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ABSTRACT

Stiffened plates are designed for minimum volume subject
to constraints on: Vor Mises maximum stresses, nodal dis-
placements, height to thickness ratios of frame webs, and
width to thickness ratios of frame flanges. Design variables
are plate thicknesses znd stiffener dimensions.

A finite element anralysis program is developed for the
design of stiffened plates using numerical optimization
techniques. The program may be used as a stand alone analy-
sis tool or may be coupled to an optimizer of user's choice.

Rectangular plate elements and frame elements are used for

the idealization of stiffened plates.
Design examples are presented to demonstrate the design

method.
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I. INTRODUCTION

The development of high-speed digital computers has made
possible significant changes in the structure design process.
One of tnese is the availability of various mathematical
programning metiaods for use in design optimization. The
computer's speed allows the designer to now consider a much
wider range of design alternatives. The optimization proce-
dure provides a means of systematically choosing from among
these alternatives based on some predetermined rational
criterion.

Even when the selected numerical method is able to ar: e
at the optimum design, the result is only as good as the
design model. Here there is an even greater need for design
experience and sound engineering judgment. The design model
must be carefully developed to realistically represent the
design in juestion.

The finite element model for stiffened plate is shown in
Fig. 1.1, where the plate has been descritized by rectangular
plate elements and the stiffener by frame type elements. The
eccentricity of stiffener is transformed to the linked nodal
point by applying a linear equation that realtes displacement
degrees of freedom.

The purpose of this thesis is to develop a finite element
analysis program for stiffened plates, and to design the

optimum stiffened plate by coupling two programs; the

10
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Figure 1.1

Stiffened Piate Model
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analysis program and ageneral purpose non~linear optimizer,
COPES/CONMIN [Refs. 1-2],

The remaining chapters of this thesis are outlined as
follows:

Chapter 11 presents briefly the finite element method

used in the analysis program for stiffened plates. |

Chapter III presents the basic concepts o>f the optimi-
zation methods used in the COPES/CONMIN.
Chapter IV presents design examples.

Chapter V offers conclusions and recommendations.

12

Rt e JE L SR Y N . . e e

S R P T o




II. FINITE ELEMENT METHOD

A. GENERAL

The finite element method is now well established as an
engineering tcol of wide application. The fundamental
concept of the finite element method is that any continuous
quantity, such as oressure or displacements, can be approxi-
mated by a discrete model composed of a s=t of piecewise
continuous functions defined over a finite number of sub-
domains. The piecawise continuous functions are defined
using the values of the continuous quantity at a finite
number of pcints in its domain.

The formuiatioa of the finite element method can be traced
to energy preoceduras, principally the minimum potential energy
method and the minimum complimentary energy method. The
minimum potential energy method is associated with assumed
displacement parameters as unknowns and is usually termed
the "displacement" or "stiffness" method. On the other hand,
the minimum complimentary energy method dealt with stress
parameters and is termed the "flexibility" or "force" approach.
The ease with which a continuous displacement pattern can be
prescribed (compared to the alternative approach of forming
an equilibrating internal force field) has aided the wide-
spread use and development of the finite element displace-
ment approach. The displacement model and the stiffness

analysis are employed in the analysis program developed here.

13




This chapter will briefly present some of the general

concepts of the finite element method used in the analysis

program.

B. FINITE ELEMENT DISPLACEMENT APPROACH

The displacement formulation involves derivation of the
stiffness matrix of each individual element. The stiffness
matrix of the entire assembled structure is then obtained by
super-pcsition. This matrix, along with the prescribed
displacement boundary conditions and loads, is used for the
solution of displacements and stresses.

1. Element Analysis

For the structural applications at least, *he
governing equilibrium equations can be obtained by mini-
mizing the total potential energy of the system. The total

potential energy, T can be expressed as

=l
|

= % / 97edv - uw £4av - u gas (2.1)

where ¢ and ¢ are the stress and strain vectors respectively,
u the displacements at any point, f the body forces per unit
volume and q the applied surface tractions. Integrations are
taken over the volume V of the structure and loaded surface
area S.

The first term on the right hand side of Eq. (2.1)

represents the internal strain energy and the second and

14
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third terms are respectively the work contributions of the

body forces and distributed surface loads.
In the finite element displacement method, the basic
steps for derivation of the element stiffness matrix are:
a. Express the displacements to have unknown values only
at the nodal points, so that the variation within any
element is described in terms of the nodal values by

means of interpolation functions. Thus

€ (2.2)

o}
1]
2 R”A
[~

where E is the set of interpolation functiocns termed
the shape functions and ge is the vectcr of nodal
displacements of the element.

b. Expfess the strains within the element from the

element nodal displacements as

€ (2.3)

m

il
@t
X+

where B is the strain-displacement matrix generally
composed of derivatives of the shape functions.

C. Express the stresses relating to the strains by use of
an elasticity matrix ? containing the appropriate

material properties, as follows:

(2.4)

Q
it

o
N

d. Establish the equilibrium equation of element.

15
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Provided that the element shape functions have been chosen

so that no singularities exist in the integrands of the
functional, the total potential energy of the continuum will
be the sum of the erergy contributions of the individual

elements. Thus

m (2.5)

where Te represents the total potential energy of element e

which, on use of Eg. (2.l1), can be written

49
]
£ b=
e

- f  wT T qas, (2.6)

where Ve is the element volume and Se the loaded element
surface area. Performance of the minimization for the
element e with respect to the nodal displacements u for the

element results in

am

e - j @Tom uwav_ - wTfav_-/ NTgds
au® v, o= sz -~ & Ty oz~ & Tg 3z 7€
e e e
where
16
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(2.9)

is termed the element stiffness matrix.

2. Direct Stiffness Method

The real elastic structure is now represented by a
finite number of small, discrete elements. Once their
approximate behaviors, identified by their individual stiff-
ness matrices k®of Eg. (2.9), have been established, the

~

stiffness matrix K for the complete structure is obtained by
the proper summatzon of each element stiffness matrix in the
structure. The summation of the terms in Eg. (2.7) over all
the elements, when equated to zero, results in a system of
equilibrium equations for the complete continuum. This
assembly process is known as the Direct Stiffness Method.
These equations are then solved by any standard technique to

vield the nodal displacements. Note that K is symmetric and

positive-definite.

C. FINITE ELEMENTS USED
The finite elements used in the analysis program will be

described briefly in this section.

17
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1. Rectangular Plate Element

The rectangular plate element used here is illus-
trated in Fig. 2.1, where each nodal point has € degrees of
freedom, 3 transitional displacements and 3 rotational

displacements. This element with 4 corner nodal points has

the element stiffness matrix of order 24 x 24. The corres-

ponding displacements of each node u will be

17Ugr e rlny
taken to be positive in positive directions of the xyz-
coordinates.

The main assumptions in the method are that 3displace-
ments are small compared with plate thickness, the stress
normal to the midsurface of the plate is negiigible, and
normals to the midsurface before deformation remain straight
but not necessarily normal to the midsurface after deformation.

The assumed displacement functions will be taken to
be linearly varying in the plane of the element. These
displacement functions will ensure both deflection and slope
compatibility of the adjacent elements. The stiffness matrix
of the rectangular plate element, which is matrix product
§T9§ of Egq. (2.9) integrated over its volume, is summarized

by Przemieniecki [Ref. 3].

Note that element stiffness matrices are formed

directly in the global coordinate system so that no trans-
formations from local to global coordinates are required.

2. Frame Element

The frame element as a stiffener has 6 degrees of

freedom for each node, such as those of plate elements. The

18
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Figure 2.1 Rectangular Plate Element
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basic assumptions are that the stiffener element is straight

with uniform cross section capable of resisting axial forces,
bending moments about the two principal axes in the plane of
its cross-section, and twisting moments about centroidal axis,
and that its deflection due to shearing strains are neglected.
The stiffener element has 2 kinds of options which are illus-
trated in Fig. 2.3, The width and thickness of flange of

the rectangular stiffener element may be referred as zeros.

In order to determine the stiffness property of a
complete structure, a global coordinate must be established
for all unassembled structural elements so that all the
displacements and their corresponding forces will be referred
to this system. Since the element stiffness matrices k are
initially calculated in local coordinates, suitably or;ented
to minimize the computing effort, it is necessary to intro-
duce transformation matrices changing the frame of reference
from a local to a global coordinate system. The first step
in deriving such a transformation is to obtain a matrix rela-
tionship between the element displacements u in the local
system and the element displacements g' in the global system.

This relationship is expressed by the matrix egquation

(2.10)

[
]
e 3
=

where T is a matrix of coefficients obtained by resolving

global displacements in the directions of local coordinates.

The transformation matrix T is given by

-~

20
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a. Rectangular type frame stiffener

b. T type frame stiffener

Figure 2.3 Stiffener Options
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T = =
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é = toy moy noy
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represents matrices of direction cosines for local x, y and
z directions, respectively, measured in global system x, vy
and z. Similarly the relationship for forces is expressed

by the matrix equation

where p is the force vector in the local system and p' is

the force vector in the glcbal system. Matrix A is orthogonal;
1 T

that is, T - = T . Therefore
at = Ty (2.12)

J and

f

: :

|
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Let u' and u be two ways to describe the same virtuai dis-~

placement. Virtual work 1is

fu'"p' = du'p = Su ? p (2.14)
So
SB'T(E'-ETP) = 0, p' = ?Tp {2.15)
To transform the stiffness matrix, we start with 5';‘ = p'

and substitute from the preceding equations.

.16)

& X
)cj-
1}
g
1]
3
g
if
13
LR
(5
i
3
e
o r3
[+
[

Since this relation is presumed valid for any u', w= con:lude

that the required stiffness transformation is

R
1]
IR
[N
e
N
-

D. OFFSETTING OF RIGID LINKS

One of the most important advantages of the finite ele-
ment technique is that an assembly of different structure
elements such as plates and frames can be dealt within a
single coordinate analysis. Usually the neutral surfaces of
plate and stiffener are not coincident: the stiffener is on
one side of the plate, A standard preliminary treatment is
to connect adjacent plate and stiffener nodes by a rigid

link, so that degrees of freedom of the stiffener are replaced

24




by degrees of freedom of the plate. The usual assembly is

then possible. The necessary transformation is now described.

The stiffener element in Fig. 2.4 has the usual 12 degrees
of freedom--6 at ncde A and 6 at node B. With reference to
these degrees of freedom, element load and stiffness matrices
are é and E. Similar degrees of freedom are used at nodes 1
and 2 of plate element of rigid links A-1 and B-2. The

"master" degrees of freedom at node 1 and "slave" degrees

of freedom at node A have the relation

(a1 ] = 0y (o) (2.18)
Uaz Y12
¥a3 Y13
* Yag f ) Y14
Yas Y15
_ Ya6 L U16
where
Moo= o[ 0 0 0 1, —zyl’
0 1 0 -2, 0 Lo
0 0 1 L1 Tl 0
0 0 0 1 0 0
0 0 0 0 1 0
L 0 0 0 0 0 1
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plate element

- ———e rlgld links

frame element

Figure 2.4 Rigid Links
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A similar expression is written for 1ink B-2 by replacing
subscripts A and 1 by B and 2. The transformation vectors
p and matrix k, associated with degrees of freedom at nodes 1

<

and 2, are

p = Tp (2.19)
k = ?T KT (2.20)
where
Tioxiz = [ 41 O
¢

. The foregoing transformation makes the translaticnal
displacements depend on the rotational displacements and sc
introduces an unwanted gquadratic field into the translztioral

displacements. It is found that a frame-stiffened plate is

overly flexible in a coarse mesh. Mesh refinement nel»s:
error is reduced by a factor of fcur if the number of elements
is doubled. The error can be eliminated through the additicn
of one more degree of freedom. Further details of the errcr

reduction are described in {Ref. 4].

27
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III. OPTIMIZATION TECHNIQUES

A. INTRODUCTION

In this chapter some of the fundamental ideas and formu-
lation methods of mathematical programming are introduced
to understand the optimization method and the optimizer
COPES/CONMIN. Design parameters used here are then dis-
cussed. Fox [Ref. 5] ard Hirmelblau [Ref. 6] provide an
extensive discussion of numerical optimization techniques

and their application to engineering design.

B. DEFINITIONS

In discussing the optimization methods, the folleow.ing
definitions will be useful:

Design variables--the design variables are the numerical
parameters for which values are to be chosen in producing a
design. In a structural problem, they might be plate thick-
ness, frame dimensions, 2atc.

Objective function-~the objective function, is the single
valued function with resvect to which the design is optimized.
In a structural design problem, it might be the weight, volume
or fabricated cost of the structure. The selection of an
objective function can be one of the most important decisions
in the optimum design process.

Constraints--practical design problems are usually sub-

ject to a series of constraints which must be satisfied in

28




order to produce an acceptable design. These constraints
may be linear or non-linear. If a parameter is beyond the
value of a specified value, it is said to be violated.
Side constraint--the side constraint is a constraint
which restricts the specified range of a design variable
for reasons other than the direct consideration of performance.
Feasible design--the feasible design (or acceptable
design) is a design which satisfies the specified constraints.
Infeasible design~-the infeasible design (or unaacep-
table design) 1is a design which does not satisfy the speci-
fied constraints.

The general nonlinear optimization problem is expressed

mathematically as follows:

Minimize F(x) (3.1)
Subject to:
gj(x) < 0 for j = 1,m (3.2)
X < x. < %% for i=1,n (3.3)
i = i = i

where the vector, X, is the vector of n design variables.

The objective functicn, F(f), given by Eg. (3.1), as well

as the constraint functions given by Egq. (3.2), may be linear
or non-linear functions of the design variables. They may be
explicit or implicit functions of X, but must have continuous
first derivatives. 1If it is desired to maximize F(x), the

minimization of the objective function is used since maximum

29
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F(x) can be treated minimum of -F(x). The function g, (x)
< = 3T

is the set of ineguality constraints to be met. The m in-
equality constraints must be satisfied to be a feasible
design. Side constraints, x% and xg, are the lower and upper
limitations placed on the design variables. S$ide constraints
could be included in Eq. (3.2), but are treated separately
for efficiency.

The n-dimensional space spanned by the design variakles
Xy is referred to as the design space. As stated previcusly.
any design which satisfies the inequalities of Eg. (3.2) is
referred to as a feasible design. If the design violates one
more of the inequalities, it is said to be infeasible. The
minimum feasible design is said to be optimal.

Most nonlinear optimization programs update the vector

of design variables by the iterative relationship

Y T S (3.1)

where g is the iterative number, vector S is the direction
of search in the design space, and a* is a scalar which
defines the distance of travel in the direction S during the
gth iteration. An initial design defined by §° must be
defined and may be a feasible or infeasible design.

The optimization process then proceeds in two steps. The
first is the finding of S which will improve the design
without violating constraints and the second is the determina-

tion of a* which will improve the design as much as possible

30




when moving in this direction. The process is then repeated
until there is no further design improvement, indicating

that this is the optimum attainable design.

C. COPES/CONMIN

The COPES/CONMIN optimization program is a general pur-
pose, non-linear optimizer capable of handlin: large, con-
strained problems. This includes the conjugate direction
method of Fletcher and Reeves [Ref. 7] for unconstrained
function minimization and a modification of Zoutendijk's
Method [Ref. 8] of Feasible Directions for constrained func-
tion minimization. It has been successfully used in connec-
tion with structural optimization [Ref. 9], airfoil design -
[Ref. 10], aircraft svnthesis [Ref. 11], and numerous other
engineering applications.

It was necessary to develor a subroutine, ANALIZ, which

for a given design, would analyze a stiffened plate, and which

would be suitable for coupling with the optimizer. The

common block GLOBCM is requirec to couple the analysis sub- g
routine directly to the COPES/CONMIN. All variables, which

are used as objective function, constraints and design varia-

bles, must be listed in the common statement and the statement

must appear in each subroutine the variables are used in.

It is used by the optimizer as a catalog to identify where

the design variables, objective function and constraints are,

and what purpose they fulfill.
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In order to execute the COPES/CONMIN program it is
necessary to provide formatted data for COPES/CONMIN, followed
by data for the ANALIZ program. Further details for the

COPES data are explained in (Ref. 1].

D. DESIGN PARAMETERS

The designh variables, constraints and objective function

used in the design process are discussed in this section.

1. Design Variables

The design variables are plate thicknesses, ti’ and
stiffener dimensions, being the web heights hi’ the web

thicknesses t the flange widths W., and the flange thick-

Wi’
nesses tfi’ i = 1,ns, where ns is the number of the different
stiffener dimension sets. Thus, the total number of design
variables depends on the sets of plate thicknesses and the

sets of different stiffener dimensions.

2. Objective Function

Total structure volume is considered as the objec-

tive function in the design process.

m ns
volume = §J V_. + ] N,V
i= ] s

1 Pt o521 J

where Vpi is the volume of the ith plate element, m is the

number of plate elements, Vsj is the volume of the jth stiffener

set, and Njis the number of stiffeners in this. The number

of stiffener sets 1is ns.
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3. Constraints

Design constraints are Von Mises maximum stress,
nodal displacements, height to thickness ratios of frame

webs, and width to thickness ratios of frame flanges.

Stress:
u

g../0 -1 < 0 = 1,ne

1j’ " max - 5 = 1,03

c%./o -1 < 0 i = 1,ne

13’ "max - . re

j = 1./nJ

where O?j and Oij are respectively the upper and lower sur-
face stress at the node j of the element i, and % max is the
maximum allowable stress. The number of elements is ne and

nj is the number of nodal points.

Displacements:

]
I}
—

where uij is the displacement at node i in the coordinate

direction j and uy is the maximum allowable displacement

ax
in coordinate direction j. The number of coordinates is
nc.,

Height to thickness ratio of frame webs:

hi/twi -5 < 0 i=1,ns

A
o

1= hy/ty
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where hi and t are respectively the web height and web

Wi
thickness of ith stiffener set.
wWidth to thickness ratios of flanges:

wi/tfi -5 <6 i=1,ns

1 - wi/tfi < 0

where w, and ty, are respectively the width and the thickness

of flange of the ith stiffener set.
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IV. DESIGN EXAMPLES

This chapter will present design examples of unstiffened
and stiffened plates. All calculations were carried out on
the IBM 3033 model 370 computer at the Naval Postgraduate
School. Material constants used for all examples are Young's
modulus, E = 3 ><106 psi, and Poisson's ratio, v = 0.3. Due
to symmetry only a guarter of the plate was modelled in each

example.

A. DESIGN CASE I--THE UNSTIFFENED PLATE

A quarter of the unstiffened plate simply supported, as
shown in Fig. 4.1, was modelled using a 4 x4 mesh of the
plate elements. There are 10 design variables as illustrated
in Fig. 4.2. The volume of the plate was minimized subject
to a total of 378 constraints being stress and nodal deflec-
tion constraints, with ¢ = 20,000 psi and u =1/2 t.

max max
1. Case IA with A Concentrated Load

A concentrated locad of 1,000 lbs was applied at the
center of the whole plate. The final optimization results
show that there are 3 critical deflection constraints of
the nodes 3, 4 and 10, and that the plate thicknesses of the
diagonal elements are much thicker than those of off-diagonal
elements. The final volume is 363.916 in3. The results of

this case are summarized in Table I for comparison with the

other cases.
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Figure 4.1

: plate thickness
: element
: node
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Design Case I--The Unstiffened Plate Model
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TABLE I

Summary of Design Case I !
Variable Concentrated Distributed

Load Load
£ (1) 1.302 0.352
t(2) 1.031 0.263
t(3) 0.573 0.589
t(4) 1.059 0.799
t(5) 0.120 0.086
t(6) 0.120 0.085
t(7) 0.120 0.086
t(€) 0.120 0.086
t(9) 0.120 0.086
t(10) 0.120 0.085
vol 363.916 170.39¢6

t: plate thickness (in)
Vol: volume (in3)

2. Case IB with Uniform Distributed Load

A uniform distributed load, 0.278 lbs/in2 was applied
over the whole plate. The final optimization results show
that there are 6 critical deflection constraints of the
nodes 3, 4, 5, 9, 10 and 15, and that the plate thickness
has a simila- trend to case IA where diagonal elements are
thicker than those of the off-diagonal elements. The final

3 -

volume is 170.396 in~. The results are summarized in Table I

with those of case IA.

B. DESIGN CASE II--THE STIFFENED PLATE
A quarter of the stiffened plate simply supported, as
shown in Fig. 4.3, was modelled 4 x4 mesh of the plate ele-

ments and 12 stiffener elements.
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1. Case IIA--Rectangular Tvpe Frame Stiffener

lated in Table II. The volume of the stiffened plate

There are 17 design variables: a plate thickness,

and 8 sets of stiffener heights and thicknesses, as tabu-

was

min.mized subject to a total cf 222 constraints: stress,

stiffener height to thickness ratio, and nodal deflection

constraints.

a. Case IIAl with A Ccncentrated Load

A concentrated lcad <f 1,000 lbs was arplied at

the center of the whole plate. There are 14 critical

con-

straints: the height to thickness ratios, and 6 deflecticns

of the nodes 4, 5, 10, 29, 30 ancd 31. The final volume 1is

102.017 in3 with a uniform plate thickness of 0.051 in. The

results are summarized in Taple III for comparing with the

other cases.

b. Case IIA2 with Uniform Distributed Load

A uniform distributed load, 0.278 1b/in? was

applied over the whole plate. Taere are 12 critical con-

straints: the height to thickness ratios, and 4 deflections

of the plate nodes 7, 8, 14 and 19. The final volume

65.984 in> with a uniform plate thickness of 0.059 in.

results of this case are summarized in Table III with

of the case IIAl. The volumes of the above two cases

is
The
those

are

significantly reduced in comparison to those of the unstif-

fened plate.
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Design Case IIA--Design Variables and Nodal Connectivity

element
number

pl

p2

pl0
pll
plZ2
pl3
pl4
pl5

hy

plé
sl
s2
s3
s4
s5
6
s7
s8
s9
s10
sll
sl2

design
variables

(220 s S s RN ¢ SN 2 )

[ad

(S AN = S s SR s S & S & AN S Y & S o

£, (1), h(L)
£y (2) /0 (2)
£, (3),h(3)
£, (4) ,h(4)
£ (5) ,h(5)
t,, (61,0 (6)
ty (7),0(7)
£ (8),h(8)
£ (5),h(5)
£ (6) ,h(6)
£, (71,0 (7)
tw(S),h(8)

TABLE II
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node number
N3

N2

6
7
8
9

3
&

12
13
14
le
17
18
19
21
22
23
24
35
36
37
38
30
29
28
27
31
32
33
34

10
12
13
14
15
17
18
19
20
22
23
24

25




TABLE III

Summary of Design Case IIA

variable concentrated distributed

load load

- t 0.051 0.059
tw(l) 0.438 0.209
tw(2) 0.318 0.168
tw(3) 0.553 0.267
tw(4) 0.673 0.344
tw(S) 0.097 0.138
ty (6) 0.096 0.164
ty(7) 0.095 0.171
tw(8) 0.095 0.155
h (1) 2.189 1.044
h (2) 1.568 0.832
h (3) 2,753 1.329
h (4) 3,343 1.709
h (5) 0.486 0.687
h (6) 0.482 0.821
h (7) 0.478 0.851
h (8) 0.477 0.776
Vol 102.017 65.984

t: plate thickness (in)

tyt frame “hickness (in)

h: frame height (in)
Vol: volume (in3)
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2. Case IIB--T Type Frame Stiffener

There are 33 design variables: a plate thickness, 8
sets of the web heights and thicknesses, and 8 sets of the
flange widths and thicknesses, as tabulated in Table IV.

The volume of the stiffened plate was minimized subject to

a total of 230 constraints: stress, web height to thickness
ratio, flange width to thickness ratio, and nodal deflection
constraints.

a. Case IIBl with A Concentrated Load

A concentrated load of 1,000 lbs was applied at
the center of the whole plate. There are 12 critical con-
straints: the web height to thickness ratios, the 3rd and
8th flange width to thickness ratios, and deflection con-
straints at the node 5 of the element p5 and node 30 of the

3 with a uniform

element sl. The final volume is 55.091 in
plate thickness of 0.023 in. The resu.ts of this case are
summarized in Table V for comparison w.th the other cases.
b. Case IIB2 with Uniform Dis=zributed Load

A uniform distributed load, 0.278 lbs/in2 was
applied over the whole plate. There are 16 critical con-
straints: the web height to thickness ratios except the
8th one, the 3rd through 8th flange width to thickness ratios
except the 6th one, and 4 deflections of the plate nodes 7,
8, 14 and 19. The final volume is 64.414 in3 with a uniform
plate thickness of 0.060 in. This volume is greater than the

volume of the above concentrated lcad case, being different

from the other cases which the latter is greater than the
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TABLE IV

Design Case IIB--Design Variables and Nodal Connectivity

element design node number
number variables N1 N2 N3 N4
pl t 1 6 2
p2 t 2 7 3
p3 t 3 8 4
p4 t 4 9 10 5
ok} t € 11 12 7
06 t 7 12 13 8
v7 t 8 13 14 9
o8 t 9 14 15 10
p9 t 11 16 17 12
plo t 12 17 18 13
pll t 13 18 19 14
oi? t 14 19 20 15
£i3 t 16 21 22 17
pl4 t 17 22 23 18
pi5 18 23 24 19
16 19 24 25 20
sl tw(l),h(l),tf(l),w(l) 30 35
52 tw(2) h{2),£.(1) ,w(l) 35 36
s3 tw(3),h(3),tf(3),w(3) 36 37
s4 tw(4),h(4),tf(4),w(4) 37 38
85 tw(S),h(S),tf(S),w(S) 29 30
5 tw(G),h(G),tf(G),w(é) 28 29
s7 tw(7),h(7),tf(7),w(7) 27 28
s8 tw(8),h(8),tf(8),w(8) 26 27
s9 tw(S),h(S),tf(S),w(S) 30 31
s10 tw(é),h(G),tf(s),w(G) 31 32
sll {7 h(7), e (7),w(T) 32 33
sl2 tw(8),h(8),tf(8),w(8) 33 34
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TABLE V

Summary of Design Case IIB

variable concentrated distributed

load load

t 0.023 0.060
tw(l) 0.133 0.149
tw(Z) 0.077 0.126
tw(3) 0.137 0.197
tw(4) 0.162 0.242
tw(S) 0.381 0.103
tw(6) 0.355 0.114
tw(7) 0.316 0.115
tw(8) 0.274 0.122
h (1) 0.659 0.736
h (2) 0.386 0.631
h (3) 0.680 0.976
h (4) 0.805 1.201
h (3) 1.3802 0.509
h (6) 1.767 0.566
h (7) 1.570 0.569
h (8) 1.368 0.602
tf(l) 0.021 0.262
tf(2) 0.028 0.183
tf(3) 0.011 0.308
tf(4) 0.026 0.460
tf(S) 0.876 0.209
tf(6) 0.799 0.231
tf(7) 0.671 0.257
tf(B) 0.460 0.201
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TABLE V (Cont‘d)

variable concentrated distributed
load load
w (1) £.083 0.278
w (2) 0.054 0.187
w (3) 0.057 0.307
w (4) 0.074 0.460
w (5) 0.891 0.210
w (6) 0.814 0.235
w (7) 0.685 0.258
w (8) 0.464 0.201
vol 55.091 64.414
t: place thickness (in)
tt web thickness (in)
h: web height (1in)
tf: flange thickness {in)
w: flange width (in)

vol: volume (in3)
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former. This suggests that the stiffener type and arrange-
ment used here is particularly efficient for the concentrated
load case. The results of this case are summarized in Table
V with those of the case IIBl. The volumes of the above
cases are significantly reduced with comparison to those of
unstiffened plates. The volume of T type stiffener case

is slightly smaller than that of rectangular case in the
distributed load. On the other hand, the volume of T type
stiffener case is much smaller than the rectangular case

for the concentrated load.

C. DESIGN CASE III-~THE HATCH COVER

A guarter of a hatch cover was modelled 4 4 mesh of the
plate elements and 24 stiffener elements, as shown in Fig.
4.4.

1. Case I1l1IA--Rectangular Type Frame Stiffener

There are 9 design variables: a plate thickness,
and 4 sets of stiffener heights and thicknesses, as tabulated
in Table VI. The volume of the hatch cover was minimized
subject to a total of 274 constraints: stress, height to
thickness ratio, and nodal deflection constraints,

a. Case IIIAl with A Concentrated Load

A concentrated load of 1,000 lbs was applied at
the center of the whole plate. There are 4 critical con-
straints: the 2nd and 4th height to thickness ratios, and
the upper and lower stresses of the node 5 of the element
p4. The dimensions of the 2nd stiffener set are negligibly

small with comparison to those of the other stiffener sets.
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TABLE VI

Design Case IIIA--Design Variables and Nodal Connectivity

element
number

pl
p2
p3
pé
5]
pb6
p7
p8
p9
plo0
oll
pl2
pl3
pl4
plS
plé6
sl
s2
s3
s4
s5
s6
s7
s8
s9
sl0
sll
sl2

design
variables

t ot o F o o ¢ o ¢t + t

t
1/2¢,,(3) ,h(3)
1/2t,4(3) ,h(3)

ty (1), h(l)
£, (1) ,h(1)
£, (4) ,h(4)
£,(2) ,h(2)
£, (1), h(1)
t,(4) ,h(4)
£, (2) ,h(2)
£, (1) ,h(1)
t,g(3),h(3)
£, (3),h(3)
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N2

6
7
8
9
11
12
13
14
16
17
18
19
21
22
23
24
27
28
29
30
31
32
33
34
36
38
35
36

node number

N3

7

8

9

10
12
13
14
15
17
18
19
20
22
23
24
25




element

number
sl3
sl4
sl5
slé6
sl7
sl8
sl9
s20
s21
s22
s23
s24

TABLE VI {(Cont'd)

design

variables
tw(2),h(2)
tw(Z),h(Z)
tw(4),h(4)
tw(3),h(3)
l/2tw(3),h(3)
tw(4),h(4)
tw(3),h(3)
1/2t,(3) ,h(3)
tw(4),h(4)
tw(4),h(4)
tw(4),h(4)
tw(4),h(4)
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N1

36
37
34
36
38
39
40
41
42
43
44
45

node number

N2

37
38
39
40
41
42
44
46
43
44
45
46

N3

N4




This suggests that the lst stiffener set is stiff enough tc

compensate the elements attached to the 2nd stiffener set.

3

The final volume is 323.639 in~ with a uniform plate thick-

ness of 0.359 in. The results of this case are summarized

- in Table VII.
TABLE VII
Summary of Design Case IIIA
variable concentrated distributed
load load
t 0.359 0.059
tw(l) 0.811 0.3863
tw(Z) 0.001 0.002
tw(3) 0.084 0.518
tw(4) 0.015 0.009
h (1) 1.306 1.750
h (2) 0.006 0.011
h (3) 0.162 1.484
h (4) 0.073 0.019
vol 323.639 87.314

t: plate thickness (in)

tw: frame thickness (in)
h: frame height (in)

Vol: volume (in3)

b. Case IIIA2 with Uniform Distributed Load
A uniform distributed load, 0.278 lbs/in’ was
applied over the whole plate. There are 6 critical constraints:

the 2nd height to thickness ratic, and 5 deflections of the
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plate nodes 8, 9 and 14 and of stiffener nodes 32 and 37.
With the same suggestion as the concentrated load case the
dimensions of the 2nd stiffener set are negligibly small.

The final volume is 87.314 in3 with a uniform plate thickness
of 0.059 in. The design results of the abovz both cases

are summarized in Table VII with those of case IIIAl. The
volumes of the above two cases are sianificantly reduced
with comparison to those of unstiffened plates.

2. Case I1IB-~-T Type Frame Stiffener

There are 17 design variables: a plate thickness, 4
sets of the web heights and thicknesses, and 4 sets of the
flange widths and thicknesses, as tabulated in Table VIII.

The volume of the hatch cover was minimized subject to a total
of 278 constraints: stress, web height to thickness ratio,
flange width to thickness ratic, and nodal deflection
constraints.

a. Case IIIBl with A Concentrated Load

A concentrated load of 1,30¢ lbs was applied at
the center of the whole plate. There are 3 critical con-
straints: the 3rd flange width to thickness ratios, and 2
deflections of the plate node 5 and stiffener node 30.
Negligibly small are the whole dimensions of the 2nd stiffener
set and the flange dimensions of the 3rd stiffener set with
comparison to the other dimensions. The final volume is

95.883 in> with a uniform plate thickness, 0.083 in.
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TABLE VIII

Design Case IIIB--Design Variables and Nodal Connectivity

element design nocde number
number variables N1 N2 N3
pl t 1 6 7
pl t 2 7 8
p3 t 3 8 9
p4 t 4 9 10
p5 t 6 11 12
p6 t 7 12 13
p7 t 8 13 14
p8 t 9 14 15
P9 t 11 16 17
plo t 12 17 18
pll t 13 18 19
pl2 t 14 19 20
pl3 t 16 21 22
pld t 17 22 23
0l5 t 18 23 24
plé t 13 24 25
sl l/th(B),h(B),tf(3),l/2w(3) 26 27

s2 l/2tw(3),h(3),tf(3),l/2w(3) 27 28

s3 tw(l),h(l),tf(l),w(l) 28 29

s4 tw(l),h(l),tf(l),w(l) 29 30

s5 tw(4),h(4),tf(4),w(4) 26 31

s6 tw(2),h(2),tf(2),w(2) 28 32

s7 tw(l),h(l),tf(l),w(l) 30 33

s8 tw(4),h(4),tf(4),w(4) 31 34

s9 tw(Z),h(Z),tf(Z),w(Z) 32 36

slo tw(l),h(l),tf(l),w(l) 33 38

sll tw(3),h(3),tf(3),w(3) 34 35

sl2 tw(3),h(3),tf(3),w(3) 35 36
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TABLE VIII (Cont'd)

element design node number
numper variables N1 N2 N3 N4

sl3 tw(2),h(2),tf(2),w(2) 36 37

sl4 tw(2),h(2),tf(2),w(2) 37 38

sl5 tw(4),h(4),tf(4),w(4) 34 39

sl6 tw(3),h(3),tf(3),w(3) 36 40

sl7 l/th(B),h(3),tf(3),l/2w(3) 38 41

sl8 tw(4),h(4),tf(4),w(4) 39 42

sl9 tw(3),h(3),tf(3),w(3) 40 44

s20 l/2tw(3),h(3),tf(3),l/2w(3) 41 46

s21 tw(4),h(4),tf(4),w(4) 42 43

s22 tw(4),h(4),tf(4),w(4) 43 44

s23 tw(4),h(4),tf(4),w(4) 44 45

s24 tw(4),h(4),tf(4),w(4) 45 46
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b. Case IIIB2 with Uniform Distributed Load

A uniform distributed load, 0.278 lbs/in2 was

applied over the whole plate. There are ¢ critical con-
straints: the 3rd web height to thickness ratio, the 3rd
flange width to thickness ratio, 4 deflections of the plate
ncdes 8, 9, 13 and 14, and 3 deflecticns of the stiffener
nodes 32, 36 and 37, Negligibly small are the whole dimen-
sions of the 2nd stiffener set, and the flange dimensions of
the 3rd and 4th stiffener sets with comparison to the other
dimensions. This suggests that the lst stiffener set is
stiff enough to compensate the elements attached to the 2nd
stiffener set. Additionally it can be suggested that the
3rd and 4th stiffener sets are stiff enough to support the

given load with only the rectangular tvpe ones. The final
3

-

volume is 76.436 in~ with a uniform plate thickness, 0.062
in. The results of the above both cases are summarized in
Table IX. The volumes of the above two cases sre signifi-
cantlyv reduced with comparison to those of the unstiffened

plates and the volume of T tyre stiffener case is much

smaller than that of the rectangular type case.
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variable

tw(l)
tW(Z)
tw(3)
tw(4)
n (1)
(2)
(3)
(4)
tf(l)
tf(2)
tf(3)
t.(4)
w (1)
w (2)
w (3)
w (4)

[ e B )

Vol

zd o

£ th

TABLE IX

Summary of Design Case IIIB

concentrated

load

0.083
0.284
0.003
0.323
0.020
1.201
0.010
1.433
0.060
1.001
0.003
0.000
0.010
1.110
0.010
0.002
0.030

95.883

plate thickness
web thickness (in)
web height (in)

flange thickness
flange width (in)
volume (in3)
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distributed

load

0.
0.
0.
0.
.020
.200
.010
.430
.060
.000
.003
.001
.00
.110
.010
.003
.001

o O O +H O O O+ O + O ¥ O

~)
O

062
284
003
318

.436
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V. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

A finite element analysis program was developed and
coupled to an optimizer for stiffened plate design. Stif-
fened plates were designed for minimum volume with a concen-
trated load.

Five important conclusions are made from considering
several design examples.

First, a stiffened plate is much more efficient than
the unstiffened plate for the optimum volume design.

Second, it is required to attach the larger stiffeners
to the diagonal elements of the plate as compared to the
off-diagonal elements.

Third, the T type stiffeners provide a lower volume
design than the rectangular type stiffeners.

Fourth, the stiffened plate with the diagonally attached
stiffeners are much more efficient than those with the
rectangularly attached stiffeners.

Fifth, the stiffened plate attached diagonally with the
T type stiffeners is particularly efficient for the concen-
trated load case.

These conclusions are based on the design of simply
supported plates and the conclusions could be quite differ-

ent if other boundary conditions are considered.
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B. RECOMMENDATIONS
The following recommendations may be useful Zfor future

work.

1. The analysis program should be modified to a

- generalized program with a variety of elements.

2. The analysis program should be extended to
consider the dynamic problem.

3. The analysis program should be exterded to
consider the multiple loading conditions.

4. Routines should be added to calculate gradients
analytically.

5. Buckling constraints of the plate and stiffener
elements should be added in the optimiza:ion
process.

6. Freguency constraints should be added in the
optimization process.

7. The analysis program should be modified o reduce

the computing time during the optimization process.
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