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A. Introduction and Summary

KMS Fusion, Inc. began investigating the two-stage free electron laser
(FEL) concept in June of 1980. Since then we have developed computer simula-
tion codes to model the interactions taking place between the electron beam
and the magnetic and electromagnetic fields in the two-stage FEL and have
identified parameter regimes in which such a device is likely to operate
successfully. The work reported here is in support of a two-stage FEL experi-
ment that will be performed at the University of California Santa Barbara
{UCSB) in collaboration with Lius E1fas and the FEL group at UCSB using their
electrostatic accelerator.

In a two-stage free electron laser a low energy ( ~ few MeV) electron
beam 1s used to produce short wavelength (~ 100-1000 um) radiation. This is
done in two steps. First, the electron beam is passed through a wiggler mag-
net to produce long wavelength (~ 100-1000 um) radiation. This radiation is
then backscattered from the electron beam to produce the short wavelength
radfation. Useful amounts of short wavelength radiation can only be produced
if the long wavelength electromagnetic field is very intense (~ 108 H/cmz) .

During the past year we have developed a resonant cavity design for
containing the electromagnetic pump field radiation, which provides a long,
narrow, high-intensity region for the FEL interaction to take place while
expanding the beam rapidly outside the interaction region to minimize the
overall cavity length needed to protect the end mirrors. This quasioptical
cavity design is shown in Figure 1.

The design has a number of unique features. A low loss TE,; mode fis
preferentially propagated in the cylindrical waveguide. This mode has an
annular intensity distribution with intensity minima at the walls and on
axis. Holes in the centers of the cavity end mirrors permit the second-stage
short-wavelength radiation to leave the cavity with negligible pump field

losses in the preferred TE,, mode.

Because the TEj;; mode has only azimuthal wall currents, it can propagate
in a segmented waveguide structure. Segmenting the waveguide prevents all
modes except TEqy modes from propagating in the waveguide and also permits
fntroduction of an axial electric field to optimize gain in both the first and
second stages of the FEL. '
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The polarization of the TE;, mode is 1inear but varies as a function of
axial position. A helical wiggler magnet is, therefore, needed to fully
excite the TE;, pump field mode. For best coupling to the pump field mode it
is also desirable to use an annular electron beam.

During the period January - September, 1982 we have investigated this
quasioptical cavity design in more detail and have begun the process of hard-
ware design. We have also started developing facilities to test this hardware
and characterize it before it is used in an FEL experiment. In addition, we
have investigated problems associated with electrostatic accelerators used to
drive a two-stage FEL and have fdentified accelerator concepts that could be
scaled to high average currents and high laser power.

In this report we summarize the work that has been completed over the
past nine-month period. In Section B, laser output power is calculated for
the second stage of a two-stage FEL over the range of parameters expected in
the experiment to be conducted at UCSB. For output powers up to 1 kW, second
stage output power was found to increase as the cube of the pump field inten-
sity for constant electron current, and as the sixth power of the electron
current when the pump field intensity is assumed to increase linearly with
electron current.

In Section C, absorption, diffraction, and mode conversion losses for the
long wavelengfh pump field radfation are calculated for a simple quasioptical
cavity configuration. Absorption losses were found to be about 0.5% per round
trip and mode conversion losses about 1.6%. Diffraction losses could be made
less than 0.2%. The cavity considered consisted of a cylindrical pipe and two
mirrors. We believe that with properly designed horns at the ends of the
waveguide to optimally match the waveguide to free space modes, mode conver-
sion losses could be greatly reduced. Reduction of absorption losses by
cooling the cavity structure could be considered if mode conversion and dif-
fraction losses can be made small compared with absorption losses. To measure
cavity loses experimentally before incorporating the cavity into an FEL exper-
iment, we are setting up a microwave cold test facility. This facility is
described in Section D.

For high efficiency, continuous FEL operation, the wiggler magnet used in
the first stage of the two-stage FEL would have to be efther superconducting
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or made of permanent magnets. Linear wigglers are commonly made using
permanent magnets, but helical wiggler magnets employing permanent magnets
have not yet been buiit. We are, therefore, investigating the design of a
permanent magnet helical wiggler structure. Such a structure could be
assembled using an array of permanent magnet dipole rings. In Section E, we
describe such a device, determine the fields that could be produced using
SmCog permanent magnets, and indicate a process that could be used to tune
such a wiggler to correct for field nonuniformities.

In order to perform a successful two-stage FEL experiment, several defi-
ciencies of the present UCSB accelerator must be corrected. These include
excessive droop and ripple in the accelerator voltage, an inadequate power
system, and the ability to accept only a very small (~ 1%) energy spread. In
Section F, we indicate steps that could be taken to correct these deficiencies
so that a proof of principle two-stage experiment could be carried out at the
UCSB facility. We also present a design concept for a second generation elec-
trostatic accelerator -that could be used to operate a high-power two-stage FEL.

To improve our capability to model FEL systems in general and the two-
stage FEL experiment in particular, we have developed a technique for modeling
the propagation of laser radiation in a free electron laser in two and three
dimensions. In Section G of this report, we derive a three-dimensional wave
equation for the electromagnetic wave in an FEL using a basis vector formal-
ism. We then show how this wave equation can be solved using Fourier trans-
forms in Cartesfan coordinates. The technique is extended to cylindrical
coordinates, but problems arise because fast Fourier transform techniques can-
not be used to obtain an incremental solution to the radial part of the wave
equation. An approximation that permits the use of the fast Fourier trans-
forms {s introduced and a method is developed to insure the accuracy of the
solution over a finite spatial mesh. A simplified two-dimensional model of
the interaction of the electron beam with an axisymmetric radiation field
profile 1s used to obtain information on the effect of radial variation of the
laser field on trapping.

B. JTwo-Stage FEL Scaling

Basic scaling relationships for a two-stage FEL have been obtained using
a simple one-dimensional resonant particle amplifier simulation code. The
experimentzl variables that were found to have the greatest effect on second




stage output power are the intensity of the electromagnetic(em) pump field
produced in the first stage, the electron beam current, and second-stage
optical system losses. We have calculated laser gain over a range of values
for the pump field intensity, laser field intensity, and electron current
assuming the resonant cavity structure of Figure 1 and using accelerator and
resonant cavity parameters that are expected for the UCSB two-stage FEL
experiment.

In our calculations we assume the electron energy is 3 MeV, the frac-
tional electron energy spread is 10°“ , and elec Jn current is in the range
between 2 and 20 amp. The length of the second stage interaction region is
assumed to be 3 m and the pump field wavelength is assumed to be 1 mm, which
gives a laser wavelength of 5.3 um. The diameter of the cylindrical waveguide
is assumed to be 2.44 cm.

An annular electron beam is assumed to interact with the regfon of peak
intensity of the em pump field (see Figure 2). The cross sectional area of
the interaction region is assumed to be 1.26 cm2. In Figure 3, second stage
output power, Py.+, is plotted as a function of laser power at the input end
of the second stage interaction region, P ;,, for a number of values of the
pump field power. P, s obtained assuming all of the laser 1ight produced
in the amplifier {s available as output power. This is probably a reasonably
good assumption if several percent of the light is removed from the cavity on
every pass. If total cavity losses must be kept below a percent, then a
significant fraction of the light produced may not be available as useful
output power.

In Figure 3 we see that laser output power increases both with increasing
pump field intensity and increasing input laser intensity. In an FEL oscilla- -
tor at its equilibrium operating point, at which optical system losses just
equal laser gain, the input laser power and pump field power will not be inde-
pendent quantities. Superimposed on Figure 3 are two curves for 1% and 10%
amplification. If, the optical system is designed to produce 10% loss per
pass, only the region of parameter space above the 10% gain curve will be
accessible. This places a lower 1imit on the pump field power needed to
obtain a given laser output power. For example, with the parameters used in
Figure 3, 1f the pump field power 1s 10% watts and optical system losses are
10% per pass, the maximum output power that could be attained would be 0.45 watt.

P g~ G T X W g .-’v>: R
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In Figure 4 output power is plotted as a function of pump field power for
the parameters of Figure 3. Two curves are shown, one for 10% loss per pass
in the second-stage optical system, the other for 1% loss. The slopes of
these curves indicate that laser output power scales as the cube of the pump
field power. We also see that with a two-amp beam very intense pump fields
are needed to obtain even modest laser output powers.

Pump field power is determined by dividing the power gain of the pump
field by the fraction of the energy lost per cavity round trip. Input power
to the pump field is limited by generator capacity in the accelerator and the
maximum energy with which an electron can lose and still return to the dome of
the accelerator.

The generator in the accelerator at the present time provides 20 kw of
power in the dome. This is sufficient to provide for an average of 10 keV
energy loss per electron for a 2-amp beam if all of the power can be used for
this purpose. Electron gun voltage is 50 kY so that losses of up to a few
tens of keV for some electrons, with an average 10 keV / :lectron loss for the
entire beam, is acceptable for collection of the return beam.

Round trip cavity losses are initially expected to be between 1 and .1%
for the pump field radiation. Losses may be reduced below .1% at a later time
with improvements in cavity design. With 20 kw of input power and cavity
losses of .1% per pass, the intracavity power would be 2 x 1G7 watts. In
order to obtain pump field powers of 108 watts or greater, more generator
power must be provided for the electron beam, a greater energy loss per elec-
tron must be permitted, and cavity losses must be reduced. It is expected
that all of these things will happen as operating experience is gained an the
system is upgraded.

It is presently planned to modify the UCSB accelerator to increase the
maximum beam current from 2 to 20 amp. It is, therefore, important to know
how laser output is expected to scale with increasing beam current. Several
parameters will change as a result of increasing the beam current.

Increasing the electron beam current will increase the gain in the
first stage of the laser as well as In the second stage. Therefore, the
pump field intensity will be greater than could be achieved with a lower ]
beam current. If the fraction of the electron energy converted to long
wavelength radiation remains the same, the pump field power will increase
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linearly with electron current. It may be possible to increase the pump
field power more rapidly than linearly, however, since conversion effi-
ciency could increase at the higher pump field intensity.

For the pump field power to increase, the power supplied by the
generator must also increase. This might be done by increasing the
generator capacity, storing generated power between pulses, or a combi-
nation of the two. In determining the scaling of second-stage output

power with beam current, we will make the conservative assumption that
the pump field power increases only linearly with electron current due
to accelerator system limitations. Accelerator limitations will be less
of a factor for second stage gain in the UCSB experiment, provided
conversion efficiency in the second stage is small compared to the first
stage,

The second-stage output power will increase much more rapidly than
linearly with increasing beam current, because both the pump field
intensity and the second stage gain at a given pump field intensity will
increase. If the optical system has a fixed percentage loss per pass,
the equilibrium operating point will shift upward as the curve of P, ,¢
as a function of PLin rises relative to a line of constant gain (see

Figure 3).

The effects of increased pump intensity, increased second stage
gain at a given pump field intensity, and shift of the equilibrium
operating point are all included in the curves of laser output power as
a function of electron current plotted in Figure 5. Curves are shown
for optical systems with both 10% and 1% losses per pass. For peak
output powers below several kilowatts, P,,; scales approximately as the
sixth power of the electron current. Above 10 kW output power increases
more slowly with increasing current. The reason for the difference in
scaling is that at the lower laser powers the fraction of the electron
distribution contributing to laser gain increases as the intracavity
laser intensity increases. Above a certain power level the phase space -
buckets are large enough to trap most of the electrons in the beam, so
that the fraction trapped remains constant. : |

The output power shown in Figure 5 is the peak power that could be
obtained in the UCSB experiment for the assumed resonant cavity losses.
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Since the accelerator will lose charge at a more rapid rate than it can
be replenished by the input current, the accelerator will operate in a

pulsed mode. During each electron pulse, both the pump field and the
laser field must build up from spontaneous emission.

If the time needed to reach equilibrium is longer than the electron
pulse, the peak laser output power will be less than the equilibrium
value. Electron pulse length is directly dependent on the efficiency
with which the electron beam is returned to the dome of the accelerator.
If 1% of the electron beam is lost in the beam transport system the
electron pulse length would be about 80 psec for a 2-amp beam in the
UCSB accelerator and about 8 usec for a 20-amp beam. Initial experiments
have produced collection efficiencies of about 96% without an FEL
amplifier in the beam line. Collection of 99% or better with the FEL in
operation are a long range goal. We have assumed an annular electron
beam in the calculation. The first experiments will not be done with an
annular beam, and therefore only part of the electron beam will interact
with the high intensity pump field, lowering the effective electron
current,

In conclusion, we have found that laser output power should vary
as the sixth power of the electron current in the UCSB two stage FEL
experiment. If the electron current is held constant, laser output
power will vary as the third power of the pump field intensity.
Decreasing optical system losses increases the amount of laser light
produced in the cavity. Optical system losses include both the output
power and dissipative losses such as mirror absorption and scattering.
Dissipative losses in the second stage can probably be kept to a percent
or less per round trip optical pass.

The scaling with pump field power and electron current for the
two-stage FEL indicates that prospects for developing a high-power
high-efficiency device based on this concept appear very good. If the
UCSB experiment works as predicted, high average power devices could be
built with electron currents not exceeding 20 amp. This would require
developing an accelerator system with sufficiently low losses and suffi-
ciently high input current to operate in a D.C. mode. It would also
require much higher power conversion from the electron beam to the




optical beam and higher pump field power levels. As will be discussed
in the following sections, this scaleup may be accomplished with existing
state of the art technology.

C. Resonant Cavity Design

The pump field cavity must be designed to minimize cavity losses.
Cavity losses reduce the maximum pump field intensity that can be
attained in the interaction region and also reduce the overall effi-

ciency of the device. There are three main classes of losses that can
occur in the cavity — absorption losses, diffraction losses and mode
conversion losses.

1. Absorption Losses: For good conductors, the surface resistance
Rg can be written as!

Rg = —¢ (c-1)

where o is the conductivity and & is the skin depth. The skin depth is
given oy

1
2 (c-2)

§ = (mopof)
where f is the frequency of the wave. For normal incidence illumination
it can be shown theoretically?’3 and experimentally“ that the absorption
loss is given by

where Zg = po/eg = 377Q is the free space impedance, P. is the reflected
power, and P; is the incident power.

Table 1 gives conductivity, skin depth, surface resistance, and the
dimensionless quantity R./Z, for a number of different metals at a
wavelength of 1 mm. The values in Table I are based on the assumption
of idealized surface conditions. Surface contamination and imperfections
on grain boundaries could increase absorption by up to a factor of 2.

For the case of a cavity with two copper mirrors at room temperature
the round trip cavity transmission factor T, is given by

Ty =1 - 8 Ry/Z, = 0,997 (C-4)
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Table 1

NORMAL INCIDENCE ABSORPTION LOSSES ON THE SURFACE
OF GOOD CONDUCTORS AT ROOM TEMPERATURE

(A =1 mm)

Surface Loss

Conductivity Skin depth Resistance Factor

Conductor g (mho/m) 8 (m) Re (Q) Rs/zo
Aluminum 3.54 x 107 1.54 x 1077 0.18 4.9 x 107¢
Copper 5.8 x 107 1.21 x 1077 0.14 3.79 x 10°7%
Silver 6.15 x 107 1.17 x 1077 0.139 3.68 x 10°%
Gold 4,5 x 108 1.37 x 10-7 0.16 4.3 x 10"
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In a cylindrical waveguide the attenuation of the power in a propa-
gating wave is given by
P(z) = p, e”® (C-5)

For a TE,, wave the attenuation coefficient, a, is given by2s5
2
R
aZg V' 1 - (fc/f)2

where a is the waveguide radius, f is the frequency of the radiation,
and f. is the waveguide cutoff frequency. For a TEg; mode

[+ 4

(C-6)

(C-7)

where u is the value of the first off-axis zero of the J; Bessel function.
Ji(u) = 0 for u = 3,83, For A= .1l cmand a = 1.22 cm, f./f = 0.05
and @ = 1.55 x 10"* m"l. For a 5-m-long copper waveguide, at room

temperature, the round trip transmission factor Tg will be given by

-2al
Tgae

= 0998 (C'S)

Total transmission losses due to absorption in both the mirrors and the
wavequide in one cavity round trip will therefore be

Absorption loss = 1 - T, To = 1-.995 = 5x1073 (c-9)

Whether a loss rate this high would be tolerable in a high power
two-stage FEL depends on the fraction of the electron enerqgy converted
to usable photon energy per pass, the overall laser effictency required,
and the size of the losses compared with other system losses. Absorption
losses could be made almost arbitrarily low, if required, by cooling the
metallic surfaces of the cavity. Cooling should only be considered
after it is demonstrated that absorption losses are the dominant cavity
loss mechanism.
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2. Mirror Diffraction Losses: If the radius of a free space mode
leaving the waveguide is wg, then the radius of that mode at any distance

2 from the waveguide is given by

w(z) =wo (1 + ¢§3)2 ) 2 (C-10)
where g2
Zo0 = = (C—ll)

If we assume the intensity pattern is primarily that of a TEMS; annular
mode, the intensity across the beam is given by

I(r) = 1(0) pe”® (c-12)
where 2p2
Py (¢-13)

The value chosen for wg is some fraction « of the waveguide radius, a,
which gives a good match between the free space and waveguide cavity
modes.

wo = aa (C-18)

If we assume that the TE,; waveguide mode is converted into a TEMgl

free space mode then a best fit value for a is a = 0.5. For a = 1.22 cm,
A = 0.1 cm, and an assumed distance of 2 m between the end of the
waveguide and the mirror, the beam radius at the mirror, @ will be
10.45 cm.

Now
[ e dp = -(l14p) e, (C-15)

and the value of this integrai from 0 to = equals 1. Therefore to find
the fraction of the cavity radiaton inside a mirror of radius A we only
have to evaluate (C-15) from 0 to p(A). For example, if we chose A = 2uy
then p(A) = 8 and .997 of the radiation will hit the mirror. If A

= 2.5 wy then .99995 of the radiation leaving the waveguide will intercept
the mirror. Therefore, diffraction losses around the outside




of the mirror can be made arbitrarily small by making the mirror suffi-

ciently large.

The short wavelength radiation will also come out of the waveguide as
an annular beam, but it will spread much less. For 5.3 um radiation the
beam radius at a mirror 2 m from the waveguide would be 0.61 cm,
essentially the same as at the waveguide. [f we make a hole in the mirror
with a radius 2.5 times larger, virtually no short wavelength radiation
will hit the mirror. From (C-15) the fraction of the long wavelength
radiation that would be lost through this hole would be
1 x 1073 with a round trip loss due to diffraction of 2 x 10~3. This loss
could be reduced by placing the mirrors farther from the waveguide.”

3. Mode Conversion Losses: ODuring the period covered by this report
a model has been developed to calculate losses from the simplest possible
quasioptical cavity consisting of a pipe and two mirrors. In this model

a TEq) waveguide mode is converted to a linear combination of TEMEl modes
at the end of the waveguide. The individual free space modes propagate to
the mirror and back. The returning power feeds the TEjp; mode as well as
other waveguide modes and is partially lost around the outside of the
waveguide. Losses are assumed to consist of all energy not reconverted
into the TEg; mode.

The discontinuity at the end of the waveguide results in reflection
of part of the field back into the waveguide. For a simple pipe the
reflection coefficient Rg is given by

Rg = (Zo = Zg) / (Zg * Zg) (C-16)
where 1,2
24/Tq = (1 - (Fe/f)2)/ (C-17)

For the case we are considering Rg = 6,25 x 10”%, This reflection need
not degrade cavity performance if the reflected wave is in phase with the
wave reflected from the cavity end mirror. We will assume this to be the
case. Improved cavity designs with conical horns at the end of the
waveguide could significantly reduce this reflection.

Inside the waveguide the electric field has the form




Ee(r,z,t) 2 Ee(r) cos (kz - wt) (C-18)

where Ee(r) is proportional to the J, Bessel function, J,(3.832 r/a).

At the end of the waveguide the Bessel function mode is reexpressed
as a linear combination of Gauss LaGuerre modes with the azimuthal
component of the electric field given by

2u 1 1 -u/2
Egplu) = Li*) () —== eV (C-19)
op mwy< P /p+1
where
u= ;§§§ (c-20)
and
a = wo/a (C‘Zl)

wg 1s the beam-waist radius of the free space beam at the end of the

guide. The associated LaGuerre polynomials are obtained from the relation
L) = - L) (c-22)

The waveguide and free space modes are normalized so that

[~ 2xr dr Eg(r) =z 1 (c-23)

a
0
and "

[y 2o dr Edp = 1 (C-24)

At the boundary the waveguide mode can be expressed in terms of the
free space modes in the following way:

Eg = pEO Cp Egp (C-25)
where
a
Cp = Io 2xr dr Eg(r) Egp(2r2/aZe?) (C-26)

A computer program has been written to solve these equations. Cases were
considered with up to 12 free space modes. A range of values for the
parameter « were tried. For 12 modes a best fit was obtained for




a = 0,3. The values of the coeffiecients Cp for this case ige given

in Table 2. The sum of the squares of the first 12 terms, zo Cp , is
also given. The deviation of this sum from unity is a measure of the

contribution due to modes with p > 11. C. is the remaining amplitude
if only one higher order mode were needed to completely represent the
waveguide mode at the boundary.

Table II

Coefficients for Expansion of TEy; modes as a series of
Gauss Laguerre free space modes for a = 0.3

Co = .6153 Ce = -.3733 x 107!
C, = -.5828 C, = .2040 x 107!
C2 = .4400 Cg = .1125 x 107!
C3 = ~.2695 Cg = -.1388 x 107!
Cy = 1139 Cyg = -+5760 x 1072
Cs = ~.4748 x 10-2 C;; = .8875 x 1072
11
C. = .1473 x 10-! I c2= .9998
p=0 P

When the radiation leaving the guide propagates to the mirrors and
back to the waveguide, the different modes do not stay in phase. The
phase shift of the modes with p>0 relative to the p=0 mode is given by

Lam M

= —gam__ -
¢. = 4p arctan (uazaz) (C-27)

p

where Lgm is the distance from the end of the waveguide to the mirror.
For Lgm =200 cmy, A= .1 cm, a =1,22 cm and a = .3

¢
Ig = arctan (47.5) = 88.8 degrees (C-28)




The modes with small values of p will have relative phase shifts close to
zero (multiples of 2= radians) while modes with very large p will have
small amplitudes.

The radiation returning to the waveguide is given by

» i¢
! CE

-29
R op® (C-29)

P= Jae 8, + JqE
jal J J n=0 " én
In (C-29) the incoming wave is decomposed :ato two parts. The first sum
on the right hand side are the waveguide modes which may be nonzero for
r<a but are equal to zero for r > a. The second sum on the RHS of (C-29)
represents the remainder of the radiation field outside the waveguide and

equals zero for r < a.

Multiplying (C-29) by anpzo CpEep and integrating using the ortho-
gonality conditions gives
s i¢ i®
2 C2 e P = Ale !
p=0

(C-30)

This result is obtained because pzo CpEgp 1s equivalent to the TE;; mode
in the waveguide (B1sEg), and all the other waveguide modes, B; ({>1), are
orthogonal to it. Outside the waveguide pzo CpEep’ 0, so the integrand
for the second sum in (C-29) is always zero. The fraction of the

returning power converted back into the TEg; mode is equal to A;2.

A2 = [Re[A]_ei°1]]2+ [Im(Aleial)]z (C-32)

s C 2 coso )%+ C 2 sine )2
(pZQ P p) (pZQ P p)

Taking only the first 12 terms of each sum we get a value for A;2 = 0.9921.
This indicates that practically all of the radiation returning to the
waveguide will reenter the guide and again propagate as a TE;; mode.

Upper and lower bounds on the value that would be obtained if an infinite
sum were taken are ~ A;2 ¢ ZCrz. The round trip transmission factor for
the TEy; mode equals A" since mode conversion would occur at both ends

of the waveguide. For the first 12 modes A;* = .9843 ¢ .0008.
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A loss of .8% per round trip pass due to mode conversion is obvi-
ously higher than we would like, but this result is only the first cut
at modeling an initial unoptimized configuration. Lower losses could
be obtained with this same configuration, however, by increasing the
distance between the end of the waveguide and the mirrors with a corre-
sponding increase in the size of the mirrors.

D. Measurement of Cavity Q

Modeling calculations of the'quasioptica1 cavity indicate that
losses per round trip pass could be kept below 1%. We wish to verify
these calculations experimentally before fabricating the hardware to be
used in the UCSB two-stage experiment. To do this we are setting up a
microwave cold test laboratory in which the Q of cavities similar to
that which will be used in the two-stage FEL experiment can be measured.
The testing procedures developed in this laboratory will not only provide
us with a better understanding of cavity performance, but will also
provide us with diagnostic experience that will be needed for the FEL
experiment.

We have determined the cold test measurements which will be neces-
sary during the construction and subsequent characterization of the
quasi-optical pump cavity. These consist mainly of progressively
narrower bandwidth measurements. The test cavity configuration shown
in Figure 6 will be used for testing cavity components. The information
needed for the design of the pump cavity can be obtained from the test
cavity.

The cold testing will be performed at a wavelength of 3 mm. An
efficient, reliable mode converter to launch the low loss TEg; mode into -
the circular guide is available at 3 mm, but not at shorter wavelengths.
Also, good frequency stability (a few parts in 108) is required of the
bench source. This stability can be guaranteed at 3 mm, but again not
at shorter wavelengths.

Two bench sources will be used to cover the range of bandwidths we
need. A frequency-swept backward wave oscillator will provide the wide
bandwidth necessary for many of our initial tests and will permit the
measurements to be made quickly. These tests include identification of
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undesired modes and initial Q measurements of the desired mode. () can
be expressed as f/Af, where f is the center frequency of the mode, and
Af is its bandwidth, which is proportional to the losses suffered by the
mode.

" The test cavity is expected to have absorption losses of a few
tenths of a percent per round trip pass at room temperature. A compa-
rable amount of power will be transmitted through the element coupling
the cavity to the cold test equipment. This coupler will be designed
so as not to produce undesired modes. We expect that losses at the
waveguide/free-space transition will be less than 0.1% for optimized
cavities. The bandwidth corresponding to the total losses will be
several parts in 107, Thus, in order to detect improvements in the
waveguide/free-space transition, we will need frequency stability of
a few parts in 108, A phase locked Gunn diode oscillator meets this
requirement and has an adequate power level,

An alternative method of measuring cavity Q is by measuring the
1/e decay time (‘t = Q/2xf) of the natural oscillations of the cavity.
This may be done with a high isolation switch (shown in Figure 6) and
sensitive diode detector.
E. Permanent Magnet Helical Wiggler Design

A helical wiggler magnet is needed to fully excite the TE,; pump
field mode. During this contract period we have investigated the
possibility of producing this helical wiggler field using an array of
permanent magnets. We have found that it is possible to do this and
that the magnetic field produced using permanent magnets would have the
same form as that which is produced using a bifilar helical winding such
as in the Stanford wigglerS.

1. Multipole Rings: The building block for a permanent magnet
(SmCog) helical wiggler will be a dipole ring. The design concept for
any multipole ring is as follows. If, in a ring of perfect rare earth

-tobalt (REC) materfal with inner radius ry and outer radius r,, the easy
axis is continuously rotated according to the relation

a = (N+1)e , (E-1)
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then a perfect multipole field of harmonic order N will be produced

inside r1.7 The strength of these multipole fields is, for N > 2,

r N-1

Byrl = B e - &) ) (E-2)

where the harmonic number, N, equals half the number of poles in the
magnet ring. For N = 1, the dipole field strength is

ra
Byl = 8. 1n () (E-3)

It has been shown’ that this multipole ring design produces the strongest
possible field for a given amount of REC material. It is not presently
possible or practical to produce rings with a continuous easy axis
orientation. The solution is to segment the ring into a number of

pieces as illustrated in Figure 7. In each segment the easy axis orien-
tation is constant at the value prescribed in (E-1) for a line through
the center of the segment.

The segmentation of the ring has two consequences. Equations (E-2)
and (E-3) are multiplied by form factors, depending on the exact shape
of the segments. For trapezoidal segments, the form factor is

sin N=
Ky = cos” § — (E-4)
-

where M is the number of pieces around the ring. For a reasonably large
value of M, Ky is close to 1, e.g. for N = 1, a dipole magnet, and M = 8
pieces, Ky = 0.90. The second consequence of segmentation is that the
field distribution inside the ring is no longer a perfect multipole, but
contains harmonic field errors. The fields in a multipole ring may be
expressed as

8 (2) = 8, - 18, = 2o, (& - (€-5)

where the b,'s are the harmonic multipole field coefficients. It can be

shown’ that in a perfect segmented multipole ring, only certain terms d
appear in the series in (E-5):
)
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n = N + VM, v = 0,1,2, e oo (E-s)

For a dipole with M = 8, this series is n = 1,9,17,... and the first
error harmonic is the n = 9, 18-pole. The strength of this error depends
on the exact geometry of the pieces and the ratio (r,/r,) . For 8
trapezoida! pieces in a dipole with (ry/r;) = o, |bg/b;| = 0.095.

The flux distribution in such a ring is shown in Figure 8.

2. Helical Wiggler: An REC permanent magnet helical wiggler can
be constructed by an axial stack of dipole rings where each ring is
rotated about the axis relative to its neighbors. For the dipole ring
geometry of Figure 7 the expression for the amplitude of the rotating
dipole field on axis in such a wiggler is®

sin =
B, = B.Cy [T(x1) - T(x2)] (E-7)
J ;
with the following definitions:
sin 2z

CL = » the form factor for circular segments,

2x
M
J = the number of slices per period A, and

2nry
T(x) = Ko(x) + FKi(x), x1 ==

where K, and K, are modified Bessel functions of the second kind. The
function T(x) is given in Figure 9., Both C; and the factor depending on
the number of slices per period will be close to 1 for reasonable designs.
T(x4) can be made small for reasonable values of x, = 2nr,/A. Therefore
the dominant term which determines the helical wiggler strength will be
the value of T(x;) corresponding to the ratio rj/A. Although (E-7) is
strictly correct only for the case of circular segments in the dipole
ring, it is a good approximat1on to the solution with alternate shaped
segments such as trapezoids and rectangles, if the proper form factors,
Ky, are substituted for C,.
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TABLE ITI1

(:3) Segment by (%)
r Shape B, (Kgauss) by

2 trapezoid 5.42 9.5

2 rectangle 4.18 0.2

3 rectangle 5.66 0.01

A preliminary 5na]ysis of a helical wiggler design with By =
2 kilogauss and A = 5 cm has been made. The first step was to investi-
gate different configurations for the dipole ring. Table 3 gives the
results for infinitely long (2D) rings assuming B. = 8.7 kilogauss.
For mechanical reasons, a design with rectangular pieces is preferable
as this allows for mechanical support of the pieces and the possibility
of moving the pieces to tune out harmonic errors, as will be discussed
below.

Figure 10 shows a helical wiggler design concept with the following
parameters.

sin L.
B KL —= = (8.7) (.9) (.9)

J

2xr
e o = 225 g g
T(xy) = .3

xg = ZL(%-_?’). = 5.65

T(xy) = 0.01

This gives a wiggler amplitude of
By = (8.7) (.9) (.9) (.29) = 2.04 Kgauss
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3. Dipole Ring Tuning: Although many REC multiple magnets have

been built with no provisions for tuning the multipole field errors, the
requirements on the uniformity of the magnet pieces are very stringent
for high precision field distributions. A way to understand how a
tuning procedure may be implemented, is to consider the field produced
by an individual magnet block. In general a single block produces all
harmonics which may be expressed as

-85 = ¥ ¢ ! (E-8)

Let us call the block bisected by the x-axis in a multipole assembly the
reference block, as shown in Figure 11. The C, in (E-8) are produced by
this block. The resultant fields produced by an assembly of M blocks in
a symmetrical array are just the sum of the harmonics produced by a
single block, i.e. b, in (E-5) is equal to MC,. Of course only certain
n's are allowed according to (E-6) all other harmonics exactly canceling.
The C, for an arbitrarily shaped reference block may be derived by
evaluating the following integral

PL dz*
Ch = [ 4 (E-9)
4r i 2"

where B. is the complex representation of the residual induction. If
the pdgTiion of the reference block is perturbed, the change in the Cn
can be calculated directly from (E-9). The result is

ACn 2 -n Az Cn+1 (E-10)

The same relationship exists for every block in the assembly with a
different absolute phase angle for each block.

The consequences of the analysis above are that by small pertur-
bations of the position of the REC blocks in a multipole assembly,
specific harmonic errors of given amplitude and phase (real and imaginary
part) may be produced.

A}

A particular multipole tuning procedure then could be implemented as
follows. First, measure the amplitude and phase of each harmonic




Figure 11




! multipole field error. This can be done with harmonic multipole
measuring equipment as described in reference 9. Second, calculate the
set of magnet block radial perturbations which create the negative of
the measured errors with the proper phase. D0Oepending on the criterion

' which is chosen to reduce the field errors, one may wish to eliminate
exactly a number of low order errors, or the strength of a larger number
of multipole errors may be reduced by, for example a weighted least

“ ) squares minimization procedure. In general it requires at least the

radial movement of two magnet blocks to cancel one harmonic error, since
the b, are complex.

F. Accelerator Studies

The success of the two-stage FEL experiment will depend on the
proper functioning of all equipment in the system. This includes the
accelerator that supplies the beam. Beam current, pulse length, and

’ voltage stabil‘ty are critical factors in the experiment that are deter-
mined by the accelerator, and the amount of power that can be obtained
from the FEL is also limited by the accelerator.

During the period covered by this report we have studied the
adequacy of the present UCSB accelerator system for the two-stage FEL
experiment. As a result of this work, we have identified areas in which
accelerator improvements are necessary to insure the success of the two-

’ stage FEL experiment and the usefulness of the experimental results for
extrapolation to higher laser powers. We have also developed a

conceptual design for a very high power FEL and identified technologies
needed for this high power design that could be tested using the UCSB -
2 accelerator.

1. Deficiencies of the Present UCSB Accelerator: In the present

UCSB electrostatic accelerator,!® the charge on the dome of the accel-
erator is provided by a pelletron charging chain capable of supplying
500 pamp of input current. Initially the accelerator will operate with
a 2-amp pulse. Electrons leaving the accelerator pass through the FEL
amplifier and are directed back up the accelerator column where they are

; recollected and reused. The charging current, therefore, is only needed

) to start up the accelerator and to compensate for system losses during
operation.

o —
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If 99.975% of the electrons leaving the dome of the accelerator

were recollected, an average current of 2 amp could be achieved. It is
not expected, however, that collection efficiency will be this good.
Therefore, the accelerator will be operated in a pulsed mode. As a
pulse of constant current is emitted from the accelerator, the charge on
the dome will be depleted and the accelerating voltage will begin to
fall or droop. The length of the pulse will be a function of the droop
that can be tolerated in the FEL. Droop voltage for a 2-amp beam in the
UCSB accelerator is plotted as a function of pulse length for a number
of assumed current loss rates in Figure 12. For a single-stage long-
wavelength FEL several kilovolts of droop could be tolerated before the
laser ceases to produce gain at the desired frequency. For the second
stage of a two-stage FEL, the maximum droop that could be tolerated
would be a few hundred volts. Even if a voltage droop could be
“tolerated", interpretation of the data from an experiment with voltage
droop would be very complicated and difficult to extrapolate to high
power operation.

The lTength of the electron pulse is determined by the rate at which
charge is lost by the dome of the accelerator. For the present system a
pulse length of 75 usec , determined by the amount cof droop that could
be tolerated in the first stage, has been predicted for operation at 2
amp. If the electron current is increased by a factor of 10, it is
anticipated that the pulse length will be decreased by at least this
factor.

In a free electron laser oscillator, a finite amount of time is
required for the laser pulse to build up i."om spontaneous emission to a
saturation value at which the gain in the laser just covers optical
system losses. The time required for this buildup in the Stanford FEL
is a minimum of a few tens of microseconds. For both the second stage
laser field and the first stage pump field to build up from spontaneous
emission will probably require at least several tens of microseconds.
It is, therefore, not certain that with the present accelerator design
the electron pulse will be Tong enough to permit the laser pulse to
reach its predicted saturation value.

We assume that a maximum effort will be made to lengthen the
electron pulses by reducing beam losses. The predicted 75 psec pulse
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' length for a 2-amp beam and 7.5 usec pulse length for a 20-amp beam are
obtained by assuming these efforts will be successful. In order to
increase the pulse length further, it will be necessary to correct for
the voltage droop that limits the pulse length.

2. Control of Voltage Droop: The rates for chér-ging and
discharging the dome of the accelerator are given by

Ic I
Ke = 7= and Kq = = (F-1)

where [ is the charging current, IL is the current that is not recol-
lected by the accelerator, and C is the capacitance of the dome. The
net rate of discharging is given by

L -1

Ay
Kp-Ke=2ag*—T— (F-2)
where AV is the voltage drop of the terminal. For the UCSB accelerator

current losses during the electron pulse are much greater than the
charging current, i.e.. I} > I¢.

Without correction for voltage droop, the electron pulse length is
determined by the voitage droop that can be accepted. This discharge
time will be given by

Av
Atc ol (F-4)
C
and the duty cycle is
At I
D C
D — . (F-5)
AtD + Atc TL

For example, if Io = 500 pamp , I = 20 mamp and C = 200 pF, then
Kc = 2.5 V/usec and Ky = 100 V/psec . If we allow a AV of 10 kV then
the pulse length AtD is 100 usec , the recharging time {is 4000 usec and
the duty cycle is 0.025. This is shown schematically in Figure 13(a).
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The voltage droop can be eliminated by providing a voltage ramp to

accelerate the electrons by exactly the amount that the terminal voltage

is reduced (Figure 13b). This voltage ramp would be provided by a power

supply in the dome of the accelerator that ramps the voltage of the !
electron gun and electron collector relative to the dome during the

current pulse. The power needed to operate the power supply would be

provided by the generator in the dome. Any change in beam focusing pro-

duced by the accelerating gap could be corrected using variable voltage

Einzel lenses.

When the voltage droop has been cancelled, the pulse length is no
longer determined by the maximum droop the FEL can accept, but by the
maximum droop the ramped power supply can correct. The latter may be
greater by a factor of a few than the former. The size of the power
supply and the breakdown voltage for the accelerating gap limit the
droop that can be corrected to about 30 keV. If the charging current
remains constant, there will be no change in duty cycle, so that the
time required to recharge the terminal increases as the electron pulse
length is increased (Figure 13¢). Increasing the charging current will
have practically no effect on the electron pulse length when I} >> I,
but will increase the duty cycle (Figure 13d).

3. Control of Voltage Ripple: The pelletron chain, which is used
to transfer charge to the HV terminal, is charged by induction. It can
be charged negatively at the accelerator base, and positively at the

terminal to double the net charge transferred. Ripple is caused by
imbedded charge which is not transferred in the charge-discharge process.
The amount of imbedded charge can vary with time. The ripple voltage

has two main frequency components: one at 400 Hz arising from the
charging variations of individual pelletron links, and one at a much
lower frequency, ~ 3 Hz, corresponding to the complete chain cycle

time. For a completely unregulated machine, the amplitiude of the ripple
is on the order of kilovoits.

Conventional stabilization methods utilize a coarse and fine control
to minimize ripple. The coarse control can only control ripple to about
1 part in 103 of the total accelerator voltage, whereas the fine control
usually reduces the ripple to 1 part in 104 or less. The state-of-the
art in ripple control is a few parts in 105, Coarse control for the
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UCSB machine utilizes a generating voltmeter to detect voltage changes
on the terminal and a corona discharge to modulate a leakage charge for
correction.

For fine control of ripple the signal from an energy sensitive
diagnostic, such as a stabilized analyzing magnet and slit detector,
could be used to modulate the voltage on the same power supply already
being used to correct for voltage droop.

4. Accelerator Power System Limitations: Although the 20 kw

generator and associated motor and power supplies in the UCSB accel-
erator are adequate at present, they may not be able to provide adequate
power when the beam current is increased. If 1% of the electron energy
is converted to photon energy in a 2-amp, 3-MeV beam, the instantaneous
power that must be supplied is 60 kw. For a 20-amp beam this will
increase to 600 kw. Because the gain in both the pump and laser fields
will be higher in the 20 amp case, more than 1% of the electron energy
may be converted to photon energy when the system reaches its equilibrium
operating point. In order to accommodate this higher energy loss it
will be necessary to increase the voltage on the electron gun and
increase the voltage spread that the collector can accept. Correction
for voltage droop will permit increasing the electron pulse length and
hence the time over which peak power is drawn from the power supplies in
the dome. This will impact the amount of energy that must be stored to
provide for peak power loading.

5. Design of an Accelerator for a High Power FEL: Even if the
voltage stability of the UCSB accelerator is improved it will not be
capable of driving a high-average-power FEL. One reason for this is
that the total power that can be generated in both the pump and the

laser fields of the FEL cannot exceed the generator power in the dome of
the accelerator. In the UCSB device, there is only a 20 kw generator in
the dome of the accelerator.

Other factors also 1imit the average power that can be obtained
using the UCSB accelerator design. When operating in a pulsed mode, the
laser pulse must build up from spontaneous emission for each pulse.
Therefore, the laser will at best operate at its saturation power value
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for only a fraction of the time the electron pulse is on, and the elec-
tron pulse will be on only a small fraction of the time between pulses,
The low duty cycle is the result both of inadequate charging current to
permit continuous operation and inadequate power to provide energy to
the electrons for continuous operation.

At KMSF we have developed a design concept for an electrostatic
accelerator that could provide both the input current and the power
needed to operate a high-average-power FEL. In the accelerator design
we are considering, an insulated core transformer (ICT) is used to
provide the input current to the dome of the accelerator. An ICT could
provide a few tens of milliamperes of input current at voltages of a few
MeV directly to the dome of the accelerator with 90% wallplug efficiency.
A diagram of an accelerator incorporating an ICT is shown in Figure 14.

To provide adequate power for operating the FEL, four samarium
cobalt permanent magnet generators, each of which is rated at 250-400 kw
and weighs 120 1b,, are located in tne dome of the accelerator. The
generators are powered by two 800 hp motors with counter-rotating drive
shafts located outside the accelerator. The insulating drive shafts may
be operated directly using a ferro-fluidic feedthrough, as shown in
Figure 14, or using a fluid-driven turbine to transmit power to the
drive shaft inside the accelerator. The permanent magnet generators
operate at 20,000 rpm and a gear box would be used to operate the drive
shaft at 2000 rpm. The overall efficiency of producing power in the
dome of the accelerator is estimated to be about 80%.

A1l of the equipment needed to build this accelerator is commer-
cially available. The major technological problem that needs to be
demonstrated is efficient recollection of the high current electron
beam. Also, operation of the generators and the entire power transmis-
sion assembly must be demonstrated inside an electrostatic accelerator,

The voltage of the ICT has a periodic ripple of about 1% at 360 Hz.
This ripple could be reduced by a factor of 1000 using the filter circuit
shown in Figure 15. It is necessary in constructing this filter that
the accelerator and ICT column domes remain separate. This is shown in
Figure 14. Further correction for small, nonperiodic voltage ripple
could be accomplished with a beam energy analyzer and feedback system.
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As an example, we consider an accelerator with 3.5-MeV, 20-amp DC
beam that is recirculated with 99.9% charge collection efficiency.
The ICT makes up the 20-mamp current loss. I[f an average of 1.4% of
the electron beam energy is converted to photon energy in the FEL,
1 MW of power must be supplied to the recollected electron beam by the
generators in the dome of the accelerator., Since the ICT is only 90%
efficient and the generator system is ~ 80% efficient, heat will be
generated in the accelerator tank that would have to be removed by an
active cooling system.

Although the accelerator column and ICT are shown in tandem in
Figure 14, it would also be possible to locate them along side each
other for a more compact design (Figure 16).

G. Multidimensional FEL Simulation Code

The one dimensional resonant particle and multiparticle simulation
codes that have been developed at KMSF have enabled us to obtain general
scaling relations for the two-stage FEL as well as more detailed infor-
mation about optimization of laser gain and conversion efficiency during
the pulse buildup. These codes cannot, however, provide information
about the mode structure of the optical beam, beam quality, or output
coupling, or provide information about the actual electron trajectories
in the interaction region. The 1-D codes do not take the radial profile
of the electron beam and optical beam into account, and therefore provide
only approximate values for laser gain and conversion efficiency, which
are not sufficiently accurate for detailed comparison with experiment.

To improve our capability to model a two-stage FEL experiment we
have developed two and three dimensional computer simulation codes and a
two dimensional resonant cavity design code. In this section we will
present the general three dimensional formalism for propagation of the
laser field and the electromagnetic pump field in the FEL. The method
of solution of the wave equation using fast Fourier transforms in a
Cartesian coordinafé system will be described, and then it will be shown
how this same formalism can be applied to a system in which cylindrical
coordinates are employed.
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In the development of the multidimensional codes a number of subtle
points had to be considered to insure that the codes would be both fast
and accurate. In particular, it had to be shown that the incremental
solution of the wave equation would be unitary, so that no artificial
gains or losses would be introduced in the absence of a driving source
term. To solve the wave equation in cylindrical coordinates using fast
Fourier transforms, a transformation is made on the radial part of the
wave equation,

Since the experiment we are planning will have cylindrical symmetry,

a 2-D code has been written which assumes cylindrical symmetry. To use
the code for design optimization of an FEL amplifier it is necessary
to know what effect varying an axial electric field (or equivalently

é tapering the period of a wiggler magnet) would have on the resonant

; phase of the ponderomotive wave as a function of radial position. This
is determined by developing a description of the electron dynamics for
the resonant particle in the 2-D code.

1. The Three Dimensional Wave Equation: The propagation of an electro-
magnetic wave in space is determined by the three dimensional Maxweill
wave equation

>

1 <>
(Vz - 2-2' ) A = -pyd (G-1)

%o
NN

We w111‘§01ve this equation for the general case in which both a
laser field A_ and an electromagnetic pump field Ap combine to form a
ponderomotive force which acts on the electrons.

The currents used in the solution of the wave equation in any time
interval, At, are obtained from the motion of the electrons during that
time interval. The solution of the wave equations in the 1-D case was
made simpler by using two assumptions: 1) the slowly varying field
approximation which allowed linearization of the left hand side (LHS) of
the wave equation, and 2) the proper choice of propagation vectors on
which to project the wave equation. The latter allowed the separation
of the differential equations for the amplitude and phase of the fields b
and simultaneously provided exact analytic forms for the single-particle
currents (the RHS of the wave equation). It will be shown that using
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these assumptions the wave equation can be written in the form

+
[Vlz + ZikL ('ai' ‘é-'gg‘) L = -pgd) (G-2)

where k| 1is the longitudinal component of the wave number for the laser
-

field and J| is the perpendicular component of the electron current.

Likewise for the pump field

> >
[Vlz + 2ikp ('376 - 21.32.)] Ap = -pgd; (G-3)

In the 3-D case, we generalize the vector potentials to have ampli-
tude and phases that depend on x, y, z and t but which propagate only in
the z-direction. The latter property suggests we find a way to represent
the potentials used in the wave equation so that the evolution of the
amplitude and phase part can be handled separately from the propagation
part.

The vector potentials for the laser field and the electromagnetic
pump field are given by

KL = AL(;,t) [i cos(kyz - ot + ¢) - ; sin(kjz - gt + 4)] (G-4)
and
KP = -Ap(;,t) [x cos(kpz + wpt + ¢p) + y sin(kpz + wpt + ®)] (G-5)

where & = & (X,t), ¢ = d(X,t).

We now rewrite these in a form suitable for separating the z,t propa-
gation part from the x,y part.

AL = AL(K,t) T [e ] (x,1y) + c.c. (6-6)
or
R el ) fo T N G, (6-7)
Similarly,
Ap = Re {Ap(%,t) e P77 EAU IR (6-8)
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Note that

ei(kLz'“it)(£,1§) = [x cos(k z-gt) - y sin(k z-gt)]

+1 [+ x sin(k z-a t) + y cos (k| z-w t) ]

=@ - ie (G-9)
1 2
where
élL = x cos(ky z-w t) - y sin(ky z-w t) (G-10)
and
ézL = -x sin(k z-wt) -y cos(k z-ut). (G-11)
Also note that
1(k 2+w t) R - !
e (x,-iy) = -(ey - ey ) (G-12)
P P
where
élp s -x cos(kpz+wpt) - § sin(kpz+wpt) (G-13) '
and
ézp = x sin(kpztupt) - y cos(kpz+upt). (G-14) ]
We further define
- > 1°L Lo - A LA
A = A (x,t)e fL = elL - 1e2L (6-15,16) t
- 10P - - -~ A
Ap = Ap(x,t)e fp = .(elP - iezp) (6-17,18)

Ak, carry the amplitude and phase shift information which depend on
(x,t) and the vectors fL, fp depend only on (z,t). Then

AL = Re(a F,) = Yoa ) + cuc. (6-19)

and




> -~ -
AP = 'Reupfp] = -l/ZAPfP + Co.Co

Defining
GL = (kLZ - th), (G-Zl)
and
Y =a +a - (kL+kP)z - (mL-mp)t (G-22)
it can be shown that
-@1* @7 = @4 %@, = c0s ¥ e1° @7 = 1, etc. G-23,24
1 °1p * ©2 ez, 0 1 €1, e (6-23,24)
elc ezp = ezi elp = sin ¥q elE ezL = elﬁ e2P= 0. (6-25,26)
It can also be shown that
fL-fL = 2, fp-fP = 2 | (6-27,28)
A A * ~ -~ -
fLofP =0, fP-fL =0 (6-29,30)
LI * -1wo
and fp -fL = 2e R (6-31)
Also,
A2 a2 A% 2 -~ %2
fL =fp = (fL ) = (fP ) =0. (G-32)

The result of this formalism is that the complex form of the fields can be
written as projections of the real vector potentials onto the complex
vectors:

<> ~ » L d A
A'L = AL.fL » h = -Ap .fp . (G-33’34)
Stncess (61), o = k o (e and == (€2) p = ko (€1)
ncesz (e1) p = ki p (e2) p and g7 (e2) p = -k p (e1) p »

then:
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Similarly

3 ; p 32 2 :

= fLs -t 2 L= L
aA -~ aZA ~
3t fp = 1Wpfp ’ 22 fp = -ws fpe

Evaluation of the LHS of the Wave Equation

Next we evaluate[]2A for each field, where

2 2
02 =(v2+08_ 1 2

For the laser field:

2

where we have assumed kKL = w/cand =5~ —t . 0, that is,

the fields are slowly varying in the propagation direction.

2 .rly2 2,1 27a¢ .-
OR = [37,2+1k (5 +c50)) AL+ cece = -nod,

or

2 G Q.19 Sk
Re {[3 v 2+ ik (zz+ ol AfLl=-70 9
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1 3%y l,sy.07l: = 1
EEE7 "27'357] (2 ALfL) = [2 fLez? *3z 2 tZA 72

Then

(G-39,40)

(G-41,42)

(G-43)

(6-44)

(G-45)

(G-46)




-l ‘ 2, 1.2
\ DL = [2' VL2 + 1kL (-67 + E'éf)] (6-47)
then
(O AFL + (O A)TF™ = —ugd . (G-48)

*

To eliminate FL from the LHS, project both sides onto FL :

A -~ % A % “ *
. 2 2. . -
‘ (DLAL)fL fL + (DLAL)*(fL ) podl fL (G-49)
or
. N R .
DLAL > Jl fL . (G-50)
Similarly, for the pump field:
o2, 5, 218 £ 1 =207
Re {[3 7,2 + ikplgz - g/ Bofpl = 32 J)- (6-51)
» and
20y .
DPAP 5 J_L fP . (G-52)
' Evaluation of the RHS of the Wave Equation
We look now at the form of the currents
Jl = % ech . (G=-53)
’
where >
> ol (P e
BLi= 7 (met-% ) (6-54)
> > >
> A= AL+ Ap, (G-55)

and the sum is taken over all the electrons in a ponderomotive wavelength,
Using (G-55), (G-33), (G-20), (G-29), and (G-31) it can be shown that

Py ‘1Y°
* A *e

(6-56)




Similarly

Ao ft e o (6-57)
With these results
.
JL"?L* * %12 (P—ti . ﬂ_ [AL Ap"e'w0 1 (G-58)
and
EART Z (P“ o - [mpr A P, (6-59)

Finally, the linearized wave equations for the pump and laser fields are
given by

A R s M R TR

and !
P; - * -i¥

3 Vﬁ“’kp(&q-%%’]h';“%} e o7 - & (p, + "] (a-61)

2. Incremental solution of the wave equation

By transforming to a coordinate system moving with the wave, the
time derivation in the linearized wave equation (G-2) can be eliminated.
The linearized wave equation can then be written in the general form

B - g T2A-S (6-62)

where S is a source term. A separate equation is needed for each
transverse component. An incremental solution to (G-62) is

A(z+az) = A(z) + 1% 7.2(2) - azs

= (1 + 1% 9,2) A(z) - a2 (6-63)

Equation (G-63) is not unitary. An incremental solution to (G-62) which

is unitary 1is
TAsz
2k 'L
A(z+Az) = e A(z) - azS (G-64)
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Equation (G-64) can be solved in Cartesian coordinates using Fourier

transforms. If F is the Fourier transform operator and F~! is its
inverse, then

' v
, A(z+az) = e X L Elea(z) - azs
iAz, 2. 2
k. 24k
= F7L [e_ZT('( xHy) FA(z)] - az$ (G-65)

Using a computer code with fast Fourier transform subroutines,

(6-65) can be used to numerically propagate an electromagnetic wave.
iaz

=% V.

The source term S drives the wave and the operator e L spreads the
iAz 2
2K VL

wave due to diffraction., To understand why the operator e is used

rather than the operator (1 + i%% vlz) of (G-63), we consider the case in
which the source term S = 0. In this case there can be no gain and the
Fourier components E(kx,ky,z) = F A(x,y,z) should not vary as a function
of z. This property holds for the exponential operator since

i
k 2+ 2)
|e_ﬂ‘-(x Y =1 (G-66)

It is not true, however, for the operator of (G-63). If
A(Kyky,2+42) = (1 + 152 (k.2 + ky2)) A(ky,kys2) (6-67)
xsKys = 2k \Kx y xsKy»Z
then
- 2 Az 2 N 2
|A(kxokysz+82)|© = [1 + (3 (keZ+ky2))" ] [A(kxsky,2)| (G-68)

Equation (G-68) says that each mode of the wave will be amplified by a
factor 1 +'§E (kx2+ky2) on each iteration of the computer simulation.

After many iterations the wave function would be dominated by high
frequency noise, since the largest values of k, and ky produce the

greatest gain.




s. S0lution of the wave equation in cylindrical coordinates

The two-stage FEL system we are studying has cylindrical symmetry and ~
cylindrical boundary conditions. It would, therefore, be convenient to
model this system in cylindrical coordinates. If we expand A(f) and
S(;) in terms of their angular Fourier components

A(X) = E a,(r,2) el1® (6-69)
and
S(x) = E s,(r,2) el48 (G-70)
J )

and substitute these into (G-62) we obtain a series of equations

'a—gal = 5—;[-%6—2r3§+-§;] 2g-Sg (6-71)
The symmetry of the system determines which values of 2 are needed to
describe the radiation fields. For example, for a cylindrically symmetric
system, such as a beam with 1 Gaussian intensity profile in an open
resonator cavity, only the 2=0 equation would be needed. For a
TEgy mode in a cylindrical waveguide, only the %=1 equation would be
needed to describe the wave propagation. We cannot use the fast Fourier
transform (FFT) technique with the radial part of the Laplacian to solve
the incremental equation as in (G-65). However, it is possible by making
a change of variables to reformulate the wave equation in a way that
permits the use of fast Fourier transform techniques with cylindrical
coordinates. If we define

ge(r,z) = J/F ay(r,z) (6-72)

we find that g satisfies

d -i 22  22.Y,
—— = —— - - G"73
a2z 4 2K o2 T 2 95 - /Fsq ( )

The incremental solution to ghis gq%étion is given by
-{Az (-3 2%- 2
2k (3F7 A )
gg(r,z+az) = e gg(rsz) - &2/F sy(r,2) (G-74)

2
The efgenfunctions of the operator (--327 + (12-%m_)/r2) subject to
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the boundary condition gg(rpax) = 0 are given by /F Jglkpgr) where the
Jg's are ordinary Bessel functions. The k,, are determined by the boundary

conditions at rpa,, that is Jp(kperp.,) = 0. More precisely

a2 12, 1
[- 32+ : r2 R RN ki g/T 9 g(kngr) (6-75)

In order to utilize the FFT method we rewrite (G-74) in the form

iaz (22-1n)  iaz @2

2k ré 2k ?r4
9elr,z+az) =~ e e 9g(r,2) - &2/F sy
=i v -1Az p2
= e e 9g(r,z) - 82/F s (G-76)

where the operators P2 and V are defined by

32 1- 1/
2 2 e z 4

The error resulting from assuming the operators in (G-76) are commutative
is of order Az2, which can be made arbitrarily small.

To implement (G-76) we must restrict the radial coordinate to a
discrete set of values rj=jar, where j=0,1,...,N-1 and ar=rg,,/N.
We must also sample g,(r,z) at these same points. The operators in the
exponentials must also be defined in a discrete way. It was found that
defining the discrete operators by

[294(rj,2) - ga(ry*ar,z) - gy(rj-ar,2)]

p2 9g(ry,z) = (ar) 2 (6-79)
and
22 . 1/4
Vgy(rj,z) = B 9a(rj»z) (G-80)

leads to errors in the numerical solution. This is most easily seen by
considering the example in which 2=0 and ag=1 so that 9o = /F. For the
continuous operators of (G-77) and (6-78), (P2+V)/F = 0. However, for the
discrete operators of (G-79) and (G-80)

(P2+V) go(ry) -({§§7 (277 - 3T - /3+T -‘{gi 1 +0 (6-81)

This inconsistency is most pronounced near the origin where it may cause

........




serious distortions.

To correct for this problem we modify the operator P2+V so that the
equation

[P2+V] /F Jglkagr) = (kpg)? /F Jg(knqr) (6-82)

is satisfied exactly when restricted to the discrete r; and the slowest

eigenmode /F Jy (kgy r). If we retain the definition for P2 in (G-79),
this condition leads to the following set of equations for V(rj)

V(rj) /3 Jalkogrj) = (kog)? /73 Jglkogry)

[2/7] Jg(kogri) = a1 (Kogrjsr) = /i1 (Jgkogri-1)]

(G-83)
Ar?

The &1screte incremental wave equation is now propagated by applying the
Fourier transform and its inverse to the system of N equations

=iaz = p2
g(ry.zeez) = e X 3l e g g 99(rjs2z)] - &/F sy(ry,2)
~iaz v(rs) -14z 2{1-cos(2nj/N
= e K J F-l [eT (Ar); F gl(rj,z)] - Az/F Sx(rj,z)

(G-84)

4, Resonant Particle Dynamics in Two-Dimensions

A 2-D computer code has been written to propagate the laser beam
using fast Fourier transforms. A number of simplifying assumptions have
been made in the code to permit us to quickly obtain useful information
about the differences between the one and two dimensional analyses.

The code assumes that the pump field is produced by a wiggler magnet and
that there is perfect injection of electrons so that the electron trans-
verse canonical momentum equals zero., It is assumed that the transverse

o




component of the electron velocity is determined entirely by the magnetic
field., To study the effect of the applied axial electric field on the
resonant phase of the trapped particles we also restrict the electron

dynamics to that of the resonant particle. In the resonant particle
description, only the trapped electrons contribute to laser gain.
The effective transverse current density is therefore

J
&>
Jy = Fy B-ZZ- 5, (G-85)

where F, is the fraction of the electron distribution that is trapped.
From (G-54)

+> >
+ eA eAp
B 1= " Twe® T Tyme (6-86)
Using (G-56) and (G-58)
> ~ * Jz e g ~ *
Jp = fL "'Ft‘B;_cP°fL
J * "iY
a e - R
Ft B, ymc AP € (6-87)

where ¥p is the phase of the resonant particle. Since the pump field is
produced by a wiggler magnet we can chose an initial phase °P = 0. Then
A, = 5; = Bp/ky, where B, is the amplitude of the transverse wiggler field

Zp
and kg is the wave number. The wave equation (G-60) then becomes

id Bog F. e J, B -y
. L 0
[& VLZ + 1 kL g] ALe 2 - _Z_Yltﬂc—-aé ‘E?']; e R (6-88)
From Maxwell's equations
&>
>
= . 2A -
E - % (G-89)

Differentiating (G-4) and making the slowly varying amplitude and phase
approximations we obtafn

T ~ tu KL ' (G-90)




which when substituted into (G-89) gives

> i 2
AL = kFEL . (5-91)

Using (G-91) in (G-88) we obtain

; i woe Fud, B -y
72 -glEe b s s e (6-92)

which is the equation that is solved in the 2-0 computer code.

In the code the laser electric field is specified by two column
vectors of N elements each, EL(rj) and ¢L(rj), J = 0,1,.4.,N-1.
The source term that produces laser gain is given by the right hand side
of (G-92) which is also a column vector with N elements.

To optimize the gain in an FEL amplifier an axial electric field, or
alternatively a wiggler taper, could be used. The axial field (or taper)
performs two functions. First, it compensates for the phase shift of the
ponderomotive wave, produced by the interaction of the electromagnetic
field with the electron beam, and second, it determines the value of the
resonant phase. In a 1-D model of the FEL the amplitude and the phase
of the laser field at a given axial position are uniquely determined and
a value of the axial electric field, E,, can be specified which both
compensates for phase shift and produces a desired value of the resonant
phase. In a two-dimensional model the electromagnetic field can have
different values of amplitude and phase at different radial positions
and the amount of phase shift can also vary as a function of radial
position.

Since amplitude and phase are no longer uniquely specified, it is
only possible to chose one particular radius at which both the phase
shift can be compensated and the resonant phase specified. At all other
radtal positions the resonant phase must be calculated and cannot be
chosen a priori. To optimize laser gain a particular radius, ropts 1s
chosen at which the gain is to be maximized, and a condition is specified

for optimizing the gain. One example of such a condition is that the
phase space area of the bucket at Fopt remain constant along the ampli-
fier.




For simplicity we first consider the case in which phase shift can
be neglected. The axial electric field in the amplifier that is needed

to produce a particular value of YR at Fopt is given by

e Ey(ropts2) Bplrgoesz)

B(2) = e Xy Tropts2T By {ropts2)

sin %o (r (6-93)

It is assumed in (G-93) that E,(z) is independent of radial position. For
the segmented waveguide electrode structure we are considering this is an
excellent assumption. With the value of E(z) given in (G-93) the value of
the resonant phase at all other radii, r;, is given by

. .1 ¢mck E
YR(PJ-) = sin~l [-?m Y(r‘j) Bz(r‘j) EL(rj)lim(rj)] , (G-94)

where the z dependence of the quantities in (G-94) has not been shown
explicitly.

A1l of the quantitics in (G-94) are either constants or have a slow
radial dependence, except for E_ and ?,. Therefore,

sin %(r;) “Fﬁw (6-95)

Now in the resonant particle model, laser gain is proportional to

sin !k times the fraction of the electrons trapped in the bucket. If we
assume the phase space buckets are filled with particies, then the
fraction trapped will be proportional to bucket area. Bucket area is
proportional to the quantity E'_/2 n(\!R) where n(YR) is the ratio of the

area of a bucket of resonant phase ¥, to the area of a bucket of resonant

R
phase !kso. Making these assumptions -
dE 1 (%)
= ¢ E2n(%) siny « —qﬂ% (6-96)

If the resonant phase !h(rj) = 909, the bucket area will equal zero and
there will be no gain. From (G-95) this means that laser gain will

decrease to zero for
EL(PJ) < EL("opt) sin !R("opt) (6-97)

This is shown in Figure 17 in which a resonant phase angle of 24° was

chosen at ropt- |
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[f the phase shift is taken into consideration then both the ampli-
tude and phase of the laser beam will vary as a function of radius and the

formula that determines the axial field needed to produce a given resonant
phase at rgne is more complicated than (G-93). If a phase shift

of a0 (rgpy) occurs at rg,e over a distance Az, the effect of this shift
can be negated by accelerating or decelerating the electrons over the
interval Az so that the electron distribution remains in the same position
relative to the bucket. The desired value of the resonant

phase !h(ropt) is then produced by adding to the field required to
compensate for phase shift an additional amount equal to the field needed
to produce the desired resonant phase in the absence of phase shift. The
resultant value of E, is then given by

e E B
= m i
E, WS'In ‘!R

2 2
i1 (ol =2Y Ad Yo© -
* Az [(1+a2) (kL+km) az T Yol ] (G-98)

where all terms are evaluated at r Yo is the intial value of the

opt*
resonant energy at the input end of the amplifier and

m
o
3

(6-99)

at radii other than Fopt the phase shift will in general be different
than A¢ ('opt)' The resonant phase at rj # ropt can be determined by
first finding the electric field required to compensate for phase shift,
E'.

The electric field AE, that remains after E' is subtracted from E,
can then be substituted for E, in (G-94) to obtain the resonant phases at

AE(rj) = E, - E‘(rj) (G-100)

K A
To(ry) = sin”t [i"_:_m v(ry) Bz(ry) rfrqi—(g‘:;%r—jﬂ (6-101)
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