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SECrION I

INTRODUCTION

The past decade has seen an order-of-magnitude increase in reli-

ance on fixed- and moving-base simulation for research and training in

all types of aircraft. The reasons for this increase are numerous,

ranging from the development of vehicles which must he completely

design-validated before flight test (e.g., the Space Shuttle) to the

increased use of simulation for training purposes (for reasons of

safety, repeatability, and reduction of fuel costs). As a result, simu-

lation facilities are in widespread use throughout the Air Force as well

as other government agencies and private industry.

Accompanying this increased use of simulation has been a dramatic

increase in simulator complexity. This particular development manifests

itself most noticeably as digital computers replace analog equipment.

While digital implementations provide better reliability and mainten-

ance, increased static accuracy, and greater flexibility, they also

introduce an array of simulation artifacts heretofore unconsidered.

These anomalies impact the new generation of simulators in two areas:

* Hardware/software procurement. Techniques used
to specify analog systems will no longer suffice
in a digital environment. Critical concerns such
as frame time, word length, integration algo-
rithms, data skewness, order of subroutine call,
etc., are presently the heuristic choice of the
contractor, since the contracting agency has no
analytical means by which to specify these items.

* Research/training on cxisting equipment. Often
digital simulation artifacts creep into a simula-
tion facility as a result of upgrading existing
equipment with digital computers. As a result,
experiments and training sessions may be contam-
inated with extraneous simulation errors. These
errors are difficult to detect and assess without
the aid of analytical tools.

.. . ..



The anomalies themselves are many but can be roughly described as

frequency aliasing effects (another term is folded power). They arise

for a variety of reasons:

1) Two or more computers required in a large simula-
tion, each working in its own frame time (the
so-called independent processor problem

2) Serial processing (calling) of subroutines. The
first subroutine called may work with different
input data than those called later (skewed data,
"1stale" input data).

3) Throughput delay factors.

4) Staircasing (zero-order-hold effects) when the
digital computer output is used to drive the
actuators of motion-base cabins.

A set of recently developed concepts provides the basis for iden-

tifying potentially critical simulation anomalies at the design stage in

an organized and rational way. Moreover, a method exists which can be

used to implement given computer code (integration algorithns) into a

multi-rate, time delayed, skewed data analytical model, and predict the

Impact of these digital effects on the proposed simulation. To date

these new methods have been demonstrated on low-order models with only

limited demonstration of the theory. It is necessary to demonstrate all

features of the new theory in a joint fashion on higher-order problems.

The methodology embodies three concepts. The first, which will be

illustrated in Section 11, is the continuous frequency response of a

digitally controlled system. Using techniques developed in References I

and 2, it is possible to compute the group of N sinusoids which fit the

response of a digitally controlled system not only at the sample points

but at the (N - 1) inter-sample points as well. In the limit, as N

approaches infinity, one obtains the "continuous" frequency response of

a digitally controlled system. This section will clarify the term "fre-

quency response" in the content of this report; it will be demonstrated

that there is a truly significant difference between the frequency

response of a digitally controlled continuoui system and the discrete

spectrum of sampled data control theory. It is convenient to review the

2
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theory of the single-rate frequency response since it affords the oppor-

tunity to present several clarifying comments on the frequency response

concept suggested by various readers of Reference 1 Thus, Section II

is also an "update" of the frequency response concept for digitally con-

trolled systems and provides a link with newer developments.

The second component of this simulation analysis method is vector

switch decomposition, a technique for analyzing simulations with two or

more sample rates, data skewness, throughput delays, etc. As described

in Section III, this technique Is conceptually quite simple. All samp-

lers in a given system are replaced by equivalent samplers whose periods

are the least common sampling period, and the appropriate time delay

vectors. One practical problem with this method is the accompanying

increase in dimensionality for Lhe "decomposed" vector. Vector switch

decomposition is not a particularly workable tool for pencil and paper

design, although it is quite amenable to computerization, since the

matrix mankipulations are routine.

We then develop from switch decomposition an algebra that circum-

vents, for a limited class of problems, the dimensional complexities

introduced by the decomposition itself. In effect, a scalar problem

will remain, in the framework of this algebra, a completely scalar prob-

lem. This "limited class of problems" is important since it encompasses

the open-loop analysis of particular elements of a simulation as well as

closed-loop multi-rate systems wherein the sample rates are related as

powers of 2. This latter case covers both the Space Shuttle (25, 50,

100 Hz) and the F-18 (20, 40, and 80 Hz) digital control systems.

An important computational aspect of this scalar algebra is dis-

cussed extensively in Section IV. Specifically, an algorithm is des-

cribed for transforming from a T/N time frame to a T/M time frame, N and

M being arbitrary but rational. For example, sets of (M, N) such as

*In particular, the comments of Dlr. Hsi-Han Yeh of the University of

Kentucky provided an excellent interpretation of the limiting results as
N infinity.

3
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(3, 2), (2, 3), (7.8, 1), etc., are permissible. The algorithm is of

particular importance as it permits the user to circumvent certain

dimensionality constraints introduced by multi-rate methods based on

residue theory. The nature of these constraints will be made clear in

the case studies of Sections VII through IX.

In Section V, the application of the scalar algebraic approach to

multi-rate frequency response is compared with the more general switch

decomposition approach of Reference 2.

The third component of the simulation analysis method was developed

in Reference 2. It is primarily a technique to incorporate, within the

switch decomposition framework, a specified computer code. For example,

there are a variety of methods available for modeling a low-pass filter

section on a digital computer. One can use the Tustin transform, a rec-

tangular integration algorithm, Adams-Bashforth, etc. Clearly, in

analyzing a given simulation there must be a capability for incorporat-

ing the given difference equations into the analysis, without any par-

ticular regard (or prejudice) as to what the originator intended the

code to represent. It is the task of the analysis to show the origin-

ator how successful his digital model is in representing the principal

features of the continuous system. Facets of this problem are discussed

in Section VI.

In Section VII, a first effort is made to bring all of the key ele-

ments together into a two-rate simulation case study. The ratio between

the two frame times forces the use of the switch decomposition format

and furnishes insight into the dimensionality problems encountered.

This case study also demonstrates how a two rate format can introduce

unintended lightly damped modes into a simulation.

In Section VIII, another case study is described which does not

require the use of switch decomposition. The primary purpose of this

study is to gain insight into the multi-rate frequency response. Sup-

pose the output is sampled in a T/3 time frame but other rates are

involved in preceding portions of the system. How many sine waves are

required to exactly match the steady state T/3 output samples?

4



In Section IX the analysis of an existing three rate simulation is

attempted. It was in this high-order simulation study, where the ratios

between frame times were very large, that shortcomings in our computa-

tional tools proved to be more critical than previously suspected. For

instance, in moving from one time frame to another, a fourteenth-order

system becomes a system of order 1I21 The "invention" of the algorithm

of Section IV was a direct result of these difficulties. Subsequently,

we were able to proceed through the case study with relative ease and

achieve impurtant results. Thus Section IX, as it now stands, will give

little insight into the numerical and dimensional difficulties first

encountered.

The multi-rate simulation studies of Sections VII through IX have a

primary goal of providing insight into the spectral characteristics of

the output steady-state waveform in terms of the number of sinusoids

required to match the output (sampled) data points. A secondary objec-

tive is to call attention to some observed anomalies (such as extraneous

lightly damped modes introduced by the multi-rate structure) which can

be identified and quantified using the anlaytical tools described in the

earlier sections of the report.

Section X treats a single-rate case study which investigates the

effective and unintended filtering introduced when subroutines are

called in a serial manner. Specifically, it is shown that the z-domain

analytical model of the computer code used in the implementation of a

washout filter for a large moving-base simulator is twice the order of

the intended s-domain transfer function.

The report is a lengthy one, attributable in a large part to a

desire to pull together under one cover the key elements of References 1

and 2 which have application to simulation error analysis. Those

readers familiar with the concepts of References 1 and 2 are therefore

in a position to selectively read the present report.

-I_5



SECTIOE II

DISTINCTIOES IN -nUQMMY RESPOESKU

A. INTRO DUCTIOE

The term "frequency response" for discrete systems refers to the

process of selecting the magnitude and phase of a single frequency sine

wave to fit sample points at the sampling instants. In contrast, the

concept of "frequency response" for the continuous variables of a dis-

cretely (digitally) controlled system defines the infinite set of sine

waves (in terms of a fundamental and aliased irequencies) which add

together to exactly reproduce the continuous output steady state wave-

form.

A simple but illuminating example, defined by Figure 1, illustrates

the distinction. Suppose the system is forced by a step input and the

continuous output C is recorded - both as a continuous analog quantity

and also sampled at a rate of 1/T Hz. Furthermore, let the open-loop

plant, 10/(s + 10), be subject to two different control laws, one imple-

mented with a zero-order hold (ZOH), the other with the "slewer" data

hold. The control laws were synthesized with the objective of forcing

the output to be the same at the sampling instants, regardless of the

control law/coupler being used. These responses are shown in Figure 2.

Note the smoothness of the slewer-controlled response and the roughness

of the ZOH response. However, an observer who is shown only the I/T Hz

sampled output would be unable to detect any differences in the tran-

sient responses, even though the continuous responses are very differ-

ent.

Next force each system with a sine wave and record both the continu-

ous and discrete output waveforms. The observer who is only interested

in matching the sample points uses the discrete frequency response and

picks the magnitude and phase from a Bode plot, such as the one labeled

"discrete," in Figure 2b. Again, this observer is unaware of any dis-

tinction between the two systems (ZOH or slewer) as the same sine wave

6
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fits the sampled points of either output waveform. The "continuous"

frequency response magnitude plots for the ZOH and slewer designs are

also shown in Figure 2b. Here the observer must know how to reproduce

the output waveform' as the sum of a fundamental and its aliased fre-

quencies -- a point discussed next. We merely observe that the "con-

tinuous" Bode plots show a truly significant difference between the two

systems -- differences which the discrete frequency response of classi-

cal sample data control theory is incapable of detecting.

In the analysis of multi-rate simulations, one is often more inter-

ested in the finite set of sine waves that fits an output sequence

sampled in, for example, a TIM time frame when the input is sampled in a

T/N time frame. It is therefore appropriate to review the "finite N

case" and the subsequent extension to the continuous frequency response

of a discretely excited system.

S. PRZ(QJECY RESPONSE OF A SAKPLED SYSTEK

When a continuous, stable, linear system is excited by a sine wave,

the steady-state waveform is comprised of a single wave at the same fre-

quency as the input. It differs from the input wave only by a phase

angle and a magnitude factor. Moreover, it is unnecessary to compute

the actual transient response of the system when the behavior for large

values of time is of interest, since both the magnitude factor and phase

angle can be read from a Bode plot.

The analysis of a continuous system which is discretely controlled

is more complex. Given that the system is stable, the continuous output

waveform will contain more than just a wave at the fundamental fre-

quency. It will consist of the fundamental and all of its aliases.

Thus, if the system is forced with 1 sin bt, the output will contain

terms at frequencies b, [b + (21r/T)1, [b - (2ir/T)], .... The relative

amplitudes and phase angles will depend on the data hold employed as

well as the system transfer function. Nevertheless, given a data hold

and transfer function, the magnitude and phase angle of each component

can be read from a particular Bode plot. This concept of frequency

response is more comprehensive than the traditional concept of the

8
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"sampled spectrum," which is limited to determining the single sinusoid

that fits the system output samples at the sampling instants.

In the subsections to follow the Bode plot concept for a continuous

system is reviewed and then extended to the frequency response of a dis-

cretely excited open-loop system.

C. CONTINUOUS SYST]M BODE PLOTS

It will be helpful to first review the Bode plot concept for contin-

uous sytems. Let R in Figure 3 be a unit input sine wave with frequency

Wo rad/sec. The output, in the frequency domain, is:

0C(s) = G(s)R(s) = G(s) 2 + °()

Equation I can be expanded in partial fractions as:

__ _ Bsa + [Terms associated 1
C(s) = s+ 2 + + with characteristic (2)

0 2 + o [polynomial of G(s) J

Given that all poles of G(s) are in the left half plane, the bracketed

term in Equation 1 represents time functions that vanish as t + -.

Thus, the steady-state behavior is completely determined by the partial

fraction coefficients A and B, and once they are known the steady-state

time response can be written directly as:

R C
G (s)]

Figure 3. Continuous System
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C(t)ll - A sin wot + B cos wot

t+W

- /A2 + B2  sin (wot + *) (3)

where - tan-  (B/A).

The details of solving for A and B show the relationship between the

Bode plot and the steady-state waveform. To solve for A and B, multiply

Equation 2 by [a2 + W2 ] and evaluate the result for s - Jwo

[Terms associated 1

Gcs)wls.jw°  - (Awo+BS) ° + with characteristic S2 + °2
Go -) jwo +polynomial of G(s) J

(4)

or

ja 1B/A(5
G( SsJwoO W 0 A + jB - XA2 + B2  eJtan(5)

To summarize, a sinusoidal inpit at frequency wo produces a steady-state

waveform of the same frequency. It differs from the input only by a

magnitude factor and a phase shift. Both the magnitude factor and phase

shift for any given input frequency, wof can be read directly from the

Bode plot for G(jw). That is, for any given input frequency wo:

A + JB - G(s)Is.jwo (6)

This "frequency response" viewpoint is expanded to encompass discretely

excited continuous systems.

D. NATHKMTICAL PRELDIMRARIKS

Let R be a sinusoid of unit amplitude with frequency b rad/sec

(R - I sin bt). If R is sampled at I/T Hz and then described in terms

of an N/T Hz model, we obtain

10
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zsin bTRT  " N;inb z f e s T / N  (7)z2N - (2 cos bT)zN + 1

where the superscript [] T is used to denote the frametime of the sampl-

ing operator. For later use, it is necessary to find the 2N factors of

the denominator of Equation 7 in a form that will permit a partial frac-

tion expansion containing terms for which corresponding time functions

are known. For example, if f(t) - sin bt, then

fT(t) _ [sin bt]T =: F(z) f z sin bT (8)
z2 - (2 cos bT)z + 1

but we do not know the time function corresponding to

F(z) = z sin bT (9)
z2 + (2 cos bT)z + I

which will also occur among the N factors of the denominator of Equa-

tion 7.

N
This problem can be examined in more detail by letting z i X in

Equation 7 and solving for the roots using exponential notation:

z2N - (2 cos bT)zN + 1 - X2 - 2(cos bT)X + 1 (10)

In turn,

X2 - (2 cos bT)X + I (X - cos bT)2 + (sin bT)2 (11)



The N roots of Equation 11 can now be expressed as

(X - cos bT)
2  - -(sin bT)2

X- cos bT - +_j sin bT

X - cos bT ± J sin bT - e - jbT

Replacing X by zN gives one of the many ways of describing the roots of

Equation 7:

Z t e+j(bT/N) . e+j[(bT/N)+(2n/N)] . 14± [(bT/N) + (21n/N)] (12)

In a purely formal sense, the n in Equation 12 can take on both

positive and negative integer values. The preferred format for defining

the roots of Equation 12 is:

bT + N [b +(1n)n] .  n

N- N W_)N

As we have said, both positive and negative values of n are permitted.

For example, if N - 3 there are three complex conjugate roots pertaining

to the frequencies

b, b + 2r/T , b + 4/T

However, the values

b, b - (2w/T) , b + (2r/T)

are equally permissible. For the finite N case many readers will prefer

the description in terms of the input frequency and the positive ali-

ames, avoiding a description that contains negative frequencies.

12



X. OPEN-LOOP FREQIUENCY RESPONSE - FINITE N

Consider the system of Figure 4 where G(s) represents an arbitrary

transfer function and M represents an arbitrary data hold. Suppose R is

a unit amplitude sine wave and the output is sampled in a T/N frame

time:

CT/N - (GM)T/NRT = (GM)T/N ,N sin bT zftesT/N
z2N - (2 cos bT)zN + I

(13)

The superscript is used to call out the defining time frame and use is

made of the identity [A BTIT/N _ AT/NBT (Reference 1).

Expand the right-hand side of Equation 13 in partial fractions:

N-i Anz sin wn(T/N) + Bnz[z - cos Wn(T/N)]
cT/N n= z2 - [2 cos Wn(T/N)] z + I

+ [Terms due to modes of (GM)T/NJ (14)

Assume that responses in the modes of (GM)T /N approach zero as t + 0,

i.e., that all modes are stable. In Equation 14,

wn = b + T7rn n - 0, 1, 2, ..., N-I
T

R R T  1 C. CT/N

T JLJ T/ N

Figure 4. Open-Loop Case

13
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For the present, we assume that b < 211T. The steady-state waveform, at

the sampling instants, can be written as:

[C(t)IT (A i Ajt+B COS Wnt)I (15)

It To solve for An and B , multiply each side of Equation 14 by

[2- [2 cos wk (T/N)lz + 1] , 0 ( k 4 (N - 1)

and evaluate for z - 14 wk(TfN) - The only term that can survive orn the

right-hand side occurs when n -k (the k notation can then be changed to

n). To illustrate,

(GM) T IN zN sin bT t2 - 2 COS kTNz+IIZ wk /)
Z2i- (2 Cos bT)z-4+ IkT/)

[An si wn(TftI)J + Bzz - Cos w(T/N)1 [.
2 

- (2 Cos w1k(T/NOjz [+~ J cs w(tN]z +1'.114wk(T/N)

For any n 0 k, the right-hand side of Equation 16 is identically zero

since

-2 2 cos wk(T/N)lz + 1 1z - COS wk(T/N) ]
2 + [in~ wk(T/N)]2 (17)

vanishes when

Z- 14wk(T/N) -cos wk(T/N) + j sin wk(T/N) (18)

14
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Specifically, we obtain

[cos wk(T/N) + j sin wk(T/N) - cos wk(T/N)i 2 + [sin wk(T/N)] 2  = 0

(19)

For n - k, the cancellation of the common factor guarantees the survival

of an n - k term. Factoring out a common z gives

ztAk sin wn(T/N) + Bk[cOs wn(T/N) - cos wn(T/N) + j sin wn(T/N)II

= (Ak + jBk)z sin k(T/N)I z1k(T/N)

(20)

Therefore, Equation 16 becomes

sin k(T/()(Ak + (G/M)T/N(zN sin bT)(z
2 

- [2 COS wk(T/N)lz + 1) (21)
z2N - [2 cos bT]ZN + I 12 wk(T/N)

At this point, let k revert to n.

,N- s n bT - [2 cos w(T/N>lz + 1)An + jBn - (G.M)T/N- 4wn(T/)" sin wn(T/J) z2N - (2 cos bT)zN + i i4wn(T/N (22)

The last term on the right-hand side of Equation 22 is indeterminate

(0/0) when z - 14wn(T/N). Therefore, apply L'H6pital's rule once and

obtain

+ JBI X 0 TN zN-12[z - cos wn(T/N)] sin bT (
An + J~n z- (GM)T/ N z-I, (TIN) 2NzN-l(z

N - cos bT) sin wn(T/N) )-'14-n(TIN) (23)

15
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1 + Bcoo wn(T/N) + J sin wn(T/N) - cos w.(T/N)I sin bT

N z-1 (TIN) (cos wnT + j sin nT - cos bT sin (TIN) (24)

A direct substitution for w = b + (2n/T) quickly shows that the last

part of the product in Equation 24 is unity. Therefore,

z* sT/N

jB - 1 (GM)TIIz (25)
Nn + n  Iz=n14.w(TIN)

The superscript notation in Equation 25 is for the purpose of calling

out the definition of z being used in the evaluation.

To review the situation, the system is forced with the sin bt. The

steady-state output waveform, sampled with a TIN frametime, has the form

cTIN(t) N (An sin (nt + Bn cOs Wnt)j (26)

where

n nT 0, 1, 2, ..., N-I (27)

As an alternative, one may use

[r(N-1)12 IN
cT/N E (An sin ant + Bn cos wnt) , N odd (28)

n--(N-1)/2

or

(N/2)-i 
TIN

CT/NI F An in wnt + cos , N even (29)

[ni=N/2

16
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the coefficients A. and Bn are computed using Equation 25.

For example, let

M - -- sT G(s) a (30)s , ~s; + a

so that

_L (GM)T/N = 1 - -aT/N - -N) (31)N N(z - eaT/N) (I - z-1 )

It is instructive to plot the Bode plot for Equation 31 using N as a

parameter. For the sake of clarity, we will plot versus w rather than

log w and omit the phase angle plot. Also, for reasons of clarity, the

ordinate scales will be displaced for the different values of N (refer

to Figure 5). Over the plotted range of 8w, the N - I case repeats

itself 4 times. In a like manner, the N - 2 case repeats twice, whereas

N - 4 goes through one cycle.

Using [I sin (IT/2)t as an input, in the N - i case our only

interest is matching the sampling points with a single sine wave. The

magnitude and phase angle (not shown in Figure 5) could be read from

this plot at w = Ti/2, n/2 + 2-n, i/2 + 4% , iv/2 + 611, ... ; giving the

correct values for each point. Assume next that the input has a fre-

quency b = (ir/2 + 41i). Clearly, if the objective is to match the sample

points with a single sinusoid, the frequency of the output could be b

plus any 2w/T multiple as the sampler cannot tell the difference. In

fact, the "sub" aliases at b - 21r/T, b - 4n/T will also work. These

"sub" aliases are the difference terms so prominent in modulation

theory.

Figure 6 depicts this situation for a steady-state response given an

Input frequency of b - n/2 rad/sec, assuming the system in Equation 31.

17
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c cT/N!dB

-20

0

-20-N4

0 r 2 4v 5vr 6 v 7r 8 i

Figure 5. Magnitude Plot for N =1, 2, 4
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0 Sample Points

-- A sin[(i,/2)]t +B Cos [(7r/2)]t

-A sin [(7r/2)-(2ir/T)J t +8 BCos[(7r/2)-(27r/T)]t

.6 A -2048
B -.5568

.5/

.4

c T(t) .
.2

0

4 5~ 6 7 8tsc

-.2

-.6L

Figure 6. Two Continuous Sine Waves Which
Match the Sample Points
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For the sake of clarity, only two of the many waves which fit the sample

points are shown - one at w/2 rad/sec, the other at [(i/2) - (2n/T)]

rad/sec.

The N - I plot in Figure 5 corresponds to the "sampled spectrum" of

sampled data control theory. Turn now to the N - 2 case wherein the

objective is to match one inter-sample point as well as the sample

points. Let the input frequency be w/2 and note that the points at

= w/2, i/2 + 2w give the correct answers, as would the points

w/2 + 41, w/2 + 6w. Suppose next that the input frequency is

b - W/2 + 2n. Clearly, the second required component could be read from

the "first alias" at b + 2w/T or the first sub-alias at b - 2n/T [or,

for that matter, all the frequencies w - (w/2) + 2ni where n is an inte-

ger].

In the N = 4 case, four sine waves are required to fit three inter-

sample points as well as the sampled points. If the input frequency

were b = w/2 + 61t, and if the plot of Figure 5 with its limited range

of 8w were the only one available, clearly it would be to our advantage

to use the "difference" frequency points at w - b - 2w/T, b - 4w/T, and

b - 6w/T to establish the magnitude d relative phase of the three

remaining sine waves.

This brief discussion serves to point out that the aliases and sub-

aliases can be associated with the sum and difference frequencies of

modulation theory. One should not, however, think that both sum and

difference components must be simultaneously present in the output.

Clearly, only N components are needed. We can now remove the earlier

constraint that b 4 2w/T. If b is less than 2w/T, it is certainly true

that

2rnwn - b + T , n - 0, 1, 2, ... , N-1 (32)

However, if b > 2w/T, let w. - 2r/T and use

n -( b) (33)
WsINT

20
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to restate Equation 32 as

- , n - no$ n o + 1, ... , 0, 1, 2, ... , N - no - 1 (34)

For our previous example where N - 4, suppose b - 69 + W/2. Then

no - (6a + (w/2)) - -3 (35)
271 INT

Thus,

Wn b + 2 , n - -3, -2, -1, 0 (36)n T

and we use three sub aliases. If b - 1T/2, then

_5/2)

no = 
21 ) INT 0

and we use

wn = T , n- 0, 1, 2, 3

the "positive" aliases.

Keep in mind that all this represents a convention which the reader

may not necessarily elect to follow. What is important is a clear

understanding which will permit one to pick a consistent set of N points

from the Bode plot. In this regard, the reader should note that the use

of Equation 28 (or Equation 29) instead of Equation 27 eliminates the

need for the definition of n.0

Of interest is the case where N is extremely large. In fact, let

N after evaluating Equation 31 at z - I= n(T/N):

21
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1 - aT/N z-N - e-aT/N)(I - 14"wn)

N(z- e- a T /N) 1 - z
-  z-14w(T/N) N[14uw (T/N) e-aT/N][l - 14--w,(T/N)] (37)

An indeterminate form is obtained. Therefore, use L'Hopital's rule

twice (substitute 1twn(T/N) - cos wn(T/N) + j sin wn(T/N), etc.) and

obtain:

i T ( T / N  - I 1 - e T (38)
N 9s( 9 + ) z 14 n(T/N )  l m J nT I + Jwn  T s + I s.Jw n

That is, as N + -, one simply divides GM by T and evaluates the coeffi-

cients at s - Jwn" This is representative of the general result dis-

cussed in the next subsection. A word of caution is in order on n" As

N approaches infinity, the definition of Equation 28 (or Equation 29)

should be adhered to in order to properly incorporate the sub-aliases

into the spectrum.

F. OPEN LOOP FREQUENCY RESPONSE
CONTINUOUS OUTPUT

The next development uses an approach suggested by Professor Hsi-Han

Yeh (University of Kentucky). This approach more clearly shows the

dependence of the spectrum on both positive and negative aliases. That

is, for finite N, there is a choice in the makeup of the sinusoidal com-

ponents which exactly match the steady-state sample points. The finite

N case is therefore not unique - in sharp contrast to the infinite N

results which require (as will be shown) the use of all the sub-aliases

as well as all of the aliased components.

22
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In the previous section it was shown that

z6 ST/N

An + jBn 1 (GH)T/Nz (39)

z-lzW (T/N)

To deduce the behavior for infinite N, use an alternative description of

Figure 4 which describes the sine wave input directly in the s-domain:

C(s) - G(s)M(s) [ E (40)Tn=f-.= s2 + w2

where Wn = b + 2'rn/T.

The partial fraction expansion of Equation 40 may be written as

C(s) = 2wi + Bns + [Transient modes of GM] (41)
n= n s n]

2

Multiply each side of Equation 41 by s2 + w2 and evaluate at s jwn:

C(s)(s 2 + )w = Anwn + Bnjwn

= G(s)M(s) (I/T)wn

An + jBn  - (I/T)G(s)M(s)Isfjwn , n = 0, +1, +2, ... (42)

Thus the continuous spectrum contains, because of the summation

from -= to +00, both positive and negative aliased frequencies.

The finite N example of the previous section can now be studied for

the case of infinite N. Thus

A+j - ,-sT (43)

n n sT s + 1 Is jin

produces the Bode plot of Figure 7.
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The interpretation of Figure 7 is as follows. Suppose a unit sine

wave at I rad/sec is input to the sampler. Then, if sine waves at 1,

I + 2n/T, I - 2r/T, 1 + 4T/T, I - 4/T, ... are added together, the

resultant waveform will be an exact match of the actual steady-state

output waveform. In Figure 7, one may plot the sub aliases (the nega-

tive frequency components) on a "positive frequency" Bode plot by taking

advantage of the fact that the magnitude is an even function of fre-

quency and the phase is an odd function of frequency.

One would expect this waveform to be relatively clean, since the

first alias is 30 dB lower than the input component. However, the tran-

sient response itself does not bear out this conjecture, as can be seen

in Figure 8. The reason is that the higher terms are important. They

do not represent "harmonic" terms but are rather modulation components

which must add together properly in order to match conditions at the T

transition points. It can be seen that the "steady state" does not

necessarily take on the additional attribute of periodicity. This

occurs only when the input frequency and the sampling frequency bear an

integer relationship with respect to one another.

G. INPUT SIGNAL WITH PHASE SHIFT

If the input signal has the form

r(t) - k1 sin bt + k 2 cos bt (44)

the results of the previous section are changed only by a complex con-

stant. Following exactly the procedures of Subsection E, except for

using the more general input given in Equation 44, gives (Reference 1):

-% sT/N
+ jB M I L (GM)T/N1  " (kl + jk2) (45)

z -1nw, (T/N)

Given that the limit N + -:

An + jB n  - GM " (kl + jk2 ) (46)
T 18'n
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Figure 7. Frequency Response and Spectral
Components of Output
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Figure 8. "Steady-State" Transient Response

The choice of the N frequencies for the finite N case is at the discre-

tion of the user. However, both "negative" and "positve" frequencies

are required as N + - (Equations 28 and 29).

H. SINGLE-RATE CLOSED-LOOP FREQUENCY RESPONSE

The closed-loop results will be configuration dependent. However,

the mathematics remains tractable and can be followed through on a case-

by-case basis. It is important to have an insight into the mathematical

structure and the particular simplifications that surface in a closed-

loop analysis.

Consider the (vector) system shown in Figure 9. The procedure we

now follow will be typical. First, solve for the vector component at

the input of the data holds.

ET - GTRT - G GT(GM)TET (47)

Therefore

ET [ +G2'(GM)T] GIRT (48)
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Figure 9. Illustrative Vector Closed-Loop Configuration

Next, solve for C(s):

C= (GM)[I +$ G'jG2 (M)T] GIRT (49)

The spectrum of C(s) is of interest; we seek it by finding first the

spectrum of C T/N and going to the limilting case of N + -

Let the input be a sine wave at f requency b rad/sec and let the

delay operator be

z-1 = e-sT/N (50)

so that

RT = zN sin bT (51)
z2N - 2 (cos bT)zN + I

Therefore

CT/N = [(GM)[I + GIG2(GM)T]IG IR]T/N

(52)

CT/N . (GM)T/N[I + G TG T(GM)T]f'G TRT

For the sake of brevity write Equation 52 as

CT/N - /GRT (53)
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Note that Equation 53 is exactly the same as Equation 13, except
T/N T/N T

(GM) has been replaced by GA GB. Hence we can write a key result

using Equation 25:

n+ JB I T/NT (54)

+ n N GA GB z-14wn(T/N)

But

GT  _4 G( N )

GB GB(z)

Therefore, using

[1n4wn(T/N)]N _ 4wnT

- cos WnT + j sin wnT

- cos [b + (2ln/T)]T

+ J sin (b + (27in/T)]T

= cos bT + j sin bT (55)

we obtain

GB 14wn(/)G[In(T/N) ]

- G[4wnT] - G[1 4 bT] (56)

It is permissible to replace z in GB with z and evaluate it at

z - 1~bT. At this point we have

4 sT/N zA sT
TIN zeT e

An + JGn " GB(z) (57)

Equation 57 is the basic result for the finite N case. To reiterate, to

find the coefficients of the N sine waves for the T/N sampled output of

C, compute the normal "T" transfer functions for

T T T T-1TGB - [I + G1G2 (GM) IG (58)
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and evaluate it for

z 1 l4bT (59)

Next, compute the normal T/N pulsed transfer function for GA and evalu-

ate it at z - 14wn(T/N) where n " b + (211n/T).

T
Thus, GB is periodic in (2iTn/T) and it suffices to use bT instead

of Wn(T/N). Moreover, only the GA/N is a function of N; this simplifies

the procedure involved in the limiting case tremendously. For the case

of N + -, the continuous case, we obtain:

=(MsGss\ (GT(z)j zae sT +2

An + jBn  T B (z , n = 0, +1, ±2,

(60)

Equation 60 is the desired result for the given closed-loop configu-
,

ration. However, the mathematical ideas are what count; one can follow

the details through for other configurations with relative ease.

With this development, one is in a position to plot the Bode plots

for the closed-loop system of Figure 1 and verify the results given in

Fig. 2. We will also use that example to solidify the meaning of the

frequency response for the finite N case. Suppose the continuous

transient response for a unit amplitude sine wave, with a frequency

of 7/2, is available (see Fig. 10). According to theory, one should be

able to set N = I and from the Bode plot read the magnitude and phase of

the single sinusoid that fits the sample points at the sample instant.

This indeed proves to be the case and is shown in Figure 11. In Fig-

ure 11 a section of the transient response has been "copied" and

Accurate numerical determination of GBII~bT may prove difficult at
high sampling rates. This is the result of small differences between
large numbers which occur in the computations as poles and zeros
approach the unit circle. In this event, one is well advised to carry
out equivalent computations in a domain where numerical conditioning is
much improved (e.g., in terms of w' or w).
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overlaid with the sine wave which results from the N = I computation,

namely

T

(C(t)]T _ (a. sin - t + bo cos ) t) (61)

Equation 61 indicates that the value of the wave at the sampling

instants is of interest. However, for expository purposes, a complete

cycle has been shown.

Next, consider the N = 2 case where the desire is to fit not only

the sample point but one inter-sample point as well. This case is shown

in Figure 12. The T/2 response equation is

1T/2 [ "
C(t) ss T a0 sin - + b0 cos 2T t 2. ,. T/2

+ a1 sin (1 + -Jt + b1 cos (,Z. + )t (62)

Again, for expository reasons, the continuous waveform is shown which

results from sines and cosines at w = 7/2 and its first alias at

w = (1T/2) + (27i/T). A half period for the N - 10 case is shown in Fig-

ure 13. The steady-state wave of this example is periodic and free of

modulation effects simply because the selected input frequency bears an

integer relationship to the sampling frequency.

It is also important to bear in mind when "matching" sample points

that the a0 term for N = 1 will be unequal to the a0 term for N = 2.

This is demonstrated in Table I for N = 1, 2, and 4 and b = n/2.

I. A PARTICULAR TWOK-RATE CONFIGURATION

As with the analysis of closed-loop single-rate systems, the analy-

sis of the multi-rate closed-loop case is configuration dependent. Here

we treat a particularly simple two-rate configuration which can be ana-

lyzed without resorting to a switch decomposition format. A more com-

plex example, which requires the use of vector switch decomposition,

will be treated after the fundamentals of that technique have n

reviewed in Section III.
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TABLE 1. COMPONENT COEFFICIENTS N = 1, 2, 4

N - I N = 2 N= 4

a0  -0.174468021 a0  -0.048579760 a0  0.002998683
b

b0  -0.287649137 b0  -0.306381976 b0  -0.302606086

+2w 
a 1 -0.125888261 a, -0.046197029

T bi  0.018732839 b -0.043548018

b +4_1 a2  -0.051578443

T b2  -0.003775889

b 6 
a3  -0.079691232

T b3  0.062280857

Consider the two-rate system shown in Figure 14. In Figure 14, W 1

and W2 are compensation networks, M is a data hold, and G represents the

open-loop system dynamics (consider these to be matrices of the proper

dimensions).

the objective is to find the "frequency response" for the output

vector C. As in the single-rate case, assume that C undergoes a phantom

T/N sampling operation and then seek the limit as N + -. From Fig-

ure 14:

C = GMET/M (63)

or

CT/N - (GM)T/NET/M , N/M an integer (64)

The first task is to solve for ET/M. This is non-trivial; the details

must be followed with care.

E - WIRT - WIWT(GMET/M)
T  (65)
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Figure 14. A Specific Two-Rate Closed-Loop Configuration

Therefore,

E/ TIUR WT/WTT
ETM ~I~ I W'W 2 (GMET/M) (66)

Pre-multiply Equation 66 by GM and sample at a T interval.

(GMET/MJT (CMWT/M) T - M) WT( QqIET/MJT

Solve Equation 67 for (GMET/M)T :

G T/M)TT/M T T-1 /

GMET) [I + (GMI W21j (GMWVM)TRT (68)

Substitute Equation 68 into Equation 66 and clear through. The result

is:

ET/M - W21 + (GMWI/M) W21 (GMWI4/ IRT (69)

For brevity, let

T / T/T

The evaluation of GA is not elementary. For example, the (GMl w) ele-
T

ment of GA will have to be computed using either switch decomposition or
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the phantom sampler (Reference 1 or see the development of Section IV).

Via the phantom sampler,

T/)T -T
(GMwT/M) [(GM)T/MwT/Mi (71)

To this point, the two-rate example yields

CT/N - (GM)T/NwT/MGART (72)

and we see that the only new element added over the single-rate case is

the addition of a term sampled on a T/M interval together with a con-

straint that N/M be an integer.

Let

z - esT/N (73)

so that a unit amplitude sinusoidal input at b rad/sec has the transform

RT - z sinbT (74)
z2N - (2 cos bT)zN + I

As in the single-rate case, substitute Equation 74 into Equation 72:

CT/N . (GM)T/NWT/MGT zN sin bT (75)
WA z2N - (2 cos bT)zN + 1

Again, the problem is in a recognizable form and we may proceed directly

to the answer.

J - (GMT/ WT/IGA l n(T/N) (76)

Next, since the local definition of z - esT/N is in effect, express

esT - (esT/N)N and write

T (NGA GA(zN)
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Therefore,

GA(z N) 114,wn(T/N) - GA[14wn(T/N)]N

- GA(I4wfT) - GA(14bT) (77)

That is, take the "T" z-transform of G A, and evaluate at z =14iT. Now,

the "new" element., WI/H

WI/ 1(NM (78)

Therefore,

wl(ZN/M )Il4.n(T/N) - Wlf14wn(T/N) ]N/'M (79)

= W1 (14.wn(T/M)J (80)

taking the "T/M" z-transform of Wland evaluating it at z - 1*wn(T/M).

At this point, only GM depends on N and we can go to the limit of

N + .

1zAesT/N wTMzhesT/M ] ~ sT
An+ JBn - -N G)T I I I I GA

[z-14wn(T/N)[ Z=14wn(T/M)J z-14bT J

(81)

This is the desired result for finite N (remember N M , 2M, etc.).

As N + -, the coefficients of the continuous spectrum are given by

[ sT/M zAesTze e

An +JBn - (GM) W TM T (82)n T s-Jw n z-14w (T/M) . z-14.bT .

n 0, ±1, ±-2,
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The algebraic manipulations used in this example circumvented the need

for the use of a switch decomposition model by using the classic concept

of a phantom sampler. The limitations of this type of algebraic manipu-

lation will be discussed in more detail in Section V.

3 . SECTION SUMMARY

The "sampled spectrum" concept of sampled data control theory is

concerned with determining the single sinusoid which fits the output

samples of a single-rate system at the sampling instants. In this sec-

tion, we have reviewed the extension which encompasses the continuous

spectrum of the continuous variables in a discretely controlled system.

Moreover, the theory considers the finite N case wherein one is con-

cerned with the group of N sinusoids that matches the data not only at

the sample points but at N-I inter-sample points as well. This is an

important aspect since bench validation of digital hardware is oftLen

specified in terms of an end-to-end "frequency response."t Since output

data are taken at a finite number of points, it will be important to

compute finite N results; the coefficients may differ significantly from

the continuous (N + 00) values.

The results for the closed-loop cases have been configuration depen-

dent; however, the basic technique is relatively clear. One starts at

the continuous state vector and writes the system equations back to the

first input point. The next fundamental step is to convert that input

into an equation which contains the sinusoidal input as the basic forc-

ing function. At this point, the basic equations which apply to the

open-loop case can be used. A closed-loop two-rate case was discussed

which did not require the use of switch decomposition. The limitations

of the algebraic manipulations will be discussed more fully in Sec-

tion V.
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SECTION III

VECTOR SWITCH DECOIMPOSITION AND
A "SCALAR" APPROACH

A. INTRODUCTION

This section reviews vector switch decomposition, noting the dimen-

sionality problems introduced by multiple frame times. This is followed

by a brief discussion pertaining to a class of multi-rate problems which

can be treated without recourse to switch decomposition. Several exam-

ples are then used to demonstrate the scalar algebraic manipulation

required, establish the relationship between the scalar algebra and

switch decomposition, and motivate the need for an algorithm which can

be used to evaluate the various expressions that result. The algorithm

itself is discussed in Section IV.

B. REVIEW OF SWITCH DECOMPOSITION

In essence, switch decomposition is a procedure wherein systems hav-

ing multiple sampling operations (occurring at fixed but unequal sampl-

ing intervals but with a sampling pattern which is repeated over a

fixed, finite time interval) are converted into an equivalent single

sample rate format. As originally introduced by Kranc (Reference 3),

the method used a summing point methodology that proved to be extremely

cumbersome when the ratios of the sampling periods become high. For

this reason, and because evolving state transition methods were tending

to push transform methods into the background, the method fell into dis-

use. However, there is much to recommend the switch decomposition con-

cept for use in both time domain and transform domain analyses. In the

subsection that follows we will review the basic concept and remove some

earlier restrictions by recasting it in vector form. The vector form

simplifies matrix block diagram manipulation for multiloop, multi-rate

sampled systems.
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An example reveals the key ideas. Consider the continuous signal,

shown in Figure 15a, to be sampled at T/3 samples per second. This

results in the sample sequence shown in Figure 15b. The sampled values

have been numbered for easy reference. Suppose we now sample the con-

tinuous signal with a sampling period T. This results in the sample

sequence consisting of sample numbers 1, 4, 7, 10, 13, ... shown in

T
Figure 15c. Define this sample sequence to be R

Next, advance the continuous signal R by T/3. Then sample the

advanced signal with a sampling period T. This results in a sample

sequence consisting of sample numbers 2, 5, 8,11, 14, ... shown in Fig-

ure 15d. Define this sample sequence to be (eST/3 R)T. Finally, advance

the continuous signal R by 2T/3 and sample it with a sampling period T.

This results in the sequence consisting of sample numbers 3, 6, 9, 12,

15, ... shown in Figure 15e. Define this signal sequence to be

(e2ST/3R)T.

The significance of the switch decomposition concept resides in its

ability to provide an alternative expression for the original sequence

RT/3 in terms of several quantities which are each sampled simultane-

ously every T seconds. This alternative expression for RT/3 consists of

the sum of R T, (eST/3R)T, and (e 2sT/ 3R)T:

RT/ 3  = RT + (esT/3 R)T e-sT/3 + (e2s T/3 R)T e- 2s T/3  (83)

Equation 83 has a simple factored equivalent that is the product of two

vectors and the scalar R,

T

I1

e2sT/3
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Or, more compactly,

RT / 3  _ W(WR)T (85)

where

W = [1, e- T /3 , e 2 sT/3 ]  (86)

and
1

W I es T / 3  (87)

e
2sT/

3

C. EXTENSION TO THE VECTOR CASE

Further generalization allows R to be a vectot of continuous sig-

nals. It is necessary to define a least common sampling period, T, and

a greatest common subinterval, To o with respect to the R vector. The p

elements of R may be sampled at different minor sampling periods: T I,

T2, ... , T p, respectively. It is further assumed that the minor

sampling periods are such that a finite positive T exists such that

T NT 1  = NiT i  = N T (88)

holds for a set of finite positive integers:

N 1 , i •, Np, .. *,

The minimum T for which Equation 88 holds is the least common sampling

period (for R). A subinterval can be found for which

T = NTo  (89)

and N/Ni is an integer for all i - 1, 2, ... , p. The largest value

of TO satisfying these conditions is the greatest common subinterval

(for R). Equation 89 defines N for the greatest common subinterval.

Given values for N, Ni , p, and T, the p x ENi block diagonal matrix, W,
is

42



W1 0
w 2

W - W(s) ". (90)
Wi

0Wp

where

Wi = I esT/Ni . -1)T/N i  ... e-S (Ni-1)T/N1 1  (91)

The operator matrices W and W can be used to represent multi-rate

sampling operations in terms of a single-rate sampling operator in vec-

tor block diagrams. This is illustrated in Figure 16.

Consider an example. Let R be a vector with three components. Let

the first component be sampled with period T/6, the second with period

T/3, and the third with period T/2, i.e.,

R* IT/6 T/3 T/2 1(2

The objective is to compute W in order to obtain an explicit expression

for R via Equations 90 and 91 (which is equivalent to Figure 16). For

this example,

p - 3

T is the least common sampling period

T = T/6, T 2 = T/3, T3 - T/2

N1 = 6, N2 ' 3, N 3 - 2

T/6 is the greatest common subinterval

N- 6
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and
R R*

denote vector
* multi-rate sampling

0) Vector Block Diagram for
Muli- Rate Sampling

RR

~HiH

b) Equivalent Single Sample Rate
Vector Block Diagram

Figure 16. Vector Block Diagrams for Multi-Rate
Sampling Operations
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Therefore

[, e
- sT/6 , e- 2sT/6, e- 3sT/6 ,

0 0

e-4sT/6 V e-SsT/
6

W 0 , e- 2sT/6 , e- 4s T/6  0

0 0 1, e- 3sT /6

(93)

This example gives some insight as to how increased dimensionality can

complicate problems in practical application. Consider the vectors R,
* T.

R , and (W*R) T These vectors have 3, 3, and 11 elements, respectively.

The vector (W*R)T will have pEN i elements in general; whereas R and R

will have only p elements each. This is significant in that analyses

will tend to be conducted in terms of vectors like (W*R)T in distinction

to vectors like R Consequently, the potential for expanded dimension-

ality in connection with analyses of multi-rate sampled problems is

great. For example, consider a problem wherein there are two minor

sampling periods, 39 ms and 40 ms. It is easy to verify that the dimen-

sionality expansion factor, N, is 1560.

On the more posit're side, matrix operations are routine. Consider

the system shown in Figure 17. Once the vector multi-rate sampling

operations in Figure 17a have been replaced by the switch decomposition

equivalent (Figure 17b), analytical manipulations are routine:

T T T T TEl (WiR) - (WIHW2 ) (W2,GWI) El (94)

45 1

. .. . . .. " " - .. 5-, ? - . -. t : ' ...

I' ... ... _ _ _ _



W,

T G T

T 
-

( Wi H 2  
C 2 G l) 

I (lG)( 

5

andW

TT
in tem ofteXxetr h ieso nti aei eemndb
the coum dienio ofT

T T Ti
El [I +W(iR (WH W2 GJT X1J*R (98) -

XT/ - GW ETt oIrT - (l)T _ G T/ET (99)

I I

Notie tat he dmenionof te ivere inEqutio 95 s dter



D. NONSYNCHRONOUS SAMPL ING

Nonsynchronous sampling is a basic tool useful for modeling distrib-

uted computation architecture, data skewness in the A/D and D/A conver-

sion processes as well as the internal computational delay of the digi-

tal computer. By definition, nonsynchronous sampling occurs when all

the systems' sampling operations are repeated at the same rate but occur

at different instants of time (refer to Figure 18).

In Figure 18 both continuous signals, x i and x2, are sampled at

I/T Hz, but the x 2 sampler is "out of sync" with the x, sampler by

T seconds. The sampling operation for xT is shown symbolically in Fig-0 1
ure 19a and for x2 in Figure 19b. (* notation on x 2 is used here to

indicate an "unconventional" sampling operation.)

Figure 19b models the nonsynchronous sampler with a synchronous

sampler by preceding the sampler with the operation W followed by the

operator W, i.e.,

x2 = W(WW 2  (100)

where

-STo = eSTo(1)W -e 0 W, (101)

Proceeding according to Equation 101, one advances x2 by T seconds,

samples at the [/T rate, and then delays (W~x2 )T by To seconds to obtain

the time sequence (refer to Figure 20). Note how the nonsynchronous

sampling operation on x 2 is modeled in terms of a scalar factor; thus

the dimension of the equivalent single-rate sampled signal, (W x2 )T, Is

not increased.

The model readily extends to the case where x is a vector.
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R. SPECIAL CASE

Consider Figure 21, a three-rate system without feedback.

cT/N3 fi[2GRT/NI)T/N2] T / 3

CT [G2(lR (102)

- G 1/N3 CT/N2 RT/NI (103)

if N 3/N2 and N 2/N1 are integers. However, Equation 103 can, using the

algorithm given in Section IV, be evaluated directly (for a given R) in

the event that N3 /N2 and N2/N1 do not satisfy the integer relationship.

This is not the case for the feedback system of Figure 22.

T/ /M

E = R - G2 [G 1 E TN] (104)

If M/N is an integer, Equation 104 becomes

E - R - G 2G T/M ETIN

which indicates

ET/N - RT/N - [G2 G/MjT/N ET/N (105)

Solve for the unknown

ET/M [I + (GGT/M)T/N- RT/N

using, for example, the algorithm given in the next section. If M/N is

not an integer, one would be forced to cast Figure 22 in a vector switch

(or some other equivalent state transition) format.
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E 1, cT/N 3

T/N1  T/ 2  LJ / 3

Figure 21. An Open-Loop Configuration

Figure 22. A Closed-Loop Configuration

In a like manner, if NIM is an integer, write

C - GI[R - G2 CT/M]T/N

- G RT/N - G GT/NCT/M
1 1 2

giving

CT/M . [GIRT/N]T/M _ [G GT/NIT/M CT/M1

12

CT/M .- [ + (G GT/N)T/M]- [GIRT/NIT/M N/M is an integer (106)

To summarize, open-loop systems such as Figure 21 can in theory be

analyzed without recourse to switch decomposition. Closed-loop systems,
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on the other hand, require a fortuitous set of relationships among the

frame times.

F. A PARTICULAR THREE-RATE CLOSED-LOOP SYSTEM

There is a natural tendency in the design of digital systems to

select sampling ratios in powers of 2. This is probably due to the ease

with which clock rates can be doubled (or halved). Such is the case of

the three-rate digital controllers for the Shuttle (25, 50, 100 Hz) and

the F-18 (20, 40, 80 Hz). It has been our experience that such systems

can always be analyzed with operations such as those described in the

previous section. For example, consider the closed-loop configuration

of Figure 23. One may verify the following operations:

E = R - G2 [GIET/2]
T - G3 [GIET/2]T/

4  (107)

E = R - G2 [GIET/2]
T - G GT/4 ET/2

3 1

ET/2 = RT/2 - GT/2[G ET/2] T _ [G3GT/4]T/
2 ET/2  (108)

Therefore,

ET/2  
= [I + (GBGT/4)T/2 ]-i [RT/ 2 - GT/2(G ET/2)T ]

S ]-I R/2 [ - GT/2[GIET/2]T  (109)

where

[ " j = [I + (G3GT/
4 )T/2]

Equation 109 defines ET/ 2 in terms of RT/ 2 and [GIET/21T. Next, multi-

ply Equation 109 by G, and solve for [GIET/2]T:

[GIET/2]T . [G 1 [ . ]-I RT/2]
T _ [GI[ •- I GT/2]T[GIET/2IT
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T/2T

Figure 23. A*Three-Rate Configuration; T, T/2, T/4

or

[GIET/ 2] T- {1 + [Gl f.]-IG T ]T }1 Lclf-4R T/2 1(10

Substituting Equation 110 into Equation 109, and using

C -= E/

gives the continuous output in terms of R. One may contrast the com-

plexity of this algebra against the simplicity of switch decomposition.

Since

T
C - G1W2Ej , GIET/2 - ET/ 2  (111)

T
one need solve only for EI:

[I+ (W2*G2 )T(GjW2) + (W2*G3W4)T(W4*G IW2 )T ] EI - (W2 ,,R)T (112)

Thus, a simple, straightforward block diagram manipulation gives the
T

needed vector, El , essentially "by inspection":

T - i+( 2 G)T(G1W2 )T +( 2 Gw)T(w4  w)T] '(W2 *R)T (113)
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The switch decomposition result, Equation 113, can be used directly

to arrive at Equation 108. Premultiply Equation 112 by W 2 and "~nest"s

the four terms. Two terms are obvious:

W ET A ETI2

W2(W2.R)T A RT/2

The other two are slightly more laborious. For example:

(W2*G3W4 )T (W4*GIW 2 )T4l . jI(W2*G3W4)(W4*GlW2)El1 I

W 1(IW 2*G3W4)W4*GjET/2flT)

- 1W 2*G3[GIET/
2]

T

- W2*G3GI/
4ET/2]

but

W2IiW2*G3Gl/
4 ET/2] *[G 3GI/4ET/2]T2 [G3GV

4 IET/2 (114)

A similar operation on W2(W2*G2)T( El)T gives the remaining terms

of Equation 108. Specifically,

W2(W2*G2)(W)Ef G~'IlE/] (115)

It can be appreciated that switch decomposition, coupled with the

nesting operation, can be used (where appropriate) to generate a

##scalar" alternative to the switch decomposition model. The use of the
T

word scalar is in the sense that El is a 2 x 1 vector in Equation 113
T/2 T/4]T/2

whereas E in Equation 108 and [G3G 1 ] in Equation 110 are sca-
lars. The use of the "scalar" results implies the existence of an

algorithm for evaluating terms like [G GT/4]T/'2. Just such an algorithm

is given in Section IV.
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G. SECTION SI3OMAY

Vector switch decomposition was reviewed from the viewpoint of

multi-rate sampling. For particular configurations, it was demonstrated

that an operational algebra could be used in lieu of switch decompo-

sition and thus a scalar problem can retain a scalar format. It vas

conjectured that all open-loop configurations and those closed-loop

systems wherein the frame times are ratioed as powers of 2 constitute a

class of problems on which the operational algebra can be effectively

applied. The algebra re ~yres the evaluation of nested multi-rate

operations such as [G3G1'
4
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SECTION IV

A USEFUL ALGORITHM FOR THE ANALYSIS OF
MULTI-RATE CONTROLLERS

A. INTRODUCTION

A prevalent trend in digital control systems design is the use of

several computational frametimes. For example, both the F-LB and Space

Shuttle have three-rate digital controllers (80, 40 and 20 Hz; 100, 50,

25 Hz). Moreover, it is not uncommon to find sophisticated simulations

that use more than one computer, each one working in a different frame

time (e.g., see the case study of Section IX). The purpose of this

section is to present an algorithm which is useful for the analysis of

such systems. Starting with a significant generalization of the "skip-

sampling theorem," we first comment on the properties of the solution

and from these deduce an algorithm for computing two-rate transfer func-

tions. The algorithm requires only the use of synthetic division as the

primary analytical tool. Therefore a host of problems associated with

alternative methods are circumvented. The two-rate algorithm, when

coupled with the generalized skip sampling theorem, expedites the analy-

sis of multi-rate systems.

Examples are used to demonstrate the various properties of the

method - perhaps the most important being that the algorithm treats

both the so-called high-to-low and low-to-high rate cases, as limiting

forms, within a single framework.

B. AN IMPORTANT IDENTITY

Of fundamental concern is the output for the system of Figure 24.

As indicated, it is permissible to insert a phantom sampler between G

and the T/M sampler if T/NK and T/M are presumed to be integer related.

A slightly less general version of Figure 24 wherein K = M, is treated

in References I and 2. Thus

CT/M - [GRT/N]T/M = [GT/NKRT/N]T/M (116)
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T/

C T/M  
CT/M

T/N TN .T/NK T/M

Figure 24. A Phantom Sampler Formulation of a

T/N, T/M Sampling Format

where M and N are rational numbers. In Equation 116, the notation of

Reference 3 is utilized. Specifically, G
[*]  designates the z transfer

function in a ['] timeframe. For example,

[_,_jT/ 2  = z-/ z - esT/2  (117)

Also, knowledge of routine operations such as

T/2 T/6 1
~ ~ ~~~s / _1T 2 

T 6 -
- I = e T /

+ - T/2 /2

3

d -T/2 z = es
6  (118)

is presumed.

For the special case M - 1, K = 1, Figure 24 reduces to the well-

known high-to-low rate transform (for example, see Reference 4).

To compute the entries of Equation 116 one may:

1) Determine R by table lookup.

2) Replace T by T/N.

K
3) Replace z (in R) with 

z •

4) Determine G by table lookup.
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r2

5) Replace T with T/NK.

6) z remains the same (in G).

7) Compute CT/H using Equation 119.

cT/M = J G(p) R(pK) -pNK/M p g res P)0p - (119)

In Equation 119, keep in mind the primary requirements; z = esT/NK,

NK/M and K must be integers. This in turn requires M and N to be

rational numbers. An example, using Figure 24, will clarify the

details.

Example I

Let

z a esT/6 M = 3 , N - 2, K = 3

G - 1 GT/ 6  z
s + 2 z -e - T / 3

1 z 

R - I RT/2 -

s+1 ' z 3  e-T/2

so that

CT/ - Z4T/3
cT/3 = - e-T/3)(z3 - e- T/2)I

L f p 4 z
2wj r (p - e-T/3)(p 3 - e-T/2 )(z - p2 ) p

1 f 'P 3 z  
d

2ij (p-eT/3(p3_e-T/6)(p2 + eT/6p+e_2T/6)(zp2) dp

-res IpeT/3 + res 'peT/6 + res Ip-eT/62+T/6(j3

+ resl (120)

p-e - T/ 6 (1/2 )-je - T/ 6 (-3/2) (
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The task is to evaluate four residues in the z-plane, even thou.gh

both functions, in the s-plane, were only first order. Evaluating the

four residues and placing the sum of the four terms over a common denom-

inator gives

T/3 2z 2 + e-5T/6)

(z - e-2T/3 )(z - e-T/ 3 )(z2 + e-T/3z + e
- 2T/3 )

A e-5T/ 6z3

(z - e-2 T/3)(z
3 - e- T)

Thus one starts with

T/6 T/2 z4 esT/6
G z = s/ (122)

(z - e-T/ 3 )(z 3 - e - T/ 2 )  (

and finishes with

cT/ 3  z4 + e-ST/6z3  z = esT/ 3  (123)
(z -e-mr/B)(z3- e-T)

leading to the following observations:

1) The poles of Equation 123 can be directly deter-
mined from an inspection of Equation 122 -- the
root locations are squared since the ratio
between the T/6 and T/3 frame times is 2.

2) The num-rator of Equation 123 is fourth order -

one may adopt the viewpoint that the entire
analytical effort expended on the evaluation of
Equation 119 has the net effect of determining
the five numerator coefficients of Equation 123
(NUM = z4 + e-5T/6 z3 + Oz2 + Oz + 0).

C. OUTLINE OF A NEW PROCEDURE

The illustrative example suggests an alternative to evaluating the

residues:

I) Determine the denominator polynomial in the new
time frame (T/M) from a knowledge of the pole
locations in the "old" timeframe (T/NK) utilizing
NK/M as the ratio between the two.
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2) Utilize the knowledge of the poles and zeros in
the T/NK timeframe, together with awareness of
the pole locations in the T/M timeframe, to
generate the zeros in the T/M timeframe.

At this juncture Step I is clear enough but a definitive method for

implementing Step 2 is needed. We shall demonstrate that matching the

time responses of Equations 122 and 123 furnishes a computationally

efficient method for implementing Step 2. Before proceeding to this

step, the reader may find it advantageous to survey the examples of

Appendix A, designed to provide insight into the setup of Equation 119

using Figure 24. In particular, note that both the classical "High-to-

Low" and "Low-to-High" rate transforms are treated as limiting cases.

D. IMPULSE RESPONSE HATCHING

The implementation of Step 2 above by matching the impulse response

is described next. Given an nth order "transfer function" in a T/N time

frame, the transfer function in a T time frame can (computationally) be

found by matching the impulse response. Let

GT/N = NUM -N -2NDEN =an + "'" + an-lZ + "'" + an-2z

DENN

+ ... + aoZ -nN + ... , z = esT/N (124)

where n is the order of the system and N defines the ratio between the

time frames.

From Equation 124, form a vector composed of n + I terms from the

successive Nth points in the T/N time frame transient response:

a - [an, an-1, '' ao]' (125)

Postulate a transfer function, in the T timeframe, in which the coeffi-

cients of the denominator are known but the numerator coefficients are
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not. Nothing essential is lost by setting the denominator lead coeffi-

cient to unity.

GT - Cnzn + crtL.zn- 1 + + co  (126)
zn + bn_lzn-I + ... + b

A vector "b" can be formed from the known coefficients of the denomina-

tor,

b = [I, bn-l, bn_2, **, b0]" (127)

Let the vector "C" represent the unknown coefficients of the numerator:

c - [cn, cn-l, cn2, . co]" (128)

The solution for "c", deduced from equating the partial fraction

expansion of Equation 126 to the correct temporal terms of Equation 124,

is

cn  an 0 0 1

NI

Cn-I an- I  an 0 0 b

Cn-2 an-2 an-I an  b

Cn-3  an3 an-2  an-1 bn-3 (129)

cO a0 al a2  . an ] b0

To show this, observe that z-N from the old time frame is z-1 in the

new time frame, and form
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a n + an-1 z - 1 + an2 z - 2 + .°. + ao z - n +

zn + bnl z n- 1 + bn_ 2
z n- 2 + + bofcn zn + cnlzn-I + C n2zn- 2 + *.° + co

an anbn-1 anbn-2 an bo

cn-l-anbn-I 0. 0 0 0

a n -1 ° * ° " " 0 0

(130)

Equating terms gives

Cn - a n  0
(131)

c n = a n

The first division gives

cn I - anbn_1 an_1
(132)

or
Cn_ 1  an-I + anbn-I

A second division yields

Cn_2 - anbn_2 - an.ibn.i an_ 2
(133)

Cn-2 = an_2 + anIbn- I + anbn_2

Continuing for n divisions yields the final result, which can be placed

in the matrix form of Equation 129. Several examples are given to clar-

ify the details.

Example 2 (a simple check case)

Let

cT/3 z z - 1 + .9z- I + .81z -2 + .729z -3 + *. z - esT/3z-.9

(134)
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Theref ore

a - [1 .729]

The denominator, in the T timeframe, is

z - .729 =~ b -[1 -.729]

Evaluating Equation 129:

[: l CT.29 : [i 9  = [ :1 .729= (135)

Example 3

if

CT/ 2  = -- z2_____
(z - 1)(z - 2)

M 1 + 3z-1 + 7z-2 + 15z-3 + 31z-4 + *.(136)
let

CT c2z2 + clz + co c2z 2 + clz + co
(z - 1)(z -4) Z2- 5z + 4

Therefore

[c2 1 Fl CT ;o(2
cj 7 5 2(z-1)(z-4) (137)
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Example 4

Let

GT4. Z2 -4z +6 Z2 -4z+ 6
GT4 -(z -2)(z 2 -2z + 2) z3 -4z 2 +6z - 4

= 0 + Z1+ 0z-2 + 0z-3 + 4z-4 + 16z-5 + 40z-6 + 80z-7

+ 144z-8 + 256z-9 +480z-1 0 + 960z-11 + 1984z-12 +

(138)

Since z2 -2z + 2 = [(z -1)2 + (1)2], the T timeframe roots are

p = +I + /24450 p4  - 44,180= -4 +jO

p = 1- j V 24 -45 p4  = 44--180 =-4 +jO

Therefore the denominator, in the T timeframe, is

(z -2 4)(z + 4 )(z + 4) M 3- 8z2 - 112z -256

Setting

(T c 3 z 3 + c~z 2 + clz + c

CT z 3 -8zT - 112z-256
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one may write

[c3 [0 U u 0 1] 0

1j 144 4 0 01 -112 [112

'o1984 144 4 0] -256 L384]

Summarizing the example, it is seen

CT/4 2 z- 4z +6 _ J>C 4z2 + 112z + 384
(z - 2)(z2 - 2z + 2) lz.mesT/4 .(z - 16)(z + 4)2

or

CT = 4z +96
(z - 16)(z + 4) Iz-e-sT

(139)

We conclude the examples by revisiting Example 1.

Example 5

T/6 T/3
~ -V kC

I T/2 S+2JT/6 T/3
s+I

Figure 25. Example 5 (and 1) Block Diagram

From Figure 25,

~T3 FiT/6 1T/2 1 T/ 3  3 - 3 T/3
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or

cT/6 z e z4

z4 - e-T/3z3 - e-T/ 2z + e-5/6T

- + e-T/3z
- I + e-2T/3 z- 2 +

(140)

cT/3 c4z 4 + c3z 3 + c2z2 + clz + co

(z -e-2T/
3 )(z3 - e-T)

A tedious but straight forward exercise gives

c4 a4 0 0 0 0 1 1

c3 a3 a 4  0 0 0 -e-2 T/3  0 (141)

c 2  a2  a 3  a4 0 0 0 e- 5T / 6

cl al a 2  a 3  a4  0 -eT 0

coj a0  a1  a 2  a3  a4 _ e- 5T/3  0

where

a - [a4 , a3 , a2 , a1 a0]'

[1, e- 2T/3 , e-4T/3 + e-5T/6 , e- T + e- 2T + e-3T/2 ,

(142)

e-ST/ 3 + e-8T/3 + e-13T/6

E. SECTION SUMMARY

The system of Figure 24 can be evaluated using Equation 119, which

is, in itself, a significant generalization of the "skip-sampling

theorem." In particular, M and N need only be rational numbers. This

relaxed requirement on M and N permits the treatment, as limiting cases,

of the so called High-to-Low and Low-to-High rate transforms within the

same framework. These points are called out in Appendix A.
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Once set up via Equation 119, the problem reduces to the evaluation

of

CT/M - [cT/NK]T/M

One may avoid using residue theory by doing a powers series expansion of

CT/NK and equatifig the NK/M spaced points in the T/NK timeframe to the

appropriate temporal points in the T/M time frame. This leads to a

closed-form solution for the CT/ M numerator coefficients. In this

regard, it is important to appreciate that the poles of CT/M can be

obtained from the known poles of CT/NK "by inspection."

The combination of the generalized skip-sampling algorithm and

impulse response matching eases significantly the computational burden

encountered in the analysis of multi-rate systems.

ii
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SECTION V

MJELTI-RATE FREQUENCY RESPONSE: SWITCH DECOMPOSITION

CONTRASTED WITH SCALA ANALYSIS

A. INTRODUCTION

Vector switch decomposition, discussed in Section III, provides a

general framework for the frequency response of multi-rate systems (Ref-

erences 1, 2). However, the dimensionality problems associated with

switch decomposition encourage the development of a separate theory for

the class of systems discussed in Section III. We first review the gen-

erally applicable multi-rate frequency response (as presented in Refer-

ence 2) in order to make the additional dimensionality problems clear.

Following this, a less general method is developed. This "scalar"

method is applicable to the class of problems discussed in Subsection E

of Section III and will be applied to the simulation case studies of

Sections VIII and IX.

B. REVIEW OF MWLTI-RATK FREQUENCY RESPONSE,
SWITCH DECOMPOSITION MODEL

Let the general multi-rate/multiple-order open-loop system of Fig-

ure 26 have a sine wave input. In Figure 26,

C = (G1 Ral)' (143)

CT/N _ [G(G1Ra)o ]T/N (144)

where a, 8 represent sampling schemes with a basic period of T seconds.

For example, a might represent a multiple-order sampling format; 8 might

represent a multi-rate and/or pseudo measurement format (see Refer-

ence 2).
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R . I LiC T/Na L,.,J T/IN

Figure 26. Multi-Rate/Multiple-Order
Open-Loop System

Using switch decomposition, Figure 26 takes on the representation of

Figure 27. Clearly,

C[ " W2 (W2 *GlwI)T(wI*R)T (145)

and

CT/N = (G2)T/N (W2 *GlWl)T (WIR)T (146)

Figure 27. Open-Loop System with Switch Decomposition

If a represents multiple-order sampling and 0 a pseudo measurement

format using multi-rate sampling, the switch decomposition modeling com-

ponents might appear as:
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Wi [1, e - TOs e -TlS e -T2s (147)

e , T e ](17

eTOs

WI, M" TlS (148)

e

and

W2  = W2  0 e-sT/3  0 (149)

-0 0 e-2sT/3

W2,= esT/3  (150)

[e2sT/3
Comparing Equation 146 with Equation 13, we see that only one new

facet has entered the problem, namely (WI R)T replaces RT. Consider,

therefore, a generic component of (WIR)T - for instance the scalar

(eATSR)T, where 0 < A 4 1.0.

For R - sin bt and A zero (eATs _ 1), the output equation (Equa-

tion 146) becomes

CT/N - (Gw2 )T/N (w2,GIWI)T zN sin bT Z - esT / Nz2N - (2 cos bT)zN + 1 T

(151)

where RT is described in terms of a N/T samples per second model. For

the sake of brevity write Equation 151 as
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GIN GT ,sin bT (152)
CT/N A B z2 N - (2 cos bT)zN + 1

Expand the right-hand siue of Equation 152 in partial fractions:

N-i Anz sin wn(T/N) + Bnz[Z - cos wn(T/N)]CT/N.E
nT/ Z2 - [2 cos wn(T/N)Iz + 1

+ [Terms due to modes of GA GT] (153)

For non-zero A, we use the advanced z-transform on (eATSR)T and

Equation 153 becomes

T/N - GCT/NGT zN (sin bAT)zN + sin [b(l - A)T]}A B z2N - (2 cos bT)zN + I (154)

Assume that responses in the modes of G T/N GT approach zero as t +A B
i.e., that all modes are stable. In Equations 153 and 154

2irn
wn - b + T , n - 0,1,2,...,N-1

(or one may prefer the n - 0, ±1, etc., definitions of Section II). The

steady-state waveform, at the sampling instants, can be written as

iN-I + IT/N
C(t)N . (An sin wnt + Bn cos wnt )  (155)

!n-0

At this point, pursue the analysis of Section It keeping in mind that

the only difference resides in the use of an advanced z-transform for

the sine wave input. The analysis proceeds down to the equivalent point

of Equation 152 where a division by z sin wk(T/N) and replacement of k
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with n occurs. At this point we pick up the development and find the

limiting form:

TN 0 T Z
N- l

[(si
n 

bAT)zN + sin b(0-A)T] z 2[2 COS wn(T/N)]z+l

ASjn-C BI z 14w(T/N) sin wni(TIN) z
2
N.-(2 coo bT)zN+l I.- LwnJ(T/N)

(156)

Evaluating Equation 156 at z = lmn(T/N) produces

An+JBn CA GB I (TIN)

Joi
n 

b
A
T(cos wnT + j sin w

n
T) + sin b(

l 
-

A
)TI 1 (157)

(cos wn(T/N) + j sin uin(T/N) - cos wn(T/N)( l

[sin w (T/N)]N(cos cJnT + j sin T - cos bT]

Simplifying Equation 157 gives

- T/NGT (sin bAT)(cos wn T) + sin b(l -'T + I(sin wnT)(sin bAT)
An+jBn 

6
A GB z-14tw(T/N) N sin b

-TIN rTj sin bT cos bAT + j sin wnT sin bAT
IA GB z Cn(T/N) N sin bT

- GTIN G T 1 cos bAT + 1 sin baT
A B z-1n(T/N) N

- GT,tN rTj eJ
b A T  

. A •ebsT Is-j b

A B z-l wn(T/N) N N z14.n(T/N)

(158)
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Thus, the only new element added is the factor eAsT evaluated at the

input frequency. Since A is generic, we draw the same conclusion for

every other element of (WI.R)T and hence arrive at the final steady

state result:

CT/N - (GW2)T/N(W2.GIWI)T(WI.R)T" [E1 (An sin Wt + Bn cos wnt]
!n-0

where

Anjn =(GW 2 )T/N Z-6esT/N (w*IWI)T z~esT
An + jBn N Iz=In(T/N) (W2*G T z=14wT W* s=jbl (159)

z =_1-4, bi

21rn
An = b +--vn , n - 0,1,...,N-i (160)

Letting N - gives the "continuous" result

An + JBn = Ws=( n (W2 *GlWl)TZrlsnT WiIs n-O, *1, 2, --
T ~z=l4.wnT sj
~s-jw ~ or

z-14bT

(161)

In Equations 159 and 161, an option exists with regard to (W2 .GIWI)T as

it may be evaluated at either l1.bT or l4nT. However, there is no

option with regard to WI, since it must be evaluated at s = jb. Clear-

ly, the most efficient procedure is to evaluate (W2 .G1 WI)T at z = 14bT

and W, at s - jb, save the result in a polar format, and then evaluate

(GW2 /N)T/N -- or GW2/T - over the appropriate range of n.

It can be appreciated that the results of Section II are contained

in Equations 159 and 161, since Section II considers only the special

case of Wi.- 1.0 (a scalar). Also, note that WI and W2 are symbolic

representations that can represent either multi-rate or multiple-order

sampling formats (see for example, Reference 2). However, in arriving
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at the spectrum of the continuous variable, uniformly spaced time

samples in a T/N time frame were used.

C. A CLOSEKD-LOOP APPLICATION

The ability to cast any multi-rate or multiple-order sampling

sequence into a switch decomposition format makes the analysis of

closed-loop systems a straightforward task. Consider the system of Fig-

TT

first. solve for ET

E T _ (Wl*R )T - (W1*G 2W2 )T (W2*GlWl )T E T (162)

or

ET - [I + (Wl*G2W2 )T (W2.GIW,)T]lI(Wx*R)T (163)

Figure 28. Closed-Loop System with Switch Decomposition

The ref ore

CT/N =(G 1W1 )T/N[I + (Wl*G2W2 )T (W2*GLWl)T]-l (Wl*R)T (164)
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The coefficients for the steady-state waveform are then

An+ jBn - G1W [I + (Wl*G2W2 )T (W2*GjWI)T]-1 ze WI*
An+Jn= T Is~jW n  Iz-l4bT WI*s-jb

or z=l4wnT (165)

n +1, +±2, ...

Section IV of Reference 2 gives a detailed example on the interpretation

of Equation 165 and we will not repeat it here. However, an important

point made in Reference 2 will be re-emphasized here - namely the

presence of W*I, forces the use of "multiple Bode plots", one for

each component of I*. This is yet another facet of the dimensionality

problems associated with switch decomposition.

For a particular class of problem (discussed in Section III), the

dimensionality problems can be avoided by using a more direct approach

which follows.

D. A DIRECT APPROACH

As pointed out in Section III, open-loop systems and a class of

closed-loop multi-rate systems can be analyzed without recourse to

switch decomposition. Such is the case with the generic system of Fig-

ure 29.

T/N TIK TIM

Figure 29. A Three-Rate Scalar Configuration

Clearly,

T.K T/M

CT"M IG2 [GIRT/N 1 T (166)
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It would be fortuitous indeed for the ratios of N, K, M to be such

that all the operators in Equation 166 "operated" through. However,

knowing that N, K, and M are rational, one may use the algorithm of the

previous section to evaluate

T / K  [ I T N T / K

G - [G1 T/N] (167)

The poles of RT / N, in a T/N time frame, will survive intact in the T/K

time frame, indicating that the input R can be "tracked" through the T/N

and T/K operations. In a like manner

TIM
CT/M - {G2 GA /} (168)

can be evaluated and the poles of R, in a T/M time frame, can be clearly

identified. This suggests a possible method for avoiding the switch

decomposition frequency response by factoring out a sine wave in the T/M

time frame, thus placing the investigator in a position to apply single-

rate frequency response results directly. This viewpoint is flawed, as

can be appreciated by studying a particular case. Suppose K/N is an

integer and M/K is an integer. Equation 166 becomes

CT/M = GT/MGT/KRT/N (169)

and clearly the poles of R appear, in the T/M time frame (z - esT/M) in

terms of zM/N, i.e.,

z 2 - 2 cos(bT/N)z + 1 = z2M/N - 2 cos(bT/N)zM/N + 1 (170)

Thus, the frequency response of CT/ M requires M/N sinusoids in order to

match the output samples in a T/M time frame. That is, one sine wave,

in a T/M time frame, is not a sufficient descriptor of the sampled T/M

steady state waveform.

One may obtain a consistent evaluation for the spectral content of

the output, in the context of generating the minimum set of sinusoids

which will exactly match the output samples, by careful use of the

generalized skip-sampling theorem developed in Section IV. We will use
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examples to demonstrate the methodology and proceed to discuss a defini-

tive set.

Example #I:

T/ T

Figure 30. Illustrative Exan~ple #1

T
CT - [GIRT/N]T  _ [GT N/N] (171)

For ease of identification, let C, = (1/s + 1), R - sin bt.

Therefore,

CT z z sin(bT/N) T (172)
e-T/N z2 - 2 cos(bT/N)z +

Since the ratio between the frame times is N, the root at z - e-T/N in a

T/N time frame goes to z - e-T in a T time frame. The roots correspond-

ing to the sine wave in T/N, where

z - cos(bT/N) ± j sin(bT/N) - l4_bT/N (173)

jump to z= (I4bT/N or z - l14bT. Thus CT will have the form

N(z)
CT  NW z-esT  (174)

(z - e-T)[z 2 - (2 cos bT)z + 1] (

and it can be appreciated that only one sine wave is needed to match the

steady state response (only because of fast input-slow output sampling

format).
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R~ C T/N

Figure 31. Fast Output, Slow Input Example

CT/N - [G RT] T/ GTIN RT

z zNsin bT(15

(z - e-T/N) [z2N - (2 cos bT)zN + 1] )zesT/N

It is apparent that the sum of N sinusoids is required to exactly match

the T/N output samples.

Example #3: ________________________

T/16 T/2 T3

Figure 32. Three Rate Example

Again, for ease of identification, let G =1/(s + 1) and G 2 /

(s + 2).

CT/3 _ tGGIRT/ 6 1}/2I / (176)

The inner operation will yield, using the method of Section IV,

z z2 sin(bT/16) 1T/2
1z[ T /16 -2 [2 cos(bT/16)]z + 1J

- ~N (z)1(7)

-z e-T/ 2)(z2 - (2 cos(bT/2)]z + 1 zmeT/ 2
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since the ratio between the frame times is eight. The next operation

must be initiated in a T/6 time frame, which gives a form like

[GT/6[GIRT/16 
T/2T/3

r NO T/3

(z - e- 2T /6) (z 3 - e-T/2)(z 6 _ [2 cos(bT/2)]z + 1
(178)

The ratio between T/6 and T/3 is two, and looking at the T/6 roots:

z - e- 2T/6  2 e-2T/3 -2T/3)

3 -T/2 6 -T 3 -T)

z 3 eff z e -T (z - e ) in T/3 (179)

3 6 6_

z = 14-bT/2 , z = I bT (z 6  (2 cos bT)z 3 + 11 in T/3

CT/3 has a form

T/3 = Nl(z) (180)

C(z - e-2T/3 )(z3 - e-T)(z 6 
- (2 cos bT)z3 + I) z-esT/ 3

Thus the "fragmentation" of the sine wave through T/16, T/2, and T/3

time frames requires the use of three sinusoids to match the output

steady state waveform (at the sampling instant).

In this example, one can therefore use single rate results (avoid

switch decomposition) by setting up a new transfer function via
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T/3 -N 1 (z)
( 3 sin bTJ(z - e-2T/3)(z3 - e-T)

z 3 sin bT (181)
z 6 - (2 cos bTlz 3 - 1

= G1 (z)z
3 sin bT 1 esT/3  (182)

Z6 - (2 cos bT)z
3 + I

3  z=esT3z sin bT (183)= Gi l z~ sT/ x 2  ( 2 cos bT)z + I zL eS T

Thus

n+JBn = - Gl(z) n f= b + (2n/T)
f3 1z = 14T/3

n - 1, +1, or 0,1,2

Clearly, the same problem which surfaced in the switch decomposition

frequency response also surfaces here. Namely, in switch decomposition

W, was evaluated at the input frequency b; it was not permissible to let
T/3

its value range with wn In G1  , it is necessary to keep the scale

factor, sin bT in the denominator of G1, fixed at the value b.

These examples make it clear that the use of this scalar theory, as

an alternative to switch decomposition, requires insight into the manner

in which th? poles are manipulated between successive time frames.

E. SECTION SUARAY

The frequency response of multi-rate systems, using a switch decom-

position format was reviewed with a sinusoidal input. Decomposition

of the input (W*R)T requires a number of "Bode plots" equal to the

dimension of W,. An alternative "scalar approach," using the tool

developed in Section IV, was presented. This approach, where applic-

able, is dimensionally more attractive than vector switch decomposition.

It does require a keen awareness (on the user's part) of the number of

sinusoids required to match the sampled output steady-state waveform.
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SECTION VI

SIMULATION N)DELS

A. INTRODUCTION

There is a natural extension of the previous results which make

switch decomposition (or its equivalent) and frequency response tech-

niques ideal for the error analysis of simulations. Before discussing

that topic in explicit detail, we will first develop models for treating

a given computer code under the assumption that it introduces an inher-

ent throughput delay. The limited ability of "time advanced" digital

filters to compensate for throughput delay is briefly treated. A key

idea, the use of a zero-order hold to model a buffer storage register

between two computers (working in different frame times) and/or differ-

ent elements of a computer program, is introduced first.

B. NDDELING A BUFFER REGISTER

The use of a ZOH to model a storage register is depicted in Fig-

ure 33. There the output of the filter G(z) is stored in an intermedi-

ate buffer register, Mo . The output C is given as

C - MoGTRT  (184)

and clearly

CT - MTGTRT GTRT (185)

since MT 1, i.e.,
0

( -esT z T) z - z (186)
z s z z-1
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T _ _ .J1 T i nZ

Figure 33. Model of a Buffer Register

The utility of this model, therefore, lies not in the situation where C

is sampled at (lI/T) Hz, but rather when some other type of output opera-

tion is performed. For example, one may visualize C as being the input

for the next (serial) recursion operation to be performed in a different

frame time, say T/3 (refer to Figure 34). Express C as

T/ T T T3 . T/3 T/3 T T
C - M3

GT /3 [MTGIR M3G
32 MI/ G R (187)

where the subscripts on the data holds are used to indicate the integer

values of their frame time, i.e.,

1 -e-s T  1- e s T /3

M1  = , M 3  a 1 s (138)

To illustrate the use of Figure 32, suppos_ a recursion equation like

Xk -.2Xk-1 + .4Rk + .3Rk-1 (189)

in a T frame time is followed by another recursion equation in a T/3

time frame:

Yk- + .6yk I + .
3Xk (190)
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XT X T/ 3 --- ZT/ 3  f C CT/ 3

Figure 34. A Particular Serial Operation

The transfer functions, with z commensurate with the indicated time

frames, are:

T .4z + .3 T/3 _ .5z(1)G z + .2 ' z - .6 (191)

Equation 187 in terms of a T/3 time frame is:

= - -sT/3 . 5 - esT T/3 _i..±3.3 R z) (192)s z -.6 Sz 3  + .

or

-= -sT/3 . 56k 2 + z + 1j(4z3 +.3) R(3) (193)

The term (z2 + z + l)/z2 models the fact that recursion Equation 190

asks recursion Equation 189 for an input every T/3 seconds, but picks up

the same number two out of every three times.

C. MODELING THROUGHPUT DELAY

Multiplication and addition of a recursion equation require a finite

amount of machine time for their execution. Thus, it is necessary to

understand the timing of a simulation. For example, the recursion equa-

tion of Equation 194 can be machine executed in several different ways:

Yk - alyk-i + a2Yk-2 + a3Yk-3 + boxk + blxk-1 (194)

a) Bring in the new xk, do five multiplies and four
adds, and (as quickly as possible) output the new
value of Yk" There will be a throughput delay,
say To seconds.
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b) Same as a) except yk is not updated until the
start of the next machine cycle. There will be a
throughput delay equal to the frame time, T sec-
onds.

Yet another alternative is to perform all the multiplies and adds asso-

ciated with the past values as a "background" computation. Then, at the

start of the new frame time, one need only bring in the new value of xk ,

perform one multiply, add using the "background" number, and output Yk

as quickly as possible. This would minimize throughput delay. Explic-

itly,

Yk = boXk + bk 
(195)

bk = alyk_ 1 + a 2 yk_ 2 + a 3yk_3 + blxkl (196)

Thus, while the delay in updating xk and outputting Yk as quickly as

possible must be minimized, say in T, seconds, the background can be

done in a more leisurely manner provided it can be "fitted in" in the

remaining T - T i seconds.

A model which fits all three cases is shown in Figure 35. There the

nonsynchronous sampler model of Section III is used to model the

throughput delay. This model envisages that the delay inherent in

either the time required to multiply and add (or perhaps a deliberate

delay of one frame time) can be lumped as a skewed data operation after

the data hold. Thus the recursion modeled by Gl (z) is done instantan-

eously and passed to a storage register, and its output is out of step

with the master clock by TO seconds. This is depicted in Figure 36.

A final comment is in order. When an element of a simulation is

modeled as a recursion equation (computer code), a single, distinct

frame time is implied. This means that the pulse transfer function used

to model it must have the same frame time operation on both input and

output.
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Figure 35. Buffer Register Model with Throughput Delay

X T  T n T °

T + n T + T
T+nT IeT

Figure 36. Timing Diagram

D. SWITCH DECOMPOSITION MODEL

In Equation 187, it was possible to operate through the T time frame

with the T/3 operator. This will not always be possible and we may,

once again, have to resort to switch decomposition.

With switch decomposition, one is in a position to evaluate configu-

rations such as the one shown in Figure 37 (the vector switch decomposi-

tion is shown in Figure 38).

From Figure 38,

C - M2W2 (W2 ,G2W 2 )
T (W2 *M3W3 )T(W3*GIW 3 )T (W3,R)

T  (197)

The evaluation of terms such as (W2 *M3W 3 )T is routine; our concern is

with terms like (W3 ,GIW3 )T when GT/3 is given as a software specifics-

tion (e.g., computer algorithm). Focusing on (W3 G1W3), we find
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T/ 3 T/ 3 /2 /

3 S 2 S

Figure 37. Example Two-Rate Open-Loop System

W3. 11 IeIT/3 e-2/3 To W2 . .es'/21

Figure 38. Switch Decomposition Formulation f or Figure 35

T

(W3*G W)T = esT/3 GlIj e-sT/3 Ie- 2 sT/3

e~sT/T

1 e-sT/3  e-2sT/3 '

- G1  eT/ 1 e-T/ (198)

Le2 sT/ 3  esT/3  I
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T

/ e-sT 2 3 e-sT, sT/ 3

(W3*GlW3 )T IGI e 2s/3' (199)- _ . _ - \ e - -T (1 9

/e2sT/3) (esT/3N 1

Observe the super-diagonal terms. They are simply appropriate sub-

diagonal terms multiplied by es T .  It is only necessary to compute the

first column entries in order to completely determine (W3 GIW3 )T.

TI/3
Next, observe that the problem statement stipulates G perhaps

defined through a substitution rule. If esT /3 is defined as z we have:

T

G' 3  Z-(z 2 GT' 3 ) z- 3 (zGT/ 3  
T

(W3 .GIW 3 )T zGT/ 3  GT/ 3  Z - 3 (z 2 G/ 3 ) Z e oo/
I 1 1

Z2GT3 zG T/3  G T/3 (200)

Thus one may, for all the super diagonal terms, factor out L/z (in a T

time frame). Although each term in Equation 200 can be evaluated, using

the algorithm of Section IV, only the first column entries need be com-

puted (i.e., the three entries of column one are sufficient to define

all nine entries).

Z. TIME-ADVANCED DIGITAL FILTERS

In synthesizing a recursion equation for a particular element of a

simulation, the designer can often compensate for part of the throughput

86

i' J
-,MA



delay introduced by the digital computer. To see this, consider the

task of implementing a low-pass filter via a recursion equation (refer

to Figure 39). One way to do it is to visualize the input to the

(sampled) filter as being smoothed with a data hold (of the designer's

choosing) and then advanced in time by the operator eAs T . If

G = a/Cs + a) and M is a ZOH, compute the pulse transfer function as

T
G(z) = ss (201)

or

GT = - eAsT )T
z I I - s +a b

S- e-AaT)z + (e-AaT - e -sT) (202)

z - e - aT

It can be appreciated that a full time period advance, which is not

physically realizable in the analog world, can be realized on the dis-

crete domain, since

Cn eaT Cn-l + (1 - e-aT)Rn (203)

G (z

T LJ JT

Figure 39. A "Time Advanced" Filter Section
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can be realistically approximated by a very fast computer. This method

works well for low-pass sections but there is little to be gained by

trying it on washout networks or high passes. To see this, consider a

limiting form, such as a differentiator:

G(z) - . e A s T . s (204)

Here any A * 0 results in a physically unrealizable component. Of

course, one may utilize a higher-order data hold, for instance, the

"s lewer."

G(z)Ts 2  . e As T . s (205)

When A - 0, the smoother is called a slewer; when A - 1 the smoother is

recognized as the triangular data hold. Clearly,

0(z) - z-L 2 eAs T T  zT z2  s Tz (206)

regardless of the value of A.

We close this facet of the discussion with a look at an integrator

when the smoother is a time-advanced slewer or a time-advanced ZOH and

compare the results with the Tustin transforms of I/s.
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Slever:

G~z) (z- 1)2 eAsT

Tz2  s3

(z - 1)2 z [(A2/2) + (1/2 - A2 + A)z + (1/2-- A, + A2)

Tz2  (z - 1)3  (207)

For a full period advance

G(z) = z + (208)

ZOH:

T

G(z) - eT I z zTAz + (I-- A)] (209)
[z LS21 z (z - 02

For a half period advance (unrealizable if A - 1)

G(z) = (z + (210)

Tustin Transform:

G(z) i(z + 1) (211)
Tustin 2 z - 1

Thus Tustin transform of 1/s is the same as smoothing with a ZOH,

advanced in time by half a period, or a alewer with an advance of T.

F. DIFEUECK EQUATIONS OR MDELING
AN INTEGRATOR

A frequently used technique for deriving recursion equations from a

given transfer function is to rearrange the transfer function in terms

of "nested" values of I/s. For example, the network

8F9
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G -s) a2s 2 + a Is + ao  (212)
s 3 + b2s

2 + bls + bo

can be written as

Gs a2/s + al/s 2 + ao/s3
G(s) =I + b2/s + bl/s 2 + bo/s 3

[ao/s + al] I/s + a2
L(bo/s + bl)I/s + b2J1/s + 1

This approach emphasizes the importance of having a viable discrete

representation of the integrator. Indeed, this has been the prime focus

of the classical integrator approach. That is, given an input c, he

integrator produces x and one may tabulate a set of classical integra-

tion algorithms, all of which can be derived using the approach of the

previous section (see Table 2). In the remainder of this report, it

will be assumed that the recursion equations are given and the focus is

on evaluating of the fidelity of the overall simulation.

C. SECTION SUMMARY

Analytical models for incorporating recursion equations into a

framework which accounts for throughput delay were developed. The

switch decomposition model of a simulation element was shown to have a

recursive pattern which required the evaluation of only the first column

of the describing matrix. From this column vector all other entries of

the matrix can be generated. A fundamental step was the use of a ZOH to

model a buffer storage register. The use of time advanced digital fil-

ters to compensate for throughput delay was briefly discussed and the

classical equations for integrators were summarized in tabular form.
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TABLE 2. CLASSICAL INTEGRATORS

INTEGRATION EQUATION NAME

Xn- X +l4 T(2Xn..1  Xn)

xn - Xn-l4 1 ( 3 * - 1 i)-

Xn- X.,+ Ty- Euler

X- Tn- +- (n + ; JTrapezoidal

Xn- Xnj+ T(in) Rectangular

Xn- Xn-l. +j1 (3'~ Implicit Adams

Second-Order

Xn - Xnl+ T(2Xn -n,
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SECTION VII

A T/2, T/3 CLOSED-LOOP SIMULATION CASE STUDY

A. INTRODUCTION

The topic of this section is a case study using the tools developed

in Sections III through VI. The rates involved in this closed-loop

analysis force the use of switch decomposition. Later sections will

treat case studies where switch decomposition can be avoided.

Specifically, we investigate a case where an idealized control ele-

ment (1/s2 ) is under the influence of a continuous feedback controller

with an (idealized) compensation network in the forward path. The

objective is to generate Bode plots given (1) a digital implementation

of the continuous controller and (2) a digital simulation of the overall

system; treating both the continuous and discrete controller cases. Of

special interest is the case where the compensation is modeled on one

computer and the controlled element is modeled on a different computer,

with each computer working in a different frame time. In all, four

cases will be discussed.

B. PROBLEK DESCRIPTION

The situation described by Case I in Figure 40 assumes a controlled

element (/s 2 ) under the influence of a continuous feedback controller

with an (idealized) compensation network 2(s + 1) in the forward path.

Case II depicts the same controlled element under the influence of a

discrete feedback controller which smooths the output of the digital

computer with a ZOH (passing on a "staircased" signal to the control

point). The discretized version of 2(s + 1) was computed, using the

first back difference algorithm resulting in the model (42z - 40)/z (at

a sampling rate of 20 Hz).

Case III is a simulation of Case II (or I) wherein the plant, I/s2,

is modeled using a "substituticn-for-s" rule (Tustin transform). The

output variable C is modeled as the output of a storage register (ZOH).
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R45E I

2(s+I) I

G?()42z-40
CASEH G2 z z

GM G1

2(s+I -T s-
T T s

T =.051 ZOH
T

z ~T (z+ 1)2 T
CAX2f 42-4 x (z-I)2  M

T T ZM T s
G2Tustin Storage

T =.5,T---- GRegister

T

CASE~ 22-4 T(z+1-)2
4 z-4 16 (z-1) 2

/ T/ 3T/2 T2

X 2_ 
_ % LsT 

/2 C
T .15 Z Sre z/ eS2/ Storage

T2.05G 2  Register Tustin Register

T/3

Figure 40. A Vector Switch Decomposition Simulation
Case Study
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Finally, Case IV depicts a situation wherein one part of a simula-

tion is coded for one computer while another part is coded on a second

computer. Typically, the computers are working in different frame times

and therefore will, on occasion, pass "old data" back and forth. It is

assumed that the compensation is modeled in a 0.05 sec Lime frame, while

the plant is modeled in a 0.075 sec time frame. Data transfer between

the two computers is via appropriate buffer registers, modeled as a ZOH

in a T/3 time frame (M3) and a ZOH in a T/2 time frame (M2 ).

This completes the problem description; we may now write the appro-

priate equations for each case and discuss the analytical difficulties.

Case I is straightforward since

C(s) - [I + GIG2] - ' G1G2R (214)

Case II appears straightforward but does present a contradiction in the

output equation

CT - [I + (GIM)T GT]-I(G1 M)T GIRT (215)

That is,

I -se-sT I_ T 2  (z + 1) (216)
(G[M) " s 2  " 2 (z - 1)2

is readily computed using a transform table. However, it was not the

intent of the designer, who used a substitution technique to model

2(s + 1) as (42z - 40)/z, to compute

GT - (2(s + 1)]T (217)

Tusing the z-transform. Indeed, what does [s] mean? Clearly, the

intent of the simulation designer was to assign G 2  (42z 40)/z.
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This difficulty surfaces again in Case III since

CT = II + GTGT]- 1 GTGTRT (218)1 2 J  1 2

after taking due note that T = .
Now it is necessary to interpret both G and GT as given functions

1 C2
of z rather than z-Lransform operations. For example, assign (via the

Tustin transform)

GT T2  (z + 1)2  (219)
1 4 (z- 1)2

rather than (via the z-transform)

= -11_1T )
2  (220)

Difficulties in the "assignment" procedure also surface when we

write the output equation for Case IV (see Figure 41).

I-e ",T
13  I l-e-sT/2

2(s+) S S
2  

T S

T W2 G, W2 W2  M2

Figure 41. Case IV, Switch Decomposition Model
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=(M 2W2 )[I + (W2.G1W 2 )T(w 2 *M3 W3)T (W3*G2 W3 )T (W3*M2 W2 Tj

x W2*GlW2 )T (u2*M3W3 )T (W3*G2W3 )T(W3*R )T (221)

where

W2- [1, eT12] , W3  - f1, e81T/3, e-sT 2/3] (222)

The meaning of some terms in Equation 221 are clear; others are not.

For example, a straightforward computation yields

1 T1 e-sT/ 2 T

(W 3*M2 W2 )T = esT/3 I-e-sT/2 [ e-ST/2] I-e-sT/2  esT/3 e-sTI 6
8 S

Le5 2T/3j es2T/3 esT/6 i

(223)

T
I e-sTesT/2  e-sT(esT/2 -)

e T / 3  e s T e s T / 6  esT ! I { 6 e s / 3 0S S si 0o 1

es2T/3 eBT/6 esT/6  e-aTes2T/3

L a s(224)
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In a similar manner,

T

(W*MW I :sT/33 Ii-s2T/3'
[esT/2]e /3,e

(225)

- -sT/3 1 e-sT/3 e-s 2 T/3-[ sT/2  esT/6 e-sT/6 1
Clearing through and writing Equation 225 in terms of the advanced

z-transform for 1/9:

T
1_e-sTes 2 T/ 3  e-sTes 2 T/ 3  e-sTesT/ 3  e-sTesT/ 3  

-s

B S S S S

(W2*M3W3 )T _

eBT/ 2  es T/6 esT/ 6  e-sTes 5 T/ 6  esTes5T/6 e-sTesT/2

F1 0 01
= [~ 1(226)

However, the meaning of (W3*G2W3) T or (W2*GlW2) T is not clear. When the

designer specified G2 - (42z -40)/z, he intended (for a T time frame)

the recursion relationship
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-n) - 42(Rn - Cn) -
4O(Rn-.I - Cn..1 (227)

122

X4 n) - 2X4(n - 1) - X4 n - 2) +j 6(X 3(n + 2X3(n -1) + X3(n -2)]

(228)

Clearly, the information available in Case IV is

GT/3 . 2z - 40 1 T3-00z es/(29
2 , / .5 , z s/ 29

and

2 2
GT/2 - L. (z+L/L-0.7 z= s/2 (201 16 (z - 1)2T/ 007 , z= S/(2)

Usirg only the given computer code, how does one compute (W3*G 2 W3) T and

(W 2 GIW 2)T '7 This problem is treated next.

C. DECONPOSITION OF GT/2 AND GTI3
1 2

Using the results of Section VI, write

(W3*G2W3) (W3*Cl'
3W3) (231)

This is a simple but crucial step because we do not know (or care) what

the underlying G(s) was. However, we are given G 1  as Computer code

or, equivalently, a pulse transfer function in a T/3 time frame. The
T/3
G2  transfer function from the Case IV simulation example has the form:

G T/0o 1 z z esT/3 (232)2 z
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Equation 231 has the terms

T

T/ 3[z T/ 3- T2o/31 23
G2 G2z-3[zG2' 3

T/3 T 13T/3_3Z2T/3(W3*G2 W3 )T zG2  G23 z3[ 2~ (233)

where z - esT / 3 . The final result will be in a T time frame and there-

fore the z- 3 in the superdiagonal terms can be factored out and treated

as a z-1 , where z - esT.

Only the entries for the first column need be computed:

T 1T [T a)
a0z + al] z(aoz + a,)1 z. oz + (234a! I • (234)

Consider the first term:

T
aoz + al I faoP + al z (235)

z 
3p( 3 z-p 3  p

d [(aop.+ al)z -
] a 0  (236)z -l -p3 p--0

This result is easily verified using the algorithm of Section IV.

In the T/3 time frame, algebraic long division gives
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a0 z"+ a ao + al z - I + 0z- 2 + 0z ' 3 + " (237)

z

The root at z - 0 in the T/3 time frame remains at z - 0 in the T tLime

frame. Therefore,

T

a 1(238)
z z

where

[::] . [a oj [:1 a;](239)

and we see

T
0  + a o  (240)

z -

The second term in Equation 234 can, of course, be evaluated using resi-

due theory:

T 1 f (a°P + al)z (app + al )z1
([aoz- (3) dp a0 2 v r ( p - p ) pz - P 3 P - O

(241)

and

[z2(aoz + al)]T . I f(aop + al) dp 0 (no poles enclosed)
1-p 

(242)

In this regard, note that the algorithm of Section IV was set up to

treat only rational functions since polynomials in z can be easily

treated by inspection. That is:
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[a 0 z + ai aIT [a~esT/3 + al IT _ [aoesT/3]T + [al T (243)

But aoesT/3 is just a T/3 Lime advanced impulse and therefore a sampler,

working in a T time frame, sees zeo [a 1JT is an impulse of strength
Ta, at t - 0 and the T sampler "sees it" at t - 0, giving a, = al.

In a like manner,

la 2+ a = I [aoe 2 sT/3 ] + [ale-sT/31T =0 (244)

Next, use the "push down" column principle and generate

T2 T [a0  0 a1/z1

(W3,G
2 W3) al ao 0 , z -es (245)

0 a1  so

The next task is to generate

(W2 *GlW2) (W2 *GI/W 2 )T (246)

given

2 2
GT/2 = (z + z = esT/2  (247)

1 16 (z - 1)2

Write

([1 )T 1 F 1

(W GT/ 2 W)T [ I z-1] -T2( 1)2

(248)
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The first term of column one is

IT2(z + )2 T _ I_ f T2 (p4.1) 2  z realp. +sres I

16(z - 1)2 r J-  (p-I)2  p,, P r p- lp,,

M I.2 + 12 d +1±D2zj - 2 '+ 8z1
16 + 16 dp p(z-p 2) p= 1  16 (z_1)2

T2  (z2 + 6z + 1) s T

16 (z - 1)2

The second term of the first column is easier to compute:

Sp(p 1)2  z - res'
16 (p - 1)2 (z - p2 ) P P-I

2  L_ z(p + 1)2

16 dp (z - P2) Ip-1

T2  z(z + 1) (250)
4 (z- 1)2

Again use the push down column principle and write

(z2 + 6z + 1) 2 (z +
1164

I z(z + 1) 6 (z2 + 6z + 1)
(W2*GIW 2)T (251)

(z 2112
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The algorithm of Section V can also be used. To demonstrate, derive the

first entry by observing

2  ( + I 2  2

_ (z + 1)2 . T6 [I + 4z-1 + 8z-2 + 12z - 3 + 16z -4 + "''] (252)

16 (z - 1)2 16

Since a root at z - 1 in T/2 remains at z - 1 in a T time frame, write

T[T2 (z + 121 c2z 2 + ciz + Co

6  , z=esT (253)

the numerator coefficients are easily found

Cl [8 1 ] - T [ (254)
c o 1 6 8 . 1- .

checking the residue results.

D. RESULTS

With the assignments of the previous subsection all terms in Equa-

tion 221 are defined and the Bode plots descriptive of Cases I-IV can be

computed. The results (magnitude plots only) are shown in Figures 42

through 47.

Inspection of Figure 42 discloses no surprises. The digitally con-

trolled system is a reasonably faithful reproduction of the analog

system until the folding frequency (approximately equal to 62.8 rad/sec)

is passed. Notice that in the discretely controlled system, minimum

response points in the Bode plot (notches) occur at multiples of sampl-

ing frequency (approximately equal to 125.66 rad/sec).

The comparison of the single-rate simulation against the baseline

design exhibits fidelity over a shorter low-frequency range (Figure 43).
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Of particular importance is that the aliased bands exhibit a much higher

amplitude response than did the aliased bands of the digitally con-

trolled system (Case II). Moreover, the "notches" now occur at multi-

ples of the folding frequency rather than the sampling frequency. In

addition, there are very sharp notches which occur close to odd multi-

ples of the folding frequency; these are a consequence of the zeros of

2
the Tustin transform introduced by (z + 1) A direct comparison

between Cases II and III is given in Figure 44.

Figure 45 compares the two independent processor case (Case IV)

against the continuous baseline design. Large, sharp resonant peaks

have been introduced in the aliased bands and, in addition, there is a

significant overshoot in the first fold. A comparison between the two

rate simulation (Case IV) and the digitally controlled continuous system

(Case II) is given in Figure 46. Figure 47 compares all the cases.

There are significant differences in the spectral content of the

four cases which would be hidden if one only looked at the sampled spec-

trum (that is, looked only at the frequency content from zero to the

first folding frequency). Even in the first fold, there is a signifi-

cant difference in the Bode plot of the continuous case and the two-rate

simulation; the reason for the added overshoot in the two-rate simula-

tion will be discussed in the next subsection.

E. INTRODUCTION OF LIGHTLY DAMPED MODES

We may use the illustrative example of Section V to discuss the

additional modes introduced by a multi-rate process. Specifically, for

Figure 48, let

z - esT/6 M - 3 N - 2 (255)

G - I GT/6 = (256)
s + 2 z e -T/3

R = I RT/2 .
253

s + 1 z3 _eT/2  (257)
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Figure 48. A Phantom Sampler Formulation of a
T/N, T/M Sampling Format

so, as found in Section V,

cT/3 = 2(z2+e-5T/ 61 T 3  (258)j1,ze-/3[2+(e2T3]'z = 's T /  28

(z-e- 2T/ 3 )3z-e-/3)[z2+ e-T/ 3 )z+e-2/3j

Observe that the T/2, T/3 sampling format has produced additional

lightly damped modes in the output response. The reality of the addi-

tional modes can be better appreciated by first plotting the continuous

variable C(t) and then picking off the T/3 sample points. This is done

in Figure 49. Joining the sample points with a smooth curve emphasizes

the lightly damped nature of the response. This effect was also present

in the two-rate simulation analysis of the previous subsection (recall

the additional "overshoot" in the first fold of Figure 45).

F. SECTION SUMNARY

A case study, which required the use of switch decomposition, was

used to demonstrate the significant spectral differences that occur when

a closed-loop system (either an analog or digital controller) is com-

pared with an all-digital simulation of the closed-loop system. The

example also treated the problems encountered when a simulation software

is put up on two different (independent) computers, each working in a

slightly different frame time.

In following sections, simulation case studies amenable to more dir-

ect analysis (e.g., no need for switch decomposition) will be studied.
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SECTION VIII

INTERPRETATION OF MULTI-RATE FRQUENCY RESPOISE

A. INTRODUCTION

A simulation case study of the previous section required the use of

switch decomposition. This section treats an open-loop case which can

be analyzed by the more direct "scalar" approach discussed in Section V,

affording the opportunity to gain insight in interpreting the frequency

response of a multi-rate system.

It is shown, for a T/2 input, T/3 output, that three components are

required to produce an exact steady-state match to the output sample

sequence.

This simple case study also affords the opportunity to contrast the

mathematics of the scalar approach against that of vector switch decom-

position. This is done by working the scalar example through using

switch decomposition notation.

B. A T/2 INPUT, T/3 OUTPUT SIMULATION EXANPLE

The study is defined in Figure 50. Our objective to verify that

three sinusoidal components are needed to exactly match the steady state

sampled points, CT/3. From Figure 50, with r = sin bt, write

CT/3 - M2[ - eT2z sin-bT/2 T/ Z es/

T/ - e-T/2  z2 - 2(cos bT/2)z + 1 i) (259)

A term of

| / M2\Z/2 lT/3

cT/3 - [M2IM2- T/2 RT/2 T (260)
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T2m L..Z ~ T/2L.2M.JT/3

Figure 50. A Two Rate Experiment

is in a 112 time frame. Since the commensurate time frame is T/6, Z3
T /6

must be substituted for z. Moreover, M42 becomes, in a T/6 time frame

T/6 I - sT/2 / z3 
- 1_ Zz2 + z + 1(261)42 s 3 z-2

There fore

CT!3 Z2 z+ z+ I (I e-/21 z3 sin bT/2 T/

.,2 (z3 - e-T/ 2 )(z 6 - 2 cos h- Z3 +1)
2

- - e1/2 (i eT/2) sin U~ (z3 +z 2 +Z) z3 -e iT/F'

(2621)

As an alternative to the use of Section IV for the evaluation of Equa-

tinn 262, we will uqe Sklansky's Identity (Appendix B) and a frame time

of T 0.1 seconds:

T
[GT 12 (z)] [ G(z) + G(-z)] (263)

1.14
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Since the ratio of T/6 to T/3 is 2, the rational form of CT/3 will be

given by

cT/3. R16z6 + R15z5 +  - + Rllz + R10  (264)
R29z9 + R26z6 + R23 z

3 + R20

where the Rij coefficients are as listed in Table 3.

Dividing the denominator of Equation 264 into the numerator gives

the transient response in a T/3 time frame. This response is sketched

in Figure 51 as a solid line but the actual discrete response follows a

2-1-2-1-2-1-2... repetition pattern (note the insert in Figure 51).

Returning to Equation 264, observe z2 - (2 cos bT)z + 1, in a T time

frame, is a factor of the denominator. After factoring out this term,

the denominator has the form:

(R29 z
9 + R2 6z

6 + R2 3z
3 + R20)1f fesT/3

= R2 9z
3 + R 26z

2 + R2 3z + R20Iz=esT

= [z2 - (2 cos bT)z + 1](z - .904837421) (265)

Write Equation 264, recognizing R1 0 = 0, as

cT/3 (R16 z
6 + R15 z

5 + *' + RI1) 1 1 2

[sin (bT)]z 2  zesT/2 z -. 904837421 Iz-esT

z sin bT (266)

z 2 -(2 cos bT)z + I
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TABLE 3. COEFFICIENTS FOR C T/3

Rio - 0.000000to_-
RlI - 0.002318634
RI2 - 0.007868985

R13 - 0.007068985
R14 - 0.007187567
R15 - 0.002437513

R16 - 0.002437513

R20 - -0. 904837418
R21 - 0.000000000
R22 - 0.000000000
R23 - 2.800633998
R24 - 0.000000000
R25 - 0.000000000
R26 - -2.894845752
27 - 0.000000000

1<28 0.000000000
R29 - 1.000000000

_ T/3

T/ 2 L.....1JtiJ T2L. T 3

CY 3 = I M(2)T/ R T/21 T/3 ~IV

.8

4

4

Figure 51. cT/ 3 Versus Time
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Equation 266 has the input factored out, in a T time frame, and

therefore is equivalent to the switch decomposition approach.

The spectral coefficients are determined from the equation

JB . R 6  + Rjz 5  + *' + R1 T
An +~n 3 sin bT z2 z-1 bT/2

(267)

z - .904837421 '14 .wT/2

where

w , n- 0, 1, 2 (268)
n T

and

2 T/3

cT/3]ss " , (An sin wn t + Bn cos Wn t )  (269)

Notice an important point - the scale factor sin bT and the coeffi-

cients R 11 through R 16 are held fixed at the input frequency but the

various z's, in their respective frame times, are evaluated at Wn! A

consequence of ignoring this point, and running the program from scratch

each time (generating Ril R1 6 , etc.) in terms of wn instead of b, will

result in an erroneous set of coefficients. To verify this, we imple-

ment both procedures and compare the results.

In Table 4, the coefficients (and sin bT) are first evaluated using

the input frequency b. They are then "frozen" and the next two spectral

components are generated. In Table 4b, the evaluation is repeated,

n - 0, 1, 2, treating wn as a new input frequency. As can be seen, the

first and third coefficients are unchanged but the second components

disagree.

We next generate the sum of the three sine waves for each case and

see how they compare against the actual sinusoidal transient response,
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TABLE 4. SPECTRAL COEFFICIENTS FOR EQUATION 277

MAG -3.010199322 -3.010199412 MAG
n-0 4 -47.39926233 -47.39926170 4

1.000000000 1.000000000 W

-43.30234384 -35.68901104
n-1 -287.3992625 -242.4231347

63.83185308 63.83185308

-43. 38592638 -43.38592638
n-2 -707.3992644 -707.3992644

126.6637062 126.6637062

(a) (b)

as tabulated in Table 5. It can be seen that the Table 4a coefficients

generate the sums of three sine waves which agree extremely well with

the transient response at the T/3 sampling instant. The Table 4b set

produces a sum of three sine waves, which is far less precise (sometimes

disagreeing in the first significant figure).

The important result is that the T/3 output signal required three

sinusoidal components for the correct steady-state fit. Contrasting

this result with the switch decomposition/Bode approach of Section V

affords an interesting comparison. First of all, the approach of Sec-
T

tion V is "dimensioned" by (WR) , which in this case is two since R is

sampled in a T/2 time frame. How is this reconciled with the present

result, which insists on three output components?

In reality, there is no disagreement, since the Section V approach

would use two Bode plots to pick off the same three components. We can

verify this by reworking the subject example using switch decomposition.

118



TABLE 5. COMPARISON OF STEADY-STATE TRANSIENT RESPONSES

-.69393 -0.69394 -0.68198
-.69393 -0.69394 -0.70351
-.68625 -0.68626 -0.68810
-.67686 -0.67687 -0.66536
-.67686 -0.67687 -0.68721 a) Transient response of360
-.66578 -0.66579 -0.66638 Equatip 264, from z
-.65304 -0.65305 -0.64209 t, where z-e ,

-.65304 -0.65305 -0.66404 T - 0.1.
-.63866 -0.63867 -0.63800
-.62268 -0.62269 -0.61240 b) Sum of three sine waves
-.62268 -0.62269 -0.63424 using amplitudes and
-.60515 -0.60516 -0.60325 phase angles of Table 4a.
-.58611 -0.58612 -0.57660
-.58611 -0.58612 -0.59810 c) Sum of three sine waves
-.56560 -0.56561 -0.56247 using amplitudes and
-.54368 -0.54369 -0.53503 phase angles of Table 4b.
-.54368 -0.54369 -0.55598
-.52040 -0.52041 -0.51606
-.49582 -0.49582 -0.48812
-.49582 -0.49582 -0.50831
-.47000 -0.47000 -0.46451
-.44300 -0.44301 -0.43633
-.44300 -0.44301 -0.45556
-.41490 -0.41490 -0.40831
-.38576 -0.38576 -0.38018
-.38576 -0.38576 -0.39826
-.35566 -0.35566 -0.34803
-.32466 -0.32466 -0.32023
-.32466 -0.32466 -0.33698
-.29286 -0.29286 -0.28427
-.26032 -0.26032 -0.25708
-.26032 -0.26032 -0.27233
-.22714 -0.22713 -0.21767
-.19338 -0.19338 -0.19137
-. 19338 -0.19338 -0.20496
-.15914 -0.15914 -0.14890
-.12451 -0.12450 -0.12374
-.12451 -0.12450 -0.13555

(a) (b) (c)
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C. SW1,GH DECMPOSITION DEVELOPMENT

For comparison purposes, we next use swiitch decomposition on the

subject example and redraw Figure 50 as Figure 52. From Figure 52,

CT/3 =W 3(W3*M2W2 )T (W2* -I M2W2 )T (W2*R)T (270)

10[e-T/2-e-T 1 - e-T/ 2 ][ RT ]
-ie-sT/3, e-(2/3)sT1[1 0][zh - e-T/2) e-T/2..e-T [(esT/2R )T]

(271)

The theory of Section V gives the coefficients as

-[I + e-sT/ 3 e-(2 / 3 )ST]

e-T/2 e[T b-/2]

x ~z - e-T L1b/ 22

n - 0, 1, 2

Figure 52. Switch Decomposition Model for Figure 48
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Therefore,

2'rn
wn  - b +- -f

T

[1 + 14-wnT/3 14 -(2/3)wnT]
An+JBn 3

(273)[ e-T/2 - e-T 1-eTI2]

( - e-T/2 4 wnT eT/2 - eT 1

I .wnT - e-T  l4bT/2

n = 0, 1, 2 (or n - 0, ±1)

From Equation 273, it is evident that there is no conflict between

switch decomposition and the scalar approach since, for n - 0,1,2, we

obtain the spectral coefficients listed in Table 4a. The switch decom-

position approach confirms that three components are required (n - 0,

± 0.1); in addition, (WR)T requires that the input remain fixed at

b rad/sec. The tradeoff between the scalar approach and switch decompo-

sition is now clear. Switch decomposition has a greater dimensionality

problem, but it also has a format which protects the user from making an

error since the correct uses of wn and b are explicitly called out. In

this regard, the user must have a clear understanding of the scalar

approach in order to use wn and b in the correct sequence.

D. SECTION SUNIARY

A scalar example was used to compare the "scalar" approach with

switch decomposition. It was shown that both yield identical results.
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SECTION IX

A THREE-RATE SIMULATOR CASE STUDY

A. INTRODUCTION

The simulation error analysis case studies, up to this point, have

been restricted to low-order examples. Here we depart from this motif

by investigating a simulation involving three computers, each working

within a different frame time.

As we shall see, no new theoretical tools, other than those already

introduced, will be needed to carry out the analysis. However, the

reader is alerted to the fact that many computational difficulties were

encountered during the course of this case study. These difficulties

forced, for example, the "invention" of the multi-rate algorithm given

in Section IV. The nature of the difficulties encountered will be indi-

cated by first describing a lower dimensional example which retains the

basic structure of the large-scale system study. After this, we proceed

with the analysis of the title study.

B. A SIMPLiFIED THREE-RATE STUDY AND ASSOCIATED
DI ENS IONAL DIFFICULTIES

For clarity, utilize a precise set of s-plane parameters in order to

produce numerically convenient numbers in the z-plane. Consider the

continuous system of Figure 53a which is to be simulated with the three

rate configuration of Figure 53b). In Figure 53, let T = 0.1 sec

(10 Hz),

GI = 4.52569504
s + 4.52569504

(274)

s + 2.2222222
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Utilizing the analysis technique of Section II gives cT/3.

-1 T/3

2 (MGT/16MT/16)
r 2 / 2 ] /1 6 RrT/16)T/

2 T
CT/3 - ta12GT2 [ I + [MG M 2 G2 (MI GT /  R

T/2 T/3
T2 G T/16 TA (MlcI R (277)

Step I: Begin the evaluation of Equation 277 with the term

(MG T/ 1 6 M T/16 / 2  = (MT/16G T/ 1 6 T/16 T / 2  (278)

Therefore

T /2
(GT/16MT/16)TI2  j 02750752iz (z8 - 1. z (279)

1 2 z-- .972492473 z8  z- I(

since rectangular integration gives

a 1 + aT ) (280)

and

-/16 8 = eST/1 6  (281)

z - 1 Z8 Zfi

Rearrange Equation 279 as

T/2

[GT/16 MT/ 16 ]T/2 - ko(z 7 + z6 + z5 + + 1)i (282)1 2 1 z7 - klz6  I

Using the techniques of Section IV, divide the denominator into the

numerator and save every eighth number, since the ratio between the two

frame times is eight (see Table 6, and also note 08 - 0; k= 0.8).
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TABLE 6. THE "a" VECTOR, STEP I

*7 0.027507527

*6  0.194498493

* 5 0.155598794

*4 0.124479035

*3 0.099583228

*2  0.079666583

a 1  0.063733266

* 0 0.050986613

Setting

[G TI1 6MT/16 i T/2 c ~77 + c 6 z 6 + c z-esT/2  (283)1 2 ~ (z -86

gives

7a 7  0 1

c6a 6  a 7 -.8

C5 a~ 5 a6 0

C4  a 84 a50

C 3  a3 a40 (284)

C2  a2 a3 0

c1a 1  a 2  0

0o 0 a1 0

125
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Solving the set of Equation 284 gives the T/2 frame time transfer

function

T/6M 2T/ .027507527z + .172492471
1 (z - .8)

(285)
R0z + R 1  zesT/2

z - .8

In Equation 284, only the first two columns of the A matrix are

needed since the "C" vector has only two components. Further, note

c5  = a5 - .a=6  = 0

c4  = a4 - -Ba = 0

(286)

co  = a0 - -8a - 0

verifying that z 6 is a common factor of both the numerator and denomi-

nator of Equation 283.

At this point it is clear that modeling the "buffer registers"

between computers as ZOs introduces dimensionality problems .11ich get

larger as the ratio between the frame times increases. The evaluation

of Equation 283, using residue theory, would be tedious since it

involves a root at the origin of multiplicity six! This multiplicity

would increase significantly if the rates had been, for example, 20 Hz

and 156 Hz since the ratios between frame times, in the last step, jumps

to 39 (see examples A-3 through A-5 of Appendix A). While the computa-

tional burden would become simply enormous using residue theory, the

algorithm of Section IV is affected in a far less sensitive way; since

the only change required is the storage of every 39th value (instead of

every eighth value) of the power series expansion.
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Step II:

Since

G T/2, I2.22222 1T/2 .lz =T .1 (287)2 is + 2.2222 s-,z-1)/(T/2)z z - .9.(

the evaluation of

I + (MIG 1 6I6 T/16 ) T G /21-1 = l + lz(R~z + R1J
1 M2+ (z - .8)(Z - .9)

(288)

(z - 8)(z - 9 (289)

(1 + ,lR0)z
2 + (.R 1 - 1,7)z + .72

is routine.

Dividing out the lead coefficient of the denominator:

.997256793(z-.8) (z-.9) R3 (z-. 8) (z-,9) (290)

[]z - 1.678134619z + .718024891 z2 + R4 z + R5

T/2
Computing 2GA is also straightforward:

T/2 2T/2-1 ,2R3(z - (8)z
2GA 2G2z 2 + R4 z + R 5

Step III:

Next, treat the input term, assuming a unit amplitude sine wave at

b rad/sec:

T/ 16 T/16 T /2 T/16 T/16]T/2 T/16
1HG1  R I .Gj R since M, is unity

(292)

027507527z Z sin bT/16 T/2

z - ,972492473 z2 - 2 cos(bT/16)z + .- esT/16
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In the computer program, b is lef t as a free input parameter. Here the

interest is in scoping dimensionality problems associated with the eval-

uation of Equation 277; therefore we pick a numerically convenient value

for b in order to obtain an explicit expression for Equation 292.

Let

bT 8 1  bnT - .6 (293)
2o- . 'S 2

giving

T/2 T/2
1/2T16 RT/1 - (.027507527)(.080350925)z

2  1

1(zIRT16  -*972492473)(z 2 - 1-9537z+1)

=R6 ~z+~ 2 z T/2 (294)

In the T/2 time frame, the poles of Equation 294 map into

D = (z - .8)(z 2- 1.6z + 1) = z 3- 2.4z2 + 2.28z - .8 (295)

giving the form for [G /1 R T/63/ as

T/1 T 1T/2 C3z 3 +c 2z 
2 + cjz + C()

G (296)
1 Z3 - 2.4z2 + 2.28z - .8

Dividing the denominator into the numerator of Equation 294, gives the
Il" vector (save each eighth number), Therefore

ca 3  0 0 01

C2a 2 a 3 0 0 -2.4(27

C 2 a3 0 2.28

LC 0 j La 0  a 1  a 2  a 3 j L-_8
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Solving Equation 297 gives the solution; see Table 7 for a listing

of the "a" and "c" vectors. Explicitly,

[G T/16 RT/1 67/ (.071804007z + -05238627)z
(z - .8)(z 2 - 1.6z + 1)

-(R 10z + R 1,(298)

(z - .8)(Z 2 _ 1.6z + 1)

TABLE 7. THE "a" AND "c" VECTORS, STEP III

a3  0.000000000 c 3  0.000000000

a 2  0.071804007 c 2  0.071804007

a 1  0.224715895 c 1  0.052386278

a 0  0.375604980 c 0  0.000000000

Step IV:

The last step introduces another dimensionality problem. The

result, to this point, is

CT/3 T/2 T/16 T/16 T2 /

- M12GA (MIGI R I

M 1 - e-sT/2 .(-2R 3).z--S-Zz (Rl0z + 1) _]/

S 2+Rz+R 2 _ 1.6z + 1

whee he+ ~z+ R L-T 1( 1 (299)
where the local definition of z isz=e

Follow carefully the next set of manipulations, which pro-

duces a ninth/twelfth order transfer functioni (Let z2+ R4z + R5) x
-z 1.6z + 1) z4 + R14 z

3 + *.. + R17 -
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CT3 Ii -s A (R1 2 z + R 1 3 ) z
2  jT/3

az)) 4 + R 14 z 3 + R 1 5 z 2 + R1 6 z + R1 7]zmeST/2 (300)

[z
3  I z .- R12 z3 

+ R13 z3 ]T/

S 3 z - 1 z 1 2 + R 14 z 9 + R1 5 z 6 + R1 6z 3 + RI 7 ze s T / 6

(301)

Cancelling powers of z and dividing z - 1 into z - 1 gives

cT/3 = (z2 + z + 1)z4 (R1 2z
3 + R 13 ) IT/3

z12 + R 14 z
9 + R 15z

6 + R16z3 + R 1 7 z=eST/6

Considering that one starts with two first-order transfer functions

in the s-plane, the ninth/twelfth order transfer function in z is dis-

concerting. It is a good example of how the order of the system grows

in a multi-rate architecture.

The ratio between the time frames is two. Finding the denominator

polynomial in the T/3 time frame can be considerably simplified by not-

ing the denominator is a polynomial in z 3 . Therefore, letting x = z 3

gives the denominator polynomial, in T/6, as:

D - (x 2 - 1.6x + 1)(x 2 - 1.678134619x + .718024891), T/6

x 1,2  .8 + j.6 in T/6 x3,4  , +.839067310 + J.118283309

= 14.643501109 x3, 4  - .8473634944.140047156

2 2
xl, 2 : 14 1.28700218 x3, 4  - .7180248914 .280094313

2

.28 + J.96 2 .690043009 + J.198495315

x - 56x + I in T/3 - 1.380086018x + .515559744 in T/3
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Thus

D = (z6 - ,56z3 + 1)(z 6 - 1.380086018z3 + .515559744)

= z12 - 1,940086018z9 + 2.288407914z
6

- 1.668799475z3 + .515559744 (303)

in the T/3 time frame, and also defines the "c" vector.

Observe that

z6 - .56z3 + I = z3 - 2(cos bT)z + 1 (304)

represents the poles of the sine wave input in a T time frame since

z3 = (esT/3) 3  _ esT.

To this point,

T/3

cT/ 3  = .014321407(z
9 + z8 + z7 ) + .010448513(z

6 + z5 + z 4 )

z12 - 3.278134619z9 + 4.40304021z 6 - 2.82697445z3 + .718024891]

(305)

Dividing the numerator into the denominator, and saving every other

value (since the ratio of time frames is 2), gives the "a" vector (see

Table 8).

The answer will have the form

12 11 +*.+C

c1 2 z +c1 1 z +**•+c 0cT/3 -(306)
(z6  1.380086018z 3 + .515559744)(z 6 - .56z 3 + 1)

where

c12 a12 0 b12

e all 812 bl

a 11 (307)
- . a l

L O C 01 a 0  a 0  a 12 J Lbo
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The entries of the "a", "b" and "c" vectors are tabulated in

Table 8.

TABLE 8. a, b, and c VECTORS, PART III

a b c

a 12  0.000000000 b12 1.000000000 c12  0.000000000

a11  0.000000000 bl, 0.000000000 C11  0.000000000

a 1 0.014321407 b1 0  0.000000000 c10  0.014321407

a9  0.057396013 b9  -1.940086018 c9  0.057396013

a8  0.057396013 b8  0.000000000 c8  0.057396013

a7 0.125094126 b7  0.000000000 c 7  0.097309364

a6  0.197844678 b6  2.288407914 c6  0.086491475

a5 0.197844678 b5  0.000000000 C5  0.086491475

a4  0.24740949 b4  0.000000000 c4  0.039820806

a3 0.259992496 b3  -1.668799475 C3  0.007502293

a2  0.259992496 b2  0.000000000 c2  0.007502293

a1  0.222152094 b1  0.000000000 C1  0.000000000

a0  0.147440916 b0  0.515559744 co  0.000000000

Step IV:

The equation for CT/3 (Equation 306) has now been expressed in terms

of a sine wave input in a T time frame, since it can be written as
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cT/3 = c12z
12  + clzll + **" + co

sin bT(z6 - 1.380086018z3 + .515559744)z3 l z-eST/3

(308)

sin bTzx z2 - 2 cos bTz + 1 z=esT

Following Section III and Section VIII, the three components which match

the output samples are determined by

1
An + JBn - 3 sin bT

[c12 z 12 + Cll z ll + ... + co]
[z(z 3 - 1.380086018z + .515559744)] ZI4WnT (309)

The precautions noted in Section VIII must be observed. The coeffi-

cients of Equation 309 are tied to the input frequency b, but the evalu-

ation of z is carried out in terms of wn, where

wn - 2n n-0, ± 1 (310)
T

To obtain a feel for the effect of the three-rate sampling format on

the Bode plot, run a comparison with the continuous baseline case (Equa-

tion 286) by passing CT/ 3 through a ZOH. Thus, we may suppose the cT/3

samples are being reconstructed into a staircase signal in order to

drive, perhaps, a motion-base simulator actuator. In this event,

A I- e-sT/3 [cl2z12 + 0.. + c0]l-z-1 T / 3

Ts sjn x sin bT[z 6(z3  ... ) ] z14-wnT/3

2wn

-n b +-L-- , n -0, ±1, +2, (312)

13
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rhe resultant "primary" Bode plot is shown in Figure S4. Recall, from

Section V, that this Bode plot is only one of the two needed to com-

pletely define the coefficients.

A most interesting phenomenon is evident in Figure 54, namely the

digitized system has less phase lag than the continuous baseline system!

This is different than the results one would expect from a single-rate

simulation and therefore deserves careful analysis.

First of all, the phase lead noted at 10 rad/sec cannot be attri-

buted to a failure of the computer program to add in a correct multiple

of 2w, since we do not expect to see a phase difference of approximately

300 deg at this low frequency between the baseline and its discrete ver-

sion.

Next, a small experiment was performed wherein the transient

response was run for a sine wave input. The three sine wave components

given by the N = 3 discrete theory were found to match the steady-state

output samples exactly. Thus, the algorithms appear to be correctly

implemented in the computer code.

One might also speculate that Figure 54 represents only one of the

two Bode plots needed to completely specify the infinite set of sinle

waves needed to match the staircased signal that is reconstructed by the

ZOB. Htence, one could argue that the lead shown at, for example,

20 rad/sec might be completely negated by the phase contributions of

other components.

As we shall see, the same sort of phase lead phenomenon arises in

the larger-scale case study, to be discussed next. At this juncture, it

Is felt that the evidence is not strong enough to draw the blanket con-

clusion that a multi-rate sampling format is an effective way to intro-

duce phase lead into a simulation.

C. THE A-10, DISPLAYED PITCH TO PILOT STICK
FORCE CASE STUDY

This case study represents an important element extracted from an

overall simulation of the A-10 aircraft. It was initially coded for use
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in a training (moving-base) simulator. Engineers of the Simulator Sys-

tem Program Office (ASD/ENETS) proposed it as a case study because of

its interesting structure. Specifically, three elements of the dis-

played pitch angle to pilot stick force input simulation were imple-

mented on three different computers.

The initial rendering of the three-rate A-1O example resulted in the

representation shown in Figure 55. Shown also are the s-plane represen-

tations for the eleven transfer functions involved. The intent of this

figure is to convey the following:

I. Each transfer function is digitized using rec-
tangular integration.

2. The G algorithm feeds G2, the G 3 algorithm feeds
G9 an G7, etc.

The representation of Figure 55 is a "shorthand" which introduces no

difficulties if it is understood that each transfer function is digi-

tized individually. The Figure 55 representation would cause problems

if z-transform operations were to be carried out since [Gl(s)G 2 (s)]T #
G01(s) x G2 (s). To emphasize the individual digitization and the three

different rates, we may redraw Figure 55 as shown in Figure 56, where

data holds are used to model storage registers. In Figure 55, the TI

data rate was changed from 156 Hz to 160 Hz so that a basic interval of

0.1 second (as opposed to 1.0 second) could be assigned to T. That is

1 .1 1 .1 1 .1
160 o 16 ' 20_ - 2 ' 0 3

so that, when T - 0.1, the rates can be represented as

T
T1 - 16 ' T2 - 2 ' T3 3

At the time this decision was made, it was felt that these rates were

sufficiently separated to expose the basic character of the three-rate

problems and to "simplify" the integers involved.

Also indicated in Figure 56 is a suggested change to the initial

drawing. It is probably realistic to model the displayed pitch angle as
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a staircased function; therefore, a data hold, in a T/3 frame time,

should be inserted before the e 075 pure time delay.

Since several of the operations occur at the same rate, we may elect

to simplify the blocks by referring to Figure 56. From the figure,

write

DT/2  G [G I + GT/ 2 GT/ 2  T/2 (313)

- G T 2CT/2 (314)

T/2 T/2 T/2 T/2 T/2
BT/2  - G4  G3  C G G (315)

ET GT/2 T/2 T/2 /T/2 _ T/2 T/2T/2ET2 = G5  G4  G3  C - G5  GB C (316)

T/2 T/2 T/2 T/2 T12
AT!2  - G8  G7  B GD B(317)

Using the definitions of Equations 314 through 317 we may draw the

more compact diagram of Figure 57.

D. A-10 SWITCH DECOMPOSITION MODEL

The switch decomposition model for Figure 57 is shown in Figure 58.

We must now inquire as to whether or not the switch decomposition model

for Figure 57 would give the same answer as a switch decomposition model

of the more detailed Figure 56. That is, the switch decomposition model

of Figure 59b will give the same answer as Figure 59a. Will the switch

decomposition model of Figure 59c also give the correct answer? The

answer to this is in the affirmative.
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Figure 57. k-10 Case Study-Simplified Block Diagram

Figure 58. Switch Decomposition Block Diagram
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Figure 59. Equivalent Models

From Figure 59a

T/3
cT/3 - r. T/2 T/2

LM2 2 GI, ] (318)

and from Figure 59b,

CT/3 - W3(W3,M2W2)T(W2,G2W2)T

x (w2*GlW 2)T(W2*R)T (319)

From Figure 59c, one finds

CT/3 _ W3 (W3*M2w 2 )T(w2*GW 2 )T(w2,R)T (320)

Now, rearrange Equation 320 (nest the T operators)

T
CT/3 - {[W3(W3,M2W2)(W2,GW2)(W2,R)T] T }  (321)

Notice W 2(w2 ,R)T A RT/2, therefore

T
cT/3 , {[W 3 (W3 *M2W2 )(W2 *GRT/2]

T }
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Next, note W2(w 2"GRT/2)
T is by definition GTIRT/ which is, in turn,

G 2 G1 'RT. The last T operator,

CT/3 W3W=2 T/2 GT/2 RT/2) T (322) T21T/
2 1 (w3 2MGc2 GG R (322)Gj

Thus the switch decomposition model of Figure 59c is exactly equiva-

lent to the model of Figure 59b.

When this study was initiated, switch decomposition appeared to be

the logical solution to the problem. However, the developments of Sec-

tion III pushed the decomposition approach into the background. Fig-

ures 58 and 59 are therefore given only to illustrate an alternate

approach.

E. ALGEBRAIC MANIPULATIONS

Referring to Figure 57, write

AT/2 T M c/1 6 RT1 6  T/2 T/1 TMG~ l6 M /2 A T 1 6 T/2

IT/2 T/2A1(3)

Simplify Equation 323:

AT/2  [11 - /6T/6 T/2 + MGT1 /6T/2 GT2A

T/2 T/2AT/2(34
+ GB GDA(34

There fore,

T/2 -
AT! 2  xd/-[MGV 6 ml/ 1 6 ] T/2 T/ G T'2 j2

X [MIGAl 6 RT/16] (325)
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The final result is

,. ,T/2 T/2AT/2] / 3 60 G6LM 2 G5 GBA ] (326)

or

B ,-,,T/2, T /2[ I 
- ,,T/16 T/16 TT/2 T/2-G6[Ml2G'5 GB -MG M2 B G'D

T/2 T/3

x {MjGTI 6 RT/11 1 (327)

Comparing this with Equation 277, it can be appreciated that the

A-10 case study reduces to the same type of computations required for

the simpler example. The dimensionality will be, of course, consider-

ably higher. We will, therefore, not repeat the analysis of the pre-

vious section, but merely note that a computer program was written for

Equation 327 and the results computed on a Tymshare terminal. The s-

and z-plane transfer functions are listed in Table 14 in Appendix D. We

proceed immediately to a discussion of the results. To compare the

difference, the continuous baseline Bode plot is shown with the Bode

plot obtained by assuming that the displayed pitch angle sample sequence

is reconstructed with a ZOH (in order to drive the display generator).

F. COMPARISON WITH BASELINE

The Bode plot associated with the three-rate simulation, together

with that of the continuous baseline system, is shown in Figure 60.

Again, one must keep in mind that this is only one of the two plots

needed to completely define the spectral components (although it does

appear to be the primary one).

As was the case with the lower-order examples used previously, we

note the phase lead, at low frequencies, is less for the digitized ver-

sion than it is for the continuous model. Clearly, this phenomenon

requires further study and we caution against adopting the viewpoint

that a multi-rate sampling format is a technique which will always

introduce phase lead into a simulation.
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C. SUMMAY AND CONCLUSIONS

Two case studies, which utilized three different sampling rates,

were analyzed. Each introduced phase lead into the first fold of the

frequency response, a result which contradicts our intuitive expecta-

tions. It was shown that the multi-rate analysis tool, developed in

Section IV, was an effective tool for treating the dimensional problems

introduced by the variations in the three sampling frequencies.
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SECTION X

AN ORDER-OF-CALL CASE STUDY

A. INTRODUCTION

This section focuses on a single-rate case study which is concerned

with order-of-call effects. These anomalies are introduced when one

element of code calls another element containing results predicated on

"fresh" input data but which, in realitv, used "stale" data (because the

new data were not yet available). Specifically, we study a roll/sway

washout network simulation wherein a pure delay is introduced in an

integration algorithm. This case study was suggested by AFWAL/FIGD per-

sonnel who are associated with LAMARS. The problem was first described

in Reference 5. The following description of the problem is excerpted

from that reference.

B. DESCRIPTION OF WASHOUT OMPUTATION

In the LAMARS motion washout routine, transfer functions are imple-

mented by representing the output variable as a function of the input

variable and also representing it implicitly as integrals of the output

variable itself. The output equation is evaluated first, then the

derivatives of the states are computed based upon the output and lower

states, then finally all integrations are performed using the Adams-

Bashforth second-order predictor algorithm.

For a third-order washout filter of the form used in the w path, the

implementation is developed as follows:

Output y b~ 3 (328)
Input r s3 + a2s

2 + alsl + a
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[Divide through by 53]

r a 2  al a (329)1 + - - +
s s2 3

[Cross multiply]

(I + a2 +a + y - b 3r (330)

[Move integrations to input side]

y b3 r -- [a2 +-1 (al + a Jl ]y (331)

[Define output in terms of input and highest-order state]

y - b3 r - w 3

[Define states from deepest nesting outward]

-1 - ay :: = 1

2 aly+sa~y - aly + wl w2 - s w2 (332)

1 1 1

w3 -s aY +-a ly+ 2a~y = a2y + w2 > w3 - w3

Thus, the input is seen immediately in the output and thence in all

derivatives of the states, but the states themselves are not updated.

The expansion outward from the nesting results in state equations which

assume in their form that updated states are continuously available.

However, since all loops are then implicitly expanded in full prior to
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any integrations, a lag with respect to the system state response is

introduced, while immediacy of response with respect to the input is

preserved.

C. THIRD-ORDER WASHOUT CASE STUDY

The analog block diagram of the previous equations is given in Fig-

ure 61b and then translated into the digital version of Figure 61a. In

Figure 61a, there is an explicit model of the order of call. That is,

the integrations are performed last in the cycle. This has been inter-

preted to mean, on any given machine cycle, that w1 , w2, w 3 are the old

values (previous frame time values). Thus, the integration of Wl that

contributes to w2 is one frame time old, the integration of w2 which

contributes to ;73 is a frame time old, as is the integration of w3 which

produces w 3 .

In evaluating (1 /s)T, Reference 5 calls for the use of an Adams-

Bashforth second-order predictor algorithm. It was later agreed that

nothing essential would be lost by using "Implicit" Adams-Bashforth

second-order, which is described by Figure 62 and the equations

Xn - Xn-l + (T/2)[3Xn -n- (333)

which gives,

X (T/2)(3z - 1)
X z - I

If the integrations could be accomplished with very little throughput

delay, To - 0, one could write, after setting

G(z) (T/2)(3z - 1) (335)z -

yT . b3RT - [a2G + alG 2 + a0G3]yT (336)
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Figure 62. Discrete Integrator

or

y [I + a2G + ajG 2 + aOG3J'lb3RT (337)

With time delay, the equation for W 2 in terms of W2 becomes

= sT0 (sToi )T(_i)T*I 38

If To - T, this reduces to

W - T2(z- 1) W2  (339)

G is modified by the factor z-1. This procedure can be repeated on the

other two s"nestingsEI giving the same result. Each G of the no-delay

case is only modif ied by z1and Equation 347 can be used for both

cases.

The result obtained requires careful validation since it forces the

characteristic equation of Equation 337 to increase by an order of two.

To see this, insert the appropriate G(z) 's and clear through:

1[1 + (3/2)Ta2 + (9/4)T
2a, + (27/8)T3a0]z3

+ [-3 - (7/2)Ta2 -(15/4)T
2al - C27/8)T 3aQjz 2

+ [3 + (5/2)Ta2 + (7/4)T2a, + (9/8)T3aOjz

+ [-I - (T/2)a2 -(T/4)
2 al (T/8)3a0 ]1 yT =b 3 (z - I)3RT

(340)
No Delay

150



{z6 + [-3 + (3/2)Ta2 Jz 5

+ [3 - (7/2)Ta2 + (9/4)T 2 aljz 4

+ [-I + (5/2)Ta2 - (15/4)T2a, +. (27/8)T3a0]z
3

+ [-(7/2)a2 + (7/4)T2al - (2718)T3a0] z
2

+ [-(7/4)2al + (9/8)T3a0]z - (718)3a0} yT - b3 z
3 (z-1)3RT

(341)
Delay

For G - (6s3 M/s 3+ 6s2 + Ils + 6) and T - 0.04, Equation 340 yields

three real roots, all interior to the unit circle (we are using conven-

ient numbers; more realistic parameter values will be used for a sixth-

order case, which follows).

A~z) -(z - .898304953)(z - .962264027)(z - .928571684) (342)

With the frame time delay in the integration, Equation 351 gives

A(z) - (z - .887598)(z - .960815504)(z - .92332214)

(343)

x (z + .067598089)(z + .043321992)(z + .020815562)

The results for the sixth- and third-order models are summarized in

Equations 344a and 344b, the data for which are given in Table 9.

GI ~~ao~z3)(z -13(4)
z6+ b 5 a 5 + b 4 z 4 +i b 3 z

3 + b 2 z
2 +- b1 z + bo 34

or

G2  0 (345)
Z3+ d2 z 2 + d1 z + d
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TABLE 9. THIRD, SIXTH MODEL DATA

b0  -0.000048000 d -0-802663438

b I  -0.003968000 d1  2.592078213

b2  -0.090496000 d2  -2. 789140664

b3  -0.464704000 c 0  4.282973183

b 4  2. 199600000

b5  -2- 640000000

a0  6.000000000

The results of this analysis are most interesting. They indicate

the order of call has introduced an effective filter which essentially

doubles the order of the analytical model describing the software. In

the illustrative example we see that the "delay" case tracks very well

with the continuous baseline and no delay case (See Table 10). Indeed,

one could conclude that the delay case is superior to the no delay case.

The correctness of the result can also be checked by running the

impulse response using both the analytical model of the simulation and

the actual computer code. The results shown in Table 11 indicate an

extremely close agreement.

Thus we see that the manner in which an algorithm is implemented can

introduce filtering over and above that intended by the designer. We

shall explore this in more depth by next considering a sixth-order wash-

out using parameter values supplied by FIGD personnel.

D. SIXTH-ORDER WASHOUT EXAMPLE

Here we treat a sixth-order model where the transfer function repre-

sents lateral acceleration (Ym2) to roll rate (PA):

152

• , --,.... ,.. .,., --. -¥,.5 . ... .- . .



(U

0% 0 0 - j 0 CS 0 ' 0C= C 0 00- *0 C ~* cih0 C>J- r0
ay CD - 'o 0 en'D0 C) T0 C> %Q 0 cn ) D %C "00 '0 0

LL nC) 0 0 -4r0 OD 0 a0r-0 IT 0 -'T 0 (n CN0 CD n u'0C
oo'o, -T0O0 C 00~ ~- r 0 0oo%0 -%o 0 0 ur)0 r- r,~
tn Ur)0 t- 0 %0- 0 00 P,-o C) c'4"0 o- 0 r-r--

f00 'o 00 cnU cr C n 00 r- o enc~ o'0 u~ " %000 Ln0
0%1 C1 - 0 NO 00~ 4 0 mOm 0 0 OC C 000 C) n -0

.0 LA .0 C; .0 z .08
*r -T -' *n ' " 0 Lr-0T'0 0

CnJO 000 r -'T0; M0 MtO "00 C-4 -0

C14 0 C) -0 ) 40 r C) 0 CI 0 )-t 0 0 ul 0 V)'0 a D COC
M (100 '0C0 C) C0r-0 Oc O. 0o( (%C O) V - ~0 -t 0 0 uL)0 O

0 n n .0 - .n0 en .n C )C0 C) .0 C) 0 00 IT 0 %0 .4
('. O 1 D (nC 0 C -in * - * - lOOC C14t 0 ~ .%r) .n00 cr

ELI a 0 O c h - '0 Ot00 0 Iu- 7 r 0'0O C) O14 10 0 V)00
a C4 00 1 C) 0 000. m-o tcN C0 0 L O - ~00\ n 00 4-tO 0 C)

F-4 (4 W -D enI0 oU) 0~o 4 ' C'4) %Dl 0 tc-'00 CD 0 t-rCoC> -N.O
Z- r uCN4 C) t-r0 rON o r-- eqO O .- 4'CD C4'a, 5 '"-'J 0D-tOr C

F-r- C4l o 0 00 OC'-4 0 C14000 c4 as60 ' cn -0 CIN 0 - roC

L.:rn 11 > -040 aO C oaC 1r- M -C -4Go0 - V
tnr 04J 00C4 CD C>1-O C) C O.0 *tO' a%-. CNM ) r)M0 '0-t O

L) 100 r'400 -O O (''0 0O0 '00 C)lO 'Ar Tj TC 00 0

LI)0 o 000- 'T00 c -a-, M'0 u - O Cr-4 en00 ' T
00 0-0"(= -'o 0 0 C,-t lrlD, O"00 (4 .0 r

aC) C) 4 0 '0 Lf 0 00 *-trCD-0 r--0 Lf 0 m 0 a ('0 O0
47 0-40 OD4O- C1 00 'o 0 0 -CT 0 L(0 %D0 CN 0 0 '0nV0
on -- ")0 > 0 0.0 CD I- ~ C l c)C ('1.0) C O'4 L0 1-C)
0. :T0 0.0 C-4 CD L 0 -T 0 L mC>LO '11.0 -* C "0 IT 0

o'~ * a 0 - * DC, ) -004 CD m~ r- .C > 'D 04 01- * -0 mC

n -o aci 0 n0 ON co 0 L-o0 c 0 0 %0 ue'J (W 0 4f O0C

000 04r1 0 as ONO a,(N0 o r- 0 '-0 0 0 ,tU0
c (. -' .4 0 . 0 'T .0 M'0 0 -t .0 t( t0 M tOO

0 0 0. 0 .04 tONOC -tC'0 . . C) . .0 C .0C
1- C0 4 00 C> C> . r- - 0'l. 0 r- ('IN O. enU

-3 OC4 4 N M , 'T 153f

- --F-4.. - - --- 7 ,
C14 ll 00 -. 0 0 C14 o a ) m o ) a n 0.) .. , C

-: ) O C O .- t 'TC. - ?** 0~* 00 0 0 e C

-0 00 0 -0 C) %D (# ) 0 n-0 0C -C7 nO



TABLE 11. IMPULSE RESPONSES

k6th ORDER COMPUTER
kMODEL CODE

6. 000000000 6. 000000000
1 3.840000000 3.840000000
2 2.940000000 2.940000000
3 2.103360000 2.103360000
4 1.413485760 1.413485760
5 0.842594150 0.842594150
6 0.374368440 0.374368444
7 -0.005989020 -0.005989006
8 -0.311312900 -0.311312875
9 -0.552761020 -0.552760985
10 -0.740018250 -0. 740016208
11 -0.881479430 -0.881479389
12 -0.984410188 -0.984410140
13 -1.055088400 -1.055088363
14 -1.098928750 -1.098928718
15 -1. 120592090 -1.120592066
16 -1. 124081650 -1.124081640
17 -1.112827510 -1.112827520
18 -1.089760760 -1.089760787
19 -1.057378550 -1.057378593
20 -1.017801150 -1.017801208
21 -0.972821940 -0.972822016
22 -0.923951200 -0.923951295
23 -0.872454410 -0.872454524
24 -0.819385750 -0.8193858821
25 -0.765617360 -0.765617512
26 -0.711864890 -0.711865060
27 -0.658709770 -0.658709954
28 -0.606618610 -0.606618808
29 -0. 555960090 -0.555968303

t =k At, At 0.04 sec
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1.61s 4 (s + 1.56923) (346)

[s 2 + .07s + .0025](s + 1.57)(s 3 + 1.56923S2 + s + .266)

or

R23 R 22

1.61s + 2.5264603s4  (347)

R 30
s6 + R 29s

5 + R2 8s
4 + R2 7s

3 + R26s
2 + R2 5s + R24

where the Rijjs are listed in Figure 63. We may nest Equation 347 as

follows:

29+ 28 +- 27 +- 26  + -25 + 2 23  22
s3 S s 6 2+ _ P'A (348)

1s~ss s ] S 2

Y (R23 + R2 2 ) PA
Ym2 s2F

(349)
1[R9 + 1 II 124 *
sR 2 + R28 + L R2 7 

+  R26 
+  R25 + R24 sm2

The analog block diagram is shown in Figure 63.

We may dispense with the digital block diagram and write the appro-

priate equations directly from Figure 63.

1) y - -W 6  2) Wi - R24Y 3) Wi " T/2 (3z - ) Wi

2 - R 25Y 
+ W1

i - 1, *., 8
3 - R26Y + W2

W4 - R27Y + W3  or (350)

W5 - R2 8Y 
+ W4  Wik WikI

5 - R28Y + W4 + 3T/2Wik

6 - R29 Y + W5  - T/ 2Wikl

i7 - R2 2R i-i, 2, "'*, 8

W8 - R2 3R + W 7
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G(z), for the no-delay case is readily computed and has the form

y- R119 z + Rl18z5 + R117Z + + R115z + R114Z + R 1 13  (351)
R R126 z6 + R125 z

5 + R12 4 z
4 + R 123 z

3 + R122 z
2 + R121 z + R120

and for the delay case

Y Rll2Z2 + RlIlzll + Rll0z0 + "* + R00 (352)

R R22z12 + R 2 1z
1 ' + R20 zlO + . + R1O

The data are tabulated in Table 12 (again, T - 0.04 seconds).

Again, we found that the impulse responses of the twelfth-order

analytical model agree exactly with the impulse response obtained dir-

ectly from the computer code (not shown).

Some representative Bode plot data are given in Table 13.

Using the parameter values given us, we see that the filtering

introduced by the order of call bAR actually improved the fidelity of

the frequency response.

E. SIMARY AND CONCLUSIONS

The encoding of an algorithm, where a definite sequence of call is

given, can introduce filtering of which the designer of the algorithm is

unaware. For the washout case study, we see that the filtering action

was "benevolent" in that it actually improved the fidelity of the fre-

quency response. The effect of updating the integrator states as the

last event in a given frame time leads to an analytical model of the

computer code which is twice the order of algorithm being encoded.
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TABLE 13. FREQUENCY RESPONSE DATA, 6th ORDER WASHOUT

CONT DISCRETE, DISCRETE
NO DELAY DELAY

HAG 1.833472489 -2.614690348 1.948711343

- 4.026912923 36.32463432 14.36929036
freq. 1.000000000 1.000000000 1.000000000

-2.405029014 -3.026181390 -2.412522944

-42.92847068 -38.25338109 -42.44121200

2.000000000 2.000000000 2.000000000

-5.633216300 -6.144060048 -5.576132340
-58.65023633 -52.10560145 301.5580652
3.000000000 3.000000000 3.000000000

-8.031772688 -8.504798812 -7.938527142

-66.49678734 -57.69456014 293.7055865

4.000000000 4.000000000 4.000000000

-9.924000906 -10.34754451 -9.778310534
-71.20086176 -60.12882875 289.0036661

5.000000000 5.000000000 5.000000000

-11.48275868 -11.84540095 -11.27354613

-74.33561069 298.9727785 -74.15427992
6.000000000 6.000000000 6.000000000

-12.80673528 -13.09802451 -12.52335630

-76.57418687 298.9268998 -76.44184967
7.00000000 7.000000000 7.000000000

-13.95687896 -14.16724547 -13.58926581

-78.25287151 299.4021514 -78.20508987

8.000000000 8.000000000 8.000000000

-14.97328861 -15.09375872 -14.51203844

-79.55838679 300.2095026 -79.63326613
9.000000000 9.000000000 9.000000000

15.88369136 -15.90583247 -15.31989859
-80.60272779 301.2347408 -80.84148715

10.00000000 10.00000000 10.00000000
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APPENDIX A

EXAMPLES DEMONSTRATING THE SETUP OF THE GENERALIZED
SKIP-SAMPLING THEOREM

This appendix contains several exercises on the setup procedure for

the generalized skip-sampling theorem. The situation is reviewed in

Fig. A-I and Eqs. A-i and A-2.

CT/K [GRT/N]T/M [GT/NKRT/N]T/M (A-1)

In Eq. A-1, M and N are rational numbers and K is an integer. if

z =e sT/NK, then N'JXM must be an integer. Equation A-I can be evaluated

using Eq. A-2:

CT,1 G(p)R(pK) z ~NKK p =eTN

G(p)R(pK)(A2
~~residues of

Figure A-i. A Phantom Sample Formulation of a
TIN, TIM Sampling Format

A-1

.~w MOM--



RT/2r c C T/6 T/3 T/3 I ( G(p) R(p 3 ) Z dp

Ex. A -I T T _-2

2 2(3) 3

T T T
N NK M

R 
T/ 3  T/ 6  

CT/2 T/2 J G(p)R(p
2 )Z dp

Ex. A-2 T T~1 z

3(2) 2

T T T
N NK V

R c 780 c 2 G(P) R(P 5 Zdp

E x . A -3 _ _ . _z 3 9 P

156 156(5) 20

T T T
N NK M

__ I __GI
7805 15 G (p) R (p ) 

Z dpEx. A-4 _ R I , /_ 6 - )Rp p

I -lJ-----1 1 27j Z -p5
20 20(39) 156

T T T
N NK M

T

R 1 cT G(P) R(p)Z dp

Ex. A-5 <c7J T -Zi 39 -

7.8 7.8(5) I

I T T
N NK M

LIMITING FORMS

R c T T G(P) R(P Z dp

Ex. A- 1 J T T 2r Z-PN p
N N(I)

T T T
N NK M

R cc T/ /=-f G()R(M IZ
Ex. A-7 T GL__if Gr = pz- p

I(M) M
T T T $/

N N-" M e GT/ RT: G(z) R(zM) Z=eT/M

A-2
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AFFUDIX B

SKIP-%SAMPLING THEOREM

When dealing with functions such as

[GTN 1 T/M [ T/MTN TIM (B-1)

there is the option of which poles to circle. That is, in

[GRT/N] ITm G(p)R(pm) z(B221Tj fr z - Pn

the poles of G(p)R(p N)/p or the poles of z/(z - p 14) may be enclosed.

For the special case of [RT/N]T, the result of closing the contour

around z/(z - p N) is known as Sklansky's identity (Ref. 6). The result,

for arbitrary N, is

IRTNN - k R(akzN)
k-O

where
sT/N jw/

ZN - es , ak - ei~~/

(B-3)

k -0, 1, *~,N -I

Of particular interest is the case of N -2, since only real numbers

are involved:

T
1 k-O 1 k-O

ajk - - a~ k-k z - s/

[RT/21 -- [R(z) + R(-z)] (B-4)

B-i

A~j



Therefore, collect terms and let z2 + z, since Eq. B-4 is by defini-

tion an even function of z.

For N - 3, the algebra is less attractive:

1 k 0

ak  - ej2w/3 k I

eJ4 w/3  k = 2

[RT/3T _1 JR(z) + R(eJ2w/3z) + R(e z] (B-5)

Thus, one may collect terms and let z3 + Z. However, in general, it is

laborious to solve Eq. B-3 literally in terms of T, although as a compu-

ter computation (for given R and T) it is straightforward.

The derivation of Eq. B-3 will not be given, but the general tech-

nique involved will be demonstrated for the easily followed case of

N - 2. Consider

CT _ [RT/2]T I f z d (B-6)
2ffi 2- z - p2 

Let z + z2 and enclose the poles of That is, enclose the poles

which are exterior to the unit circle, keeping in mind that this forces

a "reverse" in direction of the contour of ', hence a change of sign.

However, the change of sign will be cancelled by the minus sign neces-

sary to place z - p2 in the proper form for residue evaluations (e.g.,

p2 - z = 0).

2

J( - T +' dp -reslpzl P_-Zl

2 2R(zj) zl +R(-zl)zl

zI 2zl -zl(-2z1)

S[R(z 1 ) + R(-zl)] (B-7)

B-2
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The usefulness of Sklansky's identity for frame time ratios which are

powers of 2 is clear. For example, if

CT . [RT/161T I (B-8)

This problem can be solved, using only real numbers, by applying Sklan-

sky's identity four times (24 - 16).

B-3
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APPMNIX C

A DIKMSIONALITY PROBLE

The use of the high-to-low rate transfer often introduces a dimen-

sionality problem. For example, if

T/3

CT/3 T M'/6 G T/21 T/ . z±~1 CZ (z3)j (C-1)
IM 2 1 1 2 IzwesT/6

and G(z) is, for example, a seventh-order transfer function, G(z 3) is

21st-order and therefore

N - z 2 + z + I G(z 3 )z2

is 23rd. This dimensionality is of little concern if one chooses to

implement the algorithm of Section IV; however, the occurrence of shift-

ing between time frames ratioed by powers of 2 is common enough to make

a technique for using Sklansky's identity, in a more efficient manner,

attractive.

Suppose we replace z 3 by x in G(z3 ) and find the high-to-low rate

transform, with a ratio of 2. That is,

[G(x)]T/2 - W(x)

c-i



Using Sklansky's identity, we may write:

-T/3 - z +z2 G(z3) + z+ 1 G(-z3) (C-2)

- z 2 F G(z 3  + G(z3) + LG(z3) 1 G(_z3 (C-3)

z 2 + I W(z6) + I G(z3 (C-4)
z2  z 2(C4

6
The reader may find it puzzling that a z argument is placed on W. To

see this, recognize that the use of Sklansky's identity,

(z)  W(z2) esT/2 W(Z)iz=esT (C-5)

2
generates a function of z .  That is, when one evaluates equations like

z2z sT/2
Eq. C-5, we are dealing with a function of z (z = e ) and it is con-

sT
venient to switch directly over to a function of z wherein z = e •

However, in Eq. C-5, recognize that the algorithm automatically makes

the substitution for us. That is, it does not yield W(x 2) in the T/2
time frame; rather it gives W(x) in a T time frame. Since (z 2+ 1)/z 2

is still in a T/6 time frame, one must insure that the arguments are

compatible. Clearly, W(x ) is the desired format. Since x = z3 , we

have W(z6

Next, suppose

G(z3) - G(-z 3  H(z) (C-6)

C-2

?
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F M~and 'apply the definitions to find out what H is, in terms of 0 and W.

Since

G-
2

G + =W

2

the sum gives

H +W G (C-7)

Using Eq. C-7, rewrite Eq. C-4 as

fZ2 + z + 1 G(z3 ) j/ Z2 ( z + W(z6 ) + ~ ( 3)(C)

where

The use of Eq. C-8 is clear -- we may now use any convenient compu-

ter multiply option and add option to generate the 23rd-order CT/3 with

a minimum of dimensionality.

Alternatively, for frequency response purposes, we can evaluate

CT/3, for z -l4bT/6, rather easily:

cT/3 bz1TI6 Z 2 - z + iiW(z)I.lbz$Z f z-14.bT/6 lzb

+ Z I=1ZT/ Iz'.I4bT/2 (C-9)

C -3



APPENDIX D

s- AND z-DON&IN A-I0 TRANSFER FUNCTIONS

The s- and z-plane A-10 transfer functions used in the A-10 case

scudy are tabulated in Table 14. The appropriate time frame used in the

discretization of each transfer function is listed in the left-most

column of the table.

D-1
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