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ABSTRACT

Stiffened plates are designed for minimum volume subject

to constraints on: Vor Mises maximum stresses, nodal dis-

placements, height to thickness ratios of frame webs, and

width to thickness ratios of frame flanges. Design variables

are plate thicknesses and stiffener dimensions.

A finite element analysis program is developed for the

design of stiffened plates using numerical optimization

techniques. The program may be used as a stand alone analy-

sis tool or may be coupled to an optimizer of user's choice.

Rectangular plate elements and frame elements are used for

the idealization of stiffened plates.

Design examples are presented to demonstrate the design

method.
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I. INTRODUCTION

The development of high-speed digital computers has made

possible significant changes in the structure design process.

One of these is the availability of various mathematical

programming meth7ods for use in design optimization. The

computer's speed allows the designer to now consider a much

wider range of design alternatives. The optimization proce-

dure provides a means of systematically choosing from among

these alternatives based on some predetermined rational

criterion.

Even when the selected numerical method is able to ar: -e

at the optimum design, the result is only as good as the

design model. Here there is an even greater need for design

experience and sound engineering judgment. The design model

must be carefully developed to realistically represent the

design in question.

The finite element model for stiffened plate is shown in

Fig. 1.1, where the plate has been descritized by rectangular

plate elements and the stiffener by frame type elements. The

eccentricity of stiffener is transformed to the linked nodal

point by applying a linear equation that realtes displacement

degrees of freedom.

The purpose of this thesis is to develop a finite element

analysis program for stiffened plates, and to design the

optimum stiffened plate by coupling two programs; the

10
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analysis program and ageneral purpose non-linear optimizer,

COPES/CONMIN [Refs. 1-2).

The remaining chapters of this thesis are outlined as

follows:

Chapter II presents briefly the finite element method

used in the analysis program for stiffened plates.

Chapter III presents the basic concepts of the optimi-

zation methods used in the COPES/CONMIN.

Chapter IV presents design examples.

Chapter V offers conclusions and recommendations.

12
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II. FINITE ELEMENT METHOD

A. GENERAL

The finite element method is now well established as an

engineering tool of wide application. The fundamental

concept of the finite element method is that any continuous

quantity, such as ?ressure or displacements, can be approxi-

mated by a discrete model composed of a set of piecewise

continuous ffunictiois defined over a finite number of sub-

domains. The piecewise continuous functions are defined

using the vailues of the continuous quantity at a finite

number of points in its domain.

The formulation of the finite element method can be traced

to energy procedures, principally the minimum potential energy

method and the minimum complimentary energy method. The

minimum potential energy method is associated with assumed

displacement parameters as unknowns and is usually termed

the "displacement" or "stiffness" method. On the other hand,

the minimum complimentary energy method dealt with stress

parameters and is termed the "flexibility" or "force" approach.

The ease with dhich a continuous displacement pattern can be

prescribed (compared to the alternative approach of forming

an equilibrating internal force field) has aided the wide-

spread use and development of the finite element displace-

ment approach. The displacement model and the stiffness

analysis are employed in the analysis program developed here.

13



This chapter will briefly present some of the general

concepts of the finite element method used in the analysis

program.

B. FINITE ELEMENT DISPLACEMENT APPROACH

The displacement formulation involves derivation of the

stiffness matrix of each individual element. The stiffness

matrix of the entire assembled structure is then obtained by

super-position. This matrix, along with the prescribed

displacement boundary conditions and loads, is used for the

solution of displacements and stresses.

1. Element Analysis

For the structural applications at least, the

governing equilibrium equations can be obtained by mini-

mizing the total potential energy of the system. The total

potential energy, - can be expressed as

2 _ T dV - uT f dV - r q dS (2.1)
V - V - - S q

where u and z are the stress and strain vectors respectively,

u the displacements at any point, f the body forces per unit

volume and q the applied surface tractions. Integrations are

taken over the volume V of the structure and loaded surface

area S.

The first term on the right hand side of Eq. (2.1)

represents the internal strain energy and the second and

14



third terms are respectively the work contributions of the

body forces and distributed surface loads.

In the finite element displacement method, the basic

steps for derivation of the element stiffness mnatrix are:

a. Express the displacements to have unknown values only

at the nodal points, so that the variation within any

element is described in terms of the nodal values by

means of interpolation functions. Thus

U N ue (2.2)

where N is the set of interpolation functions termed

the shape functions and u e is the vector of nodal

displacements of the element.

b. Express the strains within the element from the

element nodal displacements as

s B ue (2.3)

where B is the strain-displacement matrix generally

composed of derivatives of the shape functions.

C. Express the stresses relating to the strains by use of

an elasticity matrix D containing the appropriate

material properties, as follows:

D (2.4)

d. Establish the equilibrium equation of element.

15
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Provided that the element shape functions have been chosen

so that no singularities exist in the integrands of the

functional, the total potential energy of the continuum will

be the sum of the ernergy contributions of the individual

elements. Thus

S= ) (2.5)ee

where 7 e represents the total potential energy of element e

which, on use of Eq. (2.1), can be written

7 1 ueT BT Bue eT NTfdV
e V e e V e - Z: e

- u e T N q dS (2.6)
S e

e

where V is the element volume and S e the loaded element
ee

surface area. Performance of the minimization for the

element e with respect to the nodal displacements uefor the

element result3 in

e = T DB)uedV NT f dV NT
- (B e  e qdSeu Ve e e

e e

ke ue -p (2.7)

where

16



-e f N T f dV + f N T q dS (2.8)

V e Se - e

are the equivalent nodal forces for the element, and

k e =f B TD BdV(29
V -. e(29

is termed the element stiffness matrix.

2. Direct Stiffness method

The real elastic structure is now represented by a

finite number of small, discrete elements. Once their

approximate behaviors, identified by their individual stiff-

ness matrices keof Eq. (2.9), have been established, the

stiffness matrix K for the complete structure is obtained by

the proper summation of each element stiffness matrix in the

structure. The summation of the terms in Eq. (2.7) over all

the elements, when equated to zero, results in a system of

equilibrium equations for the complete continuum. This

assembly process is known as the Direct Stiffness Method.

These equations are then solved by any standard technique to

yield the nodal displacements. Note that K is symmetric and

positive-definite.

C. FINITE ELEMENTS USED

The finite elements used in the analysis program will be

described briefly in this section.

17



1. Rectangular Plate Element

The rectangular plate element used here is illus-

trated in Fig. 2.1, where each nodal point has 6 degrees of

freedom, 3 transitional displacements and 3 rotational

displacements. This element with 4 corner nodal points has

the element stiffness matrix of order 24 x 24. The corres-

ponding displacements of each node ulU 2 ,...,'u 24 will be

taken to be positive in positive directions of the xyz-

coordinates.

The main assumptions in the method are that displace-

ments are small compared with plate thickness, the stress

normal to the midsurface of the plate is negligible, and

normals to the midsurface before deformation remain straight

but not necessarily normal to the midsurface after deformation.

The assumed displacement functions will be taken to

be linearly varying in the plane of the element. These

displacement functions will ensure both deflection and slope

compatibility of the adjacent elements. The stiffness matrix

of the rectangular plate element, which is matrix product

B TDB of Eq. (2.9) integrated over its volume, is summarized

by Przemieniecki [Ref. 3].

Note that element stiffness matrices are formed

directly in the global coordinate system so that no trans-

formations from local to global coordinates are required.

2. Frame Element

The frame element as a stiffener has 6 degrees of

freedom for each node, such as those of plate elements. The

18
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basic assumptions are that the stiffener element is straight

with uniform cross section capable of resisting axial forces,

bending moments about the two principal axes in the plane of

its cross-section, and twisting moments about centroidal axis,

and that its deflection due to shearing strains are neglected.

The stiffener element has 2 kinds of options which are illus-

trated in Fig. 2.3. The width and thickness of flange of

the rectangular stiffener element may be referred as zeros.

In order to determine the stiffness property of a

complete structure, a global coordinate must be established

for all unassembled structural elements so that all the

displacements and their corresponding forces will be referred

to this system. Since the element stiffness matrices k are

initially calculated in local coordinates, suitably oriented

to minimize the computing effort, it is necessary to intro-

duce transformation matrices changing the frame of reference

from a local to a global coordinate system. The first step

in deriving such a transformation is to obtain a matrix rela-

tionship between the element displacements u in the local

system and the element displacements u' in the global system.

This relationship is expressed by the matrix equation

u T u' (2.10)

where T is a matrix of coefficients obtained by resolving

global displacements in the directions of local coordinates.

The transformation matrix T is given by

20

- 14



GLOBAL COORDINATE 8
G AXES8

ze 7

U9

U12

U,

U3

y

LOCAL COORDINATE
AXES

z

Figure 2.2 Frame Element

21



a.~~~~W- Ret7ua ye rm tfee

b. Tetna type frame stiffener

A.Ttp rm tfee

Figure 2.3 Stiffener Options

22



[A 0 0 0

0 A 0 0
T z

0 0 A 0

0 0 0 A

where

m nox ox ox

A [9 m n
oy oy oy

oz oz oz

represents matrices of direction cosines for local x, y and

z directions, respectively, measured in global system x, y

and z. Similarly the relationship for forces is expressed

by the matrix equation

p = T p' (Z.11)

where p is the force vector in the local system and p' is

the force vector in the global system. Matrix A is orthogonal;

that is, T-  TT. Therefore

Ul T T u (2.12)

and

pS = TTp (2.13)

23
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Let u' and u be two ways to describe the same virtuai dis-

placement. Virtual work is

6uTpT = u Tp = ' T Tp (2.14)

So

, T(p1 - Tp) = 0, p' = TTp (2.15)

To transform the stiffness matrix, we start with k'u' =

and substitute from the preceding equations.

k'u' = Tp = T k u = T k Tu' (2.16)

Since this relation is presumed valid for any u', wz con:lude

that the required stiffness transformation is

k TT k T (2.17)
zZ

0. OFFSETTING OF RIGID LINKS

One of the most important advantages of the finite ele-

ment technique is that an assembly of different structure

elements such as plates and frames can be dealt within a

single coordinate analysis. Usually the neutral surfaces of

plate and stiffener are not coincident: the stiffener is on

one side of the plate. A standard preliminary treatment is

to connect adjacent plate and stiffener nodes by a rigid

link, so that degrees of freedom of the stiffener are replaced

24
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by degrees of freedom of the plate. The usual assembly is

then possible. The necessary transformation is now described.

The stiffener element in Fig. 2.4 has the usual 12 degrees

of freedom--6 at node A and 6 at node B. With reference to

these degrees of freedom, element load and stiffness matrices

are p and k. Similar degrees of freedom are used at nodes 1

and 2 of plate element of rigid links A-I and B-2. The

"master" degrees of freedom at node 1 and "slave" degrees

of freedom at node A have the relation

uAl i U 11  (2.18)

UA2 u1 2

UA 3  U 3

UA4 u14

UA5 U 1 5

UA6  U 1 6

where

1 1 0 0 0 zl -Zyl

0 1 0 -zl 0 zxl
0 0 1 vl Z xl 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

and Z X1 'l -' A ' yl Yl -YA' and Zzl = Z1 ZA"

25
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A similar expression is written for link B-2 by replacing

subscripts A and 1 by B and 2. The transformation veck-ors

p and matrix k, associated with degrees of freedom aL nodes 1

and 2, are

p = T p (2.19)

k = T T T (2.20)

where

T12),12 A 10\ 0 ]

The foregoing transformation makes the translational

displacements depend on the rotational displacements and sc

introduces an unwanted quadratic field into the transiauioral

displacements. It is found that a frame-stiffened plate is

overly flexible in a coarse mesh. Mesh refinement he!)s:

error is reduced by a factor of four if the number of elemEnts

is doubled. The error can be eliminated through the addition

of one more degree of freedom. Further details of the error

reduction are described in [Ref. 41.

27
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III. OPTIMIZATION TECHNIQUES

A. INTRODUCTION

In this chapter some of the fundamental ideas and formu-

lation methods of mathematical programming are introduced

to understand the optimization method and the optimizer

COPES/CONMIN. Design parameters used here are then dis-

cussed. Fox [Ref. 5] and Hirmelblau [Ref. 6] provide an

extensive discussion of numerical optimization techniques

and their application to engineering design.

B. DEFINITIONS

In discussing the optimization methods, the following

definitions will be useful:

Design variables--the design variables are the numerical

parameters for which values are to be chosen in producing a

design. In a structural problem, they might be plate thick-

ness, frame dimensions, etc.

Objective function--the objective function, is the single

valued function with resoect to which the design is optimized.

In a structural design problem, it might be the weight, volume

or fabricated cost of the structure. The selection of an

objective function can be one of the most important decisions

in the optimum design process.

Constraints--practical design problems are usually sub-

ject to a series of constraints which must be satisfied in

28
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order to produce an acceptable design. These constraints

may be linear or non-linear. If a parameter is beyond the

value of a specified value, it is said to be violated.

Side constraint--the side constraint is a constraint

which restricts the specified range of a design variable

for reasons other than the direct consideration of performance.

Feasible design--the feasible design (or acceptable

design) is a design which satisfies the specified constraints.

Infeasible design--the infeasible design (or unaacep-

table design) is a design which does not satisfy the speci-

fied constraints.

The general nonlinear optimization problem is expressed

mathematically as follows:

Minimize F(x) (3.1)

Subject to:

gj(x) < 0 for j l,m (3.2)

z xU
x. < x. < x for i =l,n (3.3)

where the vector, x, is the vector of n design variables.

The objective function, F(x), given by Eq. (3.1), as well

as the constraint functions given by Eq. (3.2), may be linear

or non-linear functions of the design variables. They may be

explicit or implicit functions of x, but must have continuous

first derivatives. If it is desired to maximize F(x), the

minimization of the objective function is used since maximum

29
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F(x) can be treated minimum of -F(x). The function g, (xi

is the set of inequality constraints to be met. The m in-

equality constraints must be satisfied to be a feasible

design. Side constraints, x and xu, are the lower and upper

limitations placed on the design variables. Side constraints

could be included in Eq. (3.2), but are treated separately

for efficiency.

The n-dimensional space spanned by the design variables

xi is referred to as the design space. As stated previcusly.

any design which satisfies the inequalities of Eq. (3.2) is

referred to as a feasible design. If the design violates one

more of the inequalities, it is said to be infeasible. The

minimum feasible design is said to be optimal.

Most nonlinear optimization programs update the vector

of design variables by the iterative relationship

Xq + l = Xq + a, Sq  (3.4)

where q is the iterative number, vector S is the direction

of search in the design space, and a* is a scalar which

defines the distance of travel in the direction S during the

qth iteration. An initial design defined by X0 must be

defined and may be a feasible or infeasible design.

The optimization process then proceeds in two steps. The

first is the finding of S which will improve the design

without violating constraints and the second is the determina-

tion of a* which will improve the design as much as possible

30



when moving in this direction. The process is then repeated

until there is no further design improvement, indicating

that this is the optimum attainable design.

C. COPES/CONMIN

The COPES/CONMIN optimization program is a general pur-

pose, non-linear optimizer zapable of handlinj large, con-

strained problems. This includes the conjugate direction

method of Fletcher and Reeves [Ref. 71 for unconstrained

function minimization and a modification of Zoutendijk's

Method [Ref. 8] of Feasible Directions for constrained func-

tion minimization. It has been successfully used in connec-

tion with structural optimization [Ref. 9], airfoil design

[Ref. 101, aircraft synthesis [Ref. 11], and numerous other

engineering applications.

It was necessary to develoF a subroutine, ANALIZ, which

for a given design, would analyze a stiffened plate, and which

would be suitable for coupling with the optimizer. The

common block GLOBCM is required to couple the analysis sub-

routine directly to the COPES/CONMIN. All variables, which

are used as objective function, constraints and design varia-

bles, must be listed in the common statement and the statement

must appear in each subroutine the variables are used in.

It is used by the optimizer as a catalog to identify where

the design variables, objective function and constraints are,

and what purpose they fulfill.

31
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In order to execute the COPES/CONMIN program it is

necessary to provide formatted data for COPES/CONMIN, followed

by data for the ANALIZ program. Further details for the

COPES data are explained in [Ref. 11.

D. DESIGN PARAMETERS

The design variables, constraints and objective function

used in the design process are discussed in this section.

1. Design Variables

The design variables are plate thicknesses, ti, and

stiffener dimensions, being the web heights hi, the web

thicknesses twi, the flange widths Wi, and the flange thick-

nesses tfil i = l,ns, where ns is the number of the different

stiffener dimension sets. Thus, the total number of design

variables depends on the sets of plate thicknesses and the

sets of different stiffener dimensions.

2. Objective Function

Total structure volume is considered as the objec-

tive function in the design process.

m ns
Volume = V. + N V

i=l P j=1 S]

where Vpi is the volume of the ith plate element, m is the

number of plate elements, Vsj is the volume of the jth stiffener

set, and Njis the number of stiffeners in this. The number

of stiffener sets is ns.

32



3. Constraints

Design constraints are Von Mises maximum stress,

nodal displacements, height to thickness ratios of frame

webs, and width to thickness ratios of frame flanges.

Stress:

U /a - 1 < 0 i = !,ne
3j max j = l,nj

- 1 < 0 i = l,nemax j = l,nj

Uwhere o. and a.. are respectively the upper and lower sur-
1] 13

face stress at the node j of the element i, and a is themax

maximum allowable stress. The number of elements is ne and

nj is the number of nodal points.

Displacements:

Ui Umax - < 0 i = l,njj = l,nc

where u is the displacement at node i in the coordinate13

direction j and Umax is the maximum allowable displacement

in coordinate direction j. The number of coordinates is

nc.

Height to thickness ratio of frame webs:

hi/twi - 5 < 0 i =l,ns

1 h hi/t wi 0

33



where hi and twi are respectively the web height and web

thickness of ith stiffener set.

Width to thickness ratios of flanges:

Witfi - 5 0 i = l,ns

i/ fi
w - w/t fi < 0

where w i and tfi are respectively the width and the thickness

of flange of the ith stiffener set.

34
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IV. DESIGN EXAMPLES

This chapter will present design examples of unstiffened

and stiffened plates. All calculations were carried out on

the IBM 3033 model 370 computer at the Naval Postgraduate

School. Material constants used for all examples are Young's

modulus, E = 3)x10 6 psi, and Poisson's ratio, v = 0.3. Due

to symmetry only a quarter of the plate was modelled in each

example.

A. DESIGN CASE I--THE UNSTIFFENED PLATE

A quarter of the unstiffened plate simply supported, as

shown in Fig. 4.1, was modelled using a 4 x4 mesh of the

plate elements. There are 10 design variables as illustrated

in Fig. 4.2. The volume of the plate was minimized subject

to a total of 378 constraints being stress and nodal deflec-

tion constraints, with jmax = 20,000 psi and uma x = 1/2 t.

I. Case IA with A Concentrated Load

A concentrated load of 1,000 lbs was applied at the

center of the whole plate. The final optimization results

show that there are 3 critical deflection constraints of

the nodes 3, 4 and 10, and that the plate thicknesses of the

diagonal elements are much thicker than those of off-diagonal

3
elements. The final volume is 363.916 in3 . The results of

this case are summarized in Table I for comparison with the

other cases.
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TABLE I

Summary of Design Case I

Variable Concentrated Distributed
Load Load

t(l) 1.302 0.352

t(2) 1.031 0.263

t(3) 0.573 0.589

t(4) 1.059 0.799

t(5) 0.120 0.086

t(6) 0.120 0.085

t(7) 0.120 0.086

t(E) 0.120 0.086

t(9) 0.120 0.086

t(10) 0.120 0.085

Vol 363.916 170.396

t: plate thickness (in)
Vol: volume (in 3 )

2. Case IB with Uniform Distributed Load
2

A uniform distributed load, 0.278 lbs/in was applied

over the whole plate. The final optimization results show

that there are 6 critical deflection constraints of the

nodes 3, 4, 5, 9, 10 and 15, and that the plate thickness

has a simile- trend to case IA where diagonal elements are

thicker than those of the off-diagonal elements. The final
3

volume is 170.396 in3 . The results are summarized in Table 1

with those of case IA.

B. DESIGN CASE II--THE STIFFENED PLATE

A quarter of the stiffened plate simply supported, as

shown in Fig. 4.3, was modelled 4 x 4 mesh of the plate ele-

ments and 12 stiffener elements.
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1. Case IIA--Rectangular Type Frame Stiffener

There are 17 design variables: a plate thickness,

and 8 sets of stiffener heights and thicknesses, as tabu-

lated in Table II. The volume of the stiffened plate was

min..mized subject to a total cf 222 constraints: stress,

stiffener height to thickness ratio, and nodal deflection

constraints.

a. Case IIAl with A Ccncentrated Load

A concentrated load :f 1,000 lbs was applied at

the center of the whole plate. TherE are 14 critical con-

straints: the height to thickness ratios, and 6 deflections

of the nodes 4, 5, 10, 29, 30 and 31. The final volume is
3

102.017 in with a uniform -Late thickness of 0.051 in. The

results are summarized in Tanle 7II ,or comparing with the

other cases.

b. Case IIA2 with Uniform D:,stributed Load

A uniform distributed load, 0.278 lb/in 2 was

applied over the whole plate. There are 12 critical con-

straints: the height to thickness ratios, and 4 deflections

of the plate nodes 7, 8, 14 and 19. The final volume is

65.984 in3 with a uniform plate thickness of 0.059 in. The

results of this case are summarized in Table III with those

of the case IIAl. The volumes of the above two cases are

significantly reduced in comparison to those of the unstif-

fened plate.
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TABLE II

Design Case IIA--Design Variables and Nodal Connectivity

element design node number
number variables N1 N2 N3 N4

p1  t 1 6 7 2

p2 t 2 7 8 3

p3 t 3 8 9 4

p4  t 4 9 10 5

p5 t 6 11 12 7

p 6  t 7 12 13 8

p7 t 8 13 14 9

pS t 9 14 15 10

p9  t i 16 17 12

p1 0  t 12 17 18 13

p11 t 13 18 19 14

p12 t 14 19 20 15

p1 3  t 16 21 22 17

p14 t 17 22 23 18

p15 t 18 23 24 19

:16 t 19 24 25 20

sl tw(l),h(1) 30 35

s2 tW t(2),h(2) 35 36

s3 t (3),h(3) 36 37

s4 tw(4),h(4) 37 38

s5 th(5) ,h(S) 29 30

s6 tw(6) ,h(6) 28 29

s7 tw(7),h(7) 27 28

s8 tW(8) ,h(S) 26 27

s9 tw(5),h(5) 30 31

slo tw(6) ,h(6) 31 32

sll tw(7 ),h( 7 ) 32 33

s12 tw(8),h(8) 33 34
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TABLE III

Summary of Design Case IIA

variable concentrated distributed
load load

t 0.051 0.059

tw(l) 0.438 0.209

tW(2) 0.318 0.168

t w(3) 0.553 0.267

tW(4) 0.673 0.344

tw(5) 0.097 0.138

t1q( 6 ) 0.096 0.164

tw(7) 0.095 0.171

tw(8) 0.095 0.155

h (1) 2.189 1.044

h (2) 1.568 0.832

h (3) 2.753 1.329

h (4) 3.343 1.709

h (5) 0.486 0.687

h (6) 0.482 0.821

h (7) 0.478 0.851

h (8) 0.477 0.776

Vol 102.017 65.984

t: plate thickness (in)

tw: frame thickness (in)

h: frame height (in)

Vol: volume (in
3
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2. Case IIB--T Type Frame Stiffener

There are 33 design variables: a plate thickness, 8

sets of the web heights and thicknesses, and 8 sets of the

flange widths and thicknesses, as tabulated in Table IV.

The volume of the stiffened plate was minimized subject to

a total of 230 constraints: stress, web height to thickness

ratio, flange width to thickness ratio, and nodal deflection

constraints.

a. Case IIBI with A Conccntra,:ed Load

A concentrated load of 1,000 lbs was applied at

the center of the whole plate. There are 12 critical con-

straints: the web height to thickness ratios, the 3rd and

8th flange width to thickness ratios, and deflection con-

straints at the node 5 of the element p5 and node 30 of the

element sl. The final volume is 55.091 in3 with a uniform

plate thickness of 0.023 in. The resu'.ts of this case are

summarized in Table V for comparison w:.th the other cases.

b. Case IIB2 with Uniform Dis-:ributed Load

A uniform distributed load, 0.278 lbs/in 2 was

applied over the whole plate. Theze are 16 critical con-

straints: the web height to thickness ratios except the

8th one, the 3rd through 8th flange width to thickness ratios

except the 6th one, and 4 deflections of the plate nodes 7,

8, 14 and 19. The final volume is 64.414 in3 with a uniform

plate thickness of 0.060 in. This volume is greater than the

volume of the above concentrated load case, being different

from the other cases which the latter is greater than the
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TABLE IV

Design Case IIB--Design Variables and Nodal Connectivity

element design node number

number variables N1 N2 N3 N4

p1 t 1 6 7 2
p2 t 2 7 8 3

p3 t 3 8 9 4
p4 t 4 9 10 5
p5  t 6 11 12 7
p6 t 7 12 13 8

p7  t 8 13 14 9
P8 t 9 14 15 10

p9 t 11 16 17 12
pl0 t 12 17 18 13

p11 t 13 18 19 14

t 14 19 20 15
t13 t 16 21 22 17
p14 t 17 22 23 18

pI 5  t 18 23 24 19
p16 t 19 24 25 20

S1 tw(1),h(l),tf (i),w(1) 30 35
s2 tw( 2 ),h( 2 ),tf(1),w(1) 35 36

s3 tW(3) ,h(3),tf(3),w(3) 36 37

s4 tw(4 ),h( 4 ) ,tf(4),w(4) 37 38
s5 tw(5),h(5),tf (5),w(5) 29 30

S6 tw(6) ,h(6) ,tf( 6 ) ,w(6) 28 29

S7 tw(7 ),h( 7 ),tf (7 ),w( 7 ) 27 28

s8 tw(8 ),h(8),tf(8),w(8) 26 27

s9 tw(5),h(5),tf(5),w(5) 30 31
slo tw( 6 ),h( 6 ),tf(6),w(6) 31 32

sll tW( 7 ),1h( 7 ),tf( 7),w( 7 ) 32 33
s12 tw( 8 ),h(8),tf(8),w(8) 33 34
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TABLE V

Summary of Design Case IIB

variable concentrated distributed
load load

t 0.023 0.060

tw(l) 0.133 0.149

tw(2) 0.077 0.126

tw(3) 0.137 0.197

tw(4) 0.162 0.242

t w (5) 0.381 0.103
tw (6)  0. 355 0.114

tw(7 ) 0.316 0.115

tw (8) 
0.274 0.122

h (1) 0.659 0.736

h (2) 0.386 0.631

h (3) 0.680 0.976

h (4) 0.805 1.201

h (5) 1.902 0.509

h (6) 1.767 0.566

h (7) 1.570 0.569

h (8) 1.368 0.602

tf(1) 0.021 0.262

tf(2) 0.028 0.183

tf(3) 0.011 0.308

tf(4) 0.026 0.460

tf(5) 0.876 0.209

tf(6) 0.799 0.231

tf( 7 ) 0.671 0.257

tf(8) 0.460 0.201

45

PRO-



TABLE V (Cont'd)

variable concentrated distributed
load load

w (1) 0.083 0.278

w (2) 0.054 0.187

w (3) 0.057 0.307

w (4) 0.074 0.460

w (5) 0.891 0.210

w (6) 0.814 0.235

w (7) 0.685 0.258

w (8) 0.464 0.201

Vol 55.091 64.414

t: place thickness (in)

tw : web thickness (in)

h: web height (in)

tfI flange thickness (in)

w: flange width (in)

Vol: volume (in3)
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former. This suggests that the stiffener type and arrange-

ment used here is particularly efficient for the concentrated

load case. The results of this case are summarized in Table

V with those of the case IIBl. The volumes of the above

cases are significantly reduced with comparison to those of

unstiffened plates. The volume of T type stiffener case

is slightly smaller than that of rectangular case in the

distributed load. On the other hand, the volume of T type

stiffener case is much smaller than the rectangular case

for the concentrated load.

C. DESIGN CASE III--THE HATCH COVER

A cuarter of a hatch cover was modelled 4 4 mesh of the

plate elements and 24 stiffener elements, as shown in Fig.

4.4.

1. Case IIIA--Rectangular Type Frame Stiffener

There are 9 design variables: a plate thickness,

and 4 sets of stiffener heights and thicknesses, as tabulated

in Table V1. The volume of the hatch cover was minimized

subject to a total of 274 constraints: stress, height to

thickness ratio, and nodal deflection constraints.

a. Case IIIAl with A Concentrated Load

A concentrated load of 1,000 lbs was applied at

the center of the whole plate. There are 4 critical con-

straints: the 2nd and 4th height to thickness ratios, and

the upper and lower stresses of the node 5 of the element

p4. The dimensions of the 2nd stiffener set are negligibly

small with comparison to those of the other stiffener sets.
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TABLE VI

Design Case IIIA--Design Variables and Nodal Connectivity

element design node number
number variables Nl N2 N3 N4

pl t 1 6 7 2

p2 t 2 7 8 3

p3  t 3 8 9 4

p4  t 4 9 10 5

p5 t 6 11 12 7

p6 t 7 12 13 8

p7  t 8 13 14 9

p8 t 9 14 15 10

p9  t 11 16 17 12

plO t 12 17 18 13

pll t 13 18 19 14

p1 2  t 14 19 20 15

p13 t 16 21 22 17

p1 4  t 17 22 23 18

p15 t 18 23 24 19

p16 t 19 24 25 20

sl 1/2tw (3),h(3) 26 27

s2 1/2tw(3),h(3) 27 28

s3 tw (1) ,h(1) 28 29

s4 t (1) ,h(1) 29 30

s5 tw(4) ,h(4) 26 31

s6 tw(2),h(2) 28 32

s7 tw(1) ,h(l) 30 33

s8 tw(4) ,h(4) 31 34

s9 tw (2),h(2) 32 36

slO tw(1) ,h(l) 33 38

sll tw(3),h(3) 34 35

s12 tw(3 ),h(3 ) 35 36

49



TABLE VI (Cont'd)

element design node number
number variables Ni N2 N3 N4

s13 tw(2) ,h(2) 36 37

s14 tW(2) ,h(2) 37 38

s15 tw (4) ,h(4) 34 39

s16 tw(3) ,h(3) 36 40

s17 1/2tw (3) ,h(3) 38 41

s18 tw(4) ,h(4) 39 42

s19 tw (3),h(3) 40 44

s20 1/2tw (3) ,h(3) 41 46

s21 tw(4),h(4) 42 43

s22 tw (4),h(4) 43 44

s23 tw(4),h(4) 44 45

s24 tw (4),h(4) 45 46
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This suggests that the ist stiffener set is stiff enough tc

compensate the elements attached to the 2nd stiffener set.

The final volume is 323.639 in3 with a uniform plate thick-

ness of 0.359 in. The results of this case are summarized

in Table VII.

TABLE VII

Summary of Design Case IIIA

variable concentrated distributed
load load

t 0.359 0.059

tw(1) 0.811 0.863

tw(2) 0.001 0.002

t W (3) 0.084 0.518

tw(4 ) 0.015 0.009

h (1) 1.306 1.750

h (2) 0.006 0.011

h (3) 0.162 1.484

h (4) 0.073 0.019

Vol 323.639 87.314

t: plate thickness (in)

tw : frame thickness (in)

h: frame height (in)

Vol: volume (in3 )

b. Case IIIA2 with Uniform Distributed Load

A uniform distributed load, 0.278 lbs/in 2 was

applied over the whole plate. There are 6 critical constraints:

the 2nd height to thickness ratio, and 5 deflections of the
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plate nodes 8, 9 and 14 and of stiffener nodes 32 and 37.

With the same suggestion as the concentrated load case the

dimensions of the 2nd stiffener set are negligibly small.

The final volume is 87.314 in3 with a uniform plate thickness

of 0.059 in. The design results of the above both cases

are summarized in Table VII with those of case IIIA1. The

volumes of the above two cases are sianificantly reduced

with comparison to those of unstiffened plates.

2. Case IIIB--T Type Frame Stiffener

There are 17 design variables: a plate thickness, 4

sets of the web heights and thicknesses, and 4 sets of the

flange widths and thicknesses, as tabulated in Table VIII.

The volume of the hatch cover was minimized subject to a total

of 278 constraints: stress, web height to thickness ratio,

flange width to thickness ratio, and nodal deflection

constraints.

a. Case IIIBl with A Concentrated Load

A concentrated load of ll0C lbs was applied at

the center of the whole plate. There are 3 critical con-

straints: the 3rd flange width to thickness ratios, and 2

deflections of the plate node 5 and stiffener node 30.

Negligibly small are the whole dimensions of the 2nd stiffener

set and the flange dimensions of the 3rd stiffener set with

comparison to the other dimensions. The final volume is

95.883 in3 with a uniform plate thickness, 0.083 in.
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TABLE VIII

Design Case IIIB--Design Variables and Nodal Connectivity

element design node number
number variables Ni N2 N3 N4

p1 t 1 6 7 2

p2 t 2 7 8 3

p3 t 3 8 9 4

p4 t 4 9 10 5

p5  t 6 11 12 7

p6  t 7 12 13 8

p7 t 8 13 14 9

p8 t 9 14 15 10

p9  t 11 16 17 12

p1 0  t 12 17 18 13

pll t 13 18 19 14

p1l2 t 14 19 20 15

p13 t 16 21 22 17

p14 t 17 22 23 18

l5 t 18 23 24 19

p16 t 19 24 25 20

sl 1/2tw(3) ,h(3) ,tf( 3 ) ,1/2w(3) 26 27

s2 i/2tw(3) ,h(3) ,tf(3) ,1/2w(3) 27 28

s3 tw(1),h(l),tf (i),w(1) 28 29

s4 tw(1),h(l),tf(l),w(l) 29 30

s5 tw( 4 ),h( 4 ),tf (4 ),w( 4 ) 26 31

s6 tw(2) ,h(2) ,tf( 2 ) ,w(2) 28 32

s7 tw(1) ,h(l) ,tf (1) ,w(l) 30 33

s8 tw( 4 ),h( 4 ),tf ( 4 ),w( 4 ) 31 34

s9 tw(2),h(2),t,(2),w(2) 32 36

slo tw(l),h(l),tf(1),w(l) 33 38

s1l tw(3 ),h( 3 ),tf( 3 ),w( 3 ) 34 35

s12 tw( 3),h(3),tf( 3),w( 3 ) 35 36
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TABLE VIII (Cont'd)

element design node number
numrmer variables N N2 N3 N4

s13 tw(2 ),h( 2 ),tf( 2 ),w( 2 ) 36 37

s14 tw(2 ) ,h(2) ,tf ( 2 ) ,w(2) 37 38

s15 tw(4) ,h(4) ,tf(4) ,w(4) 34 39

s16 tw( 3 ),h( 3 ),tf (3),w( 3 ) 36 40

s17 1/2tw( 3),h( 3 ),tf( 3),1/ 2w( 3 ) 38 41

s18 tw(4) ,h(4) ,tf( 4 ) ,w(4) 39 42

s19 tw( 3 ) ,h(3) ,tf( 3 ) ,w(3) 40 44

s20 1/2tw(3) ,h(3) ,tf( 3 ) ,1/2w(3) 41 46

s21 tw(4 ),h( 4 ),tf (4),w( 4 ) 42 43

s22 tw( 4 ),h( 4 ),tf( 4 ),w( 4 ) 43 44

s23 tw( 4 ),h( 4 ) ,tf( 4 ) ,w( 4 ) 44 45

s24 tW (4) ,h( 4 ),tf (4 ),w( 4 ) 45 46
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b. Case IIIB2 with Uniform Distributed Load

A uniform distributed load, 0.278 lbs/in 2 was

applied over the whole plate. There are 9 zritical con-

straints: the 3rd web height to thickness ratio, the 3rd

flange width to thickness ratio, 4 deflections of the plate

nodes 8, 9, 13 and 14, and 3 deflecticns of the stiffener

nodes 32, 36 and 37. Negligibly small are the whole dimen-

sions of the 2nd stiffener set, and the flange dimensions of

the 3rd and 4th stiffener sets with comparison to the other

dimensions. This suggests that the 1st stiffener set is

stiff enough to compensate the elements attached to the 2nd

stiffener set. Additionally it can be suggested that the

3rd and 4th stiffener sets are stiff enough to support the

given load with only the rectangular type ones. The final

volume is 76.436 in3 with a uniform plate thickness, 0.062

in. The results of the above both cases are s~mmarized in

Table IX. The volumes of the above two cases are signifi-

cantly reduced with comparison to those of the unstiffened

plates and the volume of T type stiffener case is much

smaller than that of the rectangular type case.
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TABLE IX

Summary of Design Case IIIB

variable concentrated distributed
load load

t 0.083 0.062

tw(l) 0.284 0.284

twi2) 0.003 0.003

tw(3) 0.323 0.318

t W (4) 0.020 0.020

h (1) 1.201 1.200

h (2) 0.010 0.010

h (3) 1.433 1.430

h (4) 0.060 0.060

t:(1) 1.001 1.000

tf(2) 0.003 0.003

tf(3) 0.000 0.001

tf(4) 0.010 0.010
w (i) 1.110 1.110

w (2) 0.010 0.010

w (3) 0.002 0.003

w (4) 0.030 0.001

Vol 95.883 76.436

t: plate thickness (in)

tW : web thickness (in)

h: web height (in)

tf : flange thickness (in)

w: flange width (in)

Vol: volume (in3
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V. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

A finite element analysis program was developed and

coupled to an optimizer for stiffened plate design. Stif-

fened plates were designed for minimum volume with a concen-

trated load.

Five important conclusions are made from considering

several design examples.

First, a stiffened plate is much more efficient than

the unstiffened plate for the optimum volume design.

Second, it is required to attach the larger stiffeners

to the diagonal elements of the plate as compared to the

off-diagonal elements.

Third, the T type stiffeners provide a lower volume

design than the rectangular type stiffeners.

Fourth, the stiffened plate with the diagonally attached

stiffeners are much more efficient than those with the

rectangularly attached stiffeners.

Fifth, the stiffened plate attached diagonally with the

T type stiffeners is particularly efficient for the concen-

trated load case.

These conclusions are based on the design of simply

supported plates and the conclusions could be quite differ-

ent if other boundary conditions are considered.
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B. RECOMMENDATIONS

The following recommendations may be useful ..or future

work.

1. The analysis program should be modified t~o a

generalized program with a variety of elements.

2. The analysis program should be extended to0

consider the dynamic problem.

3. The analysis program should be extended to

consider the multiple loading conditions.

4. Routines should be added to calculate gradients

analytically.

5. Buckling constraints of the plate and stiffener

elements should be added in the optimiza-zion

process.

6. Frequency constraints should be added in the

optimization process.

7. The analysis program should be modified -:0 reduce

the computing time during the optimization process.
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