
AI 7DA12R608 STATE-OF-THE-ART ASSESSMENT OF TESTINO AND TESTABILIT 1/
OF CUSTOM LSI/VSI.,U) AEROSPACE CORP EL SEGUNDO CA

ENDINEERINO GROUP M A BREUER ET AL OCT 82

UNCUASSIFED TR-083(3902-04)--O- R D 0 RR83-2DVOL6 FG 12/1 N

mhhhhmmmhhhD-

111Z1 L 136

1111IL2 .6MA

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDAREF-1963 A

REPORT SD-TR4320

00

c State-of-the-Art Assessment of
Testing and Testability of

Custom LSI/VLSI Circuits

Ott Volume VI: Redundancy, Testing Circuits, and Codes

M. A. BREUER & ASSOCIATES
Encino, CaifL 91436

and

A. J. CARLAN
Technical Study Director

-' \ October 1982

Engineering Group
THE AEROSPACE CORPORATION

El Segundo, Cali. 90245

Prepared for

SPACE DIVISION
AIR FORCE SYSTEMS COMMAND

oLos Angeles Air Force Station D ETC
P.O. Box 92960, Worldway Postal Center

Los Angeles, Calif. 90009 MAY 26 =

APPROVED FOR PUBLIC RELEASE:
DISTRIBUTION UNLIMITED

83 05 26 07 6

•~1 4

This final report was submitted by the Aerospace Corporation, El Segundo,

CA 90245 under Contract No. F04701-82-C-0083 with the Space Division, Deputy

for Logistics and Acquisitions, P.O. Box 92960, Worldway Postal Center, Los

Angeles, CA 90009. It was reviewed and approved for The Aerospace Corporation

by J. R. Coge, Electronics and Optics Division, Engineering Group. Al Carlan

was the project engineer.

This report has been reviewed by the Office of Information and is releas-

able to the National Technical Information Service (NTIS). At NTIS, it will

be available to the general public, including foreign nationals.

This technical report has been reviewed and is approved for publication.

Publication of this report does not constit, Air Force approval of the

report's findings or conclusions. It is published only for the exchange and

stimulation of ideas.

FOR THE COMMANDER

APPROVED

STEPHEN A. HUNTER, LT COL, USAF j

Director, Speciality Engineering
and Test

a.-

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (Plai Doi& SnternO

REPORT DOCUMENTATION PAGE EA~DSCTIONS

I. REPORT NUMBER ~2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

SD-TR-83-20
14. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

State-of-the-Art Assessment of Testing and
Testability of Custom LSI/VLSI Circuits Interim
Vol VI: Redundancy, Testing Circuits and Codes S. PERFORMING ORG. REPORT NUMBER

__TR-0083 (3902-04)-i
7. AU THOR(e) 11. CONTRACT OR GRANT MUMUER(e)

M.A. Breuer & Associates F04701-80-C-0081
and os--F04701-8 1-C-0082

AW-~. Carlan, Aerospce Technical Director F04701-82-C-0O83
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

AREA & WORK UNIT NUMBERS
M.A. Breuer-& Associates
16857 Bosque Dr.
Encino, CA 91436 ______________

1I. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Space Division October 1982
Air Force Systems Command 1S. NUNBER OF PAGES

Los Angeles, Calif. 90245 91
14. MONITORING AGENCY NAME II AODRESS(I different from Controlling Office) IS. SECURITY CLASS. (of this rePOr)

The Aerospace Corporation Unclassified
El Segundo, Calif. 90245 Ilsa. DECL ASSIPI CATION/ DOWNGRADING

SCHEDULE

IS. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. DIST RISBUTION ST ATEMENT (of the abstract enmtered in Block"2, If different frem Roeot

IS. SUPPLEMENTARY NOTES

19. IKY WORDS (Continue on reverse side It nscoesay end identify by block aumbar)

Redundancy constructs Exponential failure law SIFT computer
Simplex structure Quadding PRIME computer
Self checking Hybrid redundancy Hamming code
Fault-tolerant architecture Triple modular redundancy
Reliability STAR computer

20. ABSTRACT (Continue on reverne aide If necoey end Identit? by block nuobar)

-The demands for higher system reliability and self checking required by the new
fault tolerant computers have put new emphasis on the use of redundant circuits.
Types of redundancy include parellel, triple modular redundancy, Quadd, standby,
hybrid and software. Various computers employing one or more of these types are
discussed. Generallys hardware, software and time redundancy required for error
detection and correction, are interrelated. Mathematical modeling, when applied
to fault tolerant systems, can be used to measure the systems reliability.

o FORM 17
I PAC~aM LEUnclassified

SECURITY CLASSIFICATION OF THIS PAGE (SanDate shloem

TABLE OF CONTENTS

Page

EXECUTIVE SUMMARY .. 5

PART I REDUNDANCY AND FAULT TOLERANT
COMPUTER ARCHITECTURE 5

PART II SELF-CHECKING CIRCUITS 6

PART III CODING TECHNIQUES.o. 7

PART I REDUNDANCY AND FAULT TOLERANT COMPUTER
ARCHITECTURE.... -........... 9

I. 0 Introduction .o......... *...... 9

1.1 Some Fundamental Principles............................. 11

1.2 Mathematical Theory of Reliability 12

1.2.1 Failure Rateo s*... 0... 0 ... 0 0... 0....... 13

1.2.2 Exponential Failure Law 13

2.0 Principal Redundancy Structures and
Their Models ... o................. 14

2.1I Series Reliability 14

2o2 Parallel Reliability *.... 15

2.3 Triple Modular Redundancy (TMR) 15

2.4 Quadd Redundancy 16

2.5 Standby Replacement Redundancy..........*....... 16

2.6 Hybrid Redundancy ... 18

2.7 K-out-of-N Redundant Architecture 20

3.0 Partitioned and Balanced Fault-Tolerance 25

4.0 Case Histories o...f..........6....0-6...... ..0..*.. 26

4.1 Quadding and the OAC-PPDS 26

ii

Ss 05 2 o 7 '
• ,

Page

4.2 TMR and the Saturn V LVDC 27

4.3 Standby-Sparing and the JPL-STAR Computer 29

5.0 Standby Redundancy versus Autonomous
Redundancy 31

6.0 Protective Architecture for the "Hard-Core"............... 33

6.1 Implementation of the V-D-S Unit 34

7.0 Recent Trends in Fault-Tolerant Architectures 37

7*1 The SIFT Computer*. a....... 38

7.2 The PRIME Computer. 40

8.0 Automation of Reliability Measurement
Processes so 0 41

8. 1 Unifying Notation 42

8.2 Existing Reliability Programs 44

8.3 CARE's Repository of Equations 45

9.0 References... 46

A. General References- 46
B. Quadding 0........ 47

C. Saturn V LVCD and the OAO PPDS 47
D. Raytheon's RAYDAC. 48
E. The JPL-STARoo ... 48
F. Hybrid Redundancy 48

H. PRIMEoo........o........ o.. s.............o......... 49
I. Reliability Programs.................................. 50

PART II SELF-CHECKING CIRCUITS *. 51

1.0 Introduction .o.. ... o.. . os 51

2.0 Basic Concepts of Code Space and
Detectable Eros.....................51

3.0 Fault-Secure Circuits.......... .*....................... 57

4.0 Self-Testing Circuits....... o.......... o. 60

2

.4-, i~. Wr4

Page

5.0 Totally Self-Checking Networks 64

6.0 Morphic Boolean Functions and their
Implementation as Self-Checking Circuits 65

7.0 Conclusion 69

8.0 References... 69

PART III CODING TECHNIQUES .. 71

1.0 Introduction 71

2.0 Transmission Codes 72

2. I Parity Bits...... 9. o....... 72

2.2 Hamming Codes 74

2.3 Cyclic Codes o 77

2.4 Codes for Asymmetric Errors 79

2.5 Fixed Weight Codes 79

3.0 Arithmetic Codes 79

3.1 Residue Operations 80

8.2 The Use of Residues for Arithmetic
Error Detection 0 81

3.3 The Use of Residues for Error
Correction Co. o.... 83

3.4 The AN Prodesoes................ 84

3.5 The AN+B Codes 0..................-....... 85

3.6 Sum Codes 87

4.0 Other Considerations and Conclusions 87

4.1 A Summary of Code Technology............................. 87

4.2 Fault Propagation 88

4.3 Further Studies 999....9.9........... 88

5.0 References... 88

3
_ 9

- --

EXECUTIVE SUMMARY

PART I REDUNDANCY AND FAULT TOLERANT COMPUTER ARCHITECTURE

Part I of this chapter deals with redundancy and its framework. The

framework of redundancy consists of (i) modeling and evaluation of the re-

dundancy constructs, and (ii) the embodying of the constructs in fault-

tolerant computer architecture.

Mathematical modeling of redundancy constructs permits their quantita-

tive evaluation and provides a numeric basis for critical comparison.

Case histories of fault-tolerant computer architecture illustrate, by

the design selection of particular redundancy constructs from the repertoire

of constructs, the relative significance that the designer placed on specific

redundancy constructs in relation to their functional environment in the ar-

chitecture.

In general, a system if designed in such a manner that only the abso-

lute minimum amounts of hardware is utilized to implement its function is said

to be non-redundant or is said to have a simpZex structure. If even after

utilizing the finest components available the desired system reliability is not

achieved or if failure-tolerance is desired as a system capability then redun-

dancy as a design procedure is restored too, i.e., more system elements are

used than were absolutely necessary to realize all the system's functions (ex-

cepting for the attributes of reliability and fault-tolerance). The additional

system elements, referred to as the redundant elements, need not all necessar-

ily be hardware elements but may also be additional software (software redun-

dancy), additional time (time redundancy) and additional information (infor-

mation redundancy). Examples of the latter are the application of error-

detection and correction codes.

Naturally, the hardware, software, and time redundancy are often inter-

related. Additional software requires additional memory storage and additional

time is used to execute the added software. The term protective redundancy is

often used to characterize that redundancy which has an overall beneficial ef-

fect on the system attributes since redundancy alone without proper applica-

tion may well become a liability. Protective redundancy is utilized to realize
5

_ _ _ _ _ _

fault-tolerant digital ayatems and self -repairing system by such means as

triple or N-tuple modular redundancy (TMR, NMR), quadded redundancy, standby-

replacement redundancy, hybrid redundancy, software redundancy and the appli-

cation of error-detection and correction codes.

Redundancy as a procedure, for designing more reliable system than al-

lowed by the intrinsic reliability of the constituting components, is as old

as the discipline of engineering itself. Examples of the use of redundancy

in ancient times is provided in the civil engineering construction where more

than the absolutely minimum redundancy were used as insurance against (i the
lack of accurate knowledge of underlying phenomena, and (ii) the lack of con-

fidence in the available data on materials used. Redundancy as a procedure is

even more basic. This is evidenced by the testimony of evolutionaly processes

of life which make abundant use of it (e.g., in the human body there are two

kidneys, two lungs, two cerebral hemispheres, etc.).

For the computer age, redundancy has been used at all levels of tech-

nology, from that of VLSI devices, circuitry, logic, subsystems, computers,

and even to entire networks of digital systems.

Part I of this chapter spans the general area of fault-tolerant systems.

The utilizat.iom of the various protective redundant structures as basic build-

ing blocks for fault-tolerant digital computing systems have been described

and evaluated comparatively. A unifying notation for characterizing the most

commomly used protective redundancy schemes has been presented. It has also

been demonstrated that the k-out-of-N redundant model subsumes either directly

or by composition a great number of other redundant structures.

By employing reliability analysis to these fault-tolerant systems, their

overall reliability can be measured and compared.

PART II SELF-CHECKING CIRCUITS

Self-checking circuits by definition pertain to circuits whose outputs

are encoded in an error-detecting code. In Part II of this chapter the under-

lying theory based on code spaces is developed to present the notions of self-

checking circuits, partially self-checking circuits, totally self-checking cir-

cuits, and totally self-checking networks. An introduction to Morphic Boolean

logic is also presented which is an aid to the design of self-checking checkers.

These are presented with examples and illustrations.

6

AZ ,

PART III CODING TECHNIQUES

Part III of this chapter deals with coding techniques used to achieve

concurrent diagnosis in digital computing systems. Coding theory is the body

of-knowledge dealing with the science of redundantly encoding data so that

errors can be detected and with further encoding even corrected.

The fundamental principles underlying transmisssion codes as well as

arithmetic codes are developed and illustrated by the use of short simple ex-

amples. Both error detection as well as error correction properties are treated
and the tradeoffs between these are explained.

The use of residue codes for protecting instruction words in the JPL-

STAR computer is given as a real example.

Coding theory is a very rich and by far the most developed branch of

fault-tolerant computing. The theoretical basis, the functional limits of re-

liable communication for a given channel, and the mathematical tools and classi-

fication schemes are well established. This section does not attempt to be an

exhaustive evaluation, the emphasis taken is to highlight the essential prin-

ciples by means of short examples. For the more interested practitioner poin-

ters are provided to the literature.

Accession For

NTIS GRA&I
DTIC TAB El
ftuui,)wnced 0
3u~it Lfi~atto.

DistrIbution/
a, Availability Codes

Avail and/or
Dist Special

I7

PART I REDUNDANCY AND FAULT TOLERANT COMPUTER ARCHITECTURE

1.0 INTRODUCTION

A fault-tolerant computer is a computer organized and structured such

that it can perform its design specified functions even in the presence of

hardware failures.

By the sheer force of necessity an important attribute in computer

architecture is reliability and fault-tolerance. Historically, the early

days of computers, because of the unreliability of thermonic devices, were

extremely innovative and productive of fault-tolerance techniques, many of

which we take for granted these days, e.g., parity checking, retrying of

operations, duplexing of processors, etc. Then, with the advent of semi-

conductors and their greater inherent reliability fault-tolerance was no

longer a pressing issue, and undiverted effort was allocated to the enhance-

ment of computational architectures. Subsequently, the space age and com-

puter-oriented national defense needs again shifted the equilibrium between

intrinsic component reliabilities on the one hand and the sheer size and

complexity and hazardous application environments of the fabricated struc-

tures on the other. These demands on reliability, continuous service, and

hardware integrity spawned a new breed of computer architecture entitled

"fault-tolerant computers."

This chapter surveys the various techniques employed in fault-

tolerant architectures from the point of view of the protective redundancy

structures utilized, and points out the significant features unique to the

implementation of fault-tolerance in either hardware, microprogramming, or

software.

The domain of reliability engineering involves considerations of all

aspects of design, development and fabrication, so as to minimize the chance

of equipment breakdown. Neglect of reliability considerations can prove to

be very costly, from the loss of consumer accptance of the product to mis-

sions such as rocket launching of spacecrafts which depend heavily on relia-

bility engineering. Failure of a single component could result in the total

loss of the system.

9 -UINQ P ANK.uo Flu=

i- _t 7

Reliability in a qualitative sense can mean a host of different

things relating to the confidence in the goodness of the equipment, and

is closely connected, but often confused with the concepts of maintain-

ability, availability, safety and even security of the system. Quanti-

tatively reliability can be formulated mathematically as the probability

that the system will perform its intended function over the stated dura-

tion of time in the specified environment for its usage.

As equipment becomes more complex the chances of system unreliabil-

ity becomes greater, since the reliability of an equipment depends on the

reliability of its components. The relationship between parts reliability

and the system reliability can be formulated mathematically to varying de-

grees of precision depending on the scale of the modeling effort. The

mathematics of reliability is based on parts failure rate statistics and

probability theoretic relationships. The mathematical theory of relia-

bility is used to model, simulate and predict the equipment's proneness

to failure under expected operating conditions.

There have been two distinct and viable approaches taken to enhance

system reliability. One is based on component technology, i.e., manufac-

turing the component as intrinsicly reliable as possible followed by parts

screening, quality control, pretesting to remove early failures (infant

mortality effects), etc. The second approach is based on the organization

of the system itself, e.g., fault-tolerant architectures where the archi-

tecture makes use of protective redundancy to mask or remove the effects

of failure, and thereby provide greater overall system reliability than

would be possible by the use of the same components in a simplex or non-

redundant configuration.

Fault-tolerance is the capability of the system to perform its func-

tions to its design specifications even in the presence of hardware failures.

If, in the event of faults, the system's functions may be performed but do

not meet the design specifications with respect to the time required to com-

plete the job or the storage capacity required for the job, then the system

is said to be partial or quasi fault-tolerant. Since the number of possible

hardware failures can be very large, in practice it is necessary to restrict

fault-tolerance to prespecified classes of faults from which the system is

designed to recover. 10

......... - .

W.4 _ ILr : R ..

Faults may be classified as transient or permanent, deterministic

or indeterminate, local or catastrophic. The first category refers to

the duration of the fault, the second to its effect on the values of the

system design parameters and the third to the propagation of the fault to

its neighboring elements.

Fault-tolerance is provided by the application of protective redun-

dancy - use of more resources so as to upgrade system reliabiltiy. These

resources may consist of more hardware, software or more time or combina-

tion of all of these. Extra time is required to retransmit messages or to

reexecute programs, extra software is required to perform diagnosis on the

hardware, extra hardware is required to provide replication of units.

Hardware redundancy may te of the fault-masking or self-repair types

or a hybrid of these two. In fault-masking, redundancy is of a static nature,

faults are masked instantly and the operations of fault detection, location

and correction are indistinguishable. In self-repair, redundancy is used

dynamically, faults are selectively masked, and are detected, located and

subsequently corrected by the replacement of the failed uni by an unfailed

replica. Examples of the former are Triple Modular Redundancy (TMR) and

quadding, and of the latter standby-replacement (SR) systems and reconfig-

urable systems. Schemes using combinations of these two basic approaches

are called hybrid or adaptive redundancy.

1.1 SOME FUNDAMENTAL PRINCIPLES

The fundamental principle of reliability is that reliability is not

solely inherent to a component but is also a functior of how the component

is used. Another fundamental principle of achieving reliability by means

of protective redundancy is that redundancy be applied to the smallest level

of complexity of the system in order to maximize gain in reliability. This

is an idealized statement since, in practice, there are tradeoffs due to

overhead required in utilizing redundancy techniques, e.g., providing voters

in TMR systems and detection-switching requirements in standby-sparing sys-

tems. The application of mathematical thoery of reliability to model such

systems provides quantitative design guidelines to make such tradeoffs and

optimizations in practice.

11

~1~ ..

If the above are the first and second principles of fault-tolerance,

then the third principle states that a system may be made arbitrarily re-

liable provided that the degree or redundancy is made high, i.e., a suf-

ficiently large number of replicas are provided. Again this principle holds

only in an idealized situation; in practice, since the probability of de-

tecting a failure and correctly switching in a spare is less than unity,

this parameter, called coverage, limits the advantages postulated by the

third principle.

A fourth principle concerns the problem of requiring the checking

elements (those elements that are used for the diagnosis of the rest of

the system and the subsequent reconfiguration of the system units) also to

be checkable. This is the problem of "checking the checker." Thus, the

fourth principle is formulated to state that any system utilizing protec-

tive redundancy will have major and minor "hardcores" (i.e., unprotected

system elements) and that these cannot be totally eliminated from the sys-

tem design, however, they may be made arbitrarily small by the judicious

use of a mixture of different protective redundancy techniques.

1.2 MATHEMATICAL THEORY OF RELIABILITY

Some relationships between reliability parameters and the underlying

probability theoretic relationships are as follows. If a fixed large num-

ber N of identical items is being tested of which Ns is the number of

items surviving after time t, Nf the number of items which failed during

time t then, for all t, N = N s+N Now, for a sufficiently large NO, the

reliability R(t) of an item is N /NO . The failure rate A(t), which is de-

fined to be the rate at which the population changes at time t, can be

shown to be given by

I dR(t) (1)
R(t) dt

so that

t
R~):eJIt(T)dT.

Rt e h(2)

0

12

The reliability function R(t) is often called the survival probab-

ility function since it measures the probability that failure of an item

does not occur during the time interval [O,t].

1.2.1 Failure Rate

Statistical data on equipment failure yields a characteristic "bath

tub" curve as shown in Figure 1. When the equipment is first put into ser-

vice inherently weak components fail early; this stage is also called "in-

fant mortality." Subsequently the failure rate stabilizes quickly to a

relatively constant value; this period is called the useful life period.

After much usage failure rate begins to increase rapidly due to deterior-

ation and wearout.

WEAROUTEARLY CONSTANT FAILUREFAILURE FAILURE RATEPERIOD RATE PERIOD

USEFUL --- TIME
LIFE

Figure 1. Bath-tub curve of failure rate.

1.2.2 Exponential Failure Law

In general the failnre law of a component is the probabilitv dis-

tribution obeyed from the moment at which a component enters service up

to the moment of its failure. In practice the most commonly used failure

law is the exponential law, which applies when a component is subject only

to failures which occur at random intervals and the average number of fail-

ures is the same for equal time periods. These constraints are valid for

a component which is no longer subject to infant mortality failures and

whose failure rate is a constant within the "useful-life" span. Thus, for

13

operating periods within the useful life, the component reliability over

a period of time t can be expressed as R(t) = e-Xt where A (usually ex-

pressed in failures per hour or per million hours) is the constant fail-

ure rate of the device. A characteristic of the exponential failure law

is that, within the useful life period, the reliability of the device is

the same for operating times of equal duration.

From the definition of R(t) it follows that the'mean time between

failures (MTBF) or the mean time to first failure (MTTF), usually expressed
00

in hours, are given by fR(t)dt, i.e., it is the area underneath the relia-
0

bility curve R(t) plotted versus t. This result is true for any failure

distribution. For the specific case of the exponential failure law the

MTBF, m, is equal to 1/A. Further, when the product At is small, the

equation for R(t) may be approximated by R(t) 1-At. Thus, if At =0.01,

R(t) =e =0.99 or 99.0 percent. The product At is often referred to

as the "normalized" time, since At =t/m, i.e., the mission time t normal-

ized with respect to the MTBF.

2.0 PRINCIPAL REDUNDANCY STRUCTURES AND THEIR MODELS

2.1 SERIES RELIABILITY

If a system is composed of elements in such a way that the failure

of any one element causes a failure of the system, then these elements are

considered to be functionally in series. For the system to survive each

element must survive. The probability of survival for the system cannot

be better than the element with the lowest probability of survival; e.g.,

a chain is nobetter than its weakest link. When these series elements are

independent of each other then, by the probability multiplication law, the

system survival probability is the product of the individual survival prob-

n
abilities of the elements, i.e., Rsystem = i R, where Ri is the reliabil-

ity of the ith element of an n element system.

14

2.2 PARALLEL RELIABILITY

Parallel reliability is an illustration of protective redundancy.

The system is composed of functionally parallel e]ements in such a way

that if one of the elements fails the parallel unit will continue to do

the system function.

The system reliability under the assumption of independence of fail-

ure of the elements is expressed by

R = 1 -(1-R)n
system

which is the probability that not all the n elements have failed. The

term (I-R), known as the unreliability of a unit, is the probability that

a unit will fail.

2.3 TRIPLE MODULAR REDUNDANCY (TMR)

A TMR system is also known as the multiple-line voting system (see

Figure 2). One of the earliest and most influential schemes was developed

by J. von Neumann [1]. The simplex unit is triplicated and each of the

three independent units feed into a majority voter which outputs the major-

ity signal. The system fails if more than one unit fails in which case the

failed units outvote the good one. This scheme is generalized to N-modular

redundancy (NMR) where N is any odd number of units. Various schemes of

protecting the voter are available and also various other variants of the

basic TMR strategy have been developed. The TMR system reliability is ex-

pressed as

R [R [3 +3R 2(1*-R)IR
system V

which is the product of the reliability Rv, the voter reliability, and

the reliability of the idealized TMR system. The idealized TMR system

reliability is the sum of the probabilities of the two events that i)

all three units survive, R3 and (ii) that at least any two units survive
2

and at most one unit fails, 3R (1-R).

15

Mow

Figure 2. TMR system

2.4 QUADD REDUNDANCY

Quadding is an illustration of component redundancy and is similar

in concept to TMR. The major difference is that the voting or restora-

tion or fault-masking functions are distributed into the network and are

not separable as in TMR. An example of quadding is shown in Figure 3

where the non-redundant logic circuit in Figure 3a is shown "quadded" in

Figure 3b. The process of how an error downstream is subsequently cor-

rected upstream is illustrated. In general the quadding procedure re-

quires that each logic gate be quadriplicated and that each of the gates

in a quadd stage will have twice as many inputs as the non-redundant gates

replaced. The outputs of a stage are interconnected to the inputs of the

succeeding stage by an interconnection pattern such that the effects of

errors in earlier stages gets subsequently "restored" in the latter stages,

i.e., the originally "good" signal is restored.

2.5 STANDBY REPLACEMENT REDUNDANCY

For standby replacement redundancy, unlike TMR, only one unit is oper-

ational at a time (see Figure 4). When the active unit fails this event is

detected by additional circuitry and a spare unit from a reserve of spares

is switched-in to replace the failed unit thereby restoring the system to

its operational state. The reliability of this system is expressed as

R 1-(1-R)

system

which is the probability that not all units have failed.

16

-7 _., ,

(a)

SPREADS TO TWO
ERROR HERE ERRORS HERE 6/IS CORRECTED

1 7 -

0

10

-I R

Figure 4. Standby replacement

2.6 HYBRID REDUNDANCY

Hybrid-redundancy is a synthesis of TMR and standby replacement

redundancy (see Figure 5). It consists of a TMR system (or in general

an NMR system) with a bank of spares such that when one of the TMR units

fails, the failed unit is replaced by a spare unit. Failure detection is

achieved by means of the disagreement detector which compares the individ-

ual outputs of each of the TMR'd units with the system output. Upon a dis-

agreement the disagreement detector issues a signal to the switching net-

work to replace the failed unit by a spare unit. At such time as all spares

are utilized the hybrid redundancy system reduces to a TMR system. Varia-

tions of the hybrid or adaptive redundancy schemes are available. The sys-

tem reliability in its simplest terms may be expressed as

.3+3 S+2

Rsystem 1 -[(1-R) +(S+3)(1-R) R]

which is the probability that not all S+3 units fail and that not any S+2

units fail with one not failing.

A comparison of reliability improvement and mean-life improvements

of systems using no redundancy (simplex systems), TMR, standby sparing,

and hybrid redundancy is presented by Mathur [27].

18

LLLU

0

r - - -0

U*1

oC)

__ '
zwN

0 LU L-

z U

019

L 44,

2.7 K-OUT-OF-N REDUNDANT ARCHITECTURE

This section gives a unified treatment of the various protective

redundancy structures described in the preceding. It is contended that

by and large all fault-tolerant computers Are particular cases of the

class of partitioned K-out-of-N redundant structures. The main differ-

ences being in (i) the degree of partitioning used and (ii) the means

of error-detection employed.

The basic underlying structure of all Hardware Implemented Fault-

Tolerant (HIFT) systems is the so-called K-out-of-N structure. It is

composed of a total of N identical units. For the structure to function

at least K of the N replicated units must remain operational. Hence its

name. This structure can tolerate up to (N-K) independent failures, one

in each of (N-K) out of the total N units. Thus, these structures ex-

hibit a fault-tolerance, t equal to N-K. Here by fault-tolerance is

meant the total number of replicas that the system can afford to have

failed yet itself remain operational.

If r is the reliability (survival probability) or an individual

replicated unit then the reliability of the K-out-of-N structure under

the assumption that failures are independent events is given by the ex-

pression

N N-i

ii

This reliability expression is simply the summation of all the suc-

cessful events, i.e., the system survives provided K,K+1,K+2,...,N-1 or N
i

units survive. The probability of exactly i units surviving is r . The

probability of exactly (N-i) units having failed is (1-r) N - i , and the

number of ways in which this event can occur is N-combinatorial-i. The

summation of all these events from i :K to N yields the above general

expression. This powerful expression has a number of special cases which

20

.. 'r '----rw_, -- - - - .. . -

represent many of the commonly used protectively redundant structures.

These special cases will now be described.

Case where K :N: Here all units need to survive for the structure

to survive. This is the case when all units are

in series reliability, and is representative of

simplex (i.e., non-redundant) designs. Here the

system reliability in terms of the unit reliabil-

ity r is:
N

R(N-out-of-N) : r

and this structure exhibits zero fault-tolerance.

Case where K =1: Here only one unit of the total N needs to survive

for the structure to survive. This is typical of

standby-spare redundancy, where one unit is active

at any given time and the remaining are dormant as

standbys.

R(1-out-of-N) : I-(I-r)N

The above reliability expression for standby-spares

states that for the structure to be functional not

all of the N units should have failed. Thus the

case K =1 represents a structure in parallel reli-

ability, and exhibits a fault-tolerance of t =N-1.

Case where K =2: The above two cases of K =1 and K =N are the upper

and lower bounds on the K-out-of-N structures. Now

for the intermediate values of K. If K =2, then the

structure survives provided that at least two out of

the N units are operative. This is the condition for

a Hybrid redundant system having 3 units in triple mod-

ular redundancy (TMR) and the remaining units as standby-

spares.

21

In the Hybrid redundant architecture (hybrid because it combines

TMR and standby-spare redundant structures) three of the total N units

are operated in TMR and the remaining N-3 units as backup units. When-

ever one of the units composing the TMR structure fails it is replaced

by one of the backup units. This process would continue until all back-

up units are exhausted at which time the hybrid structure reduces to a

TMR structure. The TMR structure remains operative as long as at least

2 out of the three units, remain functional. Since only two units were

required to remain operational throughout the system life of the struc-

ture and is equivalent to the hybrid redundant architecture. The system

reliability is given by

N-i

R(2-out-of-N) 1 1 -(1-r) N-1[1+r(N-1)]

the fault-tolerance of a hybrid redundant system is equal to N-2.

Case where K =2 and N =K+1: It is well known that hybrid redundant

system H(3,S) with no spares is equiv-

alent to a TMR configuration. Thus in

the previous case if the total number

of units N is three and K is still 2 we

then have the classical von Neumann TMR

system, i.e., for the system to remain

operational at least 2 out of the three

total units must remain operational. The

reliability equation of the TMR system is

given by

R(2-out-of-3) : r3 +3r 2 (1-r)

has a fault-tolerance, t of one.

Case wehre K =(N+1)/2: The TMR structure can be generalized to an N-

modular redundant (NMR) structure when N is

any odd number of units operating in a major-

ity configuration, i.e., an (N+1)/2-out-of-N

22

7"• ...,., __-__-_____-_____... ._._.. .

configuration. The reliability expression

for the NMR system is

E i

R((+I)2-ot-o-N) = 0 ()

This system is capable of tolerating (n-2)/2

failures.

Case where K =(n+I)/2 with n odd: This case corresponds to the gen-

eralized hybrid redundant architec-

tecture having a general nMR core

and (N-n) spares. If the number of

spares is zero then this case re-

duces to the previous one for NMR.

The general hybrid redundant archi-

tecture can tolerate (N-n)+(n-1)/2

failures.

Composition of K-out-of-N Structures

The fact that hybrid redundancy is a combination of TMR and standby-

sparing is readily seen from the composition of the following two K-out-

of-N structures:

(i) 1-out-of-N standby-sparing

(ii) 2-out-of-3 TMR

(i) and (ii) are composed to yield:

(2-out-of-3)-out-of-N+3 Hybrid redundancy

the composition of (i) and (ii) is the Hybrid(3,N) system using a total of

N+3 units.

Similarly for the generalized Hybrid redundancy case, NMR redundancy

and standby-sparing can be composed thus:

23

(iii) 1-out-of-S standby-sparing

(iv) (N-1)/2-out-of-N NMR

The composition of (iii) and (iv) yields:

((N-1)/2-out-of-N)-out-of-S+N General hybrid

This composition represents the general hybrid redundant structure of

H(N,S) having a total of N+S units.

Similarly other redundancy schemes can be shown to have a K-out-of

N structure. The intent has not been to exhaustively list all equivalences,

the reader may readily try to represent some of the other redundant struc-

tures as K-out-of-N. The structures described here are summarized in Table

I.

STRUCTURE K FAULT-TOLERANCE, t

Series K = N 0

Parallel K = 1 N -i

TMR K =2; N =K+1 1

NMR K =(N+1)/2; N =odd (N-1)/2

Hybrid(3,S) K = 2 N-2

Hybrid(n,S) K = (n+l)/2; n =odd S+(n-2)/2

Table I: Summary of K-out-of-N Structures

It should be noted that in the above discussion no mention was made

of the internal mechanisms by which errors are detected (errors imply fail-

ures in the system) and the means by which the system is reconfigured to

remove the effect of these failures. These will be described in the next

sections with reference to actual systems. However, in general, it may

be stated that all HIFT structures are particular cases of (i) K-out-of

N structures, (ii) self- or mutual-composition of these, (iii) parti-

tioned K-out-of-N structures, (iv) compound (series) combinations of

different K-out-of-N structures, and other combinations and permutations

of these.
24

! Aim"

3.0 PARTITIONED A T 9ALANCED FAULT-TOLERANCE

As stated earlier, one of the fundamental principles of fault-tolerance

is that redundancy ought to be applied to the smallest level of complexity

of the system, in order to maximize gain in reliability. Naturally the

overhead costs and associated unreliabilities involved in implementing too

fine a level of partitioning dictate a compromise. Another factor in de-

termining the partitioning resolution or the modularization level is the

occurrence of natural interfaces in computer systems. Segmentation of a

simplex computer design cannot be carried out arbitrarily but has to occur

at the natural boundaries between the various functional subsets in order

to (i) simplify the intercommunication between the modules, and (ii) to

provide the necessary degree of isolation from failure propagation between

one module and another.

Another effect of partitioning along natural boundary lines is that

the resulting partitioned functional modules will have no two modules iden-

tical (idential in the reliability sense of having identical effective fail-

ure rates). The only exception being memory modules which are readily pack-

ageble to 4K or other standard size modules. Another possible exception is

where the simplex computer has a highly uniform structured organization,

e.g., that of, say, parallel processor array computers.

The net effect from a fault-tolerance view-point, of unequal modules

is the task of balancing fault-tolerance over the entire system. Since a

chain is no stronger than its weakest link, the architect has,: to strive

to have all the sybsystems that comprise the system to be in fault-tolerance

balance. In order then to balance unequally weighted subsyste,t, the de-

gree of redundancy applied will vary from subsystem to subsystem. The two

notions of level and degree of redundancy can now be formalized.

Level of Redundancy: The level of a system to which redundancy is ap-

plied refers to the size of the complexity of
the unit to be replicated. The finer the system

partitioning, the lower the level of redundancy.

Degree of Redunddncy:: At any level of a system the degree of redun-

dancy refers to the number of replicas pro-

vided at that level.
25

4 .,

Again, in striving for a balanced fault-tolerant architecture where

all the subsystems are in fault-tolerance equilibrium the designer has to

compromise. The perfect equilibrium cannot be reached but only approxi-

mated, since each subsystem having an arbitrary relationship to the other

subsystems cannot be "fine-tuned" by simply adjusting the number of its

discrete replicas, i.e., the reliability performance factors as a function

of hardware are not continuous functions but aiscrete functions.

4.0 CASE HISTORIES

4.1 QUADDING AND THE OAC-PPDS

One fault-tolerant structure, applied at the component and the logical

gate level rather than a module or subsystem level, which does not readily

fit into the class of K-out-of-N structures is the fault-tolerance process

of quadding. Quadding has been extensively and quite successfully applied

in the design of NASA's Orbital Astronomical Observatory (OAO) satellite's

on-board primary processor and data storage (PPDS) unit.

The PPDS employs extensive component level quadd redundancy. Its data

storage buffer and data processor employ TMR, and its main memory is duplex

redundant similar to the Saturn V LVDC (see later section on Saturn V LVDC).

The PPDS receives commands to control the satellite's orientation, experi-

ments, and data collection.

Quadding has three major advantages. First, it is applicable at the

component level. Secondly, it is an autonomously redundant structure. By

autonomous redundancy is meant the fact that no additional logic or cir-

cuits are necessary to implement error detection, location and reconfigur-

ation. Thirdly, as a consequence of the second advantage it is applicable

to truly real time systems with continuous availability. In contrast con-

sider the self-repairing standby-spares system which requires an effective

internal downtime to detect errors, program rollback, retry, locate source

of error, and subsequently reconfigure.

Some of the disadvantages of the quaddnig approach are those of:

26

1. power consumption

2. fan-out

3. wide tolerances

4. difficult to test

5. difficult to evaluate its reliability

6. expensive

7. structure inflexible and unmodifiable.

Despite these disadvantages, quadding has been successfully applied and

will continue to be applied in selective applications. It may be men-

tioned here that the Saturn V LVDC utilizes quadding to protect the de-

coupling capacitors in the power distribution system. Other applications

of quadding are to protect component level hard-cores of self-reconfigur-

able computers.

4.2 TMR AND THE SATURN V LVDC

Basically triple modular redundancy (TMR), consists of triplicat-

ing the simplex unit and deriving the system output by taking the ma-

jority signal (by means of a vote taker) of the three independent signals

from the replicated units. The system can be partitioned and also the

vote takers themselves can be triplicated. A major application of TMR

techniques is exemplified by the design of the Saturn V launch vehicle

guidance system. This guidance system is composed of two parts i) the

general purpose computer called the launch vehicle digital computer (LVDC)

and (ii) the launch vehicle data adapter (LVDA). The LVDA is an input/

output interface unit that buffers the computer to its launch vehicle en-

vironment.

The computer characteristics of the LVDC are given in Table II.

27

Type: General purpose, serial, fixed point,

binary

Clock: 512 kilobits per second

Speed: Add -82 microseconds, 26 bit
Multiply -328 microseconds, 24 bit
Divide -566 microseconds, 24 bit

Memory: 32K, 28 bits

Weight: 44 Kg.

Volume: 0.62 m3

Power: 152 watts

Table II. Saturn V LVDC Characteristics

The reliability goal for the LVDC was established at 0.99 for a

250-hour mission. It was felt that a computationally equivalent simplex

computer using conventional architecture would only be able to achieve a

reliability performance of 0.63 for the 250 hours. This increase in tar=

get reliability from 0.63 to 0.99 was achieved by utilizing a combination

of redundancy structures.

The computer central logic is TMR and is divided into seven modules,

each with an average of thirteen voted outputs. A total of some 155 sig-

nals are voted on, by a total of 395 voters. The LVDA employs 237 voters

in its TMR logic. The reason for the LVDC only using 395 voters and not

465 voters (= 155 x 3)is that many of the central logic outputs are supplied

to duplex circuits in the memory and LVDA. Hence, only two voters are needed

at these outputs.

Instructions are composed of a four-bit operation code and a nine-bit

operand address. The nine-bit address allows 512 locations to be directly

addressed. The instruction address is augmented by a pair of sector regis-

ters and a pair of module registers. Separate registers keep track of data

and instructions are stored two to a word, one in syllable 0 and the other

in syllable 1 of a memory word.

The memory of the LVDC is protected by means of duplex redundancy.

The eight identical 4K memory modules may also be operated in simplex if

additional storage capability is desired. Two methods of error detection

28

are used. First, parity checking is performed by logic which is protected

by TMR. Also, circuitry is provided in each memory module to detect (i)

the absence or improper timing of X or Y half-select currents, and (ii)

the presence of select currents in more than one X or one Y line. Any of

these error detections will initiate memory switching.

The memory operation strategy is as follows: when memory units are

operated in duplex only one of the two buffer register outputs (A or B) is

used. If an error is detected in the memory being currently used, the mem-

ory select logic switches over to the alternate unit. The incorrect memory

is then regenerated with the output of the replicated memory. Thus, a tran-

sient error will be corrected and both memories will be restored to proper

operation. Switching from one memory to the other is virtually instantan-

eous and caused no interruption. The only type of failure, called a syste-

matic failure, that can cause complete memory system failure is the simultan-

eous failure at the same storage location of both memories.

The only sub systems not redundantly protected in the LVDC/LVDA are (i)

the clock oscillator and (ii) the telemetry logic. The reasoning used to

justify this is that the oscillator only consists of 5 component parts which

is less than 1% of total components used, hence the probability of a failure

occurring in this area is negligible. However, in practice the designer is

advised that not only should he take the laws of statistics into account but

also the more perverse laws of Murphy. No explicit reliability model of this

computer was developed, however extensive Monte Carlo failure simulation an-

alysis was performed. The Monte-Carlo-generated estimate for the reliability

of the computer logic for a 250-hour mission calculated from 20,000 simulated

missions is 0.9994.

4.3 STANDBY-SPARING AND THE JPL-STAR COMPUTER

Standby-sparing structures (1-out-of-N) are exemplified by the Jet Pro-

pulsion Laboratory's self-test and repair computer (STAR). The STAR computer,

like its architectural predecessor the Raytheon RAYDAC, is a good illustration

of an architecture that used non-autonomous redundancy as its principle means

of failure protection. This is in sharp contrast to the Saturn V LVDC which

as described earlier used TMR predominantly, duplex redundancy for memory and

power supplies, and quadding in an isolated instance (note that no standby-

sparing was employed anywhere).

29

... - v ° •...,,.._,.e , . "- , .. ., • • • . - . .--? r r

The principal difficulties in implementing standby-sparing are: i)

means for detecting errors, (ii) means for switching replicas, (iii) con-

ditioning requirements of spares before switching them on-line (recovery

strategy), tiv) isolation of the replicas from the instruction/data buses

and also from the power bus, and (v) problems of checking the error detec-

tor (i.e., how to check the checker).

In the STAR, error detection is implemented by encoding all machine

words with codes that are preserved under arithmetic operations, as well as

transmission. In conjunction with information encoding, decoders to check the

validity of information are provided and the decoders themselves are protec-

ted by a separate autonomous redundancy structure. Replicas are switched by

means of power switching rather than information switching. The recovery

strategy is implemented by means of software interrupts, and program rollback

followed by retry. Isolation of the functional units is by means of component

redundancy.

The principal architectural features of the STAR are:

1. All data words and address portion of instruction words are encoded

for error-detection using modulo 15 residue coding. This permits error de-

tection concurrent to program execution. A 4 bit check byte c(b) is appen-

ded to the 7 byte (28 bits) non-redundant binary number b, where c(b) is com-

puted to be the byte-wise complement of the modulo 15 residue of b.

2. The computer is subdivided into a number of replaceable functional

units, each containing its own operation code decoders, and sequence gener-

ators. This decentralization and replication of system control provides

simple fault location procedures and also simplifies interfacing between

units.

3. Information lines of the replicas are permanently connected to the

buses through isolating circuits. Replacement of units is implemented by

power switching of the unit.

4. Fault detection, recovery, and replacement are carried out by the

monitor (TARP: test and repair processor).

30

S- "-- - -T- r lT

5. Transient faults are identified by program retry. Repetitious

errors are identified as a permanent fault and eliminated by replacement

of the failed unit.

6. The monitor, which is the "hard-core" of the system, is protected

by means of autonomous redundancy, specifically by hybrid-redundancy.

5.0 STANDBY REDUNDANCY VERSUS AUTONOMOUS REDUNDANCY

The advantages to autonomous redundancy, also known as fault-masking

redundancy are:

I. Corrective action is immediate and inherent to the structure.

2. During operation there is no need for separate error monitoring.

3. Machine words do not have to be encoded to provide error detec-

tion; consequently problems arising from encoding violations under arith-

metic versus logical versus memory operations do not occur.

4. Impelmentation of such structures is relatively straightforward

and can be applied to "off-the-shelf" subsystems such as microcomputres.

5. Coverage, the probability of detecting a failure given that there

is a failure, is almost 100%, and is readily measurable.

6. Recovery strategy does not require "conditioning" of replicas.

7. The "hard-core" of the system is relatively small.

8. Internally truly real-time fault-tolerance and continuous system

availability, since no program rollback and retry procedures are required.

Whereas, the advantages of standby redundancy are:

1. Power is required by only one replica at any time.

2. All replicas can be utilized.*

3. Number of replica required can be easily tailored to a mission.

4. No increased "fan-out" problems arise.

5. System checkout is straightforward.

6. No synchronization between replicas is required.

7. System is less susceptible to externally induced transients.

31

6.0 PROTECTIVE ARCHITECTURE FOR THE "HARD-CORE"

The traditional means of protecting the "hard-core" of predominantly

standby-spares redundant systems, namely the system's monitor and reconfig-

uration unit, is by means of TMR; with the voter of the TMR protected by

componnet redundancy. It should be noted that the technique of quadding at

the component level can be applied even to wires and connections. For ex-

ample the connection:

can be replaced by thus

providing greater fault-tolerance. In this illustration the connection is

provided by 1-out-of-4 redundancy and all 4 connections need to be impaired

to violate the connection and at least two of the wires in any set of wires

needs to open in order to violate continuity.

A more viable alternative to TMR is the class of redundancy known as

hybrid redundancy. Hybrid redundancy combines the best features of both

the autonomous TMR system and the more flexible standby-spares system. The

principles of system operation are as follows: the replicated unit outputs

are compared against the majority restored system output by means of the dis-

agreement detectors (exclusive-or gates). The disagreement detector signals

the switching-unit to replace the unit that disagrees with the majority. Thus

the units in majority redundancy upon failure are continuously replaced by

the spares, until all the spares are used up, at which instant the hybrid

system reduces to the conventional majority voted system (NMR in general).

In the next section we will consider the extra hardware required to imple-

ment the voter-disagreement-detector-switching-unit (V-D-S unit) for the TMR

system.

33 jW M LANKJW 2U

I

6.1 IMPLEMENTATION OF THE V-D-S UNIT

A general implementation scheme utilizing iterative cell arrays for

a V-D-S unit will now be described. First, two switching strategies are

identified. One is sequential and the other rotary. In the first, the

spares are ordered and utilized whenever a failure is detected in a first-

available-first-used manner. In the rotary switching strategy, spares re-

tain their ordering even after being switched-in to replace failed units.

Thus, if the first spare (Si) initially replaced the third majortiy replica

(M3) and subsequently the first majority replica (M) where to fail, then SI

would rotate up to position M1 and a spare S2 would be called to fill in the

vacancy at M3. The analysis on switch state requirements to implement these

two strategies shows that if more than one spare is used then the rotary

scheme provides fewer number of switch states (e.g., for 3 spares the ro-

tary switch requires 20 states in contrast to the 34 required for sequen-

tial switching).

The basic characteristics of an iterative cell implementation, for a

rotary switch, is shown in Figures 6 and 7 where an iterative cell array fs

a series of identical combinational logic cells that receive inputs from (i)

outside the iterative cell network and (ii) from the cell immediately to its

left via intercell leads. Each cell computes an output function that it trans-

mits to (a) the switching network and (b) to a new intercell input for the

cell immediately to its right. The output of a cell generates an output Vj
assigning a module i to a voter position j. The output is generated as a

function of (i) whether its corresponding module has disagreed or not and

(ii) as a function of the number of prior modules found to be functional. The

cell state and output as a function of previous state and disagreement input

is shown for a typical call in Figure 7.

7.0 RECENT TRENDS IN FAULT-TOLERANT ARCHITECTURES

In the preceding sections we have discussed a number of HIFT architec-

tures. One thing in common with all of them is that redundancy has been ap-

plied at the intracomputer level rather than at the interoomputer level.

34

INTECONNCONDILON

Figure L 6. An itertiv cel switc foC(,)ssem

-~ED -- . -

is the i t
module functional?

present state
S (EL 2 next stat

(number of prior I n I S
modules found

to be functional)

outputs: V
(assigns a module to a voter position)

NEXT STATE: S OUTPUTS: VVV
PRESENT STATE: S 1V2V3

C 1-0 C.-1 C.-0 C.1-0

A (zero) A B 0 00 10 0

B (one) B C 0 00 01 0

C (two) C D 0 00 00 1

D (three+) D D 0 00 00 0

Figure 7. State and output table for an iterative cell.

36

There are three primary factors that are motivating the transition

from intracomputer organizations to intercomputer configurations. First

the extreme miniaturization of digital logic makes available complete CPU

and memory units on one chip, which may have from 40 to 200 pins. If LSIs

are custom specified then the state-of-the-art can allow many tens of

thousands of gates per chip. This availability of subsystem performance

capability at the level of the traditional discrete component motivates

consideration of intercomputer level architectures.

Another factor is that the demand and volume production of LSI chips

has drastically lowered haredware costs. Today's hardware designer equates

an LSI CPU chip cost to the cost that existed seven or eight years ago for

just one IC flip-flop. Thus the economics allow the designer to readily

think in terms of fault-tolerant networks of mini- or microcomputers.

The third factor hasbeen the increased reliability of semiconductors.

Manufacturers have even started giving lifetime warranties for many devices.

Of course, the failure rates of the latest LSI chips are not available to

any level of confidence. It is a truism that by the time failure rates are

available for any components to any satisfactory level of confidence, the

components in question are obsolete! However, one can extrapolate increase

in reliability of going from MSI to LSI by knowing the increase that was de-

rived by going from ICs to MSI or from discrete transistors to ICs. This in-

crease in reliability at the basic building block level is a factor in con-

sidering bigger structures and in considering fault-tolerance at higher hier-

archical levels.

The foregoing does not mean that protective redundancy and fault-toler-

ance are not applied at the intrachip level or that it is not required at that

level. On the contrary, as the chip becomes more complex the semiconductor

manufacturing tolerances become stringent and result in poor yields of chips

that can meet design specifications adequately. In fact one of the was of

achieving greater yields is to provide logic redundancy in the chip itself.

The techniques of quadding mentioned earlier are readily applicable to this

use. However, since the semiconductor industry is a highly competitive com-

mercial enterprise the actual techniques employed by various manufacturers

37

. , ".... J*

29

to achieve the 'black-chip" specification (analogous to "black-box" speci-

fication) are closely guarded secrets. It is well known, and can be ob-

served under a microscope, that more gates are etched or deposited on a

wafer than are absolutely required, bonding of leads to the wafer can then

be selectively performed to the best gates on the chip to meet the overall

black-chip specification.

The factors outlined above make it feasible, both economically and en-

gineeringwise, to design intercomputer fault-tolerant architectures. One

such recent effort is the Software Implemented Fault-Tolerant (SIFT) com-

puter proposed by Wensley for an avionics application [34].

7.1 THE SIFT COMPUTER

The SIFT architecture essentially embodies the TMR or NMR concepts

in software. Majority voting is performed on the results of task segments

of a job by software comparisons and decision making. Thus, the software ma-

jority voting is not at the hardware logic level but its finest resolution

would be at the level of a single instruction (execution). This, in the limit,

could approach the logic level resolution, provided that the machines are mi-

croprogrammed and allow task breakdowns to the microinstruction level. This

operation is equivalent to partitioning in HIFT systems. Perhaps at the mi-

croinstruction level the SIFT system should be called a "Micro-program Imple-
merited Fault-tolerant"l (MIFT) system.

The integrity of the SIFT system is prevented from being violated by a

failed and misbehaving processor by allowing the processors to only read from

other processor's memory and never be allowed to write into them. Thus, es-

sentially each memory unit has two sets of ports, (i) one that allows its com-

panion processor to read and write into it, and (ii) a second set of ports

that interfaces to the interprocessor bus and which allows 6ther processors

to only read information. To enable processors ;o communicate with one an-

other a processor has to write a note into its companion memory and then

subsequently, at some time the other processors would "look-in" to see if there
w.re any messages lying around for them.

38

- W,- -

One advantage of this principle of organization is that the need for

synchronized operation of replicated units is avoided. Each processor at

the termination of a task would wait until the other processors assigned

by the system executive dispatcher have completed the replicated software

task step. The processors then read from each other the results of their

tasks and effectively perform a majority agreement selection on the results.

The disagreeing (faulty) replica need not necessarily have to be removed but

can either be ignored or assigned to "void" tasks, i.e., tasks having no over-

all effect.

No special hardware except for the interfacing requirements are needed.

The replicated buses are also considered as functional units or processors

which have to be addressed and a link established. Subsequently this bus

would then link up to the addressed processor memory and complete the "hand-

shaking" between (i) the requesting processor, (ii) the available bus, and

(iii) the addressed memory module. After a quantum of time the bus would re-

lease the "hand" and be available to shake another requesting processor's

hand. Analogous to the hardware implemented TMR and NMR systems, the SIFT

configuration can equivalently vary the degree of redundancy by allocating

more than three processors to a job. Also, if the various tasks comprising

a job have varying degrees of importance, then, equivalent to the HIFT approach,

a fault-tolerance balancing action can be performed by allocating different

degrees of replicas for the different tasks in the job.

The same approach 'hat is used to se.ment jobs and allocate tasks is

also used to protect the system executive. The executive system has two com-

ponents, (i) a local executive which resides in every processor-memory module

and is responsible for such fucntions as initiating new tasks (dispatching),

reporting errors, loading tasks, and (ii) a system executive which resides

in at least three modules (triplication) and has the functions of resource

allocation, scheduling of work load and system reconfiguration. Each pro-

cessor knows which processors have been designated as the system executives.

If one of the system executive processors fails, then the other two will ignore

the failed unit and assign another processor as system executive and inform

all processors about this "ouster from the system executive troika."

39

A.-

7.2 THE PRIME COMPUTER

Another illustration of recent trends in fault-tolerant intercomputer

architectures ws exemplified by the PRIME project at the University of

California -Berkeley. Here the objective is more to provide a fail-softly

capability (quasi-fault-tolerance). The user is provided continuous ser-

vice but a reduced levels of performance upon the occurrence of failures.

The PRIME architecture uses off-the-shelf microprogrammable minicomputers

(Digital Scientific Corporation META-4 microprocessors) to implement a mul-

tiprocessing time-sharing system with extensive secondary storage capabil-

ities consisting of disk drives. Intercommunication between any processors

or between any processor and any disk or between any processor and any ex-

ternal device is implemented by means of an interconnection network (IN)

which is a distributed network. This network is partitioned and powered

such that failures are always isolated to a very small part of the network.

A failure in the IN is equivalent to a failure of the unit attached to the

IN node that fails. Hence, this allows the system to run with an arbitrary

variable set of the various units. The reader is referred to the PRIME

literature for detailed description of the total multiprocessor time-sharing

system [35-39].

The PRIME system does raise a very pertinent question,namely: can multi-

processing systems be considered to be in the same family lineage as fault-

tolerant systems? One answer is that since quasi-fault-tolerance is the

next lower hierarchical level (because it permits graceful performance de-

gradation), and since software implemented fault-tolerant systems, as we

have seen in some detail, are intrinsically multiprocessing systems (though

however operating on replicated tasks) it follows that the distinction rests

on the type of operating system (OS) that the multiprocessor operates under.

Whether that OS implements software fault-tolerance, as in the SIFT proposal

or software quasi-fault-tolerance,as in the PRIME.

Thus we note that once the hardware is provided for "universal" connec-

tivity and failure isolation, the fault-tolerance capability of these inter-

computer configurations resides primarily in the software operating systems

driving and managing the hardware.

40

Thus, although the HIFT architectures are here to stay,and will always

be useful in selective applications such as avionics and aerospace, for the

more general ground based commercial applications, such as computer utility

type operations, we will see greater proliferation of software implemented

fault-tolerant and quasi-fault-tolerant systems which will utilize not

handcrafted processors, but commercially available off-the-shelf mini- and

microcomputers.

8.0 AUTOMATION OF RELIABILITY MEASUREMENT PROCESSES

The large number of different redundancy schemes available to the de-

signer of fault-tolerant systems, the number of parameters pertaining to

each scheme, and the large range of possible variations in each parameter

seek automated procedures that would enable the designer to rapidly model,

simulate and analyze preliminary designs and through man-machine symbiosis

arrive at optimal and balanced fault-tolerant systems under the constraints

of the prospective application.

Such an automated procedural tool which can model self-repair and fault-

tolerant organizations, computer reliability theoretic functios, perform sen-

sitivity analysis, compare competitive systems with respect to various mea-

sures and facilitate report preparation by generating tables and graphs is

implemented in the form of an on-line interactive computer program called CARE

(for Computer-Aided Reliability Estimation) [40]. Essentially CARE consists

of a repository of mathematical equations defining the various basic redun-

dancy schemes. These equations, Under program control, are then interre-

lated to generate the desired mathematical model to fit the architecture of

the system under evaluation. The mathematical model is then supplied with

ground instances of its variables and then evaluated to generate values for

the reliability theoretic functions applied to the model.

The mathematical models may be evaluated as a function of absolute mis-

sion time, normalized mission time, non-redundant system reliability, or

any other system parameter that may be applicable.

41

.- - - -

- - ______ I
-- ~ ~. ., a

Powered failure rate

S= Unpowered failure rate

K = X/ =Dormancy factor

T = Mission time

T = Normalized mission time

R = Simplex reliability

R = Dormant reliability, exp(- T).

S = Number of spares

n = (N-1)/2 where N is the total number of multiplexed
units

0 = Quota or number of identical units in simplex systems

C = Coverage factor, Pr(recovery/failure)

RV = ReliabiliLy of restoring organ or switching overhead

Z = Number of identical systems in series

W = Number of cascaded or partitioned units

P = Probability of unit failing to "zero"

TMR = Triple modular redundancy

TMR = TMR system with probabilistic compensating failuresP
(1,S) = Standby spare system

(N,S) = Hybrid redundant system

(3,S) sim = Hybrid/simplex redundant system

MTF = Mean life

R(MTF) = Reliability- at the mean life

Table III. Table of Abbreviations and Terms

8.1 UNIFYING NOTATION

A unifying notation, developed to describe the various system configura-

tions using selective, massive or hybrid redundancy is illustrated in Figure

8.

N refers to the number of replicas that are made massivley redundant

(NMR); S is the number of spare units; W refers to the number of cascaded

units, i.e., the degree of partitioning; R() refers to the reliability of

42

Ij I-

I-- t-

0 1 1

V~ -1I .

f4.)

43

the system as characterized in the parentheses; TMR stands for triple mod-

ular redundant system (N =3); the NMR stand for N-tuple modular redundancy.

A hybrid, redundant system H(N,S,W) is said to have a reliability

R(N,SW). If the number of spares is S =0, then the hybrid system reduces

to a cascaded NMR system whose reliability expression is denoted by R(N,O,W);

in the case where there are no cascades, it reduces to R(N,O,1), or more

simply R(NMR). Thus the term W may be elided if W =1. The sparing system

R(1,S) consists of one basic unit with S spares.

Furthermore, the convention is used that R* indicates that the unre-

liability (1-Rv) due to the overhead required for restoration, detection,

or switching has been taken into account, e.g., R*(NMR) =R -R(NMR); if thev

asterisk is elided then it is assumed that the overhead has a negligible

probability of failure. This proposed notation is extendable and can in-

corporate a number of functional parameters in addition to those shown here

by enlarging the vector or lists of parameters within the parentheses, e.g.,

R(N,W,W,...,X,Y,Z).

8.2 EXISTING RELIABILITY PROGRAMS

Some representative reliability evaluation programs are the RCP, RELAN,

and REL7O. RCP [41,42] is a program which can model a network of arbi-

trary series-parallel combinations of building blocks and analyzes the sys-

tem reliability by means of probabilistic fault-trees. RELAN (43] is an

interactive program developed by TIME/WARE and is offered on the Computer

Sciences Corporation's INFONET network. RELAN, like RCP models arbitrary

series-parallel combinations but in addition allows a wide choice (any of 17

types) of failure distributions. RELAN has concise and easy to use input

formats and provides elegant outputs such as plots and histograms. REL70

[60] and its forerunner REL [611 are interactive programs developed

in APL/360. Unlike RCP and RELAN, REL70 is more adapted for evaluating

systems other than series-parallel such as standby-replacement and triple

modular redundancy. It offers a large number of system parameters, in par-

ticular, C, the coverage factor defined as the probability of recovering from

a failure given that the failure exists and,Q, the quota, which is the num-

ber of modules of the same type required to be operating concurrently. REL70

44

is primarily oriented toward the exponential distribution though it does

provide limited capabilities for evaluating reliability with respect to

the Weibull distribution; its outputs are primarily tabular. Since APL is

an interpretive language, REL is slow in operation; however, its designers

have overcome the speed limitation by not programming the explicit relia-

bility equations but approximate versions which are applicable to short mis-

sions by utilizing the approximation (1-exp(-XT)) =XT for small values of XT.

The CARE program is a general program for evaluating fault-tolerant sys-

tems, general in that its relaibility theoretic functions do not pertain to

any one system or equation but to all equations contained in its repository

and also to compelx equations which may be formed by interrelating the basic

equations. This repository of equations is extendable. Dummy routines are

provided wherein new or more general equations may be placed as they are de-

veloped and become available to the fault-tolerant computing community. For

example, the equation developed by Bouricius et al., for standby-replacement

systems embodying the parameters C and Q has been bodily incorporated into

the equation repository of CARE.

8.3 CARE'S REPOSITORY OF EQUATIONS

The equations residing in CARE, based on the exponential failure law,

model. the following basic fault-toleranct organizations:

(1) Hybrid-redundant (N,S) systems

(a) NMR (N,O) systems

(b) TMR (3,0) systems

(c) Cascaded or partitioned versions of the above

systems

(d) Series string of the above systems.

45

(2) Standby-sparing redundant (1,S) systems

(a) K-out-of-N systems

(b) Simplex systems

(c) Series string and cascaded versions of the

above.

(3) TMR systems with probabilistic compensating failures.

Series string and cascaded versions of the above.

(4) Hybrid/simplex redundant (3,S) sim systems.

(a) TMR/simplex systems

(b) Series string and cascaded versions of the

above.

The equations for each of these systems are the most general representation

of their systems, parameterizing mission time, failure rates, dormancy fac-

tors, coverage, number of spares, number of multiplexed units, number of

cascaded units,and number of identical systems in series. The definitions

of these parameters reside in CARE and may be optionally requested by the

user. More complex systems may be modeled by taking any of the above listed

systems in series reliability with one another.

9.0 REFERENCES

A. GENERAL REFERENCES

1. von Neuman, J., "Probabilistic logics and the synthesis of reliable
organisms from unreliable components," Automata Studies, Princeton
University Press, New Jersey, 1956, pp. 43-98.

46

2. Pierce, W.H., "Redundancy in computers," Scientific American, vol.

210, February 1964, pp. 103-111.

3. Teoste, R., "Digital circuit redundancy," IEEE Trans. on Reliability,
vol. R-13, June 1964, pp. 42-61.

4. Short, R.A., "The attainment of reliable digital systems through the
use of redundancy -a survey," IEEE Computer Group News, vol. 1, no. 3,

March 1968, pp. 2-17.

5. Lyons, R.E. & Vanderkulk, W., "The use of triple-modular redundancy to
improve computer reliability," IBM J. of Res. &Dev., vol. 6, no. 2,

April 1962, pp. 200-209.

B. QUADDING

6. Jensen, P.A., "Quadded NOR logic," IEEE Trans. on Reliability, vol.
R-12, no. 3,September 1963, pp. 22-31.

7. Tryon, J.G., "Quadded logic," in Redundancy Techniques for Computing

Systems, R.H. Wilcox & W.C. Mann, eds., Spartan Books, Washington, D.C.,
pp.205-228, 1962.

8. Fasano, R.M. & Lemack, A.G., "A quad configuration -reliability and

design aspects," Proc. 8th Symp. on Reliability and Quality Control,
Washington, D.C., January 9-11, 1962.

9. Soremon, A.A.,"Digital-circuit reliability through redundancy," Electro-

Technology, vol. 68, July 1961, pp. 135-140.

10. Tryon, J.G., "Redundant logic circuitry," U.S. Patent 2, 943, 193; filed

July 30, 1958 (to Bell Telephone Laboratories, Inc.).

11. Creveling, C.J., "Increasing the reliability of electronic equipment by

the use of redundant circuits," Proc. IRE, vol. 44, April 1956, pp.
509-515.

C. SATURN V LVDC AND THE OAO PPDS

12. Kuehn, R.E., "Computer redundancy: design, performance, and future,"

IEEE Trans. on Reliability, vol. R-18, no. 1, February 1969, pp. 3-11.

13. Anderson, J.E. & Macri, F.J., "Multiple redundancy applications in a

computer," Proc. 1967 Ann. Symp. on Reliability, Washington, D.C.,

January 10-12, 1967, pp. 553-563.

14. Dickinson, M.M., Jackson, J.B. & Randa, G.C., "Saturn V launch vehicle

digital computer and data adapter," AFIPS Conf. Proc. of the FJCC, San
Francisco, California, October 1964.

47

--. . - • ,.
Is

15. Dickinson, M.M. et al., "Saturn V launch vehicle digital computer
and data adapter," IBM Report No. 64-825-1179, IBM Federal Systems
Division, Oswego, New York, September 1964.

16. McNeil, C.V. & Randa, G.C., "Self-correcting memory -the basis of a
reliable computer," Electronic Design, vol. 13, August 1965, pp. 28-31.

17. Coffelt, R.B., "Automated system reliability prediction," Proc. 1967
Ann. Symp. on Reliability, Washington, D.C., January 10-12, 1967, pp.
302-305.

18. Rubin, D.K., "Triple modular redundant systems," Jet Propulsion Lab-
oratory Report TM-34,Section 341, 1967.

D. RAYTHEON'S RAYDAC

19. Block, R.M., Campbell,R.V.D. & Ellis, M., "The logical design of the
Raytheon computer," Proc. of the MTAC, vol. 3, pp. 286-295, 1948;
also discussion notes, pp. 317-322.

E. THE JPL-STAR

20. Rohr, J.A., "STAREX self-repair routines: software recovery in the
JPL-STAR computer," Digest of the 1973 Annual Symp. on Fault-Tolerant
Computing, Palo Alto, California, 1973.

21. Avizienis,A. & Rennels, D.A., "Fault-tolerance experiments with the JPL-
STAR computer," Digest of the 6th Annual Computer Conference, September
1972, pp. 321-324.

22. Avizienis, A., Gilley, G.C., Mathur, F.P., Rennels, D.A., Rohr, J.A. &
Rubin, D.K., "The STAR (self-testing and repairing) computer: an inves-
tigation of the theory and practice of fault-tolerant computer design,"
IEEE Trans. on Computers, vol. C-20, no. 11, November 1971, pp. 1312-1321.

23. Mathur, F.P., "Reliability estimation procedures and CARE: the computer
aided reliability estimation program," JPL Quarterly Technical Review,
vol. 1, no. 3, October 1971, pp. 17-26.

24. Gilley, G.C., "Automatic maintenance of spacecraft systems for long-
life, deep space missions," Ph.D. dissertation, University of Califor-
nia-Los Angeles, Department of Computer Science, September 1970.

F. HYBRID REDUNDANCY (Implementation & Evaluation)

25. Mathur, F.P., "Reliability modeling and analysis of a dynamic TMR sys-
tem utilizing standby-spares," Proc. 7th Annual Allerton Conf. on Cir-
cuit and System Theory, IEEE Catalog No. 69C 48-CT, October 1969, pp.
243-252.

48

~I

26. Mathur, F.P. & Avizienis, A., "Reliability analysis and architecture
of a hybrid-redundant digital system," AFIPS Conf. Proc. of the SJCC,
vol. 36, Atlantic City, New Jersey, May 1970, pp. 375-383.

27. Mathur, F.P., "On reliability modeling and analysis of ultra-reliable
fault-tolerant digital systems," IEEE Trans. on Computers, vol. C-20,
no. 11, November 1971, pp. 1376-1382.

28. Mathur,F.P., "Reliability modeling and architecture of ultra-reliable
fault-tolerant digital systems," Ph.D. dissertation, University of
California -Los Angeles, Computer Science Department, June 1970.

29. Mathur, F.P., "Automation of reliability evaluation procedures
through CARE -the computer-aided reliability estimation program,"
AFIPS Conf. Proc. of the FJCC, vol. 41, Anaheim, California, December
1972, pp. 65-82a.

30. Siewiorek,D.P. & McCluskey, E.J., "Switch complexity in systems with
hybrid redundancy," IEEE Trans. on Computers, vol. C-22, no. 3, March
1973, pp. 276-282.

31. Siewiorek,D.P. & McCluskey, E.J., "An iterative cell switch design for
hybrid redundancy," IEEE Trans. on Computers, vol. C-22, no. 3, March
1973, pp. 290-297.

32. Ogus, R.C., "Fault-tolerance of the iterative cell array switch for
hybrid redundancy," Digest of 1973 Int'l. Symp. on Fault-Tolerant
Computing, Palo Alto, California, June 1973.

33. Brosius, D.B. & Jurison, J., "The design of a voter-comparator switch
for redundant computer modules," Digest of 1973 Int'l. Symp. on Fault-
Tolerant Computing, Palo Alto, California, June 1973.

G. SIFT

34. Wensley, J.H., "SIFT - Software implemented fault-tolerance," AFIPS
Conf. Proc. of the FJCC, vol. 41, Anaheim,California, December 1972,
pp. 243-253.

H. PRIME

35. Borgerson, B.R., "Spontaneous reconfiguration in a fail-softly com-
puter utility," Digest of the DATAFAIR Conference, England, April
1973.

36. Borgerson, B.R., "Dynamic configuration of system integrity," AFIPS

Conf. Proc. of the FJCC, vol. 41, Anahein, California, December 1972,
pp. 89-96.

49

7,_

37. Baillin, G. & Borgerson, B.R., "A multipurpose-enhancement structure,"
Digest 1972 IEEE Computer Society Conference, San Francisco, California,
September 1972, pp. 197-200.

38. Borgerson, B., "A fail-softly system for time-sharing use," Digest 1972
Int'l. Symp. on Fault-Tolerant Computing, Boston, Massachusetts, June
1972, pp. 89-93.

39. Baskin, M.B., Borgerson, B.R. & Roberts, R., "PRIME-a modular archi-
tecture for terminal-oriented systems," AFIPS Conf. Proc. of the SJCC,
vol. 40, Atlantic City, New Jersey, May 1972, pp. 431-437.

I. RELIABILITY PROGRAMS

40. Mathur, F.P., "Automation of reliability evaluation procedures through
CARE -the computer-aided reliability estimation program," AFIPS Conf.
Proc. of the FJCC, vol. 41,Anaheim, California, December 1972, pp.
65-82a.

41. Chelson, P.O., "Reliability math modeling using the digital computer,"
Jet Propulsion Laboratory Report TR-32-1089,April 1967.

42. Chelson, P.O., "Reliability computation using fault-tree analysis,"
Jet Propulsion Laboratory Report TR-32-1542, December 1971.

43. Computer Sciences Corporation, "RELAN: reliability analysis package,"
CSC Sales Brochure No. 333, 1970.

44. Carter,W.C. et al., "Design techniques for modular architecture for
reliable computer systems," IBM -Thomas J. Watson Research Center
Report No. 70-208-0002, March 1970.

45. Roth, J.P., Bouricius, W.G., Carter, W.C. & Schneider, P.R., "Phase II
of an architectural study for a self-repairing computer," (see section
on the REL program), IBM Report SAMSO TR-67-106, November 1967.

50

r

PART II SELF-CHECKING CIRCUITS

1.0 INTRODUCTION

In 1968 Carter and Schneider [4] defined a self-checking circuit to

be a circuit whose output is encoded in an error-detecting code. Anderson

[2,3] further defined such circuits as having properties of self-

testing and fault-secureness. Wakerly [6 1 introduced the concept of par-

tially self-checking circuits.

Researchers have expanded upon these concepts and designed self-

checking checkers and entire computers based on these properties. However,

it is unfortunate that the initial historic definition by Carter and

Schneider is rather narrow in that only circuits whose outputs are encoded

in error detecting codes are considered to be self-checking circuits. As

seen in the section on redundancy, hybrid and other system variants can also

be self-checking without resorting to any error-detecting codes whatsoever.

This section on self-checking circuits presents an introduction to

the fundamental underlying concepts and adheres closely to the literature

and specifically is indebted to the notation developed by Wakerly [1].

Basic concepts of code space and detectable errors are explained and

examples presented. Then the notions of fault-secureness and self-testing

are introduced. Self-testing, partially self-testing, and totally self-

testing circuits are then described.

Totally self-checking networks are then defined and an introduction

to morphic Boolean logic is presented as a systematic methodology to the

design of totally self-checking networks.

2.0 BASIC CONCEPTS OF CODE SPACE AND DETECTABLE ERRORS

Let U be the universe of all vectors of length n (n-tuples), then the

subset S (called the code space) is an error-detecting code if the vectors

in S are chosen such that every fault of interest affecting vectors in S

51

4 ., - ,

(each vector in S is called a code word) will produce vectors that are not

in S, i.e., in U-S (each vector in the noncode space U-S is called a noncode

word). If a failure alters a code word x into another n-tuple x' then:

(i) if x' is also in S (the code space)

then it is an undetectable error,

(ii) if x' is in U-S (the noncode space S)

thpn it is a detectable error.

Hence for the effect of a fault to be detectable it must produce an error

such that some codeword (in code space) gets mapped onto some noncode word

(in noncode space). For a code to be able to detect the set of failures of

interest the code space S must be chosen so as to have this mapping property.

These basic concepts are illustrated in Figure 1.

Example 1: Encode all 2-bit words (x x 2) with even parity (P e). An en-

coded message (code word) is then of length 3.

All binary 3-tuples: U = 0 0 0 1 0 0

001 101

010 101

0 11 111

All uncoded messages: x2 x I

0 0

0 1

1 0

All code words: S= x x1 P

(with even parity) 0 0 0
0 1 1

1 0 1

11I0

52

0 x 0u-
00

0
0 Id

0 0 00

4)0 0

o - 0

I4A

0 04

00

44
x0

532

All non-code words: U-S 0 0 1

010

100

111

In Figure 2 we show how this simple form of parity encoding can be

used in a self-checking circuit. The inputs x1 and x2 are used to drive

a parity generator which generates P . The encoded data is then trans-e

mitted over a channel. The received data, consisting of x1' x2 and Pe is

then again processed by a checker, and an odd parity (E 1 1) indicates an

error. Figure 3 indicates the possible I/O mappings.

In general, for all f. in the fault-set the input code word could get1

mapped onto any 3-tuple in U. If f. is such that an input is mapped into S
1

then f. is undetectable E =0. If f. is such that an input is mapped onto U-S,

then f. is detectable E =1. Specifically, for the set of fault {f.} such

that only an odd number of bits in the input code word are altered, the cor-

responding output words will be in the noncode space U-S, hence (fi) will be

detectable, indicated by E=I.

We will now examine and classify different fault sets by their corres-

ponding mapping properties, and also consider input possibilities other than

code words. For total generality we need to consider:

(i) the universe of inputs

(ii) the universe of outputs

(iii) the universe of faults

and the set of transfer functions {T.} associated with all possible fault-

induced mappings onto the code space S and noncode space S. The absence of

a fault, the nuZZfauZ will be denoted by X. Thus,

fault-free, X

inputn x) output:x 1 in code space S

54

owl,

00

C4 0 to

(X (X CxU) cc

0 Z LLJu4a

0 (D

LU LU -10

o 00 0
Ii IV 0

0.1 (CL

-zI
Z ~LU 3

o0 Z

zso
--

V) 0
no-

0 a

L __

_____I_ 3- I.,-.

LUJ 0

z S
LU)

M Lei

I--
-'-4

00

z

0L4

56.

ijdik0d

Sn a

fault,f.

input:x- T(input'fid No output: x?

For the fault-free case the output will always be in the code space S hence

the checker will correctly indicate absence of any error.

In general for the faulty case the output x, may be anywhere in the

output space U. Four cases can be identified:

Case I. Fault-free. Transfer function is T(input,k).

Output is correct. Output is in code spaces.

No error is indicated.

Case II. Benign Fault. Transfer function is T(input,fb)

Output is correct. Output is in code space, S.

No error is indicated.

Case III. Detectable Fault. Transfer function is T(input,fd

Output is incorrect. Output is in noncode space, S.

Error is indicated.

Case IV. Undetectable Fault. Transfer function is Tinput,f ud).

Output is incorrect. Output is in code space,S.

Error is not indicated.

We summarize and illustrate these definitions in Figure 4 and Table I.

One of the goals of fault-tolerant design is to reduce the conditions

under which Case IV can occur.

3.0 FAULT-SECURE CIRCUITS

If for a given design only the following transfer functions are pos-

sible T(x,X), T(x,fb), T(x,fd), i.e., Cases I, II and III, then the circuit

is called a fautt-secure circuit. (An alternative statement would be that

57

LL;

4

U3-4

..- 4.)

-D-

D 43

LL. 44 U

w 4

m4)to
z r4

58 r

0 u 0
>44

0~ 4) 4) :3 C

.0

4

1 '4
00

La 54 4 14)
() 0) W 0 004.

U) 4J $4J 0 r. 0~ .

0 1.40

E-44

0

E-44

-. CA

II 0
VC

SS

T(x,f)ES implies that f=fb or X. Figure 5 indicates the acceptable trans-
fer functions for a fault secure circuit. When inputs are from the secure

input set, Uis and the fault set is the secure fault set, Ufs, fault secure-

ness property guarantees that no fault from the fault set will produce an un-

detectable incorrect output. It should be noted that in the above the set

{fd I may be empty,i.e.,all faults may be of the type fb and hence undetec-
table. It is important to stress that, in general, a circuit is not fault

secure with respect to all possible faults, but rather with respect to a

given set of class of faults, e.g., all single stuck-at faults.

4.0 SELF-TESTING CIRCUITS

If for every fault, fi., in the set of faults (which are under consider-

ation) there exists some input, say xt (xt is called a test for fi) such that

T(x t,f i) belongs to the noncode space S, then the circuit is called a self-

testing circuit. Thus a self-testing circuit is one for which every fault is

detectable by applying some input; the input is called a test for that fault.

The set of f.'sis called the tested fault set. As shown in Figure 6 for some1

X., f, may be undetectable, but for some x , f, is detectable.

The input set fcr self-testing circutis is called the normal input set,

N,and every input should occur during normal operation in order to detect the

presence of a fault from the tested fault set.

The secure input set, N may or may not be a subset of N, but for all5

practical purposes can be assumed to be a subset of N since those inputs out-

side of N would never occur in normal operation (by definition).

Similarly the secure fault set, Fsis assumed to be a subset of Ft,

the tested fault set. The interrelationship and combined effect of the two

properties of fault-secureness and self-testing are shown in Figure 7.

Now we can look at the relationship between N ,the secure input set,and

Nfthe normal input set. Three cases are of interest:

Case (i): If N =N then the circuit is called totally seZf-checking,

and is both self-testing and fault-secure. (Note: a self-

checking circuit is defined as any circuit whose output

is encoded in an error-detecting code.

60

i -4

.3
D G4

C,

00

o I

umu

10<2

I- 44

C 0

U, 62

UF UNIVERSE OF

Ft, TESTED FAULT
SET

F, , SECURE FAULT
SET

UNIVERSE OF
/INPUT VECTORS UNIVERSE OF
(normal input set), N OUTPUT VECTORS, L.b

Snoncode
space/

X1_~-b detectablecabl

detectable

/'~(l~2) detectable iptStN pC~S 5USaU
x undetectable

Fiqre 7.F ultecrenso sbe to seefeestablit

63-
detctbl

I (x-2 4 .* ndeec..l

Case (ii): If N s N (a proper non-null subset) then the circuit isS.
called partially self-checking.

Case (iii): If N n N = A(null) then the circuit is self-testing-only,s

and not fault-secure.

These definitions are summarized in Table II.

N : N Properties of Self-Checking Circuits Referencess

N =N Self-testing & fault secure (totally Anderson [2,31
self-checking)

N =A Self-testing & not fault secure Carter (5]

N C N Partially self-checking circuit Wakerly [6]

TABLE II. Properties of Self-Checking Circuits

The principal advantage of partially self-checking circuits is that

when using some simple codes, they may be used to perform logical operations

and yet perserve proper encoding.

5.0 TOTALLY SELF-CHECKING NETWORKS

In order to have a totally self-checking network the checker must also

be self-checking. A totaZy seZf-checking network is one that consists of a

functional circuit ai.J checker where both the functional circuit and the

checker are totally self-checking.

In Table III we summarize the main results dealing with self-checking

circuits.

64

V . ., .!--

IF

REFERENCE RESULT

1. Toy [7 1 and Carter et al. [5] General design of a self-testing
only 1-out-of-n decoder

2. Anderson & Metze [3] General procedure for designing totally
self-checking checkers for k-out-of-2k
codes for all k

Also 1-out-of-n codes for all n except
n =3 and n =7

3. Reddy [9] Design of a totally self-checking 1-out-
of-7 checker.

Conjecture that no 1-out-of-3 checker
exists.

4. Ashjaee & Reddy [10] Conjecture that no totally self-checking
equality checker with only three normal
inputs exists.

5. Shedletsky [11] Method for calculating a rollback inter-
val for use with partially self-checking
circuits.

6. Marouf & Friedman [12] Algorithmic procedure for efficient
design of general m-out-of-n checkers
for m 2.

7. Carter et al. [13] Design outline of an entire self-
checking computer processor

8. Gay [14] Markov models to compute the optimal
testing strategy for a system with par-
tial on-line error-detection.

9. Kolupaev [15] Method to synthesize desired totally
self-checking network by searching
for an appropriate cascade of smaller
generalized self-checking circuits.
Method works for small networks but
impractical for large nets.

TABLE III. Notable "Self-Checking" Results and Milestones

6.0 MORPHIC BOOLEAN FUNCTIONS AND THEIR IMPLEMENTATION AS
SELF-CHECKING CIRCUITS

It is sometimes desirable to implement a Boolean variable x using a pair-

of lines (xlx 2). Assume that x = 1 is represented sometimes as x1 =1, x2 =0,

65

- --. ~.q.*OtVt '.-

and at other times as x1 =0, x 12 =1. Similarly if x :0 is represented by

both (x1,x2) =(0,0) and (1,1), then if either x1 or x2 is stuck at some

value an error will be produced. We refer to codings of this type as

morphic functions.

If e1 ,e2 E (0,1), then let the mapping M be defined as follows:

M: ((el,e 2),(;1, 2)) 1

((ei,e 2),(e , 2)) F' 0

Since morphic logic functions (e.g.,AND,NAND,etc.) have to be implemented

using the values taken by the pair of lines, a correspondence must be es-

tablished between a ordinary Boolean function g(a1,a2,. .. ,an) and the logic

function whose inputs and outputs are pair of lines. The ordinary Boolean

algebra is defined over the state space to,I , i.e., B = [0,1, [*], where [*3

is the usual set of logical operations. For the pair of lines we define

the operators [*M] over the state space of the pair of lines, i.e.,

1(ele2),(1;2)1[(el 2) 2 (el e2)),[*M)). In order to establish a corres-

pondence between the Boolean operator (*) and the operator [*M for the pair

of lines, J*M] is defined to be a morphism (operation preserving property)
between 0,1,(*]] and (Nele),(;e),[(e;,e,(ele i.e., be-

tween (*] and (*M]. If s, and sj EO(0,0),(0,),(1,0),(1,1)] then M(s *M s*)=

M(s i) *M(sj).

As an example let M: 0i. 1 , 0
10 11

The morphic AND function (MAND) can be defined as follows:

MAND 01 10 00 11

01 01 (oV (m 00:,11 1 1°° 11

10 01 j ~ iooi I ook
10 (10 11 ll

00 i oooo illf 1°°. 11 n 11 1

11 11

66

Using two K-maps we can determine how to implement the MAND function. Let the

morphic variables be A1 and A2 , and let A1 be implemented as (alla1 2) and A2

as (a2 1 ,a2 2). Then a judicious choice of implicants would lead to the follow-

ing realization (shown below).

A2 a 21a22 A2 a21a22

00 01 11 10 00 01 11 10

00 0 0 0 0 00 0 0 0 0

Alall1a 2 01 0 1 1 0 Al=a1 1a12 01 0 0 1 1

11 0 1 1 11 0 1 1 1

10 0 0 I I 10 0 1 1 0

flif

Hence Al AM A =((a 11a2 1+a 12 a2 2),(a1 1a2 2 +a 12a21

Other functions (V, M) can be generated similarly. The implementation

of MAND function shown above is not unique.

In summary a correspondence is set up between the ordinary Boolean func-

tion defined over [1,0] and the morphic Boolean function over the state space
[[(el'e 2)' (e-l'e2)]'(el'e 2)'(eile2)33."

The use of self-checking circuitry in the hardcore part of the system

enhances the reliability of the error handling portion of the system. It

has been shown that the Morphic Boolean function can be used as self-

checking operators and can be interconnected to provide self-checing im-

plementation of logic circuits. An example of a self-checking circuit

would be the MAND function derived earlier. This operator can be used to

implement a self-checking comparator as follows. If d, d2, d3, and d4

are four signal lines, then to ensure reliability of the signal on these

lines the four lines are complemented and the pairs of lines are compared

using the self-checking morphic comparator as follows in Fig. 8.

67

i0
"'- ' l¢" ' -',"l"*" - 3

di d2 31 a2 dddada

FMAND MAND

Figure 8. Self-checking checker

68

7 -WT ~*7

7.0 CONCLUSION

Part II of this chapter has described the basic concepts of self-

checking circuits. Self-checking circuits were defined to be circuits

whose outputs are encoded in an error-detecting code. The underlying

theory based on code and noncode space was developed with illustrative

examples. The notions of fault-secureness and self-testing were intro-

duced. Self-testing, partially self-testing, totally self-testing cir-

cuits, and totally self-checking networks were described and defined.

An introduction to Morphic Boolean logic as a systematic aid to the

design of totally self-checking nteworks was also provided. This section

forms an important theoretical basis for the design of totally self-

checking computers.

8.0 REFERENCES

1. Wakerly, J., Error Detecting Codes, Self-Checking Circuits and Ap-

lications, Elsevier North-Holland, Inc., New York, 1978.

2. Anderson, D.A., "Design of self-checking digital networks using cod-
ing techniques," Tech. Report R-527, Coordinated Science Laboratory,
University of Illinois, Urbana, 1971.

3. Anderson, D.A. and Metze, G., "Design of totally self-checking check
circuits for m-out-of-n codes," IEEE Trans. on Computers, vol. C-22,
no. 3, pp. 263-269, March 1973.

4. Carter, W.C. and Schneider, P.C., "Design of dynamically checked com-
puters," IFIP Conf. Proc., vol. 2, pp. 878-883, 1968.

5. Carter,W.C. et al., "Implementation of checkable acyclic automata by
Morphic Boolean functions," Symp. on Computers and Automation, Poly-
technic Institute of Brooklyn, pp. 465-482,April 1971.

69

6. Wakerly, J.F., "Partially self-checking circuits and their use in
performing logical operations," IEEE Trans. on Computers, vol. C-23,

no. 7, pp. 658-666, July 1974.

7. Toy, W.N., "Modular LSI control logic design with error detection,"
IEEE Trans. onComputers, vol. C-20, no. 2, pp. 161-166, February 1971.

8. Carter,W.C., Duke, K.A. and Jessep, D.C., "A simple self-testing de-
coder checking circuit," IEEE Trans. on Computers, vol. C-20, no. 11,
pp. 1413-1414, November 1971.

9. Reddy,S.M., "A note on self-checking checkers," IEEE Trans. on Com-
puters, vol. C-23, no. 10, pp. 1100-1102, October 1974.

10. Ashjaee, M.J. and Reddy, S.M ., "On totally self-checking checkers
for separable codes," IEEE Trans. on Computers, vol. C-26, no. 8,

pp. 737-744,August 1977.

11. Shedletsky, J.J., "A rollback interval for networks with an imperfect
self-checking property," Dig. 1976 Int'l. Symp. on Fault-Tolerant Com-
puting, pp. 163-168.

12. Marouf, M.A. and Friedman, A.D., "Efficient design of self-checking
checkers for m-out-of-n codes," Dig. 1977 Int'l. Conf. Fault-Tolerant

Computing, pp. 143-149.

13. Carter, W.C., Putzolu, G.R., Wadia, A.B., Bouricius, W.G., Jessep, D.C.,

Hsieh, F.P. and Tan, C.J., "Cost-effectiveness of self-checking com-
puter design," Dig.1977 Int'l. Conf. Fault-Tolerant Computing, pp.
117-123, 1977.

14. Gay, F.A., "Reliability of partially self-checking circuits," Dig.
1977 Int'l. Conf. Fault-Tolerant Computing, pp. 135-142.

15. Kolupaev, S.G., "Cascade structure in totally self-checking networks,"

Dig. 1977 Int'l. Conf. Fault-Tolerant Computing, pp. 15C-154.

70

-1

PART III CODING TECHNIQUES*

1.0 INTRODUCTION

Part III of this chapter discusses the use of concurrent diagnosis tech-

niques based on codes in digital computing systems. More specifically, it

deals with a subset of such concurrent techniques, since massive redundancy

methods such as circuit triplication and voting or circuit duplication (with

diagnostic checks in case of disagreement) have already been considered in

an earlier section (see Part I of this chapter). The two types of coding

methods or concurrent diagnosis considered in this section are:

(a) partial circuit duplication using a checking algorithm

to detect or correct errors.

(b) use of encoded operands such that errors can be detected

by means of a subsequent checking algorithm.

The distinction between the two types of diagnosis will become more clear

when we consider both separate and non-separate methods of coding.

Concurrent diagnosis means the "immediate" and "local" checking or

correcting of information being transmitted or processed. The meaning of

"immediate" and "local" may be debatable, but here immediate means either

during a minor computation or just after it; and local will mean that the

additional hardware requirements are built into the processor itself.

This section is based primarily on the papers by Kautz [1], Avizienis

[2 1 and Armstrong [3), but additional references are cited where further
information was found in various particular areas. A quick survey of the

literature in the field shows a fairly heavy emphasis on the theory of

codes, with little being written about the usage of such codes in practice.

However, the advent of smaller and cheaper logic circuits due to the use

of integrated circuit techniques and particularly VLSI (very large scale

This section is an edited abbreviated version of an unpublished paper
by G. Cole.

71

integration), has made the extra hardware requirements of checking techniques

more feasible. Also the more complex problem solving capabilities of mod-

ern computers has made the use of error detection or correction more neces-

sary. One can readily envision the use of computers in problems of such

size that error-free solutions are otherwise impossible.

The IBM 7030 (STRETCH) computer is a notable example of a design which

utilized extensive error detection and correction capabilities. The prob-

lem requirements for this machine were of such magnitude that both fast and

error free computation were required. Each memory word had 8 check bits in

addition to the 64 data bits for automatic correction of any single bit er-

rors. Other operations were also checked by the use of parity checks, dup-

lication or computation, and "casting out threes." When errors were de-

tected, they were corrected and/or the error was recorded on a special main-

tenance output device. An estimated 14% of the entire computer was used

solely for checking purposes E15]

2.0 TRANSMISSION CODES

For ease of presentation, one can divide the subject of error detection

and correction into two groups, namely transmission codes and arithmetic

codes. The transmission codes check for errors during the transmission of

information, such as between processor units, during memory accesses, etc.

The arithmetic codes can also detect errors in such information transfers,

but more importantly, they can check the correctness of arithmetic opera-

tions. The obvious question is then, "why don't we always use arithmetic

codes instead of transmission codes?" The answer is twofold; (1) the arith-

metic codes often require more check bits than the transmission codes, and

(2) the arithmetic codes are not nearly as well known as the transmission

codes, e.g., the use of parity bit(s).

2.1 PARITY BITS

The work-horse of the error checking world is the parity bit. The use

of this one extra bit to detect the presence of any single bit position er-

ror has been adopted to such an extent, that it is unusual when it is not

72

t --3

used in information transfers. The most common type of parity check is

based on the selection of a 1 or 0 for the parity bit such that the total

number of Is in the word is odd. The choice of an even number of is would

work equally well, of course. Indeed, the use of even parity is consistent

with Garner's generalized theory of parity checking in which the parity

digit is the modulo b sum of the digits of the number, where b is the base

of the number system [9].

The parity bit will allow the detection of any single bit error (or

an odd number of errors) but will not detect any combination of two errors

or any other even number). Let us consider what further detection, or per-

haps even correction,.capability that we could have at the cost of additional

parity bits. If instead of selection the parity bit for an odd number of is,

we use multiple parity bits such that there are always some multiple of three

is in each word. Such a method would require either two or three parity bits

depending on the elimination of the use of an all Os word. Even this rather

trivial example illustrates the close ties between the machine design and

the redundancy techniques to be used. The use of such multiple parity bits,

would reduce-the number of undetected error conditions, although it would

not catch all combinations of two errors.

Another extension of the use of multiple parity bits is to use a matrix

data configuration with parity checks on both the rows and the columns. Any

single bit error will result in one row parity failure and one column parity

failure. These two parity failures will represent the "coordinates" of the

incorrect bit location, and therefore, will allow the correction of such a

single error. Checks of this type are often made in magnetic tape data

blocks, and are shown in Figure 1 for 5 rows and 6 columns.

I 1 0 1 0 1

1 0 0 0 1 0

1 0 1 1 0 1

1 0 0 00 1

1 1 111 1

0 1 0 0 1 0

11 0 1 1 0

Figure 1: Even parity checks for matrix data.

73

If even parity is used for the row and column checks, the corner parity

bit is useful as a "check on the checks,", i.e., the corner bit should be

the proper parity bit for both the row parity bits and the column parity bits.

The use of odd parity bits does not, in general, result in a correct corner

check bit. The use of even parity is successful because it essentially forms

the modulo two sum of all the bits in the block. This sum is the same, re-

gardless of whether the sum is taken over the rows or over the columns. The

above does bring out a subtle difference between the use of even and odd

parity. The two are often considered to be (and usually are) quite inter-

changeable.

2.2 HAMMING CODES

Since three bits can define eight unique states, one might consider at-

taching three parity bits to a group of eight data bits with the idea of de-

tecting the location of an erorr. Further investigation reveals that one of

the eight states is required for the "no error" condition, and hence only

seven data bits could be used. One possible assignment of the parity checks

would be as shown in Figure 2.

Bit Locations

1 2 3 4 5 6 7

Parity- - - -- * = Bit locations which
it p * * * are included in the

individual parity

P * * * checks

P1 P2 P3 1 2 3 4 5 6 7

Parity Information Bit

Bits Locations

Figure 2: One possible parity check arrangement

One problem with this parity check scheme is the lack of any check on

the check bits. Since a sizeable fraction of the bits are used as parity

74

checks, there is a high probability that some of those bits would eventually

cause errors rather than merely correct other errors. However, the scheme

can detect the error location for any of the seven data bits, since each

location is checked by a unique combination of parity checks. For example,

if partiy checks #1 and #3 indicate an error but #2 does not, the error must

be in bit location 5.

The Hamming code utilizes a similar parity checking scheme, except that

the partiy bits are included in the group of seven protected bits. This

leaves four bits for data, and the code is often called a (7,4) code indi-

cating the total number of bits and the number of data bits. The Hamming

(7,4) code is shown inFigure 3.

Figure 3 also shows the Hamming (7,4) code representation for the de-

cimal numbers from zero to nine and demonstrates error correction by means

of an example in which a ONE is lost in the 6th bit location. The parity

error pattern (110) points to the location in error and hence correction

can be made by simply complementing that bit. We will find later that cor-

rection in arithmetic processes is not as simple as merely complementing one

bit since errors may propagate due to carries or borrows. However, for the

transmission of data, the bits are considered to be independent.

The notions of "distance" and "weight" are also shown in Figure 3. Since

the terms are not uniquely defined, we should call these the Hamming weight

and the Hamming distance, to distinguish between the Hamming and arithmetic

distance and weight. The Hamming weight is the number of non-zero digits

appearing in the code symbol, and the Hamming distance is the number of digit

positions in which two code symbols differ. For error detection, the Ham-

ming distance must be at least two, while for correction of a single error

or detection of two errors, the distance must be at least three. In general,

the distance between any two allowable code symbols must be at least 2n-1 to

correct n errors or to detect 2n errors. Richards [161 states that error

detection can be traded for error correction since one cannot generally have

the full amount of each. This trade-off can be seen by a simple example of

a distance three code. We could detect up to two errors by such a code, but

we could not distinguish between one error and two errors. Hence, we would

run the risk of falsely "correcting" a bit position if we tried to correct it

when two errors had actually occurred. We must either assume single errors

75

A
- ~. !

66

Bit Locations

1 2 3 4 5 6 7

P1 * *

Parity P * 1 0 1 0 1 0 1

Bits P 0 1 1 0 0 1 1

P * * 0 001111

(a) Parity bit locations and bits which are (b) Parity matrix for

included, in each Hamming code

error -7
1 011 I 0 1 1 transmission P1 checks alright, 0

1_0_1_1_0_1_1_101 1-0o1
P2 does not check, 1

correct word erroneous word P does not check, 1

pattern is 110 =6, 6
is the error location

(c) Error detection and correction

Hamming
Code

0 000 0 000
110 1 001

1 110 1 001 010 1 010

2 010 00 100 0 011 weight equals the number
3 100 0 O00 of ONEs, equals three

5 010 0 101
6 110 0 110
7 000 1 Ii
8 Ii 0 000
9 001 1 001

(d) Hamming code representation for decimal 0
through 9

Figure 3. The Hamming (7,4) code and examples of
its use.

76

and correct any error, or we would do no error correction but could detect

any pattern of one or two bits in error. For the simultaneous correction of

t or fewer errors and the detection of d or fewer errors, one needs a dis-

tance of at least t-d-1 [4].

The parity matrix of Figure 3b indicates by a I the bits which are in-

volved in each parity check. Note that no distinction is made as to which

bit is the actual parity bit. The arrangeement of Is in the parity matrix

is such that the pattern of partiy errors "points" to the location which is

in error. Correction is by merely complementing that particular bit.

Larger Hamming coded words can be built up by the use of k check bits

and n 2 k-i total bits. Some of these values are listed in Table 1. Note

the advantage of using long words rather than several shorter words, e.g.,

by coding bytes separately.

Total No. No. of Check No. of Informationof Bits, n Bits, k Bits, (n-k)

(7,4) 7 3: 4

(15,11) 15 4 11

(31,26) 31 5 26

(63,57) 63 6 57

Table 1. Various Hamming Codes

2.3 CYCLIC CODES

The arrangement of the 1,0 pattern in the Hamming code parity matrix

was chosen for each of locating the defective bit position. Another ar-

rangement of interest is that of the (7,4) cyclic code, namely:

0 "0 1, 0 1 1, 1 Example: data 1 0 1 1

(= 0'i 1 0,1 / I'
,1 # 0/,

I7SI ,

_ 77-

The check digits are chosen to be the leftmost three bits and, as can be

seen by the parity matrix, they check the three bits which occur after an

intermediate location. A particularly simple encoding scheme for this ar-

rangement is shown in i].

Cyclic codes are based on the algebra of polynomials. For example, the

(7,4) cyclic code is developed from a 3rd degree (7,4) polynomial generating

function,

g(x) 1+x +X 3

which is a factor of 1-x, (we use x7 since n =7). The preceding parity ma-

trix can be found as follows [4]:

h(x) = (1-x) .g(x) =1+x 2+x3+x4

h(x) = 1 0 1 1 1 0 0 H 0 1 1 1 0 1 0

xh(x) = 0 1 0 1 1 1 0 1 1 1 0 1 0 0

x2h(x) = 0 0 1 0 1 1 1

The H matrix is formed from h(x), xh(x) and x2h(x) with the order of the

elements reversed. Our P matrix is the same as H except for the reversal of

the elements, since we wanted the parity bits on the left to be consistent

with the previous parity and Hamming code usage.

The use of such generating polynomials has been extended to a number

of such codes which can detect and correct either burst or random errors.

Burst errors are errors which affect several adjacent bit positions and

hence are of definite practical concern. Such codes are of special interest

since considerably less redundancy is required for the correction of a given

number of errors if such errors are confined to a burst (1 ,4 ,8 1.

Any (n,m) cyclic code can detect a burst of length n-m or less, which is

a considerably larger capability than when the errors are randomly dispersed.

j -. 78_3 i6

2.4 CODES FOR ASYMMETRIC ERRORS

Some types of logic devices may have definite failure modeb which allow

one to assume that all errors are Is becoming Os (or vice versa for other

types of devices). This limitation might allow one to develop more efficient

error detection and correction techniques.

One such technique is the Berger code which uses an extra k bits to rep-

resent the number of Os in the data word (or the number of Is). The number

of bits in the check symbol is:

k = I +logm m = no. of data digits

The above code does not correct errors, but can detect all combinations of

errors with the limitation that only Is becoming Os are possible (or vice

versa).

2.5 FIXED WEIGHT CODES

The Hamming weight of a binary code symbol is its number of Is. A

fixed weight code has the same number of Is in each code symbol. One such

example is the "two out of five" code, in which two of the five bit positions

are Is, and the other three are Os, such as 01010.

3.0 ARITHMETIC CODES

Those coding schemes which have been discussed in Section 2.0 are pri-

marily for error control during the transmission of information. When one

has to perform arithmetic operations on the information, those code bits do

not perform any useful check and may, in some cases, make the arithmetic op-

erations more difficult. For example, if the information is coded in the two-

out-of-five code, a normal binary arithmetic unit could not be used without

requiring a conversion to binary code. Some other codes, such as the use of

a single parity bit or a Hamming code, allow the separation of the check bits

and the information bits. However none of these codes provide a check on the

arithmetic process itself.

1 79

Some codes will now be considered which provide protection during infor-

mation transmission and also provide a check on the arithmetic process. As

one would expect, this additional check will cost us something. In the cases

of interest this cost is both additional check bits and a somewhat longer

check method.

3.1 RESIDUE OPERATIONS

Before considering how residues can be used for checking in arithmetic

operations, let us review a few properties of residue arithmetic.

The residue of an integer number x modulo ft is the remainder of the di-

vision x/m. As examples:

26/3 = 8 with a remainder 2; 26 module 3 =2

5/3 1 with a remainder 2; 5 modulo 3 =2

17/8 2 with a remainder 1; 17 modulo 8 =I

or in general;

x modulo m = r where: x =q.mr,

x & q are integers

* & r are positive integers

The residue can be indicated by various notations including

x modulo m

x mod m

ix

Ix IM

The latter notation will be used in this report to indicate the residue of

x modulo m.

Several residue operations are of interest in .-ror detection and cor-

rection including the following identities (see (13] for proofs).

80

-- - . 2 4

1. Residue of multiples of m; I kml =0 for k = integerm

E.g.:* 15 modulo 5 =0

2. Addition of multiples of m; I(x+km)l =Ix

E.g.: (9+15) modulo 5 =9 modulo 5 =4

3. Addition and subtraction; I(x=Y)jm = I (jxjm ylm) m

E.g.: (9+7) modulo 5= (9 modulo 5) + (7 modulo 5) = (4+2) modulo 5=1 or 2

4. Multiplication; I(x.Y)Im = (xilml Ym)Im

E.g.: (9.7) modulo 5=[(9 modulo 5).(7 modulo 5)] modulo 5 =[3]

modulo 5 =3

Another property of interest is the "casting out 9s" for decimal opera-

tions, or in general, casting out (b-1)s for the number base b, and n an in-

teger (except for b=2 and n=1). For example, the residue modulo 9 of a de-

cimal number can be found by "casting out 9s" from the digits of the number,

or stated otherwise, adding the digits in modulo 9 arithmetic.

1196721 9 = 10672 = 7 {casting out 9s}

1 .1967219 = (1+9+6+7+2) = 7.

3.2 THE USE OF RESIDUES FOR ARITHMETIC ERROR DETECTION

Just as the parity bit is concatenated,i.e., attached to one end of a

data word, the residue could also be used as such an attached error check.

For example, the residue for 1967 modulo 9 is 5,and this number could be

written in error coded form as 5 1967. Suppose that we want to add two such

numbers,as shown below.

2135 2 2135 2 2135
1967 + 5 1967 (_ 1967

sum = 4102 7 4102 G 2 0168
diff = 0168 94102j=7 -5 1016819 6

check check**

For examples, consider m =5, k =3, x =9 and y =7.

Note that the residue can never be negative. In this example a 9 was
added to the residue to make the final residue positive.

81

The check on the addition is made by comparing the residue of the sum

with the sum (modulo 9) of the residues of the two operands. If the compar-

ison is not "true," i.e., not the same values, then an error has occurred.

If the comparision is "true," the computation is assumed to be correct. How-

ever, certain errors will not be detected when their net effect adds up to

some multiple of the modulus, e.g., in the above example, if the sum were

4192 rather than 4102. The larger the modulus, the less the probability of

such missed errors. Paal [ill utilized a combination of modulo 31 error

coding and a repetition of the algorithm to ensure that large magnitude

errors were not passed over due to this undetectable, multiple of the modulus,

type of error. In the second execution of the algorithm, only 10 bit accuracy

was utilized, which was adequate to ensure that the magnitude of any "missed

errors" would be less than 0.1%. The use of the modulo 31 residue required

that 5 check bits be used on each word, which in itself would detect some 97%

of all error patterns, i.e., tne fraction 30/31 of all errors.

The STAR computer [173 utilizes a residue code for instruction words in

which a four bit check symbol is attached to each 28 bit address word. The

check symbol is (15 modulo 15 residue), i.e., the Is complement of the resi-

due so that the sum of the check residue symbol and the instruction residue

should be zero (represented as 1111 due to the use of the is complement).

This approach eliminates the need for a separate comparision operation be-

tween the two residues. The residue calculation is by "casting out 15s"

through the use of a four bit adder.

The residue check method of error detection can also be applied to mul-

tiplication by use of the identity

Ix~y Ym = lxlm I Ylmlm

An example of the checking of a multiplication is:

14 rresdue code bits
x 1 2 x3 12

16 15 168
4 116819:=6

;1i 9 .. check

82

7W7

3.3 THE USE OF RESIDUES FOR ERROR CORRECTION

In an n bit binary word there are 2n possible error "states," since

each bit position can be in error by either +1 or -1. Since one additional

state is required for the "no-error" condition, a total of 21j+l states are

required to be able to correct an error in the n bit word. This requirement

puts a constraint on the lower bound of the modulus,namely the modulus must

now be at least 2n+1 to have 2n+l unique residue values (including zero).

As an example, consider a 5 bit adder for which n =5, and m =2n+l =11.

14 0011 101110
+ 9 1001 I 01001
23 10011o Correction Code Table

i error
0001 Residue Correction

1 -20

check residue of o e

sum has a residue of 8
3 +23

4 -22

since 8 1 1, an error has occurred 5-2

8111 :7 6 +24

7 +2 2

10o11- erroneous sum
+ 100 8 -2
10111- corrected sum

9 ~ +21

10 +20

The error correction table used in the previous example can be built up

by assuming certain errors and seeing what the resulting residue is. For

example, if during the addition of zero plus zero, a 1 occurs in the 20

0column, the residue will be 1, and the correction should be to subtract 2

Hence -20 occurs opposite the residue 1. The rest of the table can be

built up in a similar manner.

83

777

One can see that as the number of bits in a data word gets longer, the

number of distinct residues must also increase and hence, the modulus must

become larger.

3.4 THE AN PRODUCT CODES

The basic notion of a product code for error detection is quite simple,

namely, that if we multiply both integer operands in an addition (or subtrac-

tion) operation by some other integer A, then the sum (or difference) should

also be an integral multiple of A. That is:

AX+AY = A(X+Y)

We can check for this "integral multiple" by a repeated division by A until

the remainder is either zero or at least less than A. The remainder should

be zero (if an integral multiple). We say that an error has occurred if it

happens to not be equal to zero; otherwise we assume that the answer is cor-

rect even though some undetectable error may actually have occurred. We will

see a little later that in some cases we can use the remainder value to de-

termine which bit position was actually in error,and hence can have error

correction as well as detection. The similarities between the AN product

codes and the previously discussed residue codes can readily be seen in the

above comments, and will be demonstrated again in subsequent paragraphs.

Several practical considerations influence the choice of the multiplier

A, and the way in which the remainder is found. Division is a time consum-

ing computer operation and some alternative method would be of great value

in determining the remainder. We will see that a good choice for A is

A = bn_1 n = some integer,

b = number base

A's of this form allow the remainder sea"ch to be performed by a "casting

out" procedure such as the casting out 9s of decimal arithmetic checking.

In binary arithmetic checking, we can cast out 3s, 7s, 15s, etc., corres-

ponding to a choice of A equal to 3, 7, 15, etc., respectively. As we make

84

I!

A larger, we reduce the probability of accepting an erroneous answer as

correct, but at the cost of additional bits in the coded representation of

the numbers. These relationships are:

Fraction of all errors which are detectable= A

Extra bits for the redundancy e log2 A.

3.5 THE AN+B CODES

The AN+B or augmented product codes are used when ease of complement-

ing is desired, e.g., when a 9s complement representation is desired by

merely complementing each bit position of the binary representation. One

example of such a code is the 3N+2 code. The complementing action is shown

below.

Example of 3N+2 code:

Decimal 4 becomes 3(4)+2 = 14- 01110

Decimal 5 becomes 3(5)+2 = 17- 10001

Note that these two numbers have complementary 1 & 0

positions and that 4 & 5 are 9s complements

The choice of the values of A and B are determined by two factors; (1) the

A must be selected, as for the regular AN codes, as a relatively prime num-

ber with respect to the radix, and (2) the B must be some integer solution

of the equation for the is complement:

[r n-1-[AN+B] = A[b-I-N]+B

where
n = highest exponent of r

r = radix of the number system

b = number of states that a digit can assume

b-1-N 9s complement of n (if b =10)

Solving for B we obtain

85

- - .~ - -WO

nI

B =[(rn-1)-A(b-1)]. For A=3, r=2, b=10, and n=5,

B = 2[(32-1)-3(9)] = 2.

Hence 3N+2 is a valid solution of AN+B for these values since 2 is an inte-

ger solution for B. A 3N+2 coded BCD is shown in Table 2.

N 3N+2 BCD N 3N+2 BCD

0 00010 5 10001
1 00101 6 10100
2 01000 7 10111
3 01011 8 11010
4 01110 9 11101

Table 2. 3N+2 BCD Code

The possible occurrence of some value of A for which one could have a self-

complementing code with B =0 compels one to try to solve the above equation

towards this goal.

[r n-1]-A(b-1) = 0 rn =Ab.

For r = 2, 2n =Ab.

Due to the constraint that A must be an odd number (relatively prime with

the radix 2), there can be no solution for integer values of A and b. Hence,

we must use an AN+B type code if we are to have the ease of complementing

feature.

The added difficulty due to the plus B term is not only the nuisance

of having to add it at each encoding, but also due to the need to correct

each addition and subtraction which otherwise end up of the form An+2B and

AN+OB respectively. Multiplication and division are also made more diffi-

cult.

86

[
.... - I..

3.6 SUM CODES

The sum code utilizes a separable check code with a check modulus.

This check code has k bits such that

check code = 1(-x)r ki

where x =number being coded, r =radix (2 for binary), k =number of check

bits, and a =check modulus.

The sum code is placed at the right (least significant digit) part of

the coded number. The original data and the check symbol are processed sep-

arately and a checking algorithm is used to check for proper residue values

after the computation.

4.0 OTHER CONSIDERATIONS AND CONCLUSIONS

4.1 A SUMMARY OF CODE TERMINOLOGY

In this section we have discussed codes in which the check bits were

quite distinguishable from the information bits (called separate codes) and

also codes, such as the AN codes, in which the bits are nonseparable.

The parity bits of various codes are examples of "systematic" codes

since there is a functional relationship between the check bits and the

information bits. When such a relationship does not exist, the code is said

to be non-systematic.

Errors can either be randomly dispersed throughout the word, or they

may be neighboring bits. The latter are called "burst" errors and are an

important practical consideration, since errors can often occur as bursts

due to an interference or transient fault which affects a string of bits.

The weight of a code symbol is the number of non-zero digits in the

symbol. For the "arithmetic weight" the number must be represented in

minimal form, i.e., using a minimum number of digits. For example, 01111

becomes 10001 in minimal form.

The Hamming distance differs from the arithmetic distance since the

Hamming distance is the (Hamming) weight of the modulo sum of the two num-

bers, while the arithmetic is the (arithmetic) weight of the difference of

the two numbers.

87

izvO

4.2 FAULT PROPAGATION

There are several ways in which one fault can propagate throughout an

information word causing more than one damaged bit location. One simple ex-

ample is a defective carry in an addition which could propagate for some dis-

tance. However, this error is not really a multiple error since one correc-

tion, via the necessary borrows or carries could restore the correct result.

In other applications, the damage pattern may not be corrected so easily.

The two major ways in which a fault can propagate in a damaging manner are

in byte organized processors and in multiple "cycle" algorithms,such as for

multiplication and division, in parallel processors, or even for addition and

subtraction in serial machines. One method of checking (and perhaps correc-

tion) would be to perform a check at the end of each byte or cycle in the al-

gorithm. Unfortunately, this might increase the overall time for such opera-

tions (as multiplication and division) to some intolerable value. The close

tie between the processor design and the type of redundancy and checking is

shown by such difficulties. For a more complete description of fault propa-

gation and the use of "error magnitudes" the reader is referred to Avizienis

(21.

4.3 FURTHER STUDIES

Coding theory is a very rich and by far the most developed branch of

fault-tolerant computing. For a simplified least mathematical treatment

the interested reader is referred to Lin (18]. For an encyclopedic treatment

the reader should consult Hamming [20]. A recent interesting work by a pio-

neer of coding theory is Peterson [19] which interrelates coding and inform-

tion theory.

5.0 REFERENCES

1. Kautz, W.H., "Codes and coding circuitry for automatic error correction
within digital systems," Redundancy Techniques for Computing Systems,
Spartan Press, 1962, pp. 152-195.

2. Avizienis, A., "Concurrent diagnosis of arithmetic processors," Dig. Ist
Annual IEEE Computer Conf., 1967.

88

3. Armstrong, D.B., "A general method of applying error correction to syn-
chronous digital systems," Bell System Technical Journal, March 1961,
pp. 459-465.

4. Peterson, W.W., Error Correcting Codes, John Wiley & Sons, New York,
1961.

5. Brown, D.T., "Error detecting and correcting codes for arithmetic op-
erations, IRE Trans. on E.C., vol. EC-9, 1960, pp. 333-337.

6. Garner, H.L., "The residue number system," IRE Trans. on E.C., June
1959, pp. 140-147.

7. Peterson,W.W., "On checking as adder," IBM Journal, vol. 2, 1958, pp.

166-168.

8. Peterson, W.W. and Brown D.T., "Cyclic codes for error detection,"
Proc. of IRE, January 1981, pp. 223-235.

9. Garner, H.L., "Generalized parity checking," IRE Trans. on E.C., Sep-
tember 1958, pp. 207-213.

10. Garner, H.L., "Error codes for arithmetic operations," IEEE Trans. E.C.,
October 1966, pp. 763-770.

11. Paal, F.F., "Automatic Correction of Arithmetic Errors in Digital Com-
puting Machines," M.S. Thesis, University of California, Los Angeles,
1966.

12. Mauriello, R., "Application of Separate Check Symbols in Arithmetic
Error Detection," M.S. Thesis, University of California, Los Angeles,
1965.

13. Szabo, N.S. and Tanaka, R.I., Residue Arithmetic and its Applications

to Computer Technology, McGraw-Hill, New York, 1967.

14. Kautz, W.H., "Automatic Fault Detection in Combinational Switching Net-
works," Stanford Research Institute, 1961.

15. Buchholz, W.H. (ed.), Planning a Computer System, McGraw-Hill, New York,
1962.

16. Richards, R.K., Arithmetic Operations ihDigital Computers, Van Nostrand,
New York, 1955.

17. Avizienis,A., "Design of fault tolerant computers," FJCC Proc., 1967,
pp. 733-743.

18. Lin, S., An Introduction to Error-Correcting Codes, Prentice-Hall,
Englewood Cliffs, New Jersey, 1980.

89

. - , -. ,V
- U - .,I q"

19. Peterson, W.W. and Weldon, E.J.,Jr., Error Correcting Codes, 2nd Ed.,
MIT Press, Cambridge, Massachusetts, 1972.

20. Hamming, 1R.W., Coding and Information Theory, Prentice-Hall,Englewood
Cliffs, New Jersey, 1980.

90

