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A COLLISION RESOLUTION PROTOCOL WITH
LIMITED CHANNEL SENSING - FINITELY MANY USERS

P. Papantoni-Kazakos, Glenn D. Marcus, and Michael Georgiopoulos
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Abstract

">in this paper,-ve consider the random-accessing of a single slotted channel

by a finite number of independent, data transmitting bursty users. W adopt the

assumption that each user monitors the channel only while he is blocked. ) also

assume that the channel outcomes (visible to each user) are ternary. That is,

each channel slot is perceived as either empty or successfully busy, or as a

collision slot. 4e-d~s-regard- ropagation delays A _ ,*4

For the above model, w propose and analyze a collision resolution protocol

(CRLS) with tree search characteristics. For identical users with binomial trans-

mission processes, w-6 find lower bounds on the CRLS throughput, and we compute

upper bounds on the induced delays in transmission. -We- x. re -r -e't with

those induced by the dynamic tree protocol of Capetanakis; where the feedback

sensing is continuous in the latter. The CRLS performs surprisingly well.

Fur asymptotically many users, its throughput is higher than the throughput of

the nondynamic tree protocol of Capetanakis, and less than 7 percent lower than

the throughput of the dynamic form of the latter. The CRLS also compares well in

terms of delays, and it is robust in the presence of channel errors.
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I. INTRODUCTION

We consider a number of data-transmitting bursty users who request access to

a single network resource. We assume that the users do not communicate with each

other directly, and that their data are formatted into packets of identical

length. Such a user model arises, for example, when a number of computer terminals

access a single host computer. Let us further assume that the network resource is

a single transmission channel whose time is slotted. The length of each channel

time slot is equal to one packet. Also, each user can attempt transmission of a

packet, starting only at the beginning of a slot.

Given the general model above, a variety of transmission protocols can be

devised depending on the specific characteristics of the user and channel models.

Such characteristics include finite number of well-identified users versus an

asymptotically large number of ill-specified users, as well as various levels of

feedback information provided to the users by the channel.

For an asymptotically large number of users, researchers have considered a

variety of feedback information levels. The slotted ALOHA protocol [1,2,3]

assumes that each user tunes to the feedback broadcasting only during those

channel slots which correspond to his own transmission attempts. Tsybakov and

Vvedenskaya [14] proposed and analyzed a collision resolution protocol, for the

case where each user inspects the feedback continuously only while there is an

unsuccessfully transmitted packet in his buffer. The protocols developed by

Capetanakis [5] and Tsybakov and Mikhailov [7] assume that all users are constantly

inspecting the feedback broadcasting. Finally, the same assumption is adopted in

18] and [91, where it is also assumed that collision multiplicities are included

in the feedback information. As the level of feedback information inspected by

each user increases, the protocol throughput increases also.

i.
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When a finite number of well-identified users is involved, the protocol

designer has considerably increased flexibility. Here, either collision-permitting

or collision-free transmission protocols may be adopted. The collision-free

protocols involve some scheduling technique implemented either by some centralized

capacity allocation mechanism (as in [12]), or through system state information

transmitted within certain dedicated channel slots or mini-slots (as in [10], [111,

[13]). The implied assumption here is that each user constantly inspects the

scheduling feedback information. The existing collision-permitting protocols,

universally assume that each user inspects the feedback broadcasting constantly

(for every channel slot at all times). The Hayes (4] and Capetanakis (6] protocols

are based on a binary tree search. The Hluckyj and Gallager protocol [15] is

based on sequential user subgrouping. The protocols in [4], [6] and t15] are

collision resolution protocols; they suspend new transmissions until a collision

is resolved.

In the present paper, we assume finitely many users, and we adopt similar

user and -hannel models as in (4,6,15]. In contrast to those models as well as

Ito the collision-free models, however, we assume that each user inspects the
broadcast feedback only while he is blocked. By blocking we mean the existence

of some unsuccessfully transmitted packet in the user's buffer. Our assumption

is the same as in [14], and it eliminates the often undesirable requirement that

all users monitor the channel constantly, even when empty. For the above model,

we propose and analyze a collision resolution protocol. We name this protocol

Collision Resolution with Limited Sensing (CRLS).

The organization of the paper is as follows.

In section II, we describe the CRLS protocol, and we study its essential

properties. In section I1, we study the performance characteristics of the

CRLS, for users with binomial transmission processes. We also find lower bounds

* on the throughput of the protocol, then. In section TV, we present and discuss

numerical results. In section V, we draw some conclusions.

! i -- --
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II. THE CRLS PROTOCOL

As in [6], we assume that 2n identical, independent, and packet-transmitting

users share a sli2gle slotted channel. If a single packet is transmitted within a

slot, it is received correctly. If at least two packets are simultaneously trans-

mitted, a collision occurs, all information contained in the collided packets is

lost, and retransmission is necessary. The ternary outcome of each slot (empty,

busy with one packet, collision) is broadcasted to all users without propagation

delays.

Let the systea start operating at time zero, and let time be measured in

slot units. Initially, each user does not inspect the feedback, and he is free

to transmit a packet in any slot. Let some user transmit his first packet at

time t. He then inspects the feedback that corresponds to slot t. If he sees

4 success, he stops inspecting the feedback until his next transmission. If,

instead, he sees a collision, he initiates the CRLS protocol for collision resolu-

tion, while inspecting the feedback continuously. The user perceives the colli-

sion as resolved, as soon as his collided packet is successfully transmitted. He

I then stops inspecting the feedback, until his next transmission. Transmission of

new arrivals is not attempted by the user, until his own collision has been

resolved.

In this section, we will describe the CELS protocol and we will analyze its

operational characteristics. Since those aspects are independent of the packet-

generating process per user, we will make no assumptions on the latter at this

point. We will need such assumptions, only when we study the expected delays

induced by the protocol, and its stability properties.

A. The CRLS General Operation

n
Given 2 users, consider the binary tree with 2 leaves. The tree has n+l

levels of depth, numbered from 0 to n. Depths 0 and n correspond respectively

iI

to the root and the leaves of the tree. In general, there exist 2i nodes at



depth i. Each of these nodes is the root of a binary subtree with 2 leaves.

Each tree node beyond depth 0 is identified by a binary codeword, where the code-

word of each node at depth i : i 5 1 contains i bits. Consider the depths of the

binary tree evolving sequentially from left to right (as in figure 11.1), and let

some node at depth i : 1 < i < n-i be identified by the binary codeword x1x2 ...xi.

Then, the two nodes at depth i+l that branch off node x1X2 .. .x are identified by the

codewerds x,...x1O and xl...xll; node x1 ...xil lies under node x, ...x 0. The two

nodes at depth 1 that branch off the tree root R are identified by the length one

codewords 0 and 1, where node 1 lies under node 0. It is clear from the above

that each binary codeword x1 .,.x i : 1 < i < n identifies a single tree node at

depth i; thus, it also -dentifies the unique path that connects this node with

the tree root. In particular, each one of the 2 distinct binary codewords of

length n identifies a single tree leaf. Consider now a one-to-one correspondence
Tn

between the 2n users and the 2" binary codewords of length n. Then, each encoded

user 4s uniquely identified by a single binary codeword of length n. But, as we

saw above, each such codeword also identifies a single leaf on the (n+l) - depth

binary tree. Thus, there exists a one-to-one correspondence between those tree

leaves and the 2P encoded users.

Let the 2n users be encoded by binary sequences of length n, and let each

user have in its memory a reproduction of the (n+l) - depth binary tree. Each

user considers himself placed on the tree leaf whose codeword coincides with his

n nown. If we number the 2n users from 1 to 2 , the codeword of the ith user is the

length n binary representation of the number i-1. From now on we will identify

.* some user either by his number or by his codeword.

Let t be some time instant such that all collisions involving packets fromo

user i have been previously resolved. Let user i transmit again at time t, where

t > t and the user did not transmit in the time interval (t, t). Let there be
-0

a collision in slot t. User i observes this collision and starts the motions for
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its resolution. In the process, he uses the (n+l) - depth binary tree in his

memory, inspecting continuously the feedback. He traces sequentially neighboring

tree nodes, in an order dictated by the feedback. At the same time, he imagines

himself placed at different tree nodes depending on the relationship between the

current node in the trace and the user's codeword. The user transmits, when the

node he has placed himself at coincides with the trace node. To explain the

collision resolution process coherently, we need to discriminate between node

tracing and user node self-placing. To do that, we first present the following

definition.

Defirition 1

At some point in time, user i is blocked if he is in the process of reF A

a collision. The blocked user i is in resolution mode 2k ; 0 < k < n if he

imagines himself placed at a node that lies at the tree depth n-k. If k < n, and

if xIx 2 ...x is the user's codeword, the node's codeword is x,...Xnk. The user

is in resolution mode 2k and active (2.k ) if he is in resolution mode 2 k and trans-

mits. He is in resolution mode 2k and withholding (2) if he is in resolution

mode 2k and does not transmit.
' k rk.

The blocked user i is in state (2k, ( 2... ) ; C _• n if he is

in resolution mode 2 k , his mode tracing has reached the tree node whose binary

codeword is Yl"" Yt, and he is respectively active or withholding.

Let x1 ... xn be the codeword of user i. Let the user be unblocked at time t-l,

and let him transmit and be blocked at time t. Then, the CRLS protocol performed

by the user is described by the following statements.

1. At time t, the user imagines himself placed at the root of the tree
and transmitting. Observing collision, he also starts his node-tracing

at the tree root. Thus, at time t user i is in state (2nR).

eaIv
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2. Let at time t I user i be blocked and in resolution mode 2k; 0 < k < n.
Then, by definition 1, the ustr has placed himself at node Xl..X f-k.
If he is in resolrtion mode 2a, he transmits in slot tI. If he is
resolution mode 2., he does not. He can not be in resolution mode

unless his node-tracing has reached node x1...Xn-k.
k

Let the user be in resolution mode 2 a at time t1 , Then,

i) If he observes success in slot tl, he becomes unblocked.

ii) If he observes collision in slot tl, he moves at time tl+l to
resolution mode:

2k-l , if x = 0, and k >1
a n-k+1'

2k-l if X k+ ' 1, and k > I

an- ;if x = 0, and k = 0

2 n-1 ; if x = 1, and k = 0

Let the user be in resolution mode 2k at time t Then,

i) If he observes a collision in slot tl, he moves at time tl+l to
resolution mode:

2n-1 if k = 0, and x, = 0
a1

2n-; if k = O, and x =1

Otherwise, he remains in resolution mode 2k.

ii) If he observes an either empty or a successful slot t1 , he moves attime t1+l to resolution mode:

2k-  ; if his node-tracing reaches node x.x at time t+l.

Otherwise, he remains in resolution mode 2w.

3. Let at time tj user i be blocked. Let YoYI' .' yZ ; 0 < t < n be the node
reached by the user's node-tracing at time tl; where if C-- 0 the node
is the tree root. Then,

i) If the user observes a collision at tl, he moves at time tl+l his
node-tracing to node:

Yl'"Yt °; if _ L<n-l

0 ; if either t - 0 or t - n

ii) If the user is in withholding resolution mode at time tj, and observes
either empty or successful slot tl, he moves at time tl+1 his node-
tracing to node:

Y""..Ym- 1; 1 < m<
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;where m :yj 1 ;m+l <J.: t and ym 0 , for t > 1 and Yl ...Yt such

that not all bits yj are equal to one.

iii) If the user is in active resolution mode at time tl, and observes success,
he becomes unblocked.

Statements 1 to 3 above, basically describe a tree search as in [6]. The

difference here is that this search is not performed simultaneously be all users.

Thus, it is possible that when some user's search reaches a leaf node, a collision

occurs. Then, as statements 1 to 3 indicate, the user interprets this collision

as a root collision, and he reinitiates his tree search. The evolution of the

protocol is perhaps exhibited better by the state transitions in time. Those

transitions are dictated by statements 1 to 3, and they are presented by the

statements below.

a. Let user i : x,...xn be unblocked at time t-l, and become blocked at time
t. Then, at time t he is in state (2n, R).

b. Observing collision at the tree root, the user moves his node-tracing to
node 0, at time t+l. He also imagines himself placed in resolution mode
2n-i

. If his codeword is such that x, = 0, he transmits. If, instead,
xI  1, he withholds. Thus, at time t+l, the user is in state:

(n-l
a2- , x I) ; if xI =0

(2w-I  0) ; if x1 = 1

If he is in state (2a-I , 0), he has placed himself at node 0. So, if
then he also observes success at time t+l, he becomes unblocked.

c. In general, if at some time instant tj user i is still blocked, his node-
tracing has reached node yl...yt, and the user transmits, then he has also
placed himself at node yl.. y . Therefore, as stated in definition 1 and
as dictated by statements 1 to 3, we have then that yl...y t - x,...xt -

n- (2n- 1Thus, the user is in state (2a I'.Y) (2a x1 **'xy) at time ti.
Then,

i) If the user observes success at tl, he becomes unblocked.

ii) If t < n and the user observes collision at time tl, he oves his
node-tracing to node xl... xt0, and places himself in resolution
mode 2n- . If his codeword is such that xt 1  0, he also trans-
mits. If, instead, xt+I  1, he withholds. Thus, at time tl+l ,
user i is in state:

(2 - xl...xx+l ; if 1 t < n, and xt+i 0

II
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x,...xt 0) ; if l< < n, and xt+i -1

III) If user I is in state (20, xl. . .xn) at time tl, he has reached his
own tree leaf. If he then observes collision, he starts his tree
search again, considering the collision occurred at the tree root.
Thus, at time tl, he renames the state (20, xl...xn ) as (2', R). At
time t1+l, he then proceeds as in statement b.

d. Let at time tI user i be blocked and in resolution mode 2 : 0 < k < n-l.
Then, he has placed himself at node x1 ...xn k" That implies that node
xl...xnk_ 1 has been simultaneously visite y both the user-placement
and the node-tracing processes; where for k - n-1, node xl...Xn_k_l is
the tree root. Furthermore, at the time to < tI of that visit, user I
experienced collision, and then he moved to resolution mode 7., where
he remained until time tI. By statement 2, it is also implied then that

Xn-k - 1. Also, due to statement 3, all the nodes traced by the user in
the time interval [to+l, tl] branch off node x1 ...xn-k-1 0. Thus, if at
time tI user i is in state (2k, Yl" ..y) ; 0 < k < n-l, then t > n-k,
the user's codeword is such tMat Xn-k - 1, and y--yn-k ' l... k-1 0.
Therefore, at time tI the user is then in state ( , x.. .Xn-klUB...yt)-

Then,

i) If the user observes either a successful or an empty slot tl, he
moves at time tl+l to state:

k eihrt= n-k

a(2a' x "  n- k- x -k) ; if: ( or k > 0, Z 5 n-k, and yj - 1 ; n-k+l< J

j (2k

(2 Xlk "Xnk- 0"...y 1) ; if k > 1, t > n-k+l, m < t-1, ym - 0,

and yj 1 ; m+l j J 5_1.

2k.
(2w x...xk _ 01) ; if k > 0, t = n-k+l, and yt 0

;where xnk = 1

ii) If the user observes a collision at time tl, he moves at time tl+l
to state:

(2k, X1 ...Xk_ .y 0) ; if I < n (implying k > 0)w2n  1- n

xI ) ; if t- n, and x I -0

(2 n, 0 ) if t - n, and x l I
W 1

If Z - n, the user observes a collision at a leaf node of his node-
tracing; thus he reinitializes his tree search.

A _ _

N I-
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In figure 11.2, we exhibit the state transitions explained by statements a

to d. In figure 11.3 we present two examples, regarding the evolution of the

state transitions in time. In the first example, we assume that the total number

of users is 8, and only users 5, 6, 4 and 8 transmit at various times. We assume

that users 1, 2, 3, and 7 remain unblocked throughout the observed time period. In

the second example, we assume 16 users totally. Again, we consider a time period

throughout which only users 4, 5, 6, and 8 transmit at various times. In both

examples, we present the evolution of the protocol from the time instant when some

users become blocked, to the time instant when all the involved users are unblocked.

To this point, we have described the operation of the CRIS protocol, and we

have presented and analyzed the state transitions that the protocol induces. In

the remaining part of this section, we will study some of its properties that are

essential for performance evaluation.

B. Properties of the CRLS

As we explained previously, the CRLS tree search is not performed simulta-

neously by all the 2n users. Indeed, each user initiates his own CRLS when he

becomes blocked. Therefore, at some point in time, there may be some blocked users

at various levels of their tree search, and some unblocked users. The unblocked

users do not inspect the feedback. Among the blocked users, there will be some

in active resolution mode and some in withholding resolution mode. Any possible

collision will be caused by the active users, and will be observed by all the

blocked users. Among the users who are blocked and in withholding mode, we will

single out those who are either in state (2 , X... X O) ; 0 < k < n-l, or

k 0 1) _ - ' l n-k-l

* in some state (2 k , x...xnk 01 1) ; 1 < k < n-l, where x ..x 1 are

the first n-k bits of the user's codeword. To discriminate between those users

and the remaining blocked and withholding users, we will denote the resolution

* Imode of the first 2k As shown in figure 11.2, if a user is in resolution mode
w
e

AMN

__ ___......~ 3 ~ - __
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Slot t

State at t Outcome State at t+l

a unblocked

(2nR) n-i
a P 2 -  x1 ) ; if x1 0

C

(2n
-I, 0) ; if x 1
w

8 unblocked

n-t-i
(2 -  x l...x xL+I) ; if L < n, x+1= 0

(2a  x...xt) (2-I, xl"'xL 0) ; if I- < n, x = 1
c

(2 ,x) ; if = n, x 0a 1

n-1
(2 ,0) ; if l=n,x 1

ki either t n-i

a nor k > 0, Z > n-k, yjil

n-k+l < j <t

s or (2k, Xi...Xn_ 0 ...y ) ; If k > 1, t > n-k+l,
, e m < t.-1, Ym M O, y =1;

(2 ,x...xn-kl 0...yI) ,m + ( _0 ) :; t

i ;02_ k x n (2 , X..~_01); if k '- 0, t=n-k+l, yr-O

n I,-n> t> n-k (2 k  x x0w .X" n-- O ' y t O) ; if t < n (k > 0)

.i:;xn- k  
=  (2 a x l 1 if t - n, x I - 0

# :(2n, 0) ;if t n, x I = 1

Code
i s :success

e empty

c collision

j Figure 11.2

State Transitions for Blocked at Time t User x,...x n

i .
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2 We and observes an either empty or a euccessful slot, he moves to resolution mode

k
2 a. Let us denote,

c{ 2 k Nk o<k<n, {2 kP1; 0<k<n-l,[MD): The event that at some point in

a k < n we' k time there are M unblocked users,

Nk ; 0 < k < n users in resolution

(1) mode 2a, and Pk; 0 < k < n-l users
k

in resolution mode e"

nn n-1

The above event implies that there are 2n - M - Pk users who are

are blocked and withholding, without being in resolution mode 2te, for some k. If

k k
some user x.• .xn is in either one of the resolution modes 2 and then he has

placed himself at node x,...xfk; where if k-n this node is the tree root R. Any

user x .. x who is in resolution mode 2k  is such that x 1. As shown by the
1se • n We n-k

state transitions in figure 11.2, a user is in resolution mode 2
n only when he
a

first transmits from a previously unblocked state. Also, if a user is in resolution

modes 2° or 20 and observes collision, he interprets this collision as occurred at

n-i
the tree root, and moves to resolution mode 2 We now present a proposition

whose proof is in appendix A.

Proposition I

n k k
Given 2 users, consider the event ({2 a,Nk; 0 < k_< n, { 2e' k ; 0 < k < n-l,[M

at some point in time. Then, for every k < n-l such that Nk > 0, the first n-kkI
codeword bits of the Nk users are Identical; thus the Nk users branch off the same

tree node at depth n-k. The same is true for the Pk users, if P > 0. Therefore,

k k
N ,an

Let us now suppose that at some time instant t, the event ([2k N 0 _k n,
* k

{2k P 0 < k < n-l, [M]) occurs. For some k such that 0 < k < n, let the code-

words of the Nk users have the common prefix x1(k)...xn k(k); where for k-n this

* prefix is the tree root. Among those users, let us have Nkl with common codeword
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prefix x (k)...x nk(k)O; let us have Nk2 with common codeword prefix x (k) ...xnk (k)l.

For some k such that 0 < k < n-1, let the codewords of the Pk users have the comon

prefix yl(k)...yk l(k)l. Then, y1(k)...Yn kil(k)l can not be identical to

X (k)...x n k (k). If P + No - 2, then y1 (0)...yn l(O) and xl(O)...x U(0) are

identical. This last statement evolves from proposition 1,and it is proved in
nn

appendix A. If . Nk - 0, slot t is empty. If E Nk - 1, slot t is a successful
k-O k-0 n

slot, and then the one active user becomes unblocked. If E Nk > 2, slot t is a

collision slot. The outcome of slot t is observed by all, but the M unblocked
n

users. Let now N > 2. Then, the events evolving at times t+l and t+2 have
k=0

been derived in the proof of proposition 1, and they are shown in figure 11.4. We

observe that the event at t+2 depends at most on the events at the time instants t

and t+l. Let both slots t+l and t+2 be noncollision slots. It is then clear from

the transitions in figure II.4 that the original collision at t has been resolved.
n

That is, the , Nk users (who are then exactly two) are both unblocked at t+2.
k-0 k1  k2

Furthermore, if at time t the two users were in resolution modes 2 and 2fk 1  a a

respectively, and the one in resolution mode 2 became unblocked at t+l, then

the prefices of the users' codewords are necessarily x1 (k) ...x kl(k )0 and

x l(k2) ... xnk2(k2)l. Another important observation from figure 11.4 is that if

t+l is a collision slot, then the event at t+2 does not include any of the users

who at t were in some resolution mode 2k ; 0 < k < n-l. Finally, we observe that
We

Independently of the slot t+l outcome, the only user who being in withholding

resolution mode at t, may be active at either t+l or t+2 is he who at t was in

O.J resolution mode 20

The above observations lead to some simplifications regarding the events in

(1) and their transitions in time. To show that, let us first denote,

4w~al 41i
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Slot t
U

Event : (2kNk); 0 < k < n, 12k P 1;0 < k < n-i, [MD); N. 2
k-0

Result : Collision

Slot t+1

Event : (12,,N1,{2 n- N + [i-xl](P +N )1,{2k-l N )- 1 < k < n-i,
a n a ni a ' ki

{2 n-1 N. +x.(P +N )},f2k-1,N, l; 1 < k < n-l,[M-NnI)
2w n2 we  k -
e

1 n

collision; if Nn + [I-xI](Po+No0 + F, N >2
Result :{+[- j, k-1 k

:emptiness or success; otherwise

Slot t+2

({2n N2},{2n-l,'n1 +[,Xl (1)]N},{2ka1,Nk+il}; I < k < n-1,

an- 1 a- N"1 1 ~ll

{2 n-,N I+X U)N 1{2 k- N I; < k < n-i, IM-N- 2

We n2 1 1I W k+1,12 -nn

if Nl" + [1-x I(P +No) +  N >In 1 0oo 1 kl-

Event n2 2 n-l 1 k-I k
({2a n),{2a , Nn2+X 1(Po+No)),{2a Nk2  1 < k < n-l,{2 weP k

e

2
1 < k < n-i, [M-N])

n

if 9N + ri-x ](Po+ N ) +

k-1

Code:

xi: 1st codeword bit x (0) of the P +N users (if any).
1 0 0

N : # of previously unblocked users who transmitted at t+Jn

xl) : 1st codeword bit of the N1 users (if any).

N kll, Nkl2 : those of the Nkl users (if any) whose (n-k+2)th codeword bit is

4 0 and 1 respectively.

Figure I1.4

'Transitions of the Events in (1)
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U2 kNk); : The event such that at some point in time there are M
a unblocked users, Nk; 1 < k < n users in resolution mode

2ak and no users in resolution mode 20.
(2)

The above event is a simplification of the event in (1), where in the latter

N - P - 0. Indeed, the event in (2) does not include then the users who are in
0 0

resolution modes 2k ; 1 < k < n-l. We observe that the event in (2) will occur atWe -

some point in time. If t is the time when the system first starts operating, an

event as in (2) will occur before any blocked users have reached the resolution

mode 2. Let now the event ({2k, N k ; 1 < k < n,[M]) occur at time t, and let
n
E Nk be more than one. Then, t is a collision slot. It is then clear from
k-I
figure 11.4 that at t+l the users Nkl; 1 < k < n transmit. If success or emptiness,

those users become unblocked at t+l. If, instead, slot t+l is a collision slot,

n.
then the event at t+l is readjusted to include the N1users in resolution mode 2a;

thus the resulting event Includes then no users who are in resolution mode 2° . This

is clear from the transitions in figure I.4. Therefore, if we generalize the event

in (2), to include users in resolution mode 2° , the event at t+l is initially (from

figure n) i , n,M-N ]); where N the number of pre-

viously unblocked users who transmitted at t+l. However, if t+l is a noncollision

slot, this last evert is adjusted to empty. If, instead, t+1 is a collision slot,
:,nl k-lNl;2<k<n [-1) Telte

the event is adjusted to ({2 nN1+Nl),{2a -kl-; 2 < k < n, [M-N The latter

has no users in resolution mode 20, and it is as in (2). The procedure explained

above is exhibited in figure 11.5. From that figure, it is clear that any

collision event is as in (2).

• AL
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Event at t Initial Generalized Event at t+l Adjusted Event at t+l

empty

1n
,if N~ + ~N~

({kk;l~<n M)({ 2aN l} k1N}l~~ HN]

n k n 1 (H-N -N)

Ma~~~~i N +<V )1< n[ -n
NfN - :'1 k > 21

1 n

Code

As in figure 11.4

-4 Figure 11.5

Transitions of the Events in (2)

We now present a proposition whose proof is in appendix A.

Proposition 2

Let at some time instant t the collision event ({2 ,Nk ; 1 1< k < n, (M])

occur. Let for some k : 1 < k < n be Nkl users with codeword prefix x1(k)...x nk(k)0
n

and Nk2 users with codeword prefix xM(k) .. x k(k)l. Then, none of thek2 n k E k2
k-i

users and the users that are in withholding mode at time t become unblocked, before

all the N users do, and before all the users who become blocked in the mean
k-i

time transmit successfully.

Let us now denote,

k
L({2ks N l<kn, [M]) The expected number of slots needed for the resolution of

a' k -- the collision represented by the event ({2aNk}; lkn,[M])

in (2), Just after this collision has been observed.

(3)

i. .. .. t



If the event ({2kNkl; 1 < k < n,[M]) is not a collision event, then
k n

L({2 ,Nk); I < k < n,[M]) is zero; where then k Kk I. From the transitions

in figure 11.5, and due to the conclusions in proposition 2, we obtain in a straight-

forward manner recursions for the expected value in (3). Those recursions are given

by expression (4) below. If t is the time instant when the event ({2 Nk'; 1 < k< n,
o a'Nkl

[M]) occurred, the parameter m in (4) denotes the number of previously unblocked
n

users who transmitted at time t +1. If m + N < 1, s denotes the number of pre-0 kl -k-i
n

viously unblocked users who transmit at to+2 . If m + E Nkl > 2 , and t is the
k-i

time instant when the event ({2n,m+Nl},{2 -1,Nkll; 2 < k < n, (M-mi) is resolved,

the parameter s denotes the number of previously unblocked users who transmit at
n

t+l. We observe that at time t+l the N1 + E Nkl users have been added then to
k=2

the users who are unblocked. This is due to proposition 2.

n

2+ L({2 n S+N }{2 k-i, N ; Lnn[ , 2 a k ~ lL({2's+N2}'ak-lNk2 };2<k~n, [E M + k Nkl-S])

n
if m + E N kl 1k-l

k E2 + L({2 ,m+N 1,{ 2 k-l,N }; 2<k<n, [M-mi)

L(1 Nk 1<.k<n, [M)) a a k

n n
E Nk > 2 + L({2n,s} ,{2klNk 2 ; 2<k<n,[M+N1 + , Nkl-S)
k=l a- a- k=2

n

;if m + F_ Nkl 2
k=l

(4)

k
Let us now consider the N users who are in resolution mode 2 . Those users

:k a

have a common codeword prefix x1 (k).. .xn_k(k), and they are at most 2 . Let us

define by P(Nkl/Nk), the probability that given the number N k, there are Nk,

users whose codeword prefix is x(k)x...xn(k)O. Then, Nk2 will be equal to N k-Nkl ,

and clearly,

' - '- -? .4,r.- -.":
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k-1~ )(Nk- 1

1P(N IN ) k1) NJkl) mx(,N k-i l mn( k-i V 5

ki k (2: kmxOk 2  )Nlmn2 Ik 5

At this point, we conclude section II. In the next section, we wili adopt

certain assumptions on the transmission process per unblocked user, and we will

subsequently study the performance of the CRIS protocol.
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III. THE CRLS PERFORMANCE

As we saw in section II, if at some time instant t the event ({2k,Nk);

1 < k < n,[M]) occurs, then H denotes the number of users who are unblocked at

t. To this point, we made no assumptions as to the transmission characteristics

of those users. Here, we will assume, as in [6], that an unblocked user transmits

with probability q per slot. Thus, if at some point in time the number of unblocked

users is M, then the probability Q(m,M) that m users will transmit is given by the

following expression.

Q(m,M) = (M) q' ( 1 -q)M-m ; 0 < m < M (6)

The implication behind the expression in (6) is that the unblocked users

transmit independently. This is consistent with the independence assumption made

at the beginning of this paper. Using expressions (4), (5), and (6), we can now[k
express an equation for the expected value L((2aNk}; 1 < k < n, (MD. This

equation is given by expression (7), and it relates the expected values of

different events as in (2). It is not hard to see that the expression in (7)

actually determines a system of linear equations, whose solution is the set of

expected values as in (3). This set is determined by all the possibilities regarding

the Nk ; 1 < k < n and M values. In general, it is possible that for some q values

the linear system determined by (7) may have an either unbounded or negative

solution, or both. A negative solution is, of course, unacceptable here. An

unbounded solution translates to infinitely long transmission delays; thus it

means instability. Therefore, we will search for those q values that provide a

nonnegative and bounded solution for the linear system in (7). We observe that

at least one such value exists; it corresponds to q - 0. Also, the probabilities

Q(m,M) appear as coefficients in the linear system, and they are monotonically

increasing with q, for q values such that 2nq < 1. It is thus easy to see that if

t!7
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there exists some positive value q such that 2nq0 < 1, and such that it provides

a bounded and nonegative solution for the system in (7), then every q q < qo

will also provide such a solution.
n

M

all i k k- < k E m k
k-i a k-i

s=O

M

n

C -i,,2 + n a iL({2},{2 1 ; 2 < k < n,[M-m])

kSi inmax [0,2-- k]
M

+ U(M-max[0,2- ]) Q(m,M) }
l m-max[0,2-A mk]

kI n

n

ink nn
QM sM+ 1 + -+ _ k2

k-k

;where Q(m,M) is given by (6), 0 < N 2k  <k<n,
ka~gkk

0 _ 2n - - N< Nk > 2, L({2 Nk; 1 < k < n, [M]) - 0 ; if

, Nk < 1, and:
~k-1

U(x) 1 ; x> 0

Ox<O

' A
- -, .- - -- -- -I i . ... - i I 5

4 *)
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n (2 k-l) (2 k-l

P({Nk,mk}, 1 < k< n) H kNmk (8)

k-i (

Definition 2

Given 2n users, the throughput 2nqn of the CRLS protocol is such that every

q less than qn provides a bounded and nonnegative solution for the linear system

in (7), and no q value larger than qn does.

For given q value, the solution of the linear system in (7) can be obtained

numerically. The throughput 2 qn can be also found numerically through the trials

of different q values. We will present such numerical results in section IV. At

this point, we will search for a lower bound on the throughput. An upper bound is

provided by the throughput of the dynamic protocol in [6].

The system in (7) has the form x =iL akj x + 2 ; varying k, where

0 < akj < V ; k, J, and where the unknowns xk represent the expected values
k

L({2 ,N k 1;  < k < n,[, ), for various choices of the Nk ; 1 < k < n and M values.

We now present a lemma, that is basically theorem 2 in [14], and whose easy proof

is included in this last reference.

Lemma I

Let {b be a set of positive and bounded numbers such that bk > a kj b +2;

V k. Then, the linear system x k akj xi + 2 has a nonnegative and bounded

solution.

Lemma 1 provides a sufficient condition for the existence of a nonnegative and

bounded solution for the linear system xk a akj xj + 2; varying k. We notice
J

that in our case the coefficients {akj} are functions of the selected q value.

Thus, if we select a set {b of positive and bounded numbers, and we require

jj

k L ... t ...... ...
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that it satisfy the condition in the lemma for the linear system in (7), then any

restrictions that may result regarding the set {akj) of coefficients, will reflect

restrictions on the q values. Furthermore, since the lemma provides a sufficient

but not necessary condition, the restrictions on the q values will represent then
n

lower bounds on the throughput. Let us now consider the numbers a E N k-c, for
n k-l
E Nk > 2; where a> c, a > 0, and c > 0. For 2users, we then have that
k-i n n
0 < 2a-c < a E Nk - c < a 2- c <N ; > N 2. Thus, the above numbers

k-i k-i
comprise a legitimate set {b }. In the right hand part of the equation in (7),

we substitute now each expected value L({2 P k1; 1 < k x, [TI) with E Pk ? 2,
n k-l

by the number a E Pk - c. Then, we require that the resulting expression be
n k-i k

less than a E Nk-c. We impose this requirement for every E Nk value that is
k-l k=l

larger than one, and for every M. As a result, we obtain a q number, such that

the ryPter in (7) has a nonnegative and bounded solution for at least every q less

than qn. We include our derivations in appendix B. Here, we present the results.

Let us define the following functions.

G 0 (2 nm,q) - 1-2'- 1q[ 2 n4m]-2-2n{m[l+q-q2n] +q2 n+q2 2n+(l-q) 2 n}; m = 0,1,2

(9)

G1 ( 2n-l ,m,q) - l-q-2-m-lq[2n+m+l]-2 - 2 n+ l {l+q(m2_3)-q2(m-l)-2 nq(m-1)(2-q)

+2
2n+(1-q) ; m = 0,1,2 (10)

G2 (2,m,q) = n+l q+q(4-m)-q(2-m) 2-m--2 - 2 f2(2-m)q+(l+q2) (l-q) 2n-; u - 0,1,2

(11)

It has been shown in appendix B, that all the above functions have unique

positive zeros for m - 0,1,2. Let us denote by qjm ; j  0,1,2; a - 0,1,2 the

zero of the function G ( ,m,q). Let us also denote q: - min (qj, ; j - 0,1,2 ;

m - 0,1,2). Then, we can express the following theorem, whose proof is in appendix I

wa:
=

,
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Theorem I

Given 2n users, the number 2nq* is a lower bound on the throughput 2q..

Given n, the lower bound 2q can be obtained numerically. We include such

numerical results in section IV.

Given 2n users, let us now suppose that at some time instant t all the users

are unblocked. Such a time instant exists. If the system starts operating at to,i0

one such time instant is t - 1. Let now N users transmit at t+l. Then, the event
0

(as in (2)) at t+l will be ({2n,N}, [2n-N]); where 2 n-N users are unblocked. If

a

each unblocked user transmits with probability q, the above event will occur with
2 n  N 2 n-N

probability (2) qN(-q)- If N = 1, the corresponding user will be unblocked

again at t+l. If N > 2, a collision will occur; the expected number of slots fnr

its resolution will be 1 + L({2n,N}, [2n-N]). Let us define.a

D(2n q) : The expected number of slots for the resolution of some collision
at t+l, given 2n users, given that at t all users are unblocked,
and given that each unblocked user transmits with probability q.

(12)i n

The quantity D(2 ,q) above is parallel to the expected delay E{delay} in

[6], and it is clearly given by the following expression.

n

D(2n ,q) - I + (2) qN (l-q) 2-N L({2n,N}, r2n-NI) (13)a
N-2

The expected values L({2n,N}, [2n-N]) in (13) are given by the solution of the

linear system in (7). In section IV, we will present some numerically computer

values of D(2 n ,q), for various n and q choices.

For 2n users, the stability region of the CRLS consists of those 2nq values

that provide a bounded and nonnegative solution for the linear system in (7). For

such 2nq values, the lengths L({ 2 nN},[ 2 n-N]); 2 _ N < 2n will be finite; thus

suc 2 q -aus h lntsW
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collisions that are signified by events ({2 ,N},[2n-N]) will end in finite
a

time. Furthermore, due to proposition 2, when such collisions end, all the

users will be unblocked. In conclusion, the quantity D(2n,q) in (13) provides

the expected length of independent episodes, and D(2n,q)-l bounds from above

the expected per packet delays (measured in slots).

4

I

.*1
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IV. NUMERICAL RESULTS

n
We first found numerically the unique real roots of the polynomials G (2 ,mq),

G1 (2nm~q), and G2 (2,m~q) in (9), (10), and (11) respectively, for the computation of

the lower bound in theorem 1. We found that this lower bound is provided in all cases

by the unique real root of the function G2 (2,m,q), at m-0 and m-2. We list our results

in table IV.l, together with the lower bound of the CRLS for asymptotically many users.

The latter is derived from a modification of the protocol in [14] ;where the modifica-

tion consists of eliminating the skip step, when a collision is followed by an either

successful or empty slot. The lower bounds in table IV.A are such that, for every 2nq
n * 2

value in [0,2 qn] (for 2 users), bounded delays are induced. Therefore, for 2 users,
nn*

the CRLS is stable at least in the 2 nq region [0,2 q]. We notice from [16] that for

asymptotically many users the minimum stability region for the CRLS is [0,.36], while

d! the same region for the dynamic protocol in [6] is [0,.429]. Thus, the gain as one moves

from the CRLS to the dynamic protocol in [6] is less than seven percent. This is signi-

ficant, since the former implies limited feedback sensing, in contrast to the latter.

In fact, the CRLS stability region [0,.36] is larger than that of the nondynamic tree

protocol in [6] and [5]. The latter is [0,.346].

# of Users 2nq

2 ;n=3 .47192

4
2 ;n=4 .44336

25 ;n-5 .43008

26 ;n-6 .42368

.36

Table IV.1

Lower Bounds on the CRLS Throughput

• The lower bound of the protocol in (14] is .384.



27

We should emphasize here that the performance of the CRLS should be compared with

the performance of the dynamic, rather than the nondynamic tree protocol in [6). Indeed,

the CRLS has implicit dynamic characteristics, due to the fact that unblocked users may

enter the system without delay. For the same reason, the expected number D(2n,q)-l in

(13) represents an upper bound on the delays induced by the CRLS, and it is comparable

to E{delay) in [6], rather than to the expected number of algorithmic steps for the re-

solution of an initial collision. We computed the numbers D(2nq)-1 nutmerically from the

linear system in (7), for various n and q values. We plot our results in figure IV.l,

together with the expected delays of the nondynamic and the dynamic tree protocols in

6[6], for 2 users (the delays in figure 4.1 in [6] are normalized by the probability of

zero arrivals; ours are not). In table IV.2, we list the D(2 ,q)-1 numbers, for various

2nq and n values. From figure IV.l, we observe that for 2 users, the delays induced by

the CRLS are lower than those induced by the nondynamic tree in [6]. That was expected,

since for asymptotically many users the stability region of the CRLS is larger than the

stability region of the nondynamic tree. For every n, the throughput of the CRLS corres-

ponds to this 2 nq value, where the D(2 nq)-l curve approaches asymptotically large num

Comparing these values with the numbers in table IM, we observe that the lower bounds

2 q approach the throughput, as n increases. This is so, because the bounds we used in

the proof of theorem 1 become tighter as n increases.

I,_n - .1 .2 .3 .4 .47 .5 .6 .7 .75

n-3 .0174 .0923 .2870 .7389 ... 1.7543 4.019 9.0944 13.6820

n-4 .0208 ... .3856 ... 3.3333 15.759 61.2730 ...
,D(2n,q)_l

n-5 .0233 ... .5382 ... ... 5.9070 159.490

n-6 ... .1470 .6559 ... 9.762 01.320

Table IV.2

Upper Bounds-CRLS Transmission Delays

I
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D(2',q)-]l

200 1*

100~~L nn 6 _____

no;---r -- ___________

-4 .8--
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Figure IV.1

Upper Bounds on Transmission Delays for the CRLS

Code

E{d} E{delay) in [6], nondynamic tree
E d{d): E{delay) in [6], dynamic tree

Solid Lines: CRLS performance
Dashed Lines: Tree protocols from [6]

------------------
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The definition of throughput we have used corresponds to the transmission rate

of the system, rather than the arrival rate. This was also done in [6], and there is

a reason for it. Indeed, this measure of throughput is indicative of the change that

occurs (performancewise) as the number of users in the system increases. In fact, for

asymptotically many users, the throughput that corresponds to the transmission rate

is identical to the throughput that corresponds to the arrival rate. Then, each succes-

sful transmission basically signifies a single bursty user, who then leaves the system.

For finite number of users, it is necessary, however, that any conclusions on the

transmission rate be translated to possible restrictions on the arrival rate. Consider

2n users, let the probability of transmission per unblocked user be q, and let the

transmission rate 2n q be within the stability region of the CRLS. Let the arrival

process of each of the 2n identical users be Bernoulli with parameter p. Then, the

arrival rate of the system is 2np, and it is maintained if it is the same with the

transmission rate 2nq. It is not maintained, and monotonically increasing accumulations

in the buffers of the users occur, if p>q. The arrival rate is the same with the

transmission rate, if at most one new arrival per user occurs (on the average), from

a time instant when the user becomes blocked to the time his blocked packet is succes-

sfully transmitted. Since the number D(2 ,q)-l in (13) is an upper bound to all such

blocked-unblocked time intervals, a sufficient condition for the satisfaction of the

above property is given by the following expression.

n nP[D(2n,q)-l]=q[D(2 ,q)-1 ] < 1 ;p-q (14)

The condition in (14) provides a lower bound on the admissible arrival rates;that

is the arrival rates that are maintained by the CRLS. For 2 n users, let us denote this
.1

lower bound 2 , and let 2q be the true maximum arrival rate that is maintained

n*by the protocol. Then, 2 nq < 2 nq < 2 nq ; where 2 nq is the throughput in definition
an an n n

2, and where at least all the arrival rates in (0,2n q*n are maintained. In table IV.3,
an

n n * nl
we list numerirally computed values of the quantities 2 qan; where for n-*.0 , 2 q- 2 qqa

d
-.36. In the same table, we also list the highest maintainable input rates Tn and Tn

T -
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from the nondynamic and the dynamic tree protocols in [6] respectively, for n-6 and

n-b. For n-6, the quantities T and T d have been computed from the condition

6 6

qE{delayj < 1, as imposed on both the nondynamic and the dynamic tree protocols.Compa-

ring the results in tables IV.l and IV.3, we observe that as n increases the bounds

2q and 2nqa approach each other. This was expected because both the computed bounds
U an

are more accurate for large number of users, and because as n increases the throughput

and the maintainable arrival rate approach each other. Finally, we observe from table

IV.3, that for 26 users the lower bound 26 q* is larger than T and smaller than Td
a6 6 6

as expected.

#of Users 2nq T Td
an n n

23 ;n=3 .725 ... ...

2 4;n=4 .630 ... ...

2 5  ;n -5 .5 6 0 ... ..

2 ;n-6 .515 .430 .675

n-Po.36 .34b .429

Table IV.3

Lower Bounds on the Maintainable by the CRLS Input Rates

We will conclude this section by pointing out that the CRLS does not utilize

the distinction between empty and successfully busy slots, in contrast to the proto-

col in [14] and [17). This characteristic makes it robust in the presence of channel

errors that prevent such distinction; it also makes the CRLS usable in Spread Spectrum,

where due to the low power signals the above distinction is not feasible.
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V. CONCLUSIONS

In this paper, we proposed and analyzed a collision resolution protocol (CRLS),

for Bernoulli independent users and limited feedback sensing. Our protocol is different

than the protocol in [14] and [17] (for finitely many users in the second), since it

eliminates the skip step in the latter, when a collision is followed by a noncollision

slot. This elimination makes the CRLS robust in the presence of channel errors. Indeed,

although we have assumed here that the transmission channel is errorless, it can be

easily shown that when single direction channel errors occur, the CRLS eventually correc

them, at the expense of additional delays. The protocol in [14] and [17] does not; it

leads to deadlocks,instead. We should point out that the protocols in [6] are also robus

in the presence of channel errors, and so are the protocols in [9] and (16]. The latter

is basically the CRLS, for asymptotically many users.

The CRLS has dynamic characteristics, as the dynamic tree protocol of Capetanakis

in [6]. For that reason, it performs better than the nondynamic tree protocol in [6],j despite the fact that full feedback sensing is used in the latter. In addition, the

CRLS performance is not much worse than that of the dynamic tree protocol in [6]. Asymp

tically (for infinitely many users), its throughput is less than seven perceat lower

than the throughput of the dynamic tree protocol. For any number of users, the delays

induced by the CRLS are comparable to those induced by the dynamic protocol in [6],and

they are lower than those induced by the nondynamic protocol. The CRLS is also easy to

implement, it operates in a distributed fashion, and it eliminates the undesirable re-

quirement that users sense the feedback constantly even if unblocked or empty.

The dynamic characteristics of the CRLS may be further enhanced if a dynamic tree

search as in [6] is employed. Then, a newly blocked user initiates his tree search at a

depth K higher than the root depth, he still interprets a leaf collision as a root col

sion, and he visits the tree nodes at depth K sequentially, from top to bottom (fig.II.

The resulting protocol will be again robust in the presence of channel errors, and it

expected to have throughput higher than that of the dynamic tree protocol in [6]. We a

currently working on this protocol.
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APPENDIX A

Proof of Proposition 1

We will prove the proposition by induction in time. Let us denote by to a

time Instant such that at time t -i all the 2n users are unblocked, and at t0 o

some N > 2 users become blocked. Then, all the Nt users initiate simultaneously

the CRLS, they are all placed at node R, and the event at time to is ({2a Nto},[2n-N

Among the Nt users, let there be N with first codeword prefix 0, and Nt 2 with
00

first codeword prefix 1. Then, at time to+l the Nt 1 users move to resolution mode
0 0

Sa , and place themselves at node 0. At the same time, the Nt 2 users move toao

n-i
resolution mode 2 - and place themselves at node 1. Also, some previouslywe

unblocked users may transmit at time to+l. If the number of those users is Nto+l,

they will all be placed at the node R. Thus, the event at time t +1 is
0

({2a Nto+l ,{2a  l ,12We ,Nto 2n-No-Nt +l.D Therefore, the proposition
a ol 3 o 0 e" 0 011 t 0

clearly holds at times to and to+l.

Let now t be some time instant beyond to+l, such that there is no time instant

in [to,t] at which all users are unblocked. Let us accept that the proposition

holds at all time instants in [to,t]. Let the event at time t be ({2k N 1; 0 < k < n,

{2we ,Pk 1; 0 < k < n-l,[M]). Given some k less than n, let the Nk users be placed

at node yl(k)...Ynk (k); let the Pk users be placed at node x1(k)(...xn-kl(k) 1.

The N users are placed at the node R. There are three possibilities regarding~n

slot t. It will be either empty, or successful, or a tollision slot. Let t be a

collision slot. For given k > 0, let there be Nkl users with codeword prefices

9+.,' Yl(k) ... Yn(k) 0, and Nk2 users with codeword prefices Yl(k)...Y (k) 1; where

N + N - Nk . Then, at time t+l, the N users place themselves at node
k1 k2 k k1

yl(k)...Yk(k) 0, and move to resolution mode 2 k-l. At the same time, the Nk2

k-1
users place themselves at node yl(k)...Ynk(k) 1, and move to state (

.o

y((k) k(k) 0). The user (if any) who is in resolution mode 20 at time t,
+ t -. .. . - •

+ --,-, ... . .. ..... " +++++,. ..... .' -.. ---.+ +' .,., ' . + -. ++.- +; -;,,+ .+ ++=- .--++.+ +-+7*7, , +++, + .
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n-i
moves at time t+l either to resolution mode 2a  and to node 0; if the first bit

in his codeword is 0, or to state (2n - , 0) and to node 1; if the first bit in his
We

codeword is 1. At the same time, the Pk; 0 < k < n users reain at node x1(k)...

Xn-k-l(k) 1, and move to state (2k , x1 (k)...x n _ k i l k) 01 ... 10). The user (if any)

in resolution mode 2We, moves to state (2n-,0); if his first codeword bit is 0.

-n-i.He moves to state (2n e,0), otherwise. It is thus clear that the proposition holds

at time t+l, if t is a collision slot. Also, since we have accepted the proposition

in [tot], it is also clear that Xl(0)...Xnl(0) = Yl()...Ynl(0) thus the first

n-l bits of users P and N are identical. This last assumption clearly holdsO O

at time t+l, and it implies that user's N codeword is x1(0)...x n l(0) 0, while

user's P codeword is x1(0) ...xn l (0) 1. The event at time t+l becomes:

({2n N} n-l k- l<k<n-l,{2klN} l<k<n,[M-N])

at a ,Snl+P+N} {2 ,Nkll n[MN]

; if the first codeword bit of users P and N is 0, and N
o 0

previously unblocked users transmit at t+l.

n k-1, -1 k-1l-]

(-{2 N),{2 ,Nkl; l<k<n,[ 2 n ,N+P +N )J2 lNk2); L<k<n-l,[M-N])

; if the first codeword bit of users P and N is 1, and N
previously unblocked users transmit at t+l.

Let now t be a either empty or successful slot. Then, as can be easily

kconcluded from figure 11.2, the users who at t were in resolution mode 2 will
e

move at time t+l to resolution mode 28. In fact, only those plus any previously

unblocked and now transmitting users will be the only active users at time t+l.

It is also clear from the state transitions in figure 11.2, that those users who

at time t were in either state (2k x1 ... _x 00); 1 < k < n-i or in some state
W1 n-k-i

(kV~xl..Xk_101..0) 2_C k_ n-i, will move at t+l to states (2 nk

more
1 kn-l and (2;ex. ..x n-k_0l...ll); 2 _< k < n-i respectively. Furthermore,

j ~i . .- ....
1120=-
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there are no other users who at time t+i will be in resolution mode 2k; 0 < k C n-l.
W - I

But it is then clear (from the transitions in figure 11.2) that the users who at t

are in states (2,xl. xnk 0); 1 < k < n-, (2wxl...Xnk101...I0); 2 < k < n-I

must have been at t-1 in states (2 ,Xl..XnklO); 1 - k < n-i, (.kn 01...l)

2 < k < n-i respectively, and slot t-l must have been a collision slot. The proposi-

tion clearly holds now at time t+l, if t is an either empty or a successful slot.
Furthermore, if the event at time t-l is ({2 ) k< N O<k<,

a- k wel k --

we will find the event at t+l, distinguishing between different cases.

Case: slots t-l and t both either empty or successful

event at t+l:

({2nN),{2 kiP}; Ok<n-l, [M-N]); if N previously unblocked users transmitted

at t+l

Case: slot t-l collision slot, slot t either empty or successful

event at t+l:
C ,)cki ;- k (I)

({2n0N},{2P; O<k<n-l, k2w P k 1}; l<k<n-l,[M-N]); if N previously unblocked
users transmitted at t+l

Proof of Proposition 2

We will prove the proposition by inverse induction in time.

The proposition clearly hodls if the event is such that there are only two

active users, one with codeword prefix xl(kl)...x nkl(k )O, and one with codeword

prefix x (k 2)...x n _k 2(k2 ) ; for some kV k2, and if at the time the first transmits

no previously unblocked user transmits also.

kLet now the collision event ({2 N }; l<k<n, [M) occur at time t. If
n U t n

n +  Nl the k Nl users and the newly blocked at t+l users N become
k-i n

unblocked at t+l, and the proposition holds. Let, instead, N1 + E Nkl > 2.k-l
Then the event at t+l becomes ({2n,Nl+N ),{ 2 k-1 ,N }; 2 < k < n,[M-NI]), and at

a n kP - - n

the same time the E Nk2 users move to withholding mode. Let the proposition
k-i
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nhold from time t+l and on. Then, the n+N + Nk users will be unblocked before

the 1 Nk2 users are, and before any additional users that are in withholding mode

at t+l transmit successfully. But the latter (if any) were already in withholding

mode at t. Also, among the N1 users, the one with codeword prefix x1(1)...xn-l(1)

will not be unblocked before xl)...Xl(1)O is. This is so, because both the N1

users (if they are two) perform simultaneous tree search, starting at t+2.

The proof of the proposition is now complete.

.g



APPENDIX B

Proof of Theorem 1

We select arbitrary positive numbers a, c such that ct > c. Then, in the

k
right hand part of the equation in (7), we substitute each L({2 Q 1; 1<k<n,[S])

a' k
n n

with E Qk ? 2 , by ( I Qk - c. We require that the resulting expression is

k=l k-l
n

strictly less than a E Nk - c. As a result, we obtain, in a straightforward
k-l

fashion, three inequalities that correspond to M = 0, M - 1, M > 2, in the expected

value L({2k,Nk}; l<k<n,!M]) in (7). To express those inequalities in a simple form,

we first define:

Po P({Nk,O}; l<k<n)

P P p({Nk,mkl; l<.k<n)n

{mk} . mk  1

Ti p({Nk,mk}; l<k<n)

n n
{M I: mk .12, Emkik =-2

P n

2-m I < i < , Nk  2

E T i Ti n

2-m < i < N - 2

tk

II
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; here P({Nkmk}; l<kn) is given by expression (8).
n

To simplify our notation further, we denote Nk by s. Then, from the expressions
k-i

in (B.1) we clearly have:

1 1

We now define:

f 0 (q) qE + PI(1- q) - PT qN - T (N -[q(s-l) - (1-q) s-i ] - TN q s[l - -s-

o(q) =1 - Po - P T--(1-q)
q

- TN (-q (l-q+qs)

f 1 (q) =qET + P11(l-2q) - P0 q - P1[4q + q (N1-l)-l ] - PTq(Nl+2) -

- T -NI-[q(s+l) - (l-q)S] - Ts-N Iq(s+2) - N1 - (s+l)q(l-q)s]

3l(q) PqA + PT + T fs-NI-Il-(l-q)s] + T s-NIl-(l-q)rs+ l - (s+l)q(l-q)S]
g1q P -Ni -N (s.3)

f2(qM) -2qM - qN1 - qET + Pq(1]q)'-i[NI(1-q)+M(i+qN1  + PI(l+qN1q)fl-q)M

-P11 [q-(liq) M] - TNl[q(s-N1 -l) - (l-q) M+s-l

+ TsN I[(l+q)N1 + (M+s)q(l-q) 
M +s - l

g2 (q,M) I - P0 (-q)M-l(-q+Mq) - P H(l - HsNll(l-q)M+s-i

1

- TN (1-q) M+s-I l-q+(M+s) qi

It can be easily shown that the functions in (B.3) have the following properties

At q - 0, they are all positive. The functions fo(q), f 1 j0. and f2(q,)O are

monotonically decreasing with increasing q, becoming negative at q - 1. The

functions g0 (q), gl(q), and g2(q,4 are monotonically increasing with Increasing

q. The three inequalities we mentioned in the first paragraph of this proof are

as follows.

VI• -- , - .. - .: , . ". "
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ai f 0Cq) - c 0 (q) ; for H - 0 (3.4)

a f1 (q) > -c g(q) ; for M- 1 (3.5)

a 2(jM > - c g2(q,M) ; for M > 2 (B.6)

We are seeking those q values that satisfy all the three inequalities above.

Let qO , ql , q2 be the zeros of the functions fo(q), f1(q) and f 2(q,M) respeceively.

Then, since ai 5 0, c > 0, and g (q) > 0; Vq, g (q) >0 qg(q,?O > 0; Vq, H > 2,

inequalities (B.4), (B.5), and (B.6) are clearly satisfied for q: qO q, q < ql, and

q < qo respectively. We will now examine the possibility of having q values

beyond the above regions, that still satisfy the inequalities in (B.4), (B.5), and

(B.6). We rewrite then the inequalities as follows.

c~g (q) +- f f(q)] > 0; for q > q, o' > 1, c > 0

jg (q) + 2f (q)] > 0; .'for q > qo ~>1, c >0 (B.7)

(~2 q,-L + f(q,M)] > 0; for q > qo a>l1, c> 0

Within the considered q regions above, the functions f (q), f (q), and f (q,H)

are negative. It is then clear, that the highest q values that satisfy the

inequalities in (1.7) correspond to ci,c 1. As a conclusion from all the
c

above, we are finally searching for those q values that satisfy all the three

inequalities below.

JA
F g9(q) + f (q) > 0 (B.8)

00 0

P1  g1(q) + fi(q) > 0 (B.9)

F2(q,M) 0 9 2 (qM) + f2(q,H) > 0; V M > 2 (1.10)

It is easily varified that the functions F q) F (q), and F (q,)O above are

all positive at q -0, and are all monotonically decreasing with increasing q.
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They also become negative at q - 1. Thus, they have unique zeros. Those zeros

will be functions of the parameters in (B.l); thus they will be functions of the

set {Nk; 1 < k < n). Furthermore, the zero that corresponds to the function F2(qM ,

will be also a function of M. We are searching for the minimum among all those zeros,

so that the inequalities in (B.8), (B.9), and (B.10) are satisfied for every set

{Nk; 1 < k < ni, and every M value. In terms of M, it can be easily shown that the

function F2(q,H) is minimized at M - s; for every q, and every {N;k 1 < k < ni.

Thus, we first substitute M by 2" - s, in expression (B.10). Then, using expressions

(B.2) and (B.3), we find easily that for given set {Nk; 1 < k < n1, the following

expressions hold.

Fo(q) =- - sN - NT qS-l)-T lqs + (l-q)S] (B.I1)
0 T 0 PT S-Ni ~ S-N1I

FI(q) > Fl)(q) l-q-q E -P 2q -P -P 2N(l - q )2 q (Nl+l)
1 -- qT P11 2q-P 1 1  1  - Pq (N+1

I +1s-N-lqs - T s-N q(s+l) + (1-q)S I (B.12)

1 n

F2(q,2 -s) > F (1)(q,s) 1 - 2q(2n-s) - q ET qN - P (l-q) 2-s Pq(l-q) 2 -s P q

2 21 TN 1 011
2n

T TsNII q(s-l) - T sNlI(1-q) (B.13)

Itiseail sentht hefucton (l) (1)It is easily seen that the functions FI1(q) and F 2  (q,s), in (B.12) and (B.13)

respectively, are both positive at q = 0, they are monotonically decreasing with

* increasing q, and they are negative at q - 1. Thus, these functions have unique

* zeros. Furthermore, every q value below these zeros satisfies the inequalities

(B.9) and (B.10). So, to this point, we have reduced the problem to searching for

th zro o te untinsF (1) (1)the zeros of the functions F0 (q),F 1  (q), and F2  (qs); for given set {Nk; 1 < n

Then, we will search for the minimum among those zeros. To accomplish that, we
instead search for lower bounds on the functions F (q), F(1) (q), and F 1) (q,s) first.

F 1 2 (~)frt
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We want those bounds to be independent of the set {Nk; 1 < k < n), but functions
n

of a - z N . We use some easy upper bounds on the parameters in (B.1). Those

bounds are given below.

-N 1
2-8 T-4"' + TsN + PT < 2-s 0 (sIN) 2 1

PI < s

s-N1 - 2  -N-1 (B.14)

P1 1 < (s-N) 2- s

If we substitute the parameters P0. P1, Tip Pll' PT' ET be their bounds in

(B.14), we obtain from expressions Fo(q), F(1 ) (q), and F ()(qs) the following

inequalities:

-N -I -s 2

q 0,q 1 - 2 q(s+N1 ) - 2-S[NI(l+q-qs)+qs+qs +(l-q) s] (B.15)
N 1

() 1- GsNF 1 (q) > G1(s,Nlq) 1 - q -2 q(N 1 +s+2) - [l+qNl(NI-2)+sq(4+qN1-q-2N 1

+ qs2 + (l-q) s + ] (B.16)

(1) q~ -N I-1 n,2 _

F2 (1) (q,s) > G2 (s,Nl,q) = 1 - 2q( 2n-s) - qN1 - q(s-N)2 - 2-S[(l-q)2-s + sq(l-q)

+ (s-N 1 )q + (s-N 1 ) (s-1)q + (1-q) ] (B.17)

The functions Gj(s,Nl,q); J - 0,1,2 in (B.15), (B.16), and (B.17) can be

* easily shown to be positive at q - 0, negative at q - 1, and monotonically decreasing

with increasing q; for all allowed N1 and s. Also, the functions Go(s,N1 ,q) and

"4, C(s,Nq) are aonotonically decreasing with increasing a, for all allowed N, and

q; where N - 0,1,2, and where (for 2 users) _ < 2n for the function 0 (S,Nlq)

and . < 2n-1 for the function G1 (s,N1 ,q). The function C2(sN 1 ,q) is monotonically

mo
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increasing with increasing s, for all allowed N1 and q; where N 0,1,2 and where

(for 2 n users) 2 < s < 2n-2. Due to the monotonicity of the above functions with

respect to s, it is now clear that to obtain sufficient conditions for the existence

I of a nonnegative and bounded solution for the system in (7), we should search for

the zeros of the functions G (2 Nq); N1 - 0,1,2, G1(2 ,Nlq); N1 - 0,1,2, and

G2 (2,NIq); N1 - 0,1,2. Among those zeros the smallest q provides a q region

[0,qn] within which the system in (7) has necessarily a nonnegative and bounded

solution.

The proof of the theorem is now complete.

I
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