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ABSTRACT

A variety of optimization algorithms for engineering

synthesis are included in a new general-purpose optimization

computer program called ADS-I (Automated Design Synthesis,

Version 1). Preliminary testing of all presently available

algorithms is conducted utilizing several carefully selected

problems of significant size and complexity. These include

a problem with 56 design variables and over 3500 inequality

constraints.

The capabilities and utility of the ADS program coupled

with a structural analysis code utilizing finite element tech-

niques is demonstrated and numerical results are presented

that compare the relative efficiency and reliability of the

various optimization algorithms. The numberof function and

gradient calculations are considered important measures of

merit in comparing the various algorithms.

A comparison of results with another existing optimiza-

tion computer code is included to document the accuracy and

reliability of the ADS program. Preliminary testing of the

ADS program demonstrates the flexibility a design engineer

would have in selecting an optimization algorithm best

suited to solve a particular problem.
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I. INTRODUCTION

A. BACKGROUND

The concept of structural synthesis, a new general ap-

proach to structural optimization, was popularized by Schmit

in 1960 [Ref. 1]. Structural synthesis, simply stated,

couples finite element structural analysis with non-linear

mathematical programming techniques. Schmit reasoned that the

design of structures for minimum weight was, after alL,

simply the classic problem of allocation of scarce resources.

He emphasized the importance of considering a multiplicity of

distinct loading conditions and the need for inequality con-

straints to deal with a variety of different failure modes

simultaneously, as well as side constraints (or bounds) on

the size of the elements in the structure [Ref. 21.

Numerical techniques to solve the general non-linear,

inequality constrained optimization problem developed rapidly

after 1960. It was the advances of the high speed digital

computer however, that allowed the science to fully mature.

In fact the state of the art in mathematical programming is

such, that the design engineer today should not find it nec-

essary to develop his own computer program considering the

widely available existing codes and the prohibitive costs of

developing a new optimization code. The state of the art

in finite element analysis has also enjoyed a considerable

advancement. Thus there exists today the ability to efficiently

* 12
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design complex structures with many design variables under

multiple loading conditions subject to a variety of con-

straints including stress, displacement, buckling and fre-

quency as examples.

Structural synthesis continues to be the subject of

P active research; two specific areas for further study have

been identified by Vanderplaats in [Ref. 31. First is the

need for public availability of a computer code incorporating

a variety of optimization algorithms that reflect the state

of the art in optimization. Secondly, the efficiency, relia-

bility and accuracy of the various algorithms need to be com-

pared and the results well documented. With this information,

the engineer who may not have written his own optimization

code, would be able to intelligently select the appropriate

algorithm with only a basic knowledge of structural synthe-

sis concepts, and tailor the algorithm to suit a particular

problem.

The ADS library of design optimization algorithms was

. developed by Vanderplaats in response to the first need for

a new general-purpose optimization computer code [Ref. 4].

ADS is unique insofar as it incorporates in a single program,

a variety of different optimization algorithms. The purpose

of this research is to perform some of the preliminary testing

of this code and document the comparative studies. The

specific objectives of this thesis as well as the details of

the development of the various computer codes will be dis-

cussed in the remaining sections of this chapter.

413



B. THESIS OBJECTIVES

The primary objective of this thesis is to conduct the

preliminary testing of all presently available algorithms in

the ADS program. Although more than two years in develop-

ment, numerous programming bugs remain to be ferreted out.

Furthermore, some algorithms had never been tested with

problems of significant size. Various default values for

control parameters will also be determined by the preliminary

testing.

While testing is in progress a second primary objective

is to compare and document the efficiency of programming,

reliability of results and accuracy of solutions of the

various algorithms. To insure validity of the comparative

study all testing is to be accomplished in accordance with

the following requirements:

1. The same person is to test all algorithms on the

same computer. The mainframe computer used in this

research is an IBM 3033 system 370.

2. Default values will be used in the comparative studies.

"Fine tuning" of algorithms by overriding default

settings will be avoided insofar as possible.

3. Test cases of significant size and complexity will

be selected for their potential to demonstrate the

utility and flexibility of the ADS program and not

because of their known ability to work well on a

given algorithm.

14
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Finally, a secondary objective is to compare results to

the solutions provided by CONMIN [Ref. 51, a Fortran program

for constrained minimization developed by Vanderplaats in

1973. CONMIN is considered well tested and reliable; the

comparison thus rendered should lend credence to the results.

C. DEVELOPMENT OF COMPUTER PROGRAMS

1. ADS-l (Automated Design Synthesis, Version 1)

The primary motivation behind ADS-I was the need to

provide a selection of optimization algorithms in a sophis-

ticated computer code that could be applied to a variety of

design problems. The ability to easily override default

values of control parameters further enhances the flexi-

bility of the program to be tailored to suit the particular

design problem at hand.

The ADS program [Ref. 4] is written in subroutine

form, well documented internally, and contains pseudo-

dynamic dimensioning to maximize the efficient use of storage

in the computer. Due to its inherent modularity the program

is easy to interrupt and restart and amenable to multi-level

optimization. These features add to its portability and

reflect the state of the art in modern programming practices.

COPES, the control program for invoking CONMIN [Ref.

6], was modified for use with ADS and is named "COPESA",

whereby data transfer into and out of ADS is readily accomplished.

The solution of an optimization problem is divided

into three user defined levels:

15



1. STRATEGY--The method of optimization used may be

direct, where control is transferred directly to the

optimizer, or indirect as in various penalty function

". methods. A complete list of strategies is in Table I.

2. OPTIMIZER--Algorithms presently include methods for

unconstrained functions as well as direct methods for

constrained methods. A cumplete list of optimizers is

in Table II.

3. ONE-DIMENSIONAL SEARCH--The user is given a choice

Ssoiof curve fitting a polynomial with or without finding

bounds, using the Golden Section method or using a

combination of polynomial and Golden Section methods.

A complete list of one-dimensional search techniques

is in Table III.

The program assumes the user is knowledgeable enough

to select an appropriate combination of strategy, optimizer

and one-dimensional search. For example, it would not be

K appropriate to use a variable metric optimizer on a con-

strained optimization problem unless one of the penalty
e'.

function strategies was specified. Table IV lists the

available options and feasible combinations are indicated.

2. SADT (Structural Analysis and Design--Trusses)

The primary purpose of SADT by Fitzgerald in [Ref.

36] was the development of a finite element code for three-

dimensional indeterminate truss analysis and design. The

code was written such that it could be easily coupled to an

16
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TABLE I

Strategy Options in ADS

ISTRAT STRATEGY TC BE USED

0 None. Go directly to the optimizer.

1 Sequential unconstrained minimization using
the quadratic exterior penalty function
method [Refs. 7 and 8].

2 Sequential unconstrained minimization using
the linear extended interior penalty function
method [Refs. 9 through 11].

3 Sequential unconstrained minimization using
the quadratic extended interior penalty function
method [Ref. 12].

4 Sequential unconstrained minimization using
the cubic extended interior penalty function
method [Refs. 13 and 14].

5 Augmented Lagrange multiplier method
[Refs. 15 through 19].

6* Sequential Linear Programming (Refs. 20 and 21].

7* Method of Centers (Method of Inscribed
Hyperspheres) [Ref. 22].

8* Powell's Variable Metric Method for Constrained
Minimization [Refs. 17, 23 and 24].

"'i *

." Not available as of February, 1983
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TABLE II

Optimizer Options in ADS

IOPT OPTIMEZER TO BE USED

0 None. Go directly to one-dimensional search.
This option should be used only for program
development.

1 Method of Feasible Directions (MFD) for con-
strained minimization [Refs. 25 and 26].

2 Fletcher-Reeves algorithm for unconstrained
minimization [Ref. 27].

3 Robust Method of Feasible Directions for con-
strained minimization [Ref. 28].

4 Davidon-Fletcher-Powell (DFP) variable metric
*-' method for unconstrained minimization [Refs. 29

and 301.

5 Broydon-Fletcher-Goldfarb-Shanno (BFGS) variable
metric method for unconstrained minimization [Refs.
31 through 34].

6* Random Search for unconstrained minimization.

7* Random Search for constrained minimization.

8* Newton's Method for unconstrained minimization.

9* Quadratic Programming [Ref. 351.

Not available as of February, 1983
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TABLE III

One-Dimensional Search Options in ADS

IONED ONE-DIMENSIONAL SEARCH OPTION [Refs. 7 and 52]

1 Find brackets on the minimum of an unconstrained
function.

2 Find the minimum of an unconstrained function
using the Golden Section method.

3 Find the minimum of an unconstrained function
using the Golden Section method, followed by
cubic polynomial interpolation.

4 Find the minimum of an unconstrained function
by first finding bounds and then using
polynomial interpolation.

5 Find the minimum of an unconstrained function
by polynomial interpolation/extrapolation without
first finding bounds on the solution.

6 Find brackets on the minimum of a constrained
function.

7 Find the minimum of a constrained function
using the Golden Section method.

8 Find the minimum of a constrained function
using the Golden Section method, followed by
cubic polynomial interpolation.

9 Find the minimum of a constrained function by
first finding bounds and then using polynomial
interpolation.

10 Find the minimum of a constrained function by
polynomial interpolation/extrapolation without
first finding bounds on the solution.

F.
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TABLE IV

Program Options in ADS

OPTIMIZER

STRATEGY 0 1 2 3 4 5 6* 7* 8* 9*

0 x x x x x x x x x x

10 0 X 0 X X X 0 X 0

2 0 0 X 0 X X X 0 X 0

3 0 0 X 0 X X X 0 X 0

4 0 0 X 0 X X X 0 x 0

5 0 0 x 0 x X x 0 x 0

6* 0 X 0 X 0 0 0 0 0 0

7* 0 x 0 X 0 0 0 0 0 0

8* 0 X 0 X 0 0 0 0 0 x

ONE-D SEARCH

1x 0 0 0 0 0 x 0 0 0

2 x 0 X 0 X X X 0 X X

3 X 0 X 0 X X X 0 X X

4 X 0 x 0 X X x 0 x x

5 X 0 X 0 X X 0 X 0 0

6 x 0 0 X 0 0 0 X 0 0

7 X X 0 X 0 0 0 X 0 0

8 x X 0 X 0 0 0 X 0 0

9 X X 0 x 0 0 0 X 0 0

10 x X 0 X 0 0 0 X 0 0

. X = Allowed Combination

0 = Combination Not Allowed
* = Not Available as of February, 1983

20



optimizer for comparative studies. A secondary objective

was to provide a user-friendly computer code that could be

employed for truss analysis only. SADT was therefo::e

selected as the analysis code for test cases involving

trusses and space towers.

Design variables may include member element cross

sectional areas, nodal coordinates, or both. A well written

user's manual is included in [Ref. 36] and provides neces-

sary details for coupling the program to an optimizar as

well as for test case data preparation.

The finite element method of analysis is used for

static analysis, and eigenvalues are computed according to

the subspace iteration technique when frequency constraints

are specified [Ref. 37]. Multiple static loading conditions

can be acconodated as well as constraints on stress, Euler

buckling, displacement and the first fundamental frequency

of the structure. The objective function is minimum weight

of the structure. Side constraints may be impcsed on the

upper and/or lower bounds of the design variables. Design

variable linking is permitted for both member areas and

coordinates. The user may specify different materials for

the various members. All loads are assumed concentrated at

the joints and the truss is treated as a discrete, pin-

connected structure.

21
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D. PREVIOUS COMPARATIVE STUDIES

Even though many methods are available for solving the

constrained, non-linear optimization problem there has been

relatively little research done in the way of comparative

studies since the inception of structural synthesis in 1960.

Colville, in a landmark study in 1968, sent eight con-

strained problems (three to 16 design variables each) to the

developers of 30 different codes. Solution times as well as

preparation time and the number of function and constraint

evaluations were requested from each participant (Ref. 381.

Colville placed great emphasis on solution times and there-

fore developed a standard timing routine in an attempt to

normalize solution times to eliminate differences amonq

computers. He could not of course, eliminate the differences

in the developers' abilities to efficiently code their

problems for solution.

Eason and Fenton tested 13 different problems on 20 dif-

ferent codes in 1972 [Ref. 391. They effectively eliminated

the problems evident in Colville's study. All of their test

case problems however, had fewer than seven independent design

variables.

Sangren and Ragsdell conducted a comparative study on 30

problems in (Ref. 401. The number of design variables in

this study range from two to 48 while the number of con-

straints range from zero to 19.

The problems selected for comparative study in this

research have from 5 to 56 design variables and from 11 to

22



3550 constraints, the largest problem being the design of a

234-bar space tower subject to constraints on stress, Euler

buckling, and displacement of joints.

23
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II. OPTIMIZATION TECHNIQUES

A. OPTIMIZATION CONCEPTS

The general, non-linear, constraired optimization

problem can be stated mathematically as:

-Minimize:

F(X) (2.1)

Subject to:

Gj(X) < 0 j = l,NCON (2.2)

X < X. < X. i = 1,NDV (2.3)

F(X) is called the objective function. It is the function

with respect to which the design is optimized. It may be a

linear or non-linear function of the design variables X.

Generally speaking, the objective function may be implicit

or explicit functions of X. It is important however, that

these functions be continuous and have continuous first

derivatives in X. The Gj (X) inequalities define the con-

straints which the user imposes on the design. Equation 2.3

defines side constraints or bounds on the design and are the

limits over which F(X) and G(X) are defined. If the inequality

condition of equation 2.2 is not met for any constraint,

that constraint is said to be violated. If the equality

24
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V

condition of equation 2.2 is met then the constraint is

called active.

The ability to deal with equality constraints is also

included in the ADS program. This feature was not fully

- operational at the time of this writing however, and there-

fore was not tested.

The n-dimensional space spanned by the design variables

X is referred to as the design space. Any design satisfying

equations 2.2 and 2.3 is a feasible design and the minimum

feasible design is said to be optimal. Problems in optimi-

zation may be classified according to whether or not they

are constrained. Algorithms to solve these problems are

therefore generally classified by the type of problem they

were developed to solve efficiently. In the remaining sec-

tions of this chapter the algorithms used in the preliminary

K: testing of the ADS library will be discussed. Techniques to

solve the unconstrained minimization problem will be discussed

first, followed by constrained minimization methods. Lastly,

the various techniques for minimizing functions of one varia-

ble, the so-called one-dimensional search, will be discussed.

These techniques are called upon by both major categories

of algorithms to solve a sub-problem in the optimization task,

jwherein the following recursive relationship is commonly

employed:

' X~q  =X q -I + a*Sq (24
*+ (2.4)

25



in this equation q is the iteration number, a* is the scalar

step size and S is the vector search direction.

B. UNCONSTRAINED MINIMIZATION

1. Introduction

In the general case of unconstrained minimization of

a multi-variable function, the calculus requires for a

minimum solution, that the gradient of the objective function

with respect to the design variables equatsto zero and that

the Hessian matrix of second partial derivatives of the

objective function with respect to the design variables be

positive definite (all eigenvalues > 0). If the Hessian

matrix is positive definite a relative minimum at least is

guaranteed. Unconstrained methods are therefore, intrinsically

concerned with gradient information; as a result, they are

classified according to the type of derivative information

they require. Zero-order methods such as Random Search and

Powell's Conjugate Directions Method are non-gradient methods

whereas first-order methods such as Fletcher-Reeves require

first derivative information only and so on. These methods

1as well as the variable metric methods of Davidon-Fletcher-

Powell and Broydon-Fletcher-Goldfarb-Shanno will be discussed

in the next few sections.

2. Non-Gradient Methods

a. Random Search

Random Search methods represent the simplest

possible approach to optimization, wherein a randomly

26
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selected large number of possible X vectors are evaluated

for values of the objective functions. The X vector corres-

ponding to the least objective function is the optimal design.

There are many drawbacks, not the least of which is efficiency.

The necessity to evaluate a large number of possible designs

is required to insure a precise optimum has been obtained.

The need to improve efficiency is the motivation behind many

of the modifications available for random search methods.

These methods lend themselves well to coding on a hand-held

calculator, furthermore they require little storage on the

computer, making them efficient from that point of view.

b. Powell's Conjugate Directions Method

Powell's method is certainly the most popular,

if not the most efficient, of all zero-order methods. Powell's

Method is based on the concept of conjugate directions. The

algorithm requires an initial search in n-orthogonal direc-

tions wherein each search updates the X vector according to

equation 2.4.

The new search direction is found by simply con-

necting the first and last design points; this becomes the

n+l conjugate search direction. Powell's Method breaks down

if a search direction makes no improvement because subsequent

search directions will not be conjugate. A second well

recognized problem is the tendency after a few iterations for

the search directions to become nearly parallel. Powell

offers a sophisticated technique to overcome this second
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problem (Ref. 41]. Simply restarting the process with uni-

directional searches is an effective, if not elegant, way

of dealing with this problem as noted in [Ref. 421. Powell's

Method is not presently available in ADS.

The next logical step in sophistication is to

provide gradient information to the optimizer. In the

*i following sections the Fletcher-Reeves algorithm and variable

metric methods will be discussed insofar as they are first-

order methods presently available in ADS.

3. Gradient Methods

a. Fletcher-Reeves Method of Conjugate Directions

The Fletcher-Reeves algorithm is actually a

modification of the steepest descent algorithm with a signi-

ficant improvement in the rate of convergence. The basic

approach is to pick conjugate search directions according to:

Sq= - + q - 1  (2.5)
q.

where:

: " Sq =  17 (Xq ) 12/ (X) q-I1 2 (2 6

q 17 V (2.6)

*| The initial search direction is in the direction

of steepest descent:

S - VF(X q )  (2.7)
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The method is conceptually similar to Powell's

Method, except now each search direction is conjugate.

Theoretically, convergence for a quadratic function in n or

fewer iterations can be expected, however, restarting the

process every few iterations as in Powell's Method is

usually required.

b. Variable Metric Methods

Variable Metric Methods retain information about

previous iterations also. In these methods a matrix H is

created which approximates the inverse of the Hessian matrix.

The search direction is defined at iteration q as follows:

S = - (Xq )  (2.8)

Again the initial search direction is determined

by the method of steepest descent. At the end of iteration

q, the H matrix is updated according to:

," q+l Hq + q

H"- + (2.9)

where Dq is a symmetric matrix determined according to the

following formulation:

D = ( + ei/a2lpT (2.10)

athe terms in this equation are defined as:
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p x-1 (2.11)

y = 7F(Xq ) - VF(X q -l) (2.12)

a = p*y (2.13)

T = HT y (2.14)

and a is a parameter used to select the form of the update

formula, equation 2.10. The Davidon-Fletcher-Powell Method

sets 6 = 0 in equation 2.10 whereas the Broydon-Fletcher-

Goldfarb-Shanno Method sets e = 1 (Ref. 42]. There are other

possible algorithms in the class of variable metric methods

but these two methods are the most popular and are presently

available in ADS.

C. CONSTRAINED MINIMIZATION

1. Introduction

Constrained methods of minimization were developed

to deal with problems that have limitations placed on a set

of functions of the design variables. These limitations may

be side constraints which directly impose bounds on the de-

sign variables, or so-called behavior constraints which are

functions of the design variables. Behavior constraints may

take the form of equality or inequality constraints, but in

either case the design must satisfy the behavior constraints

4while staying within the bounds imposed by the side constraints.
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*. Direct methods consider the constraints as limiting hyper-

surfaces and attempt to directly minimize the objective

function in their presence. In contrast, the so-called

penalty function methods transform the constrained minimiza-

tion problem into a sequence of unconstrained minimization

problems. Although direct methods are often more efficient,

indirect methods are popular because they are simple to

invoke. The engineer must employ an appropriate unconstrained

minimization algorithm when using a penalty function method.

The indirect methods utilizing penalty function

techniques may be further classified into two broad categories:

interior and exterior. Interior methods are designed to ap-

proach the optimum from the feasible region whereas the ex-

terior methods approach the solution from the infeasible

sector. A pseudo-objective function is created by imposing

a penalty for violated constraints. The general technique

is to minimize this pseudo-objective function as an uncon-

strained problem. The methods require repetitive solution

to a series of unconstrained problems thus the term, "Sequen-

tial Unconstrained Minimization Techniques" (SUMT), is applied

to this broad class of indirect methods.

2. Direct Methods

*# Most optimization algorithms proceed iteratively

toward a solution from a user supplied initial X vector

which may or may not define a feasible design. The design

is modified according to the recursive relationship:
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Sq + l =x q + a*s (2.15)

where q is the iteration number, S is a vector search direc-

tion in the design space and the scalar, a*, defines the

distance the optimizer moves in the search direction S.

* The choice of S is such that the objective function is re-

duced. The efficiency and reliability of a given optimization

*algorithm is largely due to the fundamental method of deter-

mination of the search direction S and the step size a*.

These methods will be discussed in the next few sections of

this chapter.

a. Method of Feasible Directions

Optimization in the Method of Feasible Directions

proceeds in two basic steps, first a usable-feasible search

- direction is determined, then a one-dimensional search is

performed in this direction to reduce the objective as much

as possible without violating constraints. The method as-

sumes that the initial X vector of design variables defines

a feasible design. A usable-feasible search direction to

improve this design is found by solving the following sub-

r-. problem:

Maximize: S (2.16)

Subject to:

VF(X).S + S < 0 (2.17)
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VGj(X)-S + e.j' < 0 j J (2.18)

S'S < 1 (2.19)

where J is the set of currently active constraints, G. (X) = 0.

V is the gradient operator and the components of e are re-

ferred to as push-off factors, which act to push the design

away from currently active constraints. A value of unity

for e will yield a search direction which approximately bi-

sects the usable-feasible sector.

If the initial design is infeasible it is possible

to find a search direction that will direct the design to the

feasible region [Ref. 42].

Using equation 2.19 with equations 2.16 through

2.18 results in a linear problem of finding S except for one

quadratic constraint. Zoutendijk in [Ref. 251 provides a

-." direct approach to overcome this difficulty. A detailed

explanation of these techniques is provided in [Ref. 421.

The method then proceeds to update the design in

accordance with equation 2.15. This step is commonly per-

formed by polynomial interpolation but a variety of one-

dimensional search methods may be used.

b. Robust Method of Feasible Directions

The Robust Method of Feasible Directions is a

" .new algorithm presently being developed by Vanderplaats, and

incorporates the best features of the Method of Feasible

Directions (MFD) and the Generalized Reduced Gradient (GRG)
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Method [Ref. 28]. Only gradients of active constraints are

required in the MFD, which is considered an attractive feature,

while the GRG method has the nice feature of precisely follow-

ing the constraint boundaries from one vertex to the next

without the need to move away from the constraints. The

Robust MFD retains these desirable features but does not re-

quire the addition of slack variables peculiar to the GRG

method, thus avoiding the large matrix operations associated

with the GRG method. The method involves solving the following

search direction sub-problem:

Maximize:

- VF(X)'S (2.20)

Subject to:

VG. (XS < 0 j J (2.21)

S'S < 1 (2.22)

This is the same form as the direction finding

sub-problem in MFD except the dimensionality is reduced by

the elimination of the variable 8. The following advantages

in determining the search direction in this manner are re-

peated here from [Ref. 281 for convenience:

1. The dimensionality of the design problem is not in-

creased by the addition of slack variables to the

inequality constraints.
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2. The algorithm for finding S is specifically designed

for inequality constrained problems, thus improving

efficiency.

3. Only gradients of active constraints are required.

- - 4. The number of dependent variables is greatly reduced

in comparison to the GRG method, thus a reduction in

the size of the sub-problem in the one-dimensional

search is achieved.

Equality constraints are effectively handled as

a special case of inequality constraints. Initially infeasi-

ble designs require a modification to the search direction-

finding sub-problem where the violated constraints are treated

as inequality constraints. A direction to the feasible region

is then determined in a manner similar to the Method of

Feasible Directions.

The Robust method incorporates a particularly

attractive feature of infrequent gradient calculations.

That is, gradients of active constraints are treated as con-

stants for several iterations thus greatly reducing the

computational cost of the algorithm. It should be noted that

if infrequent gradient calculations are not used the method

yields the same results as the GRG Method.

The one-dimensional search is performed in the

same manner as for the GRG method. Significant in this

procedure is the fact that Newton's Method is employed to

drive the active constraints corresponding to the dependent
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variables to zero. This procedure usually requires several

iterations.

The Robust Method of Feasible Directions shares

some of the limitations of the GRG method [Ref. 281.

1. It produces infeasible designs and relies on Newton's

Method to return to the feasible region.

2. It has difficulty dealing with highly non-linear

functions.

3. If the analysis is itself iterative the method may

be unable to satisfy constraints due to the resulting

instability.

C. 3. Indirect Methods

ADS incorporates several SUMT methods, namely,

exterior, extended interior, and Augmented Lagrange Multi-

plier (ALM) penalty function methods. The numerical ill-

conditioning often encountered in SUMT methods is reduced in

the ALM method. This method has therefore received wide

attention in the literature and is included in the ADS library.

All SUMT methods create a pseudo-objective function

of the general form:

((X,rp) = F(X) + r P(X) (2.23)
-p - p

where F(X) is the original objective function, P(X) is the

penalty function and the multiplier, rp, determines the

magnitude of the penalty applied. The following sections
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discuss in more detail the technique of determining P(X)

which is the fundamental basis of each method.

a. Exterior Penalty Function Method

The basic mathematical formula for determining

the penalty function P(X) is:

",2 2(2.24)
.P(X)= {MAX[Oqj(X)I} + [ [hk(X)]2

j=l k 1

A penalty is imposed if, and only if, an inequality, G.(X),

or equality, Hk(X), constraint is violated. The "offending"

constraint is squared to provide a slope of zero for the

penalty function at the constraint boundary thus insuring a

continuous first derivative for the pseudo-objective func-

tion. The second derivative is not required to be contin-

uous however, therefore if second-order methods are employed

in the unconstrained minimization, numerical ill-conditioning

may result [Ref. 421.

The multiplier, rp, is critical in this method as it

is in all SUMT methods If r is chosen small the pseudo-
p

objective function is easily minimized but may result in
extreme constraint violation; whereas a large r will guard

p

against this, the resulting problem is usually numerically

aill-conditioned. Therefore the algorithm starts with a small
rp, which is then increased by a factor y. At each iteration

D is minimized starting from the previous optimum solution.
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As rp is increased in the sequential optimiza-

tion process, the pseudo-objective function becomes increas-

ingly non-linear. The constrained optimum solution is also

approached from the infeasible region. In other words the

optimum is approached with a series of infeasible designs,

none of which are usable. The interior penalty function

method approaches the optimum from the feasible sector with

a series of improving feasible designs. This attractive

feature is discussed in the next section.

b. Interior Penalty Function Method

The most common formulation for the penalty

function in this method is:

m
P(X) = 1 [-1./gj(X)] (2.23)

j=l

resulting in a more complicated pseudo-objective function to

minimize:

- (X,r ,r) = F(X) + r(P(X)I + r 2[hk(X)] (2.26)

p P k=k

Note that equality constraiits (hk) are dealt

with in the same manner by interior and exterior methods.

The significant difference between the methods, besides the

K~i formulation of P(X), is the fact that in interior methods

i the penalty parameter, r , is sequentially decreased with

38



every SUMT iteration, while in exterior methods r is seauen-
p

tially increased. Interior methods result in the approach of

the optimum solution from the feasible region as r - 0, but
p

is discontinuous at constraint boundaries. The exterior

method, on the other hand, is well-defined everywhere, but

leads to an optimum solution only in the limit as r p -.

The extended interior penalty methods are designed to incor-

porate the best features of both methods by effecting a

transition between the interior and exterior methods at a

point in the optimization task. Needless to say, this transi-

tion point is critical and therefore of fundamental concern

in the various extended interior penalty function methods,

which are discussed next.

c. Extended Interior Penalty Function Method

The chief advantage of the interior penalty method

is that it results in a sequence of improving feasible de-

signs from an initially acceptable starting point. This

desirable feature is maintained in this method by a judiciou:

selection of the parameter, e, in the formulation of the

penalty function P(X):

m
P(X) = [ g.(X) (2.27)

-. .j=l -

*" where

gj(X) = -l./gj(X) if gj(X) < e (2.28)

39



gj(X) = -[2. -gj (X) /e if gj(X) > (2.29)

The parameter, e, is a small negative number and

signifies the transition from the interior to the exterior

methods [Ref. 421. These equations define the linear ex-

tended interior penalty function. Because the second deriva--

tive of $(X,r,,rp ) is discontinuous, Haftka and Starnes

created the quadratic extended interior penalty function by

changing equation 2.29 to:

2

gj(X) = -l./s{[gj(X)/eJ - 3.[gj(X)/s] + 3.} (2.30)

if g.(X) >

Again the degree of non-linearity of P is in-

creased as a price for the second-order continuity.

The linear and quadratic extended interior

penalty methods are both critically dependent on the selec-

tion of c. Haftka and Starnes recommend that E be determined

according to:

E = -C(r')a 1/3 < a < 1/2 2.31)p

where C is a constant. At the beginning E is chosen in the

range -.3 < e < -.1 and r' is chosen such that the objective
p

and pseudo-objective functions are equal; the resultant

value of C is thus determined [Ref. 431.
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The quadratic extended interior penalty method

has the disadvantage that the penalty increases dramatically

for badly violated constraints. The variable penalty function

method attempts to overcome this difficulty while continuing

to insure second order continuity at the transition poin-.

The selection of E in the variable penalty method is recom-

mended by Prasad in [Ref. 44] as follows:

=(rE)q (2.32)

where

1/(2+S) < q < 1/S for S > 0 (2.33)

and 8 is a positive constant chosen such that c is initially

near zero. In ADS, the variable penalty method is used

wherein S = 3 thus the strategy is referred to as the cubic

extended interior penalty function method.

d. Augmented Lagrange Multiplier Method

The efficiency of SUMT methods can be improved

by the inclusion of Lagrange multipliers, thus reducing

dependency of the algorithm on the choice of the penalty

parameters. The Lagrangian is created for equality con-

strained problems as follows:

£

L(X,X) = *F(X) + [ Xkhk() (2.34)
k=l
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Since the minimum of the Lagrangian provides the

solution to the general equality constrained problem, a

pseudo-objective function, called the augmented Lagrangian

7,; is created using the exterior penalty function method:

A(X,X,rp) = F(X) + k hk(X) + rp[hk(X)]2 (2.35)
~ ~ k=l

The method starts with the following valies for

Sk = +1. if vhk(X)"VF(X) < 0 (2.36)

Ak = -1. if Vhk(X)"VF(X) > 0 (2.37)

The pseudo-objective function, A(X,,,rp), is then

minimized holding rp and X constant. A new set of Lagrange

multipliers is calculated according to:

"" p+lXk  + 2r h (XP) k = i,k (2.38)

kp~ k p k

The parameter r is sequentially increased as in
p

the exterior SUMT method and the unconstrained minimization

problem is solved for r and X. The process is repea:,,d
p

until convergence is achieved.

The method is easily extended to handle inequality

constraints by converting them to equivalent equality
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constraints by the addition of slack variables. A more com-

plicated augmented Lagrangian is then formulated as the

pseudo-objective function:

F() m2 2 2
A(X,,Z,r ) F(X) + (q(X)+) + r [gj(X) + Z2] }

(2.39)

2where there are m slack variables, Z.. These axe calculated
J

as a sub-problem and so do not increase the dimensionality

of the optimization task. Note that the pseudo-objective

function has continuous first derivatives with respect to X

but discontinuous second derivatives at g. 'X) = -A /2rp; thus

second order techniques should be avoided in the unconstrained

minimization problem. The method has several attractive

features repeated here from [Ref. 42].

1. The method is relatively insensitive to rp, accordingly

it is not necessary to increase r to =.

2. Equality constraints and inequality constraints pre-

cisely equal to zero are possible.

3. Acceleration to an optimum is achieved by updating

the Lagrange multipliers.

K 4. The starting point may be feasible or infeasible.

5. At the optimum any Lagrange multiplier not equal

to zero will identify an active constraint.
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4. Other Constrained Minimization Methods

The discussion of optimization algorithms has been

restricted to non-linear programming techniques insofar as

these methods are fully operational in ADS. Sequential

Linear Programming is another category of optimization tech-

niques which will be included in the ADS library where a

particular problem is linearized and a solution sought for

the resulting linear approximation. Considering these tech-

niques are, in theory, well-developed and quite effective

this additional capability will enhance the utility of ADS.

The basic approach is to linearize the objective and

constraint functions and obtain a solution -:o this approxima-

tion using the algorithm developed for linear programming.

The process is iterative and therefore the techniques are

referred to as Sequential Linear Programing (SLP). It is

pointed out in [Ref. 42] that fully constrained problems

usually converge rapidly while under-constrained problems

often have difficulty in converging to an optimum solution.

The difficulty may be overcome somewhat by sequential reduc-

tion of move limits on the optimizer. SLP characteristically

produces a sequence of improving infeasible designs. The

Method of Centers also called Method of Inscribed Hyperspheres,

4| has the dual advantage of approaching the optimum with a se-

quence of improving feasible designs while following a path

down the "center" of the design space. This method is dis-

cussed in the remainder of this section.
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The basic approach in the Method of Centers is to

inscribe a hypersphere in n-dimensional design space created

when all of the constraints and objective function are

linearized. The design then moves to the center of the

hypersphere. This procedure is repeated to convergence

within some user-specified tolerance. In the case of under-

constrained problems the method is subject to the same problem

as SLP in imposing move limits on the optimizer.

D. FUNCTIONS OF ONE VARIABLE: THE ONE-DIMENSIONAL SEARCH

1. Introduction

The one-dimensional search, as it is commonly referred

to in algorithms for optimization, usually applies to deter-

mining a*, the step size to be taken in the search direction

S. Finding the minimum of any function of one variable is

simply finding the point at which the first derivative

vanishes. Since the function is not always an easily obtained

analytic function in optimization, it is necessary to make

some fundamental assumptions so that appropriate numerical

analysis techniques may be brought to bear. Accordingly, the

functions are assumed unimodal, that is, the function has

only one relative minima in the region of concern. The func-

tions are also assumed continuous as are their first and

second derivatives. These assumptions will assure convergence

to a minimum.

In the remaining sections of this chapter the methods

used to conduct the one-dimensional search will be discussed.
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2. Polynomial Approximation

The basic procedure in the polynomial approximation

method is to evaluate the function at several points and

then fit a polynomial curve to the data points using an

appropriate curve-fitting technique. The minimum of this

curve is approximately equal to the minimum of the true

function. The method is simple, requires only a few func-

tion evaluations and is generally reliable for functions

which are not too highly non-linear.

It is well known that a hicher order polynomial will

fit the data points more accurately; this gain in accuracy

however can complicate the process of finding the minimum of

the resulting polynomial. Also, interpolation between points

is preferred to extrapolation beyond the region enclosed by

the data points. The process of finding the minimum of the

polynomial requires finding the poi.nt where the first deriva-

tive vanishes. Alternatively, there are numerical analysis

techniques available to find the minimum or zeros of a higher

order polynomial. These methods are not discussed here.

3. Golden Section Method

The Golden Section Method is popular because the rate

of convergence is known and the requirements for function

unimodality and continuity are relaxes. The disadvantage

of the method lies in the inherently large number of function

evaluations required as compared to other one-dimensional

search methods.
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The method involves picking two intermediate points,

X1 and X2, between given upper and lower bounds, Xz and Xu ,

such that X1 < X2. The function is then evaluated at X and

-2 and one of the previous bou.ds is replaced by one of the

intermediate points as follows:

F(X1 ) > F(X2) X X (2.40)

F(X2) > F(X) X X (2.41)

The process is repeated until some user specified

tolerance is satisfied. Fundamental to the method is the

selection of the intermediate points. The Golden Section

number, 1.61803, is used for this purpose:

(X2 - xZ)/(X1 - X£) = 1.61803 (2.42)

The Golden Section provides the ideal sequence for

dividing the interval such that the minimum number of function

evaluations is required. The advantage of this method is

guaranteed accuracy whereas the relatively large number of

function values required is a distinct disadvantage.

A similar method, the Fibonacci Search, based on thea
series of Fibonacci numbers, traps the minimum in successively

smaller intervals. The Fibonacci Search is occasionally

more efficient than Golden Section but is far more complicated.
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4. Finding Bounds on the Solution

This method is usually used to obtain brackets on

the solution, then Golden Section or polynomial methods are

called to complete the one-dimensional search.

The method begins with an assumed initial lower

bound X and a proposed upper bound Xu . These two points are
u

then evaluated as F(X£) and F(Xu). If F(Xu) > F(X£) then Xu

is the true upper bound. Assuming the slope of the function

at X is negative at X, the solution is complete. If F(Xu)

< F(X£) then the following update formula is applied itera-

tively to achieve the desired bounds:

Xnew (1 + a)X{old a Xold (2.43)
u u9.

"new = Xold (2.44)
i u

where a = golden section number = 1.61803.

Note that if the last three values of this iterative

procedure are retained along with the function values, the

three required points by the Golden Section and Polynomial

methods are already available.

Many algorithms (e.g., MFD) require the constrained

minimum of F(X). Polynomial and Golden Section methods are

also used in ADS for this purpose. Note that the X used here

is actually a* in equation 2.4.
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III. PRELIMINARY TESTING OF ADS-i

A. INTRODUCTION

Selection of test problems in a comparative study is of

primary importance. Considering one of the objectives of

this thesis is to demonstrate the utility and flexibility of

the ADS library, test cases were selected from two fundamen-

tally different areas in which optimization is commonly

used. These areas are structural design (trusses, frames,

space towers, etc.), and ship synthesis. There are many

other areas in engineering where optimization is employed

but the areas chosen here are selected for comparative study

in this research due to the availability of the analysis codes.

A good test case is one in which no single constraint

dominates the design. Three different truss cases were

selected that met this criteria. They were also chosen

because they are significant in size and complexity and thus

would demonstrate the comparative efficiency and reliability

of the various algorithms to be tested. Truss cases are

popular in the literature because differences due to modeling

details and idealizations can be eliminated easily; they also

lend themselves well to finite element methods of analysis.

Because analytically optimum solutions to the test cases

are not available, solutions obtained by the well developed

and thoroughly tested optimization program "CONMIN" are

provided as a base-line for the results from ADS.
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The remaining two test problems consist of a 10-variable

cantilever beam optimized for minimum volume, and the con-

ceptual design of the FFG-7 Perry Class Frigate where the

objective function is taken to be the full load displacement

of the vessel. The details of the various test cases are

presented in the following sections.

B. DESCRIPTION OF TEST PROBLEMS

1. 10-Variable Cantilevered Beam

The 10-variable cantilever beam test case was devel-

oped by Vanderplaats in 1979 as a teaching aid for a graduate

level course in Design Optimization. The problem is quite

simple, yet the solution is not easily obtained. The beam

consists of a specified number of equal length sections;

each section has a rectangular cross section with the height

constrained not to exceed 20 times the width. This equates

to a crude buckling constraint. The maximum stress at the

left end of each section is constrained as follows:

a < +20 ksi i= 1,5 (3.1)
1

The beam is cantilevered and tip loaded with a force

of 10 kips downward and the total tip deflection is con-

. .strained not to exceed two inches. Material properties of

the beam conform to steel where Young's modulus, E = 30 x 106

psi.

4| The initial X vector of design variables consisting

of height and width dimensions of each section is tabulated
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in Appendix A. There are five equal length segments in the

overall length of 200 inches, resulting in an initial volume

of 8000 in3. The objective function is the minimum volume

subject to the constraints of stress, displacement, and

height to width ratio. A three dimensional drawing of the

initial design is shown in Figure 3.1 and the optimum solution

is shown in Figure 3.2. The tip deflection of the optimum

beam is actually two inches downward but no attempt is made

to show this in the figure.

2. 10-Bar Planar Truss

Numerous test cases for planar trusses (2-dimensional)

and space towers (3-dimensional) can be found in the litera-

ture. In particular, the 10-bar planar truss has been used

in [Ref. 45.] to demonstrate how the stress-ratio method,

which seeks a fully-stressed design, yields poor results when

members with significantly different allowable stresses are

specified [Ref. 461.

The configuration of the 10-bar planar cantilever

truss is shown in Figure 3.3 and is subject to a single load

condition of 100 kips downward at nodes two and four. The

initial cross-sectional areas of the truss elements and

bounds on the areas are listed in Appendix B.

There are 20 constraints consisting of maximum and

minimum stresses in each of the 10 members as follows:

-25 ksi < a. < +25 ksi i = 1-8,10 (3.2)
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-50 ksi < a. < +50 ksi i = 9 (3.3)

where i is the member element number. It should be noted

that element nine in Figure 3.3 has twice the allowable

stress of the other members. The objective function is

minimum weight of the structure. Material properties include

6 3
Young's Modulus, E = 10 x10 6 psi and y = .1 lb/in corres-

ponding to the properties of aluminum.

3. Conceptual Design FFG-7 PERRY Class Frigate

The details of this test case may be obtained in

[Ref. 47] where Jenkins optimized the conceptual design of

a FFG-7 Perry Class Frigate. More specifically, he coupled

the Reed synthesis model for surface combatant ships [Ref.

48], with the non-linear optimize CONMIN, a FORTRAN program

for constrained function minimization, via the control pro-

gram COPES. COPES/CONMIN was developed in 1973 by Vanderplaats

[Ref. 5] and has been used in a variety of engineering appli-

cations. The objective function is the full load displace-

ment of the vessel.

-sThe design variables used in the preliminary testing

of the ADS program are the same as those used by Jenkins:

* * accordingly a comparison of results is appropriate. The

independent design variables include:

1. LBP - Length between perpendiculars, ft.

2. L/B - Length to beam ratio

3. B/H - Beam to draft ratio
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4. Cp - Prismatic coefficient

5. Cx - Midship section coefficient

The initial values of these variables as well as

their upper and lower bounds are listed in Appendix C.

There are 13 constraints on the design, these are explained

in detail in [Ref. 47], and are not repeated here.

4. 47-Bar Planar Tower

The 47-Bar planar tower shown in Figure 3.4 was

introduced in the literature in [Ref. 49], wherein the tower

was designed subject to multiple loading conditions. The

same tower was designed for optimum geometry in [Ref. 501

subject to stress and Euler buckling. In [Ref. 50] sub-

structuring was also used. The two sub-structures were over-

lapped so that several members were in both sub-structures.

[Ref. 511 presents configuration optimization with the addition

of frequency constraints.

The 47-Bar planar tower used in this research is

discussed in the remainder of this section. Initial cross-

sectional areas of the truss elements, nodal coordinates and

bounds on these parameters are tabulated in Appendix D as

well as the details regarding displacement constraints and

loading conditions. Steel was selected as the material for

all members with Young's Modulus, E = 30 x 106 psi and

3
y = .3 lb/in

All elements are subject to the following constraints

on stress:
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Figure 3.4. Initial Design of the 47-Bar Planar Tower
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-15 ksi < a. < +20 ksi i = 1,47 (3.4)

where i is the element number. Tubular members are speci-

fied with a diameter to thickness (d/t) ratio = 10. Euler

buckling is prohibited by constraining the buckling stress

in the members according to the following equation:

2
a i > a b i -10.lTEAi/8L2 i = 1,47 (3.5)-- 1 1

Finally, the first fundamental frequency of the

structure is required to exceed 5. cps. Two non-structural

weights of 500 lbs each are attached at nodes 17 and 22 to

facilitate the eigenvalue problem solution.

Member areas and coordinates are linked to maintain

symmetry about the vertical Y axis. Nodes 15, 16, 17 and

22 are fixed in space and nodes 1 and 2 are constrained to

lie on the X axis. The resulting problem thus reduces to 27

member sizing variables and 17 configuration variables for

, a total of 44 independent design variables and 436 constraints

on stress, Euler buckling, displacement and frequency.

The optimum design is shown in Figure 3.5. It should

be noted there was no attempt to show member sizing variables

in the figures.

5. 234-Bar Space Tower

The configuration of the 234-Bar space tower is shown

in Figure 3.6. Initial cross-sectional areas of the truss
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Figure 3.5. optimum Design at the 47-Bar Planar Tower
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Figure 3.6. Configuration of the 234-Bar Space Tower
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elements, nodal coordinates, bounds on these parameters, as

well as the details regarding displacement constraints and

loading conditions are tabulated in Appendix E. Aluminum

was selected as the material for all members with Young's

6 3
Modulus, E = ix 10 psi and y = .1 lb/in

All elements are subject to the following constraints

on stress:

-15 ksi < a. < +20 ksi i = 1,234 (3.6)

where i is the element number. Tubular members are speci-

fied with a diameter to thickness (d/t) ratio = 10. Euler

buckling is prohibited by constraining the buckling stress

in the members according to the following equation:

2
i > = - 10.lTEA.i/8L. i = 1,234 (3.7)
1 1

Member areas and coordinates are linked to maintain

symnetry about the vertical Y axis. Nodes 1, 2, 3 and 4 are

constrained to lie on the XZ plane. The resulting problem

thus reduces to 56 member sizing variables and 3550 constraints

on stress, Euler buckling, and displacement.

C. COUPLING ANALYSIS AND OPTIMIZATION COMPUTER CODES
L

The test case data files were prepared in accordance

with the user's manual for SADT [Ref. 36] and the user's

manual for COPESA, similar to [Ref. 6]. The problems were
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then coupled to the ADS library of optimization algorithms

via a brief driver program in the case of trusses and towers

and via COPESA on the cantilever beam and Ship design cases.

All test case results were printed and filed for future refer-

ence. The default values for all program control parameters

such as convergence tolerances were used insofar as possible.

Gradients were calculated analytically for the truss and

tower cases and by finite differences in the cases of the

beam and ship.

The results obtained were carefully tabulated and opti-

mum solutions determined based on the best objective function

and the fewest equivalent function evaluations. This param-

eter was computed as follows:

NFE = IFCALL + NDV*IGCALL (3.8)

where IFCALL is the number of objective and constraint

function evaluations, IGCALL is the number of times gradients

are evaluated by the user and NDV is the number of design

variables. This provides an equivalent number of function

evaluations that would be required if all gradients were

"- calculated by finite differences. If gradients are caicu-

lated by finite differences, IGCALL will be zero because

IFCALL includes the function evaluations needed to calcu-

late gradients.
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IV. RESULTS AND CONCLUSIONS

A. INTRODUCTION

*[ There are presently 85 possible, meaningful combinations

of strategy, optimizer and one-dimensional search methods

available in the ADS library. Testing all methods on all

problems is not practical considering some test cases con-

sume over 40 minutes of CPU time per run. Accordingly,

the scope of research was limited to testing all strategies

and all optimizers with three one-dimensional searches on

all five problems, for a total of 260 test case computer runs.

The two one-dimensional search methods not tested were bounds

only and polynomial without bounds. The results are tabulated

in Appendix F. In Tables V through IX the best optimum de-
signs to each of the five problems are presented. Optimum

design A represents the best objective function achieved,

whereas optimum design B represents the solution within 5%

of the objective function for optimum design A but which had

the fewest equivalent function evaluations. Both solutions

were required to have no violated constraints (g(X) < 0.01).

B. RELATIVE RANKING OF OPTIMIZATION METHODS

1. Execution TimerA timing routine available in the Non-IMSL library

at the computer center was utilized to record execution time

in CPU seconds for each test run. Times were then averaged
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for all runs using the same one-dimensional search on a given

problem. In other words, CPU time per function evaluation was

averaged for all runs recorded on any given table in Appendix

-" F. These run times, when multiplied by the equivalent number

of function evaluations, is a good approximation of CPU seconds

to optimize a problem with any given combination of strategy,

optimizer and one-dimensional search. For example, average

CPU time per function evaluation for the cantilever beam range

from .002581 seconds to .0037283, whereas the range on the 234-

Bar space tower is .32508 to .36011 seconds. It is readily

apparent that on problems of significant size, like the 234-

Bar tower (Table XXXV, Appendix F) run times of 34 CPU minutes

may be realized. The significant point is that the efficiency

*-- of an algorithm to reduce NFE to a minimum is of vital concern

on problems of practical interest.

2. Number of Function/Gradient Calculations

A perusal of all results in Appendix F reveals that

direct methods are far more efficient than indirect methods

as far as NFE is concerned when solving constrained minimi-

zation problems. Furthermore it is apparent that the ALM

method is effective in reducing NFE for SUMT methods as theory

would suggest.

Contrary to expectations, there is no apparent trend

that would indicate which unconstrained minimization method

is "best" to use when employing a SUMT method for the solu-

tion of a constrained problem. Perhaps more extensive testing

would result in establishing these desirable guidelines.
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A review of Table VII points out an interesting fact

concerning NFE. In this table the optimum solutions for the

FFG-7 test case are recorded. Note that the Method of Feasi-

ble Directions results in a quite acceptable objective func-

tion in 55 function evaluations while a SUMT method (exterior

penalty) required 555 function evaluations to achieve a

slightly better result! This situation is shown graphically

in Figure 4.1. The point here is for the user to be aware

of the possibility that an optimizer may be using an inordinate

amount of computer resources to achieve an insignificant gain

in the objective.

3. Values of the Objective Function

A comparison of objective functions points out that

in general all presently available algorithms are working

well in ADS with the exception of SUMT methods on the 234-

Bar space tower. In this case the optimizers were unable to

overcome the constraint violations and make progress toward

a solution; the trouble is attributed to needed refinement in

choosing the penalty parameters.

The efficiency, reliability, and accuracy of the

various algorithms however, is clearly demonstrated on the

other four test problems as recorded in Tables XXIII through

XXXIV in Appendix F. In these four test cases, extremely

good objective functions were obtained and generally resulted

in the production of feasible designs (no violated constraints).

Tables V through IX record the best objective func-

tion achieved for each problem. Again, the direct methods
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TABLE V

Optimum Design of 10-Variable Cantilever Beam

DESIGN INITIAL OPTIMUM OPTIMUM
VARIABLES VALUES DESIGN A DESIGN B

1 .20000E+01 .85538E+00 .85534E+00

2 .20000E+01 .84340E+00 .84342E+00

3 .20000E+01 .96538E+00 .96547E+00O

4 .20000E+01 .10625E+01 .10626E+01

5 .20000E+01 .11446E+01 .11447E+01

6 .20000E+02 .17108E+02 .17107E+02

7 .20000E+02 .16868E+02 .16869E+i02

8 .20000E+02 .19308E+02 .19310E+02

9 .20000E+02 .21251E+02 .21253E+02

10 .20000E+02 .22892E+02 .22E94E+02

OBJ: .80000E+04 .38513E+04 .38!.17E+04

IFCALL: 365 191

IGCALL: 9 0

NFE: 365 191

ISTRAT:: 0 0

IOPT: 3 3

IONED: 89

67



TABLE VI

Optimum Design of 10-Bar Planar Truss

DESIGN INITIAL OPTIMUM OPTIMUM
VARIABLES VALUES DESIGN A DESIGN B

1 .10000E+02 .79149E+01 .78869E+01

2 .10000E+02 .10000E+00 .lCOOOE+00

3 .10000E+02 .80888E+01 .81114E+01

4 .10000E+02 .39278E+01 .3S154E+01

5 .10000E+02 .10000E+00 .lCOOOE+00

6 .10000E+02 .10002E+00 .1C001E+00

7 .10000E+02 .57843E+01 .58135E+01

8 .10000E+02 .54622E+01 .55145E+01

9 .10000E+02 .36814E+01 .3(493E+01

10 .10000E+02 .14060E+00 .14060E+00

OBJ: .41965E+04 .14955E+04 .14974E+04

IFCALL: 219 76

IGCALL: 10 14

NFE: 319 216

ISTRAT: 0 0

IOPT: 3 3

IONED: 7 9

v 6
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TABLE VII

Optimum Conceptual Design of FFG-7 Perry Class Frigate

DESIGN INITIAL OPTIMUM OPTIMUM
VARIABLES VALUES DESIGN A DESIGN B

1 .30000E+03 .39429E+03 .39441E+03

2 .90700E+01 .73383E+0. .84923E+01

3 .31400E+01 .40000E+01 .34438E+01

4 .59300E+00 .51969E+00 .50000E+00

5 .75100E+00 .90000E+00 .77578E+00

OBJ: .28650E+04 .35039E+04 .35120E+04

IFCALL: 555 55

IGCALL: 0 0

NFE: 555 55

ISTRAT: 1 0

IOPT: 5 1

IONED: 2 9
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TABLE VIII

* Optimum Design of 47-Bar Planar Tower

DESIGN INITIAL OPTIMUM OPTIMUM

*VARIABLES VLEDSINADESIGN B

I .50000E+01 .46860E+01 none within

2 .50000E+01 .41759E+01 5% of optimum
3 .50000E+01 .18816E+01 design A and

4 .50000E+01 .37585E+01 no violated

5 .50000E+01 .18577E+01. constraints

6 .50000E+01 .37921E+01

7 .50000E+01 .32165E+01

8 .50000E+01 .31278E+0-1

9 .50000E+01 .21022E+01

10 .50000E+01 .28899E+01

11 .50000E+01 .22567E+01

12 .50000E+01 .40493E+01

13 .50000E+01 .24314E+01

14 .50000E+01 .23419E+01

15 .50000E+01 .37355E+01

16 .50000E+01 .36838E+01

17 .50000E+01 .42922E+01

18 .50000E4-01 .79178E+00

19 .50000E4-01 .29163E+01

20 .50000E+01 .38352E+01

21 .50000E+01 .94515E+00

22 .50000E+01 .26998E+01

23 .50000E+01 .41409E+01

24 .50000E+01 .12333E+01

25 .50000E+01 .24597E+01

26 .50000E+01 .43808E+01

27 .50000E+01 .10245E+01

28 .60000E+02 .68591E+02

29 .60000E+02 .53476E+02

30 .12000E+03 .13530E+03

70



77 . --

TABLE VIII (Cont'd)

DESIGN INITIAL OPTIMUM OPTIMUM
VARIABLES VALUES DESIEGN A DESIGN B

31 .60000E+02 .40992E+I02

32 .24000E+03 .27822E+03

33 .60000E+02 .32738E+02

34 .36000E+03 .37854E+03

35 .30000E+02 .24938E+02

36 .42000E+03 .45161E+03

37 .30000E+02 .24265E+02

38 .48000E+03 .47202E+03

39 .30000E+02 .23896E+02

40 .54000E+03 .51176E+03

41 .90000E+02 .82690E+02

42 .60000E+03 .59193E+03

43 .30000E+02 .26367E+02

44 .60000E+03 .56721E+i03

OBJ: .28650E+04 .30141E+04

IFCALL: 948

IGCA.LL: 51

NFE: 3192

ISTRAT: 2

IOPT: 4

IONED: 2
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TABLE IX

optimum Design of 234-Bar Space Tower

DESIGN INITIAL OPTIMUM OPTIMUM
VARIABLES VALUES DESIGN A DESIGN B

1 .25000E+-02 .69559E+02 .69357E+02

2 .25000E+02 .68288E+02 .68117E+02

3 .25000E+02 .66756E+02 .66428E+02

4 .25000E+02 .64988E+02 .64421E+02

5 .25000E+02 .62568E+02 .61759E+02

6 .25000E+02 .59297E+02 .58494E+02

7 .25000E+02 .54735E+02 .53562E+02

8 .25000E+02 .48046E+02 .47554E+02

9 .25000E+02 .37844E+02 .37760E+02

10 .25000E+02 .21850E+02 .22198E+02

11 .25000E+02 .18359E+02 .18896E+02

12 .25000E+02 .20855E+00 .64660E+00

13 .25000E+02 .98045E-01 .40680E+00

14 .25000E+02 .16474E+00 .16005E+00

i5 .25000E+02 .17637E+00 .22615E+00

16 .25000E+02 .96913E+00 .29182E+01

17 .25000E+02 .40538E+01 .60715E+01

18 .25000E+02 .72152E+01 .89224E+01

19 .25000E4-02 .10221E+02 .11365E+02

20 .25000E+02 .12806E+02 .13766E+02

21 .25000E+02 .20106E+02 .20525E+02

22 .25000E+02 .21018E+02 .21433E+02

23 .25000E+02 .22353E+02 .22841E+02

24 .25000E+02 .25257E+02 .25643E+02

25 .25000E+02 .17203W+01 .19941E+01

26 .25000E+02 .16693E+01 .31480E+01

27 .25000E+02 .16977E+01 .21728E+01

28 .25000E+02 .22347E+01 .29806E+01

29 .25000E+02 .25725E+01 .25564E+01

530 .25000E+02 .30805E+01 .34746E+I01

31 .25000E+02 .40618E+01 .35497E+01

32 .25000E+02 .58799E+01 .58570E+01
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TABLE IX (Cont'd)

DESIGN INITIAL OPTIMUM OPTIMUM
VARIABLES VALUES DESIGN A DESIGN B

33 .25000E+02 .88958E+01 .86716E+01

34 .25000E+02 .13261E+02 .12863E+02

35 .25000E+02 .10249E+02 .10585E+02

36 .25000E+02 .19124E+02 .19571E+02

37 .25000E+02 .37666E+02 .38444E+02

38 .25000E+02 .15174E+02 .16716E+02

39 .25000E+02 .32889E+02 .33776E+02

40 .25000E+02 .20731E+02 .21057E+02

41 .25000E+02 .20853E+02 .21187E+02

42 .25000E+02 .29991E+02 .30891E+02

43 .25000E+02 .17611E+02 .18299E+02

44 .25000E+i02 .95341E+01 .10795E+02

45 .25000E+02 .87553E+01 .10064E+02

46 .25000E+02 .12634E+00 .72552E-01

47 .25000E+02 .69780E-01 .20655E+01

48 .25000E+02 .22711E+01 .41014E+01

49 .25000E+02 .44747E+01 .61302E+01

.50 .25000E+02 .66768E+i01 .81517E+01

51 .25000E+02 .88756E+01 .10174E+02

52 .25000E+02 .11075E+02 .12196E+02

53 .25000E+02 .14990E+02 .15796E+02

54 .25000E+02 .15473E+02 .16240E+02

55 .25000E+02 .17706E+02 .18293E+02

56 .25000E+02 .17712E+02 .18299E+02

OBJ: .84524E+05 .43967E+05 .45472E+05

IFCALL: 1345 241
'4IGCALL: 77 63

NFE: 5657 3769

ISTRAT: 5 5

IOPT: 5 4

IONED: 2 4
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yielded a better result than the indirect methods on the two

smaller problems while the SUMT methods prevailed on the

larger problems. This suggests that indirect methods deal

with a multitude of active constraints more effectively than

direct methods.

C. COMPARISON WITH CONMIN

All test cases were run on CONMIN to provide a base-line

for the comparative studies. Results from CONMIN are recorded

on the tables of test results in Appendix F. It is inter-

esting, if not surprising, that with the exception of the

234-bar tower test case, ADS routines were able to achieve

better solutions than CONMIN.

CONMIN basically utilizes a Feasible Directions algorithm

for constrained problems. The fact that a different combina-

tion surpassed CONMIN on each test case supports the notion

that the optimization algorithm employed should suit the prob-

lem at hand to gain maximum efficiency. In the past the

thrust has been to merely alter the program parameters of

the same algorithm to deal with fundamentally different prob-

lems. ADS now offers a convenient method for selecting an

algorithm best suited to the problem at hand. This flexi-

bility further enhances an engineer's ability to apply opti-

mization concepts to the various disciplines in design.

D. ADDITIONAL CONCLUSIONS

Preliminary testing of the ADS library resulted in the

modifications of several default values for the various
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optimizers that improved their efficiency dramatically. As

ADS is fully implemented additional testing will be required

to insure all algorithms are as efficient, reliable and

accurate as possible.

A difficulty with a program of this broad capability is

to provide the user with a concise set of guidelines identi-

fying which method or class of methods should be selected

for a given problem. The problem is exacerbated by the

selection of default values, in other words, a default value

which may work well on one problem may cause premature con-

vergence on a different problem. Accordingly, judicious

selection of default values in ADS requires considerable

effort supported by extensive testing on a variety of problems

as the algorithms become operational.

Results given in Appendix F and the optimum solutions

tabulated in Tables V through IX are an indication of relia-

bility, to be sure, however the results are preliminary and

the algorithms are constantly being revised and improved.

The equivalent number of function evaluations (NFE) provide

a measure of relative efficiency of the optimizer to achieve

an optimum solution, the goal being to minimize the use of

computer resources while maximizing the reduction of the

objective function. It should be noted and is evident in

the results tabulated that the efficiency and reliability

are problem dependent. Therefore a wise selection of the

appropriate algorithm and tailoring the program parameters
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to suit the problem at hand is required. ADS achieves this

flexibility and enhances the design engineer's ability to

use optimization as a viable design tool.
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APPENDIX A

10-VARIABLE CANTILEVER BEAM TEST CASE

Table X describes the initial X vector of independent

design variables; the first five variables are segment

widths and the remaining five are segment heights; side

constraints or bounds on the variables are also included.

TABLE X

Initial X Vector for the 10-Variable Cantilever Beam

SEGMENT DIMENSIONS (INCHES)

DESIGN LOWER INITIAL UPPER
VARIABLE BOUND VALUE BOUND

1 .50000E+00 .20000E+01 .50000E+01

2 .50000E+00 .20000E+01 .50000E+01

3 .50000E+00 .20000E+01 .50000E+01

4 .50000E+00 .20000E+01 .50000E+01

5 .50000E+00 .20000E+01 .50000E+I01

-6 .10000E+02 .20000E+02 .10000E+03

7 .10000E+02 .20000E+02 .10000E+03

8 .10000E+02 .20000E+02 .10000E+03

9 .10000E+02 .20000E+02 .10000E+03

10 .10000E+02 .20000E+02 .10000E+03
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APPENDIX B

10-BAR PLANAR TRUSS TEST CASE

Table XI describes the initial X vector of independent

design variables; the ten variables consist of the truss

element cross-sectional areas. Side constraints or bounds

4 on the variables are also included in the table. Table XII

lists the nodal coordinates in inches.

TABLE XI

Initial X Vector for the 10-Bar Planar Truss

DESIGN TRUSS CROSS SECTIONAL AREAS (SQ. IN.)
VARIABLE ELEMENT
NUMBER NUMBER LOWER BOUNDS INITIAL VALUES UPPER BOUNDS

1 1 .10000E+00 .10000E+02 .10000E+04

2 2 .10000E+00 .10000E+02 .10000E+04

3 3 .10000E+00 .10000E+02 .10000E+04

4 4 .10000E+00 .10000E+02 .10000E+04

5 5 .10000E+00 .10000E+02 .10000E+04

6 6 .10000E+00 .10000E+02 .10000E+04

7 7 .10000E+00 .10000E+02 .10000E+04

8 8 .10000E+00 .10000E+02 .10000E+04

9 9 .10000E+00 .10000E+02 .10000E+04

10 10 .10000E+00 .10000E+02 .10000E+04
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TABLE XII

Initial Nodal Coordinates of the 10-Bar Planar Truss

NODE
NUMBER COORDINATES (INCHES)

X y z

1 .72000E+03 .36000E+03 0

2 .72000E+03 0 0

3 .36000E+03 .36000E+03 0

-. 4 .36000E+03 0 0

5 0 .36000E+03 0

6 0 0 0

'-

.-
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APPENDIX C

CONCEPTUAL DESIGN OF THE FFG-7 PERRY CLASS FRIGATE

Table XIII lists the initial X vector of independent

design variables; side constraints or bounds on the variables

are included in the table.

TABLE XIII

Initial X Vector for the FFG-7 Preliminary Design

DESIGN
VARIABLE PARAMETER LOWER INITIAL UPPER
NUMBER BOUNDS VALUES BOUNDS

1 LBP .30000E+03 .30000E+03 .70000E+i03

2 L/E .70000E+00O .90700E+00 .12000E+00

3 B/H .20000E+01 .31400E+01 .40000E+01

4 Cp .50000E+00 .59000E+00 .90000E+00

5 Cx .75000E+00 .75000E+00 .90000E+00
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APPENDIX D

47-BAR PLANAR TOWER TEST CASE

Tables XIV and XV describe the initial X vector of inde-

pendent design variables. The 27 variables in Table XIV are

the initial element cross-sectional areas. Table XV lists

the initial nodal coordinates; 17 of these are independent

design variables. It should be noted that since symmetry

about the Y-axis exists only nodes on the positive side are

listed. Side constraints or bounds on the variables are

included in the tables. Tables XVI and XVII describe the

loading conditions and displacement constraints respectively.
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TABLE XIV

Initial Member Areas for the 47-Bar Planar Tower

DESIGN TRUSS CROSS SECTIONAL AREAS (SQ. IN.)
VARIABLE ELEMENT

NUMBER NUMBER LOWER INITIAL UPPER
BOUNDS VALUES BC; NDS

1 3 .10000E-05 .50000E+01 .10000E+04

2 4 .10000E-05 .50000E+01 .10000E+04

3 5 .10000E-05 .50000E+01 .10000E+04

4 7 .100OOE-05 .50000E+01 .10000E+04

5 8 .10000E-05 .50000E+01 .10000E+04

6 10 .10000E-05 .50000E+01 .10000E+04

7 12 .10000E-05 .50000E+01 .10000E+04

8 14 .10000E-05 .50000E+01 .10000E+04

9 15 .10000E-05 .50000E+01 .10000E+04

10 18 .10000E-05 .50000E+01 .10000E+04

11 20 .10000E-05 .50000E+01 .10000E+04

12 22 .10000E-05 .50000E+01 .10000E+04

13 24 .10000E-05 .50000E+01 .10000E+04

14 26 .10000E-05 .50000E+01 .10000E+04

15 27 .10000E-05 .50000E+01 .10000E+04

16 28 .10000E-05 .50000E+01 .10000E+04

17 30 .10000E-05 .50000E+01 .10000E+04

18 31 .10000E-05 .50000E+01 .10000E+04

19 33 .10000E-05 .50000E+01 .10000E+04

20 35 .10000E-05 .50000E+01 .10000E+04

21 36 .10000E-05 .50000E+01 .10000E+04

22 38 .10000E-05 .50000E+01 .10000E+04

23 40 .10000E-05 .50000E+01 .10000E+04

24 41 .10000E-05 .50000E+01 .10000E+04

25 43 .10000E-05 .50000E+01 .10000E+04

26 45 .10000E-05 .50000E+01 .10000E+04

27 46 .10000E-05 .50000E+01 .10000E+04
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TABLE XV

Initial Nodal Coordinates of the 47-Bar Planar Tower

DESIGN NODE LOWER COORDINATES UPPER
VARIABLE NUMBER BOUNDS (INCHES) BOUNDS

NUMBER X Y Z

28 2 .1000E+02 .6000E+02 0 0 .1000E+04

29 4 .1000E+02 .6000E+02 0 0 .1000E+04

30 4 .1000E+02 0 .1200E+03 0 .1000E+04

31 6 .1000E+02 .6000E+02 0 0 .1000E+04

32 6 .1000E+02 0 .2400E+03 0 .1000E+04

33 8 .1000E+02 .6000E+02 0 0 .1000E+04

34 8 .1000E+02 0 .3600E+03 0 .1000E+04

35 Id .1000E+02 .3000E+0 0 0 .1000E+04

36 10 ..1000E+02 0 .4200E+03 0 .1000E+04

37 12 .1000E+02 .3000E+02 0 0 .1000E+04

38 12 .1000E+02 0 .4800E+03 0 .1000E+04

39 14 .1000E+02 .3000E+02 0 0 .1000E+04

40 14 .1000E+02 0 .5400E+03 0 .1000E+04

16 .9000E+02 .5700E+03 0

41 20 .1000E+02 .3000E+02 0 0 .1000E+04

42 20 .1000E+02 0 .6000E+03 0 .1000E+04

43 21 .1000E+02 .9000E+02 0 0 .1000E+04

K44 21 .1000E+02 0 .6000E+03 0 .1000E+04

22 .1500E+03 .6000E+03 0

K 83



TABLE XVI

Loading conditions on the 47-Bar Planar Tower

LOAD NODE LOADS APPLIED (LBS)
CONDITION NUMBER FX FY FZ

117 .6000E+04 - .14000E+05 0
22 0 0 0

2 17 0 0 0
22 .6000E+s04 -.14000E+05 0

317 .6000E+04 -.14000E+05 0
22 .6000E+04 -.14000E+05 0

TABLE XVII

Displacement Constraints on the 47-Bar Planar Tower

LOAD NODE DISPLACEMENT CONSTRAINTS (INCHES)
CONDITION NUMBER DIRECTION LOWER BOUNDS UPPER BOUNDS

117 X -. 5000E+01 .5000E+01
17 Y -. 5000E+01 .5000E+0l

2 17 x -. 5000E+01 .5000E+i01
17 Y -. 5000E+01 .5000E+01

3 7x-50E0 50E0

317 X -.5000E+01 .5000E+01
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APPENDIX E

234-BAR SPACE TOWER TEST CASE

Table XVIII describes the initial X vector of indepen-

dent design variables which consist of the member cross

sectional areas. Side constraints or bounds on the variables

are included in Table XVIII. Table XIX lists the nodal

coordinates. Tables XX and XXI describe the loading conditions

and displacement constraints respectively.

IN'
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TABLE XVIII

Initial Member Areas for the 234-Bar Space Tower

DESIGN TRUSS CROSS SECTIONAL AREAS (SQ. IN.)
VARIABLE ELEMENT LOWER INITIAL UPPER

F.NUMBER NUMBER BOUNDS VALUES BOUNDS

1 1-4 .10000E-05 .25000E+02 .10000E+03

2 5-8 .10000E-05 .25000E+02 .10000E+03

3 9-12 .10000E-05 .25000E+02 .10000E.-03

4 13-16 .10000E-05 .25000E+02 .10000E+03

5 17-20 .10000E-05 .25000E+02 .10000E+03

6 21-24 .10000E-05 .25000E+02 .10000E+e03

7 25-28 .10000E-05 .25000E+02 .10000L+03
8 93 10OI5 .200+2.00E0

8 39-32 .10000E-05 .25000E+02 .10000E+03

10 33-36 .10000E-05 .25000E+02 .10000E+03

11 37-40 .10000E-05 .25000E+02 .10000OE+03

K12 41-44 .10000E-05 .25000E+02 .10000E+03
12 4954 .100O0E-05 .25000E+02 .10000E+03

13 49-52 .10000E-05 .25000E+02 .100002+03

15 57-60 .10000E-05 .25000E+02 .IOOOOE0+03

16 61-64 .10000E-05 .25000E+02 .10000E+03

17 65-68 .10000E-05 .25000E+02 .100001+03

18 69-72 .10000E-05 .25000E+02 .10000E+03

19 73-76 .10000E-05 .25000E+02 .10000E+03

20 77-80 .10000E-05 .25000E+02 .10000E+03

21 81,83 .10000E-05 .25000E+02 .10000E+03

22 82,84 .10000E-05 .25000E+02 .10000E+03

23 85,87 .10000E-05 .25000E+02 .10000E+03

24 86,88 .10000E-05 .25000E+02 .10000E+03

25 89-96 .10000E-05 .25000E+02 .10000E+03

26 97-104 .100O0E-05 .25000E+02 .10000E+03

27 105-112 .10000E-05 .25000E+02 .10000E+03
281310.00O45 .50E+2.00E0

*29 121-120 .10000E-05 .25000E+02 .10000E+03

29 121-128 .10000E-05 .25000E+02 .10000E+03
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TABLE XVIII (Cont'd)

DESIGN TRUSS CROSS SECTIONSL AREAS (SQ. IN.)
VARIABLE ELEMENT LOWER INITIAL UPPER

-. NUMBER NUMBER BOUNDS VALUES BOUNDS

31 137-144 .10000E-05 .25000E+02 .10000E+03

32 145-152 .10000E-05 .25000E+02 .10000E+03

33 153-160 .10000E-05 .25000E+02 .10000E+03

34 161-168 .100O0E-05 - .25000E+02 .10000E+03

35 169-176 .10000E-05 .25000E+02 .10000E+03

36 177-180 .10000E-05 .25000E+02 .10000E+03

37 181-184 .10000E-05 .25000E+02 .10000E+03

38 185-188 .10000E-05 .25000E+02 .10000E+03

39 189-192 .10000E-05 .25000E+02 .10000E+03

40 193-196 .10000E-05 .25000E+02 .1000CE+03

41 197-200 .10000E-05 .25000E+02 .1000CE+03

42 201,202 .10000E-05 .25000E+02 .1000CE+03

43 203,204 .10000E-05 .25000E+02 .1000(E4-03

44 205-208 .100O0E-05 .25000E+02 .1000CE+03

45 209-212 .10000E-05 - .'2500.OE+02 .10000)E+03

46 213,214 .10006E-05 .25000E4 02-- ,'--*:. .0.000E+03

47 215,216 .10000E-05 .25000E+02 .i0000E+03

48 217,218 .10000E-05 .25000E+02 .10000OE+03

49 219,220 .10000E-05 .25000E+02 .10000E+03

50 221,222 .10000E-05 .25000E+02 .10000E+03

51 223,224 .10000E-05 .25000E+02 .10000E+03

52 225,226 .10000E-05 .25000E+02 .10000E+03

53 227,228 .10000E-05 .25000E+02 .10000E+03

54 229,230 .10000E-05 .25000E+02 .10000OE+03

55 231,232 .10000E-05 .25000E+02 .10000E+03

56 233,234 .10000E-05 .25000E+02 .10000E+03
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TABLE XIX

Nodal Coordinates of the 234-Bar Space Tower

NODE COORDINATES (INCHES)

NUMBER X Y Z

1 .12000E+03 0 .12000,E+03

2 -.12000E+03 0 .12000E4-03

3 -.12000E+03 0 .2000E+03

4 .12000E+03 0 -.12000E+03

5 .11100E+03 .12000E+03 .11100E+03

6 -.11100E+03 .12000E+03 .11100E+03

7 -.11100E+03 .12000E+03 -.11100E+03

8 .11100E+03 .12000E+03 -.11100E+03

9 .10200E+03 .24000E+03 .10200Ei03

10 -.10200E+03 .24000E+03 -.10200E+03

11 -.10200E+03 .24000E+03 -.10200E+03

12 .10200E+03 .24000E+03 .10200E-03

13 .93000E+02 .36000E+i03 .93000E+'02

14 -.93000E+02 .36000E+03 .93000E+02

15 -.93000E+02 .36000E+03 -.93000E+I02

16 .93000E+02 .36000E+03 -.93000E-02

17 .84000E+02 .48000E+03 .84000E+02

18 -.84000E+02 .48000E+03 .84000E+02

*19 -.84000E+02 .48000E+03 -.84000E+02

20 .84000E+02 .48000E+03 -.84000E+02

21 .75000E+02 .60000E+03 .75000E+02

22 -.75000E+02 .60000E+03 .75000E+02

23 -.75000E+02 .60000E+03 -.75000E+i02

24 .75000E+02 .60000E+03 -.75000E+02

25 .66000E+02 .72000E+03 .66000E+02

26 -.66000E+02 .72000E+03 .66000E+02

27 -.66000E+02 .72000E+03 -.66000E+02

28 .66000E+02 .72000E+03 -.66000E+02

29 .57000E+02 .84000E+03 .70E0

30 -.57000E+02 .84000E+03 .57000E+02
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TABLE XIX (Cont'd)

NODE COORDINATES (INCHES)

NUMBER x Y Z

31 -.57000E+02 .84000E+03 -.57000OE+02

32 .57000E+02 .84000E+03 -.57000E+02

33 .48000E+02 .96000E+03 A.8000E+02

34 -.48000E+02 .96000E+03 .48000E+02

35 -.48000E+02 .96000E+03 -. 48030E+02

36 .48000E+02 .96000E+03 -.48000E+02

37 .39000E+02 .10800E+04 .39000E+02

38 -.39000E+02 .10800E+04 .39000E+02

39 -.39000E+02 .10800E+04 -.39000E+02

-*40 .39000E+02 .10800E+04 -.39000E+02

41 .30000E+02 .12000E+04 .30000E+02

42 -.30000E+02 .12000E+04 .30000E+02

43 -.30000E+02 .12000E+04 -.30000E+02

44 .30000E+02 .12000E+04 - .30000E+02

45 .30000E+02 .12480E+04 .30000E+02

46 -.30000E+02 .12480E+04 .30000L+02

47 -.30000E+02 .12480E+04 -.30COOE+02

J48 .30000E+02 .12480E+04 -.3OCOOE+02

49 .90000E+02 .12480E+04 0

50 -.90000E+02 .12480E+04 0

51 .60000E+02 .12240E+04 .15000E+02

52 -.60000E+02 .12240E+04 .15000E+02

53 .60000E+02 .12480E+04 .15000E+02

54 -.60000E+02 .12480E+04 .15000E+02

55 -.60000E+02 .12240E+04 -.15000E+02

56 .60000E+02 .12240E+04 -. 15000E+02

57 -.60000E+02 .12480E+04 -.15000E+02

58 .60000E+02 .12480E+04 -.15000E+02
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TABLE XX

Loading Conditions on the 234-Bar Space Tower

LOAD NODE LOADS APPLIED (LES)

CONDITION NUMBER FX FY FZ

1 49 .6000E+04 -.20000E+05 0

50 .6000E+04 -.20000E+05 0

2 49 .6000E+04 -.20000E+05 0

50 -.6000E+04 -.20000E+05 0

3 49 .6000E+04 -.20000E+05 0

50 .3000E+04 -.10000E+05 .50000E+04

4 49 .3000E+04 -.10000E+05 -.50000E+04

50 .3000E+i04 -.10000E+05 .50000E+04

5 49 -.3000E+04 .10000E+05 .50000E+04

50 -.3000E+04 .10000E+01. -.50000E+04

TABLE XXI

Displacement Constraints on the 234-Bar Space Tower

LOAD NODE DISPLACEMENT CONSTRAINTS (INCHES)

CONDITION NUMBER DIRECTION LOWER BOUNDS UPPER BOUNDS

1 49 X,Y -.5000E+01 .5000E+01

50 X,Y -.S000E+01 .5000E+01

2 49 X,Y -.5000E+01 .5000E+01

50 X,Y -.5000E+01. .5000E+01

3 49 X,Y -.5000E+01 .5000E+01

50 X,Y -.5000E+01 .5000E+01

4 49 X,Y -.5000E+01 .5000E+01

50 X,Y -.5000E+01 .5000E+01

5 49 X,Y -. 5000E+01 .5000E+01

50 X,Y -.5000E+01 .5000E4-01
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APPENDIX F

ADS-I PRELIMINARY TEST RESULTS

The results of the preliminary testing of the algorithms

available in version 1 of the ADS library in February 1983

are summarized in Tables XXIII through XXXVII. The nomen-

clature used in these tables is defined in Table XXII.

TABLE XXII

Definition of Terms in Test Results

* TERM DESCRIPTION

NDV Number of independent design variables

NCON Number of constraints or design

OBJ Objective function value

NAC Number of active constraints

NFE Number of Equivalent Function Evaluations

SUMT Sequential Unconstrained Minimization
Technique

EXT Exterior Penalty Method

LIN EXT INT Linear Extended Interior Penalty Method

QUAD EXT INT Quadratic Extended Interior Penalty Method

CUBIC EXT Cubic Extended Interior Penalty Method
INT

ALM Augmented Lagrange Multipliers Method

MFD Method of Feasible Directions

DFP Davidon-Fletcher-Powell Algorithm

BFGS Broydon-Fletcher-Goldfarb-Shanno Algorithm

-9
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TABLE XXIII

Test Results 10-Variable Cantilever Beam (IONED: 2,7)

ONE-DIMENSIONAL SEARCH: Golden Section

NDV = 10 NCON = 11 (Stress, Displacement and H/B Ratio)

AVERAGE CPU TIME PER FUNCTION EVALUATION: .27097E-02 seconds

OPTMIZER: 1 2 3 4 5
NMMlODOCF FEICaHER- R0BUST D.F.P. B.F.G.S.

STRATE=: FEAS. DIR. REEVES M.F.D.

0 OWJ .47264E+04 .38513E+04
DIRE=~ NAC 1 10

NFE 594 532

1 CBJ .39742E+04 .39188E+04 .39067E+04
stU~r NAC 1* 2* 4
(EXT) iN'E 568 691 738

2
SUTr oBJ .47597E+e04 .39268E-04 .39591E+04
(LIN- NA 3 2 3
EXT1- NFE 736 777 795
INT)

3
StLr oar .47597E4-04 .39288E+i04 .39591E+04
(QUA.D- NAC 3 1 3
EXr- NFE 736 772 795

9. 4
SWif CeJ .47597E904 .39241E+04 .39591E+04

9.(CUIBIC NAC 3 3 3
EXi'- NFE 736 892 795
inr)

5
SUT Oar .38793E+04 .38968E+04 .38961E+04
(ALM) NA 4*0**

NE922 692 799

CBiJ: .40808E+04
NA: 4

* NFE: 313
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TABLE XXIV

Test Results 10-Variable Cantilever Beam (IONED: 3,8)

ONE-L.IMENSIONAL SEARCH: Golden Section + Cubic Polynomial

NDV = 10 NCON = 11 (Stress, Displacement and H/B Ratio)

AVERAGE CPU TIME PER FUNCTION EVALUATION: .25810E-02 Seconds

OPTIMIZER: 1 2 3 4 5
MIOD OF FLETHR- ROBUT D.F.P. B.F.G.S.

STRATEGY: FEAS. DIR. REEVES M.F.D.

0 OBJ .49338E+04 .38513E+04
DIRECT NAC 1 10

NFE 403 365

1 OBJ .39856E+04 .40222E+04 .38984E+04
SUMT NAC 1* 5 1*
(EnT) NFE 440 611 501

2
SLMI CBJ .47397E+04 .39563E+04 .39208E+04
(LIN- NAC 3 3 1
EXT- NFE 549 594 599

3

SLt CBJ .47394E+04 .39567E+04 .392UE+04
(Q D- NAC 3 3 1
EXT- NFE 552 599 599

4
Sum CBJ .47395E+04 .39566E+04 .39211E+04
(CUBIC NWC 3 3 1
EXT- NFE 552 599 599
IN)

5 033 .39740E+04 .38657E+04 .38654E+04
SUT NC 2* 2* 4*
(ALM) NFE 770 587 766

CONMIN RESULTS: * = VIOLATED CONSTRAINT(S)
OBJ: .40808E+04
MAC: 4
NFE: 313
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TABLE XXV

Test Results 10-Variable Cantilever Beam (IONED: 4,9)

ONE-DIMENSIONAL SEARCH: Bounds + Polynomial

NDV = 10 NCON = 11 (Stress, Displacement and H/B Ratio)

AVERAGE CPU TIME PER FUNCTION EVALUATION: .37283E-02 Seconds

OPTIMIER~ 1 2 3 4 5
METHOD OF EIIE- ROBUST D.F.P. B.F.G.S.

STRATEGY: FEAS. DIR. REEVES M.F.D.

0 CBJ .49772E+04 .38517E+04
DIRECT NAC 1 10

NFE 287 191

1 OBJ .39589E+04 .39489E+04 .39849E+04
SUMT NAC 2 1* 0*
(EXT) NEE 397 333 293

2
S*1T CEJ .50299E+04 .39495E+04 .39655E+04
(LIN- NAC 1 2 3
EXT- NFE 342 490 519
fINT)

3

SUMT CBJ .49392E+04 .39313E+04 .39689E+04
(QUAD- NAC 1 2 2
EXT- NFE 400 388 434INT)

*' 4
SrMr C(J .49982E+04 .39260E+04 .39562E+04

(CUBIC NA- 1 2 1
EXT-- NFE 369 436 411
INT)

5 OJB .39678E+04 .38536E+04 .38580E+04
S111 NAC 4 2* 3*
(AIM) NFE 531 396 461

CONMIN RESULTS: * = VIOLATED CONSTRAINT(S)
OBJ: .40808E+04
NAC: 4
NFE: 313
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TABLE XXVI

Test Results 10-Bar Planar Truss (IONED: 2,7)

ONE-DIMENSIONAL SEARCH: Golden Section

NDV 1 10 NCON : 20 (Stress)

AVERAGE CPU TIME PER FUNCTION EVALUATION: .41632E-02 Seconds

OPTIMIZER: 1 2 3 4 5
METHOD OF FLETCHER- WBUST D.F.P. B.F.G.S.

STFPTEGY: FEAS. DIR. REEVES M.F.D.

0 OBJ .15436E+04 .14955E+04
DIRECT NC 1 8

NFE 677 319

1 OBJ .16708E+04 .15558E+04 .15372E+04
SLW NAC 6 5 8
(EXT) NFE 860 824 967

2
Stm4 CBJ .16205E+04 .15104E+04 .15750E+04
(LIN- NAC 3 6 5
E-Q'- NFE 1137 1329 1351

3
SUMT OBJ .16205E+04 .15967E+04 .15750E+04
(QUAD- NAC 3 4 5
EXT- NFE 1137 1356 1351
INT)

4
SLI CBJ .16205E+04 .15967E+04 .15750E+04
(CBIC NAC 3 4 5
EXT- NFE 1137 1356 1351
INT)

5 OBJ .15733E+04 .15285E+04 .14987E+04
SLMT NC 7 8 8
(AIM) NFE 1138 1091 1389

CONMIN RESULTS: * = VIOLATED CONSTRAINT(S)
OBJ: .15009E+04
NAC: 10
NFE: 414
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TABLE XXVII

Test Results 10-Bar Planar Truss (IONED: 3,8)

": ONE-DIMENSIONAL SEARCH: Golden Section + Cubic Polynomial

NDV = 10 NCON = 20 (Stress)

AVERAGE CPU TIME PER FUNCTION EVALUATION: .39329E-02 Seconds

OPTIMIZER 1 2 3 4 5
MEIHOD OF FLEI'HER- RDBUST D.F.P. B.F.G.S.

STRATEGY: FEAS. DIR. IEVES M.F.D.

0 O8J .15445E+04 .14960E+04
DIIECT NAC 1 8

NFE 666 244

1 OBJ .16717E+04 .15743E+04 .15390E+04
stMr NAC 6 6 7
(EXT) NFE 622 721 681

2
SUMT OBJ .16160E+04 .15103E+04 .16357E+04
(LIN- NAC 3 5 2
ET- NFE 885 1059 856
n T)

3
sel ceJ .16202E+04 .15760E+04 .15684E+04
(QUAD- NAC 3 5 5
EXT- NFE 826 1002 902
IbNT)

4
SUNM CBJ .16185E+04 .15747E+04 .16352E+04
(CLBIC NAC 3 5 4
EXT- NFE 936 1137 1016
fINT)

5 ceJ .16076E+04 .14996E+04 .14996E+04
Swil NAC 7 8 8
(AM NFE 786 868 812

CONMIN RESULTS: * = VIOLATED CONSTRAINT(S)
OBJ: .15009E+04
NAC: 10
NFE: 414
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TABLE XXVIII

Test Results 10-Bar Planar Truss (IONED: 4,9)
N

ONE-DIMENSIONAL SEARCH: Bounds + Polynomial
NDV = 10 NCON = 20 (Stress)

AVERAGE CPU TIME PER FUNCTION EVALUATION: .43674E-02 Seconds

OPTIMIZER 1 2 3 4 5
MIMMD OF FLE7CHER- K UST D.F.P. B.F.G.S.

STRATEGY: FEAS. DIR. REEVES M.F.D.

0 CBJ .15313E+04 .14974E+04
DIRET NAC 1 8

NFE 471 216

1 OBJ .16488E+04 .16755E+04 .15752E+04
SUMT NC 6 7 8
(Exr) NFE 384 310 509

2
SLMr CBJ .16034E+04 .15102E+04 .15095E+04
(LIN- NAC 3 3 7
EXT- NFE 676 691 807
INT)

3

SUMTr CJ .16809E+04 .15113E+04 .15100E+04
(QUAD- NAC 4 4 5
EXT- NFE 525 721 831
fINT)

4
SUM CBJ .16822E+04 .15104E+04 .15008E+04
(CIBIC N.C 4 4 8
EXT- NFE 525 812 729
fINT)

5 OBJ .15265E+04 .15414E+04 .15121E+04
SU'4' NAC 4* 6* 8
(AIM) NFE 423 446 780

CONMIN RESULTS: * = VIOLATED CONSTRAINT(S)
OBJ: .15009E+04
NAC: 10
NFE: 414
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TABLE XXIX

Test Results Conceptual Design FFG-7 (IONED: 2,7)

ONE-DIMENSIONAL SEARCH: Golden Section

NDV =5 NCON =13

AVERAGE CPU TIME PER FUNCTION EVALUATION: .23774E-01 Seconds

OPTIMIZER: 1 2 3 4 5
bMODOF FfL IFE- 4BT D.F.P. B.F.G.S.

STRIE: FAS. DIR. dVS M.F.D.

0 8J .35122E+04 .35077E+04
DIRBI' NAC 1 2

-. NFE 155 170

1 OBJ .35114E+04 .35044E+04 .35039E+04
SUMT NAC 1 2 2
(EXT) NFE 511 514 555

2
SLM CJ .35224E+04 .35060E+04 .35067E+04
(LIN- NAC 1 1 1
EXT- NFE 502 544 604

i INT)

3
stim CSJ .35265E+04 .35087E+04 .35052E+04
"-R" (Q NA 1 1 1

EXT- NFE 504 537 597

4
SLa CJ .35260E+04 .35122E+04 .35088E+04
(CUBIC NAC 1 1 1
EXT- NFE 503 514 535

5 OBJ .35107E+04 .35063E+04 .35082E+04
SLMI' NAC 1 0* 2
(AIU) NFE 285 284 248

, . CONMIN RESULTS: * = VIOLATED CONSTRAINT(S)
OBJ: .35128E+04
NAC: 3
NFE: 60
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TAB3LE XXX

Test Results Conceptual Design FFG-7 (IONED: 3,8)

ONE-DIMENSIONAL SEARCH: Golden Section + Cubic Polynomial

NDV = 5 NCON = 13

AVERAGE CPU TIME PER FUNCTION EVALUATION: .25550E-01 Seconds

OPTIMZER: 1 2 3 4 5
MEIf0D OF FLETCH- WBUST D.F.P. B.F.G.S.

STRATEGW: FEAS. DIR. REEVES M.F.D.

0 OBJ .35112E+04 35079E+04
DIRET NP 0 2

NFE 117 107

1 OBJ .35110E+04 .35039E+04 .35043E+04
SW NAC 1 2 2
(EXT) NFE 374 388 393

2
Srx CJ .35235E+04 .35088E+04 .35089E+04
(LIN- NAC 1 1 1
EXT- NFE 359 366 368

3SUCf OBJ .35206E+04 .35088E+04 .35091E+04

(QAD- NC 1 1 1
EXT- NFE 352 356 351
IT)

4
SLir ceB . 35261E+04 . 35082E+04 .35087E+04
(CUBIC NAC 1 1 1
XP- NFE 354 399 358

IT)

5 OJ .35130E+04 .35065E+04 .35073E+04
SUr NAC 0* 1* 2

(ALM) NEE 192 204 210

CONMIN RESULTS: * VIOLATED CONSTRAINT(S)
OBJ: .35128E+04
NAC: 3
NFE: 60
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TABLE XXXI

Test Results Conceptual Design FFG-7 (IONED: 4,9)

ONE-DIMENSIONAL SEARCH: Bounds + Polynomial

k NDV = 5 NCON = 13

AVERAGE CPUT TIME PER FUNCTION EVALUATION: .28926E-01 Seconds

OPTIMIZE1: 1 2 3 4 5
MEHOD OF FLETCHER- R3UST D.F.P. B.F.G.S.

STREC-: FEAS. DIR. REEVES M.F.D.

0 CBJ .35120E+04 .35078E+04
DIRET NAC 1 2

NFE 55 78

1 OBJ .35109E+04 .35085E+04 .35083E+04
StEIr NAC 1 2 2
(EXT) NFE 253 262 260

2
SET cJ .35216E+04 .35174E+04 .35150E+04
(LZN- NAC 0 1 1
XT- NFE 238 242 242

INT)

3
SUMT CSJ .35305E+04 .35084E+04 .35091E+04
(QUM>- NAC 1 1 1
EXT- NFE 227 227 226Ln r)

4

SST CJ .35135E+04 .35090E+04 .35090E+04
(CUBIC NAC 1 1 1
EXT- NFE 228 228 222
fIT)

5 OBJ .35086E+04 .35085E+04 .35095E+04
SUNT NAC 0* 1 1
(ALM NEE 130 169 174

CONMIN RESULTS: * = VIOLATED CONSTRAINT(S)
OBJ: .35128E+04
NAC: 3
NFE: 60
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TABLE XXXII

Test Results 47-Bar Planar Tower (IONED: 2,7)

ONE-DIMENSIONAL SEARCH: Golden Section

NDV = 44 NCON = 436 (Stress, Displacement, Buckling, and Frequency

AVERAGE CPU TIME PER FUNCTION EVALUATION: .53264E-01 Seconds

OPTIMIZER: 1 2 .3 4 5
METHOD OF FLETCHER- K3BWST D.F.P. B.F.G.S.

STIW['EGY: FEMS. DIR. BEEVES M.F.D.

0 csJ .60646E+04 .40012E+04
DIEC~T NAC 0 10

NEE 756 1443

1 CBJ .59466E+04 .36788E+04 .35326E+04
SUM N&C 2 9 U1
(EXT) NE'E 947 2154 2348

2
SUM~ OBJ .47985E+04 .30141E+04 .33997E+i04
(LIN- NA 3 12 10
EX- NFE 2819 3192 2618
I=P

3
SLmI! CJ .53544E+04 .30141E+04 .33997E+04
(QUA~D- NA 4 12 10
Effr- NE'E 2217 3192 2618

4
4.SLW OBJ .53544E+i04 .30141E+i04 .33997E+04

(CUBIC NAC 4 12 10
END- NFE 2217 3192 2618
INT)

5 OaT .40389E+04 .23645E+04 .23832E+04
SWJL NA 0* 9* 13*
(ALM') NFE 71..76 5434

CONMIN RESULTS: *=VIOLATED CONSTRAINT(S)
OBJ: .38078E+04
MAC: 9
NFE: 2021
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TABLE XXXIII

Test Results 47-Bar Planar Tower (IONED: 3,8)

ONE-DIMENSIONAL SEARCH: Golden Section + Cubic Polynomial

NDV = 44 NCON = 436 (Stress, Displacement, Buckling, and Frequency)

*AVERAGE CPU TIME PER FUNCTION EVALUATION: .47939E-01 Seconds

OP!'TI-M: 1 2 3 4 5

NEVD OF FLETCHER- FOBUST D.F.P. B.F.G.S.
STRATY: ES. DIR. IEVM M.F.D.

0 OBJ .61268E+04 .45382E+04
DIFEMT NC 2 7

NFE 404 749

1 OBJ .55662E+04 .36696E+04 .36743E+04
sufn NAC 3 8 5
(EXT) NFE 1458 2390 2020

2
SUMT 03. .46477E+04 .36015E+04 .35362E+04
(LIN- NAC 4 7 10
EXT- NFE 2485 2451 2408
inT)

3
"SLMT OBJ .44886E+04 .36063E+04 .35387E+04
(QLD- NAC 5 7 8
EX'- NFE 2438 2453 2247
inT)

4
Sumr OWJ .45720E+04 .36102E+04 .35357E+04
(CUBIC NAC 3 6 10
EXr- NFE 2064 2282 2404
Ir)

5 OBJ .57343E+04 .32050E+04 .26490E+04
SLUr AC 2 5 5*
(AIM) NFE 883 3816 6258

CONMIN RESULTS: * = VIOLATED CONSTRAINT(S)
OBJ: .38078E+04
NAC: 9
NFE: 2021
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TABLE XXXIV

Test Results 47-Bar Planar Tower (IONED: 4,9)

ONE-DIMENSIONAL SEARCH: Bounds + Polynomial

NDV = 44 NCON = 436 (Stress, Displacement, Buckling, and Frequency)

AVERAGE CPU TIME PER FUNCTION EVALUATION: .43639E-01 Seconds

OPTIMIZER: 1 2 3 4 5
SE110D OF FLEl0- ROBUST D.F.P. B.F.G.S.

STPATBGY: FEAS. DIR. REVS M.F.D.

0 OBJ .61115E+04 .44852E+04
DIRECT NAC 2 9

N E 523 970

1 OSj .61499E+04 .50367E+04 .59280E+04
SU.f NAC 2 4 2

(E~r) NFE 575 1101 726

2
SUMT OBJ .62486E+04 .57233E+04 .58948E+04
(LIw- NAC 2 0 2
EC- NFE 1214 1059 1174
in)

3
Stm OW .62344E+04 .36405E+04 .53255E+04
(QULD- NAC 0 4 2
EXT'- NFE 1153 2651 1314
INT)

4
SLMr ceJ .59038E+04 .58969E+04 .56291E+04
(CUBIC NAC 2 2 2
EXTI- NFE 1741 1172 1226

~In)

5 .61200E+04 .24724E+04 *

SUI NAC 4 4*

(AIM) NFE 871 3459

CONMIN RESULTS: * = VIOLATED CONSTRAINT(S)
OBJ: .38078E+04
NAC: 9
NFE: 2021
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TABLE XXXV

Test Results 234-Bar Space Tower (IONED: 2,7)

ONE-DIMENSIONAL SEARCH: Golden Section

NDV = 56 NCON = 3550 (Stress, Displacement, sand Buckling)

* . AVERAGE CPU TIME PER FUNCTION EVALUATION: .36011E+00 Seconds

OPTIMIZER: 1 2 3 4 5
MET'ID OF f1L'IbE- ;KS D.F.P. B.F.G.S.

STR1AEG: FEAS. DIR. RMVES M.F.D.

0 OBJ .75378E+05 .53526E+05
DIW' MPC 1 2

NFE 297 1545

1 OBJ .48933E+05 .52357E+05 .46937E+05
SNtMZ NAC 1* Q* 0*
(EXT) N'E 2822 3166 1716

2
SUM' 033 .84527E+05 .84526E+05 .84525E+e05
(LIN~- N-C 0* 0* 0*
EXT%- NEE 578 390 388
fINT)

3
StilT 033 .84480E+05 .84480E+05 .84480E+05
(QUAD- NA 0* 0* 0*

E-NM714 712 712
fINT)

4
SEWl 033 .84512E+05 .84512E+05 .84512E+05
(CUBIC NAC 0* Q* 0*
EXT- NIkE 535 535 585
IN1T)

5 033 .46665E+05 .46849E+05 .43967E+05
SUill NAC 0* 2 2
(AIM) NFE 4098 3949 5657

CONMIN RESULTS: *=VIOLATED CONSTRAINT(S)
OBJ: .39353E+05
MAC: 4
NFE: 2946
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TABLE XXXVI

Test Results 234-Bar Space Tower (IONED: 3,8)

ONE-DIMENSIONAL SEARCH: Golden Section + Cubic Polynomial

NDV = 56 NCON = 3550 (Stress, Displacement,and Buckling)

AVERAGE CPU TIME PER FUNCTION EVALUATION: .34968E+00 Seconds

OPTMIZER: 1 2 3 4 5
METHOD OF FLETCHM- ROBUST D.F.P. B.F.G.S.

STPAU3: FEAS. DIR. REEVES M.F.D.

0 OBJ .58577E+05 .54682E+05
DIRECT NAC 1 2

NFE 2608 1343

1 OBJ .51327E+05 .53002E+05 .45573E+05
Sim NAC 2 2 0*
(EXT) NFE 3189 2917 3101

2
sun! OBJ .84529E+05 .84528E+05 .84529E+05
(LIN- NAC 0* 0* 0*
EXT- NFE 584 585 970
INT)

3
SML OBJ .84480E+05 .84480E+05 .84480E+05
(QU- NAC 0* 0* *
EXT- NFE 715 713 713
fINT)

4
SIME OBJ .84512E+05 .84512E+05 .84512E+05
(CUBIC NAC 0* 0* 0*

EXT- NFE 535 535 535
INT)

5 OBJ .46507E+05 .45394E+05 .45364E+05
SUT NAC 2* 1 1
(AIM) NFE 4702 4100 4527

, CONMIN RESULTS: * = VIOLATED CONSTRAINT(S1

OBJ: .39353E+05
NAC: 4
NFE: 2946
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TABLE XXXVII

Test Results 234-Bar Space Tower (IONED: 4,9)

ONE-DIMENSIONAL SEARCH: Bounds + Polynomial
NDV = 56 NCON = 3550 (Stress, Displacement, and Buckling)

AVERAGE CPU TIME PER FUNCTION EVALUATION: .32508E+00 Seconds

"TI4IIZER: 1 2 3 4 5
."TD OF FLFIHER- OBUST D.F.P. B.F.G.S.

ST"AMY: FEAS. DIR. REVE M.F.D.

0 CBJ .51504E+05 .54825E+05
DIREC NAC 2 1

.NE 2279 2070

1 OBJ .45275E+05 .46030E+05 .35709E+05
SUM tC 0* 0* 1*

(EXT) NFE 1139 1971 1487

2
S. OBJ .84527E+05 .84526E+05 .84528E+05
(LIN- NAC 0* 0* 0*
EXT- NFE 529 356 706

3
SW 0BJ .84480E+05 .84480E+05 .84480E+05
(QUAD- NAC 0* 0* 0*

EXT- NFE 698 698 698
in)

4
Stmf CeJ .84512E+05 .84512E+05 .84512E+05
(CLBIC NAC 0* 0* 0*

EXT- NFE 524 524 524
~INT)

5 CBJ .48394E+05 .45472E+05 .45321E+05
SUMC NAC 3 1 2*
(AI) NFE 3423 3769 3598

CONMIN RESULTS: * = VIOLATED CONSTRAINT(S)
OBJ: .39353E+05

*NAC: 4
NFE: 2946

106

i" . . -



LIST OF REFERENCES

1. Schmit, I.A., "Structural Design by Systematic Synthe-
sis", Proceedings, Second Conference on Electronic
Computation, ASCE, New York, 1960, pp. 105-122.

2. Schmit, L.A., "Structural Synthesis--Its Genesis and
Development", AIAA Journal, Vol. 19, No. 10, Oct 1981,
pp. 1249-1263.

3. Vanderplaats, G.N., "Structural Optimization Past,
Present and Future", AIAA 1981 Annual Meeting and Technical
Display, May 1981, Long Beach, California.

4. Vanderplaats, G.N., Sugimoto, H., and Sprague, C.M.,
"ADS-l: A New General-Purpose Optimization Algorithm"
(to be published)

5. Vanderplaats, G.N., "CONMIN--A Fortran Program for
Constrained Function Minimization, User's Manual",
NASA TM X-62, 282, August 1973.

6. Madsen, L.E., and Vanderplaats, G.N., "COPES--A Fortran
Congrol Program for Engineering Synthesis", NPS69-81-003,
March 1982.

7. Fox, R.L., Optimization Methods for Engineering Design,
Addison-Wesley, 1971.

8. Fiacco, A.V. and McCormick, G.P., Nonlinear Prcgramming:
Sequential Unconstrained Minimization Techniques, John
Wiley and Sons, 1968.

9. Kavlie, D. and Moe, J., "Automated Design of Frame
Structures", ASCE Journal of Structural Div., Vol. ST1,
January 1971, pp. 33-62.

10. Cassis, J.H., Optimum Design of Structures .ubject to
Dynamic Loads, Ph.D. Thesis, University of California,
Los Angeles, 1974.

11. Cassis, J.H. and Schmit, L.A., "on Implementation of
the Extended Interior Penalty Function", International
Journal of Numerical Methods in Engineering, Vol. 10,
No. 1, 1976, pp. 3-23.

12. Haftka, R.T. and Starnes, J.H., Jr., "Applications of
a Quadratic Extended Interior Penalty Function for
Structural Optimization", AIAA Journal, Vol. 14, June
1976, pp. 718-724.

107



13. Prasad, B. and Haftka, R.T., "Optimum Structural Design
with Plate Finite Elements", Journal of the Structural
Division, ASCE, Vol. ST11, November 1979, pp. 2367-2382.

14. Prasad, B., "A Class of Generalized Variable Penalty
Methods for Nonlinear Programming", Journal of Optimiza-
tion Theory and Applications, Vol. 35, No. 2, October

_1981, pp. 159-182.

15. Rockafellar, R.T., "The Multiplier Method of Hestenes
and Powell Applied to Convex Programming", Journal of
Optimization Theory and Application, Vol. 12, No.
1973, pp. 555-562.

16. Pierre, D.A. and Lowe, M.J., "Mathematical Programming
Via Augmented Lagrangians", Applied Mathematics and
Computation Series, Addison-Wesley, 1975.

17. Powell, M.J.D., "Algorithms for Nonlinear Constraints
that use Lagrangian Functions", Mathematical Programinc,
Vol. 14, No. 2, 1978, pp. 224-248.

18. Imai, K., Configuration Optimization of Trusses by the
Multiplier Method, Ph.D. Thesis, University of Caiforna,
Los Angeles, 1978.

19. Imai, K. and Schmit, L.A., "Configuration Optimization
of Trusses", Journal of the Structural Division, ASCE,
Vol. 107, No. ST5, May 1981, pp. 745-756.

20. Kelley, J.E., "The Cutting Plane Method for Solving
Convex Programs", J. SIAM, 1960, pp. 703-712.

21. Moses, F., "Optimum Structural Design Using Linear
Programing", Proc. ASCE, Vol. 90, ST6, 1964, pp. 29-104.

22. Baldur, R., "Structural Optimization by Inscribed Hyper-
spheres", Journal of Engineering Mechanics, ASCE, Vol.
98, No. EM3, June 1972, pp. 503-508.

23. Powell, M.J.D., "The Convergence of Variable Metric
Methods for Nonlinearly Constrained Optimization Calcu-
lations", Proc. Non-Linear Programming Symposium 3,
Madison, Wisconsin, 1978.

24. Powell, M.J.D., "A Fast Algorithm for Nonlinearly Con-
strained Optimization Calculations", Report DAMTP77/NA2,
University of Cambridge, England, 1977.

25. Zoutendijk, M., Methods of Feasible Directions, Elsevier
Publishing Co., Amsterdam, 1960.

108



26. Vanderplaats, G.N. and Moses, F., "Structural Optimiza-
tion by Methods of Feasible Directions", Journal of
Computers and Structures, Vol. 3, Pergamon Press, July
1973, pp. 739-755.

27. Fletcher, R. and Reeves, C.M., "Function Minimization
by Conjugate Directions", Computer Journal, Vol. 7,
No. 2, 1964, pp. 149-154.

28. Vanderplaats, G."., "A Robust Feasible Directions
Algorithm for Design Synthesis", Structural Dynamics
and Materials Conference, Lake Tahoe, Nevada, May 2-4,
1983.

29. Davidon, W.C., "Variable Metric Method for Minimization",
Argone National Laboratory, ANL-5990 Rev., University
of Chicago, 1959.

30. Fletcher, R. and Powell, M.J.D., "A Rapidly Convergent
Method for Minimization", Computer Journal, Vol. 6,
No. 2, 1963, pp. 163-168.

31. Broydon, C.G., "The Convergence of a Class of Double
Rank Minimization Algorithms", Parts I and II, J. Inst.
Maths. Applns., Vol. 6, 1970, pp. 76-90 and 222:231.

32. Fletcher, R., "A New Approach to Variable Metric Algorithms",
Computer Journal, Vol. 13, 1970, pp. 317-322.

33. Goldfarb, D., "A Family of Variable Metric Methods
Derived by Variational Means", Maths. Comput., Vol.
24, 1970, pp. 23-36.

34. Shanno, D.F., "Conditioning of Quasi-Newton Methods
for Function Minimization", Maths. Comput., Vol. 24,
1970, pp. 647-656.

35. Hadley, G., Non-Linear and Dynamic Programming, Addison-
Wesley, 1964.

36. Fitzgerald, J.E., Development of a Computer Program for
the Testing and Evaluation of Numerical Optimization
Techniques, Master's Thesis, Naval Postgraduate School,
Monterey, California, June 1982.

37. Dorn, W.S., Gomory, R.E., and Greenberg, H.J., "Automatic
Design of Optimal Structures", Journal de Mechanique,
Vol. 3, March 1964, pp. 25-52.

38. Colville, R.R., "A Comparative Study of Nonlinear Pro-
gramming Codes", Report No. 320-2949, IBM Scientific
Center, Philadelphia, Pennsylvania, June 1968.

109



39. Eason, E.D. and Fenton, R.G., "A Comparison of Numerical
Optimization Methods for Engineering Design", Transactions
of the ASME, Journal of Engineering for Industry, Vol.u 96, No. 1, 1974, pp. 196-200.

40. Sangren, E. and Ragsdell, K.M., "The Utility of Nonlinear
Programming Algorithms: A Comparative Study--Parts 1
and 2", Journal of Mechanical Design, ASME, July 1980,
pp. 540-551.

41. Powell, M.J.D., "An Efficient Method for Findinc, the
Minimum of a Function of Several Variables Without
Calculating Derivatives", Computer Journal, Vol. 7,
No. 4, 1964, pp. 303-307.

42. Vanderplaats, G.N., Numerical Optimization Techniques
for Engineering Design: With Applications, McGraw-Hill
(to be published).

43. Haftka, R.J., and Starnes, J.H., "Applications of a
Quadratic Extended Interior Penalty Function for
Structural Optimization", AIAA Journal, Vol. 14, No.
6, June 1976, pp. 718-724.

44. Prasad, B., "A Class of Generalized Variable Penalty
Methods for Non-Linear Programming", Journal of Optimiza-
tion Theory and Applications, Vol. 35, No. ,Otbr
1981, pp. 759-782.

45. Berke, L., and Khot, N.S., "Use of Optimality C::iteria
Methods for Large Scale Systems", AGARD Lecture Series
No. 70 on Structural Optimization, AGARD-LS-70, 1974,
pp. 1-29.

46. Schmit, L.A., and Miura, H., "Approximation Concepts for
Efficient Structural Synthesis", NASA CR-2552, March 1976.

47. Jenkins, J.L., Application of Optimization Techniques
to Naval Surface Combatant Ship Synthesis, Master's
Thesis, Naval Postgraduate School, Monterey, California,
October 1982.

48. Reed, M.B., Ship Synthesis Model for Naval Surface Ships,
Master's Thesis, Massachusetts Institute of Technology,
May 1976.

49. Johnson, D., and Brotton, D.M., "Optimum Elastic Design
of Redundant Trusses", Discussion, J. Struct. Div., ASCE,
Vol. 95, No. ST12, December 1969.

110



50. Vanderplaats, G.N., and Moses, F., "Automated Design
of Trusses for Optimum Geometry", Journal of the Struc-
tural Division, ASCE, Vol. 98, No. ST3, March, 1972,
pp. 671-690.

51. Felix, J. and Vanderplaats, G.N., "Configuration Optimi-
zation of Trusses Subject to Strength, Displacement and
Frequency Constraints", Proc. Second ASME Computers in
Engineering Conference, San Diego, August 19827

52. Himmelblau, D.M., Applied Nonlinear Programming,
McGraw-Hill, 1972.

.1

il



INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22314

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, California 93940

3. Professor G.N. Vanderplaats, Code 69Vn 10
Department of Mechanical Engineering
Naval Postgraduate School
Monterey, California 93940

4. Commandant (G-PTE-I) 2
U.S. Coast Guard Headquarters
2100 Second Street
Washington, D.C. 20593

5. Commandant (G-ENE) 2
U.S. Coast Guard Headquarters
2100 Second Street
Washington, D.C. 20593

6. Commanding Officer 2
U.S. Coast Guard Research and
Development Center

Avery Point
Groton, Connecticut 06340

7. Dr. Hirokazu Miura
NASA Ames Research Center
MS 237-11
Moffett Field, California 94035

8. Dr. Lucien Schmit
Department of Mechanical &
Structural Engineering

6731 Boelter Hall
University of California Los Angeles
Los Angeles, California 90024

9. Dr. Jarek Sobieski 1
NASA Langley Research Center
MS 243
Hampton, Virginia 23665

.112



10. Dr. Hiroyuki Sugimoto, Code 69
Department of Mechanical Engineering
Naval Postgraduate School
Monterey, California 93940

11. LCDR Chester M. Sprague 2
480 Norwich-New London Turnpike
Uncasville, Connecticut 06382

12. Chairman, Code 69 1
Department of Mechanical Engineering
Naval Postgraduate School
Monterey, California 93940

113

."

. .... .--. .,-... .. .- ...-> ....- .-.-. ' .-...:......-.-...-.--. .. ..... .-. ...-.... -. .-. . . . . . .*- . . . .




