




1. Introduction

Over the past 25 years, much of the work on applications

of pattern recognition, and a significant fraction of the work

in artificial intelligence, has dealt with the analysis and

interpretation of images. This subject has been variously

known as pictorial pattern recognition, image analysis, scene

analysis, image understanding, and computer vision. Its appli-

cations include document processing (character recognition,

etc.), microscopy, radiology, industrial automation (inspec-

tion, robot vision), remote sensing, navigation, and reconais-

sance, to name only the major areas.

Many ad hoc techniques for analyzing images have been

developed, so that a large assortment of tools is now available

for solving practical problems in this field. Most important,

during the past few years the field has begun to develop a

scientific basis. This paper outlines the major steps in the

I computer vision process, and summarizes the state of the art

with respect to each of these steps.
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2. A computer vision paradigm

The goal of computer vision is the construction of scene

descriptions on the basis of information extracted from images

or image sequences. With reference to Figure 1, the following

are some of the major steps in the computer vision process.

We consider here only images obtained by optical sensors,

though some of the discussion is also applicable to other

types of sensors.

Many types of scenes are essentially two-dimensional;

documents are an obvious example, but two-dimensional treat-

ment is often quite adequate in applications such as remote

sensing (flat terrain seen from very high attitudes), radiology

(where the image is a "shadow" of the object), or microscopy

(where the image is a cross-section of the object). In such

situations, the image analysis process is basically two-

dimensional. We extract "features" such as edges from the image,

or segment the image into regions, thus obtaining a map-like

representation, which Marr at MIT called the "primal sketch"

consisting of image features labelled with their property values.

Grouping processes may then be used to obtain improved maps from

the initial one. The maps may be represented by abstract rela-

tional structures in which, e.g., nodes represent regions,

labelled with various property values (color, texture, shape,

etc.), and arcs represent relationships among regions. Finally,
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these structures are matched against stored models, which are

generalized relational structures representing classes of maps

that correspond to general types of images. Successful matches

yield identifications for the image parts, and a structural

description of the image, in terms of known entities.

In other situations, notably in robot vision applications,

the scenes to be described are fundamentally three-dimensional,

involving substantial surface relief and object occlusion.

Successful analysis of images of such scenes requires a more

elaborate approach in which the three-dimensional nature of

the underlying scenes is taken into account. Here the key

step in the analysis is to infer the surface orientation at

each image point. Clues to surface orientation can be derived

directly from shading (i.e., gray level variation) in the

image. Alternatively, two-dimensional segmentation and feature

extraction techniques can first be applied to the image to ex-

tract such features as surface contours and texture primitives,

and surface orientation clues can then be derived from contour

shapes or from textural variations. Using the surface orienta-

tion map, which Marr called the "2 D sketch", feature extraction

and segmentation techniques can once again be applied to yield

a segmentation into (visible parts of) bodies or objects, and

these can in turn be represented by a relational structure.

Finally, the structure can be matched against models to yield an
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interpretation of the scene in terms of known objects. Note

that the matching process is more difficult in the three-

dimensional case, since the image only shows one side of each

object, and objects may partially occlude one another.

The computer vision paradigm described in the last two

paragraphs, and illustrated in Figure 1, is highly simplified

in several respects. The following are some of the directions

in which it needs to be extended or generalized:

a) Ideally, the value (gray level or spectral signature)

at each point of an image represents the light received

from the scene along a given direction, but these values

will not be perfectly accurate because of degradations

arising in the process of imaging (for example, blur

and noise introduced by the environment or the sensor)

or digitization. Image restoration techniques should

be used to correct the image values before performing

the steps outlined in Figure 1. (Feature extraction may

be useful as an aid in estimating the degradations in

order to perform effective restoration.)

b) We have assumed in Figure 1 that only a single image of

the scene is available as input. If two images taken

from different viewpoints are available, stereomapping

techniques can be used to construct the surface orienta-

tion map by matching either image values or extracted

features on the two images and measuring their parallaxes.
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If images taken at different times are available,

comparing them yields information about the motion

of the sensor or of objects in the scene. In this

case, the processes of segmentation, model matching,

etc. should be performed on the image sequence rather

than on the individual images.

c) Figure 1 shows a "one-way" process in which we start

with the image and successively construct a 2D map,

a 2 D map, etc. More realistically, the arrows in

Figure 1 should point both ways. Knowledge about the

expected results of a process (segmentation, etc.)

should be used to criticize the actual results and

modify the process so as to improve them.

d) The model matching process may be hierarchical, with

objects composed of subobjects, etc. Hierarchical

models are extensively used in syntactic approaches to

pattern recognition.

A discussion of image restoration techniques is beyond the

score of this article, but stereomapping, time-varying imagery

analysis, syntactic methods, and the use of feedback in image

analysis will all be briefly discussed in later sections.

This article reviews the basic stages in the computer vision
7.

process from a technique-oriented, rather than application-ori-

ented, standpoint. Methods currently used at each stage are
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reviewed, their shortcomings are discussed, and approaches

that show promise of yielding improved performance are

described. The specific areas covered are feature extrac-

tion, image matching, segmentation, texture analysis, sur-

face orientation estimation, object representation, and

model matching.
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3. Feature extraction

The extraction of features such as edges and curves from

an image is useful for a variety of purposes. Linear fea-

* Itures (curves) are often of importance in their own right,

e.g., roads or drainage patterns on low-resolution remote

sensor imagery. Edges are useful in image matching for ob-

* taining sharp matches that are insensitive to grayscale dis-

tortions (but quite sensitive to geometric distortion); see

Section 4. Edges can be used in conjunction with various

segmentation techniques to improve the quality of a segmenta-

tion (Section 5). Edges and similar locally defined features

play important roles in texture analysis; see Section 6. The

interpretation of image edges as arising from various types

of discontinuities in the scene (occluding edges are discon-

tinuities in range; convex or concave edges are discontinuities

in surface slope; shadow edges are discontinuities in illumina-

tion) plays an important role in the inference of 3D surface

structure from an image (Section 7).

The classical approach to edge detection makes use of

digital (finite-difference) versions of standard isotropic

derivative operators such as the gradient or Laplacian. A

closely related approach is to linearly convolve the image

with a set of masks representing ideal step edges in various

directions. Lines and curves can be similarly detected by
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linear convolutions. However, linear operators are not

specific to features of a given type; they also respond

in other situations involving local intensity changes.

An alternative approach, developed at the University of

Maryland in 1970, is to use "gated" (nonlinear) operators

that respond only when specific relationships hold among

the local intensities - e.g., all intensities along the line

higher than all the flanking intensities on both sides, and

similarly for edges. In all of these approaches, the output is

a quantitative edge or curve value; the final detection deci-

sion can be made, if desired, by thresholding this value.

Similar methods can be used to detect edges defined by dis-

continuities in color, rather than in intensity.

Several important improvements to the edge detection pro-

cess have been made over the past decade. New classes of opera-

tors have been defined based on fitting polynomial surfaces

to the local image intensities, and using the derivatives

of these polynomials (which can in turn be expressed in terms

of the local intensities) as edge value estimates. This

method, which was first proposed by Prewitt (now at NIH) in

1970, allows edges to be located (at maxima of the surface

•7 "gradient, e.g.) to subpixel accuracy. Another important idea,

first proposed by Hueckel at Stanford University in 1970, is

to find a best-fitting step edge (or edge-line) to the local

intensities.
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Classical edge detectors were based on small image neigh-

borhoods, typically 3x3; a more powerful approach, developed

at the University of Maryland in 1970, and later refined by

Marr and his students at MIT, is to use a set of first- or

second-difference operators based on neighborhoods having a

range of sizes (e.g., increasing by factors of 2), and com-

bine their outputs, so that discontinuities can be detected

at many different scales; here the edges are localized at

maxima of first differences, or at zero-crossings of second

differences. Operators based on large neighborhoods can also

be used to detect texture edges, at which the statistics of

various local image properties change abruptly. Cooperation

between operators in different positions can be used to enhance

the feature values at points lying on smooth edges or curves;

this was one of the first applications of "relaxation" methods,

developed at the University of Maryland in the mid-1970's, to

image analysis at the pixel level.

The standard approaches to edge detection are implicitly

based on a very simple model in which the image is regarded as

ideally composed of essentially "constant" regions separated

by step edges. Recent work by Haralick at Virginia Polytechnic

Institute is based on the more general assumption of a piecewise

linear, rather than piecewise constant, image, which allows

simple shading effects to be taken into account. Research is
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needed on the development of algorithms designed to detect

intensity edges resulting from specific types of scene dis-

continuities, including shadow edges, slope edges, and range

edges. Detection of texture edges too should be based on

models for surface texture, rather than for image texture.

The operators should incorporate cooperative computation

across both positions and sizes.

SI
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4. Image matching

*. Image matching and registration are used for a number

of different purposes. By registering two images of a scene

obtained from different sensors, one can obtain the multi-

sensor (e.g., multispectral) characteristics of each scene

point, which can then be used to classify the points. By

comparing images obtained from different locations, one can

compute the stereoscopic parallaxes of scene points that are

visible on both images, and thus determine their 3D posi-

tions. By comparing images taken at different times, one

can detect changes that have taken place in the scene, e.g.,

due to motion of the sensor or motions of objects in the

scene. In all of these tasks, registration is carried out by

finding pairs of subimages that match one another closely.

Subimage matching is also used to detect the occurrence of

specific patterns ("templates" or "control points") in an

image, for purposes of location (e.g., navigation) or object

detection.

Classically, image matching has used match measures

derived from cross-correlation computation, or sometimes

mismatch measures based on sums of absolute differences; both

of these approaches involve point-by-point intensity compari-

son of the images being matched. Such processes are unsatis-

factory for several reasons: they often yield unsharp matches,

making it difficult to decide when a match has been detected;
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they are sensitive to distortions ia both grayscale and geo-

metry; and they are computationally expensive. Match sharp-

ness and grayscale insensitivity can be greatly increased by

applying derivative operators, possibly followed by threshold-

ing, to the images before matching - for example, taking

first derivatives (e.g., gradient magnitudes) of both images,

or the second derivative (e.g., Laplacian magnitude) of one

image. Geometric insensitivity can be improved by matching

smaller pieces or local features (which are less affected

by geometric distortion), and then searching for combinations

of such matches in approximately the correct relative posi-

tions (this approach was developed by Fischler in the early

1970's), or using relaxation methods to reinforce such com-

binations (as was done at the University of Maryland in the

mid-1970's, and more recently by Faugeras at the University of

Southern California); this hierarchical approach also serves

to reduce the computational cost of the matching process. An

alternative idea, originated by Price and Reddy at Carnegie-

Mellon University in the late 1970's, is to segment the image

into parts, represent the parts and their relationships by

a graph structure, and match these graph structures (see Sec-

tion 9); here too, relaxation methods are useful.

Another approach to pattern matching makes use of geometric

transformations that map instances of a given pattern into
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peaks in a transform space. This "Hough transform" approach

was originally developed to handle simple classes of shapes

such as straight lines or circles, but it was recently ex-

tended by Ballard at the University of Rochester to arbi-

trary shapes in both two and three dimensions. The diff-

culty of matching in the 3D case will be further discussed

in Section 9.
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5. Segmentation

Descriptions of an image generally refer to significant

parts (regions; global features such as contours or curves)

of which the image is composed; thus image description re-

quires segmenting it into such parts. A much more challeng-

ing task is to segment the image into parts corresponding

to the surfaces or bodies of which the underlying scene is

comnposed; this is often very hard to do, since variations

in image intensity may not be good indicators of physical

variations in the scene, and conversely, physical variations

do not always give rise to intensity variations.

The most commonly used approach to image segmentation

involves classification of the individual image points (pixels)

into subpopulations; the parts obtained in this way are just

I the subsets of pixels belonging to each class. The classi-

fication can be done on the basis of intensity alone ("threshold-

ing"), of color or spectral signature, or of local properties

derived from the neighborhood of the given pixel; the last

approach is used in feature detection (e.g., classify a pixel

as on an edge if the value of some locally computed derivative

operator is high in its neighborhood), and it can also be used

to segment an image into differently textured regions. Pixels

can be classified using a set of properties simultaneously,

or the properties can be used one at a time to recursively

refine the segmentation, as demonstrated by Ohlander at

Carnegie-Mellon University.
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Pixels are usually classified independently, which allows

fast implementation on parallel hardware; better results can

be obtained by classifying sequentially, so that regions

composed of pixels belonging to a given class can be "grown"

in accordance with given constraints, but such approaches are

inherently slow and would not be appropriate for use in real-

time systems. Another possibility is to use a relaxation

approach in which pixels are classified fuzzily, and the

class memberships are then adjusted to favor local consistency;

this approach, developed at the University of Maryland, requires

a short sequence of iterations each of which can be implemented

in parallel. In addition to local consistency, other sources

of convergent evidence can be used to improve the quality of

segmentation; for example, the classification criteria can be

adjusted so as to maximize the edge strengths around the re-

sulting region borders.

Image models should play an important role in image segmen-

tation, but the models used in practice are usually much too

simple. In segmenting an image by pixel classification, it is

always assumed that the subpopulations are homogeneous, i.e.,

have essentially constant feature values (intensity, color,

etc.). For scenes containing curved surfaces, this assumption

is very unrealistic; even if variations in illumination are

ignored, changes in surface orientation will give rise to changes
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in feature values on the image of the surface. Haralick's

recent "facet model" allows certain types of variations in

feature values (e.g., linear), but the role of surface

orientation needs to be made more explicit. By making local

orientation estimation an integral part of the segmentation

process, and using these estimates to correct the feature

values, it should be possible to cooperatively compute orien-

tation estimates that optimize the clustering of feature

values into subpopulations representing homogeneous surfaces

(and not merely homogeneous regions). Spatial consistency

constraints, as well as other types of convergent evidence,

can also be incorporated into this process.

An alternative approach to segmentation is region-based,

rather than pixel-based; an example is the split-and-merge

approach advocated by Pavlidis (now at Bell Laboratories),

where the goal is to partition an image into homogeneous con-

nected regions by starting with an initial partition and modi-

fying it by splitting regions if they are not sufficiently

homogeneous, and merging pairs of adjacent regions if their

union is still homogeneous. In this approach, "homogeneous"

might mean approximately constant in intensity, or more

generally, it might mean a good fit to a polynomial of some

degree >0, as in the facet model. Still more generally, the

merging and splitting can be controlled by a "semantic" model

which estimates probable interpretations of the regions and



performs merges or splits so as to increase the likelihood

and consistency of the resulting image interpretation. This

approach was advocated by Feldman and Yakimovsky at Stanford,

and by Tenenbaum and Barrow at SRI, in the mid-1970's. Note,

however, that these methods still make no explicit use of sur-

face orientation estimation; they should be based on object

semantics rather than region semantics. Grouping locally

detected features (edges or lines) into global contours or

curves can be done on the basis of global shape (Hough trans-

forms; see Section 4), but if this is not known in advance,

one can use methods analogous to split-and-merge - e.g.,

break a curve at branch points or sharp turns; link curves

if they continue one another smoothly. Here again, it would

be desirable to modify these criteria to take surface cur-

vature into account.

A major drawback of segmentation based on pixel classi-

fication, particularly when it is implemented in parallel,

is the difficulty of incorporating geometric knowledge about

the desired regions into the segmentation process. The

standard approach is to segment, measure geometric properties

of the resulting regions, and then attempt to improve the values

of these properties by adjusting parameters of the segmentation

process; but it would be much preferable to make use of geometric

o constraints in the segmentation process itself. In region-

based segmentation, since the units being manipulated are (pieces

I'I
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of) regions rather than pixels, somewhat greater control over

region geometry can be achieved, by biasing the choices of

splits and merges to favor the desired geometry. Another

possibility, under investigation at the University of Maryland,

i is to perform segmentation using a multi-resolution ("pyra-

mid") image representation, in which region geometry is

coarsely represented by local patterns of "pixels" at the

low-resolution levels; here segmentation is based on a

cooperative process of pixel linking, which can be designed

so that the linking is facilitated if it will give rise to

the desired types of low-resolution local patterns. This

approtch too should be combined with surface orientation esti-

mation, perhaps carried out at multiple resolutions.I
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6. Texture analysis

Textural properties of image regions are often used for

classification (e.g., of terrain types of materials), or

, for segmentation of the image into differently textured re-

gions. Changes in texture "coarseness" also provide impor-

tant cues about surface slant and relative range; the direc-

tion in which coarseness is changing most rapidly corresponds,

for a uniformly textured surface, to the slant direction, while

an abrupt change in coarseness indicates the possibility of

an occluding edge.

Classically, textural properties have been derived from

the autocorrelation or Fourier power spectrum; for example,

the coarser the texture (in a given direction), the slower

its autocorrelation falls off in that direction from the

origin (zero displacement) and the faster its power spectrum

J falls off in that direction from zero frequency. A related

*approach, studied extensively by Julesz at Bell Laboratories

and by Haralick, characterizes textures by their second-order

intensity statistics, i.e., by the frequencies with which given

pairs of gray levels occur at given relative displacements.

It has long been realized, however, that first order statistics

of various local property values (e.g., responses to operators

sensitive to local features such as edges, lines, line ends,

etc.) are at least equally effective in texture discrimination.
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More recent work, by Marr at MIT and others, suggests

that local processes of linking between local features,

giving rise to "texture elements" or "primitives", also

play a significant role in the perception of texture dif-

ferences. Texture discrimination based on second-order

statistics of local features (e.g., occurrences of edge

elements in given relative positions and orientations) has

begun to be investigated (e.g., by Davis at the University

of Texas). Texture analysis based on explicit extraction

of primitives has also been explored (e.g., by Maleson and

Feldman at the University of Rochester); here statistics

derived from properties of the primitives, or of pairs ofi
adjacent primitives, are used as textural properties.

All of this work has dealt with texture as an image

property, and has been primarily concerned with uniformly

textured regions, such as might arise from non-perspective

views of uniformly textured surfaces. Research is needed

on the development of texture analysis methods that take

surface geometry into account, and that perform cooperative

estimation of surface slant and surface texture character-

istics, leading to better estimates of both. Similarly,

methods of texture-based segmentation or texture edge detection

should consider both surface geometry differences and texture

differences; and in stereomatching of textured regions, one

should use surface slant estimates to correct for the effects

of perspective on the quality of the match.



7. Surface orientation estimation

If a high-resolution range sensor is available, the

shapes of the visible surfaces in a scene can be obtained

directly by constructing a range map. In this section

we assume that range information is not directly available.

In its absence, range can be inferred from stereopairs, by

measuring stereo parallax; or relative range can be in-

ferred from image sequences obtained from a moving sensor,

by analyzing the motions of corresponding pixels from frame

to frame ("optical flow"). If only a single image is avail-

able, one can still make inferences about changes in surface

range (i.e., about surface slant) from single images, using

clues derived from changes in gray level ("shading"), changes

in texture, or from the shapes of edges or curves that lie

on or bound a surface.

Stereomapping is based on identifying corresponding points

in the two images using image matching techniques. As indi-

cated in Section 4, matching performance is improved if we

match features such as edges, rather than intensity values.

The MIT approach to stereo, proposed by Marr and implemented

by Grimson, is based on applying a set of edge operators,

having a range of sizes, to the images; matching the edges

produced by the coarsest operator, to yield a rough corres-

pondence between the images; and then refining this corres-

pondence by using successively finer eges. Edge-based
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approaches may still yield ambiguous results in heavily

textured regions where edges are closely spaced. The

ambiguity can be reduced by using intensity matching as a

check, or by classifying the edges into types (e.g., dis-

continuities in illumination, range, or orientation) and

requiring that corresponding edges be of the same type.

In general, matching should be based on feature descrip-

tions, rather than on raw feature response values. Work

is needed on the development of matching methods based on

other feature types, and particularly on features derived

from surface orientation maps - e.g., matching of surface

*patches. Matching yields a set of range values at the posi-

tions of features; Grimson has developed methods of fitting

* Ismooth range surfaces to these values. For wide-angle stereo,

where there is significant perspective distortion, deriva-

tion of a camera model and rectification of the images prior

to matching are very desirable; extensive work in this area

has been done at Stanford and at SRI.

When a static scene is viewed by a moving sensor,

yielding a succession of images, the relative displacements

of pixels from one image to the next are known as "optical

flow". If these displacements could be computed accurately,

I it would be possible in principle to infer the motion of the
sensor relative to the scene and the relative distances of

the scene points from the sensor (but note that there is an

i*
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inherent speed/range ambiguity). Ideally, the displacements

can be estimated by comparing the space and time rates of

change of the image intensity; but in practice, these esti-

mates are quite noisy. Horn at MIT has developed an itera-

tive method of estimating a smooth displacement field, but

it yields inaccurate results at object boundaries. It should

be possible to obtain improved results by combining the rate

of change approach with edge detection and matching. For

larger displacements, a matching approach can be used to de-

termine corresponding points in successive frames. Ullman

at MIT has shown that the motion of a rigid object is com-

pletely determined if we know the correspondence betweeen a

few points on the object as they appear in two or three suc-

cessive images. Extensions of this work to jointed objects

have also been investigated.

If only a single image of a scene is available, clues

about the orientations and relative ranges of the visible

surfaces in the scene can still be derived from a number of

sources. One source of such information is the shapes of

edges in the image, representing occluding contours at the

boundaries of surfaces, or contours that lie on the surfaces.

The early work of Guzman, Clowes, Huffman, and Waltz, at MIT

and elsewhere, as well as the more recent work of Kanade at

Carnegie-Mellon, developed methods of inferring the nature

of edges in the scene (e.g., convex, concave, or occluding)

_



from the shapes of the junctions at which the edges meet

as seen in the image. More recently, researchers at Stanford

and Carnegie-Mellon have formulated a variety of constraints

on the scene that can be derived from global properties of

contours in the image. For example, if an edge is continu-

ous or straight, or two edges are parallel, or two features

coincide, in the image, we assume that the same is true in

the scene; and if a shape in the image could be the result

of perspective distortion of a simpler shape in the scene,

we assume that this is actually the case. Other work at

SRI at MIT has dealt with the three-dimensional interpretation

of occluding and surface contours. For example, given a

curve in the image, we might assume that it arises from a

space curve of the least possible curvature. Constraints

of these types, and others still be to formulated, oftenI
yield unambiguous three-dimensional interpretations of the

surfaces that appear in images. Most of this work has as

yet been applied only to idealized line drawings, but some

parts of it have been successfully applied to noisy real-world

images.

The inference of information about the surface in a scene

from the shapes of edges in an image is known as "shape from

contour", or sometimes as "shape from shape" (i.e., 3D shape

from 2D shape). A closely related problem is that of inferring

surface shape from textural variations in the image. Gibson



pointed out over 30 years ago that changes in texture coarse-

ness arise from changes in range; thus it should be possible

to infer changes in range from changes in coarseness. Kender

at Carnegie-Mellon and Witkin at MIT, among others, have

demonstrated that the 3D orientation of a surface can be in-

ferred from the anisotropy in its texture; note that here

again, as in the case of shape from contour, we are assuming

that if the anisotropy could have arisen from perspective

distortion, then it actually did. For a review of texture

measures that might be used in inferring "shape from texture",

see Section 6. To obtain good results, one should use edge-

based or primitive-based, rather than pixel-based, texture

descriptors; the richer the descriptors, the more likely are

the inferences to be reliable.

In the absence of discriminable features, surface orien-

tation in the scene can also be inferred from intensity vari-

ations ("shading") in the image. The pioneering work on

the inference of "shape from shading" was done by Horn at MIT,

and the work has been continued by a number of other MIT stu-

dents. Given the position of the (small, distant) light source

and the surface reflectance function, surface shape is still

-" not unambiguously determined, but it is strongly constrained,

and can be estimated based on additional information, such as

the shapes of surface contours, the positions of occluding

contours, the restriction that the surface is a surface of
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revolution, or the requirement that the surface curvature

be as uniform as possible. Surface shape becomes unambi-

guous if we are given several images taken from the same

position, but with light sources in different positions;

this "photometric stereo" approach has been investigated

by Woodham and others. Much of this work has assumed

diffuse reflectance, and needs to be extended to reflectance

functions that have strong specular components; in such cases

the shapes of highlights may provide additional information.
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8. Object representation

Digital images are 2D arrays in which each pixel's

value gives the intensity (in one or more spectral bands)

of the radiation received by the sensor from the scene

in a given direction. Other viewer-centered representa-

tions of the scene are also conveniently represented in

array form, with the value of a "pixel" representing

illumination, reflectivity, range, or components of sur-

face slant at the scene point located along a given direc-

tion. Various types of image transforms, as well as sym-

bolic "overlay" images defining the locations of features

(contours, curves, etc.) or regions, are other examples of

2D arrays that are often used in image processing.

Features and regions in an image can also be represented

in other ways which are usually more compact than the

overlay array representation and which also may make it

easier to extract various types of information about their

shapes. The following representations are all two-dimensional,

and are appropriate only if 3D shape information is not known.

One classical approach is to represent regions by border codes,

A defining the sequence of moves from neighbor to neighbor that

must be made in order to circumnavigate the border; curves

can also be represented by such move sequences ("chain codes"),

which were introduced in 1960 by Freeman (now at Rensselaer
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Polytechnic Institute). Another standard way of represent-

ing regions, studied at about the same time by Blum (now at

NIH), is as unions of maximal "blocks" contained in them -

e.g., maximal "runs" of region points on each row of the image,

or maximal upright squares contained in the region; the set

of run lengths on each row, or the set of centers and radii

of the squares (known as the "medial axis") completely deter-

mines the region. The square centers tend to lie on a set

of arcs or curves that constitute the "skeleton" of the region;

if we specify each such arc by a chain code, and also specify

a radius function along the arc, we have a representation of

the region as a union of "generalized ribbons".

There has been recent interest in the use of hierarchically

structured representations that incorporate both coarse

and fine information about a region or feature. One often

used hierarchical maximal-block representation is based on recur-

sive subdivision into quadrants, where the blocks can be

represented by the nodes of a degree-4 tree (a "quadtree").

This representation has been extensively studied by Samet

at the University of Maryland. A hierarchical border or curve

representation based on recursive polygonal approximation,

with the segments represented by the nodes of a "strip tree",

was recently introduced by Ballard at the University of Rochester,

while a border or curve representation based on quadrant subdivi-

Fi sion has been studied by Shneier at the University of Maryland.

L!



At a higher level of abstraction, a segmented image is

often represented by a graph in which the nodes correspond to

regions (or parts of surfaces, if 3D information is available)

or features, labelled with property names or values, and the

arcs are labelled with relation values or names. A problem

with this type of representation is that it does not preserve

the details of region geometry, and so can only provide sim-

plified information about geometrical properties and relations,

many of which have no simple characterizations. An ideal

representation should provide information at multiple reso-

lution, so that both gross geometry and important local fea-

tures are easily available, together with the topological

and locational constraints on the features' positions, where

these constraints may have varying degrees of fuzziness. It

should also be easy to modify the representation to reflect

the effects of 3D geometrical transformations, so that repre-

sentations of objects viewed from different positions can be

easily compared.

Representations of surfaces and objects, i.e., "2 -

dimensional" and "3-dimensional" scene representations, are

also an important area of study. The visible surfaces in a

scene can be represented by an array of slope vectors; the

histogram of these vectors is known as the "gradient space" map.

The range to each point in the scene is another important type

of viewer-centered array representation.

7- ____
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In order to identify the objects in a scene, it is

desirable to relate the viewer-centerd representations of

the visible surfaces to object-centered representations that

describe the objects on a three-dimensional level. A vari-

ety of object representations can be defined, generalizing

the representations of two-dimensional regions described

above. An object can be represented by a series of slices,

and a 2D representation can be used for each slice. Alter-

natively, an object can be represented as a union of maximal

blocks - e.g., by an "octree" (based on recursive subdivision

of space into octants) or by a 3D "medial axis". If this

axis is approximated by a set of space curves, each represented

by a 3D chain code, and we also specify a radius function along

each curve, we have a representation of the object as a union

of "generalized cylinders" or "generalized cones"; this repre-

sentation has been extensively studied by Binford and his stu-

dents at Stanford, as well as by Marr at MIT.

i
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9. Model matching

The image analysis processes described up to now give

rise to a decomposition of the image into regions, or of

the scene into objects. A "literal" description of the

image or scene can thus be given in the form of a rela-

tional structure in which the nodes correspond to features,

regions, or objects, labelled by lists of their property

values (shape, texture, color, etc.) and the arcs correspond

to relations (adjacency, relative position, etc.). However,

this type of "semantics-free" description is usually not

what is wanted; rather, one wants a description in terms of

a known configuration of known objects. This requires "recog-

nizing" the objects by comparing their descriptions to stored

"models", which are generalized descriptions defining object

classes.

Even in two dimensions, such models are often very difficult

to formulate, since the constraints on the allowable property

values and relationships are hard to define. In three dimen-

sions, the problem is rendered even more difficult by the fact

that only one side of an object can be visible in an image;

the image description is two-dimensional, while the stored

object models are presumably three-dimensional, object-centered

representations.

- 4
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The most extensive work on recognition of three-dimensional

objects from images is embodied in the ACRONYM system, de-

veloped by Binford and his students at Stanford. This system

incorporates methods of predicting the two-dimensional ap-

pearance (shape, shading, etc.) of a given object in an image

taken from a given point of view. Conversely, it provides

means of defining constraints on the three-dimensional proper-

ties of the object that could give rise to a given image, and for

manipulating sets of such constraints. These capabilities

are incorporated in a prediction/verification process which

uses the image to make predictions about the object, and

verifies that the image could in fact have arisen from an

object that satisfies the resulting set of constraints. Thus

far, ACRONYM has been implemented only in restricted domains,

but it is based on very general principles, and should be

widely extendable.

It is often appropriate to model regions or objects hier-

archically, i.e., as composed of parts arranged in particular

ways, where the parts themselves are arrangements of subparts,

and so on. There is an analogy between this type of hierar-

chical representation and the use of grammars to define lan-

guages; here a sentence is composed of phrases which are in

turn composed of clauses, etc. Based on this observation,

the process of recognizing an object as belonging to a given

--
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hierarchically defined class of objects is analogous to the

process of recognizing a well-formed sentence as belonging to

a given language, by parsing it with respect to a grammar

for that language. This "syntactic" approach to object (or

pattern) recognition has been extensively studied by Fu and

his students at Purdue University. It has been used success-

fully for recognition of two-dimensional shapes, patterns,

and textures; but it is less appropriate for three-dimensional

object recognition, since it is not obvious how to incorpor-

ate in it mechanisms for relating 2D images to 3D objects.

Many difficult problems are associated with the model

4 imatching task. It is not trivial to define models for given

classes of patterns or objects. (In the case of syntactic

models, the problem of inferring them from sets of examples

is known as grammatical inference. The pioneering work on the

j inference of relational structure models from examples was

done by Winston at MIT in 1970.) Given a large set of models,

it is not obvious how to determine the right one(s) with

which to compare a given object; this is known as the indexing

problem. Even if the correct model is known, comparing it with

the descriptions of a given object may involve combinatorial

search. (Here, however, relaxation or constraint satisfaction

methods can often be used to reduce the search space.) The

* best approach is to use the model(s) to control the image

analysis process, and to design this process in such a way that

-. --



most of the possible models are eliminated at early stages

of the analysis. Unfortunately, there exists as yet no general

theory of how to design image analysis processes based on

given sets of models; the control structures used in computer

vision systems have been designed largely on heuristic grounds.

I
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10. Some general issues

We have seen that the computer vision process involves,

in general, many different processes that incorporate many

different types of information about the class of images

being analyzed. There is no general theory of control in

computer vision; in other words, there are no general prin-

ciples that specify how these processes should interact in

carrying out a given task. In particular, when a number of

methods exist for performing a given task, e.g., feature

detection or inference of surface orientation, it would

usually be desirable to implement several of the methods in

order to obtain a consensus; but there is no general theory

of how to combine evidence from multiple sources.

Most of the successful applications of computer vision

have involved relatively simple domains, and have been

primarily two-dimensional. For example, in robot vision,

systems that recognize parts on a belt (well illuminated,

non-overlapping, in specific 3D orientations) are not hard

to build, but systems that recognize parts in a bin (shadowed,

overlapping, arbitrarily oriented) are still a research issue.

Techniques exist that will in principle handle such complex

situations, but they need to be refined and extensively tested

before they can be used in practice.

The discussion of the computer vision process in this

article has been quite general-purpose, without reference to



particular domains of application. It is also possible to

build "specialist" or "expert" vision systems tailored to

a specific domain, which make use of methods especially

t designed for that domain. From a practical standpoint, suc-

cessful applications of computer vision are likely to be

of this specialized nature. It is the general approach, how-

ever, that makes computer vision at least potentially a

science, and that will continue to provide a theoretical

background for the design of application-oriented systems.

4i
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Figure 1. Simplified diagram of a computer vision system.
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