; <empty>
<subsystem>:: = <system>
<network>:: = Network

[link(<portname>, <portname>)
== <portname>;]

End network
<interface>::= Interface

[<portname> <portname>;]
End interface

<portname>:: = <id>.<id>
<empty>::=

A specification begins with the reserved word System

followed by the name of the system and the names of

interface ports. The message type definition list defines

the data types of messages associated with each interface

Iport.

The behavior part consists of a sequence of well-

formed formulas (wffs) of first order predicate calculus

separated by semicolons. The structure, subsystem, net-

work, and interface parts are used in system structure

. specification which will be discussed in Chapter 3. To

support extensible specifications, the message type

definitions, the behavior part and the structure part are

not required initially. Any of them can be deferred to

later phases of the system development.

2.4. Example Distributed Systems and Their Specifica-

tions

-23-

In this section, we demonstrate the power of EBS by

specifying some typical examples of distributed systems.

2.4.1. Example 2.1: Reliable Transmission Systems

A reliable transmission system (RT) is one through

which messages are transmitted without error, loss, dupli-

cation or reordering from an inport to an outport (see

Figure 2.5). Although most physical communication media

are unreliable, almost all designers provide communication

protocols (e.g., the Alternate Bit Protocol) to convert

them into logically reliable ones. It is important that

the service provided by the reliable transmission system

be specified formally. We first specify orthogonal pro-

perties and then integrate them into a complete specifica-

tion of the whole system.

The property that there is no loss of messages during

the transmission means that every message sent ftom the

inport A will be transmitted to the outport B eventually.

This can be specified as follows:

(* RTIl(AB) [2] : No loss of messages *)
V a* A + b4 B

a=> b;

which says that for every event a in the history of A

(21 We will use RTI to name this property afterwards
for convenience.

.. "" - '" . .. 1 i L: " _. " ;, _ . . ,

-24-

there is an event b in the history of B such that a

enables b. Similarly, the property that messages at B are

not generated internally or externally but are enabled by

messages at A, is specified as follows:

(* RTl2(A,B): no self-existing messages *)
V b* B + a4 A

a=> b;

(* RTl3(A,B): no internally or externally
generated messages

V b* B, s* SYS, e4 ENV
(s =>b #> + a4 A a=>s=>b)
(e =>b #> + a* A e=>a=>b)

The reserved word SYS (ENV) refers to the set of system

I I (environment) events. RT13 specifies that any internal

(external) event that enables an event in B, is enabled by

(enables) an event in A; in other words, A is the only

source that may enable an event in B.SI
No duplication of messages is specified as follows:

(* RTI4(A,B): no duplication of messages *)
V a Abl,b24 B

A ba=>b -a=>b2 #> bl=b2

which says that every sending event can only enable a

unique receiving event. The property that the order of

messages is preserved after the transmission is specified

as follows:

[

-25-

(* RTl5(A,B) : no out-of-order messages *)
V al,a24 A, bl,b2* B

al=>bl ^ a2=>b2
#> (al-> a2 bl-> b2) v

(al = a2 ^ bl= b2) v
(a2-> al b2-> bl)

which says that if al is sent before (after) a2 then it

will also be received before (after) a2. The contents of

messages are preserved after the transmission is specified

as follows:

(* RT21(A,B): preservation of message contents *)
V a4 A, b4 B

a=>b #> a.msg=b.msg

which says that the receiving and the sending events carry

the same message contents.

We now specify the reliable transmission system as

follows:

(* Reliable Transmission Systems *)
System RT (A: inport;

B: outport);

Behavior

(* RTll(A,B) : No loss of messages *)
V a4 A + b4 B

a=>b;

(* RTI2(A,B): No self-existing messages *)
V b. B + a*A

a=> b;

(* RTI3(A,B): No internally or externally
generated messages

V b4 B, s4 SYS, e4 ENV
(s=> b #> + a* A a=> s=> b)

-26-

(e> b #> + a* A e=> a=> b);

(* RTl4(A,B): No duplication of messages *)
V a4 A, bl,b24 B

a=> bl ^ a=> b2 #> bl= b2;

(* RT1S(A,B): No out-of-order messages *)
V al, a2* A, bl,b2* B

a=> bl ^ a2=> b2
#> (al-> a2 bl-> b2) v

(al= a2 ^ bl= b2) v
(a2-> al b2-> bl)

(* RT21(A,B): No erroneous messages *)
V a4 A, b4 B

a=> b #> a.msg= b.msg;

End behavior;

End system.

These are the weakest properties that a reliable

transmission system should have. This kind of "orthogonal"

specification allows a specification to be easily adapted

to different applications. For example, if we want to

specify the behavior of a communication system which

transmits messages reliably ind performs code conversions

between computer systems communicating using different

codes (e.g., ASCII and EBCDIC), we need only change RT21,

the data-related property. It is changed to

(* TR21(A,B): message transformer *)
V a* A, b4 B

a=> b #> b.msg= F(a.msg)

where F is the code conversion function, and leave the

other specifications unchanged.

-27-

2.4.2. Example 2.2: Multiplexors and Decoders

A communication network has to share its transmission

capacity among all its users who, in general, do not want

to use and pay for a transmission circuit all the time. In

packet-switched communication systems, the information

exchanged between computers or terminals are sequences of

short messages called packets, each handled individually

by the network mechanism. Packets can be entered into or

removed from the network at a speed suitable for the com-

puters or terminals, so the network acts as a speed

changer. The fundamental mechanisms in packet-switched

networks to achieve this goal are multiplexing and decod-

iLn. Multiplexing consists of interleaving packets from

various sources of data in a single communication channel.

By recognizing the packets according to the information

contained in their messages, a decoder distributes the

packets to their respective destinations. This section

specifies the behavior of multiplexors and decoders.

A multiplexor can be viewed as a system through which

messages from several inports are transmitted reliably and

* multiplexed into a single outport (see Figure 2.5.). We

specify a multiplexor with two inports as follows:

* System MX (A :inport;
B:inport; IC : outport);

.. . • ., , - ., - '- &

OUTPORT

INPORTS

-> _

Figure 2.5. A Multiplexor

I

INPORT.. .

OUTPORTS

Figure 2.6. A Decoder

-28-

Behavior

(* No loss of messages *)
RTlI(A, C); RTll(B, C);

(* No self-existing messages *)
V C* C

(a* A a=> c) v (+ b4 B b=> c);

(* No internally or externally generated
messages

V c4 C, s* SYS, e* ENV
(s=> c #> (+ a* A a=> s= > c) v

(+ b- B b=> s=> c))
(e=> c #> (+ a* A e=> a=> c) v

(b* B e=> b= > c));

(* No duplication of messages *)
RT14(A, C) ; RT14(B, C) ;

(* No out-of-order messages *)

RTI5(A, C); RTl5(B, C);

(* No erroneous messages *)
RT21(A, C); RT21(B, C);

End behavior;

End system.

Note that the RT's have been defined in the System RT

(Reliable Transmission Systems). We only specify the

first-come-first-serve order of events in port A or in

port B. The order among events in A and B (i.e., the mul-

tiplexing function) is left open to implementation deci-

sions. Note also that it is easy to extend the specifica-

tion to define the behavior of multiplexors having more

than two inports.

-29-

A decoder can be viewed as a system that distributes

messages reliably from a single inport to several outports

according to some predefined distribution criteria (see

Figure 2.6.). Before specifying decoders, we define first

another important class of network behavior called

filters. A filter is a reliable system that transmits

messages that satisfy some predefined criteria; other mes-

sages are filtered out and have no effects. It can be

specified as follows:

System FT (A : inport;
B : outport;
P : predicate);

j Behavior

(* Every message at A that satisfies P
will be sent to B

V a* A
P(a) #> + b4 B a=> b;

(* Every message received by B should satisfy

P and have been sent from A

IV b4 B + a* A
P(a) - a=> b;

T. (* No internally or externally generated

messages

RTI3(A, B);

(* No duplication of messages *)
RTl4(A, B);

(* No out-of-order messages ')
RTl5(A, B);

(* No erroneous messages *)f RT21(A, B);

IJL

-30-

End behavior;

End system.

A decoder is, essentially, just a set of such

filters. A decoder with N outports B [Il..N] and distribu-

tion criteria Ptl..N] is specified A- follows:

System DC (A : inport;
B[l..Ni : outport; [3]
P[l..NJ : prelicate);

Behavior
V 14 {1. N}

FT(A, Bli], Pfi])
End behavior;

End system.

2.4.3. Example 2.3: Unreliable Transmission Systems

In an unreliable transmission system, messages may be

lost, duplicated or reordered, but there is a non-zero

probability of message transmission and no erroneous mes-

sages. Most physical communication media belong to this

class.

A non-zero probability of message transmission can be

specified as follows:

[3] B[l..N]: outport represents B[I]: outport; .. , B[NI:

outport.

! I

I.

-31-

(* NZ(A,B): a nonzero probability of successful
message transmission.

V ai4 A
(V aj* A aj.msg= ai.msg

#> + ak4 A aj-> ak ak.msg= ai.msg)
#> (j a4 A, b4 B

a=> b ^ a.msg= ai.msg - ai-> a)

which means that if a group of messages having the same

contents are repeatedly sent then at least one of them

will reach B.

The unreliable transmission system is specified as

follows:

System UT (A : inport;
B v B : outport);

Behavior

(* NZ(A,B): a nonzero probability of successful
message transmission.

I iVWai4 A

(V aj* A aj.msg= ai.msg
#> + ak4 A aj-> ak ^ ak.msg= ai.msg)

#> (i a4 A, b* B
a=> b ^ a.msg= ai.msg ^ ai-> a);

T (* No self-existing messages *)

RTl2(A, B);

(* No internally or externally generated messages *)

RTI3(A, B);

- (* No erroneous messages *)
RT21(A, B);

(* RTlI, RT14 and RT15 are discarded, which means *)
(* that the system may lose, duplicate or reorder *)
(* messages.

End behavior

-K.

-32-

End system.

2.4.4. Example 2.4: Data Transfer Protocols

The protocol described in [STE76] provides reliable

message transmission service over unreliable transmission

rredia. Stenning defined two processes: a SENDER and a

RECEIVER. The sender sends messages from a given sequence

to the receiver using a communication line. The receiver

in turn accepts messages from the line, stores them in an

output sequence, and acknowledges their receipt by sending

a message to the sender via another communication line.

Both communication lines are unreliable.

The protocol uses a conventional positive-

acknowledgement, retransmission-on-time-out technique, and J

j the sender and the receiver both maintain windows of mes- -
sages. The sender's window contains messages sent but not

yet acknowledged. Similarly, the receiver buffers mes-

sages received out of order (up to some limit), awaiting

receipt of the next expected message.

The implementation of this data transfer protocol

depicted in Figure 2.7, is non-trivial. However, to the

users of this protocol, the only thing interesting is that I

the protocol provides a reliable transmission service with I
two restrictions: (1) the length of the messages in tran-

ti

B A

Receiver Sne ie lc

ou

Str

Figure 2.7. Ant Implementation Structure of
the Data-Transfer Protocol

-33-

sit cannot be longer than the sender's window size and (2)

received messages can be buffered out of order only if the

length of the messages does not exceed the receiver's

window size. The behavior of this protocol can be

described as follows:

(* Stenning's Data Transfer Protocol *)
System DTP(A: inport;B: outport);

Behavior
(* No loss of messages *)

RTII(A, B);

(* No self-existing messages *)
RTl2(A, B);

(* No internally or externally generated *)
(* messages

RT13(A, B);

(* No duplication of messages *)
RT14(A, B);

(* DTPl: sender's window control: one *)
(* cannot send more than sw messages *)
(* if the first is not acknowledged, *)
(* where sw is the sender's window *)
(* size.

V al, a24 A, bl* B
al=> bl ^ ord(a2)> ord(al)+ sw
#> bl-> a2;

(* DTP2: receiver's window control: *)
(* one cannot receive ahead more than *)
(* rw out-of-order messages, where
(* rw is the receiver's window size *)

V al, a24 A, bl, b24 B
al> bl ^ a2=> b2 ord(a2)> ord(al)+ rw
#> bl-> b2;

(* No erroneous messages *)
RT21(A, B);

End behavior;

-34-

End system.

When both the sender's and the receiver's window

sizes are reduced to one, there is neither concurrent

" transmission of several messages from the sender nor

acceptance of out-of-order messages by the receiver. In

this case, DTP2 (the receiver's window control) is

equivalent to RT15 in the Reliable Transmission System;

and DTP1 (the sender's window control) means that the

sender has to wait until all previous messages are

received successfully before sending the next message.

This is the service provided by the Alternate Bit Protocol

[BAR69].

2.4.5. Example 2.5: an Engine Monitorina System

A microprocessor aircraft engine monitor for use on

both experimental and in-service aircrafts is described in

[ALF77]. The capability of this Engine Monitoring System

is as follows:

1. Monitor 1 to 10 engines
2. Monitor

a. 3 temperatures
b. 3 pressures
c. 2 switches

3. Monitor each engine at a specific rate.
4. Output a warning message if any parameter falls

outside prescribed limits.
5. Activate an audio alarm if any parameter falls

outside prescribed limits.
6. Record the history of each engine.
7. The operator may change the warning or alarm

- - -

Operator

0c,/ -- . -i-~4
"new- log-

* new- history
standard warn gy >

engine- ring
history

An Engine-Monitoring System

readdata
\ g , ~readda ta --.'-

.f47
Unewdata n-

newdata i:

Environment

Figure 2.8. An Engine-Monitoring System

j; [1

I _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

i,,_ - -

-35-

limits and may log the history of each machine.

The system interface structure is depicted in Figure

2.8. We specify this system in EBS as follows:

(* Engine Monitoring System *)
System EMS (

engine[i] Inewdata: inport;
(* Comment i:= 1 to 10.

A port pt of engine[i] is
represented by engine[ii ipt

log-history: inport;
new-standard: inport;
engine[i] readdata: outport;

(* i:= 1 to 10 *)
warning: outport;
ring: outport;
engine-history: outport
inwarning: predicate;
inalarm: predicate;
realtime: function

Messagetype
newdata.msg: record

TI, T2, T3,
P1, P2, P3: real;
SI, S2: boolean;
Time: real;

1end;
log-history.msg: integer;
new-standard.msg:

record
id: integer;
(* Comment: id is the engine name

whose standard is to be changed

engine-standard:
record

UWTI, (* Upper warning margin for TI *)
LWTI, (* Lower warning margin for Ti *)

UATi, * Upper alarm margin for TI *)
LATI, (* Lower alarm margin for TI *)

real;
end;

end;

r". t.

-36-

engine-history.msg:
record

id: integer;
enqine-data:

record
Ti, T2, T3,
P1, P2, P3: real;
SI, S2: boolean
Time: real;

end;
end;

warning.msg: integer;
(* Comment: The name of the engine that

is in warning range.

rinc.msg: boolean;
engine[i] }readdata.msq: boolean;

(* i:= 1 to 10 *)

Behavior
(* Part I: System's response to a newdata *)
(* when a newdata comes, check its security

against the most recent engine standard
set up by new-standard. If it is in warn-
ing range then send out a warning message;
if it is in alarm range then ring the
bell; otherwise, do nothing but record
the newdata in memory.

(* Part I.l: The relationship between inport
newdata and outport warning: outout a
warnina message if and only if a newdata
is in warning range.

(* NW11: If a newdata is in warning range
then send a warning message.

V i4 {1..10},
x4 engine[i] newdata,
mrs* new-standard
(* mrs is the event of setting up the

most recent standard

mrs.msg= i ^ mrs-> x
V c4 new-standard

c.msg= i ^ c-> x #> c= mrs v c-> mrs) j
inwarning(x.msg, mrs.msg)
#> + w* warning x=> w;

(* NW12: Send a warning message only when a

......

-37-

new data is in warning range.

V w' warnin?+ i 1.l

x4 engine[i] newdata,
mrs* new-standard
mrs.msg= i ^ mrs-> x

c4 new-standard
c.msg= i ^ c-> x *> c= mrs v c-> mrs)

inwarning(x.msg, mrs.msg) ^ x=> w;

(* NW13: No internally or externally generately

messages.

V w4 warning, s4 SYS, e* ENV
(s=> w #> i i4 {i..0}, x4 enginefi]lnewdata

x= > s-> w
(e=> w #> + i {l..10, x- enginefilinewdata

e=> x=> w);

(* NW14: No duplication of messages *)
V i4 {l..l10T,

x4 engine[i] Inewdata,
wl, w24 warning
x=> wl ^ x=> w2 #> wl= w2;

(* NW15: No out-of-order messages *)
V i4 {1..lO},

xl, x24 engine[i] newdata,
wl, w24 warning
xl=> wl ^ x2-> w2
#> (xl= x2 ^ wl= w2) v

(xl-> x2 wl-> w2) v
(x2-> xl w2-> wl)

(* NW21: Contents of warning messages *)
V i4 {l..lO},

x4 engineri] Inewdata, w* warning
x=> w #> w.msg= i;

(* Part 1.2: The relationship between inport
newdata and outport ring: Output an alarm
message if and only if a newdata is in
alarm range.

(* The behavior of outport ring is essentially
the same as that of warning and is omitted
here.

- --*)- -- - - - - - ~ - - - -

-38-

(*Part II: System's response to a log-history command *)

(* LHI: A loq-history[i] command will record into
engine-history all previous engin[i] !newdata
events.

V i4 {l..10}, x< log-history
x.msg= i #>
V e4 engine[il lnewdata

e-> x #> + h* engine-history
x=> h h.enginedata= e.msg

^ h.id= i);

(* LH12: Engine-history is enabled by a log-
history command.

V h4 engine-history
x* log-history, e4 engine[h.id] !newdata
x=> h ^ x.msg= h.id ^ e.msg = h.enginedata;

(* LHI3: No internally or externally generated
messages.

V s4 SYS, e4 ENV, h4 engine-history
(s=> h #> + x4 log-history x=> s=> h)
(e=> h #> + x4 log-history e=> x=> h);

(* LH14: No duplication of messages *)
V hl, h24 engine-histor , x* log-history,

el, e2* engine[x.msg]|newdata
x=> hl ^ x=> h2 ^ hl.enginedata= h2.enginedata
#> hl= h2;

(* LH15: No out-of-order messages *)
V xl, x24 log-history, hl, h2* engine-history

xl=> hl ^ x2=> h2
#> (xl= x2 hl= h2) v

(xl-> x2 - hl-> h2) v
(x2-> x1 ' h2-> hl);

(* Part III: The behavior of outport readdata *)

K (* Read engine data periodically and infinitely *)
(* T is the period between two successive read's *)
(* Realtime is a function mapping from two events

to a real number meaning the time period between
the two events.

V i4 {I..i0}, x, y* engine[i]lreaddata
ord(y)= ord(x)+ 1
#> realtime(x, y)= T;

t - --

-39-

(* Read engine data infinitely *)
i (..10}, x4 enginefi]ireaddata

. y4 engine[i]Ireaddata
X-> y;

End behavior;

End system.

This Engine-Monitoring System example shows the capa-

bility of EBS in dealing with "side-effects". We are not

specifying the effects of a command by changing the values

of system "state variables", since no such variables are

allowed in the specification. A "pure" side-effect com-

mand does not have any visible effect until other commands

reference its message. For example, the effect of a

"newstandard" command is define,! by its relations with

"newdata" commands in NW11 and NWl2. The specifications

show that only the most recent "newstandard" is of concern

to a "newdata"; other old "newstandards" do not have any

effect. This is a natural and direct way in specifying the

4system behavior from a user's view point.

2.5. Conclusions and Comparisons to Other Approaches

SPECIAL [ROB771 and AFFIRM [TOM80] are currently

being used as the service specification techniques for

communication protocols. SPECIAL, a tool developed for the

design of large software systems, is based on a methodol-

ogy using the concept of a hierarchy of modules. A module

-40-

is specified using Parnas' State-Machine approach. AFFIRM

was developed as a general-purposed specification and

verification system. It combines the State-Machine Model

and Algebraic/Axiomatic specification techniques into an

integrated methodology. j

Total ordering of events underlies the semantics for

both SPECIAL and AFFIRM; there is little support for con-

currency expressions. In addition, "liveness" properties

of concurrent systems, such as the guaranteed message

transmission service, are not specified in either

language. In comparison, EBS takes the buffer-history

approach (SUN79], specifying a system in terms of

input/output relations. The time concept is represented by

a partial ordering relation of events. Concurrency is

expressed by the lack of order between events. This makes

EBS a more accurate model for distributed systems. "Live-

ness" properties are specified in EBS with the "enables"

relation among events.

The requirement language RSL is used in [ALF77] to

specify the Engine Monitoring System. A central informa-

tion processing system is assumed in the specification to

request and test each new incoming engine data serially,

which is more a design decision than a requirement. More-

over, state variables are used extensibly to specify the

effects of commands, which complicates the specification

La ,.

- - - •-- - -

-41-

and blurs the distinction between the external behavior

and the internal structure of the system.

We conclude our discussion by listing some benefits

of Event-Based Behavior Specification: (1) formality: par-

tial ordering relations and first order predicate calculus

are mathematically sound; (2) generality: "safety", "live-

ness", data-related and control-related properties can be

specified; (3) accuracy: the inherent concurrent behavior

of distributed systems is represented by the lack of ord-

ering among events; (4) orthogonality: properties are

specified separately making a specification minimal and

extensible.

I
I

i.&

CHAPTER 3

STRUCTURE SPECIFICATIONS AND VERIFICATIONS

3.1. Introduction

The event-based model developed in Chapter 2 speci-

fies the behavior (the external view) of distributed sys-

tems. Both control-related and data-related properties of

distributed systems are specified using two fundamental

relationships among events: the "precedes" relation,

representing time order; and the "enables" relation,

representing causality. No assumption about the existence

of a global clock is made in the specifications.

In this Chapter, the event-based model is extended to

t specify the design structure (the internal view) of dis-

tributed systems; we call such specifications "structure I
specifications". The important structure concepts such as

"subsystems", which simulate the communicating computing

nodes, and "connection links", which simulate the communi-

cation networks interconnecting subsystems, are defined

formally in terms of events, and then used as basic con-

structs in the structure specification of distributed sys-

tems.

-42-

i ,°.-- -C

-43-
a.

The same nonprocedural specification language, the

Event-Based Specification Language (EBS), is used both in

the behavior and the structure specifications. An immedi-

ate benefit of this homogeneous view of behavior and

structure specifications is that design verifications can

be carried out as proofs of theorems. It also supports

top-down, hierarchical designs, since each subsystem in

the structure specification can be further decomposed into

sub-subsystems, using the same specification language.

Both "safety" and "liveness" properties of concurrent sys-

Atems [LAM78], can be formally specified and verified.

3.2. System Constructs

A system can be structurally decomposed into a set

I of subsystems, which are the basic building blocks of the

I system; a set of connection links, via which subsystems

exchange messages; and a set of interface definitions, via

I which the whole system communicates with its environment.

A subsystem, except for the naming convention, is a

system, whose behavior is described in EBS and whose

structure may be further decomposed. From the event

[viewpoint, a subsystem defines the boundary between its

event set and its enclosing system event set.

A link connects an outport of a subsystem to an

inport of another subsystem. When two ports are linked,

Ju

-44-

they are merged into a single port. The event semantics

of a link is that ports are identical: any event for one

is an event for the other.

A link is different from a reliable transmission sys-

tem (see Chapter 2) in that the latta[introduces a finite

message delay while the former transmits messages reliably

without delay. Furthermore, two ports cannot be linked

unless they have identical message types.

As the links supply paths for message exchanges among

subsystems, an interface definition defines an interface

path through which the whole system communicates with its

environment.

The properties of a system structure specification

can be summarized as follows: if a system S is composed of

a set of subsystems SI, ... , Sm, a set of links

connect(Pl, Ql)==CLI, ..., connect(Pn, Qn)==CLn and a set

of interface definitions X1==Yl, ..., Xk==Yk then

(A) Subsystems and connection links are mutually
exclusive, collectively exhaustive subsets of the
whole system:

(1) subsets:

V e4 SYS(Si) e4 SYS(S)
for all subsystems Si; and

V e4 CLi e4 SYS(S) for all links CLi;

(2) mutual exclusion

V e4 Si ~(e4 Sj)
for all Si and Sj, Si<> Sj;

- --- - --- --

1. -45-

V e* CLi -(e4 CLj)
for all Ci and CLj, CLi<> CLj; and

(V e4 Si -(e* CLj)) (V e4 CLj -(e* Si))
jfor all Si and CLj;

(3) Collective exhaustion

V e* SYS(S)
e4 SYS(Si) for some Si or
e4 CLj for some CLj

I(B) Connect(Pi, Qi)==CLi means Pi= Qi, i.e.,
(V e* Pi e4 Qi) ^ (V e4 Qi e4 Pi);
and the link is renamed CLi of system S.

(C) Xi=Yi means that Xi of a subsystem is renamed Yi
of system S.

3.3. Example 1: a Tandem Network

In a packet-switched network, a packet of messages

I is reliably transmitted through intermediate nodes rather

than sent directly from the source node to the destination

node using a dedicated, long-haul transmission line. Thus,

I the structure of the. communication system can be con-

sidered as a set of reliable transmission subsystems con-

I nected in series which, as a whole, supply the service of

a reliable transmission system. We call a serial connec-

tion of two or more subsystems, a tandem network (see Fig-

3 Iure 3.1).

3 3.3.1. The Structure Specification of a Tandem Network

The structure specification of a system SC which is

composed of a serial connection of two reliable transmis-

sion systems, SA and SB, is specified as follows:

I I

SC

PA PB PC PD

SA SB

~PE

Figure 3.1. A Tandem Network J

I"

--- - ----

lI
1 -46-

System SC (PA: inport;
PD : outport);

I Structure

Subsystem SA (PA : inport;
PB : outport)

Behavior

RT (PA, PB); [1]JEnd behavior;

End subsystem;

ISubsystem SB (PC : inport;
PD : outport);

IBehavior
RT (PC, PD);

End behavior;

1 End system;

Network
connect (SA.PB, SB.PC) == SC.PE;

End network;

Interface
SC.PA == SA.PA
SC.PD - SB.PD

End interface

End structure

i1 End system.

System SC is composed of two reliable transmission

subsystems SA and SB. A system name followed by a port

I name denotes a port. A link connects outport PB of system

g 1SA to inport PC of SB and is renamed PE in system SC. The

interface part says that system SC uses system SA's inport

[I] See Section 2.4.1. for the definition of RT.I,
_1- 1 i , .- "

-47-

PA and system SB's outport as interface ports. A tandem

network with more than two subsystems can be specified in

a similar way. The behavior of the whole system can be

specified as follows: I
System SC (PA : inport;

PD : outport) ;e i

RT (PA, PD)
End behavior;

End system.

which means that a serial connection of two reliable

transmission systems results in a single reliable

transmission system.

3.3.2. The Verification of the Tandem Network

i
I Once we have both the behavior and the structure

specifications it is important to verify that the latter

is a legal implementation of the former, i.e., the former

is a logical consequence of the latter. Since the same$(
specification language is used for both, the verification

is a proof of a first order predict calculus theorem.

We first prove a theorem about a transitive relation.

Since the event relations -> and => are transitive, the

theorem holds for them.

Theorem 3.1.

LI,

IC_-z

-48-

If T is a transitivity relation,

(i.e., V p, q, r T(p,q) ^ T(q,r) #> T(p,r))

i then,the, (V x* X + y* Y T(x,y)) ^
(V y-* Y + z.* Z T(y,z))
#> (V x4 X + z* Z T(x,z))

Proof

(1) V p, q, r T(p,q) ^ T(q,r)#> T(p,r)
(2) V x4 X + y4 Y T(x,y)
(3) V y4 Y + z4 Z T(y,z)
(4) x.* X

there exists yO4 Y s.t.
(5) T(x,yO) (2), (4)

there exists z04 Z s.t.
(6) T(yO,zO) (3), (5)

. (7) T(x,zO) (1) , (5) , (6)
Q. E. D.

In this proof, each predicate is preceded by a number

to identify it, and is followed by a sequence of numbers

to explain its derivation. A predicate without explana-

tion is either an assumption (e.g., (I)) or a precondition

(e.g., (2), (3) and (4)) of the predicate to be proved.

Each derived predicate is explained by attaching to it the

number of its preconditions. For example, (5) is derived

from (2) and (4), in the proof above.

This theorem will be used frequently in the following

verifications.

Theorem 3.2.

A tandem connection of two reliable transmission sys-

I

' ... I I I I m, ,4 -

-49-

tems behaves as a single reliable transmission system.

Proof

(I) RT11(PA, PD):
(* No loss of messages *)

Obvious from RT1l(PA, PB) of SA, RTll(PC, PD)
of SB and Theorem 3.1.

(II) RT12(PA,PD) :
(* No self-existing messages *)

Obvious from RTl2(PA, PB) of SA, RT12(PC, PD)
of SB and Theorem 3.1.

(III) RT13(PA,PD)-
(* No internally generated messages *)
(V s* SYS(SC), d* PD

(* s=> d #> + a4 PA a=> s=> d

(1) s* SYS(SC), d4 PD
(2) s=> d
(3) s4 SYS(SA) v s4 SYS(SB) v s* PE (1)
case
(a): (4) s4 SYS(SA)

(5) s ENV(SB) (4)

there exists c04 PC s.t.
(6) s=> cO-> d (2), (5) , RT13(PC, PD)

there exists aO PA s.t.
(7) aO=> s=> cO=> d

..... (4), (6), RT13(PA, PB) I
(b): (8) s4 SYS(SB)

there exists cO PC s.t.
(9) cO=> s=> d (2), (8), RTI3(PC, PD)

there exists a04 A s.t.
(10) a0=> cO0> s=> d (9), RT12(PA, PB)

(c): (11) s4 PE

there exists a04 PA s.t.
(12) a0=> s=> d (2), RT12(PA, PB)

Thus there exists aO4 PA s.t.
(13) a0-> s=> d ... (7) , (10) , (12)

--------- --------

j i-51-
(10) dl-> d2(10)d .. (5), (7), (9), RT14(PC, PD)

Similar proofs can be made for the cases of a2->
al and al= a2.

MV) RT21(PA, PD):
(* No erroneous messages*)

(1) a4 PA
(2) d4 PD
(3) a=> d
(4) a4 ENV(SB) (1)

there exists c04 PC s.t.
(5) a=> cO=> d (2), (3), (4), RTl3(PC, PD)
(6) a.msg= cO.msg (1), (5), RT21(PA, PB)
(7) cO.msg= d.msg (2), (5), RT21(PC, PD)
(8) a.msg= d.msg (6) , (7)
Q. E. D.

Although the theorems were proved in a semi-formal

way, a more formal proof using the Robinson's Refutation

"" Graph can be found in Appendix B.

3.4. Example 2: an Alternate-Bit Protocol

An Alternate-Bit Protocol provides a reliable message

transmission service over an unreliable transmission

medium from a fixed sender to a fixed receiver. This pro-F
1. tocol provides the service of a reliable transmission sys-

tem and is specified as follows:
/I

System ABP(IP : inport;
OP : outport)

Behavior
RT(IP, OP);

End behavior;

End system.

L i
II I Iil I

-50-

(* No externally generated messages *)
(* V x4 ENV(SC), d* PD)
(* x=> d #> + a4 PAx=> a=> d

(1) x=i ENV(SC), d* PD I
(2) x=> d
(3) x4 ENV(SB) (1)

there exists c04 PC s.t. I
(4) x=> cO=> d (2), (j, RT13(PC, PD)
(5) x4 ENV(SA) (1)

there exists a0* PA s.t.
(6) x=> aO=> cO=> d

...... (4), (5), RTl3(PA, PB)

(IV) RTl4(PA, PD):
(* No duplication of messages *)

(1) dl, d2* PD
(2) a.* PA
(3) a4 ENV(SB) (2)
(4) a=> dl

there exists cl4 PC s.t.
(5) a=> cl=> dl (1), (3), (4), RTI3(PC, PD)
(6) a=> d2

there exists c24 PC s.t.
(7) a=> c2=> d2 (1). (3), (6), RT13(PC, PD)
(8) cl= c2 (5), (7), RTI4(PA, PB)
(9) dl= d2 (5), (7), (8), RTI4(PC, PD)

(V) RTl5(PA, PD) :
(* No out of order messages *)

(1) dl, d2* PD
(2) al, a24 PA
(3) al, a2* ENV(SB) (2)
(4) al-> dl

there exists c14 PC s.t.
(5) al-> cl=> dl (1), (3), (4), RTl3(PC, PD)
(6) a2-> d2 j

there exists c24 PC s.t.
(7) a2-> c2-> d2 (1), (3), (6), RTl3(PC, PD)

case
(i) (8) al-> a2

(9) cl-> c2
..... (5), (7), (8), RT14(PA, PB)

_II

-52-

The underlying communication medium is unreliable and

may lose, duplicate, or reorder messages; however, there

is a non-zero probability of successful message transmis-

sion. For details of unreliable transmission systems see

Chapter 2.

3.4.1. The Structure Specification of the Alternate-Bit

Protocol

To guarantee that a message sent is eventually

received, we take advantage of the "non-zero probability

of message transmission" property of the unreliable

medium. The Sender sends the same message repeatedly

until it receives an acknowledgement from the Receiver,

which acknowledges all messages received. To avoid dupli-

cation of messages, a serial number is attached to each

message sent by the Sender and the Receiver accepts mes-

sages only if their serial numbers have never appeared

before. To avoid reordering messages, a message is not

*- sent until all the previous ones are acknowledged.

These ideas lead naturally to a protocol design (see

Figure 3.2.) whose structure specification is depicted as

follows:

(* Alternate-Bit Protocol *)

System ABP (IP : inport;
OP : outport);

Receive- Send-
Station Station

AS DR DS AR

Data-
Medium

II

~Medium

Figure 3.2. An Implementation Structure
of the Alternate-Bit Protocol

iI

jt

-53-

Messagetype
IP.msg: elem;
OP.msg: elem;

End messagetype;

Structure

Subsystem SS (IP: inport;
AR: inport;
DS: outport);

Messagetype
IP.msg: elem;
DS.msg: record

data: elem;
msgno: integer;

end;
AR.msg: integer;

End messagetype;

Behavior

S(* SI: Guaranteed message transmission: keep
sending the same message until ack-
nowledged. *)

V ip 4 IP
(+ ds* DS ip=> ds)
((+ ar4 AR ar.moig= ord(ip)) v
(V dl DS ip=> dl

#> + d24 DS ip=> d2 ^ dl-> d2));

(* SS2: No self-existing messages *)
RTI2(IP, DS) ;

(* SS3: No internally or externally
generated messages *)

RT13(IP, DS);

(* SS4: Sequence Control: do not accept a new
input message until all previous ones are
acknowledged. *)
V ip4 IP

V k4 N [2]
k< ord(ip)
#> + ar 4 AR ar.msg = k

ar -> ip)

[2] N refers to the set of natural numbers.

i i ii i i im I

-54-

(* SS5: Contents of messages: send out a mes-
sage together with a serial number as a
unique id. *)

V ip * IP, ds 4 DS
ip => ds #> ds.data= ip.msg

ds.msgno= ord (ip);

End subsystem.

Subsystem RS (DR : inport;
AS : outport; i
OP : outport);

Messagetype
DR.msg: record

data: elem;
msgno: integer;

end;
AS.msg: integer;
OP.msg: elem;

End messagetype;

Behavior

(* The relation between DR and AS is essen-
tially a transformer. *)
(* Send an acknowledgement for every mes-

sage received back to the Sender. *)
RT 1(DR,AS) ;
RTl2(DR,AS);
RTI3 (DR,AS) ;
RTl4 (DR,AS) ;
RTIS(DR,AS);

(* RS21: send back the serial number as an

acknowledgement of receipt. *)
V dr 4 DR, as 4 AS

dr => as #> as.msg = dr.msgno;

(* The relation between DR and OP is essen-
tially a a filter which filters out mes-
sages with the same serial number. *)
(* RS22: New messages will be accepted. *)

V dr 4 DR
V dr'4 DR dr'-> dr

#> dr.msgno <> dr'.msgno)
#> + op4 OP dr => op;

(* RS23: Accept only new messages. *)

V dr 4 DR

,, j

-55-

3op4 OP dr => op)
#> (-dr'4 DR

dr'-> dr
dr'.msgno2 dr.msgno);

N*to internally or externally generated
or duplicated or out-of-order messages.

RT 3 (DR, OP)
RT14 (DR,OP);
RTl5(DR,OP);

(RS24: accept only the data part of the
message. ~

v dr 4DR, op 4 OP
dr=> op #> op.msg =dr.data;

End subsystem;

(Data-Transmission-Medium IT)

Subsystem DM (OS: inport;
DR: outport);

* Message type

DS.msg, DR.msg: record
data: elem;
msgno: integer;

end;

End messagetype;

BehaviorL UT(DS, DR);

End behavior;

End subsystem;

(Acknowledgement-Transmission-Medium IT)

Subsystem AM (AS : inport;

AR : outport);

Mes sage type

AS.msg, AR.msg: integer;

End messagetype;

-56-

Behavior

UT(AS, AR);

End behavior;

End subsystem;

Network

connect(SS.DS, DM.DS)== ABP.DS;
connect(DM.DR, RS.DR)== ABP.DR;
connect(RS.AS, AM.AS)== ABP.AS;
connect(AM.AR, SS.AR)== ABP.AR;

End network;

Interface

ABP.IP== SS.IP;
ABP.OP'= RS.OP;

End interface;

End system.

3.4.2. The Verification of the Alternate-Bit Protocol

We now prove that the structure specification of the

Alternate-Bit Protocol satisfies its behavior specifica-

tion. Since the DM (Data Transmission Medium) is an

unreliable one, the SS (Send Station) has to send the mes-

sage unboundedly to guarantee that at least one message

will reach the RS (Receive Station). However, since the

AM (Acknowledgement Transmission Medium) is also an

unreliable one, it is possible that the acknowledgement

may be lost. Fortunately, it can be proved that if the SS

sends the same messages unboundedly, though DM is unreli-

able, an unbounded number of messages will arrive at RS.

[. -5"7-

I Since RS acknowledges all messages received, it is

guaranteed that at least one acknowledgement will arrive

Iat SS.

j Theorem 3.3.

If the underlying communication medium has a non-zero

probability of message transmission, then if an

unbounded number of identical messages are sent from A,

an unbounded number of these messages will arrive at B.

Formally:

UT(A, B)
(a04 A (aj* A aj.msg= aO.msg

#> + ak4 A
ak.msg= aO.msg aj-> ak))

> (+ a14 A, b14 B
al.msg = aO.msg ^ al=> bl)

(V aj4 A, bj4 B1 aj.msg= aO.msg ^ aj=> bj
#> + ak' A, bk4 B
Proo ak.msg= aO.msg ^ ak=> bk ^ bj-> bk)

I Proof

Since an unbounded number of events f A happen

after aO, one of them will enable an event of B.

I Similarly, for any event aj of A that enables an event

bj of B, there is an event ak of A after aj that

enables an event bk of B, since there are unbounded

"f [events happen after aj. If bj->bk, the proof is com-

plete. Unfortunately, it is possible that bk->bj

although aj->ak. This is due to the fact that the com-

munication medium is unreliable that may reorder mes-

i,

-58-

sages.

To solve this problem, the latest event x in A

that enables an event of B at a time no later than bj,

is chosen as the starting point of the unbounded

sequence. This choice of event x guarantees that any

event of A that occurs after x cannot enable an event

of B that happens before bj. Since there are an

unbounded number of events after x, one of them will

enable an event of B at a time later than bj.

(1) a04 A
(2) (V aj* A aj.msg= aO.msg

#> + ak4 A ak.msg= aO.msg ^ aj-> ak)

there exist al A, bl B s.t.
(3) al=> bl ^ al.msg= aO.msg ^ aO-> al

... (l), (2), NZ(A, B)
(4) aj4 A, bj4 B
(5) aj.msg= aO.msg
(6) aj=> bj

Let Sl be the set of events in B that happen no
later than bj and that are enabled by events in
A having the same message contents as aO.msg:

(7) S1 = {y4 B] j X* A x=> y ^
x.msg= aO.msg ^ (y= bj v y-> bj)}

Let S2 be the set of events in A such that each
of them enables an event in Sl:

(8) S2= {x* Al + ys S1 x=> y}

Select x from S2 such that x is the
latest event in S2:

(9) V x'4 S2 x'= x v x'-> x

there exist ak4 A, bk4 B s.t.
(10) ak.msg- aO.msg ^ ak=> bk x-> ak

...(2), NZ(A,B)

Assume ii
(11) bkT bj v bk-> bj

Then

-59-

(12) bk* Si, ak4 S2 ... (7), (8), (10), (11)
(13) ak= x v ak-> x ... (9)p (12)

Thus (13) contradicts (10)

(14) bj-> bk
Q. E. D.

The verification that the structure specification of

this Alternate-Bit Protocol satisfies its behavior specif-

ication is shown by the following sequence of lemmas and

* theorems.

Lemma 3.4.1.

If an event dr in DR is enabled by an event ip in IP

then dr will carry ord(ip) as part of its message con-

I tents. Similar statements can be made for AS, AR, and

OP. Formally:

V ip 4 IP, dr 4 DR, as 4 AS, ar 4 AR, op 4 OP
Mi ip => dr #> dr.msgno = ord(ip)
(ii) ip => as #> as.msg = ord(ip)
(iii) ip => ar #> ar.msg = ord(ip)
(iv) ip => OP #> op.Msg = ip.msg

Proof

(2) dr4 DR
(3) ip=> dr[(4) iP4 ENV(DM) ... (1)

there exists ds04 DS s.t.
(5) ip=> dsO-> dr42), (3), (4), RT13(DS, DR)
(6) dsO.msgno= ord(ip)

dsO.data= ip.msg.......(5),SS5
(7) dr.msgin dsO.msg........(5), RT21(DS,DR)
(8) dr.rnsgnom ord(ip) ... (6), (7)

Proofs of (ii), (iii) and (iv) are similar to ()

-60-

Lemma 3.4.2.

Any event ds in DS that carries ord(ip) as part of its

message contents is enabled by the ip in IP; similar

statements can be made for DR, AS and AR. Formally:

V ip4 IP, ds4 DS, dr* DR, ar4 AR, op4 OP
(i) ds.msgno= ord(ip) #> ip=> ds
(ii) dr.msgno= ord(ip) 4> ip=> dr
(iii) as.msg= ord(ip) #> ip=> as
(iv) ar.msg= ord(ip) #> ip=> ar

Proof

(i) (1) ip4 IP
(2) ds-4 DS
(3) ds.msgno= ord(ip)

there exists ip0* IP s.t.
(4) ipO=> ds......RT12(IP, DS)
(5) ds.msgno= ord(ipO)........(4), SS5
(6) ord(ip)= ord(ip0)........(3), (5)
(7) ip= ipO........(6)
Proofs of (ii),~ (iii) and (iv) are similar to (i).

Lemma 3.4.3.

Every event ip in IP will get back an acknowledgement

from RS, carrying ord(ip) as message contents. For-

mally:

V ip4 IP + ar4 AR
ar.msg= ord(ip)

Proof

t Prove by contradiction
(1) ip4 IP

Assume

(2) -(+ ar* AR ar.msg- ord(ip))

there exists dsO* DS s.t.
(3) ipin> ds0 ... (1), SS1

(4 s~sn-odi) dsO-data- ip.msg
(4) sO~sgno or~ip) ... (3), SS5

(5) V dsi4 DS ip-> dsi

-61-

#> + dsj4 DS
ip=> dsj ^ dsi-> dsj ... (2), SS1

(6) V dsi* DS dsi.msg- ds0.msg
#> + dsje DSL dsj.msg= ds0.msg ^ dsi-> dsj

.... (5), Lemma 3.4.1., Lemma 3.4.2.
(7) (+ dsi4 DS, dri4 DR

dsi.msg= ds0.msg ^ dsi=> dri)
(V dsi* DS, dri* DR

dsi=> dri ^ dsi.msg= ds0.msgJ #> + dsj4 DS, drj4 DR dsj.msg= dsO.msg
dsj-> drj ^ dsi-> dsj)

... (6), Theorem 3.3.
(8) (+ asi4 AS asi.msg= ord(ip))

(V asi' AS asi.msg= ord(ip)
#> + asj* AS

asj.msg= ord(ip) ^ asi-> asj)
...(4), (7), RS21, RT11(DR, AS), RTI5(DR, AS)

there exist ar04 AR, as0* AS s.t.
(9) as0=> arO ... (8), NZ(AS, AR)
(10) ar0.msg= asO.msg= ord(ip) ... (9)

(10) contradict (2).
1Thus

(11) + ar' AR ar.msg= ord(ip)
Q. E. D.

I Lemma 3.4.4.

Every event dr in DR either causes an output event in

OP or some dr' that happens before dr, enabled by the

I same ip, has caused an output event in OP. Formally:

V dr4 DR, ip4 IP
ip=> dr #> + dr'4 DR

(dr'= dr v dr'-> dr)(+ op* OP ip=> dr'-> op)

Proof

• i (1) dr4 DR

(2) ip4 IP
(3) ip-> dr
(4) dr.msgnow ord(ip)

...... (1), (2), (3), Lemma 3.4.1.

Define D to be the set of events in DR that
are enabled by ip:

(5) D-1 d4 DRI ip-> d}

6-

-62-

(6) D<> 0 dr4 D, (1), (3)

Select x from D such that x is the earliest
event in D:

(7) V d4 D x=d v x-> d
(8) V y4 DR y-> x #> y.msgno<> x.msgno

.... (7), Lemma 3.4.2.
(9) + op-* OP x=> op RS22, (8)

Q. E. D.

Theorem 3.5.1

(* RT11: No loss of messages *)
V iP4 IP + op4 OP

ip=> op

Proof

(1) ip* IP

there r ists arO AR s.t.
(2) arO.msg= ord(ip) (1), Lemma 3.4.3.
(3) ip=> arO (2), Lemma 3.4.2.

there exists drO DR s.t.
(4) ip=> drO=> arO

.(3) , RTI3's

there exist dr'< DR, opO< OP s.t. T
(5) ip=> dr' => opO (4), Lemma 3.4.4.

Theorem 3.5.2

(* RT12: No self-existing messages *)
V OP4 OP + iP4 IP

ip=> op

Proof

Trivial from RT12(DR, OP), RT12(DS, DR),
RT12(IP, DS) and Theorem 3.1.

Theorem 3.5.3.

(* RT13: No internally or externally generated mes-
sages *)

V op4 OP, e14 SYS(ABP), e24 ENV(ABP)
(el-> op #> + ip4 IP ip=> el-> op)
(e2-> op #> + ip4 IP e2=> ip=> op)

Proof

[1

4,

-- - - - -

-63-

(1) Op4 OP
* (2) e14 SYS(ABP)

(3) el=> op
(4) el* (SYS(SS) v SYS(DM) v SYS(RS) v

SYS(AM) v DS v DR v AS v AR) (2)

in all cases there exists ip0* IP s.t.
f (5) ipO=> el (1), (3), RT3's
£ (6) ip0=> el=> op (3), (5)

(7) e24 ENV(ABP)
(8) e2=> op

4 (9) e2* (ENV(SS) - ENV(DM) - ENV(RS)) (7)

there exist ip0* IP, ds0* DS, drO4 DR s.t.
(10) e2=> ip0=> ds0=> drO=> op

...... (8), (9), RT13-s

Theorem 3.5.4.

(* RT14: No duplicated messages *)
V ip4 IP, opl, op 24 OP

(ip=> opl) ^ (ip-> op2) #> opl= op2

Proof
(1) ip4 Ip
(2) opi, op24 OP

- (3) ip=> opl

there exist drl* DR, dsl4 DS s.t.
(4) ip=> dsl=> drl=> opl (1) , (2) , (3) , RTI3's
(5) drl.msgno = ord(ip) (4), Lemma 3.4.1.
(6) ip-> op2

there exist dr24 DR, ds2. DS s.t.
(7) ip=> ds2=> dr2=> op2 (6), RTI3-s
(8) dr2.msgno = ord(ip) (7), Lemma 3.4.1.
(9) drl.msgno = dr2.msgno ... (5), (8)
(10) drl- dr2 ... (4), (7), (9), RS23
(11) opl= op2 (0,), (7), (10), RT14(DR, OP)

Theorem 3.5.5.

(* RT15: No out-of-order messages *)
V ipl, ip24 IP, opl, op 24 OP

(ipl=> op'' (ip2=> op2)
#> (ipl ip2 opl= op2) v

(ipl-> ip2 opl-> op2) v
(ip2-> ipl op2 -> opl)

Proof
(1) ipl, ip24 IP

-64-

(2) opl, op24 OP
(3) ipl=> opl

there exist drl4 DR, dsl4 DS s.t.
(4) ipl=> dsl=> drl=> opl ... (i), (2), (3), RT13"s
(5) V d4 DR d<>drl ^ ipl=> d #> drl-> d

....(4), RS23, Lemma 3.4.2.
case

(i) (6) ipl-> ip2

there exist arl* AR, d* DR s.t.
(7) (ipl=> d=> arl) ^ (arl-> ip2) (6) , SS4
(8) ip2=> op2

there exists dr24 DR s.t.
(9) ip2=> dr2=> op2 (8) , RT13"s
(10) drl-> (or =) d-> arl-> ip2-> dr2

..... (5), (7), (9)
(11) opl-> op2 (4) , (9) , (10) , RT15(DR, OP)

Similar proofs can be made for the cases of
(ipl= ip2) and (ip2-> ipl).

Theorem 3.5.6.

(* RT21: No erroneous messages *)
V ip* IP, op* OP

ip=> op #> ip.msg= op.msg

Proof

This theorem has been proved in Lemma 3.4.1.

3.5. Example 3: A Distributed Prime Number Generator

A Prime Number Generator PNG consists of one input

port A from the environment and an output port B to the

environment. PNG receives a bounded sequence of integers

greater than or equal to two in ascending order; PNG out-

puts the sequence of primes from the input sequence.

The behavior of the system PNG is, in terms of EBS, jI
nothing more than a filter which filters out the non-prime

U

-65-

numbers, and is specified formally as follows:

System PNG (A: inport; B: outport);

Behavior

(* Output a number to B if and only if it is prime

(* PNll: *)
V a4 A

~(+ a'4 A a'-> a ^ a'.msgla.msg)
#> + b4 B a=> b; [31

(* PN12: *)
V b* B + a* A

a=> b -(+ a'4 A a'-> a ^ a'.msgfa.msg);

(* PN13: No internally or externally generated mes-
sages; PN14: No duplicated messages; PN15: No out
of order messages; PN21: No erroneous messages *)

RT13(A, B); RT14(A, B);
RTI5(A, B); RT21(A, B);

End behavior

End system.

A distributed design [HOA78] to generate prime

* numbers using the "sieve of Eratosthenes" method, is dep-

icted in Figure 3.3.

PNG consists of two types of processes: Sieves and a

Printer. In order to simplify description, we assume there

are infinite number of sieve processes, denoted by

--' Sievetl], Sieve[2], ... , Sieve(i), Each Sievetil has

one inport P[i] by which it receives input from Sieve[i-l]

(or the environment, if i= 1). Ports P[i], i-2, 3, ... are

[31 alb means that a divides b.

TT~a~.V
* 'A *- ,; *

VA

7- Q111

Sieve [21

Numberte Geeao

P [k]

Q (k]

-66-

internal to PNG, but P[1l is an inport directed toward

PNG. Sieve[i) has two outports P[i+l] and Q[i]. The latter

is directed toward the Printer process. The Printer pro-

cess has one outport B, which is also the outport of PNG.

3.5.1. An EBS Description of Sieveiij

The first message p received by Sieve[i) is sent to

the Printer process. Every subsequent message x received

by Sieve[i] is checked to see if it is a multiple of p; if

x is a multiple of p it is discarded; otherwise, it is

sent on to Sieve[i+l] through port P[i+l]. An EBS soecif-

ication of a Sieve follows. (See also Figure 3.4.)

System SV (P: inport; Q: outport; R: outport);

Behavior

(* Part I. Relationship between P and Q: A message
is sent to Q if and only if it is the first mes-
sage in P *)

(* SQl1: *)

1111I Vp P

ord(p) = 1 #> (+ q* Q p=> q);

(* SQ12: *)
q4 Q + p4
p=> q ^ ord(p)= 1;

(* SQ13, SQ14, SQI5, SQ21 *)
RTI3(P, Q); RTl4(P, Q); RT15(P, Q); RT21(P, Q);

(* Part II. Relationship between P and R: A message
is sent to R if and only if it is not a multiple
of the first message in P *)

(* SR11: *)
V pl, p2 4 Pord(pl)- 1 ^ ord(p2) > 1 ^ (pl.msglp2.msg)

#> + r4 R p2-> r;

ini
L 6

IA

-67-

(* SR12: *)
V r4 R + p 2 4 P

p2=> r ^ ord(p2) > 1
(+ p14 P ord(pl)= 1 pl.msglp2.msg);

(* SR13, SR14, SR15, SR21 *)

RT13(P, R); RT14(P, R); RT15(P, R); RT21(P, R);

(* QR11: Messages sent to 0 and R maintain their

orders *)
V pl, p2* P, q4 Q, r4 R

pl=> q - p2=> r
#> (pl-> p2 q-> r) v

(p2-> pl r-> q);

End behavior;

End system.

3.5.2. An EBS Description of the Printer Process

The Printer process waits to receive input along all

input ports. Upon receiving an input message, it sends the

* received value to the outport. The printing service is on

j a first-come-first-serve basis.

In terms of EBS, the behavior of the Printer process

is nothing more than a multiplexor, and is specified as

follows:

System PRT (0[k]: inport; (* k4 N *)
B: outport);

Behavior

(* PRII: No loss of messages *)
V k4 N, q4 Q[k] + b4 B

q=> b;

(* PR12: No self-existing messages *)
V b4 B + k4 N, q4 Q[k]

q=> b;

From Previous SV

P
-. ,P

sv

1 To Printer

R

To Next SV

Figure 3.4. A Sieve Process

I

Q111

Q12] Q[] B

Q (k] PRT

Figure 3.5. A Printer Process

, i

-68-

(* PR13: No internally or externally generated mes-
sages *)
V b* B, s4 SYS, e4 ENV

(s=> b #> + k4 N, q4 Q[k] q=> s=> b)
(e=> b #> + k* N, q4 Q[k] e=> q=> b);

(* PR14: No duplicated messages *)
V k4 N, q4 Q[k], bl, b24 B

q=> bl q=> b2 #> bl= b2;

(* PR15: No out of order messages *)
V i, j4 N, q14 Q[i], q24 Q[j], bl, b2* B

(ql=> bl ^q2=> b2 #> (ql= q2 ^ bl= b2) v
(ql-> q2 bl-> b2) v
(q2-> ql b2-> bl)

(* PR21: No erroneous messages *)
V k4 N, q4 Qik], b4 B

q=> b #> b.msg= q.msg;

End behavior;

End system.

3.5.3. The Structure Specification of PNG
The whole system structure can be specified as fol-

lows:

System PNG (A: inport; B: outport);

Structure

Subsystem Sievetli (P(]: inport;
Q[l]: outport;
P[2] : outport) ;

Behavior

SV (P[lJ, Q[l), P[2]);

(* Input numbers are in ascending order *)
V p, p'4 P[l]

p-> p, #> p.msg< p,.msg;

(* Input is bounded by maxinteger *)
(j p4 P[1] ord(p) > maxinteger);

End behavior;

-69-

End system;

Subsystem Sieve~ci P[k]: inport;
0(kJ: outport;
P~k+1] : outport);

Behavior

SV(P~kI, Q~k], P~k+l]);

End behavior;

End system;

(k4 N, k<>1 *

Subsystem Printer (Q~kI: inport (*k4 N*)
B: outport);

Behavior

SV (0O(k]: inport (* k4 N)

B: outport);

-I End behavior;

- End system;

Network

connect (Sieve(kI .P[k+1],
Sievefk+1] .Pfk+l])=- PNG.P~k+lJ);

connect (Sieve(k].Q~k],
Printer.Qfk])== PNG.QIfk];

(*k4 N *

End network;

Interface

Sieverl].Ptl- PNG.A;
Printer.B-- PNG.B;

End interface;

End structure;

End system.

-70-

3.5.4. The Verification of the Prime Number Generator

We now prove that the distributed prime number gen-

erator satisfies the behavior specification. Since a mes-

sage is sent to the Printer process if and only if it

first arrives a Sieve, a critical step in the verification

is to prove that a number will first arrive at a Sieve if

and only if it is a prime. This is proved by the follow-

ing lemmas.

Since it is easily shown that y.msg=x.msg if and only

if the event x of A enables the event y of P(k], Q[k] or

B, the predicates x=>y and y.msg=x.msg are used inter-

changeably in the proofs. -

Lemma 3.6.1.

The message sequence in every port is in ascending

order. Formally:

V i4 N, pl, p24 P(i]

pl-> p2 #> pl.msg < p2.msg

Proof

(* By induction on port id numbers *)

The Induction Hypothesis
H(i) - pl, p24 P[ij

pl-> p2 #> pl.msg< p2.msg

(I) H(l) is trivial;
(II) Assume H(k) is true, then

(1) pl, p24 P[k+l], pl-> p2

there exist pl', p2 '4 P~kJ s.t.
(2) pl'.> pl p2'-> p2 ...SR12
(3) pl.msg- pl'.msg p2.msg- p2'.msg

.... SR21

-71-

(4) pl'-> p2' . () (2), SR15
(5) pl'.msg < p2'.msg (4), Hypothesis
(6) pl.msg< p2.msg ... (3) , (5)
Thus H(k+l)

Q.E. D.

Lemma 3.6.2.

If a number x appears at port P[i] then no number sent

to the Printer process from any previous port divides

x. Formally:

V i4 N, x4 P[i]
(94 N, a4 P[j]

j< i ^ ord(a)= 1 ^ a.msglx.msg)

Proof

(* By induction on port id numbers *)

The Induction Hypothesis
H(i) = V x4 P[i]

-(j4 N, a4 P[j]
i ^ ord(a)= I ^ a.msglx.msg)

(I) H(1) is trivial;
(II) Assume H(k) is true, then

for all Y4 P[k+l]

-there exists x* Pfk] s.t.
(1) x-> y x.msg= y.msg ...SRl2, SR21
(2) (+ x4 P~k]

ord(x')= 1 A x'.msglx.msg) ... SR12
(3) '}j4 N, a* P~j]

~ j< k A ord(a)= 1 a.msglx.msg)
... Hypothes is

(4) j4 N, a4 P~k]

j< k ^ ord(a)= 1 ^ a.msgly.msg)- ... (1), (2), (3)
Thus H(k+l) is true

0.E. D.

Lemma 3.6.3.

If a number x first arrives at port Pti] then every

number that is less than x is divisible by some number

sent to the Printer process from a previous port.

,,...

-72-

Formally:

V i4 N, X4 P(i1
ord(x)= I #> (V a* P[I1

a.msg< x.msg
#> (+ j4 N, b4 Pj]

j< i ord(b)= 1
b.msgja.msg.)

Proof

(* By contradiction *)

(1) i4 N, x4 P[i], ord(x)= 1
(2) a. P[I], a.msg< x.msg
Assume
(3) -(+ j4 N, b.* P[j]

j< i ^ ord(b)= 1 b.msgia.msg)

there exists y4 P[i] s.t.
(4) a=> y (3) , SR12
(5) y.msg= a.msg< x.msg ... (4) , SR21
(6) y-> x (5), Lemma 3.6.1.

(6) contradicts (1), (4)
SQ. E. D.

Lemma 3.6.4.

If a number x first arrives at port P[i] then no previ-

ous number divides x. Formally:

V i4 N, x* Phi]

ord(x)= 1 #> -(+ a4 P(l]
a.msg< x.msg a.msglx.msg)

Proof

1" By contradiction *)

(1) x-4 Phi] ^ ord(x)= 1

Assume there exists a4 P[1] s.t.
(2) a.msg< x.msg ^ a.msglx.msg

there exist j< i, y4 P[j] s.t.
(3) ord(y)= 1 A y.msgla.msg ... (2), Lemma 3.6.3.
(4) y.msgfx.msg ... (2), (3)

(1), (4) contradict Lemma 3.6.2.
Q.E. D.

Lemma 3..6.5.

4 i; ~

-73-

The length of messages strictly decreases as the port

id number increases. Formally:

i 4 N, a* P(i], b4 P'i+l]

a=> b #> ord(a) > ord(b)

Proof

(By induction on the ordinal ,~umber of b *

Define a function f: P[i+lI!-> Phi)
such that f(b)- a iff a=> b
This function exists because of SR12 and SRl5.
The Induction Hypothesis

H(n). b.* P[i+lI, a* P[i]
ord(b)= n ^f(b)= a #> ord(b) < ord(a)

(I) H(l) is true because of SRl2.
(II) Assume H(k) is true then

if b'4 P[iil], a'4 P[iJ
ord(b') k+l f(b')= a'
(1) a-> a' . ..SRl5
(2) ord(a') >ord(a) >ord(b) =ord(b') -1

.(1), Hypothesis
(3) ord(a') > ord(b') ... (2)

Q. E. D.

Lemma 3.6.6.

Every message terminates at some port; in particular

the message can not go beyond the port whose id number

equals to the ordinal number of the message. Formally:

V a4 P[1]
1+i4 N, x4 PNi]

i> ord(a) a=> x)

Proof

(By contradiction *

Let a4 Phi]

* Assume there exist i4 N, x4 Phil s.t.
(1) i> ord(a) ^a-> x

there exist a(k]4 P~k]
for all k from 1 to i s.t.

(2) (a-) ahl]=> a[21-> ...- > afil (ax)

-74-

...... SR13

(3) ord(x) < ord(a) - i Lemma 3.6.5.
(4) ord(x) < 0 (1), (3)

(4) contradicts the fundamental
property of ordinal numbers

Q. E. D.

Lemma 3.6.7.

A prime number first arrives at some port. Formally:

V a- P(l]
+ a'4 P[1] a'-> a a'.msgla.msg)

#> + k4 N, x4 P[k]
(a= x v a=> x) ord(x)= 1

Proof

For all a* P[l],
from Lemma 3.6.6. and SR21,
there exists i4 N s.t.

~(i y4 P[il a=y v a=> y)
Let j be the lower bound of such id numbers,
(it is obvious that j > 1)
then there exists x4 P[j-I] s.t.

(1) a=x v a=> x
(2) -(+ y P[j] a=y v a=> y)
(3) ~(a' P[Il a-> a - a'.msg a'mSg)
(4) ~(x4 P[j] x'-> x x'.msg x.msg)
Assm (1), (3), SRll, SRI5, SR21

Assume T

() ord(x)> 1

there exists y4 P[j] s.t.
(6) x=> y ... (4), (5), SR!2

(6) contradicts (2)
(7) ord(x)- I

Q.E. D.

Theorem 3.7.

The distributed "sieve of Eratosthenes" is a correct

prime number generator.

Proof

By the sequence of theorems 3.7.1. to 3.7.6.

Theorem 3.7.1. H

N -sno-

-75-

V a4 A
V (- a'4 A a'-> a a'.msgla.msg)

#> + b4 B a=> b

Proof

(1) a4 A (+ a'4 A a'-> a ^ a'.msgla.msg)

L there exist k4 N, x4 P[kj s.t.
(2) (a=x v a=> x) ^ ord(x)= 1 (1), Lemma 3.6.7.

there exists y4 Qik] s.t.
(3) x=> y (2), SQI

there exists b4 B s.t.
(4) y=> b PRlI
(5) a=> b (2), (3), (4)

Theorem 3.7.2.

V b4 B + a* A
a=> b (+ a'" A a'-> a ^ a.msgla.msg)

Proof

(1) b4 B

there exis. k- N, y4 Qfk] s.t.
(2) y=> b .. i), PR12

there exists x' P(k] s.t.
(3) x=> y ^ ord(x)= I SQ12

there exists a' A s.t.
(4) a= x v a=> x SR12
(5) -(+ a'4 A a'-> a ^ a-.msgja.msg)

-.. (3), (4), Lemma 3.6.4.
(6) a=> b(2), (3), (4)

Theorem 3.7.3.

V b4 B, s4 SYS, e4 ENV
(s-> b #> + a4 A a-> s=> b)
(e-> b #> + a' A e=> am> b)

Proof

Trivial

Theorem 3.7.4.

5- - - ----

-76-

V a* A, bl, b2* B
a=> bl a=> b2 #> bl= b2

Proof

(1) a4 A, bl, b24 B, a=> bl, a=> b2

there exist i, j* N, p14 Pti], p24 P[j]
ql-* Qij, q24 Q[j] s.t.

(2) (a= pl v a=> pl) ^ (pl=> ql=> b)
(3) (a= p2 v a=> p2) ^ (p2=> q2=> b)

... (i), SRI3, SQ13, PR13 J
assume i< j then there exists pl'4 P[i] s.t.

(4) (a= pl v a=> pl') - (pl'=> p2)
... (3), SR13

(5) pl= pl' ... (2) , (4) , SR14
(2), (4), (5) conflict SR11 and SQII

Similar proof can show the
infeasibility of j< i; Thus

(6) i= j
(7) pl= p2, ql= q2, bl= b2 ...SR14, SQ14, PR14

Theorem 3.7.5.

V al, a24 A, bl, b24 B
al=> bl ^ a2=> b2 #> (al= a2 bl= b2) v

(al-> a2 bl-> b2) v
(a2-> al b2-> bl)

Proof

(1) al, a2* A, bI, b2* B, al=> bl, a2=> b2

there exist i, j* N, ql* Q[i], q2* Q[j] s.t.
(2) al=> ql=> bl a2=> q2=> b2

case (i) i< j

there exist p24 P[i+lj,
pl, p10* P[i] s.t.

(3) (a2= pl' v a2=> pl')
(pl'=> p2=> q2)
(al- pl v al=> pl)
(pl=> ql) ... SR12, SQ12

(4) pl-> pl" ... (3), SR12, SQ12
(5) ql-> p2-> q2 ... (3), QR15
(6) al-> a2 bl-> b2

(3) , (4) , (5) , SR15, SQ15, PRI5
(ii) j

(7) al= a2 bl= b2

i --- M

- --

S- - ~

li ' 7 1 : "' " " : ± I -t . .. ' .. .

7 AD-A128 629 EVENT-BASED SPECIFCATION AND VERIFICATION SOF
STRIBUTED SYSTEMS U) MARYLAND UNIV COLLEGE PARK SEPT

U L S OF COMPUTER SCIENCE B CHEN 1982 AFOSR-TR-63-0388

RCAEmhhhmhhhhhhm0 FG 92 l

W, 1328 2I

Iw

2 13 2.2

IL

1111L 25 1ul__6_

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS 1963-A

AR'

Lwo

ii1:

-77-

(iii) i> j
(8) a2-> al b2-> bi

... similar to case(i

Theorem 3.7.6.

V a4 A, b4 B
a-> b #> a.msg= b.msg

Proof

Trivial

/11

CHAPTER 4

TRANSACTION BASED SYSTEM SPECIFICATIONS AND VERIFICATIONS

4.1. Transactions

In database systems, users access shared data under

the assumption that the data satisfies certain consistency

assertions. For example in a FIFO (first-in-first-out)

message buffer, consistency assertions require that

(1) The length of the output sequence is less than or

equals to the length of the input sequence;

(2) If a message x enters the queue before a message y

then x should also leave the queue before y; andiI
(3) The output, sequence is a subsequence of the input

sequence.

The system state continuously changes due to events

caused by user commands. One might think that consistency

constraints could be enforced at the event level; but this

is not true. One may need to temporarily violate the con-

sistency of the system state while modifying it. For exam-

ple, in transferring money from one bank account to
another there will be an instant during which one account

has been debited and the other not yet credited. This

-78-

-79-

violates a constraint that the number of dollars in the

system is constant.

For this reason, the events in response to a user

command are grouped into sequences called transactions,

which are units of consistency. In general, consistency

assertions cannot be enforced during the time between the

beginning and the end of a transaction. In this chapter,

it is assumed that each transaction, when executed alone,

transforms the system from a consistent state into a new

consistent state; that is, transactions preserve con-

sistency.

We are interested in concurrent transactions in which

events are interleaved yet each transaction maintains a

consistent view of the system state. Not all consistent

I. sequences for a set of transactions give exactly the same

* state (i.e., consistency is a weaker property than deter-

minacy). For example, in an airlines reservation system

F if a set of transactions each requests a seat on a partic-

ular flight, then each consistent sequence will have the

property that no seat is sold twice and no request is

denied if there is a free seat, but two distinct con-

sistent sequences may differ in the details of the seat

assignments.

£ J- - - *

-80-

In such a transaction-oriented environment, each

transaction must employ some protocol to insure that data

which is temporarily inconsistent is not accessed. Mechan-

isms have been built on low level protocols like P, and V

Semaphores [DIJ68] or some high level protocols like Moni-

tors [HOA74] or Rendezvous [ICH79]. However, from the

user's viewpoint, the only interesting thing is the ser-

vice the protocol provides but not how the protocol

mechanism manages to provide the service.

From the service specification viewpoint, several

transaction synchronization description methods are com-

pared. We show that when compared with others, our

Transaction-Based Specification Language (TBS), which is

based on the event model, is suitable for the service

specification of these transaction-oriented systems.

The description methods surveyed are:

(1) Dijkstra's P, V Semaphores

(2) Hoare and Brinch Hansen's Monitors

(3) Mao and Yeh's Communication Ports or ADA's Rendezvous

(4) Campbell and Habermann's Path Expressions

(5) Transaction-Based Specification Language

The methods are compared by examining their solutions

to two typical examples: a bounded-buffer and a reader- i-

writer database. The survey is, by no means, complete;

K

.. . . . -IIH. .

1-81-

however, it covers most of the major methods.

4.2. Examples: a Bounded-Buffer and a Reader-Writer Data-

*base

In this section, we introduce two famous examples,

* namely: a bounded-buffer and a reader-writer database.

4.2.1. Example 1: a Bounded-Buffer

A bounded-buffer is a data structure containing a

finite number of slots for storing information in transit

. from a producer to a consumer. The producer passes to the

- buffer monitor a portion of information to be buffered.

The buffer monitor stores the information if there is

space available; otherwise the producer waits until space

becomes available. The consumer process requests informa-

tion from the buffer, and awaits if this information is

*not available. The buffer monitor dispatches portions to

the consumer, waiting if there is none available.

4.2.2. Example 2: a Reader-Writer Database

Another important scheduling problem is the coordina-

tion of several users on a common data object with

unspecified internal structure, but whose contents may be

inspected or changed. This is the famous reader-writer

problem that was first published and solved in (COU7lJ.

There are two kinds of users: "writers" modify the object

A__ _ _ _ _ _*- *"l;- -

1''

-82-

and must thus have exclusive access, whereas "readers"

only inspect the object and therefore may share it with

other readers. This problem illustrates two different

kinds of synchronization requirements at the same time,

namely, mutual exclusion and concurrency control.

4.3. Dijkstra's P and V Semaphores

One of the oldest and best known primitive sets is

the boolean semaphore described by Dijkstra [DIJ68]. This

consists of two operators P and V acting on a semaphore S

which takes two values, busy or free (or equivalently true

or false). The behavior of the operation is:

P(S) If S is busy the process is suspended until S

$ becomes free. If S is free then it is set busy

and the process proceeds.

V(S) S is set free. If there are processes held on a

P(S) operation then one of them is allowed to

proceed.

Semaphores can be used to protect data by surrounding

code which accesses the data by matched calls.

Process A Process B
P(S) ...lock data P(S)

.... access data...

V(S) ...unlock data... V(S)IH

77

'A&-

-83-

Semaphores can also be used to coordinate processes.

One process waits by calling P, the other signals by cal-

ling V.

Process A Process B
P(S) ...wait for B V(S) ...signal A

Semaphores can therefore be used both for data pro-

tection and process cooperation. They also have the merit

of being both simple to describe and easy to understand.

Solutions to the bounded-buffer and the reader-writer

database using Semaphores can be found in (HAB72] and

(COU71] respectly.

However, their disadvantages are also well-known. The

most important drawback is that semaphores are visible to

user processes which need not access them. Typical prob-

lems derived from this drawback are:

* A call of P may be skipped, giving access to unpro-

tected data.

* A call of V may be skipped, leaving the semaphore

busy so that the system deadlocks.

• One can forget to use them.

The Monitor concept introduced by Brinch Hansen

(BR1741 and Hoare [HOA74] tried to remedy this drawback.

L

-84-

4.4. Hoare and Brinch Hansen's Monitors

A monitor consists of a collection of Protected data

and associated procedures. The data is protected by the
monitor, and can only be accessed within the body of a

monitor procedure. The procedure. are accessible to all

processes, in that any process may at any time attempt to

call such a procedure. However, the monitor ensures that

at most one process is executing a monitor procedure at a

time by blocking any other process that calls an entry

procedure. Processes communicate with one another by con-

dition variables (usually implemented as queues) with two

associated operations, signal and wait. The solutions to

the bounded-buffer and the reader-writer database by using

Monitors are depicted in Program 4.1. and Program 4.2.

respectively.

Program 4.1. Bounded-Buffer in Monitor

Monitor bounded-buffer;

Var
buffer: array [O..bufsize- 11 of elem;
inp, outp: integer;
nonempty, nonfull: condition;

,: Procedure produce (x: elem);

Begin
if inp-outp= bufsize

then nonfull.wait;
buffer[inp Mod bufsize]:= x;
inp:- inp+ 1;
nonempty.signal

. ' .

4" -85-

End;

Procedure consume (Result x: elem);
Begin

if inp= outp
then nonempty.wait;

x:= buffer[outp Mod bufsize];
outp: = outp+ i;
nonfull.signal

End;

Begin inp:= 0; outp:= 0 End.

Program 5.2. Reader-Writer Database in Monitor

Monitor reader-writer;

Var
readers, writers: integer;
reading, writing: condition;

Procedure start-read;
Begin

if writers <> 0
then reading.wait;

readers:= readers+ 1;
reading.signal

End;

Procedure end-read;
Begin

readers:= readers- 1;
if readers= 0

then writing.signal
End;

-" Procedure start-write;
Begin

writers:= writers+ 1;
if (readers <> 0) or (writers <> 0)

then writing.wait
End;

Procedure end-write;
Begin

writers:- writers- 1;

Y

-86-

if writers<> 0
then writing.signal
else reading.signal

End;

Begin readers:= 0; writers:= 0 End.

4.4.1. Discussion

Though monitors solve the mutual exclusion problems,

the signal and wait operations on condition variables

suffer the same structure problem as P and V operations on

semaphores. In addition, there is very little support for

concurrency expression in Monitors.

(1) Low level synchronization is mixed with high level

scheduling in Monitors. Consider the following exam-

ple:

Monitor MI;

Var x: integer;
cl, c2: condition;

Procedure Al;
Begin

If x>3 Then cl.wait;

End;

Procedure A2;
Begin

If x< 1 Then c2.wait;

End; -!

Procedure A3;
Begin

MLF

-87-

x:- 2;
(* question point *)
? cl.signal or c2.signal ?

End,

Begin End.

Hoare's definition of monitors requires that a

procedure waiting on a condition variable must run

immediately when another procedure signals that vari-

able, and the signaling procedure in turn 1 b as

soon as the waiting procedure leaves the mt or.

This requirement may seriously distort the .-Ill

scheduling policy. A process waiting on a con-ition

pre-empts the process executing a condition signal

operation, even though the priority of the former is

lower than the later. For example, at the "question

point" in monitor Ml, all the three procedures: Al,

A2, and A3, can be scheduled next without violating

the data integrity (consistency) requirement. The

Vintroduction of the signal operation at this point

unavoidably dictates a specific scheduling policy.

In the reader-writer database, inside the pro-

cedure end-write, the statement

if writers <> 0
.1 then writing.signal

else reading.signal

gives priority to writers over readers, which is only

-88-

a design decision and not a requirement of the prob-

lem itself. This problem can be solved by the intro-

duction of nondeterminacy as in ADA's Rendezvous and

Mao and Yeh's Communication Ports, or by automatic

condition evaluation and signaling as in Brinch

Hansen's EDISON [BRI80]. T

(2) Goto-like behavior of signal and wait primitives

makes monitor programs difficult to follow and ver-

ify. Dahl's suggestion that signals should always be

the last operation of a monitor procedure is, in

fact, a very natural simplification [HOA74]. The mon-

itor solutions to the bounded-buffer and the reader-

writer database have this property. Moreover, as

Lampson indicates in [LAMB80], a signal operation is

only an implementaticn hint for easc of scheduling.

Both Dahl's and Lampson's suggestions are incor-

porated in ADA's Rendezvous (or Mao and Yeh's Commun-

ication Ports [MA080]) and in Brinch Hansen's EDISON,

which do without the signal primitive in their syn-

chronization mechanisms.

(3) Monitors were mainly desigied to specify mutual

exclusion on shared objects. There is little support

for concurrency expression. To specify concurrency

among readers in the reader-writer database, we have

to decompose the read operation into three

1- ' ; , - -_.... _

L -89-

1. suboperations: start-read, readop, and end-read. The

monitor specifies the synchronization among start-

reads, and end-reads, but leaves readop unsynchron-

ized. Instead, it requires the calling sequence of a

user process to be start-read, readop and end-read.

What if the user does not (or forgets to) follow the

7convention? The problem is almost the same as P and V

primitives as discussed in Section 4.3. This problem

can be solved by the right/synchronization controller

mechanism (similar to extended capabilities) intro-

duced by Michael Conner [CONM79], or the "procedure"

invocation mechanism introduced in ADA's Rendezvous.

1 4.5. ADA's Rendezvous

S i"An ADA task defines a set of "entries" and "pro-

cedures", which are visible to and can be invoked by other

Itasks. An entry is similar to a monitor procedure in that

it is a mechanism to achieve mutual exclusion. A task can

Fonly "accept" an entry exclusively at one time. On the

other hand, a "procedure" body can be executed con-

currently. An entry can be called externally (by another

task) or internally (by a procedure). A task may allow a

certain sequence of calls by simply sequencing a group of

"accept" statements. When an accept statement is encoun-

tered, the corresponding entry call will be executed.

I{

-90-

The "when guard" (11 in ADA is similar to the wait

condition concept in Monitors. A when guard is a boolean

expression which has to be true for the entry to be acces-

sible. A construct called the "select" statement is

introduced to allow nondeterministic choice of several

true guards. This capability increases the expressive

power of ADA tremendously. A "select" statement is dif-

ferent from a "case" statement (as in PASCAL) in that if

more than one branch can be taken (with true guards and

outstanding calls) a random choice is made for the

"select" statement; there should be one and only one true

branch in a "case" statement. Solutions in ADA to the

bounded-buffer and the reader-writer database appear in

Program 4.3. and Program 4.4., respectively.

Program 4.3 Bounded-Buffer in ADA 1
Task bounded-buffer Is

Entry produce (ml: IN elem);

Entry consume (m2: OUT elem);

End;

Task body Bounded-buffer Is

Var

[l]The concept is originally proposed by Dijkstra in
[DIJ76J.

II

-91-

buf: array 0.. bufsize- 1 of elem;
inp: integer : 0;
outp: integer := 0;

Begin
loop
select
when inp- outp < bufsize =>

accept produce (ml: IN elem) do
buf [inp .od bufsizel := ml;

end;
inp:= inp+ 1;

or
when inp > outp =>

accept consume (m2: OUT elem) do
m2:= buf[outp Mod bufsize];

end;
outp:= outp+ 1;

end select;
end loop;

End bounded-buffer.

4

Program 4.4. Reader-writer Database in ADA

Task reader-writer Is

Procedure read(v: OUT elem);
Procedure write (e: IN elem);

r" End;

Task body reader-writer is

Var s: elem;
readers: integer := 0;

Entry start-read;
Entry stop-read;
Entry start-write;
Entry stop-write;

Procedure read (v: OUT elem) Is
Begin

start-read;

-92-

v:= S;
stop-read;

End;

Procedure write (e: IN elem) Is
Begin

start-write;

s:= e;
stop-write;

End;

Begin
accept start-write;
accept stop-write;
loop

select
when writers= 0 =>

accept start-read;
readers:= readers+ 1;

or
accept stop-read;

readers:= readers- 1;
or

when (writers = 0) and (readers = 0) =>
accept start-write;

writers:= writers+ 1;
or

accept stop-write;
writers:= writers- 1;

end select;
end loop;

End reader-writer.

4.5.1. Discussion

(1) By the introduction of non-deterministic select

statements, ADA manages to be a high level descrip-

tion language which specifies the problem (e.g.,

reader-writer database) without making design deci-

sions (e.g., reader or writer priority). The tradi-

tional argument against nondeterminacy is its ineffi-

A -

* h.

~-93-

ciency. While this argument is true in uniprocessor

systems, it is no longer valid in today's multipro-

* 4. cessor systems. In Brinch Hansen's EDISON, Lampson's

MESA [LAMB80] and Atkinson's Automatic Verification

of Serializers [ATK80] similar arguments are dis-

cussed in favor of nondeterminacy.

(2) By the introduction of the "procedure" invocation

concept, ADA is able to specify process concurrency

without suffering data protection problems as in Mon-

itors. While scheduling can be separated from syn-

chronization in ADA, the control-related and data-

related properties are still mixed together. Control

and data are quite different properties [LAV79,

BOS79, CAM741. For instance, in the bounded-buffer,

j [the input and output pointers (inp and outp vari-

Lables) specify synchronization properties only, but

* [do not affect directly the value of array buf[l..n-l]

except "controlling" "when" the data can be retrieved

or updated.

Path Expressions [CAM74] are one of the outstanding

t *approaches which separate control from data specification

in a monitor.

... __ _ __ __ _ _ _ --- - - - - - -- - - - - - - - - ------ - 7......

-94-

4.6. Path Expressions

The term "path expression" denotes many notations

that are based on the scheme introduced by Campbell and

Habermann. These include Regular Path Expressions (CAM74], J
Open Path Expressions [CAM74], Pr-!icate Path Expressions

[AND79], and other versions which are restrictions or com-

binations of the above. Notations that are similar to

paths that model system behavior were developed indepen-

dently by Shaw (Flow Expressions (SHA78]) and Riddle

(Event Expressions [RID76]). A very good survey is

[SHA79]. We choose Open Path Expressions (OPE) as a

representative of this class since they seem to be the

most popular version. Furthermore an implementation (Path

PASCAL) exists for them.

4.6.1. Open Path Expressions

Open path expressions allow three distinct kinds of
constraints to be specified: sequencing (denoted by 0;0),

I

resource restriction (denoted by 'n:()O) and resource

derestriction (denoted by 0[]'). Each of these can be com-

bined with the other forms to provide complex synchroniza-

tion constraints and several constraints can be contained

in a single path expression.

[1

I

1 -95-

4.6.1.1. Concurrency

A path with no synchronization information consists

of a comma-separated list of operation names surrounded by

Jpath and end. The path:

path namel, name2, name3 end.

J imposes no restriction on the order of operation invoca-

tion and no restriction on the number of concurrent execu-

I tions of 'namel', 'name2V, and 'name3'.

4.6.1.2. Sequencing

The sequencing mechanism imposes an order on pro-

cedure executions. The order is specified by a semicolon-

3 Iseparated list. In the example bel.ow:

* path first; second; third end.

one execution of operation 'first must complete before

each execution of 'second' may begin, and one execution of

second' must complete before each execution of 'third'

*can begin. However, there is no constraint on the number

of initiations of 'first'.

4.6.1.3. Restrictions

Limited resources occasionally make it desirable to

limit the number of concurrent executions of an operation.

-_

-96-

The resource restriction specification allows concurrent

execution of operations to proceed until the restriction

limit is reached. Restrictions are denoted by surrounding

the expression to be restricted by parenthesis and preced-

ing it with the integer restriction limit and a colon. A

typical example is the bounded buffer of size n. The path J
expression below:

path n: (1: (produce); 1: (consume)) end.

imposes that every "consume" operation has to be preceded

by a "produce" operation, and allows only n concurrent

"produce; consume" paths to happen at any time. The "I"

in front of "produce" ("consume") inhibits the concurrent

execution of the "produce" ("consume") operations.

4.6.1.4. Derestrictions

For some applications it is convenient to process all

calls to an operation once that operation's execution has

begun. Such a situation might occur when a large spooler

is brought into memory to process I/O requests. The

specifier denoting "derestriction" of a list of operations

is shown by surrounding the list in square brackets. The

path:

path setup; [spooler] end.

requires a "setup" to be executed before each sequence of f

-97-

"spoolers" to proceed, but once a "spooler" has begun exe-

cution the "spoolers" proceed until all executions have

terminated. Afterwards, a "setup" must again complete

before any "spooler" can proceed. The Path PASCAL's solu-

tions to the bounded-buffer and the reader-writer database

are depicted in figure 4.5 and Program 4.6. respectively.

Program 4.5. Bounded-Buffer in Path Pascal

Type bounded-buffer = Object

Path n: (1 (produce); 1: (consume)) end;

.A Var
buffer : array O..bufsize- 1 of elem;

-j inp, outp: integer;

Entry Procedure produce (m: elem);
Begin
bufferinp Mod bufsize]:= m;
inp:= inp+ 1;

End;

11 Entry Procedure consume (Var m: elem);
Begin

m:- buffer[outp Mod bufsize];
I| outp:- outp+ 1;

End;

Init; Begin inp: = 0; outp: = 0 End;

End object.

Program 4.6. Reader-Writer Database in Path PASCAL

S~ .i, I

-98-

Type reader-writer= Object

Path write; (read] End;

Var s: elem;

Entry Procedure write (e: elem);
Begin

s:= e;
End;

Entry Function read: elem;
Begin

read:- s;
End;

Init; Begin End;

End object.

4.6.2. Discussion

By introducing path expressions, Path PASCAL

separates control-related from data-related properties.

There are neither condition variables, nor signal, nor

wait (or when) constructs in the language. However, there

are still some intrinsic problems with path expressions.

(1) The meaning of a path expression depends too much on

a particular interpretation (implementation). For

instance, a path expression specifies the reader-

writer database integrity property by

path write; (read] end.

The correctness of the specification depends on the I
meaning of the notation []. Consider a particular

6i~

-99-

situation:

Operation Event Time
41 writel arrived ti

readl arrived t2
read2 arrived t3
write2 arrived t4
read3 arrived t5
writel executed t6
read4 arrived t7
writel finished t8
read5 arrived t9

At time t8, the specification clearly states that
readl and read2 will be executed next. However, the

precedence between write2 and read3, write2 and

read4, write2 and read5 is not so clear; it depends

on a particular implementation of compiler to inter-

pret the meaning of []. Worse, while it is possible

to assign a special interpretation to [], another

kind of priority policy may make it difficult to

"tune" to the new priority policy from the old

interpretation of[].

(2) Different synchronization properties such as mutual

exclusion (to maintain data integrity), scheduling

(to allow priority policies) or process communication

(to exchange messages between processes), have to be

intergrated into a single ad hoc path expression. A

consequence is that it is difficult to extend a path

expression to meet a new requirement [BL079]. A new

requirement usually results in a reconstruction of an

-. , - - --..

-100-

old path expression.

(3) Though control and data-related properties are speci-

fied separately, a non-procedural language (Path

Expressions) is used to specify the control-related j
properties, while a procedural language (PASCAL) is

used to describe the data-related properties. This J

undesirable mixture of procedural and non-procedural

languages complicates issues, especially when dealing

with design verifications.

The Transaction-Based Specification Language (TBS), a

sublanguage of EBS, which extends the work of [GRE77] and

[LAV79], solves most of the problems above.

4.7. The Transaction-Based Specification (TBS)

A user calls a system by submitting a command with

input/output parameters. We define the sequence of events

caused by the invocation of a user command a transaction.

A transaction TR is characterized by two external events:

TR.begin and TR.end, which are visible to the user; and a

sequence of internal events which happen between these two

external events. As with an event, a transaction is

atomic, in that the whole sequence of contained events

happens completely or not at all.

i II

. ... ,,-, " .[]

-101-

Thus, we may represent the event sequence of a tran-

saction TR by (e(l), e(2), ... , e(n)). The underlying

semantics (in terms of the event model) of this notation

is that if e(i) happens then e(i+l) will happen eventu-

ally, for all i greater than zero and less than n, where

e(l) and e(n) are the beginning and the end of the tran-

saction and represented by TR.begin and TR.end, respec-

tively. This is expressed formally in EBS as follows:

e(i)=> e(i+l) for all i, 1< i< n.

4.7.1. The Transaction Relations

We now extend the event relations to transaction

relations. The first considered is the transaction order-

ing relation represented by +>. Two transactions are

ordered by +>, if and only if the end of one transaction

precedes the beginning of the other. Formally, two tran-

sactions, say TRI and TR2, satisfy the relation TRl +>

TR2, iff TRl.end -> TR2.begin. It follows from this

definition and the properties of ->, that the relation +>

has the following properties:

J (1) Non-reflexivity: ~(TR +> TR);

(2) Antisymmetry: TRl +> TR2 #> (TR2 +> TRl); and

(3) Transitivity: TRl +> TR2 ^ TR2 +> TR3 #> TRI +> TR3.

In other words, the relation +> is also a partial

ordering relation.

6-L ------?~'

-102-

TR1.begin TRl.end
----------- * -------- * ---------- * -----------

TR2.begin TR2.end

Figure 4.1. Transaction Ordering Relation +>

Based on the transaction ordering relation +>, the J
transaction mutual exclusion relation can be defined

easily. Two transactions, say TRI and TR2 are mutually

exclusive iff

TRI +> TR2 v TR2 +> TRI.

Similarly, the transaction concurrency relation between

them is denoted by TRI 11 TR2, and is defined as

(TRl +> TR2) (TR2 +> TRI).

In a particular environment where events can be totally

ordered, this definition is equivalent to

TRl.begin-> TR2.end TR2.begin-> TRl.end

which easily proven.

TRl.begin TRl.end

---- -- ----- --- *-------- ---------------- * -- - -- * - - - -

TR2.begin TR2.end

Figure 4.2. Transaction Concurrency Relation

-103-

It should be noted that both the concurrency relation

// defined among events and 11 defined among transactions

are reflexive and symmetric; however, neither is transi-

tive. Figure 4.3. and Figure 4.4. show the examples where

they are not transitive.

4.7.2. The Transaction Type and the Ordinal Function

We specify the behavior of a system in terms of the

transactions that are allowed to happen in the computation

history of the system. In order to do that, we need to

have some naming mechanism to reference transactions (and

events) in the history. This can be achieved by introduc-

ing of the concepts of the transaction type and the ordi-

nal function. A transaction type is defined as a set of

transaction instances with an ordinal function mapping

from transaction instances to natural numbers. The ordinal

function is referred to as the invocation order of ther

transaction instances (i.e., the order of the begin event)

K in the history of a transaction type. By convention, each

user command constitutes a transaction type and is

represented by the command name in capital letters.

4.7.3. The Language TBS

Based on the concepts above, we develop a language

called TBS (Transaction-Based Specification Language), to

specify the transaction-oriented systems. Since the

_ _ _ _ _ _ _ _ _ _ 9

Process Process Process

1 2 3

el ---- -

e4 e

e2 e5 4- \e8

/ e9

/ el " /" IeI \ / elO

/ /

e3 "/.

e71,

Figure 4.3. Non-transitivity of //:
(el//e4) and (e4//e9)
but el-> e9

Ti T3

TI.begin TI.end T3.begin T3.end

T2.begin T2.end

T2

Figure 4.4. Non-transitivity of II
(TIll T2) and (T211 T3)
but (Tl+>T3)

~H

-104-

syntax of TBS is very similar to EBS, instead of present-

ing a formal syntax for TBS, the differences between TBS

and EBS are indicated:

(1) A system specification in TBS begins with the

reserved word Transystem.

(2) The messagetype definition part in EBS is replaced by

Transaction definition in TSS: each parameter is pre-

ceded by the reserved words IN or OUT, meaning that

the parameter is either input to or output from the

system, respectively.

(3) Variables in TBS range over the domain of transac-

tions, instead of events as in EBS; and the command

names in capital letters represent transaction types.

4.7.4. A TBS's Solution to the Reader-Writer Database

A legal trace of the history of this system could be

1. as follows:

History Ordinal Functions
WRITE READ

writel.begin 1 - -

writel.end - -

readl.begin - 1
read2.begin - 2
read5.begin - 3
readl.end - -

readS.end - -
read2.end - -
write2.begin 2 -
write2.end - -
write5.begin 3 -

* '.,'77 _

-105-

write5.end.i

The mutual exclusion among write's can be specified as

V wl, w24 WRITE
w1= w2 v
wl +> w2 v w2 +> wl

Similarly, the mutual exclusion between read's and write's

can be specified as

V r4 READ, w* WRITE
r +> w v w +> r

There is no restriction on the order among read's. They

can proceed concurrently. The data-related property is

specified as follows:

V r4 READ, w4 WRITE
w +> r
(V w'4 WRITE

w' +> r #> w'= w v w" +> w)
#> r.msg- w.msg

which says that a reader (r) will get the information

(r.msg) that was put before its arrival by the last writer

(w). Note that this specification has the desirable pro-

perty that when no write transaction precedes a read tran-

saction then the contents of the message obtained by that

read command is not constrained by the specification, but

is open to implementation interpretations.

? - 2 - -- :-- -- --

-106-

The complete specification of the reader-writer data-

base in TBS appears in Program 4.7.

Program 4.7. Reader-Writer Database in TBS

Transystem reader-writer-database;

Transaction
READ (OUT msg: elem);
WRITE (IN msg: elem);

End transaction;

Behavior

(* Mutual exclusion among write's *)
V wl, w24 WRITE

wl= w2 v1 wl +> w2 v w2+> wl;

Mutual exclusion between read's and writes *)
V V r4 READ, w- WRITE

r +> w v w +, r;

(* A read will get the contents of the last write *)
r4 READ, w4 WRITE

• w +> r ^

V w4' WRITE
w +> r #> w'- w v w +> w)

#> r.msg= w.msg

End behavior;

*End system.

I

4.7.5. A TBS's Solution to the Bounded-Buffer System

* The property that a consumer cannot get something

from nothing (i.e., has to wait until the buffer is not

empty) can be specified as

I2I

-107-

V c4 CONSUME + p4 PRODUCE
ord(c)- ord(p) ^ p +> c;

The property that a producer cannot deposit a message

when the buffer is full can be specified as

V p4 PRODUCE
ord(p) > bufsize J
#> + c4 CONSUME

(ord(c)= ord(p)- bufsize) ^ (c +> p)

where bufsize is the size of the buffer. Since a bounded

buffer is normally a queue (instead of a pool) of message 4
slots, we require that producers not deposit messages con-

currently into the buffer, and that consumers not receive

messages concurrently from the buffer. These properties

can be specified as

V cl, c24 CONSUME, pl, p2* PRODUCE
(cl- c2 v cl +> c2 v c2 +> cl)
(pl= p2 v pl +> p2 v p2 +> pl);

It can be easily proved that the specification is

equivalent to

V cl, c2* CONSUME, pl, p24 PRODUCE
(ord(c2) = ord(cl)+ 1 #> cl +> c2) A

(ord(p2)= ord(pl)+ 1 #> pl +> p2);

This specification only serializes the transactions

among "consumes" and the transactions among "produces".

If the buffer is neither full nor empty, then it is still

A,

-108-

possible that the producer deposits a message into the

*- buffer while the consumer obtains a message from the

buffer. This additional concurrency cannot be specified

either in ADA's Rendezvous nor in Monitors.

A bounded-buffer also behave: as a first-come-first-

serve message queue, i.e., the sequence of messages

obtained by the consumers is identical to those deposited

by the producers. This is specified as

V c4 CONSUME, p* PRODUCE
ord(c)= ord(p) #> c.msg= p.msg;

The complete specification of the bounded-buffer in TBS

appears in Program 4.8.

Program 4.8. Bounded-Buffer in TBS

Transystem bounded-buffer;

Transaction
r PRODUCE (IN msg: elem);

CONSUME (OUT msg: elem);
End transaction;

Behavior

(* BBl: A consumer has to wait until the
buffer is not empty.

V c4 CONSUME + p4 PRODUCE
ord(c)- ord(p) ^ p +> c;

(* BB2: A producer has to wait until the buffer
is not full, where the buffer is of size

- - - -- . ~ - -3

-109-

bufsize.

V p4 PRODUCE
ord(p) > bufsize
#> + c4 CONSUME

(ord(c)= ord(p)- bufsize) (c +> p);

(* BB3: There are neither concurrent PRODUCE's

nor concurrent CONSUME's.
V cl, c24 CONSUME, pl, p24 PRODUCE

(cl= c2 v cl +> c2 v c2 +> cl)
(pl= p2 v pl +> p2 v p2 +> pl);

(* BB4: The sequence of messages obtained by the
consumer is exactly the same as that
was put by the producer.

V c* CONSUME, p4 PRODUCE

ord(c)= ord(p) #> c.msg= p.msg;

End behavior;

End system.

4.7.6. Discussion

The approaches of TBS and path expressions specify a

system by a subset of possible system histories. However,

TBS is more abstract than path expressions. In the

reader-writer database, we state the data integrity pro-

perties independent of priority do that they are proper-

ties of any reader-writer database regardless of priority.

The important perspective is that we stick strictly to the

"separation of concern" principle and specify orthogonal

4properties separately. In contrast, the path expressions

tend to take an integrated approach and come out with com-

plex and difficult-to-understand solutions. A direct

-4- 7

-110-

consequence is that specifications in TBS are more under-

Jstandable, minimal and extensible than those in path

expressions.i
The bounded-buffer solution (Program 4.5.) in ADA

shows that when the buffer is neithc:r full (inp- outp < n)

nor empty (inp > outp) then it will nondeterministically

accept a produce or a consume entry. This nondeterminacy

is a big improvement over the Monitor solution (Program

4.1.), which specifies more non-essential scheduling (or

priority) policies. However, the nondeterminacy solution

in ADA is still not very satisfactory. In reality, a pro-

ducer and a consumer are allowed to proceed concurrently

without violating other data integrity requirements when

the buffer is partially full. Nondeterminacy is much

stronger than "concurrency" since transactions

(represented by entries in ADA) are mutually exclusive to

each other in "nondeterminacy" so that there is still

total ordering between transactions.

In TBS, data integrity requirements are specified by

the transaction ordering relation while (possible) con-

currency is specified implicitly by the lack of transac-

tion ordering. This is a natural way to represent the

(possible) concurrency between a "produce" and a "consume"

transaction. The resulting specification of the bounded-

buffer in TBS is minimal in the sense that it describes

-,

properties of any bounded-buffer.

4.8. The Semantics of TBS

The semantics of a transaction has been defined in

section 4.7. We now elaborate the semantics of the tran-

saction types and the transaction relations.

4.8.1. The Semantics of Transaction Types

In TBS, each user command constitutes a transaction

type. A transaction type is defined as a set of transac-

tion instances with an ordinal function mapping from tran-

sactions into natural numbers. A transaction definition in

TBS defines two ports: an inport, corresponding to the

"BEGIN" event set of the transaction type, having the "IN"

parameters as its message types; and an outport,

corresponding to the "END" event set of the transaction

type, having the "OUT" parameters as its message types.

There is a strong relationship between these two

ports. From the "BEGIN" port to the "END" port there is a

reliable transmission system (except for the properties

RTl5, and RT21), i.e., "BEGIN" and "END" ports satisfy

the properties: RT1(BEGIN, END), RTl4(BEGIN, END) one

"begin" event enables one and only one "end" event; and

RTI2(BEGIN, END), RTl3(BEGIN, END): there is no internally

or externally generated "end" event except enabled by a '1

- - .- ~-. - ~ js

-112-

"begin" event.

The ordinal function is, by definition, referred to

as the invocation order (i.e., the order of the "begin"

event) of the transaction instances in the history of

transaction type. Thus, in the exp:ression, ord(x, TR), the

ordinal number of transaction instance x in the history of

transaction type TR, can be translated directly as

ord(x.begin, TR.BEGIN).

4.8.2. The Precedes Relation +> and the Concurrency Rela-

tion I

The expression TRl +> TR2 in TBS can be translated

into EBS as TRl.end -> TR2.begin. The expression TRlI I

TR2 can be translated into EBS as ~(TRl +> TR2) - -(TR2 +>

TRl), which can in turn be translated into ~(TRl.end ->

TR2.begin) ^ -(TR2.end -> TRl.begin) in a multiprocessor

interpretation or (TRl.begin -> TR2.end) ^ (TR2.begin ->

TRl.end) in a centralized processor interpretation.

4.9. The Structure Specification and Verification in

TBS

The structure specification in TBS is almost the same

as that in EBS. The major difference are the semantics of

links and more structure linkage of transactions.

-113-

Two transactions A and B, can be connected only if:

(1) A is a transaction with OUT parameters only;

(2) B is a transaction with IN parameters only;

(3) There is a one-to-one correspondence mapping from

each OUT parameter of A +- an IN parameter of B

having the same message type.

When two transactions are connected by a connect ,

statement, they are merged into a single transaction.

Once transactions are merged, it is impossible to distin-

guish between them; one transaction begins when the other

begins, and ends when the other ends.

The semantics of transaction connections as defined

above is very similar to the communication protocol (syn-

chronized send-receive) adopted in CSP [HOA78] and the

exchange function in PAISLEY [ZAV8lI.

4.9.1. Example 2: A Double-Buffer

A double-buffer (see Figure 4.5.) that consists of a

series connection of two bounded-buffers BX of size bx and

BY of size by can be specified as follows:

Transystem DBF;

Transaction
PRODUCE (IN msg: elem);
CONSUME (OUT msg: elem);

End transaction;

r.4 1

DBF

- PRODUCERJXB CONSUMER

Figure 4.5. A Double Buffer

-114-

Structure

Subsystem BX;

Transaction
PX(IN msg: elem);
CX(OLJT msg: elem);

End transaction;

Behavior
BUF(PX, CX, bx); [2]

End behavior;

End subsystem;

Subsystem BY;

Transaction
PY(IN msg: elem);
CY(OUT msg: elem);

End transaction;

Behavior
BUF(PY, CY, by);

End behavior;

End system;

Network
connect(BX.CX, BY.PY)== DBF.CP;

End network; I

Interface
BX.PX== DBF.PRODUCE;
BY.CY== DBF.CONSUME;

End interface;
End structure;

End system.

This double-buffer provides the service of a single

bounded-buffer with a buffer size equal to the addition of

[2] A shorthand notation for a buffer of size bx,with

PX and CX as its produce and consume respectively. LI

-115-

bx and by. This behavior is specified as follows:

Transystem DBF;

Transaction
T PRODUCE (IN msg: elem);

CONSUME (OUT msg: elem);
End transaction;

Behavior
BUF (PRODUCE, CONSUME, bx+ by);

End behavior;

End transystem.

The following theorem proves that the structure

specification satisfies its behavior specification.

4.9.2. The Verification of the Double-Buffer

Theorem 4.1.

The behavior of a series connection of a b; .fer BX of

size bx and a buffer BY of size by is the same as a

buffer of size bx+by, i.e., the behavior specification

of transystem DBF is satisfied by its structure specif-

ication.

Proof

(* BB1: V c* CONSUME + p4 PRODUCE
ord(p)= ord(c) ^ p+> c *)

(1) c4 CONSUME ...precondition

there exists cp* CP s. t.
(2) ord(cp) ord(c) cp +> c ... (1), BBI(BY)

-. '~ .:

-116-

there exists p4 PRODUCE s. t.
(3) ord(p)= ord(cp) p +> cp ... (2), BBI(BX)

(4) ord(p)= ord(c) p +> c ...(2), (3)

(* BB2: V p* PRODUCE
ord(p) > bx+ by
#> + c* CONSUME

ord(c)= ord(p)- (bx+ by) c +> p *)

(1) p4 PRODUCE ...precondition J
(2) ord(p) > bx+ by ...precondition

(3) ord(p) > bx ... (2)

there exists cp* CP s. t.
(4) ord(cp) = ord(p)- bx ^ cp +> p

... (2), BB2(BX)

(5) ord(cp) > by ... (2), (4)

there exists c4 CONSUME s. t.
(6) ord(c)= ord(cp)- by ^ c +> cp

... (5), BB2(BY)

(7) ord(c)= ord(p)- (bx+ by) c +> p
...(4), (6)

1" BB3: V ci, cj4 CONSUME, pi, pj* PRODUCE(ci= cj v ci +> cj v cj +> ci)^"

(pi= pj v pi +> pj v pj +> pi) *)

Trivial

(* BB4: V c4 CONSUME, p* PRODUCE
ord(c)= ord(p) #> c.msg= p.msg *)

(1) c* CONSUME, p4 PRODUCE ord(c)= ord(p)
" ... precondition

.4 there exists cp4 CP s. t.

(2) ord(cp)= ord(c) ^ cp +> c ...BBI(BY)

(3) cp.msg= c.msg ...(2), BB4(BY) j

there exists p04 PRODUCE s. t.
(4) ord(pO)= ord(cp) p0 +> cp ...BBI(BX)

II

----~-~----~--

-1 -117-

(5) pO.msg= cp.msg ... (4), BB4(BX)

j(7) ord(pQ)= ord(c)- ord(p) ... (1), (2), (4)

(8) p= cp ... 7

(9) p.msg= c.msg ... (6), (8)

0.E. D.

Io s s

CHAPTER 5

EVENT COORDINAmIONS

5.1. Coordinations

By event coordination we mean the coordination of two

or more events to enable a third event. No example in the

previous chapters comprises such event relation. We begin

our discussion with an adder circuit, whose behavior is

simple conceptually but complicated formally.

5.2. An Adder Circuit

An adder having two input arguments A and B, and an

output argument C is depicted in Figure 5.1. It receives

messages from A and B, adds their contents and sends the

result to outport C. We first look at two possible solu-

tions by traditional approaches: Petri Nets and ADA's Ren-

dezvous.

5.3. Petri Nets

A solution to the adder circuit by Petri Nets is

depicted in Figure 5.2.

The graph contains two types of nodes: circles

(called places) and bars (called transitions). These

nodes, places and transitions, are connected by directed

-118-

_ .~~~~~ ,! ,;... .

A.

C

ADDER

B

Figure 5.1. An Adder Circuit

t7-

t2
LB

II

II

iI

Figure 5.2. A Petri Net Specification
of the Adder Circuit

_ _ _ _ - -c.

-119-

arcs from places to transitions and from transitions to

places. If an arc is directed from node i to node j then i

is an input to j, and j is an output of i. In Figure

5.2., for example, places A and B are inputs to transition

t3; place C is an output of tLansition T6. A transition

without an input arc or an output arc is called a source

or a sink respectively. In Figure 5.2., tl and t2 are

sources, while t4 is a sink.

In addition to the static properties represented by

the graph, a Petri net has dynamic properties that result

from its execution. The execution of a Petri net is con-

trolled by the position and the movement of markers

(called tokens) in the net. Tokens, indicated by black

dots, reside in the circles representing the places of the

net.

Tokens are moved by the firing of the transitions of

the net. A transition must be enabled in order to fire. A

-" transition is enabled when all of its input places have a

token in them. The transition fires by moving the enabling

tokens from their input places and generating new tokens

which are deposited in the output places of the transi-

tion. In Figure 5.2., for example, the transition t3 is

enabled if both the input places A and B have a token in

them. It then can be fired, removing the two tokens from A

and B and placing one token into C. On the other hand, if

I ,.!

S_120 -

either place A or place B is empty then a transition waits

for tokens to come at the empty place. In this way, places

can be synchronized.

The example above illustrates several points about

Petri nets. One is inherent concurrency or parallelism.

There are two kinds of independent entities in the sys-

tems: one from source tl, the other from source t2. There

is no need to synchronize the generation of these enti-

ties. Thus tokens may enter the place A or B at any time.

However, when synchronization is necessary, (for example

the generation of C from both A and B), the situation is

also easily modeled.

Another major feature of Petri nets is their asyn-

chronous nature. There is no inherent measure of time or

I the flow of time in a Petri net. As in our event model,

this reflects a philosophy of time defined by a partial I
ordering of the occurrence of events.

A third feature is the nondeterminacy in Petri net

execution. If at any time more than one transition is

enabled, then any of them may fire. The choice as to which

transition fires is made in a nondeterministic manner,

i.e., randomly or by forces that are not modeled. Thus a

Petri net would seem to be ideal for modeling systems of

distributed control with multiple concurrent precesses.

-121-

Though Petri Nets have been claimed to be a major

model of concurrent systems [BAE73], there are several

inherent problems in using them for behavior modeling.

First of all, Petri nets model only control-related pro-

perties and not data-related properties. For example, in

the adder circuit, the property that

" The contents of a messages in C is equal to the sum
of those from A and B"

is not modeled in Figure 5.2.

Another problem with Petri nets is that the tokens in

a place of a Petri net are treated as indistinguishable;

therefore, process priorities cannot be easily modeled.

5.4. A Solution in ADA's Rendezvous

A solution by using ADA or CP-like language is as

follows:

Adder Solution in ADA

Task adder is

Entry A(x: IN elem);
Entry B(y: IN elem);

End task;

Task body adder is

Var
buf: elem;
acome: boolean;

- -

- __ __ __ - - 'os..

-122-

Begin
loop

select
accept A(x: IN elem) do

buf: = x;
acome: = true;

end;
~Or or accept B(y: IN elem) do

buf:= Y;
acome:= false;

end;
end select;
if acome then

accept B(y: IN elem) do
buf:= buf+ y;

end else
accept A (x: IN elem) do

buf: = buf+ x;
end ;

end if;
send (buf);

end loop;

End.

The taskbody maintains two local variables: one is

the boolean variable acome, which is true if a message

occurs first from A and false otherwise; the other is the

variable buf, which stores the contents of the first-come

message.

The control begins with a non-deterministic accep-

tance of message either from A or from B. If a message

from A (B) comes first then the control will wait for a

message from B (A), add the contents of the two messages

and send the result out. The control then returns to the

loop.

..,- .., -.

F

L-123-

This scheme handles the data-related properties, but,

it is obvious that this solution is more implementation-

oriented rather than behavior-oriented when compared with

the solution using Petri nets.

L Moreover, many possible concurrent operations have

been ruled out by this solution. Though the acceptance of

messages from A and B are two independent events, they are

serialized in the solution. And though it is possible to

accept further messages from A and B while the system is

preparing the result of previous coordinate messages, a

serialization on these events is also dictated.

Thus, we turn to our event based behavior specifica-

tion technique.

5.5. The Coordination-Based Specification Language

(CBS)

The enables relation => has been defined between two

events. This relation is not good enough to specify event

coordinations, which involves more than two events.

Instead of introducing a completely new concept, we extend

the enables relation => to specify such kind of event
1

coordinations.

We define a relation => of n+l arguments, {el, e2,

... , en} => e, to mean that a group of events el, e2, ... ,

II

---

-124-

en cooperate to enable the event e. Since events

cooperate on a fair basis, the order of the enabling

events (i.e., el, ... , en) on the left hand side of the

relation is unimportant. To emphasize this fact, we use

set notation {} to group the enabling events instead of

using paratheses (), which is usually used to denote

ordered sequences.

Definition 5.1. (Coordination Relation)

{el, e2, ... , en) => e iff the existence of el, e2,
en in the computation history guarantees the

existence of e in the future; or formally, iff
(e14 CE ^ e24 CE ^ ... ^ en* CE) #> e4 CE [1]
and el-> e ^ e2-> e ... en-> e

Definition 5.2.

{al, a2, ... , an) => {bl, b2, ... , bm) iffIal, ... , an => bl
al, ... , an) => b2

jai, .. ,an} => bm .

We also extend the event "precedes" relation "->" to

event set "precedes" relation.

Definition 5.2.

{el, ... , en) -> e iff
el-> e e2-> e ... en-> e

Definition 5.4.

[1] CE represents the computation event set including ji
all the events from ENV, SYS and Ports.$ [[1

I III__I__ _ _ _ _ L.I+ + *

-125-I.
{al, ... , eni -> {bl, ... ,em} iff

jal, ... , an} -> bl

{a, ..., an} -> bm

Theorem 5.1. (Partial Ordering of Coordination Relation)

The relation => is transitive, antisymmetric and irre-
flexive, i.e., it is a partial ordering relation. For-
mally,

(1) Sl => S2 - S2 => S3 #> Sl => S3
(2) - (S => S)
(3) (Sl => S2) #> - (S2 => Sl)

Proof

The antisymmetry and irreflexivity properties of => fol-
lows directly from the same properties of ->.

The proof of transitivity property of => also follows
from the transitivity property of -> in addition to the
transitivity property of logical implication #>.

Theorem 5.2. (Extension Theorem)

If S1 => S2 and S3 -> S2
then Sl U S3 => S2 [2]

Proof

Trivial.

Theorem 5.3. (Contraction Theorem)

If Sl U {a} => S2 - Sl => a
then S1 => S2

Proof

Sl in US [3] implies a in US (since Si => a)
implies S2 in US (since S1 U {a} => S2)

Sl -> S2 (since S1 U {a} => S2)
Thus S1 => S2

[2] The set union operator is represented by "U".
[31 S1 in S2 means that Si is a subset of S2, which is

usually represented by SICS2.

I,_' I

-126-

Theorem 5.4. (Fork-Join Theorem)

If A=> Si, A=> 52 and Si U S2 => B
then A=> B.

Proof

A in US implies Si and S2 in US
implies B in US

A-> Si, Si-> B
implies A-> B

Thus A => B.

Because of the extension theorem, the relation => is

not very expressive since we can always add some unrelated

events into the enabling event group. For this reason, we

define another kind of enables relation of events called

"collectively enables", to represent the relation that

every event in the enabling group contributes to the ena-

bling condition, i.e., there are no redundant events in

the enabling group.

Definition 5.5. (Collectively Enables Relation *>)

A set S of events collectively enables an event a,
denoted by S *> a, iff S enables a but no proper subset
of S enables a, or formally, iff

S => a and
S => a) for all S' in S, S'<> S

Definition 5.6.

S1 *> S2 iff

Sl => S2 and
(S => S2) for all S) in S1, Sl' <> Sl ,1

Theorem 5.5.

The collectively enables relation "*>" is antisymmetric,
and irreflexive.

' _" " ..

-127-

Proof

Trivial.

Unfortunately, the relation "*>" is not transitive.

This fact is illustrated in Figure 5.3.

Extending the event enables :elation to event set

enables relation forces the specification language to use

the second-order logic. In doing that, although the

expressive power increases to a very large extent, the

decisive power decreases tremendously. In particular,

there is no automatic theorem prover for second c:der

logic to date.

I Instead of introducing the second-order logic to our

specification language, we try to compromise the expres-

sive power with the decisive power. We choose to restrict

the number of elements in a set (called the degree of a

set). Thus, any set notation appearing in an n-degree

3 specification, does not represent an arbitrary set but

represents a set which can have at most n elements. This

I restriction keeps our specification language within the

first-order logic so automatic theorem proving is possi-

ble.I

,I

• , I

A ' B

//

c D

i.7

E

Figure 5.3. Non-transitivity of *>:

iA,Bj*)C and C*>E
but not iA,BI *>E

.1

I
-128-

5.5.1. An Adder Circuit Specification in CBS

I Using this CBS, we are able to specify the behavior

Jof the adder circuit, which appears as follows:

System adder (A: inport;
B: inport;
C: outport);

Degree is 2;
(* This statement restricts the set variables in
the specification to have at most two elements *)

] Behavior

(* AD10: a single event from either A or B is not
good enough to enable an event of C *)
V a* A, b4 B , c4 C1 (a=> c v b=> c);

(* AD11: when events from both sides of A and B
come together, an event of C is enabled *)
V a* A, b* B

ord(a)= ord(b) #> + c* C {a, b) => c;

S I (* AD12: any event of C has to be enabled by a
cooperation of A and B *)
V c.*C a* A,b4 Bt fa, b => c;

(* AD13: any event of C is not generated inter-
nally or externally *)
V c4 C

(V S in SYS S*> c
#> + a* A, b* B {a,bl *> S)

(V E in ENV E*> cSI #> + a* A, b* B
E*> [a, b) -> c)

(V al, a2* A, bl, b24 B
{al, bli => c {a2, b2} => c
#> al= a2 ^ bl= b2)

(V a4 A,1 S4 SYS
a, s} *> c
#> + b4 B {a, bi => c ^ {a, b} > s)

(b4 B, s4 SYS
1b, s} *> c
#> + a4 A [a, bi => c fa, b} => s)

(V a4 A, e4 ENV

3'
i: I

rI

-129-

{a, el *> C

#> + b4 B e => b A{a, b} => c) ^
(V b4 B, e* ENV

{b, el} *> c
#> + a* A e => a ^ {a, bI => c) ^

(V e4 ENV, s4 SYS
{e, s} *> c
#> (+ a* A e=> a a, sj *> c) v

(+ b* B e=> b Ib, sl *> c)), j
(* AD14: only one event of C is enabled by a

cooperation of A and B *)
V a1 A b* B,,ci,,c24 C

a, b} => ci {a, b} => c2 #> cl= c2;

(* ADI5: cooperation is done on a first-come-
first-serve basis *)
V al, a24 A, bl, b2* B, cl c24 C

{al, bl} => ci {a2, b2f => c2
#> (al= a2 bl= b2 - cl= c2) v

(al-> a2 bl-> b2 ^ cl-> c2) v
(a2-> al ^ b2-> bl c2-> cl);

(* AD21: the contents in event of C is the addi-
tion of those from A and B *)
V a4 A, b4 B, c4 C

[a, b} => c #> c.msg= a.msg+ b.msg;

End behavior;

End system.

Because of the property ADl0, {a, b} => c implies {a,

b} *> c. Thus, there is no need to distinguish between the

notations => and *> in the specification above when the

only events involved are from A, B and C. We group

together the control parts (i.e., ADlO, ADIl, ADI2, ADI3,

ADl4, and ADI5) of this adder circuit, and call the new

system behavior coop(A, B, C). This behavior will be used

as a building block in the specification of a connection

protocol in section 5.5.3.

4 I7

a-

-130-

5.5.2. The Reliable Transmission System Revisited

The behavior specification of reliable transmission

systems was given in Chapter 2; however, the specification

was given in terms of first-degree CBS, i.,e., we only

* considered events being enabled by a single event. The

second-degree CBS specification of the reliable transmis-

sion system is almost the same as that of a first-degree

specification except in specifying that there is no inter-

nally or externally generated messages. We need to con-

sider the cases of an event being enabled by two events.

Thus, the behavior RT13 is revised as follows:

IRT13: there is no internally or externally gen-
erated messages *)
V b* B

I (V S in SYS S *> b #> + a4 A a=> S)
(V E in ENV E *> b #> + a4 A E*> a=> b)

(+ a4 A, S* SYS, e4 ENV
{a, e} *> b v ia, s} *> b v le, si *> b)

(V al, a24 A (al=> b ^ a2=> b #> al= a2)
(al, a2} *> b #> al= a2))

I This is the only thing changed; other specifications

(i.e., RTII, RTI2, RTl4, RTl5, and RT21) remain the same.

5.5.3. A Connection Protocol (CTP)

A connection protocol allows many users in the sys-

tem, each identified by a port or address, to communicate

with one another (see Figure 5.4.). A pair of users must

first request a mutual connection before exchanging mes-

-- -- -a - -- - - - - - - 2

-131-

sages. Once connected, they may simultaneously transfer

messages in both directions. When they are finished com-

municating, they ask to be disconnected.

Connection Protocols appear in many levels in ISO

(International Organization for Standardization) model of

architecture for Open System Interconnection. Examples are

session-connection, transport-connection and network-

connection protocols. A connection protocol is different

from a data transfer protocol in two important features.

First, there are multiple users in a connection protocol.

This requires inclusion of explicit addresses in all

operations to indicate which users are involved. Second,

the connection is established only when both users request

to exchange messages; the connection is abolished only

when both sides of users agree to terminate the message

exchange. "Mutual agreement" implies a need for event

coordinations.

5.5.3.1. A Connection Protocol Service Specification in

CBS

For simplicity, assume there are fixed k users in the

system and let each user be identified by an integer rang-

ing from one to k. There are three kinds of commands from

each user i: connect(j), requesting a connection with user

j; disconnect(j), requesting a disconnection with user j;

HL

AT7

User(k) connect User (1)
I connect send -

(N send

receive receive
disconnect

* disconnect

connect

send User(2)

J receive

disconnect 2

Figure 5.4. A Connection Protocol

-132-

and send(j, m), requesting a message m sent to user j.

There is one kind of messages to each user i: receive (j,

m), meaning that user i receives a message m from user j.

We use the notation user(i) Iconnect to denote the inport !

connect of user(i). Similar rules are for the commands of

disconnect, send and receive.

For ease of exptession, we allow the user to specify

auxiliary ports. For example, in the specification below,

the pconnect(i,j) defines the set of connect(j) events

issued by the user i. A port is stronger than a set in

the sense that a port also defines the ordering among

events. Also it is possible to do without this auxiliary

construct in the specification; it is just for ease of

expression.

System connection protocol
(user(i) connect: inport;
user(i) disconnect: inport;
user(i) send: inport;
user(i) receive: outport);

(* I < i < n *)

Degree is 2;

Messagetype
4user(i)lconnect.msg: integer;

user(i) discnnectmsg: integer;

user(i) send.msg: record
to: integer;
data: elem;

end;
user(i) Ireceive.msg: record 1

from: integer;

data: elem;

-13 3-

end;

End messagetype;

De f ine

(User-defined ports *
pconnect(i,j), pdisconnect(i,j),
s (i, j) r r(i, j) port;

(1< i< n, 1< j < ,j<>j *
connected (i+j) , disconnected(i+j) port;
(* 1 < i <jj n*

End define;

Behavior

(pconnect(i,j) is the set of connect(j) events
issued by user i. *)
V x4 user(i) connect
X.rsgj #> X4 pconnect(i,j);
x* pconnect(i,j)

x4 user(i)lconnect ^x.msg= j;

(1 1 i < n, 1 < j < n, i <> j *

(pdisconnect(i,j) is the set of disconnect(j)
I events issued by user i. *
* V x4 user(i)ldisconnect

x.msg= j #> x* pdisconnect(i,j);
V x4 pdisconnect(i,j)

x4 user(i)(disconnect ^x.msg= j;

(1 < i < n, 1 <j <. n, i<>j *

* (* connected(i+j) is the coordinate event enabled
by pconnect(i,j) and pconnect(j,i). *)
coop(pconnect(i,j), pdisconnect(i,j),

connected (i+j);

3 (* 1< i < j< n *
* (* disconnected(i+j) is the coordinate event

enabled by disconnect(i,j) and
pdisconnect(j,i). *)I coop (pdisconnect(i,j) , pdisconnect(i,j),

disconnected(i+j);

j~~ (*1 i jn*

(connected and disconnected run alternately *

-134-

V x* connected(i+j), y* disconnected(i+j)
(ord(x)= ord(y) #> x-> y) ^
(ord(x)= ord(y)+ 1 #> y-> x);

(1 < i < j < n *

(* One can only send or receive messages when the
link is connected. *)
V s* user(i)Isend, r4 user(j)Ireceive

(s.to= j ^ r.from= i
#> + x* connected(i-4j)

x-> s ^x-> r

~*+y4 disconnect(i+j)
(x-> y-> s) v (x-> y->

r))- •

(* 1 < i <j < n *)
(* Once the link is connected, it is a reliable

transmission system. *)

(* s(i,j) is the set of send events to user j

issued by user i *)
V x4 user(i)lsend

x.to= j #> x4 s(i,j);
V x* s(i,j)

x4 user(i)Isend - s.to= j;

(* r(i,j) is the set of receive events by user j
from user i. *)
V x4 user(i)receive

x.from= i #> x4 r(i,j);
V x4 r(i,j)

x4 user(i)Ireceive - x.from= i;

(* A reliable transmission system from s(i,j) to
r(i,j). *)
RTll(s(i,j) , r(i,j));
RT12(s (i,j) , r(i,j));
RTl3(s(i,j), r(i,j));
RTI4(s(i,j) , r(i,j));
RTl5(s(i,j) , r(i,j));
V x- s(i,j), y* r(ij)

x=> y #> x.data= y.data;

End behavior

End system.

. a , i . . . I I ' t_i

-135-

5.6. The Expressive Power of CBS

In this section, we show that CBS is at least as

powerful as Petri nets by translating each basic construct

in Petri nets into CBS. The following are considered to

be the basic constructs in Petri nets: Direct nets (Figure

5.5.), Concurrent enable nets (Figure 5.6.), Free-choice

nets (Figure 5.7.) Coordinate nets (Figure 5.8.) and Mul-

tiplexor nets (Figure 5.9.).

Coordinate nets were discussed in the previous sec-

tion. Direct nets are just reliable transmission systems

and multiplexor nets are just multiplexor systems; both

were discussed in chapter 2. We specify free-choice nets

and concurrent enable nets in this section.

5.6.1. Free-choice Nets

A Free-choice net has a single inport A and two out-

ports B and C. Depending on some factors which are unknown

or not modeled in the system, a message input to A is

directed to B or C freely. It is specified in CBS as fol-

lows:

System free-choice-net (A: inport;
B: outport;
C: outport);

Degree is 1;

Behavior

1X-

A / B

Figure 5.5. A Direct NetI

B

-~ A

C

Figure 5.6. A Concurrent Enabling Net

B

*A

Figure 5.7. A Free Choice Net

LA

C

B

Figure 5.8. A Coordination Net

SA

II
Figure 5.9. A Multiplexor

Net

-136-

(* RTIl *)
V a* A

(+ b* B a=> b) v (+ c* C a=> c);

(* RTI2 *)
(V b* B + a4 A a=> b)
(V c4 C + a4 A a=> c);

(* RTI3 *)
V b4 B, c4 C, s4 SYS, e4 ENV

(s=> b v s=> c #> + a4 A a=> s)
(e=> b #> + a4 A e=> a=> b)
(e=> c #> + a4 A e=> a=> c);

(* RT14 *)
V a* A, bl, b24 B, cl, c2* C

(a=> bl A a=> b2 #> bl= b2)
(a=> ci A a=> c2 #> cl= c2)
(a=> bl ^ a=> cl);

(* RT15 *)
V al, a24 A, bl, b2 4 B, ci, c2* C

(al=> bl - a2=> b2
#> (al= a2 A bl= b2) v

(al- a2 ^ bl-> b2) vI (a2- , al ^ b2-> bl))
(al=> cl ^ a2=> c2

#> (al= a2 A cl= c2) v• (al-> a2 ^ bl-> b2) v -

(a2-> al A b2-> bl);

End behavior;

End system.

Note that the "Selector Systems" specified in Chapter

2 using EBS is more general than free-choice net specified

using Petri nets because there is no way to specify the

"selection condition" using Petri nets.

5.6.2. Concurrent Enable Nets

A concurrent enable net has a single inport A and two

outports B and C. A message in A is directed both to B and

I]

L,J L _ _ - .. .

I
-137-!

C concurrently. Here the word "concurrent" has a much

I weaker meaning than before. It means simply that two

events happen "altogether" and "consecutively". By "alto-

gether" we mean if one event happens then the other will

1 happen. By "consecutive" we mean that no other event can

happen in between these two events. The "altogether" pro-

Iperty is specified as follows:

(* B and C happen altogether *)
V a. A

(+ b* B a=> b) ^ (+ c* C a=> c);

1 The "consecutive" property is specified as follows:

(* B and C happen consecutively *)
V a4 A, b4 B, c4 C

(a=> b ^ a=> c)
N! #> -(+ d b-> d-> c v c-> d-> b);

The other behaviors are almost the same as if A sends

i messages reliably both to B and to C.

I Thus, we conclude that CBS is at least as expressive

as Petri nets and is able to specify the properties such

as data-related properties and event priorities which are

not easily specified using Petri nets.

3 5.7. The Semantics of CBS

An event coordination specification can be translated

into EBS in a rather straightforward way.

I
I

• • , . -

-138-

5.7.1. The Set Enables Relation =>

In terms of EBS, the semantics of the expression S1

=> S2 of two event set S1 and S2 can be specified as fol- j
lows:

((V e4 Sl e* CE) #> (V e4 S2 e' CE) I
(V el SI, e24 S2 el-> e2)

The first part and the second part of these semantics are

derived from the definitions "if every event in Sl happens

then every event in S2 should happen eventually" and

"every event in Si happens before any event in S2",

respectively.

5.7.2. The Collectly Enables Relation *>

For a specification of degree n, the semantics of the

expression S1 *> S2, in terms of EBS, is

(Sl => S2)
(V e- Sl -(e => S2))
(V el, e2 * S1 (el, e2} => S2))

(V'el, ... , e(n-l) * S1 -({el, ... , e(n-l)} => S2)

The first part specifies that S1 shewed enable S2, and

the second part specifies that any proper subset of S1 is

not sufficient to enable S2.

i=i

-139-

5.8. The Structure Specification and Verification in

.1 CBS

The syntax of structure specification in event coor-

dination is the same as that in EBS.
"I

5.8.1. A Comparator Circuit-1
A comparator (see Figure 5.10.) is a device that has

two input arguments, say A and B, and three output argu-

ments, GT, EQ and LT. The device compares the messages

from A and B; if the message from A is greater than, equal

*- to, or less than that from B then a message will be sent

to GT, EQ or LT respectively. The behavior of this com-

parator device can be specified as follows:

System CMP (A: inport;
B: inport;
GT: outport;
EQ: outport;
LT: outport);

Degree is 2;

I Behavior

(* CP10: A single event from either A or B is not
good enough to enable GT, EQ or LT. *)
ADI0 (A, B, GT);
AD10 (A, B, EQ);I. AD10 (A, B, LT);

(* CP11: If a is greater than, equal to or less than
b then one message will be sent to GT, EQ or LT

t:' respectively. *)
V a4 A, b4 B
ord(a)= ord(b) #>
(a.msg > b.msg #> + g4 GT a, b > g)
(a.msg = b.msg #> + e4 EQ a, b => e)
(a.msg 4 b.msg #> + 14 LT a, bi= ;

_ ,V- , ,

P

-140-

(CP12: GT, EQ or LT receives one message only when
a is greater than, equal to or less than b
respectively. *)
(V g4 GT + a4 A, b4 B

a.msg > b.msg { a, b} => g)
(V e4 EQ + a* A, b* B

a.msg =b.msg ^{a, b} => e) ^
(V 14 LT + a* A, b4 B

a.msg * b.msg { a, bI => 1);

(CP13: No internally or ex:tarnally generated mes-
sages. *)
AD13 (A, B, GT); 1
AD13 (A, B, EQ);
AD13 (A, B, LT);

(CP14: No duplicated messages.*)-
AD14 (A, B, GT);
AD14 (A, B, EQ);
AD14 (A, B, LT);

(CP15: No out of order messages *
AD15 (A, B, GT);
AD15 (A, B, EQ);
AD15 (A, B, LT);

End behavior

End system.7

An intuitive implementation of this comparator cir- -

cuit would be to subtract b from a; if the result is posi-

tive, zero, or negative then enable GT, EQ or LT respec-

tively. This idea leads to a design that is composed of a

full subtractor followed by a selector (see Figure 5.11.),

and is specified as follows:
-4

System CMP (A: inport;
* B: inport;

GT: outport;
EQ: outport;
LT: outport);

Degree is 2;

I CMP E

B LT

Figure 5.10. A Comparator Circuit

-- :A _____ ____ CMP

B

a- IT

Figure 5.11. An Implementation Strticture of
the Comparator: a Substractor
Followed by a Selector

-~~
a 24 ---

-141-

Structure

Subsystem SUB (A: inport;
B: inport;
TP: outport);

Degree is 1;

Behavior I
(* Control Parts *)

coop (A, B, TP);

(* DP: Data parts *)
V a' A, b* B, t4 TP

a, b} => t #> t.msg a.msg - b.msg;

End behavior;

End subsystem;

Subsystem SEL (TP: inport;
GT: outport;
EQ: outport;
LT: outport);

Degree is 2;

Behavior

(* RT11: If t is greater than, equal to or

less than zero then a message is sent to
GT, EQ or LT respectively. *)
V t4 TP

(t.msg > 0 #> + g* GT t= > g)
(t.msg = 0 #> + e* EQ t=> e)
(t.msg < 0 #> + 14 LT t=> 1);

(* RT12: GT, EQ or LT receive the message
only when t is greater than, equal to or

* less than zero respectively. *)
(V g* GT + t4 TP

t.msg > 0 t=> g)
(V e* EQ + t* TP

t.msg = 0 t=> e)
(V 14 LT + t4 TP

t.msg < 0 ^ t=> 1);

(* RTl3, RT14 and RT15: No internally or
externally generated messages; No out of I
order or duplicated messages. *)

ii

-142-

RT13 (TP, GT);
RT13 (TP, EQ); RTI3 (TP, LT);
RT14 (TP, GT);
RT14 (TP, EQ); RT14 (TP, LT);
RT15 (TP, GT);
RT15 (TP, EQ); RT15 (TP, LT);

End behavior;

End subsystem;

Network

connect (SUB.TP, SEL.TP) == CMP.TP;

End network;

Interface

CMP.A == SUB.A;
CMP.B == SUB.B;
CVP.GT == SEL.GT;
CMP.EQ == SEL.EQ;
CMP.LT == SEL.LT;

End interface;

End interface.

5.8.2. The Verification of the Comparator

The verification that the structure specification of

the comparator satisfies its behavior specification is

given in the following theorem.

Theorem 5.7.

The structure specification of CMP is correct according

to its behavior specification.

Proof

We prove only the correctness of the behavior of the

Lj

-143-

outport GT; those of outports EQ and LT can be carried

out in much the same way.

(* CPIO *)
(1) g4 GT

Assume there exists a04 A such that
(2) a0=> g

Then there exists tO* TP I
(3) aO=> tO=> g
(4) (3) contradicts to AD10 (A,B,TP)

Thus J
(5) V a* A -(a=> g)

Similar proof can be given for b4 B.

(* CPII *)
(1) a4 A, b4 B
(2) ord(a) = ord(b)
(3) a.msg > b.msg

there exists tO TP
(4) {a, b} => tO - tO.msg = a.msg- b.msg
(5) to.msg > 0 ... (3), (4)

there exists gO GT
(6) tO=> gO

(* CP12 *)
(1) g* GT

there exists tO* TP
(2) tO=> g ^ tO.msg > 0

there exist aQ* A, bO* B
(3) aO, bO => tO ^ tO.msg= aO.msg- bO.msg
(4) aO, bO => g aO.msg > bO.msg ... (2), (3)

(*CP13 *
(*We prove only the property that

V g4 GT, S in SYS
S *> g #> + a4 A, b4 B

{a, b} *> S
other properties can be proved in much the same
way. *)
(1) g.* GT
(2) S in SYS(CMP), S *> g
(3) S in SYS(SUB) v S in SYS(SEL)

case
(a) S in SYS(SUB)

there exists tO TP
(4) S *> tO=> g

there exist aO4 A, bO4 B
(5) {aO, bOl *> S

(b) S in SYS(SEL)

ii

- - - - - -"- ,'_ _.

!
-144-1

there exists t04 TP
(6) tO=> SI there exist a04 A, b04 B
(7) {aO, bO} *> tO
(8) laO, bO *> S

(* CP14 *)
(1) a. A, b4 B, gl, g24 GT
(2) [a, b} => gi [a, b} => g2

there exist tl, t2* TP
(3) (a, bi => tl=> gl - {, b} => t2=> g2

(4) tl= t2 ... (3)
(5) gl= g2 ... (3), (4)

(* CP15 *)

(1) al, a24 A, bl, b24 B, gil g24 GT
(2) [al, bl} => gl - {a2, b2 => g2

there exist tl, t2* TP
(3) fal, bl} => tl=> gl {a2, b2} => t2=> g24 (4) al- a2 v al-> a2 v a2-> al

case
(a) al= a2' (5) bl= b2 tl= t2

(6) gl= g2

(b) al-> a2
(7) bl-> b2 tl-> t2
(8) gl-> g2

(c) a2-> al
(9) b2-> bl t2-> i-
(10) g2-> gl

Q. E.D.

I
I

[Io

Ii

CHAPTER 6

CONCLUSIONS AND FURTHER RESEARCH

6.1. Comparisons with Other Approaches J
6.1.1. Finite-State Machine Models

Finite-State Machines, such as Petri Nets, AFFIRM,

SPECIAL and Right-Synchronization Controllers [CON79],

have been widely used to specify and verify concurrent

systems. Each processing unit in the system is represented

as a state diagram, with a machine state corresponding to

each discernible state of the unit. State transitions in

the model reflect transitions in the actual system.

Reachability analyses are used to detect possible

anomalies in the system behavior. Since the theory behind

the finite state-machine model is well-known, tools to

simulate the system operations or to analyze the system

behavior automatically can be built without much diffi-

culty. Exploiting the AFFIRM term-rewriting system, it

has been quite successful at automating analysis and proof

of protocols [SCH81].

There are several drawbacks to the state-machine

approach however. As the number of possible states

increases, analyzing all possible interaction becomes ±

-145- ..

X[

-146-

infeasible. Furthermore, rigorous analysis of possible

behavior, when practical, guarantees the safety of the

system but does not guarantee the liveness of the system.

Liveness properties, such as that a meseage will eventu-

ally be received or that each request will eventually be

served, are requirements that certcin transitions (events)

eventually take place. Liveness requirements are difficult

or impossible to state and prove using state-machine

specifications.

6.1.2. Operational Models

A more general problem using an operational model

such as PAISLEY [ZAVlI], or GYPSY [G00791, as a definition

tool is the difficulty of separating requirements from

expedient. While one would like to state requirements that

the system must meet and leave the method of achievement

to the implementor, an operation model specifies the

requirements by giving an abstract implementation. There

is no indication of what aspects of the model are to be

rigorously followed and what aspects merely illustrate

functionality. In the case of an operation model for a

* ° sequential program, this causes no particular problem. Any

implementation with identical (isomorphic) input/output

behavior is acceptable. For a concurrent system, it

becomes more difficult to identify those aspects of data

and control that can be modified without affecting system

no

-147-

behavior. A specification for a distributed system should

be even more explicit as to what is necessary for correct

system operation.

6.1.3. Algebraic/Axiomatic Approaches i
For sequential programs, algcSbaic/axiomatic specifi-

cation techniques provide the abstraction necessary to

state properties of a program without stating the function T
itself. Unfortunately, standard algebraic/axiomatic tech-

niques for defining properties of sequential programs are

not suitable for concurrent programs. Temporal properties,

such as concurrency, mutual exclusion, and process prior-

ity are difficult or impossible to specify in

algebraic/axiomatic specifications. Temporal logic, an

extension of classical logic, tries to provide the capa-

bility of specifying these temporal properties.

6.1.4. Temporal Logic Approaches

Temporal logic was first introduced by Pnuli in 1975

as an adaptation of a classical logic suitable for defin-

ing the semantics of computer programs. When applied to

programs, the meaning of a computation is taken to be the

sequence of states resulting from program execution. A

distributed system is modeled by multi-tasking on a single

processor. Using temporal operations, one reasons about

the execution state sequence esulting from interleaved

ri
I_ _ _ __ _ _

-148-

execution of each process. A set of temporal logic axioms

specify properties that must be true for all state

sequences resulting from system execution.

The fundamental temporal operator is the unary opera-

tor 0 pronounced "henceforth". Taking an explicit

execution-state sequence model of the system, with i being

an index to the current state in the sequence, []P is

defined as:

OP = V t > i P(t)

Loosely speaking, 3P asserts that P is true in the

present state and will be true for the remainder of the

computation.

I The dual of [is <>, pronounced "eventually", with

I the interpretation

T<>P = ~ E ~P

I This asserts that either now or at some future point in

the computation P will be true. In terms of explicit exe-

cution state sequence, <P is + t > i P(t),F
With these temporal operators, many properties of

systems can be stated. 0I states that I is an invariant

throughout the system execution. To state that a pro-

perty P always causes a property Q to occur subsequently,

one writes 0 (P#> OQ). To assert that a property P is

satisfied infinitely often, one writes Q30P. This says

Ala

-149-

that, from every point in the computation, there is a

future point at which P will be true.

Unfortunately, there are several problems in using

temporal logic to specify and verify distributed systems.

First, the processes in a distributed system are auto-

nomous and run independently. Modeling the computation of

a distributed system by the interleaved execution of each

process makes the verification unnecessarily complicated.

Global invariants have to be proved true for all possible

sequences from interleaved execution of each process, even

though the computation of a particular process may be

independent of the invariants.

Second, global invariants that should be true -.

throughout the computation, rather than merely

input/output relations, are stated as the behavior specif-

ication of a distributed system. Though invariants facil- J
itate implementation verification, from the user's

viewpoint, they are difficult to specify, understand and

are less intuitive than input/output relations.

Third, the time concept in temporal logic is too

implicit for users to specify the time-ordering relation

among events. The time order relation among states in a

computation is implicitly expressed by the temporal opera-

tors C3 and <>; there is no explicit time variable in the

[.1

kt
I., : - .

-150-

specification. Even the time "now" (an index to the

current state in the computation sequence) necessary to

the interpretation of temporal operators is implicitly

defined from the context of the operators in the specifi-

cation. For example, the time "now' of COP when it comes

by itself, refers to the system initialization; while the

time "now" of <^Q in C] (P#><::Q) refers to the time of a

state when P is true, after the system initialization.

Such a context sensitive interpretation of the temporal

operators makes a specification difficult to follow, espe-

cially when many temporal operators are used in the

specification.

6.1.5. The Actor Model and Other Event-Based Models

Our event-based model is bascd on several pioneering

works in the past few years. With some modifications, the

basic properties of events in our model were adopted from

the actor theory invented by Carl Hewitt [HEW77] and his

collaborators (BAK78I. Actors, messages, and events are

fundamental in the model. Actors interact with one another

by exchanging messages. The messages themselves are

actors. The receiving and the processing of a message by

the target actor are events, and these events are the

basic steps in the actor model of computation. Each event

is atomic and instantaneous. Several programming language

[ATK80, REU80j are built on this model.

-~~~;_ - - - .s;

-151-

Our model differs from the actor model in two major

aspects. First, the sending, receiving and processing of a

message are considered as individual events in our model.

Since the time duration between the sending, the receiving

and the processing of a message is non-zero in a distri- j
buted system computation, the ev-nt in our model is more

accurately represents a distributed system computation J
and is more intuitive from a user's viewpoint. Second, we

have aimed at a behavior specification technique rather

than a programming tool. Thus, the implementation-

oriented constructs such as process, while-loop, and

assignment-statement appearing in actor languages are not

part of our language.

The partial ordering relation, the "precedes" rela-

tion, used as the time ordering to specify the behavior of

distributed systems was first introduced by Irene Greif

(GRE77I. The basic ideas in our Transaction-Based Specif-

ication Language were trigged by the work of Mark

Laventhal [LAV78I.

There are two major differences between our work and
theirs. First, we are able to specify both control-related

and data-related properties in EBS; only control-related

properties can be specified in the other languages.

Second, the introduction of the causality relation, the

"enables" relation, in EBS, facilitates the specification

!L'

-152-

of liveness properties in a way more intuitive than those

using the time ordering relation directly.

6.1.6. Trace Approaches
9.

jThe notion of traces is used in the specifications

and verifications of networks cf processes by Misra &

Chandy [MIS81], and Zhoa & Hoare (ZHO81]. The theory of

traces of communicating sequential processes is due to

Hoare [HOA78b]. A trace of the behavior of a process is

defined as "the recorded sequence of communications in

which the process engages up to some moment in time"

[ZOA81]. In terms of EBS, a trace is simply a sequence of

interfacial events.

The specifications of system computations are

expressed in traces exclusively; thus, the entire proof

* technique deals only with propositions on traces. The

notations for sequences such as "concatenation of

SIsequences", "prefix (initial) of a sequence", "prefix clo-

sure of a sequence" and "the length of a sequence", are

:1 basic to the trace specification language.

There are several deficiencies in the trace approach.

First, describing the behavior of a distributed system by

a trace dictates a total ordering of events and the

* existence of an implicit global clock, which is not gen-t

erally a requirement in distributed systems. Second,

I
I

-153-

since notations for sequ=nces are used exclusively, trace

specifications are awkward in expressing properties whose

data structures are not well-defined sequences. Typ4.cal

examples are those properties of unreliable transmission

systems that may lose, duplicate and reorder messages. To j
overcome such shortage, informal Tecifications such as

"monotone increasing sequence" and "relative primes" I
[MIS81] in describing the behavior of a sieve, were

adopted. Third, a rather serious deficiency is that the

liveness properties are not usually specified and verified

using the trace notion directly.

In comparison, events in EBS are only partially

ordered; no assumption of the existence of a global clock

is made. The concept of events is more elementary than

that of traces (sequences of events); consequently, some

properties that can be specified in EBS easily can only be

expressed in traces with difficulty. The "liveness" pro-

perties can be specified directly by the enables relation

=> in EBS.

6.2. Further Research

We have proposed an event-based model and demon-

strated ics application to the specification and verifica-

tion of several classes of distributed systems. Based on

our work, there are several research topics that are

- ,.

-154-

deserving of further effort.

Since we are dealing with first-order logic in EBS,

it is possible that the design verification be processed

mechanically if some automatic theorem-prover is avail-

able. Since the design of EBS has been aimed at human

understandability and human verifiability rather than

machine executability, we expect that some "syntactic

sugar" should be added to make EBS machine executable.

In a top-down hierarchical design, a distributed sys-

tem can be described by the behavior specification; then

I the specification can be decomposed into a set of subsys-

tems communicating via the connection links, described by

the structure specification. Correctness of a design can

i] be proved by checking the consistency between the behavior

specification and structure specification of a system.

V Each subsystem can be again decomposed into sub-

subsystems. Again, the correctness of the detailed design

can be checked according to its subsystem specification.

The design and verification processes go so on so forth.

In this way, at the end of the whole design phase, we can

make sure that the design is correct even before the sys-

tem is actually implemented.

When the implementation phase is begun, a particular

distributed programming language should be adopted to code

-155-

the design and then the implementation should be proved

correct with respect to the design specification. Unfor-

tunately, we have not dealt with implementation verifica-

tion in this thesis.

Two major steps in verification are (1) specifying

the event semantics for the distributed programming

language, and (2) devising a set of inference rules for

the language in terms of events. A step, before the

verification and even more important than the verifica-

tion, is the selection of a syntactically and semantically

sound distributed programming language. Aui of the three

steps are not trivial and are deserving of major efforts.

We have applied the Transaction-Based Specification

Language to specify the properties such as mutual exclu-

sion, concurrency, in transaction oriented system. How-

ever, it is still not obvious how to specify some impor-

tant properties such as crash-recovery, or to verify the

*famous protocols such as 2PC (two phase commit protocol)

and 2PL (two phase locking protocol) in distributed data-

base systems. Allowing user-definable events inside a

transaction in addition to the system-defined events

(i.e., the BEGIN and END events of a transaction) seems to

be a necessary step in extending TBS to specify, and ver-

ify such properties. Research in this area is therefore

desirable.

j 4 7

IT

-156-

6.3. Conclusions

In summary, both the behavior and structure specifi-

4 cations based on event model are (1) formal: using partial

ordering relations and first order predicate calculus; (2)

minimal: orthogonal properties are specified separately;

(3) extensible: new requirements can be added without

changing the original specification; and (4) complete:

interesting properties in distributed systems can be

specified.

The correctness of a design can be proved before

implementation by checking the consistency between the

behavior specification and structure specification of a

system. Both "safety" and "liveness" properties can be

specified and verified.

Moreover, since the specification technique defines

the orthogonal properties of a system separately, each of

them can be verified independently. Thus, the proof tech-

* nique avoids the exponential state-explosion problem found

* in state-machine specification techniques.

In addition to having most of the desirable features

of a specification technique, EBS represents the concept

of time by a partial ordering relation of events and

represents concurrency by the lacking of ordering between

events. This makes EBS a more accurate model for

• ... ;, .. . : , .

ry ;

-15 7-

distributed systems, which are inherently concurrent,

asynchronous, and nondeterministic.

I
14

I
I

I

* t.

.**- -~ .4

-158-

7. References

[ALF77] Alford, M. W. et al "Requirement Development using

SREM Technology" Vol. 1, Technical Report CDRL

COOH, Oct. 1977

V [AND78] Andler, S. "Synchronization Primitives and the

Verification of Concurrent Programs" Proc. 2nd

international Symp. on Operating Systems, IRIA Le

Chesnay, France Oct. 1978

[AND79] Andler, S. "Predicate Path Expressions" Proc. 6th

Annual ACM Symp. on Principles of Programming

Languages: 226- 236, San Antonio, Texas, Jan. 1979

[APT80] Apt, K. R., Frances, N. and Roever, W. P. "A

Proof System for Communicating Sequential

Processes" ACM TOPLAS 2(3): 359-385, July 1980

(ATK80I Atkinson, R. R. "Automatic Verification of Seri-

alizers" Ph. D. Dissertation, MIT, Mar. 1980

[BAK78] Baker, H. J. "Actor Systems for Real-Time Compu-

tation" MIT/LCS/TR-197, Ph. D. Dissertation Mar.

1978

(BAL791 Balzer, R. and Goldman, N. "Principles of Good

Software Specification and Their Implications for

Specification Languages" Proc. of IEEE Symp. on

Specification of Reliable Software, 1979

[BAR69] Bartlett, K. A. et al. "Note on Reliable Full

Duplex Transmission on Half Duplex Links", CACMI

__ _ _ _ __I.- -

-159-

12(5): 260-261, May 1969

[BER80] Bernstein, A. J. "Concurrency Control in a System

for Distributed Databases (SDD-1)" ACM TODS 5(1):

18-51, Mar. 1980 1
(BOC78] Bochmann, G. V. "Finite-State Description of Com- 3

munication Protocols" Computer Networks 2: 361-

372, 1978 1
[BOS80] Bos, J. V. D. "Comments on ADA Process Communica-

tion" ACM SIGPLAN NOTICE 15(6): 77-81, June 1980 -.

[BRE79] Bremer, J. "A New Approach to Protocol Design and

Validation" IBM Technical Report RC8018, Dec. 1979

[BR174] Brinch Hansen, P. "Structured Multiprogramming"

CACM 15(7): 574-578, July 1974

[BR178] Brinch Hansen, P. "Distributed Processes: a Con- -.

current Programming Concept" CACM 21(11): 934-941,

Nov. 1978

[BRI81] Brinch Hansen, P. "The Design of EDISON"

Software-Practice and Experience 11: 363-396, 1981

[BRY78] Bryant, R. E. and Dennis, J. B. "Concurrent Pro-

gramming" MIT/LCS/TR-115, 1978

(CAM74] Campbell, R. H. and Habermann, A. N. "The Specif-

ication of Process Synchronization by Path Expres-

sions" Lecture Notes in Computer Science 16: 89-

102, Springer Verlag, Heidelberg, 1974

(CAM80] Campbell, R. H. and Rolstad. R. B. "An Overview

of Path Pascal's Design" ACM SIGPLAN NOTICE 15(9):

I I ++ .i -- J + Ii

I.
-160-1.

13-24, Sept. 1980

[CHE81a] Chen, B. and Yeh, T. Y. "Event-Based Behavior

Specification of Distributed Systems", Proc. of

IEEE Symp. on Reliability in Distributed Software

j and Database Systems, July, 1981, Pittsburgh,

Pennsylvania.

[CHE8lb] Chen, B. and Yeh, T. Y. "Behavior Soecifications

of Distributed Systems", submitted to IEEE Tran-

sactions on Software Engineering

[CHE81c] Chen, B. "Formal Specification and Verification

of Distributed Systems", Submitted to the 3rd

International Conference on Distributed Systems,

Florida, -l92--

(CON79] Conner, M. H. "Proce sz-Synchronization by

Behavior Controllers" Ph. D. Dissertation, Univer-

sity of Texas at Austin, Aug. 1979

[COU71] Courtois, P. J., Heymans, F. and Parnas, D. L.

"Concurrent Control with 'Readers' and 'Writers"

iCACM l4fl0):667-668, Oct. 1971

F (DAN80] Danthine, A. A. S. "Protocol Representation with

Finite-State Models" IEEE Transactions on Communi-

cations COM-28(4): 632-642, April 1980

(DIJ68] Dijkstra, E. W. "Solution of a Problem in Con-

current Programming Control" CACM 9(9): 569, Sept.

1968

(DIJ72] Dijkstra, E. W. "Co-operating Sequential

I4w"i
* , -, .

-161-

Processes" Academic Press 1972

[END72] Enderton, H. B. "A Mathematical Introduction to

Logic" Academic Press, 1972, Chapter 2

[G0079] Good, D. I. et al. "Principles of Proving Con-

current Programs in GYPSY" University of Texas at

Austin, Technical Report ICSCA-CMP-15, Jan. 1979

[GRA78] Gray, J. "Notes on Database Operating Systems"

Lecture Notes in Computer Science 60: 393-484,

Spring Verlag, New York, 1978

(GRA79] Gray, J. "A Discussion of Distributed Systems"

IBM Technical Report RH2699, Sept. 1979

(GRE77] Greif, I. "A Language for Formal Problem Specifi-

cation", CACM 20(12) : 931-935, Dec. 1977

[HAB72] Habermann, A. N. "Synchronization of Communicat-

ing Processes" CACM 15(3): 161-176, Mar. 1972

j (HAI80] Hailpern, B. and Owicki, S. "Verifying Network

Protocols Using Temporal Logic" In Trends and J
Applications 1980: Computer Network Protocols,

IEEE Computer Society, May 1980

(HEW77a] Hewitt, C. and Baker, H. J. "Laws For Communicat-

ing Parallel Processes", IFIP 987-992, 1977

[HEW77b] Hewitt, C. and Baker, H. J. "Actors and Con-

tinuation Functionals" MIT/LCS/TR-194, 1977

[HOA741 Hoare, C. A. R. "Monitors: an Operating System .1
Structuring Concept" CACM 17(10): 539-557, Oct.

1974

~ 4

-162-

[HOA78a] Hoare, C. A. R. "Communicating Sequential

Processes" CACM 21(7): 123-134, July 1978

(HOA78b] Hoare, C. A. R. "A Model for Communicating

Sequential Processes" Computer Lab., Oxford

University, Dec. 1978.

[HOW761 Howard, J. H. "Proving Aonitors" CACM 19(5):

273-279, May 1976

[ICH791 Ichbiah, J. D. et al. "Rationale for the Design

of the ADA Programming Language" ACM SIGPLAN

NOTICE 14(6): Chapter 11, June 1979

[KEL76] Keller, R. M. "Formal Verification of Parallel

Programs" CACM 19(7): 371-384, July 1976

[LAMB80] Lampson, B. W. and Redell, D. D. "Experience

with Process and Monitors in MESA" CACM 23(2):

1105-117, Feb. 1980

[LAM77] Lamport, L. "Proving the correctness of Multipro-

I ces Programs" IEEE TOSE SE-3(2): 125-134, Mar.

i 1977

[LAM78a] Lamport, L. "The Implementation of Reliable Dis-

tributed Multiprocess Systems" Computer Networks

2(2): 95-114, May 1978

4 [LAM78b] Lamport, L. "Time, Clocks, and the Ordering of

Events in a Distributed System", CACM 21(7)

558-565, July 1978.

[LAM80a] Lamport, L. "'Sometimes' is Sometimes 'Not

Never'" Proc. of the ACM Symp. on Principles-of

.-.-.-- - - - - -, - - - - ,.

-163-

Programming Languages Jan. 1980

[LAM80b] Lamport, L. "The 'Hoare Logic' of Concurrent

Programs" Acta Informatica 14: 21-37, 1980

[LAU79] Lauer, H. C. "On the Duality of Operating System

Structures" Operating Systems Review 13(2): 3-19, 1
Apr. 1979

[LAV78] Laventhal, M. S. "Synthesis of Synchronization T

Code For Data Abstractions" MIT/LCS/TR-203 Ph.D.

Dissertation June 1978.

[LAV79] Laventhal, M. S. "Synchronization Specification

for Data Abstractions" Proc. of IEEE Symp. on

Specification of Reliable Software: 119-125, 1979

[LIS76] Liskov, B. H. "An Appraisal of Program Specifica-

tion" MIT Technical Report, July 1976

[LIS77] Liskov, B. H. and Zills, S. "An Introduction to J
Formal Specifications and Data Abstractions" In

Current Trends in Programming Methodology Vol(1) :2

1-33, Yeh, R. T. Editor, Prentice Hall 1977

[MIS81] Misra, J. and Chandy, K. M. "Proofs of Networks of

Processes" IEEE Transactions on Software Engineer-

ing SE 7(4): 417- 426, July 1981.

[NILB0] Nilsson, N. J. "Principles of Artificial Intelli-

gence" McGraw-Hill Co., 1980

(OWI76] Owicki, S. and Gries, D. "Verifying Properties of

Parallel Programs: An Axiomatic Approach" CACM

19(5): 270-285, May 1976

• I]
i LI

AD-A-128 629 EVENT-BASED SPECIFICATION AND VERIFICATION O 3F
DISTRIBUTED SYSTEMS(U) MARYLAND UNIV COLLEGE PARK DEPT

OF COMPUTER SCIENCE B CHEN 1982 AFOSR-TR-83-0388
URCLASSIFIED F49620-80-C-0001 F/G 9/2 NL

IIEEEIIIIIIMENNEN

1J11 1.0.0

1111 I.L4 1.

Iy MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS 1963-A

-164-

[OWI80] Owicki, S. and Lamport, L. "Proving Liveness Pro-

perties of Concurrent Programs" Stanford Univer-

sity, Working Draft, Oct. 1980

[PET77] Peterson, J. L. "Petri Nets" ACM Computing Sur-

vey, 9(3): 223-253, Sept. 1977
(RAM79] Ramamoorthy and So "Software Requirements and

Specifications: Status and Perspective" IEEE

Tutorial, Distributed System Design, 1979

[RAO80] Rao, R. "Design and Evaluation of Distributed

Communication Primitives" University of Washing-

ton, Seattle, TR80-04-01, April 1990

" [REU80] Reuveni, A. "The Event-Based Language and Its

Multiprocessor Implementations" Ph. D. Disserta-

tion, MIT, Jan. 1980I
[RID74] Riddle, W. "The Modeling and Analysis of

Supervising Systems" Ph. D. Dissertation, Stanford

University, 1974

(RID79] Riddle, W. E. et al. "Behavior Modeling During

Software Design" IEEE TOSE 1978

* [ROB77] Robinson, L. and Roubine, D. "SPECIAL: A Specifi-

cation Language and Assertion Language" Technical

Report CSL-46, Stanford Research Institute, 1977

[SCHB1] Schwartz, R. L. and Melliar-Smith, P. M. "Tem-

poral Logic Specification of Distributed Systems"

Proc. of IEEE 2nd Internal Conf. on Distributed

Computing Systems: 446-454, Paris, France, April

-165-

1981

[SHA781 Shaw, A. C. "Scftware Descriptions with Flow i

Expressions" IEEE TOSE SE-4(3): 242-254, May 1978

(SHA79] Shaw, A. C. "Software Specification Languages

Based on Regular Expressions" University of Wash- j
ington, TR-35, June 1979

[STE761 Stenning, N. V. "A Data Transfer Protocol" Com- I
puter Networks 1(2) : 99-110, Sept.1976. T

[SUN79] Sunshine, C. "Formal Methods for Communication

Protocol Specification and Verification", WD-335-

ARPA/NBS, Working Draft, Rand Corporation, Sept.

1979.

[SV079] Svobodova, L., Liskov, B. and Clark, D. "Distri-

buted Computing Systems: Structures and Semantics" ""

MIT/LCS/TR-215, Mar. 1979 -

[TOM80] Tompson, D. H. et al."Specification and Verifica-

tion of Communication Protocols in AFFIRM Using

State Transition Models." Information Science

Institute, 1980.

[YEH80] Yeh, R. T. and Zave, P. "Specifying Software

Requirements", Proc. of IEEE, Oct. 1980.

lYON77] Yonezawa, Q. "Specification and Verification

Tec:niques for Parallel Programs Based on Message

Passing Semantics" MIT/LCS/TR-191, Ph. D. Disser-

tation, Dec. 1977 I
[ZAV81] Zave, P. and Yeh, R.T. "Executable Requirements

Y
LjEl

-166-

for Embedded System" 5th ICSE in San Diego,1981.

[ZH0811 Zhoa, C. C. and Hoare, C. A. R. "Partial Correct-

ness of Communicating Sequential Processes" Proc.

of IEEE, 2nd International Conference on Distri-

I buted Computing Systems, Paris, France, April

1981.

I
I

)1

I

t I

II

-167-

APPENDIX A: A SEMANTICS INTERPRETER

In this appendix, we will give a formal treatment of

our Event-Based Specification Language. The semantics of

EBS is interpreted in two different ways: a centralized

processor interpretation and a multi-processor interpreta-

tion.

1.1. The First Order Predicate Language

The symbols in EBS can be categorized as follows:

I. Logical Symbols

(1) Parenthesis: (,)

(2) Sentential connective symbols: (logical and), v

(logical or) , - (negation) , #> (implication)

(3) Variables: x, y, z, ...

(4) Equality symbols: =

II. Parameters

(1) Quantifier symbols: V (for every), + (there exists)

(2) Predicate symbols:-> (precedes), => (enables), 4

(belongs to) I
(3) Function symbols: ord (ordinal function), ENV

(environment event set), SYS (system event set), INT

4

.. . I

I -168-

(interface event set), MSG (message contents set)

(4) Constant symbols:I,
III. All the symbols from natural numbers.T

A Specification is defined as follows:

1. Expressions

An expression is a finite sequence of symbols.

2.Terms

(1) Constant symbols and variables are terms.

(2) if f is a n-place function symbols and tl, t2,

I tn are terms then f(tl, t2, ... , tn) is a term.

1 (3) An expression is a term only if it can be shown to be

a term on the basis of clauses (1) and (2).

3. Atomic Formulas

If P is a n-place predicate symbols and tl, t2,....

tn are terms then P(tl, t2, ..., tn) is an atomic for-

mula.

4. Well-Formed Formulas (wffs)

(1) Every atomic formula is a wff.

(2) If wl and w2 are wffs, and x is a variable then

(wl), (wl#> w2), (wl ^ w2), (wl v w2), (V x wl), and

-169-

(. x wl) are wffs.

5. Specifications

A specification is a wff.

1.2. A Centralized Processor Interpretation

By a centralized processor interpretation we mean the

mapping of the partial ordering of events into a totally

ordered implementation. That is, we assume that there is a

global clock to order totally the universal event space of

the whole computation. Since an event, by definition, is

instantaneous, and time is continuous, the probability

that two or more events happen exactly at the same time is

zero. Thus, the totally ordered implementation is actually

a totally ordered relation.

The basic data structure in the interpreter is a

sequence, i.e., a totally ordered set of objects.

Definition A.I. Sequence

A sequence S is defined recursively as a finite set of

* objects called nodes. S is either empty (denoted by

* nil) or

(a) there is a specially designated node denoted by

car(S); and

(2) the remaining nodes, form a sequence, denoted by I
cdr (S).

. . . __- 4.. - ,

-170-

S I Definition A.2. Membership

A node e being a member in a sequence S is defined

I. recursively as follows:

I. in(e, S) =

IF (S= nil) THEN false
ELSEIF (car(S)= e) THEN true

jELSE in(e, cdr(S))

Definition A.3. Sequence Number

I The sequence number sn of a node in a sequence is

defined recursively as follows:

sn(e, S)=
IF (S= nil) THEN 0
ELSEIF (car(S)= e) THEN I
ELSE (sn(e, cdr(S))+ 1)

When a node is not in a sequence, its sequence number

is meaningless. However, some arbitrary number ("0", in

the definition above) should be assigned to it, since only

total functions are allowed within the first-order theory.

ISimilar arguments are applied to some definitions below.

Definition A.4. History

A (computation) history is a sequence of events.

Definition A.5. Centralized Computation

A centralized computation is a 6-tuple C= <U, H, Q, A,

F, P>, where

U is the universal set of elements (including event

.1

-171-

space, integers; data types etc.);

H is a history;

Q is a partition of H into sets SYS, ENV, IPI, ... ,

IPn, and OPI, ... , OPm;

A is a set of constant symbols; 5
P is a set of predicate symbols; and

P- is a set of function symbols. I
Definition A.6. Interpreter

An interpreter I is a function

I: V -> U,

mapping the set V of all variables into the universal

set U of computation C.

We want to define the correctness of a computation C

according to a specification S under an interpreter I,

represented by the predicate correct(C, S, I).

The formal definition of correctness proceeds as fol-

lows:

First of all, we define an extended interpreter

J: T -> U

a function mapping from the set T of all terms into the

universe U of the computation C. The idea is that J(t)

should be the member of the universe U that is named by

the term t. J is defined recursively as follows: I
i. For each variable x, J(x)- I(x)

1 -172-

2. For each constant symbol a, J(a)= a

1. 3. If tl, ..., tn are terms and f is an n-place function

J1 symbol, then

J(f(tl, ... , tn))= f(J(tl), ... , J(tn))

Second, we define the substitution function as fol-

j olows:

I(xId) (y) I(y) if y <> x
d if y x

I(xid) is the function which is exactly like I except at

the variable x it assumes the value d.

[Definition A.7. Behavior Specification

A (behavior) specification is a well-formed formula in

Athe specification language.

r- Finally, the correctness of a centralized computation

J C according to a specification S under the interpretation

I can be defined recursively as follows:

*. correct(C, S, I) =
IF (S= nil) THEN true
ELSEIF (S= (S1 ^ S2))

THEN (correct(C, S1, I)
correct(C, S2, I))

ELSEIF (S- (S1 v S2))
THEN (correct(C, Sl, I) v

correct(C, S2, I))
ELSEIF (S- "S1) THEN "correct(C, Sl, I)
ELSEIF (S- Sl #> S2))

THEN (-correct(C, Sl, I) v
correct(C, S2, I))

ELSEIF (S= (tl t2)) THEN (J(tl) - J(t2))
ELSEIF (S- (V x S1)) THEN (V x4 U correct(C, S1, I))
ELSEIF (S- (+ x Sl)) THEN (+ x4 U correct(C, Sl, I))
ELSEIF (S- (t4 SYS)) THEN (J(t) 4 SYS)

-173-

ELSEIF (S= (t4 ENV)) THEN (J(t) 4 ENV)
ELSEIF (S- (t4 IPi)) THEN (J(t) 4 IPi)
ELSEIF (S= (t4 OPi)) THEN (J(t) 4 OPi) -

ELSEIF (S= (t4 CE))
THEN ((J(t) * SYS) v

MJt) 4 ENV) v
(+ 1< i< n J(t) 4 IPi) v1
(+ 1< i< M J(t) 4 OPi)) [1]

ELSEIF (S= (tl-> t2)) THEN precede(J(tl), J(t2), H)I
ELSEIF (S= (tl=> t2))

THEN ((-in(J(tl), H) v in(J(t2), H))
correct(C, (ti-> t2), I))

ELSEIF (S= (ord(t, IPi)= n))
THEN eq(J(t), IPi, H, J(n))

ELSEIF (S= (ord(t, OPi)= n))
THEN eq(J(t), OPi, H, J(n))

ELSEIF (S= (P(tl, ... , tn))
THEN P(J(tl), ... , J(tn))

ELSE error

where

precede(x, y, H)
IF (H= nil) THEN true
ELSEIF (car(H)= y) THEN false
ELSEIF (car(H)= x) THEN true
ELSE precede(x, y, cdr(H))

eq(t, IP, H, n)=J
IF ((H= nil) v (n< 0)) THEN false
ELSEIF ((car(H)= E) -(n= 1)) THEN true
ELSEIF (car(H) 4 IP) THEN eq(t, IP, cdr(H), n-i)
ELSE eq(t, IP, cdr(H), n)

The interpreter above defines only the meaning of the

notations that are unique to EBS (e.g. -> >;other

user-defined predicates or functions are interpreted in a

loose way. The interpreter shows that the relation ->can

be used to define the relation >

[1] CE represents the computation event set, including
SYS, ENV and the interface Ports.

-174-

Definition A.8. Centralized Processor Implementation

A centralized processor implementation is a set of cen-

tralized computations that satisfy the behavior specif-

ication.

4" 1.3. A Multiprocessor Interpretation

By a multiprocessor interpretation we mean ne map-

ping of the partial ordering of events ini finite

multi-linear order implementation. That is, assume

that there are a finite number of local clock- to order

totally the events in the local area computations and

that there are explicit synchronization messages to order

I events in different areas.

Definition A.9. Process

A (local computation) process is a history.

Definition A.10. Synchronization Information

rThe synchronization information carried by a message m

is an ordered pair <ei, ej> of events, where ei is the

sending event by a process, denoted by m.send and ej is

the receiving event by another process, denoted by

* m.receive.

Definition A.11. Synchronization

A synchronization relation M is a set of synchroniza-

tion information.

I, _ _ _ _ _ _ _

-175-

Definition A.12. Multiprocessor Computation

A K-processor computation is a 6-tuple

MC = <U, X, Q, A, F, P>

where U, A, F, P are the same as in the centralized

computation;

X is a set PP of processes (P1, , PK) and a syn-

chronization relation M of messages; 1
Q is a partition of the whole event space (the union of

all process events) into sets ENV, SYS, IPl, IPn

and OPI, ... , OPn such that all events in IPi (or OPj)

belong to single processes for all 1 < i< n (or l< j<

m); we denote the process which contains IPi (or OPj)

by P(IPi) (or P(OPj)).

The interpreter I and the extended interpreter J for

multiprocessor computations can be defined in a way simi-

lar to those for centralized processor computations. J
The correctness of a multiprocessor computation MC

according to a specification S under the interpretation I

can be defined in much the same way as that of a central-

ized computation. Only the "precedes" relation "->" and

the membership relation "in" need to be redefined, since

the relation "=>" can be defined by "->" and "in".

Definition A.13. Membership

An event e being a member im of the K-processor compu-

I

ii
-176-

tation is defined as follows:

im(e, X) = + l< i< K in(e, Pi)

Definition A.14. Correctness of a Computation

r The correctness of a K-processor computation MC accord-

ing to a specification S under ihe interpretation I is

defined as follows:

mcorrect(MC, S, I) -

(* same as in centralized processor computation *)

ELSEIF (S= (tl-> t2)) THEN prec(J(tl), J(t2), PP, M)
ELSEIF (S= (tl=> t2))

THEN ((~im(J(tl), PP) v im(J(t2), PP))
mcorrect(MC, (tl-> t2), I))

ELSEIF (S= (ord(t, IPi) = n))
THEN eq(J(t), IPi, P(IPi), J(n))

ELSEIF (S= (ord(t, OPi)= n))
THEN eq(J(t), OPi, P(OPi), J(n))

ELSEIF (S= P(tl, ... , tn))
THEN P(J(tl), ... , J(tn))I

where the "precedes" relation prec in the multiprocessor

implementation can be defined as follows (see also Figure

A.1.)

prec(x, y, PP, M) =
IF (+ l< n< K in (y, Pn)) THEN

IF ((+ 1< m< K in(x, Pm)) THEN
IF (m=n) THEN precede(x, y, Pm)
ELSE (+ 1< k< K

ell (= x), e12 4 Pml (= Pm)
e2i, e22 4 Pm2

ekl, ek24 Pink (= Pn)
(V 1< i< k

(precede(eil, ei2, Pmi) v
(eil- ei2)) A

(V l< i< k

Process Y"rocess Process Process

(x=) ei

e12
-e2 l

Time k-l1

eki 22

Figure A.1. Interpretation of x4 y

in a Multi-Processor Implementation

-177-

(ei2, e(i+l)l) Ml))
ELSE false

ELSE true

Definition A.15. K-Processor Implementation

A K-processor implementation is a set of K-processor comn-

putations that satisfy the behavior specification.

v Z -- -- _ , I

-178-

APPENDIX B. i

A FORMAL PROOF OF THEOREM 3.1. 1
Theorem 3.1.

If T is a transitivity relation,
(i.e., V p, q, r T(p,q) - T(q,r) *> T(p,r))
then,

(V x* X + y4 Y T(x,y))
(V Y* Y + z4 Z T(y,z))
#> (V x4 X + z* Z T(x,z))

Proof

Convert all predicts to well-formed formula.

The transitive law:
V p, q, r

T(p,q) ^ T(q,r) #> T(p,r)
-=V p, q, r

~T(p,q) v -T(q,r) v T(p,r)

Condition
V x* X + y* Y T(x,y)
V x X(x) #> + y(Y(y) T(xy))
V x X(x) v + y(Y(y) T(x,y))

= V -xX(x) v (Y(f(x)) T(x, f(x)))
== V x (~X(x) v Y(f(x))) (~X(x) v T(x, f(x)))

Similarly
V y4 Y + z4 Z T(y,z)

== V y (~Y(y) v Z(g(y))) (~Y(y) v T(y, g(y)))

Negation of the conclusion to be proved
(V x4 X + z4 Z A(x,z))
(V x -X(x) v + z (Z(z) ^ A(x,z)))

== + x X(x) ^ V z (~Z(z) v -A(x,z))
-- V z X(a) (-Z(z) v "A(a, z))

Convert all the wffs to clauses:
(1) "T(p,q) v -T(q,r) v T(p,r)
(2) "X(x) v Y(f(x))
(3) "X(x) v T(x,f(x))
(4) -Y(y) v Z(g(y))
(5) Y(y) v T(y,g(y))
(6) X(a)

__ _ ___i

-179-

(7) -Z(z) v -A(a,z)

The Refutation Graph of these clauses appears
as follows:

[Y(y) v T (y, g(y)) XWj f(X y-

XR(x)VT (f x)_,(f (X)) Xx) vz(g (f (X))

T(a,f(x)) tT(f (a) ,g(t (a)))j Z D]f~))

TTaa~fg))T (a))

nil

A Refutation Graph of Theorem 3.1.

