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1. Introduction N

Remote sensing of the atmosphere is a rapidly developing science.
Today's meteorological satellites such as those in the TIROS-N series have
high resolution instruments on board which measure the intensity of
upwelling radiation in selected channel frequencies. A description of the
data retrieved by the radiometers on the TIROS-N type satellites can be
found in [7]. From these data it is possible to obtain information on the
atmosphere's temperature, moisture and wind structure. One of the goals of
the current Satellite Meteorology program is to improve the quality of
atmospheric information obtained from satellite soundings to a point where
it can be used for weather forecasting purposes. A major challenge in this
direction is to develop refined numerical and statistical methods for
inverting the equations of radiafive transfer given a finite number of
noisy measurements.

For a non-scattering atmosphere in local thermodynamic equilibrium the
radiative transfer equations (RTE's) describe how the satellite upwelling

radiance measurements relate to the underlying temperature distribution T:-

4,(T) = 8 [T(py)Ie (p,) - [ B [T(p)dp ,(pdp (1.1)

where p, is the surface pressure, 1 (p) is the transmittance of the

atmosphere above pressure p at frequency v, and B, is Plank' s functj

ten Ter
given by:- k‘ﬁc’.'
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B,LT(p)] = cpv° /{explcv/T(p)) - 1}
¢, = 1.19061X10 "erg-cn’-sec™! (1.2)
c, = 1.43868 cm-deg(K)

The R.T.E's are of course an idealization. They describe the inten-

sities the satellite radiometer would record in the absence of such things
as atmospheric attenuation due to clouds or instrument noise. However,

by using high resolution radiometers 1ike the HIRS or AVHRR, sets of
intensity measurements from many FOV's (fields‘of vision) can be combined

to obtain data of the form

z; = Sbi(T) + e, i=1,...,n (1.3)
where ei's are errors. These data relate to an area of about 119 by 140 km
on the earth's surface. See [6] for more details.

We are interested in refining the methods used to obtain temperature
distribution estimates from the above data. The procedure currently used
to process TIROS-N temperature sounding data is a linear regression
technique see [6]. Here we begin to discuss how the method of regulariza-

tion (M.0.R.) might be used to improve the quality of temperature profiles

obtainable by this procedure.
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Let T be the true temperature profile in the atmosphere. Then T can be

written as
T=Tg+6 (1.4)

where To is the current best guess of T and § 1{s the update or correction

to TO to be estimated from the data {zi} in hand. Using M.0.R. to estimate

§ involves consideration of a functional IA given by

' P
L 2 0 (m), \42
1,(6) = ,thlr&”o*m o [T (1.5)

and picking the estimated update N to minfmize this functionall over some B

3 class of physically plausible candidates, for instance the set of functions

8 in wzm[o,pol for which T°+6 is positive or perhaps, if the location

TV

; of the temperature inversion were reliably known, one would look for mini- i

j mizers of I, subject to an additional constraint involving temperature [
inversion. -

! The statistical reasoning for considering regularized estimates of this i

type is well documented in the literature, see for example [3] and [1].

Intuitively ax has been designed to match the observed data and possess

certain smoothness qualities. The parameter A controls a tradeoff between

Po
the smoothness of a solutfon (measured by [ EGA(M)(p)szp) and how well it
0

(1] This corresponds to the case when the measurement errors are {id N(O,az).
A wmore "robust” method would be to consider functionals of the form

H H ﬁ ’-"-

: 4 o (m) 2
1,(8) = ‘le[z,-ﬂbitro+6)] + A é (6" " (p)) dp

where o reflected the possible non-Gaussian nature of the noise. L




n
matches the data (the ] [21- Q} (T0+61)]2 term).
i=1 i

Inverting the R.T.E.'s with noisy data can be viewed as a specfal case
of a more general situation in which the scientist wishes to estimate a

function x given data \

zp = Ny(x) + e, f=1,..,n (1.6)

where x is in some Hilbert space H, the Ni's are non-linear functionals

and e.'s are nofse. Here, assuming the e 's are iid N(0,0%), an

]
appropriate regularization function I, is

n
L(x) = ] [2-N,(x)1% + 23(x) (1.7)
i=1

where J is a roughness penalty functfonal on H. To estimate x one proéeeds
to mintmize IA over some subset'of physical interest in H. This report
sumnarizes recent results we have obtained on the existence and numerical
approximability .. ainimizers of such Ix's in certain subsets of H. We
indicate how these results apply to the radiative transfef equations case.
There are three sections: section 2 talks about the existence theory;
a Gauss-Newton algorithm for minimizing the regularization functionals is
outlined in section 3, while the final section briefly describes how to
estimate the smoothing parameter using a first order approximation to the
generalized cross validation function given in [8]. We assume the reader

is Temiliar with the basic mathematical tools for discussing minimization

problems in Hilbert spaces. Part 1 of Ekeland and Temam's book [2] 1s an
inspiring introduction to this subject.
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2. Existence Theory

Preliminaries

Before describing our main results, let's pause a moment to get our
notation straight. H is a real Hilbert space with inner product <°,°> and
norm |I+|[ (so <x,x>=||xllz). P is.a projection operator in H with finite
dimentional null space; the complementary projection I-P is denoted by Po-
H* is the dual space of H, 1.e. the space of all continuous linear maps
from H into R. L{M,H*) is the space of linear operators from H into H*,

We will discuss functionals, I say, acting on H (so I: H+R). The first and
second Frechet derivatives of 1 at some point xeH will be denoted by I'(x)
and 1"(x) respectively. Think of I'(x) as an element of H* and I"(x) as

an element of L(H,H*). Our concern here is with regularization functionals

1A on H given by

I, (x) = f Cz~N,(x)1% + A11Px] 2 (2.1)
A 4 zy-N; x .

where "i" are functionals on H, zi's areAin‘l, xeH and A>0. Whenever we
write 1A the form (2.1) will be what {s meant. So we are considering regu-
larization procedures in which the roughness penalty J(x) 1is a semi-norm on

M given by J(x) = |IPxI|2.

We now specify conditions on the non-linear functionals N, which
guarantee the existence of minimizers of Ix in closed convex subsets K of
H. In the R.T.E. case a reasonabie choice for K is the set of all func-

tions in wz'to,pol for which To+c is positive. It is very easy to check

that this X is a closed convex subset of uz'to,pol for any m. Our

existence results are summarized in the following three theorems.

IR
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Theorem 1 (proof in [2] pp. 34-35).

Let K be a closed convex subset of a Hilbert space H. Suppose I: K+R is
coercive on K (i.e. IA(X)" as |Ix)]+e in K) and moreover that 1, s weakly

Tower semi-continuous (w.1l.s.c.) on K then I, attains its Tnfimum on K.

Theorem 2 (proof in [4])

Let »: R+R be a monotonic increasing function in the modulus of its argu-

ment. Suppose
n

(1) ] #(Ny(x)) is convex on K
i=1

n
(i1) )) o[Ni(x)J = ¢<=> P x = P 8 for some 6 in K !
1=1 o 0

then 1A is coercive on K.

Remark: The above theorem can be generalized somewhat but.we refrain from

doing so because the form given has more intuitive appeai. §

Theorem 3
If N1 is weakly continuous (w.c.) on K for each { then Ix is w.1.s.c. on K.

n
Proof: If the ui are w.c., then it surely follows that § [z'-N‘(x)]2 is
i=]

w.c. But IIPxIIz is well known to be w.1l.s.c. Therefore I, is

w.l.s.c. QED
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Application to the R.T.E.'s (see [4] for details)

The ﬂv arising here can be shown to satisfy the hypotheses ‘of Theorem 2
i .

with ¢ taken to be
¢(x) = Ix|, xeR

Also, each ﬂv is w.c. We therefore have that for each

i
2>0,3 §,¢K = {6ew2m[o,p0] To*820}, s.t.

P
n 2 0 (m) 52
1,(8,) = ?:2 {iZ][er‘i(Toﬂ)] + x£ (s'™ ()1 dp}

There exist regularized solutfons to the R.T.E.’'s.

3. A numerical procedure for minimizing Ix in K

Let xk be the kth approximation to the minimizer in K of I. Define

the functional ka on X as follows

n
L (x) = 1§1[21-N1(xk)-N;(xk)[x-xkllz + xllPxIlzl (3.1)

each N, is simply 1inearized about xk. Define x"+1 to be the minimizer in

k
X of Ix .

Under suftable regularity conditions the {terates xk are well defined

and can be shown to satisfy

n
MU {1zlu;(x*)n;(x*)‘+ ae., o) )

(3.2)

2 x5 - a7l ()
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That this equation makes good sense {is evident once one realizes that A(xk)
belongs to L(H,H*) and Ix'(xk) is in H*.

Those in the know will have recognized that the above procedure is
nothing more than an infinite dimensional version of the Gauss-Newton
algorithm. The finite dimentional case is discussed in [5]. The major
advantage of using a Gauss-Newton procedure to minimize our regularization
functionals is the ease with which successive interates can be obtained.
At each stage we have a regularization problem fnvolving linear func-
tionals, the Ni'(xk)'s, consequently we can take advantage of available
software tools.

With the appropriate assumptions it is possible to show that the proce-
dure.is a decent method and the sequence xk converges at least R-linearly

to a critical point of I, in K.

Theorem 4 (proof in [4]).
Suppose that the uf(.)'s are twice continuously differentiable and

Ni'(.)'s are w.c. on int K. Let x% int K be such that
L° - {xllx(x) < Ix(x°)}

is weakly compact and Ix has only finitely many critical points in L° ,
Moreover, suppose that ¥ge¥peTy all positive with uo-h271>0 satisfying

ugHINIZ < < ACKIR> < uy 1IRIEZ, 1,"(0mh < vy 111" Vxel®, heH

then the sequence of iterates {xk}G L°, l:n xk = x" where lx'(x*) z 0 and
if lx.(‘*) i{s non-singular, then the convergence is at least R-l{near.

The proof follows an argument similar to that used fn 14.4.6 of [5].
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4. The choice of A
The generalized cross validation method for choosing A works as follows.
Let xA[k] be the minimfzerz in X of
n 2 2
I z;-Ny(x)]" + AtiPx]l (4.1)
{=]

1*k

Then A {s chosen to minimize

1 n
= ¥ [z,-N,(x
V) = 35;‘ x

1 0 2
E1-5k§1akk*(x)l

m,]’

where "k‘xx[k]) is the prediction of z, given the data 21’22""’zk-1

and akk*(k) is the "differential influence" of the z, 'th data.

21 2y k

point on the estimate X, (xA is the minimizer in K of Ix)'

[k]

N, (x Y-N, (x,)
K" k' a
.kk*(x) . -

(4.3)

From a computational viewpoint V(1) 1s prohibitively expensive so one needs
to find some convenient approximation. Following Wahba [8], V(1) can be
approximated by

17 £z -0 0072
() .k—‘i k2

[1-uy (0172

'approx (4.4)

(2) Assumed to de unfquely defired.
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where ¥, given by

y noaN (x,)
ua) = 5 §J ——=
1 "k£1 3z,

is an easily computed functional of Xy * We hope to study this procedure

more closely in the near future.
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