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SECTION 1

1 INTRODUCTION

The past decade has seen an order~of-magnitude increase in reli-
ance on fixed- and moving-base simulation for research and training 1n
all types of aircraft. The reasons for this increase are numerous,
ranging from the development of vehicles which must he completely
design-validated before flight test (e.g., the Space Shuttle) to the
increased use of simulation for tralning purposes (for reasons of
safety, repeatability, and reduction of fuel costs). As a result, simu-
lation facilities are in widespread use throughout the Air Force as well r

as other government agencles and private industry.

Accompanying this increased use of simulation has been a dramatic
increase in simulator complexity. This particular development manifests
itself most noticeably as digital computers replace analog equipment.
While digital implementations provide better reliability and mainten-~
ance, 1ncreased static accuracy, and greater flexibility, they also
introduce an array of simulation artifacts heretofore unconsidered.

These anomalies impact the new generation of simulators in two areas:

® Hardware/software procurement. Techniques used
to specify analog systems will no longer suffice
in a digital environment. Critical concerns such
as frame time, word length, integration algo-
rithms, data skewness, order of subroutine call,
etc., are presently the heuristic choice of the
contractor, since the contracting agency has no
analytical means by which to specify these items.

® Research/training on existing equipment. Often
digital simulation artifacts creep into a simula-
tion facility as a result of upgrading existing
equipment with digital computers. As a result,
experiments and training sessions may be contam-
inated with extraneous simulation errors. These
errors are difficult to detect and assess without
the aid of analytical tools.

W e T e e -,'q--?"vs.:




The anomalies themselves are many but can be roughly described as
frequency aliasing effects (another term 1is folded power). They arise

for a variety of reasons:

1) Two or more computers required in a large simula-
tion, each working 1in {ts own frame time (the
so-called independent processor problew

2) Serial processing (calling) of subroutines. The
first subroutine called may work with different
input data than those called later (skewed data,
"stale' input data).

3) Throughput delay factors.

4) Staircasing (zero-order-hold effects) when the
digital computer output 1s wused to drive the
actuators of motion-base cabins.

A set of recently developed concepts provides the basis for iden-
tifying potentially critical simulation anomalies at the design stage in
an organized and rational way. Moreover, a method exists which can be
used to implement given computer code (integration algorithms) into a
multi-rate, time delayed, skewed data analytical model, and predict the
impact of these digital effects on the proposed simulation. To date
these new methods have been demonstrated on low-order models with only
limited demonstration of the theory. It 1is necessary to demonstrate all

features of the new theory in a joint fashion on higher-order problems.

The methodology embodies three concepts. The first, which will be
illustrated in Section II, 1is the continuous frequency response of a
digitally controlled system. Using techniques developed in References !
and 2, it is possible to compute the group of N sinusoids which fit the
response of a digitally controlled system not only at the sample points
but at the (N - 1) inter-sample points as well. In the limit, as N
approaches infinity, one obtains the "continuous" frequency response of
a digitally controlled system. This section will clarify the term "fre-
quency response”" in the content of this report; it will be demonstrated
that there 18 a truly significant difference between the frequency
response of a digitally controlled continuou; system and the discrete

spectrum of sampled data control theory. It is convenlent to review the
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theory of the single~rate frequency response since it affords the oppor-

tunity to present several clarifying comments on the frequency response
*

concept suggested by various readers of Reference 1 . Thus, Sectiom 1I

is also an "update" of the frequency response concept for digitally con-

trolled systems and provides a link with newer developments.

The second component of this simulation analysis method 1is vector
switch decomposition, a technique for analyzing simulations with two or
more sample rates, data skewness, throughput delays, etc. As described
in Section III, this technique 1s conceptually quite simple. All samp=-
lers in a given system are replaced by equivalent samplers whose periods
are the least common sampling period, and the appropriate time delay
vectors. One practical problem with this method is the accompanying
increase in dimensionality for the "decomposed'" vector. Vector switch
decomposition 1is not a particularly workable tool for pencil and paper
design, although it 1is quite amenable to computerization, since the

matrix manipulations are routine.

We then develop from switch decomposition an algebra that circum-
vents, for a limited class of problems, the dimensional complexitles
introduced by the decomposition itself. In effect, a scalar problem
will remain, in the framework of this algebra, a completely scalar prob-
lem. This "limited class of problems’ 1is fmportant since it encompasses
the open-~loop analysis of particular elements of a simulation as well as
closed-loop multi-rate systems wherein the sample rates are related as
powers of 2. This latter case covers both the Space Shuttle (25, 50,
100 Hz) and the F-18 (20, 40, and 80 Hz) digital control systems.

An important computational aspect of this scalar algebra 1is dis-
cussed extensively 1in Section IV. Specifically, an algorithm 1is des~-
cribed for transforming from a T/N time frame to a T/M time frame, N and

M being arbitrary but rational. For example, sets of (M, N) such as

*In particular, the comments of Dr. Hsi-Han Yeh of the University of
Kentucky provided an excellent interpretation of the limiting results as
N + infinity.
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3, 2), (2, 3, (7.8, 1), etc., are permissible. The algorithm 1is of
3 particular 1importance as 1t permits the user to circumvent certain
dimensionality constraints 1introduced by multi~-rate methods based on
residue theory. The nature of these constraints will be made clear in

the case studies of Sections VII through IX.

In Section V, the application of the scalar algebraic approach to

multi-rate frequency response 1s compared with the more general switch

decomposition approach of Reference 2.

The third component of the simulation analysis method was developed
in Reference 2. It 1is primarily a technique to 1incorporate, within the
switch decomposition framework, a specified computer code. For example,
there are a variety of methods available for modeling a low-pass filter
section on a digital computer. One can use the Tustin transform, a rec-
tangular integration algorithm, Adams-Bashforth, etc. Clearly, in
analyzing a given simulation there must be a capability for incorporat-
ing the given difference equations into the analysis, without any par-
ticular regard (or prejudice) as to what the originator intended the
code to represent. It 18 the task of the analysis to show the origin-
ator how successful his digital model 1is in representing the principal
features of the continuous system. Facets of this problem are discussed
in Section VI.

In Section VII, a first effort is made to bring all of the key ele-
ments together into a two-rate simulation case study. The ratio between

the two frame times forces the use of the switch decomposition format

and furnishes 1insight into the dimensionality problems encountered. -3
This case study also demonstrates how a two rate format can introduce

unintended lightly damped modes into a simulation.

In Section VIII, another case study 1is described which does not
require the use of switch decomposition. The primary purpose of this
study 18 to gain insight into the multi-rate frequency response. Sup-
pose the output is sampled in a T/3 time frame but other rates are
involved in preceding portions of the system. How many sine waves are

required to exactly match the steady state T/3 output samples?




In Section IX the analysis of an existing three rate simulation 1is

attempted. It was in this high-order simulation study, where the ratios
between frame times were very large, that shortcomings in our computa-
tional tools proved to be more critical than previously suspected. For
instance, in moving from one time frame to another, a fourteenth-order
system becomes a system of order 112! The "invention" of the algorithm
of Section IV was a direct result of these difficulties. Subsequently,
we were able to proceed through the case study with relative ease and
achieve impurtant results. Thus Section IX, as it now stands, will give
little insight into the numerical and dimensional difficulties first

encountered.

The multi-rate simulation studies of Sections VII through IX have a
primary goal of providing insight into the spectral characteristics of
the output steady-state waveform in terms of the number of sinusoids
required to match the output (sampled) data points. A secondary objec-
_ tive is to call attention to some observed anomalies (such as extraneous
' lightly damped modes introduced by the multi-rate structure) which can
be identified and quantified using the anlaytical tools described in the

earlier sections of the report.

Section X treats a single-rate case study which investigates the

effective and unintended filtering introduced when subroutines are
called in a serial manner. Specifically, it is shown that the z-domain
analytical model of the computer code used in the implementation of a
washout filter for a large moving-base simulator is twice the order of

the intended s-domain transfer function. .

The report 18 a lengthy one, attributable in a large part to a
desire to pull together under one cover the key elements of References 1
and 2 which have application to simulation error analysis. Those
readers familiar with the concepts of References 1 and 2 are therefore

in a position to selectively read the present reporte.

'
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SECTION II

DISTINCTIONS IN "FREQUENCY RESPONSE"

A. INTRODUCTION

The term "frequency response" for discrete systems refers to the
process of selecting the magnitude and phase of a single frequency sine
wave to fit sample points at the sampling instants. In contrast, the
concept of "frequency response" for the continuous variables of a dis-
cretely (digitally) controlled system defines the infinite set of sine
waves (in terms of a fundamental and aliased frequencies) which add
together to exactly reproduce the continuous output steady state wave-

form.

A simple but illuminating example, defined by Figure 1, illustrates
the distinction. Suppose the system is forced by a step input and the
continuous output C is recorded =-- both as a continuous analog quantity
and also sampled at a rate of 1/T Hz. Furthermore, let the open-loop
plant, 10/(s + 10), be subject to two different control laws, one imple-
mented with a zero-order hold (Z0H), the other with the "slewer" data
hold. The control laws were synthesized with the objective of forcing
the output to be the same at the sampling instants, regardless of the
control law/coupler being used. These responses are shown in Figure 2.
Note the smoothness of the slewer-controlled response and the roughness
of the Z0H response. However, an observer who is shown only the 1/T Hz
sampled output would be unable to detect any differences in the tran-
sient responses, even though the continuous responses are very differ-

ent.

Next force each system with a sine wave and record both the continu-
ous and discrete output waveforms. The observer who is only interested
in matching the sample points uses the discrete frequency response and
picks the magnitude and phase from a Bode plot, such as the one labeled

"discrete,”" in Figure 2b. Again, this observer 1is unaware of any dis-

tinction between the two systems (ZOH or slewer) as the same sine wave
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fits the sampled points of either output waveform. The '"continuous"
frequency response magnitude plots for the ZOH and slewer designs are
also shown in Figure 2b. Here the observer must know how to reproduce
, the output waveforr as the sum of a fundamental and its aliased fre-
quencies -- a point discussed next. We merely observe that the '"con-
tinuous" Bode plots show a truly significant difference between the two
systems -- differences which the discrete frequency response of classi-

cal sample data control theory is incapable of detecting.

In the analysis of multi-rate simulations, one is often more inter-
ested in the finite set of sine waves that fits an output sequence

sampled in, for example, a T/M time frame when the input 1s sampled in a

T/N time frame. It 1s therefore appropriate to review the "finite N
case" and the subsequent extension to the continuous frequency response

of a discretely excited system.
B. PFREQUENCY RESPONSE OF A SAMPLED SYSTEM

When a continuous, stable, linear system is excited by a sine wave,

the steady-state waveform is comprised of a single wave at the same fre-
quency as the 1input. It differs from the input wave only by a phase
angle and a magnitude factor. Moreover, it 1s unnecessary to compute
the actual transient response of the system when the behavior for large
values of time 18 of interest, since both the magnitude factor and phase

angle can be read from a Bode plot.

The analysis of a continuous system which 1is discretely controlled
is more complex. Given that the system is stable, the continuous output
waveform will contain more than just a wave at the fundamental fre-
quency. It will consist of the fundamental and all of its aliases. L
Thus, 1f the system {8 forced with 1 gin bt, the output will contain
terms at frequencies b, [b + (2n/T)}, (b - (27/T)], .++« The relative
amplitudes and phase angles will depend on the data hold employed as
well as the system transfer function. Nevertheless, given a data hold

and transfer function, the magnitude and phase angle of each component

can be read from a particular Bode plot. This concept of frequency

response 18 more comprehensive than the traditional concept of the
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"sampled spectrum," which is limited to determining the single sinusoid
that fits the system output samples at the sampling instants.
}
|

In the subsections to follow the Bode plot concept for a continuous
system is reviewed and then extended to the frequency response of a dis-

cretely excited open-loop systeme.
C. CONTINUOUS SYSTEM BODE PLOTS

It will be helpful to first review the Bode plot concept for contin-~

uous sytems. Let R in Figure 3 be a unit input sine wave with frequency

W, rad/sec. The output, in the frequency domain, 1is:

w
C(s) = G(s)R(s) = G(s) = (1)
sl + wg
: Equation 1 can be expanded in partial fractions as:
Aw, Bs Terms associated
C(s) + | with characteristic (2)

+
s2 +wd 82 + W} polynomial of G(s)

Given that all poles of G(s) are in the left half plane, the bracketed
term in Equation 1 represents time functions that vanish as t =+ o,
Thus, the steady-state behavior 1is completely determined by the partial
fraction coefficients A and B, and once they are known the steady-state

time response can be written directly as:

]
R c
——— G(s) -
Figure 3. Continuous System p
°
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Cc(t) 1im = A sin wyt + B cos wyt

>

= /A% + 8% sin (upt + ¢) (3)

where ¢ = tan-1 (B/A).

The details of solving for A and B show the relationship between the
Bode plot and the steady-state waveform. To solve for A and B, multiply
Equation 2 by [s2 + wﬁ] and evaluate the result for s = juw i

Terms associated

G(s)w°’s-jw - (Awo+Bs)Is_jw + |with characteristic (32+wg
o o polynomial of G(s)

)Is=jwo

(4)

or

1 B/A

G(s)’s-jm wo = A+ jB = /A2 + g2 GJtan” )
(o)

To summarize, a sinusoidal inpnt at frequency w, produces a steady-state
waveform of the same frequency. It differs from the input only by a
magnitude factor and a phase shift. Both the magnitude factor and phase
shift for any given 1input frequency, w , can be read directly from the

Bode plot for G(jw). That is, for amny given input frequency w,:

A+ jB = G(S)Is-jwo (6)

This "frequency response" viewpoint is expanded to encompass discretely

excited continuous systems.

D. MATHEMATICAL PRELIMINARIES

Let R be a sinusoid of unit amplitude with frequency b rad/sec
(R = 1 sin bt). 1f R is sampled at 1/T Hz and then described in terms
of an N/T Hz model, we obtain

10
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N
z" sin bT
RT = . z = e8T/N (7)

22N (2 cos bT)zN + 1

where the superscript [‘]T is used to denote the frametime of the sampl-
ing operator. For later use, it 1is necessary to find the 2N factors of
the denominator of Equation 7 in a form that will permit a partial frac-
tion expansion containing terms for which corresponding time functions

are known. For example, if f(t) = sin bt, then

in bT
£T(t) = [sin bt]T = F = 2 8)
© [sin : (z) z2 - (2 cos bT)z + 1 (

but we do not know the time function corresponding to

in bT
F(z2) = = 2 s (9)
z< 4+ (2 cos bT)z + 1

which will also occur among the N factors of the denominator of Equa-

tion 7.

This problem can be examined in more detail by letting zN = X in

Equation 7 and solving for the roots using exponential notation:

2N

2N (2 cos BTN +1 = X?

-~ 2(cos HT)X + 1 (10)

In turn,

X2 = (2 cos BI)X + 1 = (X - cos bT)° + (sin bT)2 (11)




The N roots of Equation !l can now be expressed as
(X - cos bT)2 = —(sin bT)2
X - cos bT = +#§ gin bT

X = cos bT + j sin bT = eﬂb'r

Replacing X by zN gives one of the many ways of describing the roots of
Equation 7:

’ z = HIOTM o BOTM+2mM] |y (/M) + @] (12)

In a purely formal sense, the n in Equation 12 can take om both

positive and negative integer values. The preferred format for defining
the roots of Equation 12 is:

bT | 2m _ 2\l _ I
N TN [b+(r)]n “n N

As we have said, both positive and negative values of n are permitted.
For example, if N = 3 there are three complex conjugate roots pertaining

to the frequencies
b, b+ 2r/T , b+ 4n/T

However, the values

b, b=~ (2n/T) , b + (2n/T)

are equally permissible. For the finite N case many readers will prefer
the description in terms of the input frequency and the positive ali-

ases, avoiding a description that contains negative frequencies. 6

L e
[ _
lh ’

TS T W e T et e o T Y g



E. OPEN-LOOP FREQUENCY RESPONSE — FINITE N

Consider the system of Figure 4 where G(s) represents an arbitrary
transfer function and M represents an arbitrary data hold. Suppose R is
a unit amplitude sine wave and the output is sampled in a T/N frame

time:

zN sin bT
z2N - [2 cos bT)zN + 1

CT/N - (GM)T/NRT = (GM)T/N 2z = eST/N

(13)

The superscript is used to call out the defining time frame and use is

T/N -
made of the identity [A BT] / = AT/“BT (Reference 1).

Expand the right-hand side of Equation 13 in partial fractions:

CT/N %if A,z sin wy (T/N) + Byzlz - cos w,(T/N)]
n=0 22 - [2 cos wn(T/N)] z + 1

T/N]

+ [Terms due to modes of (GM) (14)

/N

Assume that responses in the modes of (GM)T approach zero as t + =,

that all modes are stable. In Equation 14,

1060,

27n

w, = b+ T s n=20,1, 2, «os, N~]
R RT c cT/N
T T/N
Figure 4. Open-Loop Case
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The steady-state waveform, at

For the present, we assume that b < 2nT.

the sampling instants, can be written as:

N-1
[c(py]T = {~§: (A, sin wyt + By cos wnt) (15)

n=0

To solve for Ah and Bn, multiply each side of Equation 14 by

(22 - [2 cos @ (T/M))z +1] , 0<k<®N-~-1D

and evaluate for z = lé.mk(T/N)- The only term that can survive on the

right-hand side occurs when n = k (the k notation can then be changed to

n). To illustrate,

2N sip BT
22§ o (2 cos bT)ZN + 1

GM)T/N 2o
(GM) [z 2 cos w(T/N)Yz + 1] 2= gy (T/N)

(16)

=l [Apz sin w, (T/N)] + B,z(z ~ cos mn('x‘/N)}
- 2
2:1) [z {2 cos w (T/N)]z + 1] 2= 18wy (T/N)

22 = [2 cos wy(T/N)]z + 1

For any n ¥ k, the right-hand side of Equation 16 1is identically zero

since

22 - [2 cos wk(T/N)]z +1 = [z - cos mk(T/N)]2 + |sin wk(T/N)]2 (17)

vanishes when

z = law(T/N) = cos we (T/N) + 3 sin wy (T/N) (18)




Specifically, we obtain

]2 + |stn wk(T/N)]Z = 0

(19)

[cos we (T/N) + j sin w (T/N) - cos w, (T/N)

For n = k, the cancellation of the common factor guarantees the survival

of an n = k term. Factoring out a common z gives

z{Ag sin w,(T/N) + By[cos wy(T/N) = cos wy(T/N) + j sin wy(T/N)]]

= (Ak + jBk)z sin wk(T/N)l

z=]gwy (T/N)

(20)

Therefore, Equation 16 becomes
G/M TN gin bT)(22 = (2 cos w (T/N¥}]z + 1] 21
z sin W (T/N) (A + JB) = m - (21)
zeN - [2 cos bT)zN + 1 z=13w) (T/N)
At this point, let k revert to n.
2
. /N CzN=l s bt (27 - 12 cos wy(T/M))z + 1)

An *+ 1By (1) !z-1¢un(T/N> sin wg (T/4) 228 - (2 cos bT)zN + 1 (22)

2= lgu, (T/N)

The last term on the right-hand side of Equation 22 is indeterminate
(0/0) when z = 14wn(T/N)- Therefore, apply L HOpital”s rule once and
obtain

N=12(z - cos wy(T/N)) sin bT

B - (CM)T/N .
Ap + 3B, CO 5 2a1 gy cT/m) 2N2N-1(zN _ cos bT) 8in wy(T/N) 2= Ly (T/N) (23)

1
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[cos wy (T/N) + ) 8in wy(T/N) - cos wo (T/N) ] 8in bT

1
+ iB. = = (GM)T/N .
An Von N 2% L gy (T/N) (cos waT + § sin wpT - cos bT) Bin w, (T/N)

1 (24)

A direct substitution for wo=b + (27n/T) quickly shows that the last !

part of the product in Equation 24 is unity. Therefore,

L caayT/N st
+ jB. = = (GM 25
A, + JB, N () 2=14w, (T/N) (25)

The superscript notation in Equationm 25 is for the purpose of calling

out the definition of z being used in the evaluation.

To review the situation, the system is forced with the sin bt. The

steady-state output waveform, sampled with a T/N frametime, has the form

N-1 T/N
cT/Nqy = 2: (Ap sin wpt + By cos mnt)] (26)
n=0
where
27n
w, = b +--;r' s n=20,1 2, 2., N=I (27)
As an alternative, one may use
(N=1)/2 T/N H
cT/N (A, sin w,t + By cos wnt)] y» N odd (28)
n==(N-1)/2 _
or
™ /2)-1 /N
cT/N (Ay sin wy, + By cos wyt) , N even (29)
n==N/2

= o e o =
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The coefficients Al and Bn are computed using Equation 25.

For example, let

-sT
= 1 - N = a
M __L-—s , G(s) P (30)
so that
-aT N
L ant/N - L - o2 /N (-2 1)
N N(z - e—aT/N) (1 - z—l)

It is instructive to plot the Bode plot for Equation 3! using N as a
parameter. For the sake of clarity, we will plot versus w rather than
log w and omit the phase angle plot. Also, for reasons of clarity, the
ordinate scales will be displaced for the different values of N (refer
to Figure 5). Over the plotted range of 8m, the N = 1 case repeats
itself 4 times. In a like manner, the N = 2 case repeats twice, whereas

N = 4 goes through one cycle.

Using (1 sin (m/2)t] as an 1input, 1in the N =1 case our only
interest 1is matching the sampling points with a single sine wave. The
magnitude and phase angle (not shown in Figure 5) could be read from
this plot at w = n/2, a/2 + 2%, W/2 4+ 4%, n/2 + 60, ...; giving the
correct values for each point. Assume next that the input has a fre-
quency b = (7/2 + 4m). Clearly, 1if the objective is to match the sample
points with a single sinusoid, the frequency of the output could be b
plus any 2n/T multiple as the sampler cannot tell the difference. In
fact, the “sub" aliases at b - 2n/T, b - 4n/T will also work. These
"sub" alfases are the difference terms so prominent in modulation

theory.

Figure 6 depicts this situation for a steady-state response given an

input frequency of b = m/2 rad/sec, assuming the system in Equation 31.

17




Figure 5. Magnitude Plot for N =1, 2, 4
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O] Sample Points
— = Asin[(x/2)]t+ 8 cos [(w/2)]1

Asin[(w/2)-(27/T)]t +B cos[(x/2)-(27/T))t
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Figure 6, Two Continuous Sine Waves Which
Match the Sample Points

[ -




For the sake of clarity, only two of the many waves which fit the sample

points are shown — one at ©/2 rad/sec, the other at [(n/2) - (27/T)]

rad/sec.

The N = | plot in Figure 5 corresponds to the "sampled spectrum” of
sampled data control theory. Turn now to the N = 2 case wherein the
objective i1s to match one inter-sample point as well as the sample
points. Let the input frequency be w/2 and note that the points at
w= n/2, n/2 + 2n give the correct answers, as would the points F
n/2 + 4u, uw/2 + 6m. Suppose next that the input frequency 1is
b = nw/2 + 2n. Clearly, the second required component could be read from
the "first alias" at b + 2r/T or the first sub-alias at b - 2n/T [or,
for that matter, all the frequencies w = (¥/2) + 2nm where n is an inte-

ger].

In the N = 4 case, four sine waves are required to fit three inter-
sample points as well as the sampled points. If the 1input frequency
were b = w/2 + 6%, and 1f the plot of Figure 5 with its limited range
of 81 were the only one available, clearly it would be to our advantage
to use the "difference" frequency points et w = b - 27/T, b - 4%n/T, and
b - 6n/T to establish the magnitude 4 relative phase of the three

remaining sine waves.

This brief discussion serves to point out that the aliases and sub-
aliases can be associated with the sum and difference frequencies of
modulation theory. One should not, however, think that both sum and
difference components must be simultaneously present in the output.
Clearly, only N components are needed. We can now remove the earlier
constraint that b < 2%/T. If b 1is less than 2n/T, it is certainly true
that

w, = b+=2% |, n=0,1, 2, ..., N-1 (32)

However, if b > 2n/T, let wg = 2% /T and use

2)

n, = -(;; (33)

INT
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to restate Equation 32 as

’ n= no, no + 1, soe, 0, 1, 2, ceey N - no -1 (34)

For our previous example where N = 4, suppose b = 67 + 7/2. Then

(6ll+ n/2

n = -
2w INT

= =3 (35

Thus,

oy = b +ER L ne3 2, o1 0 (36)

and we use three sub aliases. If b = 7/2, then

= —M =
i ( 2“)INT 0

and we use

—2—;3 , n=0,1, 2 3

the "positive" aliases.

Keep in mind that all this represents a convention which the reader
may not necessarily elect to follow. What is 1important is a clear
understanding which will permit one to pick a consistent set of N points
from the Bode plot. In this regard, the reader should note that the use

of Equation 28 (or Equation 29) instead of Equation 27 eliminates the
need for the definition of n .

0f 1interest 1s the case where N 1s extremely large. In fact, let

N » ® after evaluating Equation 31 at z = 13 w,(T/N):

21 [




1 - g=aT/N | _ ;N

(1 - e dT/N)(| o 1y, T)

Nz ~ emaT/N) ) _ o= z= 14wy, (T/N)

An 1indeterminate form is obtained.

N[ 1gan (T/N) = e=8T/N|[1 = 14, (T/N)] Lim

(37)

N+

Therefore, use L‘Hopital’s rule

twice (substitute 13w, (T/N) = cos w,(T/N) + j sin w,(T/N), etc.) and
obtain:
l(l;gifI)Tm ColeedtmT 4 LoesT ) (38)
N \s(s + D/ zalgu, (T/N) 1o Ju, T 1 + juy, sT s +1 a=juy

N+

That is, as N > «, one simply divides GM by T and evaluates the coeffi-

clents at s = juwp.
cussed in the next subsection.

N approaches infinity,

A word of caution 1is in order on w_.

This is representative of the general result dis-

ne As

the definition of Equation 28 (or Equation 29)

should be adhered to in order to properly incorporate the sub-aliases

into the spectrum.

F. OPEN LOOP FREQUENCY RESPONSE —

CONTINUOUS OUTPUT

The next development uses an approach suggested by Professor Hsi-Han

Yeh (University of Kentucky).

dependence of the spectrum on both positive and negative aliases.

This approach more clearly shows the

That

is, for finite N, there i8 a choice in the makeup of the sinusoidal com-

ponents which exactly match the steady-state gample points.

The finite

N case 1s therefore not unique =- in sharp contrast to the infinite N

results which require (as will be shown) the use of all the sub~aliases

as well as all of the aliased components.

22




In the previous section it was shown that

. z3esT/N
Ay + 3By = % @A) (39)
z=13w, (T/N)

To deduce the behavior for infinite N, use an alternative description of

Figure 4 which describes the sine wave input directly in the s-domain:

Wn
3 (40)

n

() = GaM(s) [3 X

n== s2 +

where w, = b + 2mn/T.

The partial fraction expansion of Equation 40 may be written as

g Bps
3 A“(m“g + 1 5 | + [Transient modes of GM] (41)
== 32 + Wy 32 + Wn

C(s) =

Multiply each side of Equation 41 by s + wg and evaluate at S = jw,:

c(s)(s2 + wl) = Ajw, + B jug

G(s)M(s) (1/T)uw,

By + 3By = UDEEMD| L, n= 0t t2, (42)

; Thus the continuous spectrum contains, because of the summation
from - to +°, both positive and negative aliased frequencies.

The finite N example of the previous section can now be studied for
the case of infinite N. Thus

o 1l=p8T _ 1
AL+ 3B

(43)

produces the Bode plot of Figure 7.
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The interpretation of Figure 7 is as follows. Suppose a unit sine
wave at 1 rad/sec 1s input to the sampler. Then, if sine waves at 1,
1+ 2n/T, 1 - 27/T, 1 + 4n/T, 1 - 4%/T, «.. are added together, the
resultant waveform will be an exact match of the actual steady-state
output waveform. In Figure 7, one may plot the sub aliases (the nega-
tive frequency components) on a "positive frequency" Bode plot by taking
advantage of the fact that the magnitude 1s an even function of fre-

quency and the phase 1is an odd function of frequency.

One would expect this waveform to be relatively clean, since the
first alias 1is 30 dB lower than the input component. However, the tran-
sient response itself does not bear out this conjecture, as can be seen
in Figure 8. The reason is that the higher terms are important. They
do not represent "harmonic" terms but are rather modulation components
which must add together properly in order to match conditions at the T
transition points. It can be seen that the '"steady state'" does not
necessarily take on the additional attribute of periodicity. This
occurs only when the input frequency and the sampling frequency bear an

integer relationship with respect to one another.
G. INPUT SIGNAL WITH PHASE SHIFT
If the 1nput signal has the form
r(t) = kj sin bt + kp cos bt (44)
the results of the previous section are changed only by a complex con-

stant. Following exactly the procedures of Subsection E, except for

using the more general input given in Equation 44, gives (Reference 1):

a gT/N
.L Z=e
Ay + 1By = % GNT/N * (kp + Jkp) (45)
z=1gw, (T/N)
Given that the limit N + =
Ay + 1B, = %cu © (ky + 3kp) (46)
s=juw,
24
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Figure 8. '"Steady-State'" Transient Response

The choice of the N frequencies for the finite N case is at the discre-
tion of the user. However, both '"negative" and '"positve" frequencies

are required as N * < (Equations 28 and 29).

H. SINGLE-RATE CLOSED-LOOP FREQUENCY RESPONSE

The closed-loop results will be configuration dependent. However,
the mathematics remains tractable and can be followed through on a case-
by-case basis. It is important to have an insight into the mathematical
structure and the particular simplifications that surface in a closed-

loop analysis.

Consider the (vector) system shown {n Figure 9. The procedure we
now follow will be typical. First, solve for the vector component at

the input of the data holds.

ET = GIRT - GlG5(aM)TET (47)
Therefore
T T =l 7
ET = [1 +c¢j65(eM)T] GirT (48)
26

S ol T T g




T T
R E S E cC,c
—— G, [T~ M 6 1=
h T T T
Gp =

Figure 9. Illustrative Vector Closed-Loop Configuration
Next, solve for C(s):
T.T, 117 L. T.r
C = (GM)[I + 6162(eMm)T] GIR (49)

The spectrum of C(s) 1is of interest; we seek it by finding first the

T/N

spectrum of C and going to the limiting case of N + o,

Let the input be a sine wave at frequency b rad/sec and let the

delay operator be

e—sT/N (50)

N
i
—
]

so that

N
gT = zY sin bT (51)

22N ~ 2 (cos bT)2N + 1

Therefore
cT/N = [(em)[I + GTGE(GM)TI‘IG¥RT}T/N
(52)

-1
cT/N (GMT/N[T + GIGE(GM)T) GIRT

For the sake of brevity write Equation 52 as

cT/N = 3/NGIgT (53)




T et e et e g =
———

e e

Note that Equation 53 1is exactly the same as Equation 13, except

T/N T/N.T

(GM) has been replaced by Go° Gp. Hence we can write a key result

using Equation 25:

CRELNEE A (54)
But
Gi & cp(zV)

Therefore, using

(13w (TN IN = 1aw,T
= cos wT + j sin w,T
= cos [b + (2nn/T)}T
+ j sin [b + (27n/T)]T
= cos bT + j sin bT (55)
we obtain
cg lgug (T/Ny = G l1aun(T/M)IN

Gllaw,T] = G[labT) (56)

It 1is permissible to replace zN in Gg with 2z and evaluate it at
z = ]14bT. At this point we have

4esT/N zées'r
A+ 3B, = ,}l«' G:{/N(z)} [c§<z>] (57)
z=13uw, (T/N) Z=13bT

Equation 57 is the basic result for the finite N case. To reiterate, to
find the coefficients of the N sine waves for the T/N sampled output of
C, compute the normal "T" transfer functions for

-1.T
cg - u+c"fc§<cu)T1 61 (58)

28




and evaluate it for
z = labT (59)

Next, compute the normal T/N pulsed transfer function for Gp and evalu-

ate it at z = law, (T/N) where Y, = b + (2mn/T).

T
Thus, Gy is periodic in (2"0/3) and it suffices to use bT instead
T/N
of w,(T/N). Moreover, only the GA is a function of N; this simplifies

the procedure involved in the limiting case tremendously. For the case

of N » »  the continuous case, we obtain:

8.sT
z=e
Gg(z)

A, + jB, = (Iﬂiﬂ%gﬁéll )( ) , n =0, +1, +2, ...
s=juwy z=14bT

(60)
Equation 60 is the desired result for the given closed-loop configu-

*
ration. However, the mathematical ideas are what count; one can follow

the details through for other configurations with relative ease.

With this development, one 1s in a position to plot the Bode plots
for the closed-loop system of Figure 1 and verify the results given in
Fig. 2. We will also use that example to solidify the meaning of the
frequency response for the finite N case. Suppose the continuous
transient response for a unit amplitude sine wave, with a frequency
of m/2, is available (see Fig. 10). Acéording to theory, one should be
able to set N = 1 and from the Bode plot read the magnitude and phase of
the single sinusoid that fits the sample points at the sample instant.
This 1indeed proves to be the case and 1is shown in Figure 1ll. 1In Fig-

ure 11 a section of the transient response has been '"copied" and

*Accurate numerical determination of 8;[1 bT may p;oVe difficult at
high sampling rates. This 1s the result of small differences between
large numbers which occur 1in the computations as poles and =zeros
approach the unit circle. In this event, one is well advised to carry
out equivalent computations in a domain where numerical conditioning is
much improved (e.g., in terms of w’ or w).
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overlaid with the sine wave which results from the N = 1 computation,

namely

. T ( n n T
[C())T = (a5 sin 5 t + by cos 3 t) (61)

2
Equation 61 indicates that the value of the wave at the sampling
instants 1is of iInterest. However, for expository purposes, a complete

cycle has been shown.

Next, consider the N = 2 case where the desire is to fit not only
the sample point but one inter-sample point as well. This case is shown

in Figure 12. The T/2 response equation {is

T/2 i n
C(t) {ss = |ag sin 2t bg cos 2t
T/2
+ aj sin (% + —2'1%)L + by cos L-% + 2—;):. (62)

Again, for expository reasons, the continuous waveform 1is shown which
results from sines and cosines at w = /2 and 1its first alias at
w= (7/2) + (27n/T). A half period for the N = 10 case 1s shown in Fig-
ure 13. The steady-state wave of this example 1s periodic and free of
modulation effects simply because the selected input frequency bears an

integer relationship to the sampling frequency.

It is also important to bear in mind when "matching" sample points

that the ag term for N = 1 will be unequal to the aq term for N = 2.

This is demonstrated in Table 1 for N = 1, 2, and 4 and b = 7/2.
I. A PARTICULAR TWO-RATE CONFIGURATION

As with the analysis of closed-loop single-rate systems, the analy-
sis of the multi-rate closed-loop case is configuration dependent. Here
we Lreat a particularly simple two-rate configuration which can be ana-
lyzed without resorting to a switch decomposition format. A more com—
plex example, which requires the use of vector switch decomposition,
will be treated after the fundamentals of that technique have - .n
reviewed in Section III.
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Steady-State Sinusoidal Components, N = 2
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Figure 13,

Steady-State Sinusoidal Components, N = 10, Half Period




TABLE 1. COMPONENT COEFFICLIENTS N =1, 2, 4

ﬁ N =1 N =2 N = 4
a, -0.174468021 | a, =-0.048579760 |a,  0.002998683
b

by, -0.287649137 | by =-0.306381976 | by -0.302606086
a, -0.125888261 |a, =0.046197029

L ! 1
T b, 0.018732839 | b, -0.043548018
a, =0.051578443

b +-ﬁ% 2
b, =-0.003775889
o a; -0.079691232

b+—T

by 0.062280857

Consider the two-rate system shown in Figure l4, In Figure l4, Wy
and W, are compensation networks, M is a data hold, and G represents the
open-loop system dynamics (consider these to be matrices of the proper

dimensions).

The objective 1s to find the '"frequency response" for the output
vector C. As in the single-rate case, assume that C undergoes a phantom
T/N sampling operation and then seek the 1limit as N + o. From Fig-

ure lé:

C = GMET/M (63)

or
cT/N = (GM)T/NET/M | N/M an integer (64)

The first task is to solve for ET/M. This is non-trivial; the details

must be followed with care.

E = wRT - wwi(cMeT/M)T (65)
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Figure l4. A Specific Two~Rate Closed-Loop Configuration
Therefore,
T/ T/M, T T
ET/M o wiMRT O ]S omET/M)

Pre~-multiply Equation 66 by GM and sample at a T interval.

T /My T /My T T T

(MET/M)® = (amw)’™") RT - (@w)’") wa(aMET/M)

Solve Equation 67 for (GMET/M)T:

-1
T T
(GMET/M)T = [1+ (GMW{/M) wg] (GMW{/M) rT

(66)

(67)

(68)

Substitute Equation 68 into Equation 66 and clear through. The result

is:

T . -1
L R LR COR

For brevity, let
gT/M /M T

= W] GuRT

T
The evaluation of G, is not elementary. For example, the (GHWI

T/M

T
(ewi/™) JRT  (69)

(70)

T
) ele-

ment of GX will have to be computed using either switch decomposition or




the phantom sampler (Reference 1 or see the development of Section 1V).

Via the phantom sampler,
T T
M - T/M
' (/™) = [(ew)T/M]/M] (71)
To this point, the two-rate example yilelds

cI/N - (GM]T/NWf/MGXRT (72)

and we see that the only new element added over the single-rate case 1is
the addition of a term sampled on a8 T/M interval together with a con-

straint that N/M be an integer-.
Let

z eST/N (73)

so that a unit amplitude sinusoidal 1input at b rad/sec has the transform

N
RT o ———2_8in bl (74)

z2N - (2 cos bT)ZN + 1

As in the single-rate case, substitute Equation 74 1ntog%quation 72:

T/M.T zN sin bT
1 Ga T

cT/N w (eM)T/Ny (75
z2N - (2 cos bT)zN +1 )

Again, the problem is in a recognizable form and we may proceed directly

to the answer.

T/M_T

- 1 T/N
A, + 3R N (CM) /N1 ey law, (T/N)

(76)

sT/N

Next, since the 1local definition of z = e is in effect, express

esT = (eBT/N)N and write

T
GA - GA(!N) 4
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Therefore,

Ga (2N) G l[law, (T/N)IN

lauy (T/N)

= Gp(law,T) = Gp(labT) (77)

That is, take the "T" z=-transform of GA’ and evaluate at z = l3bT. Now,

the "new" element, W{/M:

WM ey (78)
Therefore,
N/M N/M
W1 | oy = W1 leun (/M) (79)
= Wy [lgey (T/M)) (80)

taking the "T/M" z-transform of W, and evaluating it at z = 4w, (T/M) .

At this point, only GM depends on N and we can go to the limit of

24eST/N z4e8T/M zma8T

A
z=law, (T/M) z=13bT |

Ay + By = % | @OT/N /M

z=13u, (T/N)

(81)

This 1s the desired result for finite N (remember N = M, 2M, etc.).

As N » =, the coefficients of the continuous spectrum are given by

28e8T/M

A+ 1By = Lo wi/M Gs (82)

s=3¢n z=1gy (T/M) z=14bT

n = O’ tlb 1.2. see
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The algebraic manipulations used in this example circumvented the need
for the use of a switch decomposition model by using the classic concept
of a phantom sampler. The limitations of this type of algebraic manipu-~
lation will be discussed in more detail in Section V.

J. SECTION SUMMARY

The '"sampled spectrum'" concept of sampled data control theory 1is
concerned with determining the single sinusoid which fits the output
samples of a single-rate system at the sampling instants. In this sec~
tion, we have reviewed the extension which encompasses the continuous
gspectrum of the continuous variables in a discretely controlled system.
Moreover, the theory considers the finite N case wherein one is con-
cerned with the group of N sinusoids that matches the data not only at
the sample points but at N-l1 inter-sample points as well. This 1is an
important aspect since bench validation of digital hardware 1is often
specified in terms of an end-to-end "frequency response.” Since output
data are taken at a finite number of points, it will be important to
compute finite N results; the coefficients may differ significantly from

the continuous (N + ®) values.

The results for the closed-loop cases have been configuration depen=~
dent; however, the basic technique 1is relatively clear. One starts at
the continuous state vector and writes the system equations back to the
first input point. The next fundamental step is to convert that input
into an equation which contains the sinusoidal input as the basic forc-
ing function. At this point, the basic equations which apply to the
open-loop case can be used. A closed-loop two-rate case was discussed
which did not require the use of switch decomposition. The limitations
of the algebraic manipulations will be discussed more fully 1in Sec~-
tion V.




SECTION III

VECTOR SWITCH DECOMPOSITION AND
A "SCALAR"™ APPROACH

A. INTRODUCTION

This section reviews vector switch decomposition, noting the dimen-
sionality problems introduced by multiple frame times. This 1is followed
by a brlef discussion pertaining to a class of multi-rate problems which
can be treated without recourse to switch decomposition. Several exam-
ples are then used to demonstrate the scalar algebraic manipulation
required, establish the relationship between the scalar algebra and
switch decomposition, and motivate the need for an algorithm which can
be used to evaluate the various expressions that result. The algorithm

itself is discussed in Section IV.
B. REVIEW OF SWITCH DECOMPOSITION

In essence, switch decomposition 13 a procedure wherein systems hav-
ing multiple sampling operations (occurring at fixed but unequal sampl-
ing intervals but with a sampling pattern which 1s repeated over a
fixed, finite time interval) are converted into an equivalent single
sample rate format. As originally introduced by Kranc (Reference 3),
the method used a summing point methodology that proved to be extremely
cumbersome when the ratios of the sampling periods become high. For
this reason, and because evolving state transition methods were tending
to push transform methods into the background, the method fell into dis-
use. However, there 13 much to recommend the switch decomposition con-
cept for use in both time domain and transform domain analyses. In the
gsubsection that follows we will review the basic concept and remove some
earlier restrictions by recasting it 1in vector form. The vector form

simplifies matrix block diagram manipulation for multiloop, multi-rate

sampled systems.




An example reveals the key 1ideas. Consider the continuous signal,
shown in Figure 15a, to be sampled at T/3 samples per second. This
results in the sample sequence shown in Figure 15b. The sampled values
have been numbered for easy reference. Suppose we now sample the con-
tinuous signal with a sampling period T. This results in the sample
sequence consisting of sample numbers 1, 4, 7, 10, 13, ... shown in

Figure 15c. Define this sample sequence to be RT.

Next, advance the continuous signal R by T/3. Then sample the
advanced signal with a sampling period T. This results in a sample
sequence consisting of sample numbers 2, 5, 8,11, 14, ... shown in Fig-

ST/BR)T. Finally, advance

ure 15d. Define this sample sequence to be (e
the continuous signal R by 2T/3 and sample it with a sampling period T.
This results in the sequence consisting of sample numbers 3, 6, 9, 12,

15, ... shown 1n Figure 15e. Define this signal sequence to be
(e28T/3R)T-

The significance of the switch decomposition concept resides in its

ability to provide an alternative expression for the original sequence

RT/3 in terms of several quantities which are each sampled simultane~

ously every T seconds. This alternative expression for RT/3 consists of
the sum of RT, (eST/3R)T, and (e25T/3R)T:
RT/3 = RT 4 (e8T/3 R)T o~8T/3 4 (e25T/3 g)T o-2s1/3 (83)

Equation 83 has a simple factored equivalent that is the product of two

vectors and the scalar R,

e-sT/3’ e-st/3 esT/3 R (84)

e28T/3
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Or, more compactly,

;' RT3« ww,n)? (85)
I
: where
‘ W = [1’ e-sT/3’ e-ZST/3] (86)
and
1
W = eST/3 (87)
*
e23'1‘/3

C. EXTENSION TO THE VECTOR CASE

Further generalization allows R to be a vector of continuous sig-
nals. It is necessary to define a least common sampling period, T, and
a greatest common subinterval, T,» With respect to the R vector. The p

elements of R may be sampled at different minor sampling perilods: Tl’

cse, T2’ oo, Tp’ respectively. It is further assumed that the minor

sampling periods are such that a finite positive T exists such that

T = NIT; o= NyTy = Npr (88)

holds for a set of finite positive integers:
Nl, o.o’.Ni, LI I Y Np

The minimum T for which Equation 88 holds 1s the least common sampling
peziod (for R). A subinterval can be found for which

T = NT, (89)

and N/Ni is an integer for all 1 = 1, 2, ..., p. The largest value

of T, satisfying these conditions 1s the greatest common subinterval

(for R). Equation 89 defines N for the greatest common subinterval.
Given values for N, Ny» P, and T, the p x 2“1 block diagonal matrix, W,
is

42




( W) 0
Y2
W = W(s) = ", (90)
L] wi
] 0 Wp ]
where
Wy o= [1 e_ST/Ni e e-S(j-l)T/Ni e e-S(Ni—l)T/Ni] 91)

The operator matrices W and W can be used to represent multi-rate
.k
sampling operations in terms of a single-rate sampling operator in vec-

tor block dlagrams. This 1s illustrated in Figure 1l6.

Consider an example. Let R be a vector with three components. Let
the first component be sampled with period T/6, the second with period
T/3, and the third with period T/2, i.e.,

T/6 _T/3 _T/2
R* = R1/ , Rz/ , R3/ (92)

The objective 1s to compute W in order to obtain an explicit expression
*

for R via Equations 90 and 91 (which is equivalent to Figure 16). For

this example,

p=3

T is the least common sampling period
T, = T/6, T, = T/3, Ty = T/2

Nl = 6, N2 = 3, N3 = 2

T/6 18 the greatest common subinterval

N =6
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Figure 16, Vector Block Diagrams for Multi-Rate
Sampling Operations




Therefore

1, e~8T/6  ¢=23T/6  o-3sT/6,
0 0
e-4sT/6’ e~38T/6
W = 0 1, e—28T/6  o=43T/6 0
0 0 1, e=3sT/6

(93)

This example gives some 1insight as to how increased dimensionality can
complicate problems in practical application. Consider the vectors R,
R*, and (W*R)T. These vectors have 3, 3, and 1l elements, respectively.
The vector (WxR)T will have pENi elements in general; whereas R and R
will have only p elements each. This 1is significant 1in that analyses
will tend to be conducted in terms of vectors like (W*R)T in distinction L
*

to vectors like R . Consequently, the potential for expanded dimension-
ality in connection with analyses of multi-rate sampled problems 1is
great. For example, consider a problem wherein there are two minor
sampling periods, 39 ms and 40 ms. It 1is easy to verify that the dimen-
sionality expansion factor, N, is 1560.

On the more positfre side, matrix operations are routine. Consider ,1

the system shown 1in Figure 17. Once the vector multi-rate sampling

operations in Figure 17a have been replaced by the switch decomposition

equivalent (Figure 17b), analytical manipulations are routine:

T T T T T
Ep = (W R) = (W HWp) (Wp,GW ) E) (94)

U - e o el
e R el kil i *
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Figure 17. A Multi-Rate Closed-Loop System

Therefore

T -1
E) = [1+ (i mipTonpeipt] @ 0f (95)
and

T T/N

X = aiE  or XN o @)™/ g}

(96)

Notice that the dimension of the 1inverse in Equation 95 is deter-
mined by the columm dimension of Wl. If this dimensionality is high,
and if the column dimension of W, is lower, then we can develop an
alternate equation having lower dimension. The alternative equation 1is

T
in terms of the X] vector. The dimension in this case is determined by
the column dimension of W,.

2
T -1
X} = [1+ o owpTw mnT] " e T )T Ch)
X = cwl[(wl*k)T - Wy, T xﬂ (98)
or
xT/N (Gwl)T/N[(Wl*R)T - (W HW)T x}'] (99)




D. NONSYNCHRONOUS SAMPLING

Nonsynchronous sampling 1is a basic tool useful for modeling distrib-
uted computation architecture, data skewneass in the A/D and D/A conver-
sion processes as well as the internal computational delay of the digi-
tal computer. By definition, nonsynchronous sampling occurs when all
the gsystems” sampling operations are repeated at the same rate but occur

at different instants of time (refer to Figure 18).

In Figure 18 both continuous signals, x; and x,, are sampled at

1/T Hz, but the x, sampler is "out of sync" with the x, sampler by

T
. 1
ure 19a and for x; in Figure 19b. (* notation on X, 1s used here to

T, seconds. The sampling operation for x, 1s shown symbolically in Fig-

indicate an "unconventional" sampling operation.)

Figure 19b models the nonsynchronous sampler with a synchronous
sampler by preceding the sampler with the operation W* followed by the

operator W, i.e.,
Wy)T (100)
where

W = e ° , W, = g © (101)

Proceeding according to Equation 101, one advances Xy by To seconds,
samples at the 1/T rate, and then delays (W*xz)T by T, gseconds to obtain
the time sequence (refer to Figure 20). Note how the nonsynchronous
sampling operation on x, is modeled in terms of a scalar factor; thus
the dimension of the equivalent single-rate sampled signal, (w*xz)T’ 1s

not increased.

The model readily extends to the case where x is a vector.
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E. SPECIAL CASE

Consider Figure 21, a three-rate system without feedback.

T/N3

cI/N3 T/NI)T/NZJ

= [Ga(6)R (102)

c3/N3 ]/N2 gT/M1 (103)

if N3/N2 and N2/N1 are integers. However, Equation 103 can, using the
algorithm given in Section 1V, be evaluated directly (for a given R) in
the event that N;/N, and N,/N, do not satisfy the integer relationship.

This 1is not the case for the feedback system of Figure 22.

T/M
E = R - GZ[GIET/N] (104)

If M/N is an integer, Equation 104 becomes

R - GZG{/M gI/N

which indicates

BTN o RI/N - [o,GI/M)T/N g/ (105)
Solve for the unknowm

A (e e
using, for example, the algorithm given in the next section. If M/N is

not an integer, one would be forced to cast Figure 22 in a vector switch

(or some other equivalent state transition) format.

i
L S

N g = gy




/N, T/N,

cT/Ns

— —

T/N3

Figure 21. An Open-Loop Configuration

T/N

T/N

Gy

GZ .‘___/_

T/M

Figure 22. A Closed-Loop Configuration

In a like manner, if N/M is an integer, write

¢ = Gy[r - ccT/M]T/N

= T/N o T/NcT/M
GIR Glcz c

giving

cI/M . [GIRT/N]T/M _ [clcg/N]T/M cT/M

-1
cT/M o [1+ (GlcglN)T/“] [c,RT/N]T/M

» N/M 18 an integer

(106)

To summarize, open-loop systems such as Figure 21 can in theory be

analyzed without recourse to switch decomposition.
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Closed-loop systems,
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on the other hand, require a fortuitous set of relationships among the

frame times.
F. A PARTICULAR THREE-RATE CLOSED-LOOP SYSTEM

There 1is a natural tendency in the design of digital systems to
select sampling ratios in powers of 2. This is probably due to the ease
with which clock rates can be doubled (or halved). Such is the case of
the three-rate digital controllers for the Shuttle (25, 50, 100 Hz) and
the F-18 (20, 40, 80 Hz). It has been our experience that such systems
can always be analyzed with operations such as those described in the
previous section. For example, ccnsider the closed-loop configuration T

of Figure 23. One may verify the following operations:

E = R- G[61ET/2]T - g3[cET/2]T/4 (107)
E = R=- G[6ET/2]" - g,61/4 £T/2
. T T/2
gT/2 = RT/2 - GE/Z[GLET/Z] - [G3G'f/4] ET/2 (108)
Therefore,
1/2 71 /27T
ET/Z = [1 + (6461/4) /2170 [r1/2 - 63/ 2(c,ET/2)"] -
- - T
= [+ [FLRT/2- [ L GE/Z[GIET/Z] (109)
where
. = - T 4 T 2
(-] [T + (c,61/4)1/2]

g£quation 109 defines ET/2 in terms of RI/2 and [GIET/ZJT. Next, multi-
ply Equation 109 by G; and solve for [GIET/Z]T:

[1s?/2]% = [oy0 - 17 RV/2]T =~ [or [+ 17 GF/2 [ [eyET/2
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Figure 23. A Three-Rate Configuration; T, T/2, T/4

or
-1

T T
bo[eyre1-1RT/2)

T
[1ET/2] = {1 + [cl[-1-1c§/2] (110)

Substituting Equation 110 into Equation 109, and using .
C = GET/2

gives the continuous output in terms of R. One may contrast the com-

plexity of this algebra against the simplicity of switch decomposition.
Since

C = GyWE} = GET/2 — ET/2 (111)

one need solve only for E¥:
T ,
[T+ (W2,62)T(61W2)T + (Wp,63W,)T(Way61W2)T]E] = (W2R)T (112) {

Thus, a simple, straightforward block diagram manipulation gives the

needed vector, E?, essentially "by inspection:

T -1
E] = [T+ (W3,062)T(61W2)T + (Wp,63W4) (W4, 61W2)T] ™ (Wp,R)T (113)

L T L
b‘{ vl T : ) e
- % g e - —— Rl P




The switch decomposition result, Equation 113, can be used directly

to arrive at Equation 108. Premultiply Equation 112 by wz and ™nest"
the four terms. Two terms are obvious:
T & gT/2
WzEl E
Wp(Wa,R)T & RT/2
The other two are slightly more laborious. For example:

)T
tl(W2*c3w4)(W4*G1w2]E€] :

T
(W2, G3W4 )T (W,,61W2 ) TE]

ﬁwh%uxuswvaff

T
:W2*03[01ET/2]T/4f

T
T/4
[W2*0361/ ET/2]

but

T T/2 T/2
Walu2, 6561 *E1/2]) & [636]/%e1/2] "7 = [ey6]/4]

ET/2 (114)
A similar operation on WZ(WZ*GZ)T(GIWZ)TE€ gives the remaining terms
of Equation 108. Specifically,

. T O 1/2 T
Wa(W,65)T (6 W,)TE] = 61/%[GET/2] (115)

It can be appreciated that switch decomposition, coupled with the
nesting operation, can be used (where appropriate) to generate a
"scalar” alternative to the switch decompositfon model. The use of the
word scalar 1s in the sense that E¥ is a 2 x 1 vector in Equation 113
/2 in Equation 108 and [G3G¥/4]T/2

lars. The use of the "scalar" results implies the existence of an

whereas E in Equation 110 are sca-

algorithm for evaluating terms like |G cT/4 T/Z. Just such an algorithm
371
is given in Section 1V.




G. SECTION SUMMARY

Vector switch decomposition was reviewed from the viewpoint of
multi-rate sampling. For particular configurations, it was demonstrated
that an operational algebra could be used in lieu of switch decompo-
sition and thus a scalar problem can retain a scalar format. It was
conjectured that all open-loop configurations and those closed-loop
systems wherein the frame times are ratioed as powers of 2 constitute a
clags of problems on which the operational algebra can be effectively
applied. The algebraT/Ze%vires the evaluation of nested multi-rate

]

operations such as [G3G1

.
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SECTION IV

A USEFUL ALGORITHM FOR THE ANALYSIS OF
MULTI-RATE CONTROLLERS

A. INTRODUCTION

A prevalent trend in digital control systems design 1is the use of
several computational frametimes. For example, both the F-18 and Space
Shuttle have three-rate digital controllers (80, 40 and 20 Hz; 100, 50,
25 Hz). Moreover, it is not uncommon to find sophisticated simulations
that use more than one computer, each one working in a different frame
time (e.g., see the case study of Section IX). The purpose of this
section 1is to present an algorithm which is useful for the analysis of
such systems. Starting with a significant generalization of the "skip-

sampling theorem,"

we first comment on the properties of the solution
and from these deduce an algorithm for computing two-rate transfer func-
tions. The algorithm requires only the use of synthetic division as the
primary analytical tool. Therefore a host of problems associated with
alternative wmethods are circumvented. The two-rate algorithm, when
coupled with the generalized skip sampling theorem, expedites the analy-

gils of multi-rate systems.

Examples are used to demonstrate the various properties of the
method — perhaps the most important being that the algorithm treats
both the so-called high-to-low and low-to-high rate cases, as limiting

forms, within a single framework.
B. AN IMPORTANT IDENTITY

Of fundamental concern 1is the output for the system of Figure 24.
As indicated, 1t is permissible to insert g phantom sampler between G
and the T/M sampler if T/NK and T/M are presumed to be integer related.
A slightly less general version of Figure 24 wherein K = M, 18 treated

in References 1 and 2. Thus

cT/M = [GrT/N|TM _ [GT/NKRT/N|T/M (116)
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Figure 24. A Phantom Sampler Formulation of a
T/N, T/M Sampling Format

where M and N are rational numbers. In Equation 116, the notation of

Reference 3 is utilized. Specifically, G[.] designates the z transfer

function in a [*] timeframe. For example,

1 |T/2

= Z = o8T/2
o+l z e (117)

z - e"T/2 ’

Also, knowledge of routine operations such as

T/Z T/6 z T/6
z - e~1/2

[ 1
s+l yeesT/2

3

____z.__.'r_/-i. . z = eST/6 (118)
23 - e

18 presumed.

For the special case M = 1, K = 1, Figure 24 reduces to the well-

known high-to-low rate transform (for exampie, see Reference 4).
To compute the entries of Equation 116 one may:
1) Determine R by table lookup.
2) Replace T by T/N.

3) Replace z (in R) with zK.

Determine G by table lookup.

4)




5) Replace T with T/NK.

6) 2z remains the same (in G).

7) Compute CT/M using Equation 119.
d K
/M . ‘/' —z__% 4 G(pIR(p®)
C an G(p) R(p ) — pNK/M b p’ res > (119)

In Equation 119, keep in mind the primary requirements; z = e5./VK,

NK/M and K must be integers. This in turn requires M and N to be

rational numbers. An example, using Figure 24, will clarify the
detalls.

Example 1
Let
ST/6 , M =3 , N = 2, K = 3
G = 1 N GT/6 = __.z___.
s + 2 z - e=1/3
- 1 T/2 - z3
Ro= s+ ’ RT/Z = =73
so that
4 T/3
CT/3 = Z
(7 - e'T/3](z3 - e‘T/z)

- L Jf __piz dp
273 Jr (p - e T/3)(p3 - e~T/2)(z - p2) P

3
Pz d
2nj ‘/; (p_e-T/3)(p3_e-T/6)(p2+ e'T/6p+e'2T/6)(z—p2) P

- s + +
e ip-e'T/3 res‘p-e'T/6 res‘p--e'T/6(1/2)+je'T/6(V3/2)
+ res (120)

p=-e~T/6(1/2)-1e~T/6 (/372)




The task 1s to evaluate four residues in the z-plane, even thcugzh
both functions, in the s-plane, were only first order. Evaluating the
four residues and placing the sum of the four terms over a common denom-

inator gives

22(22 + e'ST/b]

CT/3 -
(z - e=2T/3)(z - e-T/3)(22 + e~T/3; 4 ¢=2T/3)

zl‘ + e—ST/623
(z - e-2173)(23 - T

(121)

Thus one starts with

T/6.T/2 _ 2b e
° (z - e1/3)(23 - -1/2) * °° es (122)

and finishes with

b 4 ¢=5T/6;3
T/3 . 2t t+ e z = esT/3
¢ (z - e21/3)(z3 - &-1) * °© e® (123)

leading to the following observations:

1) The poles of Equation 123 can be directly deter-
mined from an inspection of Equation 122 -- the
root locations are squared since the ratio
between the T/6 and T/3 frame times is 2.

2) The numrrator of Equation 123 is fourth order —
one may adopt the viewpoint that the entire
analytical effort expended on the evaluation of
Equation 119 has the net effect of determining
the five numerator coefficients of Equation 123
(NUM = z% + e~5T/623 + 022 + 0z + 0).

C. OUTLINE OF A NEW PROCEDURE

The illustrative example suggests an alternative to evaluating the

residues:

1) Determine the denominator polynomial in the new
time frame (T/M) from a knowledge of the pole
locations in the "old" timeframe (T/NK) utilizing |
NK/M as the ratio between the two. )

e e p—————————
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2) VUtilize the knowledge of the poles and zeros in
the T/NK timeframe, together with awareness of
the pole locations in the T/M timeframe, to
generate the zeros in the T/M timeframe.

At this juncture Step 1 is clear enough but a definitive method for
implementing Step 2 is needed. We shall demonstrate that matching the
time responses of Equations 122 and 123 furnishes a computationally
efficient method for implementing Step 2. Before proceeding to this
step, the reader may find it advantageous to survey the examples of
Appendix A, designed to provide insight into the setup of Equation 119
using Figure 24. 1In particular, note that both the classical "High-to-

Low" and "Low—-to-High" rate transforms are treated as limiting cases.

D. IMPULSE RESPONSE MATCHING

The implementation of Step 2 above by matching the impulse response
is described next. Given an nth order "transfer function" in a T/N time
frame, the transfer function in a T time frame can (computationally) be

found by matching the impulse response. Let

. NUM -N -2
GT/N = DEN "~ 2n + eee + ap_]2 + eee + ap-2z

+ eee + ac‘ZmnN + ees , z = eST/N (124)

where n is the order of the system and N defines the ratio between the

time frames.

From Equation 124, form a vector composed of n + 1 terms from the

successive Nth points in the T/N time frame transient response:
a = [ap, ap-1, *** ag] (125)

Postulate a transfer function, in the T timeframe, in which the coeffi-

cients of the denominator are known but the numerator coefficients are




not. Nothing essential is lost by setting the denominator lead coeffi-

cient to unity.

T . cuz? + cnwlz“‘l + e + g
G (126)
z® + bp-1z07l + «eo + by

A vector "b" can be formed from the known coefficients of the denomina-

tor,

b = [1, byp=1, bp-2, ***, bg]’ (127)
Let the vector "C" represent the unknown coefficients of the numerator:
¢ = [ens en-1s cp-2s % CO]' (128)

The solution for "c¢", deduced from equating the partial fraction

expansion of Equation 126 to the correct temporal terms of Equation 124,

is
. . ~ [~
[ ey an N0 0 17 v ]
~
~
~
Cn-1 an-1 a@Zz ~0 0 hn-1
~
Cn-2 an-2 an-1 an > bn-2
- ~ o (129)

¢n-3 ap-3 an-2 ap-1 bp-3
E L L] L] L] . -
? <o Lao aj ay eeee anJ i bg J

To show this, observe that z N from the old time frame is z~! in the

new time frame, and form
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an + .snn_lz'1 + an_zz'2 + eeo + 22T + .o

z + bn_lzn-l + bn_zzn-Z + eos + bo/;nzn + Cn_lzn-l + cn_zzn-z + oo + cg

an apbp-1 apbp-~2 ap bo

cn-l'-anbn_l * L] . . L L4 L] L)

ap-1 A )
(130)
Equating terms gives
R (131)
€n = 3p
The first division gives
¢n-1 ~ agbn-1 = an-] (132)

or
¢p~1 = ap~] t apbp-]

A second division yields

Cp-2 ~ apbp-2 ~ ap-1bp-} anp-2

(133)
Cp-2 = ap-2 + ap-1bp-] + apbp-2

Continuing for n divisions yields the final result, which can be placed

in the matrix form of Equation 129. Several examples are given to clar-
ify the details.

Example 2 (a simple check case)

s

Let

cT/3 - -;—Ji- = 1+ .9z271 + 81272 + ,729273 + eos , 2z = esT/3

(134)




Therefore
a = [1  .729]

The denominator, in the T timeframe, is
z=-.729 => b = [1 =.729]

Evaluating Equation 129:

Example 3
If

22
(z - 1)(z ~ 2)

cT/Z =

= 1+ 3270 + 7272 + 15273 + 31274 + «..

czz2 + ciz + ¢o czz2 +cjz + ¢q

CT = =
(z - 1)(z - 4) z2 - 52 + 4

Therefore

T z(z+2)
= C = Them




cT/4 = z2 - 4z + 6 - z2 - 4z + 6
(z =2)(22 - 2z + 2) 23 - 422 + 6z - 4

= 0+ z=0 + 0272 + 0273 + 4z=% + 162=5 + 4026 + 80z~7

+ 144278 + 25629 +480z-10 + 960z-11 + 19842-12 + ...

(138)

Since z2 - 2z + 2 = [(z -1)2 + (1)2], the T timeframe roots are
p = 1+ 3 = /24450 => p% = 4A180 = -4 + jO
p = 1l =3 = V24-45 => p4 = 44-180 = -4 + jO

Therefore the denominator, in the T timeframe, is

(z = 2%)(z + 4)(z + 4) = 23 ~ 822 - 112z - 256

Setting

C323 + czz2 + cjz + cq

cT =
23 - 822 ~ 112z - 256




one may write

c3 0 0 U 0 1 U
c2 | | 4 0 0 0 -8 - 4
c] 144 4 0 0 -112 112
cQ 1984 144 4 0 -256 384
Summarizing the example, it is seen
cT/b = z2 - 4z + 6 — T . 422 + 112z + 384
(z - 2)(z2 - 2z + 2) gmeST/4 (z - 16)(z + 4)2

or

T - 4z + 96

(139)

We conclude the examples by revisiting Example 1.

Example 5

CT/G CT/3
T/6 T/3

C
:

—
~
N
(")
+
n

Figure 25. Example 5 (and 1) Block Diagram

From Figure 25,

c1/3 . [(riz)m(,%)m]m _ [(z e - -z:_T )]T/3
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or
4
T/6 o z
¢ 28 — o=T73.3 = o-T/2, + o-576T
= 1+ e'T/3z"1 + e'2T/3z"2 + oo
(140)
4 3 2
cT/3  « c42” t+ c32” + cpz¢ + c1z + ¢
(2 -e-ZT/3)(23 - e‘T)
A tedious but straight forward exercise gives l
]
- - — o~ - — -
c4 ay 0 0 1 1
c3 a3 a4 0 || =e=2T/3 0 (141)
c9 B as agz ay 0 0 T | e-5T/6
c] aj a; a3 a4 O - T 0
co | ap ay az a3 a4 i e=5T/3 0
where
a = (a4, a3, az, a] apl’
= [1’ e—ZT/3’ e—4T/3 4 e-5T/6’ e~T + =2T 4 e'3T/2,
(142)
e=5T/3 + o-8T/3 4+ e—l3T/6]' T

E. SECTION SUMMARY

The system of Figure 24 can be evaluated using Equation 119, which
is, in itself, a significant generalization of the '"skip-sampling
theorem." In particular, M and N need only be rational numbers. This
relaxed requirement on M and N permits the treatment, as limiting cases,
of the so called High-to-Low and Low~to-High rate transforms within the

same framework. These points are called out in Appendix A.
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(

closed~form solution for the C

Once set up via Equation 119, the problem reduces to the evaluation
of

CT/M o [cT/NK]|T/M

One may avoid using residue theory by doing a powers series expansion of

CT/NK and equating the NK/M spaced points in the T/NK timeframe to the

appropriate temporal points in the T/M time frame. This leads to a

T/M numerator coefficients. In this

T/M

regard, .1t 1is important to appreciate that the poles of C can be

obtained from the known poles of CT/NK "by inspection."”

The combination of the generalized skip-sampling algorithm and
impulse response matching eases significantly the computational burden

encountered in the analysis of multi-rate systems.
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SECTION V

MULTI-RATE FREQUENCY RESPONSE: SWITCH DECOMPOSITION
CONTRASTED WITH SCALAR ANALYSIS

A. INTRODUCTION

Vector switch decomposition, discussed in Section III, provides a
general framework for the frequency response of multi-rate systems (Ref~
erences 1, 2). However, the dimensionality problems associated with
switch decomposition encourage the development of a separate theory for
the class of systems discussed in Section III. We first review the gen-
erally applicable multi-rate frequency response (as presented in Refer~
ence 2) in order to make the additional dimensionality problems clear.
Following this, a less general method is developed. This "scalar"
method is applicable to the class of problems discussed in Subsection E
of Section III and will be applied to the simulation case studies of
Sections VIII and IX.

B. REVIEY OF MULTI-RATE FREQUENCY RESPONSE,
SWITCH DECOMPOSITION MODEL

Let the general multi-rate/multiple-order open-loop system of Fig-

ure 26 have a sine wave input. In Figure 26,

c8 = (k) (143)

T/N
cT/N = [6(6r2)] (144)

where a, B represent sampling schemes with a basic period of T seconds.
For example, a might represent a multiple-order sampling format; B might
represent a multi-rate and/or pseudo measurement format (see Refer-

ence 2).




Using switch decomposition, Figure 26 takes on the representation of

a
R s/ R
a

Figure 26. Multi-Rate/Multiple-Order

Open-Loop System

If & represents multiple~order sampling and B a pseudo measurement

format using multi-rate sampling, the switch decomposition modeling com-

Figure 27. Clearly,
B T T
¢y = Wy(wz,G1wW1)"(Wy,R) (145)
and
T/N T/N T T
TN o (aug)™N (wp,01w)T (Wi,R) (146)
T/N
R? o cC ,cC
—.—Wl*»—/—» wI Gl : W2* —~’-w2 G —/—->
T T/N
Figure 27. Open-Loop System with Switch Decomposition

ponents might appear as:

R T R U G — ’.:‘" e
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w = |1, e-Tos’ e-Tls, e-Tzs] (147)

Wi, = (148)

and

Wp = Wy = | 0 esT/3 0 (149)

1

Lb)

% eST/3 (150)
e2sT/3

Comparing Equation 146 with Equation 13, we see that only one new
facet has entered the problem, namely (WI*R)T replaces RT. Consider,
therefore, a generic component of (WI*R]T.——-for instance the scalar
(eATSR)T, where 0 < A < 1.0,

For R = sin bt and A zero (eATS = 1), the output equation (Equa-~
tion 146) becomes

N sin bT
CI/N = (GWp)T/N(Wy, G Wp)T z_S z = eST/N
2 27171 z2N _ (2 cos bT)zN + 1 (151)

where RT is described in terms of a N/T samples per second model. For

the sake of brevity write Equation 151 as
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N

T

cT/N a gGgT/N gT 2z _sin b (152)
A B 2 L (2 cos bT)ZN + 1

Expand the right-hand siue of Equation 152 in partial fractions:

N-1 A,z sin w, (T/N) + B z[z - cos w,(T/N)]

CT/N -
:§) 22 = [2 cos wy(T/N)]z + 1

+ [Terms due to modes of GX/NGg] (153)
ATs, T
For non-zero A, we use the advanced z-transform on (e R)" and
Equation 153 becomes
T/N T/N.T 2z{(sin bAT)zN + sin [b(1 ~ A)T]}
C = GA GB TS N (154)
z - (2 cos bT)z" + 1

Assume that responses in the modes of GE/NG%‘ approach zero as t * =,

i.e., that all modes are stable. In Equations 153 and 154
w, = b +-—0 s n=0,1,2,c00,N=1

(or one may prefer the n = 0’ i‘l, etc., definitions of Section II)- The

steady-state waveform, at the sampling instants, can be written as

Nl T/N
T/N 3
c(t) - Z:o (Ap sin wpt + By cos wgt) (155)
n=

At this point, pursue the analysis of Section Il keeping in mind that
the only difference resides in the ugse of an advanced z-transform for
the sine wave input. The analysis proceeds down to the equivalent point

of Equation 152 where a division by z sin wk(T/N) and replacement of k

r -

*
»

Aot




with n occurs. At this point we pick up the development and find the
limiting form:

2
T/N.T %1 {(s1n bAT)2N + stn b(1-A)T) 2°=12 cO8 Wy (T/N))z+l
+3B - G G

Ag+iBy A OB g (TN) 8in w, (T/N) 22N (2 cos bT)zN41

2= 13w, (T/N)
(156)
Evaluating Equation 156 at z = 13w (T/N) produces
|
| A+iB, = ci/%} z=lgug (T/N)
(157)

s {sin bAT(cos wyT + j sin wyT) + sin b(l - 2)T}
X

l x {cos wn(T/N) + J sin w,(T/N) = cos w,(T/N)] '
[sin wn(T/N)]N[cos mnT + j sin wnT - cos bT) ’

Simplifying Equation 157 gives

(sin bAT)(cos w T) + sin b(l - "7 + y(sin w T)(sin bAT)
z=1gun (T/N) N aln b

T
A +iBy, = Gi Gp

GT/NGT gin bT cos bAT + J sin w,T sin baT
A B’z-l;wn(T/N) N sin bT

cT/NGT’ , cos bAT + { sin bAT
A "B|zalgu, (T/N) N

T/N.T
T/N.T edbdT , Gp” Gg
Rl - ——— . eABTls-Jb

A" OBl zatgug(r/N) TN N | 2m g (T/N)




aAsT

Thus, the only new element added is the factor e evaluated at the
input frequency. Since A is generic, we draw the same conclusion for
every other element of (wl*R)T and hence arrive at the final steady

state result:

T
n=-l
cT/N . (G“'Z)T/N(WZ*GIWUT(”I*R)T = [Z (An sin wyt + B, cos wnt]
n=0
where
A B (Gug) T/N zfesT/N (Wp,G W, )T 2fest
+ ] = W W W )
z=15bT
27n
(l)n = b+—.1"— 3 n=0,1,...,N-1 (160)
Letting N + = gives the "continuous" result
GWy z2esT
Ap * By T (WZ*lel)T Wi . n=0, 1, #2, ee-.
$=juwy g:l#wnT s=jb
zz14.bT
(lel)

In Equations 159 and 161, an option exists with regard to (WZ*GIWI)T as
it may be evaluated at either 14bT or lnwnT. However, there is no
option with regard to Wl* since it must be evaluated at s = jb., Clear-
ly, the most efficient procedure 1s to evaluate (Wz*lel)T at z = 13bT
and wl* at s = jb, save the result in a polar format, and then evaluate

(GWZ/N)T/N -~ or GWZ/T -- over the appropriate range of n.
It can be appreciated that the results of Section II are contained
in Equationms 159 and 161, since Section II considers only the special

case of W) = 1.0 (a scalar). Also, note that W) and W are symbolic
representations that can represent either multi-rate or multiple-order

sampling formats (see for example, Reference 2). However, in arriving




at the spectrum of the continuous variable, uniformly spaced time

samples in a T/N time frame were used.

C. A CLOSED-LOOP APPLICATION

The ability to cast any multi-rate or multiple-order sampling
sequefice 1Into a switch decomposition format makes the analysis of

closed-loop systems a straightforward task. Consider the system of Fig-

ure 28. Proceed as in the single-rate case. Since C = G W ET, one must

first solve for ET: i

ET = (W, R)T = (W,6ow2) T (up,61%)T ET (162)
or

ET = [1+ (wl*czwz)T(wz*lel)T]"I(WI*R)T (163)

R ET c
_—?_- Wigl—"— sl W, ol 6, | Wou—"— W, -
- T T

Figure 28. Closed~Loop System with Switch Decomposition

Therefore

CT/N = (G w)T/N[1 + (W1*32W2)T(W2*G1W1)T]-1 (W,R)T (164)

o _———. —_— ——— e e - —
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The coefficients for the steady-state waveform are then

G W) z=eST
Ap + jB, = T

I+ (Wy.GoW )T (W, Gywy)T]L W
(1 + (W1,624)T(Wz,61w1)T] ETTC  F

8= jwp
or z=l4w,T

(165)
n = 0, tlg 1'2, cee

Section 1V of Reference 2 gives a detailed example on the interpretation
of Equation 165 and we will not repeat it here. However, an important
point made in Reference 2 will be re-emphasized here — namely the
presence of Wl*lsg b forces the use of "multiple Bode plots", one for

each component of Wj, . This is yet another facet of the dimensionality
problems associated with switch decomposition.

For a particular class of problem (discussed in Section III), the
dimensionality problems can be avoided by using a more direct approach
which follows.

D. A DIRECT APPROACH

As pointed out 1in Section III, open-loop systems and a class of
closed-loop multi-rate systems can be analyzed without recourse to

switch decomposition. Such is the case with the generic system of Fig-

ure 29.
R CT/M
— G, G G2 F'_/-"
T/N T/K /M
Figure 29. A Three-Rate Scalar Configuration
Clearly,
T/M
T/K
cT/M = {G,[GRT/N]""7} (166)




It would be fortuitous indeed for the ratios of N, K, M to be such
that all the operators in Equation 166 "operated" through. However,
knowing that N, K, and M are rational, one may use the algorithm of the

previous section to evaluate

T/K
ci’® w [6RINN] (167)

The poles of RT/N, in a T/N time frame, will survive intact in the T/K
time frame, indicating that the input R can be "tracked" through the T/N

and T/K operations. In a like manner

/™
cT/M « {czci/K} (168)

can be evaluated and the poles of R, in a T/M time frame, can be clearly
identified. This suggests a possible method for avoiding the switch
decomposition frequency response by factoring out a sine wave in the T/M
time frame, thus placing the 1nvestigator in a position to apply single-
rate frequency response results directly. This viewpoint is flawed, as
can be appreciated by studying a particular case. Suppose K/N {is an
integer and M/K is an integer. Equation 166 becomes

/M o GTMeI/KgT/N (169)

and clearly the poles of R appear, in the T/M time frame (z = eST/M) in
terms of zM/N, i.e.,

22 = 2 cos(bT/N)z + 1 => 22M/N _ 2 o5 (bT/N)2MN 4+ | (170)

Thus, the frequency response of CT/M requires M/N sinusoids in order to
match the output samples in a T/M time frame. That 1s, one sine wave,
in a T/M time frame, is not a sufficient descriptor of the sampled T/M

steady state waveform.

One may obtain a consistent evaluation for the spectral content of
the output, in the context of generating the minimum set of sinusoids
which will exactly match the output samples, by careful use of the
generalized skip-sampling theorem developed in Section IV. We will use




examples to demonstrate the methodology and proceed to discuss a defini-

tive set.

Example #1:

R C
____//__-— Gl ‘___J/.__-—
T/N T

Figure 30. Illustrative Exanple #1

T
T
cT = [cRI/N]T = [c}‘/NR/N] (171)

For ease of identification, let G; = (1/s + 1), R = sin bt.

Therefore,

cT = z . z sin(bT/N) (172)

z - e~T/N z2 - 2 cos(bT/N)z + 1

T/N in a

Since the ratio between the frame times is N, the root at z = e~
T/N time frame goes to z = e-T in a T time frame. The roots correspond-

ing to the sine wave in T/N, where

z = cos(bT/N) * § sin(bT/N) = 14 bT/N (173)

N

jump to z* = (lz;_bT/N)N or z = 14 bT. Thus cT will have the form

cT ) sT (174)
(z - e'T)[z2 - (2 cos bT)z + 1] » e

and {t can be appreciated that only one sine wave is needed to match the

steady state response (only because of fast 1input-slow output sampling
format).
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Example #2:

cT/N

T T/N

Figure 31. Fast Output, Slow Input Example

cTN - [c RT]T/N = GI/NgT

(175)
z zNgin bT

(z = e TAN) [N - (2 cos bT)2N + 1] | _ g1/n

It is apparent that the sum of N sinusoids is required to exactly match

the T/N output samples.

Example #3:

c’/3

T/16 172 | [ 173

Figure 32. Three Rate Example

Again, for ease of identification, let Gl = 1/(s + 1) and 02 =1/
(s + 2).

1/3
1/2
cT/3 = {cy[crT/16] "} (176)

The inner operation will yield, using the method of Section 1V,

T/2
z2 sin(bT/16) T/
z 'T716 z2 = [2 cos(bT/16)]z + 1

N(z) (177)
(2 - eT/2)(22 - (2 cos(bT/2)]z + 1| __ o1/2
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since the ratio between the frame times is eight. The next operation

must be initiated in a T/6 time frame, which gives a form like

T/2 T/3

[63/6[GIRT/16]

T/3
N(z3)
(23 - e T/2)(2 - [2 cos(dT/2))z + 1}

(178)

The ratio between T/6 and T/3 1is two, and looking at the T/6 roots:

e_ZT/6 - e—ZT/3 $ (Z _ e‘2T/3) in T/3

172 = et = @}-eT) 113 (179)

14 bT/2 = 1 bT = (2% - (2 cos bT)2> + 1] 1n 1/3

T/3

C has a form

(2 - e=2T/3)(23 - e7T)(28 - (2 cos BD)23 + 1)| ,__s7/3

(180)

Thus the '"fragmentation" of the sine wave through T/16, T/2, and T/3
time frames requires the use of three sinusoids to match the output

steady state waveform (at the sampling instant).

In this example, one can therefore use single rate results (avoid

switch decomposition) by setting up a new transfer function via




(23 sin bT)(z - e-ZT/3)(Z3 - e-T)
3
-z~ 3ip BT
» 181)
z6 - (2 cos bT)z3<— 1 (
z3 sin bT
- 6y (2) sip ; z = eST/3 (182)
z6 - (2 cos bT)z3 + 1
T/3 z sin bT
. y (183)
F 1 z=eST/3 22 = (2 cos bT)z + 1 meST
t Thus
1
+ iB = < G (z) w, =b + (2mn/T)
Ap + 3By 5 o1 z = 14T/3 n

n=1, 1, or 0,1,2

Clearly, the same problem which surfaced 1in the switch decomposition
frequency response also surfaces here. Namely, in switch decomposition
W, was evaluated at the input frequency b; it was not permissible to let
its value range with Wn In Gl » 1t 1s necessary to keep the scale

factor, sin bT in the denominator of Gl’ fixed at the value b.

These examples make it clear that the use of this scalar theory, as
an alternative to switch decomposition, requires insight into the manner

in which th: poles are manipulated between successive time frames.
E. SECTION SUMMARY

The frequency response of multi-rate systems, using a switch decom-~
position format was reviewed with a sinusoidal input. Decomposition
of the 1input (W*R)T requires a number of "Bode plots" equal to the
dimension of W,. An alternative '"scalar approach,”" using the tool
developed in Section IV, was presented. This approach, where applic-
able, is dimensionally more attractive than vector switch decomposition.

{ It does require a keen awareness (on the user’s part) of the number of

! sinusoids required to match the sampled output steady-state waveform.
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SECTION VI

SIMULATION MODELS

A. INTRODUCTION

There 1is a natural extension of the previous results which make
switch decomposition (or {ts equivalent) and frequency response tech-
niques ideal for the error analysis of simulations. Before discussing
that topic in explicit detail, we will first develop models for treating
a glven computer code under the assumption that it introduces an inher-
ent throughput delay. The limited ability of "time advanced" digital
filters to compensate for throughput delay 1s briefly treated. A key
idea, the use of a zero-order hold to model a buffer storage register
between two computers (working in different frame times) and/or differ-

ent elements of a computer program, 1s introduced first.
B. MODELING A BUFFER REGISTER

The use of a Z0H to model a storage register is depicted in Fig-~
ure 33. There the output of the filter G(z) is stored in an intermedi-~
ate buffer register, M . The output C is given as

C = MoGRT (184)
and clearly

cl = MEGTRT = cIrT (185)

since Mg =1, 1.e.,

T T
] - e=8T _ oz = 1f1 z -1 =z
( 8 ) - 2z [s] z z =1 (186)
80
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R C
-———J;-—- G ‘———/:-—- ZOH L—-—

Figure 33. Model of a Buffer Register

The utility of this model, therefore, lies not in the situation where C
is sampled at (1/T) Hz, but rather when some other type of output opera-
tion 1s performed. For example, one may visualize C as being the input
for the next (serial) recursion operation to be performed in a different

frame time, say T/3 (refer to Figure 34). Express C as

T/3 T T]T/3

C = M363’'° [M;G]R §/3Mf/3c'{RT

= M3G (187)

where the subscripts on the data holds are used to indicate the integer

values of their frame time, i.e.,

M, = =8 — oy, - l=-e (138)

To illustrate the use of Figure 32, suppos: a recursion equation like

Xpg = =e2Xp.] + 4Rk + +3Rg-] (189)

in a T frame time is followed by another recursion equation in a T/3

time frame:

Yk = 4+ '6Yk-l + .3Xk (190)




R XT XT/3 ZT/3 C C
— el G — M }— - G, — M —
T T ! /3 2 T/3 3 /3

Figure 34. A Particular Serial Operation

The transfer functions, with 2z commensurate with the indicated time

frames, are:

T _ .4z + .3 T/3 .52

N (b

Equation 187 in terms of a T/3 time frame is:

\T/3
¢ = 4= e'ST/3 5 1 - ST .523 + e 3)p (23
= . (z9) (192)
s z -6 s 23 + .2
or
-sT/3 2 3
1l - ¢° 5 [z +z+1(.4z +.3) 3
c = . R(z°7) (193)
s z - .6 z2 23+ .2

The term (zz + 2z + l}/z2 models the fact that recursion Equation 190
asks recursion Equation 189 for an input every T/3 seconds, but picks up

the same number two out of every three times.
C. MODELING THROUGHPUT DELAY

Multiplication and addition of a recursion equation require a finite
amount of machine time for their execution. Thus, it 1s necessary to
understand the timing of a simulation. For example, the recursion equa-

tion of Equation 194 can be machine executed in several different ways:

Y = ajyk-1 t* azyg-2 + azyk-3 + boxg + byxg.) (194)

a) Bring in the new x , do five multiplies and four
adds, and (as quickly as possible) output the new
value of Y+ There will be a throughput delay,

say To seconds.




b) Same as a) except y, 1s not updated until the
start of the next machine cycle. There will be a
throughput delay equal to the frame time, T sec-
onds.

Yet another alternative is to perform all the multiplies and adds asso-
clated with the past values as a "background" computation. Then, at the
start of the new frame time, one need only bring in the new value of Xy»
perform one multiply, add using the "background"” number, and output Yy
as quickly as possible. This would minimize throughput delay. Explic-
itly,

Yk = bgoxk + by (195)

by = a ¥y + 2,19 + a3yk_3 + blxk-l (196)

Thus, while the delay in updating X and outputting y, as quickly as
possible must be minimized, say in T, seconds, the background can be
done in a more leisurely manner provided it can be "fitted in" in the

remaining T = Ty seconds.

A model which fits all three cases 1is shown in Figure 35. There the
nonsynchronous sampler model of Section III 1is used to model the
throughput delay. This model envisages that the delay inherent 1in
either the time required to multiply and add (or perhaps a deliberate
delay of one frame time) can be lumped as a skewed data operation after

the data hold. Thus the recursion modeled by G)(z) is done instantan-
eously and passed to a storage register, and 1its output 1is out of step

with the master clock by T, seconds. This 1is depicted in Figure 36.

A final comment 1is in order. When an element of a simulation is
modeled as a recursion equation (computer code), a single, distinct
frame time is implied. This means that the pulse transfer function used

to model it must have the same frame time operation on both input and

output.

3
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Figure 35. Buffer Register Model with Throughput Delay

"

| lT+nT+To

T+nT

eT

Figure 36. Timing Diagram

D. SWITCH DECOMPOSITION MODEL

In Equation 187, it was possible to operate through the T time frame
with the T/3 operator. This will not alw:ys be possible and we may,

once again, have to resort to switch decomposition.

With switch decomposition, one is in a position to evaluate configu-
rations such as the one shown in Figure 37 (the vector switch decomposi-

tion is shown in Figure 38).

From Figure 38,
T T T
C = MaWp(Wy,Gowp)T (W Maw3)T(wW3,61w3)T (W3, R)T (197)
The evaluation of terms such as (WZ*M3W3)T is routine; our concern is

with terms like (w3*c1w3)T when G$/3 is given as a software specifica=-
tion (e.g., computer algorithm). Focusing on (W3 G1W3)T, we find
*
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Figure 37. Example Two-Rate Open-Loop System

e e g Y g D e Y N o T e Y o N o e Y e T e

w‘I Ie.r/sl z/s'rul'w [Ie'm

Figure 38. Switch Decomposition Formulation for Figure 35

( , 7 T
(W3,61W3)T = < :s—'r;; 6y[1 i e~8T/3 i e-2sT/3])
e |
(T 1 e=sT/3 e-zu/sﬂT ,
= {cy| T3 e™87/3 ‘} (198) ;
| e28T/3  ¢8T/3 1
/

=
B SO - o . ) . .o
v . . , .
f v e = s gy et e r-o'

i




- ‘;:"\ \k“‘\w
1 7/ e-STleZST/3/‘ e—ST (esT/3/\
/ ~—— - -
X - -

- - \\
o-sT (eZsT 3

-

Observe the super-diagonal terms. They are simply appropriate sub-

diagonal terms multiplied by e-ST. It is only necessary to compute the

first column entries in order to completely determine (W3*le3)T-

T
Next, observe that the problem statement stipulates 01/3, perhaps

sT/3 is defined as z we have:

defined through a substitution rule. 1If e
c'f/3 Z-S(ZZG}‘N) z‘3(zcrf/3j
T/3 T/3 -3(,2:T/3
zG1 G1 z (z G1 )

2,.T/3 T/3 T/3
z G1 zG1 G1

Thus one may, for all the super diagonal terms, factor out 1/z (in a T
time frame). Although each term in Equation 200 can be evaluated, using
the algorithm of Section IV, only the first column entries need be com-
puted (i.e., the three entries of column one are sufficient to define

all nine entries).
E. TIMR-ADVANCED DIGITAL FILTERS

In synthesizing a recursion equation for a particular element of a

simulation, the designer can often compensate for part of the throughput
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delay introduced by the digital computer. To see this, consider the

task of implementing a low-pass filter via a recursion equation (refer
to Figure 39). One way to do it 1is to visualize the input to the
(sampled) filter as being smoothed with a data hold (of the designer’s
choosing) and then advanced 1in time by the operator e88T, ¢

G = a/(s + a) and M is a ZOH, compute the pulse transfer function as

T

-3 s + a
or
)T
¢T = 2=1 Jeast|d o —1—
z 8 s + a ‘

Il - e—AaT)z +;L§-AaT - e~aEJ
= (202)
z - e—al

It can be appreclated that a full time period advance, which 1s not
physically realizable in the analog world, can be realized on the dis-

crete domain, since

cp = e 3T,y + (1 - 3T, (203)

e (z)
(f, G

— M —l-eA‘rhi-T G |

By

Figure 39. A "Time Advanced" Filter Section
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can be realistically approximated by a very fast computer. This method
works well for low-pass sections but there 1s little to be gained by
trying it on washout networks or high passes. To see this, consider a

limiting form, such as a differentiator:

T
-sT
G(z) = |+=2T2" . AaT . (204)

Here any A # 0 results in a physically unrealizable component. of
course, one may utilize a higher-order data hold, for instance, the

"glewer."
G(z) = o elsT . g (205)

When A = 0, the smoother 1s called a slewer; when A = 1 the smoother is

recognized as the triangular data hold. Clearly,

T
- 1)2 oA8T -
G(z) = .%.LL_Z._LL .Ls._ = Z Tzl (206)
4

regardless of the value of A.

We close this facet of the discussion with a look at an integrator
when the smoother is a time-advanced slewer or a time-advanced ZOH and

compare the results with the Tustin transforms of 1/s.

i
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Slewver:

(z - 1)2 eldsT
T22 83

G(z)

(z =102 z [(82/2) + (1/2 - 82 + A)z + (1/2 - & + 82)

122 (z - 1)3
(207)
For a fuil period advance
+
G(z) = %(2—_%) (208)
ZOH:
sT T
G(z) = [l.:.l”s._] - &=1, 2T[Az + (1 'Z-A)J (209)
z g2 z [z - 1)
For a half period advance (unrealizable if & = 1)
T/ {(z+1)
G(z) 3 ((z — 1)) (210)
Tustin Transform:
G(z) = l] T+ (211)
8|Tustin 2 z -1

Thus Tustin transform of 1/s {s the same as smoothing with a ZOH,
advanced in time by half a period, or a slewer with an advance of T.

F. DIFFERENCE EQUATIONS FOR MODELING
AN INTEGRATOR

A frequently used technique for deriving recursion equations from a

given transfer function is to rearrange the transfer function in terms

of "nested" values of 1/s. For example, the network
89
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aszsc + ajs + a

6(s) = —3 2 > ! 2 (212)
s’ + bys +b18+b0

can be written as

az/s + ay/s? + ay/s3
1 +by/s + b)/s2 + by/s3

G(s) =

[ao/s + ay]l/s + ap

L{bg/s + by )J1/s + by ]l/s + 1 (213)

This approach emphasizes the importance of having a viable discrete
representation of the integrator. Indeed, this has been the prime focus
of the classical integrator approach. That is, given an input x, the
integrator produces x and one may tabulate a set of classical integra-
tion algorithms, all of which can be derived using the approach of the
previous section (see Table 2). In the remainder of this report, it
will be assumed that the recursion equations are given and the focus is

on evaluating of the fidelity of the overall simulation.

G. SECTION SUMMARY

Analytical models for incorporating recursion equations into a

framework which accounts for throughput delay were developed. The
switch decomposition model of a simulation element was shown to have a
recursive pattern which required the evaluation of only the first coluamn
of the describing matrix. From this column vector all other entries of

the matrix can be generated. A fundamental step was the use of a ZOH to

model a buffer storage register. The use of time advanced digital fil-

ters to compensate for throughput delay was briefly discussed and the

classical equations for integrators were summarized in tabular form.
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TABLE 2. CLASSICAL INTEGRATORS

INTEGRATION EQUATION NAME
N I
L = Xt T(Zin-l - in) -
Xg = Xpop + T (3gep - Xq) --
G = X1 + T(in-l) Euler
% = Xgop + 3 (%n + Xpy) Trapezoidal
X, = Xpop + (%) Rectangular
X, = X5 +'§ (3%, - Xqei) Implicit Adams K
Second-Order
. ?
X o= Xpop + T(2%, - X,) -

Y
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SECTION VII

A T/2, T/3 CLOSED-LOOP SIMULATION CASE STUDY

A. INTRODUCTION

The topic of this section 1s a case study using the tools developed
in Sections III through VI. The rates 1involved 1in this closed=-loop

analysis force the use of switch decomposition. Later sections will

treat case studies where switch decomposition can be avoided.

Specifically, we investigate a case where an idealized control ele-
ment (1/32) is under the influence of a continuous feedback controller
with an (idealized) compensation network in the forward path. The
objective is to generate Bode plots given (1) a digital implementation
of the continuous controller and (2) a digital simulation of the overall

system; treating both the continuous and discrete controller cases. Of

special interest 1is the case where the compensation 1s modeled on one
computer and the controlled element 1s modeled on a different computer,
with each computer working in a different frame time. In all, four

cases will be discussed.
B. PROBLEM DESCRIPTION

The situation described by Case I in Figure 40 assumes a controlled
element (1/82) under the 1influence of a continuous feedback controller
with an (idealized) compensation network 2(s + 1) in the forward path.
Case I1 depicts the same controlled element under the influence of a
discrete feedback controller which smooths the output of the digital
computer with a ZOH (passing on a "staircased" signal to the control
point). The discretized version of 2(s + 1) was computed, using the
first back difference algorithm resulting in the model (42z - 40)/z (at
a sampling rate of 20 Hz).

Case II1 1is a simulation of Case II (or I) wherein the plant, 1/82,
is modeled using a "substituticn-for-s" rule (Tustin transform). The

output variable C is modeled as the output of a storage register (ZOH).
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CASE T

R | j
‘—?—-—Z(SH)—H = -

G2 M G,
__R_./ / -sT | C
1 2(s+l) —=l-e - = -
T _ T S 5
ZOH
T=05 4
T
2 2
z+1)
CASE [T 4272-40 {. EZ_I)Z
q N z y . : » M .
2]l 3 -
T - T T S
Gz Tustin Storage
Gy Register
T=05 l -/
T
2 2
CASE 7 42z-40 ]% i_z—t%? ,
R X7 - X, , X7° v x. X172 : x. X2 M2 c
— 2 (sen) | S 1A Tt L T DA e |
73 /3 s | T2 LS Tr2 S ‘
T/é =075 G2 Register TuGsfin Register
T/3=05 V4 I
T/3

Figure 40, A Vector Switch Decomposition Simulation
Case Study
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Finally, Case 1V depicts a situation wherein one part of a simula-

tion is coded for one computer while another part is coded on a second
computer. Typically, the computers are working in different frame times

and therefore will, on occasion, pass "old data'" back and forth. It i{s

assumed that the compensation is modeled in a 0.05 sec time frame, while
the plant is modeled in a 0.075 sec time frame. Data transfer between
the two computers is via appropriate buffer registers, modeled as a ZOH
in a T/3 time frame (M3) and a ZOH in a T/2 time frame (MZ).

This completes the problem description; we may now write the appro-

priate equations for each case and discuss the analytical difficulties.

Case 1 is straightforward since
c(s) = [I +6162]7! ¢162R (214)

Case 11 appears straightforward but does present a contradiction in the

output equation

cT = [r+ @MmT cg]'l(clu)T GIRT (215)

That 1is,
(6M)T = |i=ef L S L2 el 216
1 ) g2 2 (z - 1)2 (216)

is readily computed using a transform table. However, it was not the
intent of the designer, who used a substitution technique to model
2(8 + 1) as (42z - 40)/z, to compute

¢; = [2¢s + DIT (217)
using the z-transform. Indeed, what does [s]'r mean? Clearly, the

intent of the simulation designer was to assign Gg = (42z - 40)/z.
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This difficulty surfaces again in Case III since

T = TeT =l GTGIRT
C [I+G1G2] cTcIr

after taking due note that MT = 1.

T

Now it 1s necessary to interpret both G T

1 and G2

of z rather than z-transform operations. For example, assign (via the

as given functions

Tustin transform)

(z - 1)2

rather than (via the z-transform)

Tz
(z = 1)2

Difficulties 1in the "assignment" procedure also surface when we

write the output equation for Case IV (see Figure 41).

2(s+I)

41. Case 1V, Switch Decomposition Model
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D

-1
= (MgWp ) (1 + (W), 61,y )T(Wy M3W3) T (W3, Gow3) T (W3, MyW,)T ]

T T T T
x (W2,61W2) " (Wa,M3aW3) " (W3,62W3) " (W3,R) (221)
where
v, = [1, e-sT/Z] , w3 = [1, e-ST/3, e—sT2/3] (222)
The meaning of some terms in Equation 221 are clear; others are not.
For example, a straightforward computation yields
T —~ T
r 1 ] 1 e-ST/ZT
(Wy MMW)T = esT/3 mﬁ?_ﬁi[l e=ST/2]p = 1=e=ST/2 esT/3  o=sT/6
8 s
| e82T/3 ] eS2T/3 ¢sT/6 |
(223)
_T
[ | e-sTesT/2 e=ST(esT/2 - 1)
s 8 8
' 1
e8T/3  o=8Te85T/6 _ST[eSSTlﬁ es'r/3]l )
s s € s s =
0
eSZT/3 eBT/6 eST/6 e"STeSZT/3
L 8 ) s s i (224)
4
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In a similar manner,

T
! |
- e T/3 ]
(Wz*M3W3)T = )| == Ll—-—fii-—l 1 E e-sT/3 :e-SZT/3]
l e8T/2 j
(225)
T
1 e-ST/3 e-SZT/3

1 - e—ST/3

oST/2  8T/6  -~sT/6

Clearing through and writing Equation 225 in terms of the advanced

z-transform for 1/s:

[ e=8Te82T/3 | o=8Tg82T/3  o=8TosT/3 e~8TesT/3  g=sT
s s - s s T s

1
s

(WZ*M3W3)T =

esT/Z eST/6 eST/6 e’STeSST/6 eSTeSST/6 e-sTeST/z
s =~ s s s s - s
1 0] 0
= (226)
0 1 0

However, the meaning of (W3*GZW3)T or (wz*lez)T is not clear. When the
designer specified G, = (42z - 40)/z, he intended (for a T time frame)

the recursion relationship
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_n) = 42(Ry = Cp) = 40(Ry_] = Cp_p) (227)

In a like manner, the Tustin substitution for 1/s2 was meant to yleld

2
X4(n) = 2X4(n = 1) = X4(n - 2) + %g (X3(n} + 2X3(n = 1) + X3(n = 2)]

(228)
Clearly, the information available in Case IV is
63/3 - ﬁZE_i_iQ , T/3 = 0.05 , z = eST/3 (229)
and
2 1+ D?
cT/2 o , T/2=0.075 , 2z =esT/2 (230)
1 16 (z - 1)2

T
Usirg only the given computer code, how does one compute (W3*GZW3) and
> T
(WZ*GIHZ) 7 This problem is treated next.

C. DECOMPOSITION OF c{lz AND c§/3

Using the results of Section VI, write

T
(W3,GoW3)T = (w3*cg/3w3) (231)

This is a simple but crucial step because we do not know (or care) what
the underlying G(s) was. However, we are given G{la as computer code

or, equivalently, a pulse transfer function in a T/3 time frame. The

T/3

G2" " transfer function from the Case IV simulation example has the form:

az + a
G§/3 - .2—;———1 . z = eST/3

(232)
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Equation 231 has the terms

T
( 1/3 T/3 T/3 )
Gy 2-3[22G2 ] 2'3[z62 ]
T
(W3,653w3) -< 265/3 c3/? z-3[zzc§/3]> (233)
2265/3 zG§/3 G§/3
\ /

where z = e8T/3, The final result will be in a T time frame and there-
fore the z=3 in the superdiagonal terms can be factored out and treated

as a z~1, where z = esT,

Only the entries for the first column need be computed:

F4 z z

T T n T d
[aoz + al} [z(aoz + al)] [z‘(aoz + al)] (234) ‘

Consider the first term:

T

[aoz + al] - 1 faop + aj z ‘_lP_ (235)
z 2n j P z -p3 P
a + ajjz
-3 [_.___._( op * 21) ] - 5 (236)
4 P P=0

This result 1is easily verified using the algorithm of Section IV.

In the T/3 time frame, algebraic long division gives




s“

-y

s e . -~-—-q---m

——— —— TR TR

aoz + 81

. = ag +ayz=l + 0272 + 0273 + e (237)

The root at z = 0 in the T/3 time frame remains at z = 0 in the T time

frame. Therefore,

T
[aoz + aIJ c1z + ¢o

z z (238)
where
¢ a, 0 1 a,
- = (239)
Co 0 0 0 0
and we see
T
aoz + a
[—‘-’—-z——’ - a (240)

The second term in Equation 234 can, of course, be evaluated using resi-

due theory:

T 1 (agp + a1)2 (app + a1)z
o el = g f SR - S e
p=0
(241)
and
+
[22(agz + a;)]T = Ei-J/IEQE—-—Eélz dp £ 0 (no poles enclosed)
3 z - p
(242)

In this regard, note that the algorithm of Section IV was set up to
treat only rational functions since polynomials in z can be easily
treated by inspection. That is:
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[aoz +1 al]T = [aoe3T/3 + aI]T - [aoeBT/3]T + [al]T (243)

sT/3 is just a T/3 time advanced impulse and therefore a sampler,

But age

working in a T time frame, sees zero. [al]T is an impulse of strength

T
a4, at t = 0 and the T sampler "sees it" at t = 0, giving a; = a;.

In a like manner,

(agz2 + ayz]T = [age28T/3] + [aye=sT/3]T = o (244)
Next, use the "push down" colum principle and generate
2 T a, 0 a/z
(W3,62"W3) = a1 8o O » oz = ST (g5
0 aj a,
The next task 18 to generate
T T/2, 3\
(Wa,61W2)" = (Wa,61"W,) (246)
given
2 2
¢T/2 - L L2+, _ .8T/2 (247)
1 16 (z - 1)2
Write
T T
1 2 2 1 z-l
(wz G'{/ZW)T - [1 z—l] GT/2 - JIZ (z4+ 17
* 2 16 - 1)2
(z - 1)
z z 1
(248)
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The first term of column one is

Irzz“zr__l_/ﬁipﬂ)_z_z_ D . resl 4 res
16(z - 1)2 2y Jpr 16 (p-1)2 2-p2 P p=0 p=l

12,12 4 (2] _ 12|, 8z
16 16 dp p(z_pZ) p-l 16 (2_1)2

2 2
12 (24624 1)
-k EETE . e (249)

The second term of the first column is easier to compute:

1 /TZ p(p + 1)2 z__ dp
—_ ] = = res
3J 16 (p -2 (z-p2) P p=1
12 4 zp+ D2
16 dp (2 - p2)|pay
2
- D oz(z 4 1) (250)
4 (z - 1)2
Again use the push down column principle and write
12,2 12
16 (z€ + 6z + 1) A (z + 1)
2 2
L+ B2+ e+ D)
T
(W, GiWp)" = (251)
247172 (z - 1)2
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The aigorithm of Section V can also be used. To demonstrate, derive the

first entry by observing

2 2 2
T +DL o T[] ¢ azl + 8272 + 12273 + 16274 + o+ ] (252)
16 (z - 1)2 16

Since a root at z = 1 In T/2 remains at z = 1 in a T time frame, write

T
13 !z +1)2 . czz2 + clz + co 2 = o8T (253)
16 (z + 1)2 z2 - 2z + 1

the numerator coefficients are easily found

<, 1 0 o0 1 1

T2 T2
cl - T6— 8 1 0 -2 = T6_ 6 (254)
o | 16 8 1 1 1

checking the residue results.
D. RESULTS

With the assignments of the previous subsection all terms in Equa-
tion 221 are defined and the Bode plots descriptive of Cases I-IV can be
computed. The results (magnitude plots only) are shown in Figures 42
through 47.

Inspection of Figure 42 discloses no surprises. The digitally con-
trolled system 18 a reasonably faithful reproduction of the analog
system until the folding frequency (approximately equal to 62.8 rad/sec)
18 passed. Notice that in the discretely controlled system, minimum
response points in the Bode plot (notches) occur at multiples of sampl-

ing frequency (approximately equal to 125.66 rad/sec).

The comparison of the single-rate simulation against the baseline

design exhibits fidelity over a shorter low-frequency range (Figure 43).
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Of particular importance is that the aliased bands exhibit a much higher
amplitude response than did the aliased bands of the digitally con-
trolled system (Case II). Moreover, the '"notches" now occur at multi-
ples of the folding frequency rather than the sampling frequency. In
addition, there are very sharp notches which occur close to odd multi-
ples of the folding frequency; these are a consequence of the zeros of
the Tustin transform introduced by (z + 1)2- A direct comparison
between Cases II and III is given in Figure 44.

Figure 45 compares the two 1independent processor case (Case 1V)
against the continuous baseline design. Large, sharp resonant peaks
have been 1introduced in the aliased bands and, in addition, there 1is a
significant overshoot 1in the first fold. A comparison between the two
rate simulation (Case IV) and the digitally controlled continuous gystem
(Case II) is given in Figure 46. Figure 47 compares all the cases.

There are significant differences 1in the spectral content of the
four cases which would be hidden if one only looked at the sampled spec-
trum (that {s, looked only at the frequency content from zero to the
first folding frequency). Even in the first fold, there is a signifi-
cant difference in the Bode plot of the continuous case and the two-rate
simulation; the reason for the added overshoot in the two-rate simula-

tion will be discussed in the next subsection.
E. INTRODUCTION OF LIGHTLY DAMPED MODES

We may use the 1illustrative example of Section V to discuss the
additional modes introduced by a multi-rate process. Specifically, for
Figure 48, let

z = , M =3 , N = 2 (255)
C = —h— CT/6 = ——i— 256
s+2 ° 2 - o-T/3 (256)
| 3
R = o+ ’ RT/2 = 23 e.T/E (257)
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Figure 48. A Phantom Sampler Formulation of a
T/N, T/M Sampling Format

so, as found in Section V,

2¢ 2, .=5T/6
T/3 = 2 (zre ) - esT/3
‘ (s-e-2173)(2-e"1/3) [z 24 (o1 3)gae-21/3] * * 7 ° 259

Observe that the T/2, T/3 sampling format has produced additional
lightly damped modes in the output response. The reality of the addi-

tional modes can be better appreciated by first plotting the continuous
variable C(t) and then picking off the T/3 sample points. This is done
in Figure 49. Joining the sample points with a smooth curve emphasizes
the lightly damped nature of the response. This effect was also present
in the two-rate simulation analysis of the previous subsection (recall

the additional "overshoot" 1in the first fold of Figure 45).

F. SECTION SUMMARY

A case study, which required the use of switch decomposition, was
used to demonstrate the significant spectral differences that occur when
a closed-loop system (either an analog or digital controller) is com-
pared with an all-digital simulation of the closed-loop system. The
example also treated the problems encountered when a simulation software
18 put up on two different (independent) computers, each working in a

slightly different frame time.

In following sections, simulation case studies amenable to more dir-

ect analysis (e.g., no need for switch decomposition) will be studied. r
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SECTION VIII

INTERPRETATION OF MULTI-RATE FREQUENCY RESPONSE

A. INTRODUCTION

A simulation case study of the previous section required the use of
switch decomposition. This section treats an open-loop case which can

be analyzed by the more direct "scalar" approach discussed in Section V,

affording the opportunity to gain insight in interpreting the frequency

response of a multi-rate system.

It is shown, for a T/2 input, T/3 output, that three components are
required to produce an exact steady~state match to the output sample

sequence.

This simple case study also affords the opportunity to contrast the
mathematics of the scalar approach against that of vector switch decom-

position. This 1is done by working the scalar example through using

switch decomposition notation.

B. A T/2 INPUT, T/3 OUTPUT SIMULATION EXAMPLE

The study 1is defined in Figure 50. Our objective to verify that

three sinusoidal components are needed to exactly match the steady state

o173

sampled points, « From Figure 50, with r = sin bt, write

T/3
cT/3 = Imy L= eT/2 2z sin BT/2 , z = e8T/2
z - e~T/2 z2 - 2(cos bT/2)z + 1
(259)
A term of
T/2
M T/3
o) ]
’
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/3
R
T/2 l] 172 T/3

(7]
+

Figure 50. A Two Rate Experiment

. oy R , 3
is in a 1/2 time frame. Since the commensurate time frame is T/6, =z~

T/6
must be substituted for z. Moreover, MZ/ becomes, in a T/6 time frame

T/6
A L 2ol =2 2lred) (261)
2 ] z3 z -1 22 ‘
Therefore
. T/3
CT/3 . |2tz d (1~ e=T/2) 23 sin bT/2
z2 (23 - e'T/Z)(z6 - 2 cos 2% 23 + 1)
T/3
l (1 - e~T/2) sin h% (23 + 22 + 2)
29 - (e=T/2 + 2 cos E%)26 + (1 + 2e=T/2cos B%) z3 - &-T/2

(262)

As an alternative to the use of Section IV for the evaluation of Equa-
tion 262, we will use Sklansky’s Identity (Appendix B) and a frame time

of T = 0.1 seconds:

T _
[61/2()] = % [c(@) +G(-2)) (263)
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Since the ratio of T/6 to T/3 is 2, the rational form of cT/3 will be
given by

173 . Riez8 + Ryszd + eee + Ryjz + Ryg
cT/3 = 5 - : (264)
R2927 + Rpez” + R23z° + Ryp

where the R1j coefficients are as listed in Table 3.

Dividing the denominator of Equation 264 into the numerator gives
the transient response in a T/3 time frame. This response is sketched
in Figure 51 as a solid line but the actual discrete response follows a

2-1-2-1-2-1-2..., repetition pattern (note the insert in Figure 51).

Returning to Equation 264, observe z2 - (2 cos bT)z + 1, in a T time
frame, is a factor of the denominator. After factoring out this term,

the denominator has the form:

9 6 3
(Rzgz + Rp42° + Rp3zz” + R20)|z=e5T/3

= Rggz3 + Rpgz? + Rp3z + Ryg

z=eST
= [22 - (2 cos bT)z + 1j(z - .904837421) (265)
Write Equation 264, recognizing Rjg = 0, as
/3 o (R162% + Riszd + +ov + Ryy) . 1
[sin (bT)]22 gu=eST/2 2 = +904837421 |,-esT
‘ 4
. z sin bT (266) 1

z2 - (2 cos bT)z + 1




T/3

TABLE 3. COEFFICIENTS FOR C

R10 = 0.000000000
R11 = 0.002318634
R12 = 0.007868985
RI3 = 0.007068985
R14 = 0.007187567
R1S = 0.002437513
R16 = 0.002437513
R20 = -0.904837418
R21 = 0.000000000
R22 = 0.000000000
R23 = 2.800633998
R24 = 0.000000000
R25 = 0.000000000
R26 = ~2.894845752
K27 = 0.0006000000
R28 = 0.000000000
R29 = 1.000000000
o | RE
— = M2 [ L = M ———/,——-— T= |
T/2 s+l 71/2 2] 1/3

O - - + —— t
-4t S Time (sec) IO\

T/3

Figure S51. C Versus Time y




Equation 266 has the input factored out, in a T time frame, and

therefore 1s equivalent to the switch decomposition approach.

The spectral coefficients are determined from the equation

6 + Ryczd + *+ + R
A+ 3B = 1 R)g2z 15: 11
3 sin bT z z=13 mbT/Z
(267)
x 1
z - 904837421 |14 w,T/2
where
w, = b+ g.p, 1, 2 (268)
T
and
) T/3
[CT/3]Ss - :E: (A, sin w,t + B, cos wpt) (269)

n=0

Notice an 1important point -— the scale factor sin bT and the coeffi-
cients R, through R, . are held fixed at the input frequency but the
various 2z’s, in their respective frame times, are evaluated at wn! A
congsequence of ignoring this point, and running the program from scratch
each time (generating Rj; > Rjg, etc.) in terms of w,  instead of b, will
result in an erroneous set of coefficients. To verify this, we imple-

ment both procedures and compare the results.

In Table 4, the coefficients (and sin bT) are first evaluated using
the input frequency b. They are then "frozen" and the next two spectral
components are generated. In Table 4b, the evaluation 18 repeated,

n=0, 1, 2, treating w as a new input frequency. As can be seen, the

first and third coefficients are unchanged but the second components

disagree. g
We next generate the sum of the three sine waves for each case and

see how they compare against the actual sinusoidal transient response, 4
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TABLE 4. SPECTRAL COEFFICIENTS FOR EQUATION 277

MAG =-3.010199322 =3.010199412 MAG
n=0 A =47.39926233 -47.39926170 4
w 1.000000000 1.000000000 w
-43.30234384 -35.68901104
n=] -287.3992625 -242.4231347
63.83185308 63.83185308
-43.38592638 -43.38592638
n=2 =707.3992644 -707.3992644
126.6637062 126.6637062
(a) (b)

as tabulated in Table 5. It can be seen that the Table 4a coefficients
generate the sums of three sine waves which agree extremely well with
the transient response at the T/3 sampling instant. The Table 4b set
produces a sum of three sine waves, which is far less precise (sometimes

disagreeing in the first significant figure).

The important result {s that the T/3 output signal required three
sinusoidal components for the correct steady-state fit. Contrasting
this result with the switch decomposition/Bode approach of Section V
affords an interesting comparison. First of all, the approach of Sec-
tion V is "dimensioned" by (W*R)T, which in this case 1is two since R is
sampled 1in a T/2 time frame. How 1is this reconciled with the present

result, which insists on three output components?

In reality, there is no disagreement, since the Section V approach
would use two Bode plots to pick off the same three components. We can

verify this by reworking the subject example using switch decomposition.
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TABLE 5.

-+69393
-.69393
-+.68625
-.67686
-.67686
-+.66578
-.65304
-. 65304
~+63866
-.62268
-.62268
-.60515
~.58611
-. 58611
-+56560
~-.54368
~.54368
=-+52040
-+49582
-+ 49582
=+ 47000
-+ 44300
-+44300
~.41490
~+ 38576
~.38576
-+ 35566
-+ 32466
-+ 32466
-+ 29286
-+ 26032
-.26032
-+ 22714
-.19338
-.19338
-. 15914
-.12451
-. 12451

(a)

T
)

B . B

B Za b

COMPARISON OF

-0.69394
-0.69394
-0.68626
-0.67687
~-0.67687
-0.66579
-0.65305
-0.65305
-0.63867
-0.62269
-0.62269
~0.60516
-0.58612
-0.58612
-0.56561
~-0.54369
-0.54369
-0.52041
-0.49582
~0.49582
-0.47000
-0.44301
-0.44301
-0.41490
~0.38576
‘0-38576
-0.35566
-0.32466
-0.32466
~0.29286
-0.26032
-0.26032
-0.22713
-0.19338
-0.19338
-0.15914
~0.12450
~0.12450

(b)

STEADY~-STATE TRANSIENT RESPONSES

-0.68198
-0.70351
-0.68810
~0.66536
-0.68721
-0.56638
-0.64209
-0.66404
-0.63800
-0.61240
-0.63424
-0.60325
-0.57660
-0.59810
-0.56247
-0.53503
-0.55598
-0.51606
-0.48812
-0.50831
-0.46451
-0.43633
-0.45556
-0.40831
-0.38018
-0.39826
-0.34803
-0.32023
-0.33698
-0.28427
-0.25708
-0.27233
~0.21767
~0.19137
~0.20496
-0. 14890
-0.12374
~0.13555

(c)
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a)

b)

c)

Transient response of
Equa£§39 264, from gT/3

to z , Where z=e ,
T = 0.1.

Sum of three sine waves
using amplitudes and
phase angles of Table 4a.

Sum of three sine waves
using amplitudes and
phase angles of Table 4b.
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C. SW1.CH DECOMPOSITION DEVELOPMENT

For comparison purposes, we next use switch decomposition on the

subject example and redraw Figure 50 as Figure 52. From Figure 52,
1
CT/3 = W3(w3 Mowp )T (Wp, =7 MaW2)T(Wo,R)T (270)

1 0 T
= [ e, @IS L 0 o) - T2 /2T ||
0 1 z - e”T €
(271)
The theory of Section V gives the coefficients as
[}
Il + e—ST/3 : e-(2/3)ST
Ap + 3B, = 3 J
F |
e-T/2 _ o-T 1 = =T/2 )
(1 - e‘T/z)z e~T/2 _ =T
x T 14bT/2 (272)
zZ -~ e
n=20, 1, 2 _
R 0 cT
— i Wy T—-— w, M, =T Wo T+ W, M, Wiy T—-— Wy
Figure 52. Switch Decomposition Model for Figure 48 | i
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Therefore, .

21n

[1+ 14-w,T/3 | 14-(2/3)w,T]

Ap + jBy, = 3
(273)
e~T/2 - e-T 1 - e=T/2
(1 - e T/2) 4 u,T e=T/2 _ =T 1
" 14w T - e T 14bT/2

n=0,1, 2 (or n = 0, 1)

From Equation 273, it is evident that there 1is no conflict between
switch decomposition and the scalar approach since, for n = 0,1,2, we
obtain the spectral coefficients listed in Table 4a. The switch decom-
position approach confirms that three components are required (n = 0,
+ 0.1); in addition, (W*R)T requires that the input remain fixed at
b rad/sec. The tradeoff between the scalar approach and switch decompo-
sition is now clear. Switch decomposition has a greater dimensionality
problem, but it also has a format which protects the user from making an
error since the correct uses of w, and b are explicitly called out. In
this regard, the user must have a clear understanding of the scalar

approach in order to use w, and b in the correct sequence.
D. SECTION SUMMARY

A scalar example was used to compare the "scalar" approach with

switch decomposition. It was shown that both yield identical results.
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SECTION IX

A THREE-RATE SIMULATOR CASE STUDY

A. INTRODUCTION

The simulation error analysis case studies, up to this point, have
been restricted to low-order examples. Here we depart from this motif
by investigating a simulation involving three computers, each working

within a different frame time.

As we shall see, no new theoretical tools, other than those already
introduced, will be needed to carry out the analysis. However, the
reader is alerted to the fact that many computational difficulties were
encountered during the course of this case study. These difficulties
forced, for example, the "invention" of the multi-rate algorithm given
in Section IV. The nature of the difficulties encountered will be indi-
cated by first describing a lower dimensional example which retains the
basic structure of the large-scale system study. After this, we proceed

with the analysis of the title study.

B. A SIMPLIFIFD THREE-RATE STUDY AND ASSOCIATED
DIMENSIONAL DIFFICULTIES

For clarity, utilize a precise set of s-plane parameters in order to
produce numerically convenient numbers in the z-plane. Consider the
continuous system of Figure 53a which 1s to be simulated with the three
rate configuration of Figure 53b). In Figure 53, 1let T = 0.1 sec
(10 Hez),

c 4.52569504
1 S + 4+52569504
(274)
6, 242222222

8 + 2.2222222




al

and

Assume the '"digitization"

using rectangular 1integration {s + (z-1)/Tz].

< 266,

the transfer function of the continuous, baseline system 1is

20.11420018

R 1 + GGy

s2 + 6.747917262s + 20.11420018
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/ cT/3
- G - M, 6, = M, F—' —
/16 ' | e 172 /2 73

Tzt
—I M, |’ —] G2
/16 T/2
b)
Figure 53. A Three Rate Example
1 - -ST/16 1 - -ST/Z
Mpom E—— oy - = (275)

required in Figure 53b 1is carried out

For comparison purposes,

(276)




T
Utilizing the analysis technique of Section 1II gives C /3:

-1 T/3
T/2 T/2 T/2
¢T3 - |2y GT/Z[I + (Mlcf/16ug/l6) G ) (MIGE/IGRT/16) |
T/3
T/2
- [MZGT/Z( ?/16RT/16) ] 277)
Step I: Begin the evaluation of Equation 277 with the term
T/2 T/2
T/16,.T/16, T/16
O et L I U T i) (278)
Therefore
T/2
(T/16yT/16\T/2 202750752z (28 - 1) z .
(G M. = y .
ol %) z - .972492473 28 z - 1 (279)
since rectangular integration gives
T
(~_jL___)z
+ aT
a_— lta (280)
s + & z - ( 1 )
1 + aT
and
T/16
i -sT/2 8
l_-_..e__s.__ = Z « & =1 = o8T/16 5
Rearrange Equation 279 as
T/2
T/16.T/16 T/2 ko(z7+z6+25+°"+1)
[e1""M3" 7] - 5 z (282)
z/ - kjz

Using the techniques of Section IV, divide the denominator into the
numerator and save every elighth number, since the ratio between the two

frame times 1is eight (see Table 6, and also note 08 = 0; k? = (0.8). '

124

v
R o e W o L




TABLE 6. THE "a'" VECTOR, STEP I

]

0.027507527
0.194498493
0.155598794
0.124479035
0.099583228
0.079666583
0.063733266
0.050986613

O o D O pm
O = N W s NN

o]

Setting

T/2 7 6
+ + e +
[C}‘/16M'£/16} - L7z * ce? 0 esT/2

(z - .8)zb

(283)

. - . ‘:
VTS W e TS et an o T LT 2 M i




Solving the set of Equation 284 gives the T/2 frame time transfer

function

[GT/16MT/16]T/2 L 027507527z + .172492471
1 "2 (z - .8)

(285)
Roz + Rl

-5 , 2ma8T/2

In Equation 284, only the first two columns of the A matrix are

needed since the '"C" vector has only two components. Further, note

¢csg = a; - -8ag = 0
c4 = aa - .8a5 = 0

. . (286)

. .

CO = ao - -881 = 0
verifying that z6 is a common factor of both the numerator and denomi-

nator of Equation 283,

At this point {t 1is clear that modeling the '"buffer registers"
between computers as Z0Hs introduces dimensionality problems wuich get
larger as the ratio between the frame times increases. The evaluation
of Equation 283, using residue theory, would be tedious since it
involves a root at the origin of multiplicity six! This multiplicity
would increase significantly {f the rates had been, for example, 20 Hz
and 156 Hz since the ratios between frame times, in the last step, jumps
to 39 (see examples A-3 through A-5 of Appendix A). While the computa-
tional burden would become simply enormous using residue theory, the
algorithm of Section IV is affected in a far less sensitive way; since
the only change required 1is the storage of every 39th value (ianstead of

every eighth value) of the power series expansion.
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Step II:

Since
T/2
AR P LSt ew
S ¥ L s=.2=1)/(T/2)z .
the evaluation of
TS M GT/IGMT/16)T/ZGT/2 - o[y, tz(Rez + Ry -
161 2 2 (z ~ .8)(z - .9)
(288)
- (z - «8)(z = .9) (289)
(1 + «IRpI22 + (JIR] = 1.7)z + .72
is routine.
Dividing out the lead coefficient of the denominator:
(-1 - .997256793(2-.8) (z=.9) _ _ _R3(2--8)(z--9) (290)
z4 - 1.678134619z + 718024891 22 + R4z + Rg
T/2
Computing 2G, is also straightforward:
- . (z - «8)z
252 = 2032147} 3 (291)

z2 + R4z + Ry

Step III:
Next, treat the input term, assuming a unit amplitude sine wave at

b rad/sec:

T/2 /16

T/2
1G¥/16RT/16] - [G{/16RT/16] since H{ is unity

(M
(292)

.027507527z z stn br/16__|T/?
zZ - 2972492473 22 -2 COS(bT/16)Z + ‘J{.-eST/16
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In the computer program, b 1s left as a free input parameter. Here the
interest 1s in scoping dimensionality problems associated with the eval~
uation of Equation 277; therefore we pick a numerically convenient value

for b in order to obtain an explicit expression for Equation 292.

Let
cos b% = .8 , sin 2% = .6 (293)
glving
1/2 /2
[GT/16RT/16] (-027507527)(-080350925) z2
1 (z - <972492473) (22 - 1.993533274z + 1)
T/2
[ R6ZZ
z +R7Z +R82+R9
In the T/2 time frame, the poles of Equation 294 map into
= 2 3 2
D = (2 - «8)(2" = 1lebz + 1) = 2z2° - 2.4z° + 2.28z - .8 (295)
T/16_T/1677/2
giving the form for [Gl R ] as
T/2 3 2
Cq2” + €9z + c12 + ¢
[G}‘/16RT/16] ] 2 1 0 (296)

23 - 2.422 4+ 2.282 - .8

Dividing the denominator into the numerator of Equation 294, gives the

"a" vector (save each eighth number). Therefore

[ Cy ) Ca, 0 0 01 [ 1 7
c a a 0 0 ~2.4
2
- 23 (297)
¢y a1 a, aj 0 2.28
[ 0 ] [ % %1 2 93] | --8 |
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Solving Equation 297 gives the solution; see Table 7 for a listing

of the "a" and "c¢" vectors. Explicitly,

T/2 (.071804007z + .05238627)z

(z ~ +8)(z2 = 1.6z + 1)

[G¥/16RT/16]

(R z +R ]z
- 102 11 (298)
(z - «8)(z° - l.6z + 1)

TABLE 7. THE "a" AND "c" VECTORS, STEP III

ay 0.000000000 c, 0.000000000
a, 0.071804007 ¢, 0.071804007
a, 0.224715895 ¢y 0.052386278
a, 0.375604980 ¢, 0.000000000

Step 1V:

The 1last step introduces another dimensionality problem. The

result, to this point, is

T/2 T/3
cI/3 - MZGX/Z(M1G¥/16RT/16)
T/3
. [1 - E-BT/Z . (-2R3)Mz . (Rigz + Ry}1)z
l 8 z2 + R4z + Rg jz/-’fﬂf(zz - 1l.6z + 1)
(299)

where the local definition of z is z = eST/Z.

Follow carefully the next set of manipulations, which pro-
duces a ninth/twelfth order transfer function! (Let (zz + R4z + Rs) X
(22 - l.6z + 1) - z4 4 Rl[.z3 + *** + Rj7.
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T/3

(1 - e-sT)//® (Ripz + Ry3)z?
cT/3 u o (300)
s z4 + R“.ZB + Rlszz + RIGZ + R17
z=eST/2
3 T/3
J |23 -1, _ = Ri2z~ + Ri3
z3 z -1 212 4 RU‘Z9 + R1526 + Rl6z3 + Ry
zweST/6
(301)
Cancelling powers of z and dividing z - 1 into 23 - 1 gives
T/3
/3 (ZZ + 2z + 1)24(R1223 + R13J
R ISP 9 3 3 (302)
z + Ry42” + R)52° + Rjgz? + Ryy
2=eST/6

Considering that one starts with two first-order transfer functions
in the s-plane, the ninth/twelfth order transfer function in z is dis-
concerting. It is a good example of how the order of the system grows

in a multi-rate architecture.

The ratio between the time frames 1is two. Finding the denominator
polynomial in the T/3 time frame can be considerably simplified by not-
ing the denominator 1is a polynomial 1in 23, Therefore, letting x = 23

gives the denominator polynomial, in T/6, as:

D = (x2 - le6x + 1)(x2 - 1.678134619x + .718024891), T/6

x = .8+ j.6 in T/6 X = +.839067310 + j. 118283309
1,2 3,4
= 14.643501109 Xy , = +B473634944 .140047156
]
2
X2 => 14 1.28700218 X3 4 = +718024891% .280094313
=> .28 + §.96 xg,a = 690043009 + §.198495315

U U

x2 = .56x + 1 in T/3  x% - 1.380086018x + .515559744 in T/3
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Thus

D = (28 - .56z3 + 1)(z® - 1.38008601823 + .515559744)
= z12 = 1.94008601829 + 2.28840791426

- 1.668799475z3 + .515559744 (303)

in the T/3 time frame, and also defines the '"c" vector.

Observe that

2% - 5623 + 1 = 23 - 2(cos BTz + 1 (304)
represents the poles of the sine wave input in a T time frame since
23 = (esT/3)3 = ST,

To this point,
T/3
/3 -014321407 (29 + 28 + 27) + .010448513(z5 + 2z + z%)
212 = 3.27813461929 + 4.403040212% - 2.82697445z3 + .718024891

(305)

Dividing the numerator into the denominator, and saving every other

value (since the ratio of time frames 1s 2), gives the "a'" vector (see

Table 8).

The answer will have the form

c12212 + cnz11 + **e + ¢

cT/3 = (306)
(26 - 1.3800860182z3 + .515559744)(2z6 - .5623 + 1)

where 1

(307)




The entries of the "a”", '"b" and "c¢" vectors are tabulated in
Table 8.
TABLE 8. a, b, and ¢ VECTORS, PART III
a b c
a;, 0.000000000 b, 1. 000000000 c;,  0.000000000
a;; 0.000000000 by 0.000000000 ¢;;  0-000000000
ag 0.014321407 b10 0.000000000 cyg 0-014321407
ag 0.057396013 b9 -1.940086018 Cq 0.057396013
ag 0.057396013 b8 0. 000000000 cg 0.057396013
a, 0.125094126 b7 0.000000000 ¢y 0.097309364
ag 0.197844678 b6 2.288407914 g 0.086491475
as 0.197844678 bS 0.000000000 Cs 0.086491475
a, 0.24740949 bé 0.000000000 4 0.039820806
ag 0.259992496 b3 -1.668799475 cq 0.007502293
a, 0.259992496 b, 0.000000000 <, 0.007502293
a, 0.222152094 b, 0. 000000000 < 0.000000000
ag 0.147440916 by 0.515559744 cq 0.000000000
Step 1V:
The equation for CT/3 (Equation 306) has now been expressed in terms

of a sine wave input in a T time frame, since it can be written as




——————y —— = - - ——————— -

e ey v

Clzzlz + c“zu + *** + ¢cg

CT/3 -

sin bT(z6 - 1.3800860182z3 + .515559744)z23

z=eST/3
(308)

sin bTz
z2 - 2 cos bTz + 1

x

z=eST

Following Section III and Section VIII, the three components which match

the output samples are determined by

1

An + JBn 3 sin bT

[clzzlz + cllzll + e 4 co]

[z(23 - 1.380086018z + .515559744) ]

(309)
z=1%4 w,T

The precautions noted in Section VIII must be observed. The coeffi-

cients of Equation 309 are tied to the input frequency b, but the evalu-

ation of z is carried out in terms of W where

w, = b+ e, £ 1 (310)

To obtain a feel for the effect of the three-rate sampling format on
the Bode plot, run a comparison with the continuous baseline case (Equa-
tion 286) by passing CT/3 through a 20H. Thus, we may suppose the CT/3
samples are being reconstructed into a staircase signal in order to

drive, perhaps, a motion-base simulator actuator. In this event,

1z ...
Ap + IBy L= e=s?/3 etz * 7+ 0lnig w3 (311)
= e —— X
n Ts B-jwn sin bT[Z6(z3 - ...)]z-lé_wn'_[‘/3
wp = b+ER | nao, £l $2, e (312)
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The resultant "primary" Bode plot is shown in Figure 54. Recall, from
Section V, that this Bode plot is only one of the two needed to com-
pletely define the coefficients.

A most interesting phenomenon is evident in Figure 54, namely the
digitized system has less phase lag than the continuous baseline system!
This is different than the results one would expect from a single-rate

simulation and therefore deserves careful analysis.

First of all, the phase lead noted at 10 rad/sec cannot be attri-

buted to a failure of the computer program to add in a correct multiple
of 2w, since we do not expect to see a phase difference of approximately
300 deg ar this low frequency between the baseline and its discrete ver-

sion.

Next, a small experiment was performed wherein the transient
response was run for a sine wave input. The three sine wave components
given by the N = 3 discrete theory were found to match the steady-state

output samples exactly. Thus, the algorithms appear to be correctly

implemented in the computer code.

One might also speculate that Figure 54 represents only one of the
two Bode plots needed to completely specify the infinite set of sine
waves needed to match the staircased signal that is reconstructed by the
ZOH. Hence, one could argue that the lead shown at, for example,
20 rad/sec might be completely negated by the phase contributions of

other components.

As we shall see, the same sort of phase lead phenomenon arises in
the larger-scale case study, to be discussed next. At this juncture, it
is felt that the evidence is not strong enough to draw the blanket con~
clusion that a multi-rate sampling format is an effective way to intro-

duce phase lead into a simulation.

C. THE A-10, DISPLAYED PITCH TO PILOT STICK
FORCE CASE STUDY

This case study represents an important element extracted from an

overall simulation of the A-10 aircraft., It was initially coded for use
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e

in a training (moving-base) simulator. Engineers of the Simulator Sys-
tem Program Office (ASD/ENETS) proposed it as a case study because of
its 1interesting structure. Specifically, three elements of the dis-
played pitch angle to pilot stick force input simulation were imple-

mented on three different computers.

The initial rendering of the three-rate A-10 example resulted 1in the
representation shown in Figure 55. Shown also are the s-plane represen-

tations for the eleven transfer functions involved. The intent of this

figure is to convey the following:

1. Each transfer function 1is digitized using rec-
tangular integration.

2. The G, algorithm feeds G
G9 an G7, etCe

2 the 03 algorithm feeds
The representation of Figure 55 1is a '"shorthand" which introduces no
difficulties if it {is understood that each transfer function is digi-
tized individually. The Figure 55 representation would cause problems
if z-transform operations were to be carried out since [Gl(s)Gz(s)}T #
G?(s) x Gg(s). To emphasize the individual digitization and the three
different rates, we may redraw Figure 55 as shown in Figure 56, where
data holds are used to model storage registers. In Figure 55, the T,
data rate was changed from 156 Hz to 160 Hz so that a basic interval of

0.1 second (as opposed to 1.0 second) could be assigned to T. That is

1

S | 1 1
* 30

Lo el -1
160 16 * 20 2 3

so that, when T = 0.1, the rates can be represented as

T1-‘1‘§.T2-12“,T3=

win

At the time this decision was made, it was felt that these rates were

sufficiently separated to expose the basic character of the three-rate

problems and to "simplify" the integers involved.

Also 1indicated in Figure 56 1is a suggested change to the initial
drawing. 1t is probably realistic to model the displayed pitch angle as
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a staircased function; therefore, a data hold, 1n a T/3 frame time,
-.075

should be inserted before the e pure time delay.

Since several of the operations occur at the same rate, we may elect

to simplify the blocks by referring to Figure 56. From the figure,

write
0772 = GI{?(cf? + 63126}/ /2 G13)
- cM2c1/2 (314)
3T/2 = Gz/zcg/zcr/z - Gg/zcr/z (315)

ET/2 . o2/261/263/2cT/2 o (/26T T/ (316)

AT/2 . Gg/ZG;/ZBT/z - cg/ZBT/Z (317

Using the definitions of Equations 314 through 317 we may draw the
more compact diagram of Figure 57.

D. A-10 SWITCH DECOMPOSITION MDDEL

The switch decomposition model for Figure 57 is shown in Figure 58.
We must now inquire as to whether or not the switch decomposition model
for Figure 57 would give the same answer as a switch decomposition model
of the more detailed Figure 56. That 1is, the switch decomposition model
of Figure 59b will give the same answer as Figure 59a. Will the switch
decomposition model of Figure 59c also give the correct answer? The

answer to this is in the affirmative.
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Figure 57. A~10 Case Study~Simplified Block Diagram

Figure 58. Switch Decomposition Block Diagram
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c'/l

—r

/3

CV/)

R cr/)
/
) W, W, 6

From Figure 59a

cT/3

and from Figure 59b,

CT/3

From Figure 59c, one

cT/3 w wy(wy Mawp)T (W2, 6H2)T (W2, R)

Now, rearrange Equation 320 (nest the T operators)

Figure 59.

T/3
2.T/2
= [M63/%61/2)

= W3(W3 MaWp)T(Wp,GoWy)T

x (Wp,61W2)T(wa,R)T

finds

Equivalent Models

T

T

cT/3 = {[W3(W3*"2“2)(w2*cw2)(WZ*R]T]T}

Notice Wz(Wz*R)T & RT/Z, therefore

T
cT/3 a {[Wy(w3 Maw2)(Wp,6RT/2]T}
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T/ZRT/Z

Next, note WZ(WZ*GRT/Z)T is by definition G
5/ 26T/ %172,

which 1is, 1in turn,

The last T operator,
T/3
T
cI/3 w3(w3*nzc§/2c¥/2RT/2) 2 [MZGE’ZG¥/2RT/2] (322)

Thus the switch decomposition model of Figure 59c¢ is exactly equiva-

lent to the model of Figure 59b.

When this study was initiated, switch decomposition appeared to be
the logical solution to the problem. However, the developments of Sec-
tion III pushed the decomposition approach into the background. Fig-
ures 58 and 59 are therefore given only to 1llustrate an alternate

approach.
E. ALGEBRAIC MANIPULATIONS

Referring to Figure 57, write

T/2 .
R [MIGX/IGRTllslT/Z . {MIGX/16[M2GE/2AT/2]T/16}
+ 632/ 21/2 (323)
Simplify Equation 323:
AT/2 o o [M1G£/16RT/16}T/2 + [MIG£/16ME/16]T/ZGE/ZAT/Z 3
+ cb/%c}/ 24112 (324)
Therefore,
RN [MIGX’16M5/16]T/ZGE/2 ) Gg/zcg/z}‘1
x [MIG£/16RT/16]T/2 (325)
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The final result is

/3
o = Golupel a3/ 2a1/2] (326)
or
T/2 1/2 t/16.1/16 %2 172 1/2,7}
8 = —-Ge{MpGs5'“Gp'“[I - (MGy" "M3" ") - Gg'“6p’ ]
/3
/2
x [m,65/ 16RT/16] "} (327)

Comparing this with Equation 277, it can be appreciated that the
A-1G case study reduces to the same type of computations required for
the simpler example. The dimensionality will be, of course, consider-
ably higher. We will, therefore, not repeat the analysis of the pre-
vious section, but merely note that a computer program was written for
Equation 327 and the results computed on a Tymshare terminal. The s-
and z-plane transfer functions are listed in Table 14 in Appendix D. We
proceed immediately to a discussion of the results. To compare the
difference, the continuous baseline Bode plot is shown with the Bode
plot obtained by assuming that the displayed pitch angle sample sequence
is reconstructed with a ZOH (in order to drive the display generator).

F. COMPARISON WITH BASELINE

The Bode plot associated with the three-rate simulation, together
with that of the continuous baseline system, 1is shown 1in Figure 60.
Again, one must keep in mind that this is only one of the two plots
needed to completely define the spectral components (although it does

appear to be the primary one).

As was the case with the lower-order examples used previously, we
note the phase lead, at low frequencies, 1s less for the digitized ver-
sion than it 18 for the continuous model. Clearly, this phenomenon
requires further study and we caution against adopting the viewpoint
that a multi-rate sampling format 1is a technique which will always

introduce phase lead into a simulation.
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C. SUMMARY AND CONCLUSIONS

Two case studies, which utilized three different sampling rates,

were analyzed. Each introduced phase lead into the first fold of the

frequency response, a result which contradicts our intuitive expecta-

tions. It was shown that the multi-rate analysis tool, developed 1in

Section 1V, was an effective tool for treating the dimensional problems

introduced by the variations in the three sampling frequencies.
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SECTION X

AN OBRDER-OF-CALL CASE STUDY

A. TINTRODUCTION

This section focuses on a single-rate case study which is concerned
with order-of-call effects. These anomalies are introduced when one
element of code calls another element containing results predicated on
"fresh" input data but which, in realitv, used 'stale' data (because the
new data were not yet available). Specifically, we study a roll/sway
washout network simulation wherein a pure delay is introduced in an
integration algorithm. This case study was suggested by AFWAL/FIGD per-
sonnel who are associated with LAMARS. The problem was first described
in Reference 5. The following description of the problem is excerpted

from that reference.
B. DESCRIPTION OF WASHOUT COMPUTATION

In the LAMARS motion washout routine, transfer functions are imple-
mented by representing the output variable as a function of the input
variable and also representing it iwplicitly as integrals of the output
variable 1itself. The output equation 1is evaluated first, then the
derivatives of the states are computed based upon the output and lower
states, then finally all integrations are performed using the Adams-

Bashforth second-order predictor algorithm.

For a third-order washout filter of the form used in the w path, the

implementation is developed as follows:

Output _ y _ b353 (328)
Input r 83 + ay82 + aysl + ay




(Divide through by s>]

[Cross multiply]

[Move integrations to input side]
1 1 1
y = b3r -7 [ag +7 (a1 +5 ag)ly
[Define output in terms of input and highest-order state]
y = bjyr - wj

[Define states from deepest nesting outward]

@ |
o
—

Wil = agy = w} =

® |~
e
N

1
wy = a1y+§a¢y = ajy + w = wy =

w j—
-0
w

o 1 1
w3 = azy +7 aly + 2apy = azy +w2 => w3 =

(329)

(330)

(331)

(332)

Thus, the 1input 1s seen 1immediately in the output and thence in all

derivatives of the states, but the states themselves are not updated.

The expansion outward from the nesting results in state equations which

assume in their form that updated states are continuously available.

However, since all loops are then implicitly expanded in full prior to
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any integrations, a lag with respect to the system state response is
introduced, while immediacy of response with respect to the {input is

preserved.
C. THIRD-ORDER WASHOUT CASE STUDY

The analog block diagram of the previous equations is given in Fig-
ure 61b and then translated into the digital version of Figure 6la. In
Figure 6la, there 1s an explicit model of the order of call. That is,
the integrations are performed last in the cycle. This has been inter-
preted to mean, on any given machine cycle, that w)> ¥,, W, are the old

values (previous frame time values). Thus, the integration of w) that

contributes to &2 is one frame time old, the integration of 62 which

contributes to w3 18 a frame time old, as is the integration of 53 which

produces Wae

In evaluating (l/s)T, Reference 5 calls for the use of an Adams-

Bashforth second-order predictor algorithm. It was later agreed that

nothing essential would be 1lost by wusing "Implicit" Adams-Bashforth
second-order, which is described by Figure 62 and the equations

which gives,

(T/2)(3z - 1)

z -1

bijed o

(334)

If the integrations could be accomplished with very little throughput

delay, To = 0, one could write, after setting

(T/2)(3z - 1)

z -1

G(2) (335)

yT - b3RT - [azG + a)G

2 4 ag&3)yr (336)
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W2=0.y+wu$ W2=I00 Wol+| o, |y I
. . - Q
W3z 0y + W, Wil {01 o|lws| | o2 s L°
3} W| = % W|
-1l
Wa= s W,
l .
Wa= =W
3 [3 3 b}
Figure 61, Washout Analog Block Diagrams
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Figure 62. Discrete Integrator

or

yT = [I + a6 + ;G2 + agG3] *b4RT (337)

T T.
W, = e 8To (esT°M) (1) Wy (338)

S

1f To = T, this reduces to

Wy = (T/2)(3z ~ 1) ‘:12 (339)

z(z - 1)

G i8 modified by the factor 21, This procedure can be repeated on the
other two 'nestings" giving the same result. Each G of the no-delay

1

case is only modified by z~° and Equation 347 can be used for both

cases.

The result obtained requires careful validation since it forces the
characteristic equation of Equation 337 to 1increase by an order of two.
To see this, insert the appropriate G(z)‘’s and clear through:

{{1 + (3/2)Tay + (9/4)T2a; + (27/8)T3ap]23
+ [=3 = (7/2)Tay - (15/4)T2a; - (27/8)T3ag]z2

+ (3 + (5/2)Tay + (7/4)T2a; + (9/8)T3ay]2

+ [~1 - (T/2)ap - (T/4)2a; - (T/8)3ag]} yT = b3(z - 1)3rT
(340)
No Delay
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{26 + [-3 + (3/2)Tay]25
+ [3 - (7/2)Tay + (9/4)T2a; )24
+ [-1 + (5/2)Tay - (15/4)T2a) + (27/8)T3ap]23

+ [=(7/2)ag + (7/4)T2a) - (27/8)T3ap]22

+ [-(7/6)2a1 + (9/8)T3ap|z - (7/8)3ag} yT = b323(2-1)3RT
(341)
Delay

For G = (6s%)/(s3 + 682 + 1ls + 6) and T = 0.04, Equation 340 yields
three real roots, all interior to the unit circle (we are using conven-
ient numbers; more realistic parameter values will be used for a sixth-

order case, which follows).
Az)y = (z - +898304953)(z - .962264027)(z - .928571684) (342)
With the frame time delay in the integration, Equation 351 gives

Aezy = (z - .887598)(z - .960815504)(z - .92332214)
(343)

x (z + .067598089)(z + .043321992)(z + .020815562)

The results for the sixth- and third-order models are summarized in

Equations 344a and 344b, the data for which are given in Table 9.

Gy = a0z} (2 - 1) (344)
1 26 + b535 + b4z4 + b3z3 + b222 + blz + bo

or
Co(z - 1)

G - (345
2 z3+d2z2+dlz + dg )
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TABLE 9. THIRD, SIXTH MODEL DATA

b0 ~0.000048000 d0 -0.802663438
by ~0.003968000 d; 2.592078213
b, -0.090496000 d, -2.789140664
bj -0. 464704000 o 4.282973183

b4 2.199600000

bsg ~2.64000C000

0 6.000000000

The results of this analysis are most interesting. They indicate
the order of call has introduced an effective filter which essentially
doubles the order of the analytical model describing the software. In
the illustrative example we see that the "delay" case tracks very well
with the continuous baseline and no delay cace (See Table 10). Indeed,

one could conclude that the delay case is superior to the no delay case.

The correctness of the result can also be checked by running the
impulse response using both the analytical model of the simulation and
the actual computer code. The results shown in Table 1l 1indicate an

extremely close agreement.

Thus we see that the manner in which an algorithm is implemented can
introduce filtering over and above that intended by the designer. We
shall explore this in more depth by next considering a sixth-order wash-

out using parameter values supplied by FIGD personnel.
D. SIXTH-ORDER WASHOUT EXAMPLE

Here we treat a sixth-order model where the transfer function repre-

sents lateral acceleration (sz) to roll rate (P,):




Jes/peax m
s22133p 4
(4P) OVH

00000000 0% 00000000 *0% 00000000°0% | 000000000°S | 000000000°S | 000000000 S

0096LL81°%1 0050478019 9eL7S9€86°8 | 06S%66%0°S9 | 0/8Z660C °6S 8¥8605.0°%9

LSTSLLSS 91 161690668 °€1 60L0TSTS ST | EEYT6G9E €1 9€69(89L°11 %92ZLC1% ¢

00000000 "0t 00000000 *0t 00000000°0¢ | 000000000°% | 000000000°% | 000000000 %

0L625188°91 0091%€981 °6 0%0Z8EEY*TT | 005S6E8T *8L 0T606S€0°CL | OET6ITLY LL

8290060 *91 SHHe89¢26 “E1 GT6TLS6Y ST | £CS1IsvE Tl G9EECEBB 01 XA AA IR

00000000°0Z | 00000000 0T 00000000°0Z | 000000000°€ | 000000000°€ | 000000000 €

021192¢et °1¢ 01660Z¢€8 "Y1 86€9LE0T LT | 092€06.G°L6 086.0EET *16 LE€B6Y%.8°79C~
SEEVTINY Gl 9GyL18SY €1 6ZHCETIN 61 | SBESIGSY *0T 90.86250C °6 ZLTH186% 01

00000000 "01 000000006 01 00000000°0T | 000000000 "2 000000000 °z | 000000000°Z

07T161¢£6°SE 07sL0LLS°0¢E 9869.6TL°¢€ | LYYELO6°T1EC— | 6%80GTE "BET~ | ¥9T106C2T *C2€EC~
%89%0LL6°%1 76708760 °€1 0671754671 | 990S60%EY 9 | 0696SL1ZS°S | WIETI6L%9Y 9

000000000 *6 0000000006 | 000000000°6 | 000000000°1 000000000 ° 1 0000000001

0%04108C *6¢ 8907516 °¢LE SI8Y6L0E L | ZBSTTS6°6L1—| 9%00%L6°%81~ | 0000000 "08T~
H7%0%0€8 *%1 BZSZO%86°T1 0LTTBTY8 HT | 89LYYG6YY *W— | TWEELY658H= | T66YL69LY -
000000000°8 | 000000000°8 | 000000000°8 | 0000000010 | 000000007°0 | 000000001°0

O1918ISY "ty | 0LL.£980°8¢E Y0SOELTL 1Y | ¥981¢C8%°001— | 08BE%991 101~ | 80S1Z8Y 00T~
IreE8T9L9°%1 L09SET1€E8°CT €62.6099°%1 | %7£60650°09~ | %/91%590°09— | 9£0888S50 *09-
000000000 *£ 000000000 *£ 000000000, | 000000100°0 | 000000100°0 | 000000T00°0

0£9%70T9L 8% | 089E€SOIE €Y LL880%LT°LY | 069C1S0T 06— | OTOOTZTT 06~ | 92Z%0S0T1 06~
Y10949¢ ° 71 9zi01¢e19°¢1 £489120% %1 | %800000°081- | 2810000°08T—- | 6500000081~
000000000°9 | 000000000 °9 0000000009 | 000000010°0 | 0000000T0°0 | 000000010°0

04206569 °SS 0£161160°0S CTZTET9H*%S | OEEYY0OSO°T6— | OEB668TT 16— | ¥70070S0° 16—
666€£06.6°¢1 ZE6E598C 1 RLLSELTO T | 668S000°0CT~ | 2%99006°0C1~ | 1165000°021~
AV13a *s1a S1d INOD AV13G ‘SId S1d INOD

|

Vivd 3008 JAILVINASIYdId ITHWOS

*0T 3149Vl

153




TABLE 11.

IMPULSE RESPONSES

6th ORDER
MODEL

COMPUTER
CODE

NN NN RN NODRN NN e e e e o e b=t
CONOLWEWN RO OO NR VN WNROPRNIUVEWN -

6.000000000

3. 840000000
2.940000000
2.103360000

1.413485760

0.842594150
0.374368440
-0.005989020
-0.311312900
-0.552761020
-0.740018250
-0.881479430
-0.984410188
-1.055088400
-1.098928750
-1.120592090
-1.124081650
-1.112827510
-1.089760760
-1.057378550
~-1.017801150
-0.972821940
-0.923951200
-0.872454410
-0.819385750
-0.765617360
-0.711864890
-0.658709770
-0.606618610
-0.555960090

6.000000000

3.840000000

2.940000000

2.103360000

1.413485760

0.842594150

0.374368444
-0.005989006
-0.311312875
-0.552760985
-0.740015208
-0.881479389
-0.984410140
-1.055088363
-1.098928718
-1.120592066
-1.124081640
-1.112827520
-1.089760787
~1.057378593
-1.017801208
-0.972822016
~0.923951295
-0.872454524
-0.819385882
-0.765617512
-0.711865060
~-0.658709954
-0.606618808
-0.555968303

t = k At, At = 0.04 sec

e ey R R el




1.618%(s + 1.56923) (346)

G =
[s2 + .07s + .0025](s + 1.57)(83 + 1.569238% + 8 + .266)
or
Ry3 R22
l.61s + 2.5264603s (347)

R3os6 + Rzgs5 + Rzgs4 + R27s3 + R2632 + R258 + Ry

where the Rij's are listed in Figure 63. We may nest Equation 347 as

follows:
R R R R R R . R R
29 28 27 26 25 24 23 22
1 +-—==+ =2 + 3 + 4 + 5 + 36] Yn, (-?;— + -2:5> Pa (348)

(349)
S|R29 +5 R2g8 +5 R27 + 3 R2e + R25 +—

sz

The analog block diagram is shown in Figure 63.

We may dispense with the digital block diagram and write the appro-
priate equations directly from Figure 63.

1) Y=Wg-W 2) Wy = Ra4Y 3) wy = 172 3E=Lly
8 6 z -1

‘.12 = RosY + Wy
. i = 1’ eee 8
W3 = RpgY + W2

&4 = R27Y + W3 or (350)
&5 = RogY + W, wik = wik-l

Ws = RogY + W, + 3T/2éik

&6 = RogY + Ws - T/ZP.Vik_l

W; = RyR 1=1, 2, e+, 8

Wg = R23R + Wy
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G(z), for the no-delay case 1is readily computed and has the form

2
. R119=6 + R118z5 + R117=“ + R116=3 + Rl1527 + R1142 + Rp13 (351)
R12628 + Rj252° + Ryg4z% + Ryp3z3 + Ry2222 + Rypjz + Ryzp

o o<

and for the delay case

Ruzz12 + R111zll + Rllozlo

= (352)

Y + *e° + Ri0o
R R22212 + R21211 + Rzozlo 4+ se° + Ry

The data are tabulated in Table 12 (again, T = 0.04 seconds).

Again, we found that the 1impulse responses of the twelfth-order
analytical model agree exactly with the impulse response obtained dir-

ectly from the computer code (not shown).
Some representative Bode plot data are given in Table 13.

Using the parameter values given us, we see that the filtering
introduced by the order of call has actually improved the fidelity of

the frequency response.
E. SUMMARY AND CONCLUSIONS

The encoding of an algorithm, where a definite sequence of call is
given, can introduce filtering of which the designer of the algorithm is
unaware. For the washout case study, we see that the filtering action
was "benevolent” in that it actually improved the fidelfty of the fre-
quency response. The effect of updating the integrator states as the
last event in a given frame time leads to an analytical model of the

computer code which 1s twice the order of algorithm being encoded.

. .
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TABLE 13. FREQUENCY RESPONSE DATA, 6th ORDER WASHOUT
DISCRETE, DISCRETE
CONT NO DELAY DELAY
MAG 1.833472489 | -2.614690348 1.948711343
4 4.026912923 36+ 32463432 14.36929036
freq. 1.000000000 1. 000000000 1.000000000
~2.405029014 | -3.026181390 | ~2.412522944
-42.92847068 | -38.25338109 | -42.44121200
2.000000000 2.000000000 2.000000000
-5.633216300 | -6.144060048 | -5.576132340
-58.65023633 | =52.10560145 301.5580652
3.000000000 3.000000000 3.000000000
-8.031772688 | -8.504798812 | -7.938527142
-66.49678734 | =57.69456014 293.7055865
4.000000000 4.000000000 4.000000000
-9.924000906 | -10.34754451 | -9.778310534
-71.20086176 | -60.12882875 289.0036661
5.000000000 5. 000000000 5. 000000000
~11.48275868 | -11.84540095 | -11.27354613
-74.33561069 298.9727785 | -74.15427992
6. 000000000 6. 000000000 6. 000000000
-12.80673528 | -13.09802451 | =12.52335630
-76.57418687 298.9268998 | ~76.44184967
7.00000000 7. 000000000 7. 000000000
-13.95687896 | ~14.16724547 | -13.58926581
-78.25287151 299. 4021514 | -78.20508987
8. 000000000 8. 000000000 8. 000000000
-14.97328861 | -15.09375872 | =14.51203844
~79.55838679 300.2095026 | ~79.63326613
9. 000000000 9. 000000000 9. 900000000
15.88369136 | -15.90583247 | -15.31989859
-80.60272779 301.2347408 | -80.84148715
10. 00000000 10. 00000000 10. 00000000
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APPENDIX A

EXAMPLES DEMONSTRATING THE SETUP OF THE GENERALIZED
SKIP-SAMPLING THEOREM

This appendix contains several exercises on the setup procedure for
the generalized skip-sampling theorem. The situation is reviewed in
Fig. A-l1 and Egqs. A-l and A-2.

CT/M - [GRI/N]TM o [T/NKgT/N)T/M (A-1)

In Eq. A-1, M and N are rational numbers and K 1is an integer. If

z = eST/NK, then NK/M must be an integer. Equation A-l can be evaluated

using Eq. A-2:

r

Z"pl h

(A-2)

. G(pIR(pK)
= residues of —

/M T/M
/ / R c , C
T/N /M T/N T/NK  T/M

Figure A-1, A Phantom Sample Formulation of a
T/N, T/M Sampling Format
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APPENDIX B

SKIP-SAMPLING THEOREM

When dealing with functions such as

™ T/M

T
[GRT/N] = [GT/MNRT/N] (B-1)

there 18 the option of which poles to circle. That is, in

T/M
T/N = L f my 2 __ dp B~
(M) 2 gy Jp c@REM 5 5 (8-2)
the poles of G(p)R(pN)/p or the poles of z/(z - pN) may be enclosed.
For the special case of [RT/N]T, the result of closing the contour
around z/(z - pN) 18 known as Sklansky’s identity (Ref. 6). The result,
for arbitrary N, is

T 1 N=-1
(R - L r(acen)
k=0
where
ay = oST/N a = eJ2mk/N

(B-3)
k = 0, 1, ---,N-l

Of particular interest 1s the case of N = 2, since only real numbers

are involved:

; 1 k=0 1 k=0
} ak - $ ak - ’ z = eBT/Z
ed™ kel ' -1 k=l
T/2" 1
[RP2] = 2 [R(2) + R(-2) ] (B-4)
B-~1

L e,

. S S
S EEg ik oy

R SN ™ S T

] E3 i B B e R




Therefore, collect terms and let z2 + z, since Eq. B-4 is by defini-

tion an even function of z.

For N = 3, the algebra is less attractive:

1 k=0
ay = ej2n/3 k =1
ejl‘"/3 k = 2
T
[RT/3] = '% [R(2) + R(e12"/3z) + R(e'32"/3z)] (B-5) i
3

Thus, one may collect terms and let z° + z. However, in general, it is
laborious to solve Eq. B-3 literally in terms of T, although as a compu-~

ter computation (for given R and T) it is straightforward.

The derivation of Eq. B-3 will not be given, but the general tech-
nique involved will be demonstrated for the easily followed case of

N = 2. Consider

T
T = [rRT/2] - fy(p) 2 (B-6)

Let z * z1 and enclose the poles of 21 - p2. That is, enclose the poles

which are exterior to the unit clircle, keeping in mind that this forces
a "reverse" in direction of the contour of T, hence a change of sign.

However, the change of sign will be cancelled by the minus sign neces-

sary to place z - p2 in the proper form for residue evaluations (e.g., ~
pz -z =0).
_121 2
T
R - = ~res - res k
2wJ r (e - 217(1: ¥ zp) p=z] p=-z]

2 2
R(z}]) 2] + R(-z})z]

z] 2z1 -zj(=22z1)

1 [RGzp) + Re-2)] (B-7)




The usefulness of Sklansky’s identity for frame time ratios which are

powers of 2 is clear. For example, if

17F

/4
] (B-8)

This problem can be solved, using only real numbers, by applying Sklan-
eky’s identity four times (2% = 16). j
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APPENDIX C

A DIMENSIONALITY PROBLEM

The use of the high-to~low rate transfer often introduces a dimen-

sionality problem. For example, if

1/3
/3
/3 . [M£/6 Gm] } [de-_zz_t_l.c(z3)]

2 2zmeST/6

and G(z) 18, for example, a seventh-order transfer function, G(z3) is

21st-order and therefore

is 23rd. This dimensionality 1is of 1little concern 1if one chooses to
implement the algorithm of Section IV; however, the occurrence of shift-

ing between time frames ratloed by powers of 2 is common enough to make

a technique for using Sklansky’s identity, in a more efficient manner,

attractive.

Suppose we replace z3 by x in G(z3) and find the high-to-low rate
transform, with a ratio of 2. That is,

6x)1T/2 = w(x)




Using Sklansky’s identity, we may write:

2 2
CT/3 - .1_ E._i_z.._".'_lc(z:i) +.2__:_2_+_1 G(_z3) (C=2)
2 22 Zz

- 3——1-2"‘ [ 23 +G-3]+1[Q(;3)-G(-z3)] (-3
22 2 z 2 -3)

2 3 3
- £—§iwu6)+f[9@) }G“Z)] (C-4)

Z

The reader may find it puzzling that a z6 argument 1is placed on W. To

see this, recognize that the use of Sklansky’s identity,

T
T/2
[G(£>} = V@D, s1/2 = W@ |, st (C-5)

generates a function of zz. That is, when one evaluates equations like

ST/2) and it is con-

sT

Eq. C-5, we are dealing with a function of 22(2 = e
venient to switch directly over to a function of z wherein z = e
However, in Eq. C-5, recognize that the algorithm automatically makes

the substitution for us. That 1s, it does not yield W(xz) in the T/2
time frame; rather it gives W(x) in a T time frame. Since (z2 + 1)/z2
is still in a T/6 time frame, one must insure that the arguments are
compatible. Clearly, W(xz) is the desired format. Since x = 23, we

have W(z6).
Next, suppose

G(z3) - g(=z3

2

)

H(z3) (C-6)

Cc-2




and apply the definitions to find out what H 1is, in terms of G and W.
i Since

Q
)
20

2~ B
G +G
> W
the sum gilves
H+W = G (C-7)
Using Eq. C-7, rewrite Eq. C-4 as
) T/3 2
2 + 2 + 1 G(Z3) = (Z__—_;_-t._l.)w(zﬁ) +l G(Z3) (C_s)
2 z Z
where
T
T/2
[G(x)] = W
The use of Eq. C-8 is clear -- we may now use any convenient compu-

ter multiply option and add option to generate the 23rd-order CT/3 with

a minimum of dimensionality.

Alternatively, for frequency response purposes, we can evaluate

CT/3, for z = l4bT/6, rather easily:

c1/3 L zi-z 41

z=14bT/6 z (z)|z=l4bT

W
z=1xbT/6

G(z),z-l4bT/2

2=14bT/6

L) ]
.

e - e gy vwm = e .,.-q-**n-t‘ﬂ”_}: .*“”ﬂm‘r’l‘

sttt




APPENDIX D

g— AND z-DOMAIN A-10 TRANSFER FUNCTIONS

The s~ and z-plane A-10 transfer functions used in the A-10 case

scudy are tabulated in Table 14. The appropriate time frame used in the

discretization of each transfer function is listed in the left-most

column of the table.
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