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SUMMARY 

This investigation was primarily motivated by the lack of good measure- 
ments for acoustic properties of the ocean floor at low frequency (below 500 Hz) 
It was also an opportunistic study in that a large quantity of raw measurements 
of ocean floor acoustic reflectivity have already been made by NAVAIRDEVCEN 
in most of the major ocean regions in the world. While these measurements are 
not of high enough quality in their present form to provide any more than a 
summary measure of acoustic reflectivity, they would provide more detailed 
information if their time resolution could be improved significantly. Since 
the measurements have already been taken, this would provide a very economical 
means of acquiring acoustic property estimates for various ocean floor regions. 
The major objective was, then, to develop a technique for enhancement of ocean 
floor reflectivity measurements. 

Because of its flexibility, a nonlinear technique known as hormomorphic 
deconvolution was selected for the signal enhancement process. The measure- ' 
ments in question were made with air-dropped sonobuoys and small explosive 
charges and the explosion waveform has a prolonged, oscillatory tail that ob- 
scures much of the time-domain information in the received signal. If it was 
not obscured by the source waveform, this received signal could be used to 
isolate the individual paths of propagation that are probed by a particular 
source-receiver geometry. By means of a nonlinear transformation basic to 
the enhancement process, the convolution of the source waveform and the ocean 
response function is reduced to an addition and then the source component is 
suppressed by linear filtering. 

Two techniques for enhancement were developed during the course of this 
project. The first - a complete deconvolution process - has been computer- 
coded and tested on real signals with reasonable success. Although noise makes 
the procedure tend toward instability, most of the measurements have very high 
signal-to-noise ratios (a virtue of the explosive source) and, in conjunction 
with proper preconditioning, the process performs satisfactorily. The second 
process, based on averaging spectra, has proven successful in isolating the 
source waveshape. This technique is also nonlinear but it exploits some of the 
properties of the source signal itself. 

As a result of their nonlinear nature, both of these techniques are de- 
pendent on the nature of the signals processed. Although the concepts developed 
are generally valid, it is unlikely that these processes would work without 
modification on other types of convolution problems. The system proposed by 
this investigation will, however, be thoroughly tested for its ability to en- 
hance the type of signals available in the NAVAIRDEVCEN ocean floor reflectivity 
measurements. This "production" work will be done on NAVAIR block funding since 
the process development and preliminary testing, funded by NAVAIR DEV CEN Inde- 
pendent Research, has been completed. 
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An ancillary task of this work was the development and testing of a math- 
ematical model and accompanying computer code for the acoustic response of the 
ocean floor to transient signals. This task,is fully reported in the second 
volume of this report, published separately.  The model is necessary for 
interpretation of ocean floor reflection signals after they have been enhanced. 
Unless the individual propagation paths can be isolated, accurate physical 
property measurements cannot be made. Because this study was concerned with 
low frequency transient signals, existing acoustic propagation models were 
generally unsatisfactory. 

INTRODUCTION 

Since World War II, research in underwater propagation of sound has pro- 
gressed from simple empirical studies to detailed numerical computations of 
sound fields in the inhomogeneous ocean. While this research and the attendant 
mathematical models have spawned sophisticated means for predicting acoustic 
propagation through ocean water, comparatively little progress has been made in 
modeling propagation through the ocean floor. In light of the importance of 
both advanced sensor design and fleet ASW operations in shallow water, at low 
frequency or for near-bottom sensors, the role of the ocean floor as a propa- 
gating medium (rather than as a simple reflector) must be understood. 

This deficit in understanding is not, in general, the result of a lack of 
theory, but rather the consequence of a paucity of reliable measurements of 
the actual acoustic properties of the ocean floor. Information about the 
acoustic behavior of ocean sediments and basement rock is sparse and is often 
based on laboratory measurements at high frequency of very small, disturbed 
samples - measurements that cannot be extrapolated to low frequency in-situ 
conditions. Consequenty, high quality, in-situ measurements of ocean floor 
acoustic properties are needed before truly representative models of this 
boundary can be constructed. 

Over the past decade, NAVAIRDEVCEN has made measurements of sound inter- 
action with the ocean floor at approximately 250 sites around the world. 
Potentially, these data can be used to answer some of the fundamental questions 
about the influence of the bottom on sound transmission. The time resolution 
of these measurements is not, however, sufficient to permit direct estimation 
of in-bottom properties. This resolution is greatly reduced by the oscillations 
of the gas bubble produced by the acoustic source (an explosion). This gas 
bubble expands and contracts rapidly while exchanging energy between water-mass 
movement and gas compression until an equilibrium is reached. Ideally, a very 
short pulse should be used to isolate individual energy paths through the 
bottom but the gas bubble oscillations spread the explosion's pulse in time, 
thereby obscuring the individual arrivals. 

Classically, a method known as inverse filtering or replica deconvolution 
has been used to reduce the smearing effects of the bubble oscillation. In 
this process, the exact waveform of the bubble oscillation must be known so 
that a filter can be constructed that reduces this waveform to a narrow spike. 
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In this investigation, a more general signal enhancement procedure is 
developed in which the source waveform need not be known. This method, called 
homomorphic deconvolution, can be used not only to reduce smearing by the 
source waveform, but, in another mode of operation, can be used to isolate the 
source waveform itself. Although inverse filtering has been successfully 
applied to bubble pulse reduction,2 the homomorphic procedure is inherently 
more flexible. 

Essentially, homomorphic deconvolution involves transforming the time 
series signal into a domain in which convolution becomes addition. Once in 
this additive domain, the bubble pulse, which was originally convolved with 
the ocean transfer function, can be suppressed by standard linear filtering 
procedures. Transformation back into the time domain then yields the desired 
ocean response as if the source has been a single, very  sharp pulse. 

In conjunction with this signal enhancement process, it is also necessary 
to develop a mathematical model of the interaction of transient acoustic signals 
with the ocean floor. The model must be sufficiently general to describe re- 
flection and refraction within layered, inhomogeneous media; distortion intro- 
duced by dispersion, attenuation, and phase-shifting; and reflection of non- 
planar wavefronts. Without such a model, the process of interpreting the 
enhanced signals physically would be haphazard. Furthermore, if a model can 
be developed that predicts signal propagation similar to that observed in 
measurements, these measurements can be associated with physical phenomena and 
quantitative estimates of physical properties in the ocean floor can be made. 

The interrelation of the different phases of this project are shown in 
figures 1 through 3. The fundamental task, that of deconvolving a measurement 
signal to generate the response of the medium, is diagrammed in figure 1. A 
by-product of the homomorphic technique is the ability to isolate the source 
waveshape. This can then be reconvolved with the medium response as shown in 
figure 2 to provide a measure of the quality of the deconvolution. 

Once the medium response has been measured and verified, the response is 
translated into a physical model of the medium. This is the desired product 
of this research but it too must be verified. For this reason, the transient 
response model was developed. The model of the medium is excited by the 
source waveform (by computer simulation) and the resulting theoretical response 
can be compared to the actual received waveform.  In this way the assumptions 
involved in building the physical model of the ocean floor can be evaluated. 
Thus, the procedure as a whole (figure 3) has several feedback paths to insure 
validity of the results. 

This report summarizes the development of the deconvolution process only 
since that was the most time-consuming task. A companion volume^ describes 
the design and operation of the model for transient response of the ocean floor 
and also some of the results obtained by this phase of the project. 
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THE PROBLEM 

To better understand the motivation for enhancement of seismic measure- 
ments by explosives, we will briefly consider the process of measuring relevant 
acoustic parameters of the ocean floor. The most important of these quantities 
are compressional sound speed and density as functions of depth into the sedi- 
ment. At low frequency (less than 100 Hz) or in shallow water (a few wavelengths 
or less), the shear sound speed and attenuation may also become important. 

The depth to which these quantities must be known depends on the geometry 
of the process to be modeled, the rate at which compressional or shear energy 
is dissipated in the sediment (the two attenuation parameters), and the acoustic 
frequency. Since viscous attenuation (constant loss per cycle) is generally 
assumed, the range of frequency to be covered by the model will set some limit 
on the depth to which we will need to know the properties. 

Any experiment designed to measure these parameters must take into account 
the actual process to be modeled.  If, for example, we are interested in low 
frequency detection of a single frequency source in deep water, we should try 
to make the measurement at a similar frequency and in deep water. In particular, 
the scale (in this case, the dimension-to-wavelength ratio) of the experiment 
should be close to the scale of the application. Attenuation in sediments is 
not linearly related to frequency over wide frequency ranges (as viscous attenua- 
tion theory applies) so the measurement frequency should be as close as possible 
to the application frequency for attenuation measurements. The experiment 
itself should not disturb the medium significantly and it should provide suf- 
ficient resolution in space so that the parameters can be determined as functions 
of depth and range. 

In short, the measurement should be similar in, at least, scale and, perhaps, 
fequency to the system to be modeled and should probe the bottom sufficiently 
in depth and range without disturbance. Under these conditions, we must select 
a measurement method that will provide realistic estimates of the properties 
important for modeling underwater acoustic sensor performance. 

Historically, sound speed and attenuation measurements have been made on 
thousands of samples of ocean sediment obtained by coring. For our purposes, 
these measurements are seriously deficient on at least two counts: first, the 
coring process produces substantial deformation of the sample thereby changing 
the physical properties; second, the measurements are generally made at several 
kilohertz so that the attenuation values are not applicable to low frequency 
investigations. Relatively little work has been done on scaled experiments 
and it would be difficult to construct a scale sedimentary column. In any case, 
attenuation values could not be measured reliably since scaling length downward 
means frequency must be increased (in order to preserve the length-to-wavelength 
ratio). 
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There are two major types of measurements made in the same environment 
as the operating system will be a part of. These are continuous wave (CW) 
and wideband, short-duration "shot" measurements. Although there is current 
interest in detection of broadband energy in the ocean, most ASW systems are 
designed for discrete frequency emissions from the target. In this sense, 
the CW measurements ought to be more realistic; however, the CW technique does 
have some disadvantages. As discussed below, the shot method can be consider- 
ably cheaper and faster than CW and, furthermore, the CW signal cannot be used 
to isolate different propagation paths (without beamforming). Therefore, the 
received CW signal is a single sine wave completely characterized by an ampli- 
tude and a phase and can only be used to measure the total propagation loss 
between a source and a receiver. If the water-borne path dominates, then very 
little information can be deduced about bottom properties. 

One of the primary reasons for adopting the shot method for these ocean 
floor studies was that the entire experiment can be done from an airplane 
using sonobuoys and small explosive charges. In comparison with ship-based 
experiments, this technique is cheap and capable of surveying large areas 
quickly. The explosives - standard MK81 SUS - are reliable, repeatable, and 
result in a high signal-to-noise ratio at the receiver. Also, the bandwidth 
is high (roughly 50-10,000 Hz for a 2 lb charge at 800 ft) so that the potential 
time resolution, after enhancement, is good. 

On the other hand, precise placement of the source and receiver is diffi- 
cult, the source level at very  low frequency (below 50 Hz) has not been 
accurately determined, the oscillating gas bubble makes enhancement difficult 
and, because of the 'large amount of energy released, the initial propagation 
of the pressure pulse is definitely nonlinear. This last problem can, in some 
instances, make application of the results to linear, CW propagation question- 
able. 

In this report, we will consider only the enhancement of the received 
signal by removing the smearing effects of the explosion's gas bubble oscilla- 
tion. This bubble is formed under yery  high pressure by the explosive's 
combustion products and it expands until the gas/water momentum is checked by 
the surrounding fluid pressure. The bubble has, at this point, over-expanded, 
so it is forced back in towards its center. Since the gases are quite elastic 
and the flow of the surrounding water is spherically symmetric, this oscillation 
continues for a number of periods until the energy is essentially dissipated 
and an equilibrium is reached between the gas pressure and the static fluid 
pressure. Typically, four to six cycles are visible on the received waveform 
of such an explosion. Without eliminating these oscillations, only gross 
properties of the bottom can be studied.  If the oscillations can be removed, 
the time resolution of the received signal can be greatly improved. Consequently, 
property estimates along individual paths through the ocean floor can be made. 

Before we discuss the process by which these received signals are enhanced, 
let us examine the formation of the received signal. While several points of 
view are possible, we will treat the problem as a system problem with some 
excitation (the explosion and bubble oscillation) and some response (the 
received waveform). The system is the ocean and its boundaries. One form of 
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excitation which we will not consider is a single-frequency sine wave.  If we 
were to measure the output of the system for enough of these sine waves, each 
at a different frequency, we could completely determine the system response. 
This would be equivalent to measuring the received level from a sonobuoy for 
each setting of a variable-frequency CW source. In this manner, we could 
measure the frequency response of the system and then, given the spectrum of 
any arbitrary excitation, compute the response. 

While the preceding method seems reasonable, it would in fact be difficult 
to do because of the need to sweep the source through a broad range of frequencies 
pausing long enough at each to achieve steady state, all the while maintaining 
the same experimental geometry. We can, on the other hand, probe the system at 
all frequencies in the band simultaneously if we choose an excitation waveform 
whose spectrum is uniform (that is, flat) across the band. The impulse is 
just such a waveform. Theoretically, the impulse has zero width and infinite 
amplitude so that the area enclosed is finite; however, for practical pur- 
poses, we will consider an approximate impulse that is very  short duration and . 
very  high amplitude. With this impulse excitation, the received signal will 
have some characteristic shape called the impulse response: a fundamental system 
property. 

To use this impulse response, we sample the excitation and then replace 
the sample points by weighted impulses so that the net area under the curve 
is conserved. As long as the system is linear, the response is just the sum: 
of the impulse responses weighted and shifted in accordance with the original 
impulse sum. This weighting and shifting operation is called convolution 
and, in this instance, the time-domain waveform at the receiver is the convolu- 
tion of the system's impulse response with the arbitrary excitation waveform. 
This convolution process occurs any time some physical system is excited. 
Each little "bit" (interval of time) of the excitation function acts as an 
impulse and the system responds accordingly. The output is the resultant of 
all of the impulse responses delayed in time to correspond with their respective 
bits of excitation. 

This superposition of responses depends on the linearity of the system. 
In most cases, the systems with which we will work are linear, but remember 
that the explosion generates a large amplitude disturbance and until the 
amplitude decays sufficiently with range the propagation is nonlinear. If, 
for example, the explosion wavefront reflects from the ocean surface well 
before it becomes linear, the results may be quite different from those observed 
in a linear reflection. At this stage, we will have to be content with the 
linear theory but aware that the explosion may introduce errors into this 
assumption. Also, we should note that, while the signal enhancement process 
described herein is a nonlinear process, it does assume that the system 
on which it operates is linear. 

In the next section, we will lay the theoretical foundation for a decon- 
volution process whereby the impulse response of the ocean system is extracted 
from the received signal. As we have seen, the received signal is formed by 
convolving the impulse response with the excitation waveform which, in our 
experiments, is an explosion's pressure pulse and bubble oscillation. If this 
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convolution can be undone, the impulse response and the source waveshape may 
be separated. Since the impulse response is the response of the ocean and 
ocean floor to an infinitely short pulse, we then would have a description 
of the propagation with potential for resolving individual propagation paths 
without the gross smearing caused by the gas bubble oscillations. 

DECONVOLUTION THEORY 

Convolution is a common phenomenon in physical problems in that a convolu- 
tion occurs any time an external force is applied to a system. Real systems 
generally have some lag or delay in responding to an excitation and, perhaps, 
a resonant "ringing" or a decay that prolongs the response after removal of 
the excitation. Since this behavior is common, we will review some of the 
mathematical tools used to describe convolution before considering the methods 
for deconvolution. 

As described in the previous section, the fundamental excitation is the 
impulse function and the fundametal system response is the impulse response. 
We will use the following notation to describe the excitation and response, 

6(t) ^ h(t). 

The left-hand side is the excitation which,  in this  case,  is  the impulse  (or 
delta)  function.    The right-hand side is  the response  (the impulse response 
in this example).    The impulse function  is  defined as, 

6(t)    =    1/dt    (dt    ^    o)     if t = 0 

=     0 if  t  7^  0 

so that the following is  true, 

,t2 

5(t-tQ) f (t) dt = f (t^)        (t^ < t^ < t^)   . (1) / 

Thus, the impulse samples a function under integration. 

A shift in time does not affect the system response, therefore, 

6(t-T)  -> h(t-T) 

and, since the system is linear, we can form a superposition of these impulses 
as follows, 

]2  fn 5(t-nAt) -^    Y.  ^n  h(t-nAt) 
n=o n-o 

10 
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For a continuous weighting function, the summation becomes an integration. 
/OO oo 

fd) 6(t-T)dT  ^  / f(T .h(t-T)dT 

0 

but, because of the sampling property of the impulse, the left-hand side 
reduces so that 

f(t)    ^    f    f(T)h(t-T)dT. (2) 
0 

This equation expresses the system response mathematically. For an excitation 
f(t), the system response is the convolution of that excitation with the 
system impulse response.  If we know the impulse response, we can then calculate 
the system's response to any arbitrary excitation.  (We have assumed above 
that the excitation starts no earlier than t=0. This is not necessary - just 
convenient.) 

From this point, we will leave the time domain and concentrate on the 
frequency domain. Most of the literature that describes homomorphic decon- 
volution, the particular variety of deconvoluation we are considering, uses 
the z-transform to establish the method's validity.3'4,5 since we are 
ultimately going to use the fast Fourier transform (FFT) to convert from one 
domain to another, the discussion to follow will not explicitly mention the 
z-transform.  Instead, the Fourier transform will be used and connection between 
the Fourier transform and the z-transform has been relegated to appendix A. 
Hopefully, this will make the process description more palatable to the non- 
specialist. 

Take the Fourier transform of the convolution integral, equation (2), 
CO 

G(a.) = /Tf(T)h(t-T)e'^''^^dtdT 

'o 

Next, expand the exponential factor, 
CO 

G('.) = j//'f(T)e-^"^h(t-T)e-^'"(^-^)dtdT 

0 
and make change of variables as follows, 

t' = t - T 

dt' = dt 

so that, 
00 OO 

G(a>) = J   f(T)e"'''"^dT^ f   h(t')e"'''"^'dt' 
0 0 

= F(u) H(a)) 

where F(;.o) = Fourier transform of f(t) 

H(ai) = Fourier transform of h(t). 

11 
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Hence, a convolution of two time functions is equivalent to the product of 
their spectra.  In symbolic notation, this property can be stated as follows, 

F[f*h] = F[f(t)] F[h(t)] 

= F(a)) H(a3) (3) 

where F [ ] = Fourier transform 
* = convolution 

As a consequence of equation (3), we can now compute the system output 
(in the frequency domain) by multiplying the spectrum of the excitation by the 
spectrum of the impulse response.  In addition, we could deconvolve by division: 
if we want to extract the impulse response of the system, we can divide the 
spectrum of the system output by the spectrum of the excitation and the result 
will be the spectrum of the impulse response. 

The success of this type of deconvolution depends, however, on two factors. 
First, the excitation spectrum must be accurately known, and in these airborne 
seismic measurements the excitation is rarely directly measurable. Second, the 
excitation spectrum can never be zero (or, for that matter, small) at any 
frequency in the band of interest since the resultant response would be un- 
defined (or extremely large) at these frequencies. This problem is usually 
circumvented by adding some noise to the excitation to fill in spectral nulls. 

This deconvolution by division is known as inverse filtering and much work 
has been done in this area.- If the source waveshape is well known, this is 
probably one of the best methods for computing impulse response; however, we 
will not say much more about inverse filtering. 

Homomorphic deconvolution promises to be considerably more flexible, 
particularly in the case of a yery  complicated system such as the ocean and 
ocean floor. As we will see, it should be possible to isolate not only the 
impulse response but also certain parts of the impulse response or even the 
excitation itself. It is this processing flexibility that makes the homomorphic 
technique attractive. 

Linear filtering of signals is a very useful and flexible procedure for 
noise removal or signal shaping because the filtering can be done in the 
frequency domain. If we consider a signal to be a superposition (that is, a 
summation) of sine waves of different frequencies and amplitudes, these com- 
ponent waves can be selectively removed or amplified in the frequency domain. 
The basis for homomorphic deconvolution is the location of a domain in which 
convolution becomes addition. Once this domain is found, the highly-developed 
techniques of linear filtering can be applied to separate or modify the various 
components. Thus, homomorphic deconvolution involves a nonlinear transformation 
of the convolved signal to reduce the convolutions to summations and subsequent 
linear filtering to extract the desired information. 

We have already reduced convolution to multiplication by means of the 
Fourier transform.  If we can reduce the multiplication to addition, we will 
in principle, have developed the required process. The logarithm function 
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reduces multiplication to addition but the numbers on which we must operate 
(the spectrum values) are complex. Hence, we must define a complex logarithm 
such that. 

Ln (XY) = Log{X) + Log(Y) 

where 

X,Y = complex numbers. 

This condition will be satisfied if, 

Ln (X) = In/X/ + i arg(X) (4) 

or, if 

X = xe^> (5) 

then, 

Ln (X) = ln(x) + i<^ 

where 

In - natural logarithm 
arg = argument function 
// = absolute value. 

Another equivalent definition is possible by generalizing the definition 
of the natural logarithm. 

In (X) = / ^ 

where x is real. If we substitute a complex z for x and change the integration 
to a contour integration, we have, 

Ln (z) = i/'^ (6) 

The integral form of equation (6) is not a very practical definition but 
it serves to illustrate a problem in determining the imaginary part of the 
complex logarithm. According to equation (4), the imaginary part is the phase 
of the complex number; however, in the exponential notation of equation (5) 
this phase is ambiguous. Any integer multiple of 2Tr can be added to the phase 
factor 0 in equation (5) without changing the value of the complex number. 
This addition will change the logarithm though. Equation (6) is a contour 
integral and the integral has only one pole at z=0. Therefore, any contour 
will produce the same answer as long as the contours all encircle the origin 
in the same way. The addition of multiples of 2IT to the phase of the complex 
number is equivalent to circling the origin that same number of times and the 
resultant value is a function of the number of origin "orbits". 
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While we are generally accustomed to reducing the phase of a complex 
number to its principal value, we must not do so if we intend to use the 
complex logarithm. If the generating function for z is a continuous function, 
the phase relationship of nearby points can be determined by examining many 
closely-spaced points in between and, in this manner, the absolute (i.e., non- 
principal value) phase can be established. 

Our problem is complicated by the fact that we operate on sampled signals 
and sampled output from FFT routines.  In this case, the phase can change so, 
much from one point to the next that the absolute phase is lost. One might 
naively believe that this could not happen since the signals are properly 
sampled to prevent aliasing but this sampling criterion (the Nyquist rate) is 
based on linear theory and the phase is a nonlinear function of the spectrum 
value.  (The phase is the arc-tangent of the ratio of the imaginery part to 
the real part.) While the sampling may be adequate to define linear functions 
of the signal, there is no reason to expect that nonlinear functions are 
adequately sampled also. In fact, the phase is frequently severely under- 
sampled in the signals considered by this study. The aliasing that results, 
from this under-sampling is discussed in terms of the z-transform by Ulrych 
and Stoffa.5 

\ 

This then is the principal problem with homomorphic deconvolution.  If 
the absolute phase can be correctly established at every one of the sample 
points of the spectrum, the deconvolution process can be continued. We will 
defer the discussion of how this can be done until the next section and 
continue with the theoretical development as if the absolute phase problem 
has already been solved. 

Having successfully calculated the complex logarithm of each point in 
the spectrum, we have effected a transformation into the log-spectral domain. 
In this domain, the respective components of signals that were convolved in 
the time domain are summed. Since the combination of components is now linear, 
we can draw upon an extensive set of linear filtering techniques. Usually 
these techniques are applied to time signals by first transforming the signals 
into the frequency domain where the additive components (the constituent sine 
waves) become separated along the frequency scale. In this same way, we will 
transform the log-spectrum into another domain in which the additive components 
(which were convolutional components in the time domain) become separated. 

Application of the Fourier transform to the log-spectrum generates a 
function called the complex cepstrum. Originally, the real logarithm of the 
magnitude spectrum was used to generate the cepstrum thereby losing the phase 
information. This was still a useful device for some applications but, without 
the phase information, deconvolution can only be done in some very special 
cases (which are discussed below). With this early work came a lexicon of 
new terms describing the various attributes of the cepstrum; however, most 
of these words serve only to confuse the real workings of the process so we 
will retain only the word cepstrum. \ 

Actually, the important domain is the log-spectral domain because it is 
here that the convoluted time functions first become linear. The cepstrum is 
valuable primarily as an aid to filtering; in fact, the filtering, once developed 
can be applied directly to the log-spectrum. 
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At this point, let 
tionship between the lo 
bubble oscillations of 
ducing a definite oscil 
spectrum magnitude. A 
log-spectrum) should sh 
rapidity of the oscilla 
appear in the cepstrum 
responds to the period 
scale is related to the 
(such as echoes or mult 

us consider an example in order to clarify the rela- 
g-spectrum, the cepstrum, and the time function. The 
an underwater explosion affect the spectrum by intro- 
lation (periodic along the frequency scale) of the 
Fourier transform of this magnitude spectrum (or the 
ow a discrete peak at a time corresponding to the 
tion in the frequency domain. This peak does, in fact, 
and the time (the scale of the cepstrum is time) cor- 
of the bubble oscillation. In general, the cepstrum 
time between repetitions of an event in the time series 
iple paths of propagation). 

Another more specific example is helpful at this state. Consider a system 
whose response is a series of echoes; the impulse response for such a system 
is a sequence of delta functions. 

h(t) 
m 

E 
i=o 

a.6(t-ti). [i: 

The response for an arbitrary excitation f(t) is then a sequence of weighted 
and delayed replicas of f(t), 

g(t) = f*h 
m 

= L a./f(t-r)6(r-t.)dT 
i=o ^ 

= E'a.f(t-t.) 
i=o 

where g(t) = system output. 

Furthermore, the frequency response, equation (3), is, 

CO  m 

E 
0   i=o 

m r 
■ 1=0 

and the log-spectrum is 

/<»     m 
E   a. 

or 

F(a))     Y.    ^i^' ■itot 

5(t-t.)e"''"^dt 

Log [G(LO)]= Log  [F(co)] + Log 
r m 
E a,-e-1 wtn 

1=0 

More specifically,  consider one arrival  and a phase-inverted echo delayed 
by 2T seconds so that, 

m 
I 
i=o 
X;   aie-i'^ti   = I _ g-ia32T 

= 2Q-^^^^-3 sin  (oix) 
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and. 

Log [G(aj)] = Log [F(LO)] + In 2 

-i (ajT-|) + In [sin (cox)]. (8) 

The last two terms on the right-hand side deserve some comment. The last term 
is periodic in w and will, therefore, lead to a peak in the cepstrum at x 
seconds which is proportional to the echo time or, in other words, the repeti- 
tion rate of the basic excitation waveform. The next to last term in equation 
(8) is linear in w and can, therefore, lead to very  large values in comparison' 
with the last term. This could easily swamp the more important final terms. 
Fortunately, this term can be eliminated merely by shifting the waveform g(t) 
in time (by x seconds in this case) so that the two impulses of the h(t) func- 
tion are centered around t=0. This term, the linear phase ramp term, is 
generally present in the log-spectrum but it can always be eliminated by 
shifting the time series. 

There is another aspect of the complex logarithm that causes a consider- 
able amount of trouble and that is its value for very small arguments. In 
real signals, we are normally not troubled by poles in the spectrum but nulls 
or regions of low level are common. Through the logarithm operation, zero 
points in the spectrum become poles. Thus, any regions of very low level in 
the spectrum will be troublesome in the course of tranformation to the log- 
spectrum. 

To visualize the relationship of zeros in the spectrum to the transform 
process, we will generalize the Fourier transform.  (Appendix A describes some 
of the relationships between the Fourier transform and several other transforms 
The Laplace transform is basically a generalized Fourier transform and the 
z-transform is a generalized discrete Fourier transform (DFT). Since we will 
eventually be using the FFT (an efficient computer algorithm for computing the 
DFT) to perform the necessary transformations, we will present the following 
discussion in terms of the z-transform. Usually, the z-transform is defined 
for sequences or sampled functions rather than for continuous functions, but, 
for our purposes, we will extend the definition to continuous functions. 

Let us define our z-transform as follows (compare to equation (A-4) in 
appendix A), 

=/ G(z) - / F(a3)z'' du) 

which reduces  to the  Fourier transform if the complex variable z  is  replaced 
by eTt.    Notice that the transform is written in terms of w instead of z since 
we will  forward transform the log-spectrum to enter the cepstrum domain. 

Figure 4 shows the z-plane and the circular contour (a unit-radius circle 
centered on the origin) followed in the special case of the Fourier transform. 
As  real  w increases,  the integration progresses around this circle in the 
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counter-clockwise direction. In order to evaluate the Fourier transform, we 
only need to know the values of the spectrum along this circular path. It is, 
however, useful to examine the spectrum in the z-plane near this path as its 
behavior near the path affects its value on the path. For example, we 
recognize the difficulty involved when a zero of the spectrum falls on the 
Fourier transform path: the complex logarithm becomes indeterminate. If a 
zero is near the path, the trouble is not as obvious but a spectral minimum 
will result accompanied by a rapid phase change. 

To examine the influence of zeros close to the unit circle in the z-plane, 
let us consider a spectrum defined by a single zero and no poles, 

F,(z) = A^(z-zo) 

where Fo(e'i'^) = F^(z) for z on the unit circle. This situation is pictured 
in figure 5 along with two vectors corresponding to the difference (z-z„) 
for two values of z on the unit circle. As the frequency increases from 
0)1 to w2, the length of the vector from z to z decreases to a minimum at the 
point of closest-approach of the circle t8 z^  and then increases again. For 

the same progression of frequency, the phase continually decreases (clockwise 
vector rotation) slowly at first, then rapidly past the closest-approach point, 
then slowly again. These changes are illustrated in figure 6.  If the zero 
is inside the unit circle, the variations are similar but the phase increases 
with increasing frequency. 

Poles will appear in the z-plane if there is any trapped propagation in 
the ocean floor (that is, ducting by sediment layering or gradients) or one of 
several types of boundary waves. These effects are discussed in detail in the 
companion volumel to this report; but, in short, poles affect the phase in a 
manner similar to zeros. When a pole is near the unit circle the phase will 
also change rapidly as the contour passes by the pole. In the case of poles, 
we also know from stability theory that for physical (naturally stable) system, 
the poles will be inside the unit circle and so we can predict what direction 
the induced phase change will be. Since the factor (z - Zo) is in the denomina- 
tor for a simple pole, the direction of the phase change is opposite to that 
associated with a zero. Hence, the phase will decrease rapidly near a pole 
just inside the unit circle. 

Since, in practice, the spectrum is sampled, there often is not enough 
information to establish the direction of these very rapid phase changes. 
For a zero very close to the unit circle, the phase change is roughly ±IT and 
this is the same magnitude as the ambiguity in phase of a complex number. 
(In other words, if we guess that the change was IT when it actually was -TT, 

the error is 2?: which cannot be resolved from the complex number.) As we will 
see in the next section, these phase changes can be so rapid for real signals 
that even by increasing the sampling rate of the spectrum they are frequently 
misinterpreted.  In short, the sampled spectrum itself is adequately determined 
but the presence of zeros (or poles) in the spectrum and the requirement for 
absolute phase make the log-spectrum very difficult to compute. 

18 



REPORT NO.   NADC-82253-30 

Q. 

O 

(/) 
c 
S- 

s- 

(D 

"a 
I 

N 

(U 

o 
4-> 

(/) 
o 

o 
i- 
<u 
N 

CU 

c 

s- 
o ^- 
(U (/) 
c 
o 
Q. 
CO 
<U 
i. 

«t- 
o 

o 
3 
S. 

■!-> 
(/) 
C 
o o 

LO 

0) 

3 
cn 

19 



REPORT NO. NADC-82253-30 

Figure 6. Magnitude and phase changes in spectrum for transform path that 
passes near a zero in the z-plane. 
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In general, the spectrum comprises a large number of zeros in the neighbor- 
hood of the unit circle and it is sometimes useful to move these zeros. For 
example, if there were several zeros very close to the unit circle, we could 
simplify the phase reconstruction if we could move them away from the circle. 
This is accomplished by exponentially weighting the original time series,'' 
as follows, 

g(t) = f(t)a^ (9) 

The resultant spectrum is, 

, y> CO 

G(e'^) = y  f(t)a^e"''^^dt (10) 
0 

=  F(8^'"/a). 

For a less than one, this is equivalent to sampling the spectrum along a circle 
outside of but concentric with the unit circle. From another point of view, 
this operation is equivalent to shrinking the spectrum symmetrically around the 
z-plane origin and still transforming along the unit circle. By using this 
exponential weighting, we can shift zeros that are close to the unit circle 
inside and farther away from the circle. 

This operation of exponential weighting can help in the reconstruction of 
phase but it must be applied sparingly. The form of the factor at that multi- 
plies the time series is such that, even for a close to one, the latter portions 
of the time series can be suppressed substantially. Fortunately, very small 
amounts of exponential weighting (0.995 < a < 1.00) can significantly improve 
the reconstruction process.5 

To conclude this discussion of deconvolution theory, we should mention 
the concept of minimum-phase.8 In general, both the real and the imaginary 
parts of the spectrum are needed to reconstruct the original time series, but, 
if the time series is causal (that is, zero for time less than zero), then the 
original series and, therefore, the imaginary part of the spectrum can be 
recreated from the real part of the spectrum. Thus, the real and imaginary 
parts of the spectrum of a causal time signal are related. In particular, the 
imaginary part is the Hilbert transform of the real part. This transform is 
very simple to apply: the inverse Fourier transform of the spectrum with only 
the real part nonzero is taken, the resulting time series is set to zero for 
all time less than zero, and then the forward Fourier transform is taken. 
The result is a spectrum with the real part unchanged and the appropriate 
imaginary part. 

This same concept can be extended to the log-spectrum. In this case, the 
real part (the log-magnitude of the spectrum) is well-defined and single-valued. 
It would be convenient if we could extract the imaginary part (the phase of 
the spectrum) from the real part. This is possible if the cepstrum is zero 
for time less than zero. This is the condition for minimum-phase and, if it 
is true for a signal, the imaginary part of the log-spectrum can be calculated 
from the Hilbert transform of the log-magnitude spectrum. Under certain 
circumstances, we will be able to use this technique to eliminate the phase 
reconstruction problem; however, the minimum-phase condition is quite restrictive. 
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Oppenheim and Schafer^ show that if all of the poles and zeros of a 
spectrum are inside the unit circle, then the signal is minimum-phase.  (Only 
the poles are required to be inside the circle for a stable signal.) As we 
have seen, we can force all of the zeros inside the unit circle by sufficient 
exponential weighting; however, this can lead to obliteration of most of the 
time series. Hence, we cannot indiscriminately force a signal to be minimum- 
phase and expect to get meaningful results. If a single convolutional component 
of the signal is almost minimum-phase and the other components can be averaged 
out by summing many log-spectra, we can take advantage of a small amount of ■ 
exponential weighting and the Hilbert transform to extract the nearly minimum- 
phase component. We will outline an application for this procedure in the 
next section. 

Before leaving the subject of minimum-phase, consider the type of signal 
that is minimum phase. Since we know that exponential weighting, in effect, 
moves zeros (and poles) toward the origin (for a < 1), and we know that a 
signal is minimum-phase if all of its poles and zeros are within the unit 
circle, we would expect that a time series that, on the average, decays ex- 
ponentially would be minimum-phase. This is generally true. The waveform of 
an explosion with its high-level shock front and decreasing amplitude bubble 
pulses is nearly minimum-phase. A series of reflections of decreasing amplitude 
from a normal incidence reflection from a layered medium would be almost min- 
imum-phase. On the other hand, a near-grazing reflection from the ocean floor 
with refracted arrivals appearinq later and stronger than directly reflected 
arrivals would not be minimum-phase. This intuitive view of minimum-phase is 
of some value in deciding on the method for phase reconstruction, but it cer- 
tainly should not be accepted as proof of the nature of any signal. Since 
the process described in this report is nonlinear, each type of signal will 
have to be individually examined for peculiarities.  In the nonlinear world, 
generalizations are dangerous. 

APPLIED HOMOMORPHIC DECONVOLUTION 

In this section, we will consider the problems and techniques associated 
with the application of deconvolution theory to real signals. These techniques 
tend to be application-dependent and so some modifications will undoubtedly 
be necessary in order for these processes to work on types of signals other than 
those considered herein. We have concentrated on deconvolution of seismic 
measurements of the ocean floor made with explosives and sonobuoys over wide 
ranges of incident angle. As a result, the following discussion will be tailored 
toward these types of signals; however, the principles involved should help 
the designer of homomorphic processors for other types of convolved signals. 

Before we describe the mechanics of a homomorphic deconvolution process, 
let us review the major obstacles. For our purposes, the desired end product 
of deconvolution is the system impulse response (that is the received signal for 
a sharp excitation pulse after reflection from the ocean floor). This response 
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is the system output with all frequencies in the band of interest excited. 
Unfortunately, the explosion does not excite all frequencies uniformly. 
Furthermore, filtering in the data acquisition system eliminates still more 
of the desired information. The source waveshape spectrum rolls off quickly 
below the fundamental frequency of the bubble oscillation (approximately 50 Hz 
for a 2.2 lb TNT charge at 800 ft) and above that there are many nulls in the 
spectrum.  In spite of the very high signal-to-noise ratio signal produced by 
the explosion, the noise in these nulls can dominate. This information is 
lost in any kind of deconvolution process. 

Inadequate sampling of the spectrum creates another problem unique to 
homomorphic deconvolution. While the signal is adequately sampled for linear 
operations, the phase spectrum can be grossly undersampled. Consider the 
sampled spectrum of an actual measurement (with noise) of which four adjacent 
spectrum points are plotted in figure 7. This is a properly sampled signal 
according to Nyquist's criterion but there is no clear connection from one 
point to the next. Although it becomes expensive quickly, we can increase 
the sampling of the spectrum by adding zeros to the end of the time series 
prior to transforming. For example, if the original time series is 256 points 
long and 256 zero points are appended, the resulting spectrum will still cover 
the same frequency range but will be sampled twice as densely. 

Figure 8 shows the same four points as figure 7 but with a curve super- 
imposed by increasing the spectral sampling by a factor of 16. Now the 
sequence of phase (and magnitude) from point to point is clear and quite un- 
expected. The phase change from one point to the next is very large (the order 
of 2TT)  and at one point the curve passes so close to the origin that this 
large increase in resolution was necessary for establishing the path. If we 
pass the origin on the wrong side, we permanently accumulate a 2IT error in the 
phase of all succeeding points. This close pass is the result of a zero very 
near the unit circle in the z-plane. By the direction of the phase change 
(a decrease), we know that this zero must be outside the unit circle and we 
cannot, therefore, be dealing with a minimum-phase process. 

Some attempts have been made to reconstruct phase by integrating the phase 
derivative.^ This sounds round-about, but the derivative of phase with respect 
to frequency is single-valued, whereas the phase itself is not. The phase is, 

(j, = tan"^ (y/x) (11) 

where 

G = x + iy, the complex spectrum point. 

and this can only be computed as a principal value without additional informa- 
tion about the absolute phase. On the other hand, the derivative. 

1     d 

""      1 + (y/x)2 dw 

= xy^ -yx" 
2   2~ 

^  II 
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Figure 7. Four adjacent spectrum points of a properly-samp led real signal 
plotted in the complex spectrum plane. 
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Figure 8.    Actual   spectrum progression between the four points of figure 7, 
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where the primes indicate differentiation with respect to u, is single-valued. 
Given a suitable starting value, this expression can be integrated to give 
absolute phase. Unfortunately, this method is extremely susceptible to under- 
sampling. The phase derivative curve and our four sample points are shown in 
figure 9. Some of the peaks in the derivative curve are missed completely and 
even when one is hit the behavior of the curve is very poorly represented. 
Thus, the integration produces erroneous values. Tribolet9 attempted to solve 
this problem with an adaptive scheme that compares the integrated phase's 
principal value with the value computed by the arc-tangent. This procedure is 
somewhat more reliable, but when a sample point lands on one of the phase 
derivative peaks the phase can be off by one or more complete cycles. This 
happened frequently enough to abandon the phase derivative method. 

Since the spectrum is undersampled, any reconstruction method must first 
increase the sampling density in the frequency domain. Large increases in 
resolution by zero-filling the time series are not economical, but this is a 
good technique to use in moderation. The smooth trajectory of the curve in 
figure 8 suggests that a curve-fit might be successfully applied to a moderate 
sampling increase. First, the spectrum sampling rate is increased by a factor 
of eight. Then these points are fit with a series of complex cubic splines 
based on sets of six adjacent points. Several curve-fits were evaluated and 
this seemed to work the best (see figure 10); however, even the six-point spline 
sometimes passed on the wrong side of the origin. 

At this point, a decision must be made as to how to proceed. If we are 
content that each point of the spectrum be considered valid (that is, not 
corrupted by noise), we can develop an algorithm (described below) to locate 
the point of closest-approach of the spectral trajectory to the origin. Having 
found the frequency corresponding to this point, we can calculate the DFT at 
that point and use that point to resolve the path ambiguity. Since there are 
only a limited number of very close passes in a typical signal, the discrete 
transform calculations are not expensive. This approach does presume that the 
spectrum value is a valid signal point even though it is of very low level. 
We would expect, at least in some cases, that noise would dominate in these 
spectral nulls and we do not want to permit noise to drive the reconstruction 
process. 

A procedure which has not been tested adequately is based on a weighted 
curve-fit of the spectrum points. The spectrum is computed for increased 
resolution (four times is probably sufficient) and, as before, consecutive sets 
of the points are fit but in a least-square sense with the higher amplitude 
values weighted more than the lower values. Some type of bridging scheme like 
this has potential for enhancing phase reconstruction in the presence of noise. 

The physics of the signal and the ocean medium may also be used to provide 
some constraints on the phase reconstruction process. Some preliminary studies 
of the phase progression in real systems have been summarized in the companion 
volumel to this report, and we have already discussed some of these results in 
connection with poles in the spectrum. We can, at least, tell beforehand which 
direction the phase change will be in near system resonances connected with 
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CJ 

Figure 9. Sampling of phase and phase derivative for a typical real 
signal sampled at the Nyquist rate. 
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trapped or ducted propagation and boundary waves. Considerably more work 
needs to be done in this area in order to better understand the behavior of 
the phase spectrum of transient signals. 

The technique used for most of the work presented here is the procedure 
based on locating the points of closest-approach and computing the DFT at this 
point. Several steps are involved here: first, close pass situations must be 
detected; next, the discrete transform must be evaluated; finally, the path 
route around the origin must be chosen based on this calculation. 

In the interests of computational speed, a fairly crude (and conservative) 
scheme is used to detect potential close-pass situations. If the angular 
difference between successive points of the "oversampled" spectrum is less than 
90°, we assume that the spectral trajectory between these points can be ade- 
quately represented by a straight line. By considering each of the two points 
as a vector emanating from the origin and taking the dot product of these 
vectors, the sign of the cosine of the included angle can be evaluated very 
rapidly since, if, 

A = (xi, yi) 

"B = (x2, y2) 

then 

/A//B/coS(j) = A • B = x^x^ + y.y^ (12) 

where A, B are vectors in the spectrum-plane. If the dot product is positive, 
then the included angle <^ must be less than 90° and we can proceed directly to 
detection of path direction. 

On the other hand, if the included angle is greater than 90°, we fit the 
set of six adjacent points centered on the trouble spot with a complex spline 
(actually two real splines, one on the real parts of the points and one on the 
imaginary parts). A fast, bisection search is then performed to locate the 
closest-approach point and the DFT is computed at the corresponding frequency. 
The DFT need not, however, be taken on the entire time series, which is mostly 
zero (having been padded with zeros to increase resolution). Instead, we take 
the DFT of the unpadded time series and then adjust the phase of the spectrum 
point to reflect the shift of the original series within the field of zeros. 
The path direction is then determined from this intermediate point. 

One important feature of the phase tracking procedure is that the actual 
path of the spectrum is immaterial as long as a count is maintained of the net 
number of orbits of the spectrum origin. With this count and the principal 
value of the phase at a point, the point's absolute phase can be determined 
merely by adding or subtracting a corresponding multiple of 2i\.    The count of 
origin orbits can be kept by counting the net number of crossings of the nega- 
tive real axis in the counter-clockwise direction. This implies a branch at 
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±Tr which is consistent with the principal value branch selected by the com- 
puter arc-tangent function. When it is necessary to compute a close-approach 
point, the crossing detection is done in two stages: from one spectrum point 
to the approach point and then from the approach point to the next spectrum 
point. 

We have, in essence, solved the phase reconstruction problem for a sampled 
signal. In this implementation it is still possible for errors to occur, so 
as interative test procedure is used. Since we must remove the linear (ramp) 
component of the phase change from one end of the spectrum to the other by 
shifting the time series, we can redo the phase reconstruction on this shifted 
series. The results should be the same after correcting for the linear phase 
shift induced by the time shift. The relationship between these two shifts 
can be found by taking the Fourier transform of a shifted time series, 

< 

f(t-to)e-i"tjt = e'^'^o  F(co) (13) 
0 

where 

F(aj) = Fourier transform of f(t). 

The first spectrum point is the zero-frequency point so the absolute phase 
there is set to zero. The highest point in the spectrum co^, after the initial 
phase reconstruction, has some absolute phase (j)t that can be removed by time 
shifting according to equation (13) where 

1 CO. t       i (b, 
to    ^t e    • e   = 1 

or 

^0 = -*t/'"f (14) 

This will also affect every other point in the spectrum as follows, 

where Fs(co) = Fourier transform of the shifted time series. Thus, the phase 
shift is in the form of a ramp: zero at zero frequency, i>^  at the highest 
frequency, and linear with frequency in between. 

If we had complete confidence in the initial phase reconstruction, we 
could remove the resulting phase ramp by a suitable time shift and proceed with 
the deconvolution. However, the process is not always error-free, so the 
reconstruction is repeated on the shifted time series. In addition to the 
usual test for reconstruction near zeros or poles, each new point is compared 
with each corresponding point in the previous pass to see if the phase has 
changed proportionately following equation (15). Any time a discrepancy is 
found, the spline fit and closest-approach calculations are performed to resolve 
the questionable point. 
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When this second phase reconstruction has been completed, the absolute 
phase of the last point in the spectrum should be zero (since the phase ramp 
was removed after the first pass). If not, the new ramp is removed and the 
reconstruction is performed again. In most cases, this is sufficient. If 
the endpoint phase is still not zero the procedure can be repeated, but this 
may be an indication that the signal cannot be adequately resolved by this 
technique. 

If, on the other hand, the second or third reconstruction is successful- 
(endpoint phase goes to zero), then the absolute phase values can be stored 
as the imaginary part of the log-spectrum. The real part is formed by the 
natural logaritm of the spectrum magnitude and this completes the calculation 
of the log-spectrum. Since generation of the log-spectrum is the key process 
in this method of deconvolution, a listing of a computer code for this operation 
is given in appendix B. 

Most of this discussion so far has been centered on the phase reconstruc- 
tion problem because this is the most difficult aspect of homomorphic decon- 
volution. The other processes cannot, however, be done carelessly. Proper . 
conditioning of the signal prior to phase reconstruction is vital, and this 
conditioning will be discussed in some detail in the next section. In short, 
this preconditioning involves proper sampling, filtering, and exponential 
weighting. 

Once the log-spectrum has been calculated, a standard FFT is applied to 
compute the complex cepstrum (unless the deconvolution filter has been designed 
to operate directly on the log-spectrum). Then the portion of the cepstrum, 
corresponding to the undesired part of the signal, is removed. Simply setting 
these points to zero is often sufficient. For example, if we want to eliminate 
the bubble oscillations of an explosive source, we zero a portion of the cepstrum 
around the bubble oscillation period (that is, the time between repetitions). 
We might also zero a small band of time corresponding to the repetition rate 
generated by unwanted multipath reflections. 

Having isolated the desired portion of the cepstrum, we then perform the 
inverse FFT to return to the log-spectrum and then perform the complex expo- 
nential is computed as follows, 

/   . ■   \        X iy exp(x+iy) = e e -^ 

This function is completely unambiguous. 

Finally, the inverse FFT is applied once again and the resulting time 
series is exponentially weighted by the inverse of whatever factor was used to 
weight the original time series. After shifting the series back to its orig- 
inal starting point in time, we have completely recovered the deconvolved 
signal. An example of the complete process is given in figure 11 where the 
source waveshape (A) is removed from a signal (A*B) with multiple arrivals. 
The received signal was synthetically generated by convolution of a replica of 
the explosion's bubble pulse and a three-path reflector series (B). While the 
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Figure 11. Example of homomorphic deconvolution of a received signal 
(A*B) made up of a source excitation (A) and a multipath 
medium response (B). 
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source waveform was known to construct the received waveform, this information 
was not used in the deconvolution. The deconvolution was performed by zeroing 
the cepstrum for all time at or below the bubble oscillation period. 

Additive noise in the time domain can be tolerated up to a certain point 
without adversely affecting the process. Beyond this point, however, the phase 
reconstruction fails because the spectrum nulls and the attendant phase jumps 
become dominated by the characteristics of the noise. Hopefully, the pre- 
viously mentioned null-bridging technique will reduce this problem. Until ■ 
null-bridging is perfected, this type of deconvolution is probable restricted 
to high signal-to-noise signals. Fortunately, most of the ocean floor measure- 
ments with which we are concerned Are  high signal-to-noise, thanks to the high 
intensity sound generated by the explosive charges. 

In the preceding section, the concept of minimum-phase was introduced. 
For reasonably deep, underwater explosions, the source waveshape is almost 
minimum-phase. This property can be exploited to extract the source waveform 
itself. Since the measurements on which we are operating are taken over a 
wide range of angles, the only component of the signal common to all received 
signals at a given site is the source waveshape. If we then add a large number 
of the log-spectra of these measurements, the components related to the ocean 
response will tend to cancel while the source components will build up. We 
can avoid the problem of phase reconstruction by sufficient exponential 
weighting to insure that the source waveform is minimum-phase and then by 
Hilbert transforming to generate the phase of the averaged log-spectrum.10 
The ocean response need not be minimum-phase because these components are 
averaged out, each measurement having a different geometry and arrival structure. 

After the averaged log-spectrum has been completed by Hilbert transforma- 
tion of the averaged log-magnitude spectrum, the spectrum and corresponding 
time series are computed.  Figure 12 shows an example of the isolation of 
the source waveform from 20 seismic measurements, each with a complicated 
arrival structure. The source waveshape extracted is \/ery  similar to the ex- 
pected explosion waveshape.il 

Once the source waveshape is established in this way, one of the more 
conventional deconvolution processes (such as inverse filtering) may be used 
to obtain the ocean floor response. One practical point worth mentioning here 
is that the source waveform of each measurement may, in fact, be slightly 
different because the charge does not always detonate at the same depth. 
The depth of the explosion (along with the relatively constant charge weight) 
determines the period of the bubble oscillation. We can, however, measure 
this period quite accurately by the associated peak in the cepstrum and correct 
each measurement to the same depth by stretching or shrinking the time axis 
prior' to averaging. The cepstrum computed from the log-magnitude with zero 
phase is adequate for measuring the bubble period. 

It is also possible to perform this averaging deconvolution to extract 
the ocean floor response if the geometry is such that the reflection response 
is almost minimum-phase and the source waveshape can be forced to vary from 
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measurement to measurement. A fairly high angle (i.e., near-vertical) 
measurement may satisfy the minimum-phase requirement with slight exponential 
weighting and several shots of varying depths and sizes could be used to vary 
the source waveshape. 

Also, it should be possible to reduce the noise problem for any type of 
deconvolution by averaging spectra or log-spectra of a number of measurements 
with the same geometry and source waveshape. Neither of the last two proposals 
has been tried as each would require a new experimental design (probably in 
the form of a shipboard experiment), but they have enough promise to encourage 
their consideration in future experimentation. 

SIGNAL CONDITIONING 

As we have emphasized, the success of this signal process is dependent on 
the quality of the signal on which the process operates. Such general and 
powerful principles as superposition or Nyquist's sampling theorem have no 
equivalents in nonlinear processing. Each type of signal must be treated on 
its own merits and must be conditioned properly in order to insure a valid 
deconvolution. In this section, we will outline some of the ways in which 
signals should be conditioned as a part of homomorphic deconvolution. 

First, let us review the basic problems with nonlinear deconvolution. 
In deconvolution, we are trying to reconstruct the response of a system at all 
frequencies (the impulse response) from the system output for an excitation 
that does not contain all frequencies. This means that, for those portions of 
the spectrum for which we have little signal, noise will corrupt the convolu- 
tion. In addition, for operations with the log-spectrum, minimum-phase signals 
are ideal; however, we usually must deal with mixed-phase signals. 

To avoid processing portions of the spectrum that are not well-excited by 
the source, we should filter and translate the original received signal for 
maximum energy across the remaining band. Remember that we are not free to 
select any band for the impulse response; the spectrum of the source determines 
what regions of the frequency response can be found. In general, we will have 
to low-pass filter to remove regions of high frequency noise and then translate 
to remove the poorly-excited frequency range below the explosion's bubble 
oscillation frequency. Some work has been done in breaking up the spectrum 
between these limitsl2 so as to eliminate intervening spectral nulls resulting 
from the source, but we will not consider these techniques. For the present, 
it is sufficient to drop the high and low sides of the spectrum where the 
source energy is rolling off. The objective of this first step is to minimize 
the number and extent of low-level areas in the spectrum. 

Next, the signal should be sampled as close to the Nyquist rate (that is, 
twice the frequency of the highest significant component of the signal) as 
possible. Undersampling, of course, will introduce aliasing. Oversampling 
may be just as bad, though, as oversampling effectively pushes the high 
frequency limit of the analysis up beyond the roll-off of significant energy 
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in the spectrum. This generates a region of low spectrum level that will 
be difficult to resolve during the phase reconstruction. Consequently, 
filtering of the signal should be done with a fairly sharp-edged filter so 
that aliasing can be avoided while still maintaining a near-optimum sampling 
rate. 

In the type of signals considered in this report, there are generally a 
large number of zeros very close to the unit circle. Many of these result 
from the nearly-minimum-phase source, waveform and they are all seen as large 
dips in the spectrum. The phase reconstruction can be simplified somewhat 
by a small amount of exponential weighting. As we have seen, this weighting 
moves the zeros toward the origin of the z-plane and, therefore, away from the 
unit circle. Since the amplitude of the time series decreases exponentially 
with time for this weighting, we must first shift the time series of the 
received signal toward the origin (t=0) so that the signal starts immediately 
on the time record. Also, the a in equation (9) should not be less than 
about 0.99 (and, of course, not greater than 1.00). Below this value, the 
time series is seriously attenuated toward the end of the record. As a result, 
it would be unusual if this limited magnitude of exponential weighting made 
the entire signal minimum-phase, but it may be enough to make the source com- 
ponent minimum-phase. 

After the exponential weighting has been done, it is often helpful to 
shift the time series again. Since the phase ramp in the spectrum is undesir- 
able and corresponds to a uniform shift or delay in the time series, we can 
reduce this ramp considerably by shifting the weighted time series so that it 
is approximately centered on t=0 (equal energy on both sides of t=0, for 
example). This will not, of course, completely eliminate the phase ramp, but 
it will simplify the first pass of the phase reconstruction. 

In general, it is helpful to know as much as possible about the physics 
involved in a particular signal formation process. The physics of a process 
can indicate what convolutional components are likely to be present.  In ocean 
floor seismic measurements, these components may include multipath effects, 
attenuation, and phase shifts. The medium-induced phase shifts may be particu- 
larly important as they can introduce signal distortion at ray turning points 
or at reflections from impedance discontinuities. Knowledge of the explosion's 
bubble-pulse formation and oscillation allows us to guess that this is close 
to a minimum-phase process and permits us to exploit some of the special prop- 
erties of these processes. 

CONCLUSIONS 

One of the most important results of this study, aside from the develop- 
ment of the deconvolution process, is that the full homomorphic deconvolution 
with phase reconstruction is highly dependent on the quality and conditioning 
of the original signal. The process works well on signals that have a high 
signal-to-noise ratio, are strongly excited over most of the frequency range 
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of interest, and are properly sampled and weighted. While the phase recon- 
struction method described above is effective in many cases, sufficient 
degradation in the signal quality will eventually produce meaningless phase 
spectra. Consequently, applications of this deconvolution process will require 
careful checking of the quality of the input signals. 

This is not to say that the process must be abandoned in the case of less 
strongly excited systems; however, further refinements may become necessary. 
The null-bridging technique may provide a means for resolving the phase over 
small regions of low signal level. In addition, physical constraints such as 
the phase change near poles of the spectrum or at ray turning points will be 
helpful in predetermining the phase progression. Development of these tech- 
niques will, however, require substantial testing and experience with real 
signals. 

Extraction of almost-minimum-phase components by averaging deconvolution 
is a very effective process. In the measurements with which we are concerned, 
the only component that this is well-suited to is the source waveform. Informa- 
tion about the source waveform is, however, necessary in applying conventional 
deconvolution and so a hybrid process may be worthwhile. Such a process would 
isolate the source waveform by log-spectral averaging and then use this source 
waveform to develop an inverse filter. This would, of course, lose the flexi- 
bility of the fully homomorphic technique in that only the impulse response 
for the entire ocean system could be found. 

While tests on small sections of experimental data have demonstrated at 
least a limited value in homomorphic deconvolution, much more experience must 
be gained in order to ascertain the extent of practical applications. This is 
true because the log-spectrum and the cepstrum are not well-known domains. 
Until the nature of signals in these domains becomes familar enough to develop 
intuitive expectations that guide much of linear signal processing applications 
day-to-day, homomorphic deconvolution will remain a technique accessible to 
only a few specialists. Hopefully, much of this experience will be gained as 
this process is applied to the large volume of seismic measurements resident 
at NAVAIRDEVCEN. 
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APPENDIX A 

TRANSFORM RELATIONSHIPS 

The integral transform pairs with which we are concerned in this report 
are the Fourier transform pair, 

/CO 

f(t)e"^''^dt 

(A-1) 
1 '     +■ 

f(t) =f^        f     G(co)e^''^da) 

CO 

and the Laplace transform pair, 

CO 

F(s)  =     f     f(t)e"^^dt 

f(t)  =Tr^      / F(s)e^^ds =  2Tri      J 

which is essentially a generalized Fourier transform. For the special case of 
s = ito, the Laplace transform reduces to the Fourier transform as long as f(t) 
is casual (f(t) = 0 for t < 0) and stable (which permits a = 0). 

Each of these integral transforms has a discrete equivalent that would be 
used on sampled series. The discrete equivalent of the Fourier transform is 
the discrete Fourier transform (DFT) given by the pair, 

v/M ^^      (   \  -i2^kn/N X(k) = V X (n)e    ' 

"=° , (A-3) 

x(n)-lZ X(k)e^-2-k"/^ 
'^ k=0    ^ ■ 

The discrete equivalent to the Laplace transform is written in terms of a new 
variable z which is equal to e^. This transform is called the z-transform and 
the corresponding transform pair is. 

x(z) = Y.   ^(")"'" 
n=-co 

^/> 

(A-4) 

x(n) =-^/X(z)z""^dz 

Notice that this transform is discrete in time (t = nAt) but not in frequency; 
z is a continuous variable. The contour C of the inverse transform is any 
closed contour lying entirely in the region of convergence of the function X(z) 
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The relationship between the various transforms can be seen by comparing 
figures A-1 and A-2. Figure A-1 shows the paths for the Fourier (F) and Laplace 
(L) inversion integrals in the z-plance. The z-transform inversion follows the 
same path as the Laplace inversion. In the case of the DFT, there would be N 
samples evenly spaced around the unit circle (the F path). 

In the s-place (figure A-2), the circular contours unwrap into the verti- 
cal lines F and L and, at the same time, the entire z-plane is replicated in 
the s-plane as an infinite series of horizontal layers. The interior of the 
unit circle maps into many horizontal bands to the left of the imaginary axis 
and the exterior of the circle maps into horizontal bands to the right. Classi- 
cal stability theory says that there may be no poles in the right half of the 
s-plane; this corresponds to having all the poles inside the unit circle in the 
z-plane. For Fourier analysis, frequency starts at zero at the origin of the 
s-plane and increases vertically upwards. In the z-plane, spectral frequency 
is zero at z = + 1 and increases counter-clockwise around the unit circle. 
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z   —  pIane 

Figure A-1. Configuration of Fourier and Laplace inversion paths in complex z-plane. 
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s — plan^ 

Figure A-2. Configuration of Fourier and Laplace inversion paths in complex s-plane, 
Shaded area and numbered points correspond to figure A-1. 
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