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1. Introduction

Remote sensing of the atmosphere is a rapidly developing science.

Today's meteorological satellites such as those in the TIROS-N series have

high resolution instruments on board which measure the intensity of

upwelling radiation in selected channel frequencies. A description of the

data retrieved by the radiometers on the TIROS-N type satellites can be

found in [7]. From these data it is possible to obtain information on the

atmosphere's temperature, moisture and wind structure. One of the goals of

the current Satellite Meteorology program is to improve the quality of

atmospheric information obtained from satellite soundings to a point where

it can be used for weather forecasting purposes. A major challenge in this

direction is to develop refined numerical and statistical methods for

inverting the equations of radiative transfer given a finite number of

noisy measurements.

For a non-scattering atmosphere in local thermodynamic equilibrium the

radiative transfer equations (RTE's) describe how the satellite upwelling

radiance measurements relate to the underlying temperature distribution T.-

p0vl) -Bv[(Po] vPO)-f Bv[(T(p)-rlpldpdp (1.1)

where pO is the surface pressure, T (p) is the transmittance of the [r

atmosphere above pressure p at frequency v, and B is Plank's functJ
V ..- -

given by:- &e6*' tt 'L

04 r

JI_ _ _ __ _ __ _
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BV[T(p)] = clv 3 /{exp(c2v/T(p)) - 11

c1 = 1.19061X1e-5erg-cm2 (1.2)

c2 = 1.43868 cm-deg(K)

The R.T.E's are of course an idealization. They describe the inten-

sities the satellite radiometer would record in the absence of such things

as atmospheric attenuation due to clouds or instrument noise. However,

- by using high resolution radiometers like the HIRS or AVHRR, sets of

intensity measurements from many FOV's (fields of vision) can be combined

to obtain data of the form

- z t = T) + ei  I = 1,...,n (1.3)

where e1 's are errors. These data relate to an area of about 119 by 140 km

on the earth's surface. See [6] for more details.

* We are interested in refining the methods used to obtain temperature

distribution estimates from the above data. The procedure currently used

* to process TIROS-N temperature sounding data is a linear regression

technique see [6]. Here we begin to discuss how the method of regulariza-

tion (M.O.R.) might be used to improve the quality of temperature profiles

obtainable by this procedure.

"d
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Let T be the true temperature profile in the atmosphere. Then T can be

written as

T x To + ( (1.4)

where T. is the current best guess of T and 6 is the update or correction

to To to be estimated from the data 1zt} in hand. Using M.O.R. to estimate

6 involves consideration of a functional IA given by

n 2 PO

I16) I Cz1-k(T+1) + f [6 (mp)]dp 11.5)
i=l 0

J and picking the estimated update 6 to minimize this functional' over some

class of physically plausible candidates, for instance the set of functions

a in W2m[OPo] for which T 0+6 is positive or perhaps, if the location

of the temperature inversion were reliably known, one would look for mini-

mizers of I subject to an additional constraint involving temperature

inversion.

The statistical reasoning for considering regularized estimates of this L

type is well documented in the literature, see for example [3) and [1].

Intuitively 6A has been designed to match the observed data and possesse

certain smoothness qualities. The parameter A controls a tradeoff between

PO (m) 2
the smoothness of a solution (measured by f [6 (p)] dp) and how well it

[1] This corresponds to the case when the measurement errors are iid N(O,O).
A more "robust" method would be to consider functionals of the form

I X(S) V ! 9[Zt-A (To+6)] + A f C6 (p)]2 dp
I 1 0

where o reflected the possible non-Gaussian nature of the noise. L
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matches the data (the Z [zi-% (TO+6X) 2 term).

Inverting the R.T.E.'s with noisy data can be viewed as a special case

of a more general situation in which the scientist wishes to estimate a

function x given data

SN(x) + e1  i l,...,n (1.6)

where x is in some Hilbert space H, the Ni's are non-linear functionals

and ei's are noise. Here, assuming the ei s are lid N(O,o
2), anI

appropriate regularization function IA is

-n 
2

Ix W Iz 1-Ni(x)] + AJ(x) (1.7)

where J is a roughness penalty functional on H. To estimate x one proceeds

to minimize IA over some subset of physical interest in H. This report

summarizes recent results we have obtained on the existence and numerical

approximability ,- minimizers of such I 's in certain subsets of H. We

indicate how these results apply to the radiative transfer equations case.

There are three sections: section 2 talks about the existence theory;

a Gauss-Newton algorithm for minimizing the regularization functionals is

outlined In section 3, while the final section briefly describes how to

estimate the smoothing parameter using a first order approximation to the

generalized cross validation function given in (83. We assume the reader

is familiar with the basic mathematical tools for discussing minimization

problems in Hilbert spaces. Part 1 of Ekeland and Temam's book [23 is an

inspiring introduction to this subject.

*f 7
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2. Existence Theory

Preliminaries

Before describing our main results, let's pause a moment to get our

notation straight. H is a real Hilbert space with inner product <','> and

norm li1 (so <x,x>-Ilxll2). P is.a projection operator in H with finite

dimentional null space; the complementary projection I-P is denoted by PO"

H* is the dual space of H, i.e. the space of all continuous linear maps

from H into R. L(H,H*) is the space of linear operators from H Into Hk.

We will discuss functionals, I say, acting on H (so 1: H+R). The first and

second Frechet derivatives of I at some point xcH will be denoted by I'(x)

and I"(x) respectively. Think of 1'(x) as an element of H* and 1"(x) as

an element of L(H,H*). Our concern here is with regularization functionals

1A on H given by

] 2 2
(x) - Ez1-Nt(x)J + AIIPxlI (2.1)

where Nt's are functionals on H, z1's are inR, xcH and 1>O. Whenever we

write 1. the form (2.1) will be what is meant. So we are considering regu-

larization procedures in which the roughness penalty 3(x) is a semi-norm on

H given by (x) - IIPxlI .

Nei" Results

We now specify conditions on the non-linear functionals N which

guarantee the existence of minimizers of I in closed convex subsets K of

H. In the R.T.E. case a reasonable choice for K is the set of all func-

tions in O,pO] for which T +6 is positive. It is very easy to checkV~mt 0
that this K is a closed convex subset of w2iO0,po] for any m. Our

existence results are sumarized In the following three theorems.

4q '.-



Theorem 1 (proof in [2] pp. 34-35).

Let K be a closed convex subset of a Hilbert space H. Suppose IA: K R is

coercive on K (i.e. IX(x)+- as jlxlt+- in K) and moreover that IX is weakly
1

lower semi-continuous (w.l.s.c.) on K then I attains its infimum on K.

Theorem 2 (proof in [4])

Let *: R*R be a monotonic increasing function in the modulus of its argu-

ment. Suppose
n

(1) *(Ni(x)) is convex on Kt1=1

n
S(ii) I *[N1(x)- *<-> P x * P 8 for some 8 in Ki-0 0

then I is coercive on K.

Remark: The above theorem can be, generalized somewhat but-we refrain from

doing so because the form given has more intuitive appeal.

Theorem 3

If N is weakly continuous (w.c.) on K for each i then I is w.l.s.c. on K.in

Proof: If the N1 are w.c., then it surely follows that I [z - 1_(x)] 2 Is
1-1

w.c. But IIPxII 2 is well known to be w.l.s.c. Therefore I is

w.l.s.c. QED

U-Im
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I
Application to the R.T.E.'s (see [4) for details)

The V arising here can be shown to satisfy the hypotheses of Theorem 2

with # taken to be [
#(x) - lxi, xcR r

Also, each i is w.c. We therefore have that for each

X>,3 6AcK = {eW2
111O0,p0J TO+6)O}, S.t. [

IY6) - min I [z-, (T0+6)
2 + [ (dp

6cK i1 1 .-
L

There exist regularized solutions to the R.T.E.'s.

3. A numerical procedure for minimizing 1. in K

Let xk be the kth approximation to the minimizer in K of I Define
k '

the functional I on K as follows

I x W I tzi-N(x Nlxk)(x-xk]]2 + )lPxII 2  (3.1)
1.1

each N is simply linearized about xk . Define x to be the minimizer in

k
K of I k

Under suitable regularity conditions the iterates x are well defined

and can be shown to satisfy L

k+I ,

xk+l . Xk  - I. N, (xk)Nm(xk) + <P.,.>} (xk) (
- (1 *(3.2k

f xk . A 1 (xk )j (xk )

- j .
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That this equation makes good sense is evident once 
one realizes that A(xk

k
belongs to L(H,H*) and I'(x) is in H*.

Those in the know will have recognized that the above procedure is

nothing more than an infinite dimensional version of the Gauss-Newton

]algorithm. The finite dimentlonal case is discussed in [5]. The major

advantage of using a Gauss-Newton procedure to minimize our regularization

1 functlonals is the ease with which successive interates can be obtained.

At each stage we have a regularization problem involving linear func-
-II k

" tionals, the N1I(x k's, consequently we can take advantage of available

- software tools.

With the appropriate assumptions it is possible to show that the proce-
k

dure is a decent method and the sequence x converges at least R-linearly

to a critical point of I in K.

Theorem 4 (proof in [4)).

Suppose that the N1 (.)'s are twice continuously differentiable andS 

tNII (.)'s are w.c. on nt K. Let x°t int K be such that

Si ° -xIA (x) 4 Ix(x°))

I Is weakly compact and I has only finitely many critical points in LO.

Moreover, suppose that ,0 ,u1 ,y1 all positive with u0-! 1 >0 satisfying

-, uolhl12 < <h,A(x)h> c V, Ilh112 , 1'"(xlhh < yl11hl1 2  VxIL ° , he
ad k *

then the sequence of iterates {x kJr L° , lm x * x where I (x*) a 0 and
k

if I (x*) is non-singular, then the convergence is at least R-linear.

The proof follows an argument similar to that used in 14.4.6 of [5].

I.
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4. The choice of 1 -

The generalized cross validation method for choosing A works as follows. -

Let x.[k] be the minimizer2 in K of

CZ N NOx2 + -llPxll2 (4.1)

i* k

Then A is chosen to minimize -

in Ek] 2

VO fii zk-Nk(xA)] I

Cl1 k(,x)]
nk-l

where NkxA kl) Is the prediction of zk given the data zl,...,Zk.1

Zk+l. .zn and akk*(A) is the "differential influence" of the z'th data

point on the estimate xA (x, is the minimizer in K of 1..

akk*(.x) -N(x EkJ _ (4.3)

Nlk(xA k )-zk ,

L
From a computational viewpoint V(a) Is prohibitively expensive so one needs

to find some convenient approximation. Following Wahba (8], V(A) can be 1.
approximated by

I n zkNxAl2

Sapprox(A) "ki (4.4)

(21 Assumd to be uniquely deineod.
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where 11, given by

Pi(X an (xA)
1k=1k

is an easily computed functional of x. We hope to study this procedure

more closely in the near future.

Acknowledgements

This work was done with the help of my thesis advisor, Professor

Grace Wahba.
-

I

i-
t.

.. J



59 . -

REFERENCES

(1] D.D. Cox, "Asymptotics for M-Type Smoothing Splines," Statistics
Department, University of Wisconsin, Madison, Technical Report No.
654, November 1981.

[2] J. Ekeland and R. Teman, Analyse Convexe et Problems Variationelles,
Herman, Paris (1973).

(3] G.S. Kimeldorf and G. Wahba, *A correspondence between Bayesian -'
Estimation in Stochastic Processes and Smoothing by Splines," Annals
of Mathematical Statistics Al, pp. 495-562 (1970).

[43 F. O'Sullivan, Thesis to appear. (1982)

[5] J.M. Ortega and W.C. Rheinbold, Iterative Solutions of Non-linear
Equations to Several Variables, Academic Press 1191').

(6] W.L. Smith and H. M. Woolf, "The Use of Elgenvectors of Statistical
Covariance Matrices for Interpreting Sastellite Sounding Radiometer -
Observations,* Journal of the Atmospheric Sciences 33, 7,
pp. 1127-1140, July 1976.

[7] W.L. Smith, H.M. Woolf, C.M. Hayden, D.O. Wark, and L.M. McMillin,
"The TIROS-N Operational Vertical Sounder," Bulletin of the
American Meteorological Society 50, 10, pp. 1177-1187, October 1979.

[8] G. Wahba, "Constrained Regularization for Ill-Posed Linear Operator
Equations, with Applications in Meteorology and Medicine," Statistics
Department, University of Wisconsin, Madison, Technical Report
No. 646, August 1981.

S1

______ - -



I

IATE

M E


