P	AD-A1 UNČLA	28 498 SSIFIED	RELA FAIL ENGI F336	TIONSHI URE RAT NEERING 15-82-5	P BETW ES OF E E 097	EEN MAN Elec(Jones e	UFACTUR U) DAYT T AL. O	ING YIE ON UNIN 1 FEB 8	LDS AN OH SCI 33 UDR-	D FIELD HOOL OF TR-82-1 F/G 9/5	54	1/ 1		
							Ĩ							
					EIND DATE FILMED 16-83 DTIC		_							

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANLARES 1961 A

3

RELATIONSHIP BETWEEN MANUFACTURING YIELDS AND FIELD FAILURE RATES OF ELECTRONIC EQUIPMENT

Eugene E. Jones John M. Pearson

UNIVERSITY OF DAYTON School of Engineering Dayton, Ohio 45469

DTIC FILE COPY

1 February 1983

Final Report for Phase I (30 Sep 1982 - 30 Nov 1982)

Distribution of this report is unlimited.

Prepared for: AIR FORCE BUSINESS RESEARCH MANAGEMENT CENTER (AFBRMC) Wright-Patterson Air Force Base, Ohio 45433

014

05 24

REPORT DOCUMENTATION	PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
REPORT NUMBER	2. GOVT ACCESSION NO A12849	- 3. RECIPIENT'S CATALOG NUMBER
TITLE (and Subtitie)	1110011	S. TYPE OF REPORT & PERIOD COVERED
Relationship Between Manufact and Field Failure Rates of Fl	uring Yields	Phase I - Final Report
Equipment	eccromic	5. PERFORMING ORG. REPORT NUMBER
		UDR-TR-82-154
AUTHOR(a)		S. CONTRACT OF GRANT NUMBER(+)
Eugene E. Jones John M. Pearson		F-33615-82-99 5099
PERFORMING ORGANIZATION NAME AND ADDRES		10. PROGRAM ELEMENT, PROJECT, TASK
University of Dayton School of Engineering (EMS) Dayton, OH 45469		AREA & WORK UNIT NUMBERS
		12 252021 0415
- CONTROLLING OFFICE NAME AND ADDRESS		1 February 1983
Air Force Business Research M Center (AFBRMC), WPAFB, OH,	anagement 45433	13. NUMBER OF PAGES
MONITORING AGENCY NAME & ADDRESSIL diller	nt from Controlling Office)	15. SECURITY CLASS. (of this report)
		Unclassified
		154. DECLASSIFICATION DOWNGRADING SCHEDULE N/A
)istribution of this report i	s unlimited.	Min Report)
Distribution of this report i	s unlimited.	Win Report)
Distribution of this report i DISTRIBUTION STATEMENT (of the obstract entered SUPPLEMENTARY NOTES	S unlimited.	m Report)
Distribution of this report i DISTRIBUTION STATEMENT (of the obstract enforced SUPPLEMENTARY NOTES FBRMC Project Manager for th	s unlimited. In Block 20. If different fro	Lt. Joseph Peck.
Distribution of this report i DISTRIBUTION STATEMENT (of the obstract enforced SUPPLEMENTARY NOTES FBRMC Project Manager for th KEY WORDS (Continue on reverse side if necessary a	s unlimited. In Block 20, if different fro is research is nd (dentify by block number)	Lt. Joseph Peck.
Distribution of this report i DISTRIBUTION STATEMENT (of the obstract entered SUPPLEMENTARY NOTES FBRMC Project Manager for th REY WORDS (Continue on reverse side if necessary a celiability; Unit Failure Rate etween Failure (MTBF); Relial rinted Circuit Boards (PCBs);	s unlimited. In Block 20, if different fro is research is ad identify by block number Operational i bility Test Fa. Rework Rate	Lt. Joseph Peck. Failure Rate; Mean Time ilure Rate; Unit Yield;
Distribution of this report i DISTRIBUTION STATEMENT (of the obstract entered SUPPLEMENTARY NOTES FBRMC Project Manager for th REY WORDS (Continue on reverse side if necessary and reliability; Unit Failure Rate etween Failure (MTBF); Relial rinted Circuit Boards (PCBs); ABSTRACT (Continue on reverse side if necessary and	s unlimited. In Block 20, if different fro is research is d Identify by block number) Operational i Dility Test Fa. Rework Rate	Lt. Joseph Peck. Failure Rate; Mean Time ilure Rate; Unit Yield;
Distribution of this report i DISTRIBUTION STATEMENT (of the ebstreet entered SUPPLEMENTARY NOTES FBRMC Project Manager for th REY WORDS (Continue on reverse side if necessary and reliability; Unit Failure Rates etween Failure (MTBF); Reliability; Unit Boards (PCBs); ABSTRACT (Continue on reverse side if necessary and This research seeks to de etween manufacturing yields a eliability) of electronic equ eplaceable units (LRUs) with: -4C/D/E; F-15C and F-16A/B is ith prime emphasis on the rel PCBs) within these units. In	s unlimited. In Block 20, if different for is research is d (dentify by block number) Coperational for Dility Test Fa. Rework Rate d (dentify by block number) etermine the dentify by block number) etermine the dentify in the avionic s selected as p liability of the phase I, the	Lt. Joseph Peck. Failure Rate; Mean Time ilure Rate; Unit Yield; eqree of correlation ire rates (operational signated set of line subsystems of the A-10A; pilot items in this study he printed circuit boards data base needed to
Distribution of this report i DISTRIBUTION STATEMENT (of the ebstreet entered SUPPLEMENTARY NOTES FBRMC Project Manager for th REY WORDS (Continue on reverse side if necessary a seliability; Unit Failure Rate etween Failure (MTBF); Relial trinted Circuit Boards (PCBs); AESTRACT (Continue on reverse side if necessary and This research seeks to de etween manufacturing yields a eliability) of electronic equ eplaceable units (LRUs) with: -4C/D/E; F-15C and F-16A/B is ith prime emphasis on the rel PCBs) within these units. In	s unlimited. In Block 20. If different fro is research is d Identify by block number) Coperational is bility Test Fa. Rework Rate d Identify by block number) etermine the de and field failur lipment. A des in the avionic s selected as p liability of the h Phase I, the LETE UN	Lt. Joseph Peck. Failure Rate; Mean Time ilure Rate; Unit Yield; egree of correlation are rates (operational signated set of line subsystems of the A-10A; pilot items in this study he printed circuit boards data base needed to NCLASSIFIED

\$

UNCLASSIFIED

N

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

measure this correlation is established. In Phase II, correlations among these data will be sought. Based on the significance of these correlations, recommendations will be formulated in Phase III to use these research results in Production Readiness Reviews (PRRs) and Risk Assessments for future acquitions of electronic equipment.

UNCLASSIFIED

all a sea a sea a sea a sea

SECURITY CLASSIFICATION OF THIT TAGE (IThen Date Enter :

EXECUTIVE SUMMARY

The Air Force has experienced low operational reliability on numerous aircraft electronic units. Poor quality control by the unit manufacturers and/or the acceptance of low process yields are stated as the major contributors to this problem.

If this premise is true, the existence of a significant relationship between manufacturers' unit yields and the subsequent operational (field) failure rates for these units would provide a basis for revising current DoD policies and practices on acquisition of electronic units and the subsequent warranties of these units. This relationship could be used by the Air Force Systems Command (AFSC) in Production Readiness Reviews (PRRs) and Risk Assessments to estimate the potential effects of the unit on the future operational readiness of tactical aircraft systems.

The prime objective of this research is to determine the degree of correlation between manufacturing yields and the operational reliability of selected electronic units. In Phase I, the data base for a selected group of line replaceable units is established. In Phase II, the degree of correlation among these data will be assessed. Based on the degree of this correlation, guidelines to use this information in the Air Force Production Readiness Reviews (PRRs) will be developed in Phase III.

The completed events of Phase I demonstrate the limited availability of data to support the intended analyses of Phase II. There are ample data on operational reliability of the selected units over the time period of interest, but all units are not equally covered. Also, there is an imbalance of data on yield and rework in comparison to operational reliability data.

Section 1 of this report describes the problem and research objectives. A discussion of the objectives to concentrate on printed circuit boards within the pilot units is provided.

Section 2 provides definitions of key variables, gives the data gathering plan, the research data base, data sources and the key problems encountered in the data collection phase.

Section 3 gives a description of the data collected in the context of how these data will be used in the analyses of Phase II. Prime emphasis is devoted to a discussion of measurable parameters, such as failure rates and "mean time between failure" (MTBF) as the dominant variables reflecting operational reliability of a given unit. There are exceedingly wide variations in the computation and interpretation of these variables in both government and industry.

The opinions stated herein are those of the researchers and are not necessarily intended to reflect Air Force policies concerning the analysis of test and operational reliability data.

TABLE OF CONTENTS

- 36.

	Page
REPORT DOCUMENTATION PAGE (DD FORM 1473)	
EXECUTIVE SUMMARY	1
TABLE OF CONTENTS	3
LIST OF ILLUSTRATIONS	5
SECTION	
1. INTRODUCTION	6
1.1 Problem Overview	6
1.2 Research Objectives	6
1.3 Phase I Requirements (Work Tasks)	7
1.4 Conclusions on Data Availability	7
1.4.1 Operational Data	7
1.4.2 Rework Data	9
1.4.3 Yield Data	9
1.5 Phase I Summary	10
2. PHASE I DATA COLLECTION	11
2.1 Research Data Base Structure	11
2.1.1 Definition of Unit Failure	11
2.1.2 Measures of Unit Reliability	11
2.1.3 Measures of Unit Yield	11
2.1.4 Measures of Unit Rework	12
2.2 Phase I Data Gathering Plan	13
2.3 Prime Data Sources Used in Phase I	13
2.3.1 Unit Test/Yield Data	13
2.3.2 Reliability and Rework Data	14
2.3.3 Other Sources of Data	15
2.4 Primary Data Collection Problems	16
2.4.1 Operational Reliability Data	16
2.4.2 Unit Yield Data	17
2.5 Need for Additional Data	18
2.5.1 Need for Expanded Data Base	18
2.5.2 Revised Data Collection Strategy	18
2.5.3 Relating PCB Repair Data to LRUs	22
2.5.4 Measuring Key Operational Parameters	23

3

- 7

T

3.	DESC	RIPTION OF EXPLANATION OF DATA COLLECTED	24
	3.1	Data Description Overview	24
	3.2	Operational Reliability Data	24
		3.2.1 Observations Concerning MTBF/M	24
		3.2.2 Analysis of MTBF/M Trends	27
		3.2.3 Mission Influences on Parameters	30
		3.2.4 Test and Operational MTBF	33
	3.3	Manufacturers' Unit Yield Data	38
		3.3.1 Types of Data Available	38
		3.3.2 Discussion of Test/Yield Data	41
	3.4	Data on Unit Rework Data	43
		3.4.1 Rework at the LRU Level	43
		3.4.2 Rework at the PCB/SRU Level	45
	3.5	Other Supporting Data	46

APPENDICES

and the second second

Contraction of the

LIST OF ILLUSTRATIONS

Page

Figure 1 MTBF Plot Versus Time (Al0-65AA0) 28 2 MTBM-1 Trends 31 3 MTBM-Total Trends 32 4 Test versus Operational MTBF Trend 34 5 MTBF Ratio versus Time 36 6 Derived Measure of Rework 44 7 Failure Distribution (WUC 513A0) 47 Failure Distribution (WUC 513H0) 8a 49 8ь Failure Distribution (WUC 513H0) 49 9 Time Series Failure Pattern (WUC 513U0) 50 10 Failure Pattern (Trend Removed) 51

Table

1	Selected Set of Work Unit Codes	8
2	Data Stratification by A/C & WUC	21

Exhibits

1	Composite MTBF (F-15 Avionics)	37
2	Test Data (Unit Yield)	39
3	Test Data (APX-101 WUC-65AA0)	40
4	Test Data (F15, General)	42

SECTION 1-INTRODUCTION

1.1 PROBLEM STATEMENT

The Air Force has experienced low operational reliability on numerous aircraft electronic units. One premise is that a major contributor to this problem is poor quality control by the unit manufacturers and/or the acceptance of low process yields. The effect of this situation is the acceptance of unit process yields that decrease the probability that the average unit . will perform as expected.

If this premise is true, the existence of a significant relationship between manufacturers' unit yields and operational (field) failure rates would provide a basis for revising current DoD policies and practices on acquisition of electronic units and the subsequent warranties of these units. This relationship could be used by the Air Force Systems Command (AFSC) in Production Readiness Reviews (PRRs) and Risk Assessments to estimate the potential effects of the unit on future operational readiness capability of aircraft systems.

1.2 RESEARCH OBJECTIVES

The objectives of this research as stated in the Statement of Work are:

a. Phase I: Determine the availability of information and data on the manufacturing yields and operational reliability of a specific set of electronic units listed in Table 1;

b. Phase II: If the data are available, determine if there is a correlation between the manufacturing yield and operational reliability of these specific electronic units;

c. Phase III: If there is a significant correlation, determine what guidelines can be used to identify when process yields are "in control" and what manufacturing yield problems are likely to persist during the production and operation phases of these specific electronic units.

As an end product, this research will identify factors and affecting low operational reliability of selected electronic units and develop statistical indicators for use by AFSC during Production Readiness Reviews and Risk Assessments.

1.3 PHASE I REQUIREMENTS (WORK TASKS)

a. Determine the availability of information and data on the manufacturing yields of electronic Line Replaceable Units (LRUs) listed in Table 1, and their respective electronic Shop Replaceable Units (SRUs) for the period 1 January 1980 through 31 December 1981 (24 months).

b. Determine the availability of information and data on the operational reliability of the electronic LRUs in Table 1 and their respective electronic SRUs for the period 1 April 1980 through 31 March 1982 (24 months).

c. If the data mentioned in (a) and (b) are available, collect information for the periods specified and submit these data along with the draft Phase I final report.

This research executes Contract F-33615-82-R-5097 at the University of Dayton (UD) School of Engineering. This contract is sponsored by the Air Force Business Research Management Center (AFBRMC) at Wright Patterson AFB, Ohio, and the Air Force Project Manager for this effort is Lt. Joseph Peck.

1.4 CONCLUSIONS ON PHASE I DATA AVAILABILITY

1.4.1 Availability of Operational Reliability Data

On the basis of data and information collected in Phase I, sufficient time-related data (24 or more months) are available on the operational reliability of each one of the selected LRUs in Table 1 to support Phase II execution. The primary variables of interest are mean time between failure (MTBF), mean time between maintenance (MTBM), failures per unit period and unscheduled manhours expended for the related failures. Changes in the AFLC definition and computation of MTBF and MTBM have occurred within the time period of interest to this research and the effect of these changes are noted herein.

The singular source of extensive data on unit reliability is the Air Force Logistics Command (AFLC) D0-56 report maintained by AFLC/LOEP. Copies of the required operational reliability data for each LRU are available on ultrafiche at the University of Dayton.

TABLE

-

CONTROLLED COMPONENT DATA FOR RESEARCH ANALYSIS

<u>ALC</u> gden acramento	Aircraft F-4C/D/E F-16A/B F-15/C	Work Unit Code (WUC) 513A0 513H0 513H0 517A0 65AA0 74DA0 65BH0 65BH0 74JC0 74JC0 74JC0 74JC0 74JC0 76GF0	Description Aural Tone Generator CADC 42400 227 I CADC CADC CADC CADC Rec/Transmitter Inert Nav Univ CADC CADC Control Panel Rec/Transmitter Processor, Sig Data Rec/Transm OR 132 Rec/Transm OR 132
		52BB0	Computer, Beta Dot
	Ŧ	65AA0	Rec/Tr 1063AAPX101
	E	74CB0	Adapter Control
	Ŧ	76AR0	Comp, Sail Amp Det

8

τ

Ę

1.4.2 Availability of LRU/SRU Rework Data

Data related to unscheduled manhours expended for base-level maintenance of all of the selected LRUs are included in the D0-56 B-05, B-06, B-22, B-23, C-02 and C-03 reports, which are available on ultrafiche at the University of Dayton. However, within the AFLC D0-56 system, manhour data for the repair of SRUs at the AFLC depots cannot be directly linked to a specific Work Unit Code (WUC) or aircraft system. This problem can be solved as described in paragraph 2.5.3.

1.4.3 Availability of LRU/SRU Test/Yield Information

There are accessible, time sequenced data and information that can be used to compute manufacturing yields for eight (8) of the 18 selected LRUs/WUCs in Table 1 (mainly for the F-15 and F16). These data are derived from manufacturer's Reliability Qualification Testing (RQT) and Production Readiness Testing (PRT).

The required data for the F4 and AlO are spotty over the relevant time period due mainly to the maturity of the selected LRUs/WUCs. But the available data can be further augmented by extending the data collection to other electronic units for which sample test information and data have been routinely maintained (See paragraph 2.5.1).

Extending the test/yield data base to the printed circuit boards (PCBs) used to repair the selected LRUs in Table 1 represents a extended problem for several reasons. First, data from manufacturers' functional testing do not currently account for test failure statistics at the SRU/PCB level in a way that is upwards relatable to a specific LRU/WUC. Second, it is typical for two or more levels of manufacturer subcontracting to be involved in the design and supply of PCBs for major subsystems, such as the F-15 and F-16 avionics. Third, it is not unusual for equipment testing to greatly lag production and delivery.

Such factors may negate the use of PCB failure data from being linked "directly" to the operational reliability a specific LRU. Thus a working premise of this research is to first seek correlations between LRU test data and operational

reliability, and then seek correlations between PCB yield and rework activity and unit test reliability. The objective of this research is accordingly partitioned into two interrelated parts.

1.5 PHASE I SUMMARY

There are sufficient data to support extension of this research to Phase II. The key limitation of these data is an imbalance of time-related data on operational reliability and rework actions in comparison to the amount of corresponding data about production and manufacturing yield of the selected units and/or the shop replaceable units used to repair these units (namely, PCBs).

This limitation can be resolved by expanding the population of selected LRUs. This expansion would also strengthen the statistical foundation of this study results, which are intended to apply to the general population of avionic units of tactical aircraft systems.

SECTION 2 - PHASE I DATA COLLECTION

2.1 RESEARCH DATA BASE STRUCTURE

The objective of this research is to determine if a significant relationship exists among three variables, unit field reliability, unit yields and rework activity related to printed circuit boards (PCBs) used to maintain selected avionic systems. In this section, parameter definitions and the data collection process needed to measure each of these variables are described.

The intent of this section is to assure that the data collection process is expressly directed towards the measurement of variables that have meaning in the AFSC/AFLC environment, and that these variables can be measured with the data available.

2.1.1 Definition of Unit Failure

The primary logistic event of interest to this research is a "unit failure". Typically, "failure" means that the item is incapable of performing its intended function. Varying degrees of this incapability are classified as "malfunctions". For this research, the accepted definition and usage of the term "unit failure" conforms with that used in the AFLC Maintenance Data Collection System, which is a function of the system of maintenance and action codes in Appendix IV.

2.1.2 <u>Measures of Unit Field Reliability</u>

The computed "mean time between failures" (MTBF) in the AFLC D0-56 (Product Performance System) B-05 report is the key variable that measures unit field reliability, although the credibility in this parameter as a sufficient measure of operational reliability is universally low. (The reason for this dilemma is explained in more detail in Section 3).

Another parameter is "mean time between maintenance" (MTBM), and due to the recent change in terminology within the D0-56 system, the computed values of MTBM are strongly correlated to the computed or estimated MTBF, as shown in Section 3.2.1.

2.1.3 Measures of Unit Yield

"First pass" unit yield is defined as the number of units passing functional testing on the first trial. In general, "functional testing" consists of operating the unit for a specified period of time equal to a percent (usually 10%) of its design MTBF. The data required for such computations are cumulative inventory and the number of units whose operating times to failure were less than the specified percentage.

The "desired" data to measure the yield variable are test data, where unit functional test failures are uniquely related to inventory changes for each production "lot". The data are derived from manufacturers Reliability Qualification and Acceptance Tests (RQAT) and/or Production Reliability Tests (PRT). Such test data exist and are available for some of the selected units, but are limited for other units for the time period of interest.

In terms of "available" data in the D0-56 B-05 report, the inventory of the higher assembly for each of the pilots units is available by month. Within D0-56, the closest category of unit data that relate to "premature" unit failures pertain to "inherent malfunctions". Therefore, the number of "inherent malfunctions per unit change in unit inventory" may be a computable measure of unit yield from the "operational" point of view.

2.1.4 <u>Measures of Unit Rework</u>

For printed circuit boards, "rework rate" is typically defined as the ratio of the number of first-time successfully tested boards to the total number of units tested. This definition applies mainly to a PCB manufacturing environment, but tends to be impractical as a useful measure of repair at the AFLC Air Logistics Centers (ALCs), since PCBs are treated as other reparable units to the degree that designs permit. "Manhours expended per PCB failure" appears to be a more functional measure of rework at the operational level.

Relevant data to determine the rework volume, or repair rate, of shop replaceable units (SRUs) are reflected in "unscheduled" manhours at base level, and "manhours" at depot level in the D0-56 B-06 and C-03 reports respectively. But the key problem as related to this research is establishing a unique

linkage of manhour expenditure data for SRU repair at the depot to a specific work unit or LRU at base/field level (This issue is discussed further in Section 3.5.3).

2.2 PHASE I DATA GATHERING PLAN

The Phase I data collection plan was designed to use two separate sources to obtain the operational and production test and/or yield data for the set of pilot electronic units shown in Table 1. The primary source of operational reliability and rework (manhour) data is the AFLC D0-56 reports (B and C) generated from the AFM 66-1 data of the Air Force Maintenance Data Collection System (see samples of these reports in Appendix IV).

The primary sources of production reliability data are the manufacturers' continuing test data for selected units that are involved in Reliability Qualification Testings (RQT) and/or Production Reliability Testing (PRT). Other names for similar test are "All Equipment Production Reliability Test" (AEPRT) and Environmental Stress Screening (ESS). These test data are mandated by various MIL STDs and are routinely supplied to the government by unit manufacturers.

2.3 PRIME DATA SOURCES USED IN PHASE I

2.3.1 Manufacturers' Unit Test/Yield Data

Contacts with seven contractors/vendors of selected pilot units were established to obtain the required test and yield data for this research.

Teledyne produces the transponder receiver (APX 101, Work Unit 65AAO) used on the A-10, F-15 and F-16. A sample of the data provided by Teledyne is shown in Appendix II. Similar contacts were made with Honeywell Aerospace Defense Group (ADG) in Tampa, FL which makes a wide range of PCBs for a variety of military systems. Another Honeywell data source, is the Corporate Reliability Center for Electronic Components in Minneapolis.

Contact was made with Systems Research Laboratories (SRL) in Beavercreek, Ohio for data involving PCB yields during manufacturing. Similar contacts have been established with Opti-

Gauge Quality Circuits in Trotwood, Ohio and Texas Instruments in Dallas, Texas.

Mr. Jerry Edwards (ASD/TAEE) provided contractordeveloped data on the reliability testing of five of the units used on the AlO and Fl5 (see Exhibits 1, 2 and 3). Mr. Edwards is a Reliability Engineer for the Tactical Systems Division (TA) and maintains a comprehensive collection of test and yield data related to this research. Captain Robert Russell, ASD/YPEC maintains the RQT and PRT test data bases for the F-16.

2.3.2 Operational Reliability and Rework Data

Computer data tapes were formally requested from AFLC (through AFBRMC) that generate the D0-56 reports for the time duration and applicable aircraft for the pilot set of electrical units specified in Table 1. Repair manhours for repair of each of the selected units are available on the D0-56 "B" and "C" reports, but as explained further in 2.5.3 below, these manhours cannot be uniquely retraced to the LRU from which the relevant PCB was removed.

Although these tapes were not received during Phase I, all of the relevant unit data on ultra-fiche were obtained from Mr. Neuman (AFLC/LOEP). Over 300 sets of ultrafiche (about 2800 pages of data) have been obtained for the D0-56 outputs for each of the pilot items, dating back to 1977 for the F-4 and Al0 aircraft. The required data for all of the selected units were manually extracted using over 550 pages of these reports. Also, a monthly sequence of printouts, entitled "Selected Work Unit Maintenance Summaries" have been made available by AFLC on a continuing basis for each of the pilot WUCs in Table 1.

At WPAFB, the field reliability and rework data for PCBs at the PRAM PO were examined to give the researchers insight into the nature of actual PCB rework at the AFLC depots or manufacturers' facilities. Also, from DESC, an extensive set of failed printed circuit assemblies have been obtained that demonstrate the most typical failure modes of these assemblies (reference: Mr. Al Crockett, 513-296-6234).

At Warner Robins Air Logistics Center (WRALC), which is the depot for the maintenance of the APX 101 for the AlO, the prime contact is a Maintenance Technician, Mr. H. C. Puckett, who is directly responsible for the maintenance actions on the circuit card assemblies related to the APX 101.

2.3.3 Other Sources of Data

An especially pertinent study, entitled "Failure Analysis of the 5900 Federal Stock Class" (AFIT SL Masters Thesis, 76-21) provides a classification of LRU failures as reported in a sample of over 320 "Quality Deficiency Reports" in FSC 5900 (Hardware-Electrical and Electronic) at the Defense Electronic Supply Center (DESC), Dayton, Ohio. This study concludes that over 53% of these failures could be attributed to "manufacturer or latent and/or random causes".

A study by George Kerns of Hughes Aircraft, entitled "Non-operational Failure Rates for Avionic Equipment" attributes over 20% of failures in avionic equipment to "non-operational" causes, which are causes not associated with the length of operating time of the equipment. The magnitude of these nonoperating failures, Kern states, causes a bias in the computation of operational MTBF on the low side, so that the ratio of predicted to operational MTBF may range up to 20:1.

An overview of the "Production Verification Testing (PVT)" concept is presented in a brief paper by Capt. Keith Matthews. According to Matthews, PVT is intended to improved the probability of delivered systems meeting their design reliability. He also states that "...the relationship between testing and field reliability was not quantifiable". Mr. Paul Logus (ASD/AXP) was contacted on the application of documented results of PVT to this research.

A paper by Dillard and Frank of the DoD product Engineering Services Office (DPESO), entitled, "An Exploration of the Relationship Between Manufacturing Rework Events and Field Failure Rate" poses the hypothesis "...is there a relationship among product yield, unit complexity and operational reliability?" However, no formidable results supporting this hypothesis

are provided in this paper. The key emphasis of this study is the repair of PCBs of varying degrees of complexity (which is measured in terms of board layers and density of discrete units thereon). The authors state that the Air Force 66-1 data system (that generates D0-56) is inadequate to support the data needed for the computation of MTBF of such units as PCBs.

MIL STDS 217, 781C and 756B were reviewed to assess test data requirements for electronic units and the requirements for manufacturers to continually supply unit test data to the government during the production of the unit. MIL-P-55110 provides a listing of certified manufacturers for printed circuits. MIL-P-13949 gives specifications for a wide variety of PCBs.

Data in the Government Industry Data Exchange Program (GIDEP) sources were reviewed for selective electronic unit reliability data. There are currently three sources of data on GIDEP at WPAFB: Bldg 22 (DTIC); AFIT(Mr. Rehg) and ASD/EN (Mr. Massey). The GIDEP data base (Failure Exchange) contains generic data on PCB's in a test environment, and some of the PCBs can be matched by stock number. Application for GIDEP membership at the University of Dayton has been made, so that future reliability data in each of the data bases can be obtained directly.

2.4. PRIMARY DATA COLLECTION PROBLEMS IN PHASE I

2.4.1 Operational Reliability Data on Computer Tape

Although extensive operational reliability data on ultrafiche were obtained from AFLC/LOEP on all of the selected units listed in Table 1, these data could not be obtained in computer readable format within the time limit of execution of Phase I.

Accordingly, all data used in this report had to be manually extracted from ultra-fiche. Nevertheless, the need for computer based data analysis is accented by the sheer volume of unit reliability data to be scanned to structure a solid data base to support the statistical analyses planned in Phase II.

2.4.2 Acquisition of Unit Yield Data

A sample of data obtained from TELEDYNE on production testing and reliability for three of the work unit codes is shown in Appendix II. Three other vendor/manufacturers contacted stated that such data in the detail desired for this research existed only at government sources, such as the Item or System Managers at the Air Logistics Centers (ALCs).

There are two key reasons for this apparent dilemma. First, some of the selected units (for the AlO and F4) in Table 1 are relatively "old" and during the pre-production testing stages, the contractor or manufacturer routinely turned over testing and reliability data for these units to the Air Force as specific requirements dictated by MIL STDS 217, 470, 781C and 780, etc., (which pertain to reliability qualification and production acceptance tests for electronic units).

Second, after the operational production of a unit begins, manufacturers tend to rely solely on AFLC-derived information (D0-56 reports) to assess the operational performance of a given unit, although there are explicit requirements (MIL STD 781C) that manufacturers maintain continual post-production test and reliability data for each unit. This requirement is particularly enforced if the item is government furnished equipment (GFE) or if the unit is involved in a "Quality Deficiency Report" (QDR) or an engineering change proposal (ECP).

However, continuous tracking of data on reliability and test/yield for a unit is usually done only if the unit is, or is expected to become, a "problem item" as evidenced by an increasing failure rate or its design complexity.

Nevertheless, the primary research problem in Phase I was locating "the" individual, such as an Item or Systems Manager or Equipment Specialist at the Air Logistics Centers (ALCs) having cognizance of specific data on a specific unit, since there is (or, at least appears to be) no formal requirement that these test data be kept at the ALC for continuous unit reliability assessment and/or verification as time evolves.

To help resolve this problem, backup sources for the manufacturers' reliability and test data for selected units at each of the System Program Offices at ASD for each aircraft (AlO, F4, F15 and F16) had to be used. These sources were the reliability engineers for these systems, but the lists of units for which relevant test data is kept were limited, and did not cover all of the pilot items in Table 1.

2.5 NEED FOR ADDITIONAL DATA

In this section, a brief discussion is provided to establish the basis for an expanded research data base and the need to capture key operational influences of the pilot units through the use of additional measured parameters. Specifically, there is a need to restructure and increase the sample size of the pilot set of units to provide a more formidable basis for the mathematical conclusions to be derived in the Phase II analyses.

2.5.1 Need for Expanded Data Base

There are additional avionic units for which data are routinely maintained, which would be excellent candidates to be added to the pilot list for subsequent analyses in Phase II. For example, during the week of 19 November 1982, a "high level" Air Force (PACAF) request to AFLC was made to develop "logistical synopses" of approximately 50 electronic units (WUCs) that were labelled "war stoppers". In fact, the identical unit reliability histories as presented in Section 3 of this report will be needed for these designated units.

Also, there are several other operational variables, in addition to "mean time between failure" that can serve as auxillary factors that serve to link the SRU rework activities to operational reliability. The measurements for these parameters are included in the sample data base provided herein.

2.5.2 <u>Revised Data Collection Strategy</u>

For the pilot set of units in Table 1, the current strategy is to acquire time samples of manufacturers' test and rework data that relate to and/or influence the reliability of these units during the production and operational stages. To complement this strategy, there is a need to select specific electronic units produced by a manufacturer, and then retrace the testing and operational reliability history of this unit across various applications in the Air Force.

This latter requirement looms more significant in view of the observation that almost all of the selected WUCs in the pilot set rank high on the list of "abort" generations for the respective systems as reflected in the D0-56 (B-06) report, suggesting that these items were most likely picked on the basis of known negative effect on the operational performance of the associated systems. In general, the "avionics" sub-system would be expected to cause more aborts due to its mission critical nature.

In either case, to avoid a built-in bias in the data base for this research, there is a need to obtain a relatively large sample of units and then stratify this sample according to some key functional factors, such as aircraft application; failure rates and intensity; overall MTBF range; avionics versus non-avionics; deployment location; unit inventory age; its involvement in ECPs; involvement in QDRs, or other factors that might affect the operational reliability of the unit. Another useful stratification of units might indicate whether the unit is manually accessed during normal operation, as through a control panel in cockpit avionics. Such data would provide a measure of the human interaction on failures of these units.

The rationale to support two key stratifications of data which are of prime interest to this research are discussed below. The intent of these stratifications is to capture data on unit application, maintenance and manufacturer influences that might affect the operational reliability of the unit.

2.5.2.1 Influences of Aircraft Maintenance

There are large "spot" variations in the failure rates and subsequent maintenance action taken for the same electronic unit used among different operational aircraft, or among aircraft of the same series which are deployed differently. This observation introduces the logistics and main-

tenance concepts employed among operational aircraft as prime influences on failures and resultant operational reliability.

To capture the effect of diverse maintenance influences, there is a need to stratify unit maintenance actions by aircraft, which are reflected in specific categories, such as "On-Equipment", "Shop", etc, and also by other codes, such as "How Malfunction", "When Discovered", and "Action Taken". This stratification is expected to isolate the effects of different maintenance actions and aircraft deployments on operational reliability of the selected units, as well as the "maintenance maturity" of a given aircraft system.

A preliminary stratification of this type is shown in Table 2, which gives a comparative display of the maintenance actions for the same unit used on different aircraft which have diverse missions. Note that the total number of maintenance actions for the LRU (65AAO) is not the sum of the maintenance actions for its associated SRUs. This is a quirk of the D0-56 system, which dually attributes maintenance actions and/or failure counts to both the SRU and the LRU for the same activity. (In Table 2 and for subsequent reference, the LRU designator always ends in a "0", as 65AAO. All associated SRUs have identical first four symbols but end with an alphabet, such as 65AAB, 65AAC, etc).

2.5.2.2 Stratification by Manufacturer/Vendor

The above-mentioned effects on unit reliability due to application supports the need to further stratify the operational data on selected electronic units manufactured by several vendors that have a common operational application. Such information would have keen relevance at the SRU/PCB level.

To test the feasibility of this type of stratification, stock numbers of each of the LRUs in Table 1 and the associated subassemblies (such as those shown in Table 2) used for base repair of these LRUs were interlinked to manufacturers' part numbers through the D0-46 system (Reference Mr. Gary Drexler, AFLC 257-3926). The stock numbers of the subassemblies were derived from the D0-56B B-05-WK-M17 Part III ("Parts

TABLE 2

MAINTENANCE ACTIONS BY AIRCRAFT AND WUC (65AA0) A=ON-EQUIP ACTIONS; B=SHOP ACTIONS; C=PARTS REPLACED DATA SOURCE: D0-56 B-05 REPORT (ENDING 8203) THREE-MONTH WORK UNIT SUMMARY

		A-10A			F-16A		J	?-16B	
MUC	A	£	C	A	8	C	A	B	C
65AA0	455	449	214	75	142	125	26	45	51
65AAA	0	16	0	0	26	L	0	6	8
65AAB	0	39	2	0	7	0	0	٦	0
65AAC				0	2	0			
65AAD	4	٣	0	0	2	0			
65AAE	0	٣	0	0	-1	0	0	-	٦
65AAF	0	27	2	0	18	18	0	7	0
65AAG	0	15	0		16	4			
65AAH	0	24	0		m	44			
65AAJ	i	I	J	0	٦	0	0	٦	0
65AAL	I	I	ł	0	2	0	ł	i	۱
65AAM	0	2	0	ł	1	I	0	0	L
65AAN	0	2	0	0	4	0	I	1	ſ
65AAP	0	٦	0	0	0	J	0	ŗ	l
65AAQ	0	2	0	0	8	1	0	8	4
65AAR	١	I	I	ł	1	I	0	7	٦
65AAS	ı	1	ł	0	m	0	ł	I	ı
65AAT	0	4	0	0	5	0	I	ı	ł
65AAU	0	m	0	1	1	1	i	I	1
65AAV	ł	I	1	0	21	0	I	I	1
65AAW	0	-	0	1	1	I	I	ł	ł

21

7

C

Replaced") printout which gives a summary of maintenance action for selected WUCs.

The resultant output of the DO-46 System identifies each component by Federal Stock Class Manufacturers' (FSCM) code and noun (e.g., circuit card assembly). Since the input data are grouped by aircraft, the output stratification by aircraft and unit manufacturer can be accomplished. Given the FSCM, the identity of each manufacturer can be obtained from the H-4-1, 2 and 3 handbooks published by the Defense Logistics Systems Center (DLSC).

However, this stratification is a laborious procedure, since the FSC/Stock Number for each unit on the B-05 Part III report must be manually keypunched and re-entered into the D0-46 system. However this stratification also gives a measure of possible ambiguity in tracing an item through the AFLC data systems using FSC and NIIN (national item identification number) due to multiple unit stock numbers and multiple applications. Another method to achieve similar results at the LRU level involves the use of the AFLC K0-51 data system.

2.5.3 <u>Relating PCB Repair Data to Specific LRUs/WUCs</u>

In general, PCB's are not repairable at "base" or "field". These items are normally repaired at the AFLC depots and/or contractors facilities as detached units, or more infrequently, they are repaired as integral units in higher assemblies (LRUs) shipped from the field/base to the depot as NRTS (not reparable this station).

This situation causes a major problem in tracking the failures of PCBs through the AFLC D0-56 data system and subsequently linking these failures to an "end article" such as one of the pilot units (LRUs) in Table 1.

That is, since the PCBs are depot reparable, data concerning PCB repair will only appear in the "Off-Equipment" D0-56"C" report, instead of the "On-Equipment", D0-56"B" report. This means that within D0-56, "failure" data and subsequent rework activity on a PCB are not uniquely traceable to the end item (LRU/WUC) from which the PCB was removed upon malfunction or

failure indications, since no identification with an aircraft or work unit code (WUC) appears in the D0-56"C" report.

This problem can be partially resolved by concurrently using both the D0-56"B" and the D0-56"C" reports for data on each of the work units of interest. The data on these two reports can be correlated to the Air Force base (location) of application for each work unit, hence to each relevant aircraft, and then to an LRU thereon.

The methodology mentioned in 2.5.2.2 involving the use of D0-46 and/or K0-51 can be used to further resolve this problem. For example, in the trial run mentioned above, which involved all of the pilot LRUs for the three month period ending April 30, 1982, approximately 82% of all parts replaced involved "circuit card assemblies" or PCBs. This percentage could be further stratified by aircraft to give manhour allocation by unit and weapon system which is missing in the direct use of D0-56.

The net effect of this problem is to increase the amount of data processing and analysis needed in Phase I that must be continued into Phase II. This requirement places prime emphasis on obtaining the data base for this research in computer readable format.

2.5.4 <u>Measuring Other Key Operational Parameters</u>

The intent of this research is to determine the "degree" of correlation among unit reliability, rework and yield, and there are several "intermediate" variables that contribute to this correlation that depend on operational data. Time trends in such measured parameters as (1) failures per maintenance action; (2) failures per unit inventory; (3) manhour allocation per unit failure, in addition to mean times between maintenance (MTBM) and failure (MTBF) illustrate some of the primary measured variables (i.e., available data) needed to link rework and yield data to operational reliability of the selected LRUs over time.

The data needed to quantify these additional parameters are included in the AFLC D0-56 B and C reports. These data are discussed in more detail in Section 3.

SECTION 3 DESCRIPTION AND EXPLANATION OF DATA AND INFORMATION COLLECTED IN PHASE I

3.1 DATA DESCRIPTION OVERVIEW

The objective of this section is to link the key parameters (available data) defined in Section 2 to the primary transformations (computational methods) on these data required to evolve a relationship among operational reliability of selected units (LRUs), unit yield and the degree of rework associated with the shop replaceable units used to repair these units. Emphases are placed on the different interpretations of similarly defined parameters and the different uses of the same data by manufacturers and the government.

The expressed intent of this section is to assure that the outcomes of this research can be replicated using different data.

3.2 DESCRIPTION OF OPERATIONAL RELIABILITY DATA

Due to the extensive volume of operational data reviewed in Phase I, only selected subsets are displayed in this section in the form of exhibits and graphs that illustrate each of the key parameters defined herein. Other parts of the research data base are shown in Appendix V. Also, there are several modes to display these data, which are the "time series" graphs where each data value is associated with the time of its occurrence; frequency distribution mode where each datum is detached from time, or the tabular form as used for bulk data displays in the appendices. Also "exhibits" are used to depict data in the format used by the source which illustrate the mode for assembling these data and how these data are used in actual operations.

In the sections below, descriptions of key parameters are made in the context of actual data used for their measurement.

3.2.1 Observations Concerning MTBF and MTBM

For both operational data generated in the Air Force and test data generated by manufacturers, the primary computed parameters are "mean time between failure" (MTBF) and its counterpart, "mean time between maintenance events" (MTBM). However, the definition, computation and interpretation of these parameters vary widely between manufacturers' use and operational usage in the Air Force. These unresolved differences account for a major discontinuity in the use of unit test reliability data as a predictor of operational reliability (see reference by Kerns mentioned in Section 2.3.1).

Even within the Air Force, there has been a continuing problem with the definition and computation of both MTBF and MTBM from operational logistics data in the Air Force Maintenance Data System which generates D0-56. So, starting in January 1980, the term "MTBF" was completely dropped from AFLC data systems and replaced with MTBM (Type 1) to better reflect the operational measurement actually being computed. MTBM (Type 1) is denoted as "MTBM-1" and is computed as follows:

MTBM-1 = <u>(A/C Operating Time)X(Use Factor)X(OPA)X(Inv Ratio)</u> Quantity of Failures Observed

a. "A/C Operating Time" is a three month accumulation of flying hours;

b. "Use Factor" is the estimated ratio of the unit operating time to flying hours. Therefore, the product (Use Factor) X (A/C Operating Time) is an estimate of the "Unit Operating Time";

c. "QPA" denotes Quantity per Application and is the number of identical items reported under the same work unit code (WUC);

d. "Inv(entory) Ratio" is typically 1.0;

e. "Quantity of Failures" is a three-month accumulation of failures (as defined by selected maintenance codes. See Appendix IV).

The universal definition used to compute the "mean time between failure" (MTBF) is:

MTBF = <u>Unit Operating Time</u> Quantity of Failures Observed

When QPA = Inv Ratio = 1, then MTBM-1 = MTBF, but only to the degree that the expression (Use Factor) X (A/C Operating Time) is an accurate estimate of Unit Operating Time. However, there are major deviations of this latter estimate which causes the wide

variations in the computation, interpretation and comparison of operational MTBF (See RADC Report TR-76-366).

In general, the computed MTBM-1 is greater than or equal to the estimated operational MTBF as computed from AFLC DO-56 data. As with the MTBM-1 described above, MTBF can be computed for "spot" values of operating time and failures observed (say, over three months) or most often, MTBF is computed with cumulative values of these data derived over a long period of time.

In addition to MTBM-1, a new variable called MTBM-Total was defined in January 1980, which is computed exactly as MTBM-1 with the exception that the "total number of maintenance actions" for a given unit is substituted for the "quantity of failures observed". Thus MTBM-Total always equals or is less than MTBM-1. Succinctly stated, the intended equivalency of terms are:

Before Jan 1980 | After Jan 1980

MTBF---->MTBM-1

MTBM-----/I---->MTBM-Total

Since the Use Factor and Inv Ratio for all the pilot items in Table 1 are set to 1.0 (in the D056 B-06 Report), the primary distinguishing feature between the D0-56 computed MTBM (Tot) and MTBM-1 for these selected items is (or should be) the QPA, which suggests that time plots of the MTBM (Tot) and MTBM-1 will be highly correlated over time (which is actually the case with the data shown herein).

It should be specifically noted that the AFLC D0-56 system does not directly support the computation of operational "MTBF" that is equivalent to the computation used by manufacturers in the testing of units, since there is no measurement of the actual operating time of the specific unit and "failures" are defined differently. Moreover, it is estimated that about 20% of

all unit failures can be attributed to non-operating causes (RADC Report TR 80-136), which if true, would tend cause a major distortion in the MTBF unit on the basis of "unit operating time".

But it has been observed that the DO-56 computed value of "operational" MTBF and/or MTBM-1 is roughly equivalent to one-half of the manufacturer's computed value of "test MTBF" for a given unit (See Figure 4, paragraph 3.2.4 and also RADC Report TR-76-366).

3.2.2 Analysis of MTBF/MTBM and MTBM-1/MTBM-Total Trends

A time series plot of the D0-56 computed MTBF (i.e., MTBM-1) for the LRU 65AAO on the AlO (Figure 1) illustrates some of the most common features of similar plots for all of the other units, which are the widely varying cyclical patterns in all of these graphs. Also, nearly all of the similar graphs for the selected units show increasing trends in the MTBM-1 time graphs after the change in definition of MTBF/M occurred in January 1980. Of significance for the item shown is the continual and steady decrease in the computed operational values of MTBM-1, which might suggest that this item is "wearing out."

Quite possibly, the cyclic trends (from 6 to 8 months in length) in the MTBF/MTBM graphs are caused by the process used in D0-56 to compute MTBF and MTBM-1 which is the accumulation of data in three month intervals. In effect, the computation of the variables are "restarted" every three months. There are also large variations within each cycle, which could be a function of the procedure for collecting the AFM 66-1 data which causes "batching" of inputs into D0-56 computation system.

Without question, a longer smoothing (averaging) method with a time interval for data accumulation exceeding three months is needed for the MTBF/M computations, since the average variation in computed MTBF/M over a three-month period can exceed 300%. Such large variations account for the low credibility and continual misinterpretation of these computed variables for predictive or comparative purposes.

9,

28

Figure ! (Cont'd)

There also appears to be influences in the MTBF/M computations due to changes in the inventory of the unit (or system inventory, as reflected on the D0-56 B-05 report). Spot decreases in inventory normally reflect increases in unit condemnations that in turn may affect the quantity of future procurements or influence reparable generation rates. But condemnations may be less frequent for the modular units in Table 1. Possibly, the computational methodology of D0-56 may affect this influence since newly procured units coming into the inventory may negate immediacy for reparable generations, which would cause distortions in the computed MTBM time graph.

3.2.3 <u>Mission Influences on MTBF and MTBM Computations</u>

The suspected relationship of unit yield, rework activity and operational reliability is affected by the aircraft system, its place of deployment and maintenance concepts. For example, Teledyne, who makes the APX-101 IFF transponder receiver concurrently used on the AlO, F15, and F16, states that their data show a remarkably wide disparity of unit "failures" among these three aircraft (Reference: Mr. Leighty, Teledyne, Newbury Park, Calif Office).

The diverse missions of these aircraft are suggested as the cause of these differences. There are known differences in failure rates of the APX-101 used on the F-16 deployed in Germany (where the IFF is routinely used) versus the failure rate for F-16s employed stateside (where the IFF is rarely used and/or its use is not mission-critical).

These mission influences can be illustrated through the composite plots of the calculated MTBM-1 for the APX 101 (WUC 65AAO) for each of the three aircraft over the same time period as shown in Figures 2. In this plot, however, it is noticed that the linear trend of the MTBM-1 plots for each of the three aircraft is similar, although the spot variations among these graphs vary widely.

A similar plot showing MTBM-Total for the same aircraft and WUC is presented in Figure 3. The trend in both MTBM-1 and MTBM Total-plot are highly correlated as expected.

•

3.2.4 Comparison of Test and Operational Values of MTBF

The composite plots of MTBM-1 (which is proportional to MTBF) in Figure 2 suggest a possible method in which the "trend" of operational MTBF can be compared to "trend" of the MTBF computed from test lots of the same unit during the same period. This comparison directly impacts the objective of this research.

First, as noted, only the MTBM-1 computations for the newer model aircraft, F-15 and F-16, are included, to support the premise that the newly-tested units (Teledyne WUC 65AAO) may be more relevant to the future inventory of these aircraft than to the older F-4 and A-10.

In Figure 4, a Computed MTBM-1 Average for the aircraft shown is graphed as indicated. This trend line corresponds to the mathematical operation of averaging or smoothing the data shown in Figure 2.

The crosshatched area in Figure 4 shows the trend of test data from Teledyne: the solid plot in the crosshatched area is the computed MTBF from Teledyne (see Appendix II).

As illustrated in Figure 4, the slopes (linear trend) of the Computed MTBM-1 Average and the cumulative test MTBF values from Teledyne (solid line in crosshatched area) are nearly identical, although the numerical values of these curves differ widely for a given time period. This means that the time trend of the test and operational values of MTBM-1 are nearly equal and that the resultant equations for these lines differ by a constant value. Thus either variable could be used as a predictor of the other.

However, from the RADC Report 76-366, it is stated that the test MTBF and the computed operational MTBF typically differ by a factor of two. This premise is represented graphically by the line labelled "MTBF Estimate" in Figure 4. This line should approximate the Teledyne MTBF Estimates. In Figure 4, wide variations exist between these two estimates, although these estimates tend to converge as time increases.

Is it possible that this factor mentioned in the RADC

report may actually vary with time? To examine this premise, the ratio of the ordinate values of the line labelled "Computed MTBM-1 Averages" and the cumulative MTBF test values (solid curve in crosshatched area) is computed and plotted as a function of time in Figure 5. For these data, the resultant computed ratios range from four to slightly less than two over the time periods shown. The plotted curve in Figure 5 suggests that this ratio tends to stabilize as time increases.

The ratio plotted in Figure 5 is analogous to the K_3 factor used to convert unit "unit test operating time" to "flight hour equivalents" in the test data from ASD/TA (see Exhibit 1). Also this factor tends to be equivalent to the "Use Factor" described in paragraph 3.2.1. The typical range for this factor (as currently used) is about 1.5 to 2.7.

In further support of the above analysis, Exhibit 1 shows a plot of the composite operational MTBF of the avionic subsystem for the F-15, which encompasses each of the related units listed for the F-15C in Table 1. The key observation in this exhibit is that the average operational (computed) MTBF for the subsystem since 1976 is about half of the predicted MTBF (OO = 9.7 hours). That is, the ratio of predicted to operational MTBF is a factor of two for the entire subsystem. The absence of a time-trend in this plot (since 1976) suggests that a constant value of two for this ratio might be applicable, as is represented schematically by the constant (no trend) line in Figure 5.

These results are tentative and cannot be generalized from this single example. They suggest a possible methodology, using factor and trend comparisons, could be devised to relate computed MTBM-1 (operational MTBF estimate) to the test values of MTBF computed by unit manufacturers over the same time periods.

However the foregoing analyses do not depict the cause and effect relationship of test MTBF to operational MTBF in future periods. The detection of such effects require more elaborate time series analysis methods to be employed in Phase II of this research.

YEAR & MONTH

3.3 MANUFACTURERS' UNIT YIELD/RELIABILITY DATA

3.3.1 Type of Yield Data Available

Exhibit 2 shows time-sequenced data that are uniquely appropriate to the primary objective of this research. Estimates of unit yield are computed for LRU 65AAO on the basis of the number of units passing a preset number of failure-free (ff) test hours (here t_{ff} = 55 hours), which is usually set at about 10% of the specified MTBF in accordance with MIL STD 781C.

The "cumulative first pass yield" is computed by dividing the cumulative number of test unit failures by the cumulative number of units tested. This yield value is then used to estimate the operational MTBF, labelled $O_{\rm Yield}$, for the selected unit using the exponential reliability model.

The "cumulative second pass yield" is derived by dividing the cumulative number of units with only one failure by the cumulative number of units having one or more failures (difference between units number tested and the number of units surviving without failures).

Of key significance in Exhibit 2 is the wide disparity between the value of the unit test operating hours ($t_{\rm ff} = 55$ operating hours) and the predicted MTBF for the item ($O_0 = 1500$ hours). However this criteria conforms to Mil STD 781C, which prorates the maximum acceptable failure rate over each delivered lot of units.

Note also the high stability of the computed values of first pass yield over the entire time period. This stability is in direct contrast to the wide variability of the MTBM-1 (Figure 1) estimates for the same unit over the same (and subsequent) time periods.

Exhibit 3 shows a typical test summary sheet for nine (9) production lots of the 63BXX subsystem, consisting of three test items per lot. The "desired" or predicted MTBF is $O_0 = 980$ hours; the total test test time to failure is provided, and point estimates of the (laboratory) MTBF are computed.

The key feature of the test report in Exhibit 3 is the category labelled "Rel Fail" or Related Failures, since

EXHIBIT 2^{*}

A statement in the

AEPRT-New ICCP $t_{ff} = 55hrs$ $\theta_0 = 1500 hrs$

Number

			O _{time}		1	+ 	1					 	1	 	1		111	1	2	•
	op.	Hours	(cum.)	:			1	1	/	1 1	1		1	1	1		1			!
Number	Failures	per LRU	(cum.)	([.1)[.[1.2(1.1)	0.6(0.9)	1.8(1.1)	3.2(1.4)	1.2(1.3)	0.9(1.2)	0.9(1.1)	1.9(1.2)	0.3(1.2)	1.2(1.2)	(1.1)0.0	1.0(1.1)	1.0(1.1)	.44(1.1)	.45(1.1)	1.2(1.1
		Cum.	Failures	11	18	24	38	54	76	16	114	139	142	159	168	179	183	167	192	210
Total	No. Of	Failures	ENV/ATP	10/1	6/1	3/3	8/6	5/7	12/10	12/3	15/8	17/8	1/2	12/5	6/3	9/2	2/2	3/1	3/2	17/1
Cum.	Second	Pass	Yield	.40	.60	.67	.57	.52	.46	.48	.49	.48	.50	.47	.49	.48	.47	.47	.47	.45
with only	one	Failure	(cum.)	2(2)	4 (6)	(10)	2(12)	1(13)	3(16)	4 (20)	6 (26)	4 (30)	3 (33)	1 (34)	4 (38)	2(40)	0(40)	2(42)	1(43)	1(44)
		<	0 _{yield}	61	56	64	57	54	60	66	7	68	72	74	74	74	74	75	77	82
Cum	First	Pass	Yields	.50	.38	.42	.38	.36	94.	E 4 .	.48	.45	.46	.47	.47	.47	.47	.48	64.	.51
Number	Without	Failure	(cum.)	5 (5)	1 (6)	5(11)	2(13)	1(14)	9(23)	9 (32)	16(48)	3 (51)	6 (57)	8 (65)	4 (69)	5(74)	2 (76)	6 (82)	8(10)	10(100)
	Number	Delivered	(cum.)	10(10)	6(16)	10(26)	8 (34)	5 (39)	19(58)	16(74)	27(101)	13(114)	9(123)	14(137)	10(147)	11(158)	4(162)	9(171)	11(182)	15(197)
		-	Month	Jan-Mar '81	Apr '81	May '81	10, unf	[8, [n]	Åug '81	Sep 181	0ct '81	18, NON	Dec '81	Jan 182	Feb 182	Mar '82	Apr '82	May '82	Jun '92	Jul '82

The exhibits shown herin are re-typed versions of data supplied by appropriate agencies. *NOTE:

1

ī

- است الدر: 134.

N

ج

2

19 A 19

EXHIBIT 3

ICNICP WUC = 63BXX QPA = 1 CONTRACTOR: SCI 0¹ = 086 **=** 00

Final Report Approved	75/3/10
Initial Approval	
Point	>99
Est. of MTBF LCL 90%	1218
Total Fail.	
Rel. Fail	••
Total	99
Test Time	4872
Date	74/9/5
Completed	74/10/8
Date	74/8/13
Started	74/3/6
S/N'8 Tested	(A ₀ = 100) SAIS
Lot S/N	CNI Stn
Range	ICNI Pane
Type of	RQT for
Test	RQT for

n de la composition de la c

76/8/19	76/9/22									. only
										Info.
			REJECT	REJECT						*(
1772	2864	2843	969	2868	1115	1403	>2170		79.5	238.5
		Г	14	m	12	4	Г		42	(14
7	٦	-	4	-	ŝ	m	0			
3544	2864	2843	3875	2868	5577	4208	2170		33392	
75/9/22	76/4/9	77/4/30	78/1/30	78/10/6	79/4/24	79/12/29	80/1/21		81/3/16	
75/6/20	76/1/22	77/1/6	22/L/L22	78/6/30	78/10/25	79/6/27	79/11/2	80/3/19	80/7/15	
		198,232,235	265, 331, 332	472,486,500	568,577,580	641,647,661	703,710,712			
		ີ ຄ	ŝ	3	e	e E	6			
P 40-114	P 115-196	P 197-267	P 268-457	P 349-417	P 526-597	P 598-679	P 680-748	P 749	1	CD
ICC	100	ICC	ICC	ICC	100	1CC	100	ICC	1	u. IC
Lot 1	Lot 2	Lot 3	Lot 4	Lot 5	Lot 6	Lot 7	Lot 8	Lot 9	RLT	for n

40

بيلا

2, 4.6

1

ŕ

.

certain unit failures may be excluded from the computations by the manufacturer. It is this "failure count exclusion" issue that tends to undermine the credibility in "first pass yield" computation from the data provided by the manufacturer. At the most, this computation represents a "best case" estimate from the data provided. AEPRT (All Equipment Production Reliability Testing) was designed specifically to counteract this problem.

Also in Exhibit 3, the actual values of the test time for each item would be much more useful data than the aggregate values when the size of the test sample is so small. The most useful data would be the actual failure times for each of the item failures, regardless of cause (i.e., "related" and "unrelated" failures).

Exhibit 4 shows an actual "spot" sample of manufacturer-derived test and reliability data for several of the relevant units in Table 1 related to the F-15. These "typical" data were also provided by ASD/TA, and show some of the Work Unit Codes that extend below the subsystem level, which are 51EAO, 65AAO, 65BHO listed in Table 1. Other system and subsystem level codes for the F15 relevant to this research include 52XXX, 74JXX and 74KXX as shown on this Exhibit.

Exhibit 4 is typical of the pre-selected sets of units whose test and production data are tracked over time based on criteria established early in the unit development phase.

3.3.2 Discussion of Test Procedures and Test Data

Although manufacturers' functional testings are witnessed by government personnel, the unit testing models and the resultant test data (reviewed by the researchers) appear exceedingly fragile and non-standard. Accordingly these test data are subject to wide variations in interpretations with correspondingly low credibility.

For example, in the unit test procedures reviewed, there are no explicit penalties associated with the failure of a test unit, since the test is simply repeated. That is, the primary objective (of the Air Force) is only to obtain a certain number of units that passes a given test. Thus a manufacturer

EXHIBIT 4

F-15 Subsystem Reliability for Selected Avionics Items

		Cum		Cum			
Faui	nment (WIIC)	Field MFHBF	Op. Hr.	Field	RQT MTBF	Cum. Lab	MTR
	DHEME (NOC)	The Habe		<u>HIDI</u>	<u>PILDE</u>	MIDE.	
1)	EAIC (11PDO)	503	2.4	1207	1010	1260	1000
2)	FDS (49AXX)	1234	1.5	1851	4340	2558	1500
3)	ADI (51ADO)	660	5.7	3762	4512	2414	1500
4)	ADC (51EAO)	480	2.3	1104	809	627	800
5)	HSI (51NAO)	344	2.5	860	909	413	680
6)	AFCS (52XXX)	157	2.3	361	708	555	415
7)	SDRS (55BXX)	49	1.2	5 9	1789	2522	570
8)	CC (57XXX)	180	2.4	432	1426	1243	1000
9)	ICNICP (63BXX)	82	4.5	369	1218	1488	480
10)	IFF (65AAO)	227	2.2	499	762	662	500
11)	IRE (65BHO)	533	0.9	480	722		700
12)	INS (71AXX)	71	1.5	106			200
13)	ADF (71BXX)	2865	0.3	860	1434	2010	1000
14)	ILS (71CAO)	1794	1.0	1794	1135	1184	1000
15)	AHRS (71FXX)	148	2.3	340	933	603	750
16)	LCG (74EBO)	350	1.6	560	1206	1193	1000
17)	RADAR (74FXX)	16	1.5	24	38	58	60
18)	VSD (74JXX)	137	1.8	247	569	290	500
19)	HUD (74KXX)	67	1.7	100	236		350
20)	ACS (75MXX)	264	(-)	396*	325	258	300
21)	IBS (76CXX)	1370	(2.1)	3927	1060	2054	1000
22)	TEWS,						
23)	(TCC, RWR,						

23) 24) 11. EWWS)

* Assumed Op Hr. to Flt Hr. ratio of 1.5.

producing a large volume of units (as PCBs) could substitute good units for failed ones and retain the failed units for inclusion in subsequent lots following rework actions thereon.

In effect, the in-depth analyses about "why" the unit test failure occurred are missing, which explains the absence of test data on unit failures during test below the LRU level.

3.4 DATA ON UNIT REWORK

3.4.1 Rework at the LRU Level

In all-modular LRUs such as WUC 65AAO, one would expect very high fault/failure isolation to the PCB (SRU) level, so that almost 100% of the base level "on equipment" repair actions should involve PCB replacements, with very few LRUs being NRTSed to the depot. Thus concurrent increases in item failures per unit inventory, number of NRTS and associated "unscheduled" manhours at base level should reflect changes in unit rework activity.

From the available data in the AFLC D0-56 system, a simple measure of rework volume may be the computed "failures per unscheduled manhour", or its inverse, "unscheduled manhours per failure". A composite plot of these computations is shown in Figure 6 for different aircraft applications of the same unit WUC 513A0.

In each case shown, the trend is towards increased manhours allocation per failure for each of the applications of this WUC/LRU. This rework might reflect the absence of the "maintenance learning curve" for the unit or the increasing fragility of the unit due to past rework actions (or possibly other factors).

Another potential measure of rework activity at the LRU level might be derived from the equations for MTBM (Tot) and MTBM-1. The reciprocal of each of these parameters is interpreted as a "rate" of occurrence of maintenance and failure events respectively. Thus the difference in the reciprocal of these two parameters can be interpreted as the rate of change in effectiveness of failure isolation and detection at the LRU

level. This difference is expressable as a rate:

[1/MTBM-Total] - [1/MTBM-1] = #Maintenance Actions - #Failures, K(Operating Time)

where K = (Use Factor)X(QPA)X(Inventory Ratio) and is typically equal to unity for the pilot units in Table 1.

From this formula, if the number of failures and maintenance actions are on a 1:1 basis (implying effective LRU fault diagnosis), this difference is zero. Conversely, as the number of maintenance actions exceeds the number of failures discovered (implying less effective fault diagnosis and/or rework increases), this difference increases accordingly. Thus it may be possible to link unit (LRU) rework activity directly to the computed operational parameters, MTBM-1 and MTBM-Total. Further development of this premise is scheduled in Phase II.

3.4.2 Rework at the SRU/PCB Level

As stated previously, there are no direct data linkages in the Air Force Maintenance Data System (D0-56) between the rework (manhour) data for an SRU/PCB and the specific unit or SRU from which the failed PCB is taken. But this problem may be partially resolved by data processing outside of the D0-56 system using the AFLC D0-46 and KO-51 data systems.

Nevertheless this linkage, or the absence thereof, requires further explanation for two major reasons. First, data on rework actions on PCBs by the manufacturer during reliability qualification testing (RQT) and/or production reliability testing (PRT) cannot be sufficiently distinguished in the resultant test reports. That is, there is no current requirement for these details to be included in the test data reports. Only during post-production test period is there isolation of data for unit failures at the SRU level, but these data are not currently required in the test reports; only "related failures" at the unit or LRU level are reported.

Second, it is noted that repair and rework actions on PCBs at the depots are a result of prior operational SRU failures, since for the highly-modular units as in Table 1, more than 80% of all failure are attributable to circuit card

assemblies, which includes PCBs. In effect, there is a wellknown and direct cause and effect relationship between PCB repair and unit failure due to the modular design of the unit. Also according to ASD/PRAM and DESC, PCB "failures" are most often credited to electrical connections on the board structure itself, as opposed to the failure of discrete units thereon. In this case, "rework" of the PCB is typically infeasible as a repair action.

1.

Thus, as a tentative premise, it seems that repair and rework activities at the SRU/PCB level may tend only to reflect the consequence of past unit failures rather than be a predictor of future operational reliability of the associated LRU, since specific reliability problems at this level are continually assessed and subjected to "fixes" (as is the function of ASD/PRAM). If such problems are undetected, or otherwise masked and reliability improvements do not occur, data on PCB repair and rework actions would possess a greater predictive capability for subsequent LRU reliability.

The net effect of this situation is that the typical unit development and evolution tends to "decouple" the direct influence of PCB repair and rework from the operational reliability of the associated LRU. However, these effects are believed to be translated to other intermediate variables as discussed herein. This premise is tentative and will be further analyzed in the expanded data analyses to continue in Phase II.

3.5 OTHER SUPPORTING DATA (UNIT FAILURE DISTRIBUTIONS)

Compilation of the extensive sets of data for each of the selected units is an excellent opportunity to develop statistical distributions for such parameters as failures per unit period, as illustrated in Figure 7. Data in this form could greatly augment the generalizations from this research if these distributions are well-defined and relatively stable (that is, the average number of events per randomly-chosen period is relative constant.

Unfortunately, such variables as the number of unit failures per time period depend on both flight activity and unit inven-

tories which vary widely over time and are highly unstable due mainly to continual logistics influences that seek to decrease the failures for an unit. For example, Figure 7 shows the distribution of unit failures per month for WUC 513A0 over the time period indicated. The mean of this distribution continually shifts to the left, implying fewer failures per month are occurring as time passes.

The distribution in Figure 8 gives the failure distributions of WUC 513H0 (F-4) over two contigious time segments. The mean of these distributions has decreased drastically, again indicating fewer failures per period as time progresses.

For these same data, an alternative form for display is the time series mode as shown in Figure 9 for WUC 513U0 (F-4). The well-defined linear time trend of these data causes the instability in the mean of the frequency distributions discussed above.

However when the linear trend in Figure 9 is removed, a stable "normal" distribution results from the difference (residuals) in the trend line and the actual values as shown in Figure 10. This resultant distribution tends to be highly stable for each set of the above data, which suggests that "first order" time series methods may be much more powerful techniques for analysis of these data than the typically-used frequency distributions. Both time series and distributional data will be used in the analyses in Phase II as needed.

İ

DEVIATION FROM TREND LINE

Figure 10 DEVIATION OF ACTUAL PLOT FROM TREND VALUES (from Figure 9)

51

<u>ي</u>د 1

18

100

*

بر

APPENDIX I

Test Data WUC 65AA0

2.

APV - 101 (v) PRT LOG

Document Number	Date of Report	Lot No.	Unit "ON" Per PRT C	Hours umulative	Relevant Per PRT	Failures Cumulative	MTBF Per PRT	Cumulative
SDRL-68-870030-E71-1	2/15/78	-	2520.3	2520.3	-	+	630.0	630.0
SDRL-68-870030-F71-2	2/15/78	7	1849.4	4369.7	7	9	924.7	728.3
CDRL-USAF-A00G-1	4/20/78	-	2197.0	6566.7	m	6	732.3	729.6
CDRL-USAF-A00G-2	8 <i>L</i> / <i>L</i> /6	7	1826.0	8392.7	7	11	913.0	763.0
CDRL-USAF-A00G-3	3/27/79	m	1142.0	9534.7	0	11	1142.0	866.8
CDRL-USAF-A008-1	6/12/79	-	2152.0	11686.7	m	14	5.717	834.8
CDRL-USAF-A008-2	9/26/79	2	1108.0	12794.7	0	14	1108.0	913.9
CDRL-USAF-A00G-5	10/30/79	4	1464.0	14258.7	٦	15	1464.0	950.6
CDRL-USAF-A008-3	4/28/80	ſ	1116.8	15375.5	0	15	1116.8	1025.0
CDRL-USAP-A00G-6	5/7/80	2	2146.2	17521.7	ſ	18	715.4	973.4
CDRL-USAF-A008-4	10/15/80	4	1128.0	18649.7	0	18	1128.0	1036.1
CDRL-USAF-A00G-7	10/15/80	9	1118.0	19767.7	0	18	1118.0	1098.2
942~1005~01 (A00G-8)	12/22/80	7	1260.0	21027.7	0	18	1260.0	1168.2
992-A008-5	4/2/81	2	1629.0	22656.7	1	19	1629.0	1192.5
992-A008-6	9/18/81	Q	1131.2	23787.9	0	19	1131.2	1252.0
942-1005-02	9/21/81	7	1121.2	24909.1	0	19	1121.2	1311.0
942-1005-02	10/21/81	2	1121.2	24909.1	0	19	1121.2	*0.IEII
942-1005-04	6/3/82	m	1128.8	26037.9	0	19	1128.8	1370.4

*Reported again with test process revised.

TELEDYNE DATA 65AA0

I-1

برا 🤇

130

7

TELEDYNÉ ELECTRONICS

> 649 LAWRENCE ORIVE NEWBURY PARK CALFORNIA 31320 805, 498-3621 TWX 510 336-1263 22 November 1982

Dr. Eugene Jones K. L. 364 E University of Dayton Dayton, Ohio 45469

Dear Dr. Jones,

It was a pleasure to talk with you about Teledyne's RT-1063C/APX-101 Transponder. I've taken far too long in gathering some data for you - I apologize for the delay. I am sending along a portion of a recent proposal which describes our transponder, the maintenance concept (recently revised), and configuration and quality control. Some of the additional data, such as the list of final reports, may also be of interest.

I am also sending a copy of our PRT Log. As you can see, it is a compilation of 41/2 years of data with over 26,000 hours of accumulated testing. Let me summarize our experience in reliability testing.

The AN/APX-101 Transponder has undergone several formal demonstration tests where equipment time and relevant failures were carefully monitored. The results of these tests (F-15 Category I, F-15 Category II and Production Reliability Tests) are given in the following paragraphs. These tests consistently show a demonstrated MTBF greater than 1200 hrs.

The F-15 Category I Flight Test Program resulted in three (3) relevant failures in 3767 operating hours for the AN/APX-101. This equates to a demonstrated MTBF of 1256 hours. Source: "F-15 Reliability Demonstration Report for Category I Flight Test Program" MCAIR Report MDC A3536, dated 10 December 1975.

The F-15 Category II Flight Test Program resulted in two (2) relevant failures in 2466 operating hours. This equates to a demonstrated MTBF of 1233 hours. Source: "F/TF-15 AFDT&E Reliability and maintainability Evaluation" Air Force Report FTC-TR-76-2, dated February 1976.

To date eighteen Production Reliability Tests have been conducted at Teledyne in accordance with USAF contracts. All tests have been conducted with government witnessing. Currently all Test Reports are reviewed and approved by ASD. To date, the AN/APX-101 has accumulated 19 relevant failures in 26,038 operating hours. This equates to a demonstrated MTBF of 1370 hours.

With respect to field MTBF, Air Force AFM 66-1 D056 reports for the A-10 Aircraft have consistently shown a field MTBF in flight hours of between 400 and 500 hours for the APX-101. In accordance with RADC Report No.

I-2

RADC-TR-75-366, an average factor of two should be used to convert from flight hours to operating hours. Therefore, the AN/APX-101 field MTBF in operating hours for the A-10 aircraft is between 800 to 1000 hours.

In summary, the AN/APX-101 demonstrated MTBF based on USAF documents, or USAF approved documents, exceeds 1200 hours; the field MTBF for the A10 Aircraft is between 400-500 hours in flight hours and between 800-1000 hours in operational hours. Since it is general knowledge that many IFF system failures are currently being mistakenly attributed to the transponder one can easily assume an MTBF greater than that reported in the D056 data.

In addition to the above, the Air Force has recently completed CERT tests on the AN/APX-101 using the A-10 profile for testing parameters. These tests resulted in an MTBF in excess of 1000 hours. Source: Flight Dynamics Lab., Wright Patterson AFB.

The Production Reliability Test (PRT) for the AN/APX-101 is conducted in accordance with MIL-STD-781B, Test Plan III, Test Level F. This test includes simultaneous vibration cycling, voltage cycling, on-off cycling and temperature cycling between -54°C and +71°C. The objective of the test is to verify continued compliance with the specified mean-time-betweenfailures (MTBF). The PRT is performed on at least four samples out of each production lot (minimum of 16 units per year). The accept/reject criteria is based on the accept/reject criteria of MIL-STD-781B, using a specified MTBF of 500 hours. Eleven hundred failure free hours indicate an accept on the four APX-101's. With one failure, an additional 345 hours of operation is required. Only transponder "ON" time is applicable for determining the accept/reject. (See the attachment for a description of the test profile.)

All production APX-101's are subjected to a 72 hour burn-in consisting of eight nine-hour cycles. The burn-in cycle is identical to the PRT cycle. During the 72 hours of burn-in, the APX-101 BIT is being automatically monitored and, if a failure occurs, the APX-101 is removed, repaired and returned for additional burn-in.

I hope these data will provide you a starting point for your investigation. At Teledyne, we feel there still exists problems in U.S.A.F. intermediate level maintenance of the APX-101. I would like to discuss this with you along with other experience on the program. So far, I have no plans to make a trip east in the near future. However, if something comes up I'll be sure to pass through Dayton. On the other hand, should you happen to be in the Los Angeles area, please let me know. If you have any trouble reaching me, feel free to contact Mr. Ed Lawson in my stead.

Very truly yours,

Aim Teight

Jim Leighty, Manager Intergrated Logistics Support

I-3

10 MINUTES VISRATION DURING EACH HOUR EQUIPMENT "ON" WITH THE INITIAL PERIOD OF VISRATION TO START WITHIN 15 MINUTES OF TURN-ON AT LOW TERMPERATURE.

7,

•

and the second second states and the second s

يبيه ياملينهما الكلالقال المعميليات

Bern-In and PRT Test Profile

I-4

APPENDIX II

Samples of Operational Test Data for Selected Units 51EA0 74JXX

چه د

 $t_{ff} = 61$ hours $0_0 = 800$ hours

Month	No. of LAUS	Envir Cycles	ATP	Cum. No. of Failures	No. of OP. hrs. From ETI Reading	Cum. OP. Hrs.	No. of Pattern Failures Identified	Cum. MTBF
Mar '78	5	0	0	(0)	326	(326)	0	326
Apr '78	57.	2	1	(3)	565	(891)	0	297
May '78	17	2	1	(6)	1346	(2237)	0	373
Jun '78	8	3	2	(11)	942	(3179)	1 ?	289
Jul '78	8	0	2	(13)	682	(3861)	2 ?	247
Aug '78	17	1	5	(19)	1523	(5384)	1 ?	283
Sep '78	10	0	0	(19)	666	(6050)	ō	318
Oct '78	10	2	1	(22)	786	(6836)	Õ	311
Nov '78	5	0	0	(22)	322	(7158)	ō	325
Dec '78	5	1	0	(23)	379	(7537)	Ō	328
Jan '79	8	0	2	(25)	629	(8166)	Ō	327
Feb '79	9	0	1	(26)	614	(8780)	Õ	338
Mar '79	12	0	Õ	(26)	720	(9500)	ō	365
Apr '79	4	0	2	(28)	389	(9889)	Ō	353
May '79	e g	2	2	(32)	884	(10723)	Õ	335
Jun '79	6	3	ī	(36)	671	(11394)	Õ	316
Jul '79	e e	ĩ	3	(40)	1689	(13083)	ì>	327
Aug 179	6	õ	õ	(40)	356	(13439)	2.	336
Sep '79	3	Õ	ō	(40)	194	(13633)	Õ	341
Oct '79	10	ŏ	ī	(41)	691	(14324)	0	340
Nov '79	6	ŏ	5	(46)	692	(15016)	1	325
Dec '79	5	ŏ	õ	(46)	320	(15336)		320
Jan '80	11	ŏ	ĩ	(47)	760	(16096)	ů	342
Feb '80	2	ŏ	ō	(47)	120	(16216)	ň	342
Mar '80	7	ŏ	õ	(47)	419	(16635)	ů N	351
Apr '80	10	ŏ	õ	(47)	880	(17515)	0	373
May '80	ō	ŏ	õ	(47)	000	17515	0	373
Jun '80	15	ĩ	ĩ	(49)	1050	19565	0	373
Jul '80	-6	ō	ō	(49)	375	19940	0	2/3
Aug '80	15	2	ĩ	(52)	1106	20046	0	201
Sep '80	-3	õ	ñ	(52)	102	20040	0	200
0ct 180	4	ň	ň	(52)	221	20230	0	205
Nov '80	19	2	ň	(54)	1332	20303	0	396
Dec '80	5	2	ň	(54)	1002	21304	0	406
Jan '81	Å	1	0	(55)	563	222JJ 22002	U A	412
Feb '81	12	1	4	(60)	1252	220U2 91151	U A	415
Mar 181	2	Ď	- 1	(60)	107	24134 94651	U	403
Anr 191	12	ĩ	ĩ	(62)	47/	240JL 35570	U	411
May 191	15	1	0	(62)	272	200/0	U	412
Jun 191	2	ň	ñ	(62)	770 195	2000 27021	U A	422

51EAO

II-1

AEPRT - ADC

t_{ff} = 61 hrs. 0₀ = 800 hrs.

Mo	onth	No. of LRUS	Envir. Cycles	АТР	Cum. No. of Failures	NO. Of OP. Hrs. From ETI Readings	Cum. OP Hrs.	No. of Pattern Failures Identified	Cum. MTBF
Jul	'81	9	4	3	(70)	1057	28118	0	402
Aug	'81	12	1	0	(71)	771	28889	0	407
Sep	'81	5	0	0	(71)	315	29204	0	411
Oct	'81	6	0	0	(71)	369	29573	0	417
Nov	'81	0	0	0	(71)	0	29573	0	417
Dec	'81	12	0	2	(73)	935	30508	Ó	418
Jan	'82	4	Ő	Ō	(73)	245	30753	Ō	421

51EAO

II-2

- 7

10 million (1990)

ADC (Air Data Computer) $0_0 = 800 \quad 0_1 = WUC = 51EAO \quad OPA = 1 \quad CONTRACTOR: Spericy$

Type of Teat	f Lot Ra	S/N nge	S/N's Tested	Date Started	Date Completed	Total Test Time	Rel. Fail	Total Fail	Point Est. of M	TBF LCL	\$ 06	Initial Approval	Final Report Approved
ROT				- 73/1/29	13/9/9	5665	٢		608				75/6/2
AFDTAE			M Req. MEDT fo No Sche Verific	from EC 7 r Unsched d. Maint. ation 18	6301A328AG 1. Maint. monthes IO	19 Spec (0.97 hrs 1.83 hrs Cusing a	Part I) O-Level I-Level ctual d	lata fr	om Cat I .	- 6 Cat	, II aı	nd operation	al bases
PRT													
Lot 1 (60 [.] Lot 2 (60 [.]	+) 32 +) 96	-95 (3) 84,86,91 3) 128,133, 151	75/11/17 76/9/2	76/8/23	8240 8030*	14 14*		589 574*	40 60 70	۰. م م	76/10/29	
(PRT)	testin	dana p	ended 13 Jun	e 1977 to	allow tri	al AEPRT)							
Lot 3 (60 Lot 4 (65 Lot 5 (60 Lot 6 (60	+) 159 -) 221 -) 293	-292 (C -292 (C -395 (C -455 (C	3) 204,209,2 3) 288,290,3 3) 388,290,3	00									
Lot 7 (15 [,]	,	AST as	proposed by	AEPRT EC	CP 960-M7								
* Data thi	at is	availai	ble so far.										
AEPRT sta	rted i	n Marc	h 1978										

II-4

.

-

بيلا شرا**ي**

10 A.

ж.

New York

51 EAO

.

VSD Or Indicator Group

1

 $0_0 = 500 0_1 = WUC = 74JXX QPA = CONTRACTOR: Sperry$

. Type Te	of st	Lot S/N Range	S/N's Tested	Date Started	Date Completed	Total Test Time	Rel. Fail	Total Fail	Point Est. of MTBF LCL 90%	Initial Approval	Final Report Approved
RQT		1		73 Apr 27 74 Feb 27	73 Aug 3. 75 Jan	1 921 2 2846	ப்ப	22	Reject 569		
PRT											
Lot 1 (Lot 1 (Lot 2	120)	2nd Attempt	555	76/12/1 77/2/8		1803* 529*	۲ ۳				
Ū	Test	suspended in M ECP 962 44	arch 1977 7	; started t	rial AEPR	т)					
* Data	colle	cted so far.									

74JXX

9

AEPRT started in March 1978.

1000

Ť

بيلا ش

II-5

- -

AEPRT - VSD or IG (AMNI) $t_{ff} = 41$ hrs

Mo	onth	No. of LRUS	Envir. Cycles	ATP	Cum. No. Of Failures	No. of OP Hrs. From ETI Readings	Cum. OP Hrs.	No. of Pattern Failure Identified	Cum. MTBF
Mar	'78	9	0	0	(0)	442	(442)	0	442
Apr	'78	14	11	6	(17)	1117	(1559)	0	92
May	' 78	12	7	1	(25)	852	(2411)	0	96
Jun	'78	11	8	4	(37)	901	(3312)	0	90
Jul	'78	8	4	0	(41)	644	(3956)	0	96
Aug	'78	17	11	2	(54)	1115	(5071)	0	94
Sep	' 78	12	10	2	(66)	886	(5957)	0	90
Oct	'78	20	10	2	(78)	1320	(7277)	0	93
Nov	'78	14	8	1	(87)	846	(8123)	0	93
Dec	'78	10	3	1	(91)	520	(8643)	0	95
Jan	' 79	10	2	0	(93)	505	(9148)	0	98
Feb	'79	8	4	0	(97)	409	(9557)	0	99
Mar	'79	8	8	0	(105)	512	(10069)	1	96
Apr	'79	10	11	2	(118)	806	(10875)	0	92
May	'79	9	3	0	(121)	512	(11387)	0	94
Jun	'79	10	1	0	(122)	623	(12010)	0	98
Jul	' 79	11	2	2	(126)	657	(12667)	0	101
Aug	'79	10	5	2	(133)	599	(13266)	1 ?	100
Sep	'79	6	2	1	(136)	372	(13638)	0	100
Oct	'79	9	4	6	(146)	763	(14401)	0	99
Nov	'79	10	3	1	(150)	607	(15008)	0	100
Dec	'79	8	1	2	(153)	437	(15445)	0	101
Jan	'80	16	10	4	(167)	1238	(16683)	1	100
Feb	'80	14	4	3	(174)	841	(17524)	0	101
Mar	'80	18	4	2	(180)	1030	(18554)	0	103
Apr	'80	8	1	0	(181)	361	(18915)	0	105

74JXX

II-6

چر

AEPRT - VSD or IG (SDP) $t_{ff} = 44$ hrs.

Мс	onth	No. of LAUS	Envir Cycles	ATP	Cum. No. of Failures	No. of OP Hrs. From ETI Readings	Cum. OP Hrs.	No. of Pattern Failures Identified	Cum. MTBF
Mar	'78	13	3	0	(3)	691	(691)		230
Apr	178	10	3	1	(7)	632	(1323)		189
Mav	'78	10	1	1	(9)	850	(2173)		241
Jun	178	11	4	0	(13)	947	(3120)		240
Jul	178	9	4	Ō	(17)	853	(3973)		233
Aug	'78	13	4	1	(22)	769	(4742)		216
Sep	'78	- 9	2	2	(26)	602	(5344)		206
Oct	'78	10	2	3	(31)	795	(6139)		198
Nov	178	11	4	2	(37)	691	(6830)		185
Dec	178		0	2	(39)	385	(7215)		185
Jan	179	12	4	0	(43)	679	(7894)		184
Feb	179	6	1	0	(44)	261	(8155)		185
Mar	179	8	Ō	0	(44)	343	(8498)	1	193
Apr	179	11	1	4	(49)	727	(9225)		188
May	179	8	4	2	(55)	655	(9880)		180
Jun	179	7	0	0	(55)	302	(10182)		185
Jul	179	3	0	0	(55)	136	(10318)		188
Aug	179	10	3	0	(58)	615	(10933)		188
Sep	179	8	2	0	(60)	335	(11268)		188
Oct	'79	9	0	2	(62)	492	(11760)		190
Nov	179	6	4	0	(66)	391	12151	0	184
Dec	'79	6	3	0	(69)	337	12488	0	181
Jan	'80	10	4	2	(75)	5 96	13084	1	175
Feb	80	16	2	0	(77)	718	13802	0	179
Mar	'80	12	2	0	(79)	591	14393	0	182
Apr	'80	9	6	1	(86)	621	15014	0	175

74JXX

II-7

بيبا ه

2

τ

W. S. S. Bear

AEPRT - VSD or IG (AMNI) $t_{ff} = 41$ hrs

3.

Mo	onth	No. of LRUs	Envir Cycle	ATP	Cum. No. of Failures	No. of OP Hrs. From ETI Readings	Cum. OP Hrs.	No. of Pattern Failures Identified	Cum. MTBF
May	'80	10	1	2	(184)	673	(19588)	0	107
Jun	'80	12	10	3	(197)	938	(20526)	. 0	104
Jul	'80	3	1	0	(198)	164	(20690)	0	105
Aug	'80	9	8	0	(206)	788	(21478)	0	104
Sep	'80	17	3	3	(212)	1026	(22504)	0	106
Oct	'80	16	6	1	(219)	991	(23495)		107
Nov	'80	13	6	0	(225)	763	(24258)		108
Dec	'80	17	4	3	(232)	917	(25175)		109
Jan	'81	10	2	0	(234)	480	(25655)		110
Feb	'81	13	6	2	(242)	983	(26638)		110
Mar	'81	11	3	3	(248)	760	(27398)		110
Apr	'81	10	6	5	(259)	989	(28385)		110
May	'81	18	0	0	(259)	894	(29279)		113
Jun	'81	18	3	0	(262)	927	(30206)		115
Jul	'81	17	2	2	(266)	881	(31087)		117
Aug	'81	8	2	2	(270)	545	(31632)		117
Sep	'81	17	1	4	(275)	915	(32547)		118
Oct	'81	6	6	3	(284)	511	(33058)		116
Nov	'81	7	2	0	(286)	375	(33433)		117
Dec	'81	4	0	Ű	(286)	169	(33602)		117
Jan	'82	9	2	1	(289)	528	(34180)		118
Feb	'82								
Mar	'82								
Apr	'82								
May	'82	5	1	0	()	303	()	0	
Jun	'82	10	4	2	()	580	()	0	

74JXX

II-8

-

AEPRT - VSD or IG (SDP) $t_{ff} = 41$ hrs.

Month		No. of LRUS	Envir Cycles	ATP	Cum. No. of Failures	No. of OP Hrs. From ETI Readings	Cum. of Hrs.	No. of Pattern Failure Identified	Cum. MTBF
May	'80	13	3	0	(89)	573	(15587)	0	175
Jun	'80	9	3	3	(95)	582	(16169)	0	170
Jul	' 80	2	1	1	(97)	120	(16289)	0	168
Aug	'80	7	2	1	(100)	375	(16664)	0	167
Sep	'80	18	4	0	(104)	823	(17487)	0	168
0ct	'80	21	2	0	(106)	958	(18445)		174
Nov	'80	10	8	0	(114)	580	(19025)		167
Dec	'80	11	2	0	(116)	518	(19543)		168
Jan	'81	7	5	2	(123)	454	(19997)		163
Feb	'81	10	3	2	(128)	597	(20594)		161
Mar	'81	8	3	2	(132)	490	(21084)		160
Apr	' 81	6	0	0	(132)	265	(21349)		162
May	'81	5	1	0	(133)	217	(21566)		162
Jun	' 81	8	1	0	(134)	350	(21916)		164
Jul	'81	3	0	0	(134)	166	(22082)		165
Aug	'81	3	0	0	(134)	126	(22208)		166

ł

74JXX

II-9

AEPRT - IG (PSDP) $t_{ff} = 30$ hrs $0_0 = 1000$ hrs $t_{ff}/0_1 = 0.06$

Orime	68	124	106	163	182	159	166							
Op. Hours (Cum)	(135)	(372)	(230)	(813)	(806)	(1427)	(1987)			-				
Number Failures per LRU (Cum)	(1.)7.	.1(.3)	.5(.4)	.0(.2)	.0(.2)	.4(.3)	.2(.24)			.36()	.10()	.42()		
Cum. Failure	(2)	(3)	(2)	(2)	(2)	(6)	(12)		(13)	<u></u>	$\hat{}$	$\hat{}$		
Total No. of Failure ENV/ATP	1/1	1/0	1/1	0/0	0/0	2/2	3/0		* /6	6/4	0/2	5/8		
Cum. Second Pass Yield	00.	.50	. 75	.75	.75	.71	.62							
Number With Only one Failure (Cum.)	0(0)	1(1)	2 (3)	0(3)	0(3)	2 (5)	0 (5)		()9	7()	2()	5()		
0 yield	74	134	6 8	142	165	134	172							
Cum. First Pass Yield	.67	.80	.71	.81	.83	.80	. 84							
Number Without Failure (Cum)	2(2)	6(8)	2(10)	7(17)	3 (20)	8(28)	14(42)		31()	20()	()6T	23()		
Number Delivered (Cum.)	(6)8	(01)2	(11)	(12) (3 (24)	11 (35)	15(50)		()0+	28()	21()	31()		
Month	Jul '81	Aug '81	Sep 81	0ct 181	Nov 81	Dec 181	Jan 182	Feb '82	Mar '82	Apr 82	Mav 82	Jun '82	Jul '82	Aug '82

74JXX

2

-

II-10

1.2
IFF TRANSPONDER, AN /APX - 101 (v) RT - 10638 Predicted MTBF =1331 (from test report)

 $0_0 = 500 \quad 0_1 = 250$ WUC = 65AAO QPA = 1 CONTRACTOR: Teledyne Electronics

ort			_							
Final Rep Approved	1/ר/רר		Decision							
Initial Approval	ł		Reject	77/11/8		ort	ort	ort	ort	ort
806				144		e Rep	e Rep	e Rep	e ReF	e Rep
rcr				15,		edyne	edyne	edyni	edyn	edyne
MTBF				ſ		Tel	Tel	Tel	Tel	Tel
Point of	762		150	630		732	913	1142	1464	715
Est.			6	9				~		
Total Fail			1	T						
Rel. Fail	m		2	4	7	e	7	0	٦	ς.
Total Test Time	2287		751	2520	1649	2197	1026	1142	1464	2146
Date Completed	75/2/16		T2/4/TT	72/9/77	78/1/22	78/3/29	78/8/19	79/3/20	79/10/14	80/5/2
Date Started	74/9/21		17/2/24	1/1/11	77/12/23	78/2/17	78/7/11	79/2/12	79/8/30	80/3/28
S/N's Tested			206,213,	283,285, 283,285,	28/,209 330,366, 369,372	WP0015,30	WP100,140	WP0312,362	WP0500,570	WP0850,930 995,1045
z			4	4	5					
Lot S/ Range	ł		167-31	167-31	318-44					
rpe of Test			(120)	(Lot 1)	(Lot 2)	_	~	-	_	
Ϋ́Ε	ROT	PRT	Lot 1	Lot 2	Lot 3	Lot 1	Lot 2	Lot 3	Lot 4	Lot 5

U.S. Air Force Data 65AAO

•

•

Ì

II-11

đ

*

APPENDIX III

Samples of Key AFLC Data System Reports

2 Y

6.

For	Freg rest Freq rest Frequence Introduct Description Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introtrouction Introduction
CINTENT FFAID ALJIST CLNTFFL/CES Severe	Image: Second
\$	11.0 1 11.1 1 11.1 .0 .0 .0 1 11.1 .0 .0 .0 1 11.1 .0 .0 .0 .0 1 11.1 .0 .0 .0 .0 .0 .0 .0 .0 10.1 .0 .0 .0 10.1 .0 .0 1.1 1 1 .0 .0 .0 .0 .0 1.1 1 .0 .0 .0 .0 .0 .0 1.1 1.1 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0
F < F < F < F < F < F < F < F < F < F <	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
(1) 10 <t< td=""><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td></t<>	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
F ΛCLW <td>1.1 1</td>	1.1 1
FSG 5AL1 F/k AP261 - MITK/FFC (02121031 FC ACUU AF ACUU AF -	FSG 5AL1 F/K AP2(1) - MIN/PFC (02121031 P ALUST CLUFFSI/CASM SAVCALE
CLANTES PLATELON REPAIF ACLAST CLANTEST/CRSN SRVCHLE hATS CCUNTENDIA T LUN LAT V2 BJ 1 2-F 2 T LUN LAT V2 BJ 1 2-F 2 T LUT LAT V2 BJ 1 2-F 2 2 T LUT LAT LAT LAT LAT 2-F 2 </td <td>$\begin{bmatrix} & A \ LAKT & CLVTESIZCASN SAVCALE &AFTS & CCMCEAFED TOTAL DET x x x y z e x x y z e x x y z e x x y z e x x z e x x z e x x z e x y z z y z e x y z z y z e x y z z y z e x y z z y z e x y z z y z e x y z z y z e x y z z y z e x y z z y z e x y z z y z y z e x y z z y z e x y z z y z z e x y z z y z z e x y z z y z z e x y z z y z y z z z e x y z z y z z z e x y z z y z z z z z z z z z z z z z z z$</td>	$ \begin{bmatrix} & A \ LAKT & CLVTESIZCASN SAVCALE &AFTS & CCMCEAFED TOTAL DET x x x y z e x x y z e x x y z e x x y z e x x z e x x z e x x z e x y z z y z e x y z z y z e x y z z y z e x y z z y z e x y z z y z e x y z z y z e x y z z y z e x y z z y z e x y z z y z y z e x y z z y z e x y z z y z z e x y z z y z z e x y z z y z z e x y z z y z y z z z e x y z z y z z z e x y z z y z z z z z z z z z z z z z z z$
SFhCUMF \bullet_{11} <	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
For particular the set of the se	FCC EAL P/N Definition Definition Image: Second Sec
FCb PalfLhCTIGhame GFPA19 ACJUST CLN/TEST/GRSN Squcele hhts LCKFFhAF0 FE ACUN UAFFS FOUS CLN/TEST/GRSN Squcele hhts LCKFFhAF0 FLUCTLATES UAFFS FOUS ACUN UAFFS FOUS 1 2-6 7-7 9 FLUCTLATES D UA UAFFS FOUS UAFS LMTS HCUFS FLUCTLATES D J J J 0 0 1	Image: Second
7 FLUCILATES 0.0 0 <t< td=""><td>0LC5 UNITS JCLRS LULTS JCLRS LULTS LULTS</td></t<>	0LC5 UNITS JCLRS LULTS JCLRS LULTS
7 FLUCTLATES 7 5,3 .1 .1 .0 7 ACJUST INFROP 3 4.5 2 2.6 .1 6 ACJUST INFROP 3 4.5 2 2.6 .1 6 ACJUST INFROP 3 4.5 2 2.6 5 6 ACJUST INFROP 3 4.5 2 2 5 6 ACJUST INFROP 3 4.0 .1 2 5 7 GENTED ELECT 1 1.0 .1 .0 2 7 LCC & CN MAL 13 2.1 .0 .1 .1	
F KC (LIFUT 5 11.9 0 .0	
[GGWEFE ELFET 1 1,4] .] .] .] .] .] PLECE EW MAL 13 21.[.] .] .] .] . PLECE EN MAL 13 21.[.] .] .] .	
•ICING• 2* 4** 5 1 2 4** 5 2** 5*	
2 2.P 5 4.P 2 5.	Copy available to DTIC does not

III-1

6

Τ.

-

•

	-SHOP ACTION UNITS- Repp Condm NRTS	3-06				400 40 40	Situano da antica a situano da Situano da antica a situano da a	(IN, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10
	MANHOURS			1 1 1 2 1 2 1 2	16 27 27 48 27 46 42 48 48 48 49 55 255 255 255	3 4 3 6 6 M 0 0 0 0 0 0 0 0	******* ****	۲ ۲ ۲
	SCHED		r n	4	203 203 91 203 91 77 16 75 75 9			202 202 202
	16H 1C1AL	12057 12057 12061 12692 27420		, 1506 1450 1929 1929 1929 1679 1679	2 M & J & Z & M 4 H 4 J & H 4 J 4 H 4 J & H 4 J & H 4 J 4 H 4 J & H 4 J & H 4 J 4 H 4 J & H 4 J & H 4 J & H 4 J 4 H 4 J & H 4	2119	e kî z	1092 0502 979
	1-347T	13052 12661 12692 27420		2123 2123 2123 2124 2143 2240 2240 2240 2240 2240 2250 2275 2370 2370 2370 2370 2370 2370 2370 2370	0~~ 6 0 0 M 4 6 6 3 3 ~ E 11 0			2730 2776 2447
	CTT 0N	ى ى	~ - m	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	22222222222222222222222222222222222222			
	FAINT A	میں سی		3	9930909 99309 9000 009			ĸ
21221 1	Aec	BA K	}					
JA HUC	ср 11 іс	195 115 115 125 125 125 125 125 125 125 12	5:6 6:6 7:1 7:5 7:5 7:5 7:5 7:5 7:5 7:5 7:5 7:5 7:5	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 (1 9 75 9 75 9 75 9 75 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		6 6 6 1 6 6 2 6 6
00) I	TH IKV	45 38 38 38 38	35 36 36 36 36 36	2 2 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	50000000000000000000000000000000000000	91 01 E E E E E M N E E E E E E M N E E E E E E E E E	5555555 555555 55555 5555 5555 5555 5555	500
EAC	MOM	SEP JUL JUL JUK HAV FOT	SEF JUL JUL May Tol	SEP SEP JUL JUL ADA APA APA		SFF SFF JUL JUL ADA ADA ADA	101 101 101 101 101 101	SFF SFF JUL D JUL
LCI NPALE TYP EGPI ACF	AUDN TUL	2313 SAFTY AFLT At GFA ACT LHT USE FAC C 22 1.00	2314 ATTACHMENT PATL At GFA ACT LMT USF FAC C 6 1 200 1-00 C 1	23%% TFACF SEATS at CPA act LM1 USF FAC F 16 at LM1 USF FAC F 16	2XXX FLSF1AGE (OPP GFN At CFA AL1 LM1 VSE FAG G 1 1.00	2000 LAMFING GEAR at cfa act lmi usf fac a 3 act lmi usf fac a 3	20% SLASYTIEM SUMMARY at GFA act Lmt use fac 1 1.00 1.00	3108 MATA GEAR ASSY .at cea act i.mt use fac # 2 1.00

(2)

NSTEM.	SLESYSTEN AND WORI	X UNT	COCI FA	ורהאב צראש	148 V PEP 106) ENDING B1	026 b 3 0	10/	69/81 U-0056	8-82-8%-264 PAG	-
ALC . MAR	LC TYP EGPI ACF	F 40 1	C1 308								
40 5 K UN 1 1 Code	NCUN	U A C	FEF T CENT D FAILS	FATI Clrf Ctf	.URESA LAST 12 MOS	REFLACEMENTS P-R A/T CODES	 Curr Gir	ANTIPE EET Avg last 12 mgs	EEN MAINTENA Gatto-Curr Ote/Last 12	NCE TYPE-1 Fatto-Cupr Otr/al	NE AN SORTIES BCF
22×××	SYSTEN SUMMARY		16.4	1195	1 545	1093	54	10 4	1.26	. 80	11
22 E X X	SUR-SYSTEM SUMMAN	۲ ۲	7 1	34 û	160 E	428	189	145	1.30	00.	61
33680	t re dhof di	æ	۹- ۱	114	320	119	915	13079	. 15	.01	3 I N4
22580	ANDI TE LER TO	: 61		59 10	37 9	25	066	614	1.61	2.83	121
22540				56	520	205	13786	536£	2.57	3.77	5473
22554	CPFED SENS SW	8	~	2.1	61	18	3575	3812	4° .	1.14	1159
22646	CODATAR			14	56	13	4596	4005	1.15	1.52	1671
256.20	FF (AN) CA)	, 6 .		17	53	•	5362	4473	1.20	2.31	1739
22661	THEBMORPI HAPKES	. a.	•	1	4 0	12	10724	11626	- 92	- 79	3479
01HER		1	. . .	1 . 1 . 2	171	33			. 00	00.	
22633	SUB-SYSTEM SUMMA	RY	3.7	112	1188	179	51	65	1.22	• 0 0	19
33586	DUTENT OF ANT PLANE	T O	đ	64	24.8	29	1340	1250	1.07	1.70	326
		. œ		54	181	45	1589	1713	. 93	1.63	386
		2 02	u		144	27	2303	2153	1.11	1.15	579
41922		2 01	, 4	,	147	30	2600	2109	1.23	1.29	632
22760	LENERATOR TED SYSTE		• 7		15		1129	1032	1.09	2.7 h	274
	VATA ATA ATA ATA ATA		•		111	12	5362	2793	1.92	3.12	1304
		. a	•		76	ŝ	612B	5205	1.50	3.08	1641
01458		د	ŝ	35	184	28			. 60	. 00	
225 X K	SUB-SYSTEN SUPHAL	RY	2.1	151	605	105	426	364	1.11	.00	138
	CATHO CONTOOL	•	*	0 1	232	11	1313	1002	1.31	1.61	426
25622	LAIUT LUMINUL Chei Cântroi					12	2798	2636	66 .	1.72	405
21022		. 0			51	11	25023	28555	. 85	.03	A118
21633		. 3	•	12		12	5362	5055	1.06	2.17	1739
2 2 2 2 I C		: 05	: -		26	~	8043	2043	.90	-01	2609
226.10	ENEL SHUT DEF		: 7	•	30	•0	8043	1211	1.04	1.73	2609
22511		đ		L	12	£	16086	197291	. 83	14.52	5219
01468	2		5	29	101	32			. 00	.00	

- Andrews

W. Tape

B-22

.....

III-3

الم بيم المالي والم

Constant of

23 FAILS FATLS ~ FAILS CAT FATLS œ U- 00568-823-4K+M76 PAGE 692 VIDEO FAULTY FACTOR 1.10 USF NUUN NCUN NCUN BASF 0PA 001 CODE CODE CODE 1 - - HOW MALFUNCTICN CODE SUMMARIES FOR CURRENT CLARIEF FAILURES - -ı ŧ - WEN D'SCCVERET CODE SUMMARIES FOR CURRENT CLARTER FAILURES Code actime fails code mocinies fails - - - ACTJOP TAKEN COLE SUMMARIES FOR CURRENT QUAFTER FAILLRES -AC 11 ON FAILS LINIT 00130 ~ FAILS -FAILS F PILN FLT-GEC CR 525 PRESS INCORRECT - - - SLMMAFY OF FAILURES BY BASE - -NCCN NCCN --FATLURE TCTAL--CURRENT LAST JUARTER 12 HOS S S EASE CODE CODE 4 FALLS 11 FAILS ~ 12 FA ILS DATA FOR THE FOLLOWING WEAPON SYSTEM CAN RE IN THIS REPCRTA C130A C130D AC130A RC130A FATIC-CURK CTR TO AL . 82 U IN FLT-NC ABCRT NCLN NCLN NDON FAILUPE RATE DATA FOR SELECTER WORK UNIT CCCES CTR/LAST 12 301 LEAKING REPOVED EASE C130 1.06 CCDE CODE CODE ٩. TYP EQPI ACF FADI 12 MCS , 100 FAILS FAILS ~ 2 2 FAILS ~ 1 FATLS BEFP FLT NOABRT TPP RE ELE INPT QUARTER 116 NOON NCUN NO CUTPUT NOON UNIDENTIFIED AR ALC 77 EFO AGJUST BASE CLRFENT GLAFTER 306 ALCI I U PM 255 CODE 121 CCOE CODE 8 ...

5

ちょう

END PRINT

ENC PRINT

END PRINT

END PRINT

III-4

APPENDIX IV

Sample of Maintenance Codes and Determination of Component Failure Counts SAMPLE AFM 66-1 MAINTENANCE REPORT ON EAIC

12. Carlos

شر

Contract -

 \mathbf{h}

ž, 1

•

ACTION TAKEN (A/T) CODES

REF. SECTION B, AFLCR 65-15

FAILURE CATEGORIES

- BENCH-CHECKED-SERVICEABLE
- INITIAL INSTALLATION
- REPAIR
- REPAIR/REPLACE MINOR PARTS
- I EQPT CHECKED-NO REPAIR REQU
 - J CALIBRATED-NO ADJ REQDV-
 - K CALIBRATED-ADJUSTMENT REQD
 - L ADJUST OR RESET
- REMOVED
- REMOVE AND REPLACE
- S REMOVE AND REINSTALL
- CLEAN
- TEST-INSPECT-SERVICE
- CORROSION TREATMENT

MAINTENANCE ACTION CATEGORIES

- A BENCH CHECKED AND REPAIRED
- C BENCH CHECKED-REPAIR DEFERRED
- D BENCH CHECKED-TRANSFERRED TO ANOTHER BASE
- 1-7 BENCH CHECKED-NOT REPAIRABLE THIS STATION (LACK OF EQUIPMENT, TOOLS, TECHNICAL DATA ETC.)
 - **BENCH CHECKED-RETURN TO DEPOT**
- 9 BENCH CHECKED-CONDEMNED
- A DISASSEMBLE
 - ASSEMBLE
- A INSTALLED
- T REMOVE FOR CANNIBALIZATION
- U REPLACED AFTER CANNIBALIZATION
- **TROUBLESHOOT**

IV-2

HOW MALEUNCTION (11/11) CODE TYPES.

ALLED ER 16 DEE CELTION R

	TYPE 6 NO DEFECT	632 EXPENDED 793 NO DIFTCTO 797 NO DIFTOC 798 NO DIFTOC 798 NO DIFTOC 798 NO DIFTOC 799 NO DIFTOC 799 NO DIF.ECT 800 NO DIFECT 801 NO DIFECT 802 NO DIFECT 803 NO DIFECT 804 NO DIFECT 805 NO DIFECT 806 NO DIFECT
입.		
KEF. SECTION D. METER DO	TYPE 2 INDUCED FAILURE	 MB6 IMPROPER IIAHIDLING MB6 MISNICHED LODSE/DAMAGE HARD LOB MISNING IIARDWARE LOB SAFETY WIRE DAMAGE LAUNCH DAMAGE MPROPER MAINT. BIRD STRIKE DAMAGE BIRD STRIK

INTERNAL FAILURE Y HOM MALFUNCTION CODE (CEPT TYPE 2 OR 6 (SAMPLES) 70 BROKEN 27 ADJUSTHENT IMPROPER 90 CRACKED 90 CRACKED 16 HOM MAL CODES) 16 HOM MAL CODES)	CLEPT FITCE C UK O (SAMPLES) 20 BROKEN 27 ADJUSTHENT IMPROPER 69 INCORRECT VOLTAGE 90 CRACKED 43 DATA ERROR 43 DATA ERROR 6 HOW MAL CODES) 6 HOW MAL CODES)	INTERNAL FAILURE
---	--	------------------

IV-3

جرا

THE A

FAILURE COUNTING FROM AFM 66-1 DATA RCS LOG-MMO(AR) COMPUTER PROGRAM

i__

1

APPENDIX V

Sample Sets of Data From AFLC Data Systems on Key Parameters Used in Research

AFBRMC DATA BASE F-4E DATA WORK UNIT 513H0 DATES 7707-7912 Text File: F4EH0 DSD File: F4E513H0

2.

YR/MO	OPTIME	MTBF	MTBM	FAIL	INVEN	MHRS	NRTS
7707 7708 7709 7710 7711 7712	13826 15139 13968 10320 15208 12944	178 161 145 144 152 160	99 90 80 79 86 94	102 95 100 79 81 81	692 688 686 564 659 670	849 790 847 630 602 591	11 6 6 6 21
7801	13044	175	103	74	694	816	13
7802	10624	153	88	84	676	766	5
7803	14636	179	100	56	690	509	11
7804	14530	172	99	92	682	818	7
7805	13321	182	97	86	682	860	10
7806	14128	176	99	61	665	507	7
7807	12302	177	99	78	628	646	12
7808	14407	183	112	84	652	784	10
7809	12969	184	113	54	646	585	10
7810	12500	192	117	70	651	623	18
7811	12632	193	123	73	654	563	9
7812	11826	172	115	72	653	565	8
7901	12667	174	121	68	590	577	4
7902	11733	163	110	82	656	685	5
7903	14190	167	109	81	637	763	27
7904	13725	176	107	62	607	633	15
7905	13969	168	104	106	637	867	6
7906	13694	160	102	90	609	778	9
7907	12557	145	101	81	627	693	16
7908	13962	161	111	79	574	742	14
7909	11991	146	103	103	562	945	14
7910	12869	164	112	54	538	419	5
7911	11353	149	103	86	586	759	14
7912	9666	162	112	69	570	507	16

V-1

AFBRMC DATA BASE F4E DATA WORK UNIT 513H0 (CONT'D) DATES 8001-8112 TEXT FILE: F4X2 DSD FILE F4E51X2

YR/MO	OPTIME	MTBF	MTBM	FAIL	INVEN	MHRS	NRTS
8001	11140	151	103	58	594	574	8
8002	11014	191	140	40	590	407	12
8004	11655	217	142	37	571	200	5
8005	10740	225	102	50	525	401	נ ד
8006	11314	241	156	46	555	450	5
8007	9259	197	136	49	555	453	3
8008	9877	175	123	73	512	631	0
8009	9979	182	128	38	543	3 81	6
8010	9951	190	145	46	522	395	8
8011	7672	230	150	36	544	412	10
8012	9203	242	121	29	(536	350	7
8101	8100	183	133	63	- 517	675	7
8102	9246	197	129	35	523	449	6
8103	10711	196	163	45	490	530	11
8104	9719	263	148	33	520	320	8
8105	9452	241	132	46	495	424	7
8106	9959	214	115	47	494	459	11
8107	10201	205	132	45	509	430	11
8108	9885	191	130	59	513	512	8
8109	8895	215	148	31	527	238	7
8110	9296	158	117	87	511	721	12
8111	8799	164	118	46	498	441	4
8112	8979	148	110	50	503	394	14

V-2

111

and the second sec

Barris Martin

AFBRMC DATA BASE F4D DATA WORK UNIT 513U0 DATES 7701-7912 CSD FILE F4D513U0 TXT FILE F4D3U0T

NRTS	MHRS	INVEN	FAIL	MTBM	MTBF	OPTIME	YR/MO
6	673	460	110	60	80	7995	7701
1	473	446	74	67	87	8544	7702
3	524	467	88	77	96	9471	7703
2	573	421	73	88	116	9137	7704
2	363	467	60	102	136	11443	7705
1	461	468	74	103	141	8639	7706
4 4 3 2 5	417 446 470 537 355 346	467 456 440 344 444 440	78 60 70 67 46 43	98 91 91 91 96 100	129 120 120 124 130 146	7162 9712 7990 6770 9117 6832	7707 7708 7709 7710 7711 7712
7	595	458	8*	88	129	6326	7801
3	418	405	52	77	118	8046	7802
6	372	462	49	79	126	8940	7803
10	305	427	52	102	162	7861	7804
6	442	426	47	110	174	8922	7805
5	382	665	56	114	168	9260	7806
5	491	456	59	100	157	7231	7807
10	559	454	57	96	148	8897	7808
6	478	453	73	86	130	8390	7809
7	403	458	67	92	130	8323	7810
4	393	443	51	95	132	8514	7811
9	463	653	52	99	142	7301	7812
12	364	402	60	101	142	7349	7901
4	389	441	60	99	132	8032	7902
6	374	437	61	110	138	9537	7903
8	491	442	59	110	147	8846	7904
12	457	449	64	104	147	8656	7905
5	483	425	70	94	133	8251	7906
6	435	443	48	100	140	8397	7907
23	317	416	44	117	158	8891	7908
10	589	394	71	117	154	7750	7909
3	422	395	54	115	149	8463	7910
4	523	410	62	98	126	7303	7911
2	240	448	30	118	154	6720	7912

V-3

AFBRMC DATA BASE F4E DATA WORK UNIT 513U0 DATES 8001-8206 (8007+6 MSG) CSD FILE: F4DU0X2

YR/MO	OPTIME	MTBF	MTBM	FAIL	INVEN	MHRS	NRTS
 8001	7467	159	126	43	440	387	4
8002	7237	180	149	46	437	326	5
8003	7680	171	141	42	424	259	2
8004	7714	168	139	47	431	369	4
8005	7465	147	122	66	446	395	2
8006 8007 8008 8009 8010	7620	161	127	29 (data mi	432 SSING)		5
8011 8012							
8101	7086	181	138	50	424	359	8
8102	7638	179	131	45	398	389	6
8103	7625	161	120	42	398	330	15
8104	7432	181	117	37	442	327	9
8105	7395	195	128	36	374	299	11
8106	7483	205	127	38	397	401	9
8107	7617	205	153	38	422	263	7
8108	7795	185	139	50	441	443	11
8109	6979	179	144	37	427	265	7
8110	7425	159	121	53	465	449	4
8111	6133	159	123	39	435	278	2
8112	6845	142	107	52	432	517	4
8201	5830	137	111	42	409	341	1
8202	6027	141	115	34	415	282	4
8203	8022	173	141	39	441	407	11
8204	7147	212	163	27	359	188	2
8205	6789	209	156	39	422	328	4
8206	7319	213	157	34	400	269	0

V-4

and the second second

18 18

. .

• ••