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The research supported by this grant is directed toward the general
problems of detection and identification of underground explosions through

the study of radiated seismic waves. Particular emphasis is on the collection
and analysis of broadband seismic data at near and regional distances.
Specific elements of the research program are: 1) recording of broadband data
from events at the Nevada Test Site; 2) analysis of the coherence of ground
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_1 motion near explosions and earthquakes; 3) study of the relative Isotropic
and non-isotropic components of explosive sources through the application of
moment tensor inversion techniques; 4) analysis of regional surface wave data
in order to obtain models for the velocity and attenuation in the crust; 5)
archival of near and regional data sets which are of value to the general
discrimination problem.-,,

Research on elements 1 3, and 4 above is described in the technical
report for the first yea of this grant. Some of these results have already
been submitted for cation and should appear soon.

Researb e ement 2, the analysis of coherence of ground motion, is
descrjbeiin sections II, III, IV, and V of this report. This work is
pr arily the work of Keith McLaughlin and forms part of his PhD dissertation.

Section II describes the analysis of array data recorded 1.9 km from the
explosion Liptauer in Yucca Valley of the Nevada Test Site. Coherency declines
gradually with both inter-station spacing and frequency. Boadband correlation
across the 400 m array is greater than 78% for the hori. al components and
greater than 64% for the vertical components.

-->Section III presents a new way of looking at frequency-wavenumber spectral
estimation with array data. The differences between the conventional
beamforming method of estim 'ion and high-resolution method of estimation
is quite clear when ex ed in terms of the eigenvalues of the cross
spectrum. Theeonfitional method uses primarily the maximum eigenvalues
whe the high-resolution method uses primarily the minimum elgenvalues.

;>Section IV examines the problem that exists when the velocity structure
is complicated to the extent that it can be considered to have a random
component. This gives rise to a random component on the seismogram which is
usually ref rred to as signal-generated noise or coda. This random component
can be sep ated from the deterministic part of the seismogram and treated
as the c volution of the source with a stochastic Green's function. Estimates
of th stochastic Green's function and its variance are useful in inferring
bias and uncertainty in estimated source functions.

'->Section V treats the problem of scattering of elastic waves by small
inhomogeneities. The solution is expressed in terms of a moment tensor
expansion of the properties of the scatterer. is approach is convenient
for examining the trade-offs between shape, iterogeneity, and anisotropy of
scatterers. It reveals that a general scatt rre can not be modeled by a
homogeneous scatterer. "

Progress on element 5 of the research program is described in section VI.
In order to provide better access to archived seismic data and facilitate
computations with these data, a Computational Center for Seismology (CCS)
has been established. The organization and initial efforts of this center
are outlined.
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SUMMALRY *

The research supported by this grant is directed toward tnct

general problems of detection and identification of underground

explosions through the study of radiated seismic waves. Particular

emphasis is on the collection and analysis of broadband seismic data

aL near and regional distances. Specific elements of the research

program are: 1) recording of broadband data from events at the Nevada

Test Site; 2) analysis of the coherence of ground motion near explosions

and earthquakes; 3) study of the relative isotropic and non-isotropic

components of explosive sources through the application of moment tensor

inversion techniques; 4) analysis of regional surface wave data in order

to obtain models for the velocity and attenuation in the crust; 5)

archival. of near and regional data sets which are of value to the general

discrimination problem.

Research on elements 1, 3, and 4 above is described in the technical

report for the first year of this grant. Some of these results have already

been submitted for publication and should appear soon.

Research on element 2, the analysis of coherence of ground motion,

is described in sections II, III, IV, and V of this report. This work

is primarily the work of Keith McLaughlin and forms part of his PhD

dissertation.



Section II describes the analysis of array data recorded 1.9 km

from the explosion Liptauer in Yucca Valley of the Nevada Test Site.

Coherency declines gradually with both inter-station spacing and frequency.

Broadband correlation across the 400 m array is greater than 78% for the

horizontal components and greater that 64% for the vertical components.

Section III presents a new way of looking at frequency-wavenumber

spectral estimation with array data. The differences between the

conventional beamforming method of estimation and the high-resolution

method of estimation is quite clear when expressed in terms of the

eigenvalues of the cross spectrum. The conventional method uses primarily

the maximum eigenvalues while the high-resolution method uses primarily

the minimum eigenvalues.

Section IV examines the problem that exists when the velocity

structure is complicated to the extent that it can be considered to have

a random component. This gives rise to a random component on the

seismogram which is usually referred to as signal-generated noise or

coda. This random component can be separated from the deterministic

part of the seismogram and treated as the convolution of the source with

a stochastic Green's function. Estimates of this stochastic Green's

function and its variance are useful in inferring bias and uncertainty

in estimated source functions.

Section V treats the problem of scattering of elastic waves by

small inhomogeneities. The solution is expressed in terms of a moment

tensor expansion of the properties of the scatterer. This approach is

convenient for examining the trade-offs between shape, heterogeneity,

and anisotropy of scatterers. It reveals that a general scatterer



can not be modeled by a homogeneous scatterer.

Progress on element 5 of the research program is described in section

VI. In order to provide better access to archived seismic data and

facilitate computations with these data, a Computational Center for

Seismology (CCS) has been established. The organization and initial

efforts of this center are outlined.
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II

ANALYSIS OF ARRAY DATA FOR EXPLOSION

LIPTAUER IN YUCCA VALLEY

ABSTRACT

The explosion Liptauer (ML 4.7, BRK) in Yucca Valley, was investigated with a small

array of accelerometers at an epicentral distance of S source depths (1.89 kin). The Yucca Val-

ley site has pronounced high velocity basement relief. A possible significant basement offset

lay between the array and source. Wavenumber spectra, broadband cross-correlation, bandpass

cross-correlation, and particle motion plots were used to explore the nature of the wave propa-

ption.

The apparent velocity of the initial P-wave at the array was very high (exceeding 20

km/sec) for a distance of 1.9 km. Later arrivals on the vertical component show a lower velo-

city of 1.2 km/sec. The S waves at this site and distance exhibit complicated behavior Three

separate apparent S wave arrivals with horizontal particle motions of distinct SV, distinct SH,

and mixed SH-SV rectilinear are observed. The slowest arrivals however, show no evidence of

lateral refraction. Resolution of the arrival azimuth for the faster waves is insufficient to rue

out lateral refractions as an explanation of the transverse motions. A deviatoric vurce as well

au conversions near the source or at dipping interfaces are likely causes of the strong transverse

horizontal signals.

The three components of motion can be ranked as radial, transverse, and vertical increas-

ingly incoherent. The dwcay of inter-station coherency with increasing station separation is
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most pronounced upon the vertical component. Broadband correlation of the radial and

transverse components was at a minimum of 71% across the 400 meter array. The vertical

component of motion could be found to reach a minimum correlation of 64%. Bandpass

Ailtered cross-correlations of the vertical acceleration components show a steady decline in the

interstation coherency with increasing frequency. No pronounced frequency cutoff is evident

with the frequency-dependence of the interstation cross-correlation. The vertical acceleration

signal-to-noise ratios for the 2.5 second seismogram are less than than 2-to-i at frequencies

above 10 Hz.

Use of the time variance of the squared modulus (VSM) was explored as a measure of

the spread of the seismic cross-correlation functions. This measure of the cross-correlation

functions was found to be nearly independent of the bandwidth up to 20 Hz and only weakly

dependent on the cross-correlation maxima.

THE LOCALITY

Liptauer was an ML 4.7 (BRK), (ISC m& 4.8) explosion in Yucca Valley

(37.1470,116.0820, April 3,1980,14:00:00.1 UF, surface elevation 1335 m, depth 417 m).

The array of 9 stations was located roughly 5 source depths from the event (1.89 km from sta-

tion 1, see Figure 1). The local geology is depicted in Figure 2 based on reports by Barnes

ey aL (1963), and Colton and McKay (1966). The local stratigraphy consists of a layer of allu-

vium over Tertiary tuffs Ailing a fault-controlled valley of Paleozoic sedimentary basement

rocks. The depth to Paleozoic basement is variable and probably only 150 meters beneath the

array. The tuffs may not be represented directly beneath the array. The Carpetbag Fault scarp

is projected midway between the array and the source. The probable location of the carpetbag

fault can be located by a gravity gradient in the area where the local Paleozoic basement

deepens sharply to the east. P-wave velocities of typical tut in the area are strongly dependent

upon water content and porosity but expected to be between 2 and 3 lueec near shot depth

(Keller, 1960). The Palsomnic limestones ae expected to have P-wave velocities exceeding 4.5

kmluc.
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THE EXPERIMENT

The array of nine three-component force-balance-servo-accelerometers was arranged in a

two-dimensional pattern of nested triangles (Figure 3). One station failed to record and is not

shown in Figure 3. Horizontal components were aligned radial and transverse to the shot

azimuth as in Figure 3. Each station recorded accelerations at 200 samples/s,c/channel. Five

pole anti-alias filters were operated with corner frequencies at either 25 or 5( j -'A ;ndivi-

dual event recorders were triggered by a common signal and common relativi ' : ,, avail-

able. In Figure 3, the relative arrival times (with respect to station 1) of the P wave are

denoted in parentheses for each station. Average P-wave travel time to the arcy vs 0.73

seconds. The slowness of the initial P wave break was less than 0.05 sec/km. Since such a

small slowness exceeds the theoretical resolution of the array for frequencies less than 20 Hz,

the traces were aligned on the P wave break to remove relative local station delays for subse-

quent analysis.

The peak ground accelerations (PGA) for each station are tabulated in Table I and the

vertical PGA's are denoted by each station in brackets in Figure 3. The scatter of the PGA's

reflect the variation that may occur in acceleration records over very short distances. In gen-

eral, the transverse PGA's are indistinguishable from the radial PGA values. The transverse

peaks all come from the same coherent transverse pulse. The radial PGA's occur at different

peaks in the records.

Figure 4a,b,c shows the acceleration records for the array. Vertical records are relatively

simple compared to the horizontal records. The transverse and radial components show moliln

coincident with the vertical first motion and each station is consistenily positive radial and nega-

tive transverse. The transverse first motion appears to have about 1/2 of the predorr r a.it

period of the radial first motion and about the same amplitude.

The largest vertical amplitude arises from an arrivai 0.4 second following the P wvc win

a period of 1/2 second. This arr va t well, developew on the radial (radial awayI coen,,et nt

and less prominent on the transverse (negative transverse). Z versus R and R ve,,.,, T
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acceleration particle motions are plotted in Figures 5A,B,C, and D. Eamination of the Z,R

particle motion reveals that the P-wave acceleration is retrograde while the horizontal (R,T) P-

wave particle motion has a slight counterclockwise sense.

A significant signal arrives upon the radial component 1.0 second after the P wave fol-

lowed by irpe-Lansvreu pulse arriving 1.25 second after the P wave. These motions are

clearly seen in Figure S. Beginning 1.5 seconds after the P wave, the radial and transverse

accelerations are well correlated, with correlation of the +R and -T directions. The third

arrival possesses rectilinear polarization oriented nearly 450 to the R and T components.

These three separate intervals of horizontal particle accelerations are evident in the 0.5 seco

intervals labeled 1.5 and 2.0 seconds in Figure 5.

If these three separate arrivals are interpreted as S waves then it is necessary to expl

the 0.25 second delay between the apparent SV and SH waves as well as the delay between t,._

SH and rectilinear SH and SV motion of 0.25 second. If SH-SV velocity anisotropy is responsi-

ble for either delay, then the velocities must differ by 15% over 2 km. P-to-SV conversion near

the source could be responsible for the SV.SH delay as well as a source function with delay

between deviatoric and explosive parts, The horizontal P-wave motions are at most 15 degrees

off-azimuth as inferred from the first 0.5 second of R and T motion in Figures SC, and D. If P

and S ray paths are similar, it seems unlikely that the transverse component is an off-azimuth

S-wave arrival with nearly perfect transverse motion. Furthermore, the source and receiver lie

across the strike of the predominant structure and lateral refractions should be nil if the

geometry is truly 2-dimensional.

Representative acceleration spectral amplitudes for a 5.12 second window of all three com-

ponents are shown in Figures Go through 6i. Vertical and radial acceleration spectra are peaked

between 1.5 and 2.0 Hz, with roughly &3 slopes below 1.5 Hz. The transverse acceleration

spectra have roughly a a.3 dope below 1.5 Hz. Consequently, the transverse displacement spec-

tra have a 1 slope and do not hive a wel dewrmined low frequency asymptote. This is in con-

trast to the vertical and radial displavemst spectra which are nearly flat below 1.5 Hz. A com-
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posite plot of transverse acceleration spectral amplitudes is shown in Figure 7. Slopes of 2 0

and 3.0 are shown on the plot for comparison.

The ratios of the acceleration amplitude spectral peaks for this window are R/T-1.3+/-

0.2 and T/Z-2.2+/-O.1. The transverse signal is nearly as large as the radial signal while the

total vertical acceleration signal is roughly 1/2 of the horizontal signals. Spectral amplitude

variations between stations are not pronounced below 10 Hz and the spectra of one station

easily overlay the spectra of another. For illustration, the vertical spectral a-a. i -io's of

three stations are shown in Figure ga,b,c. The amplitude ratios are nearly flat from I to 10 Hz

and become gradually more erratic with increasing frequency.

F-K ANALYSIS

High resolution (HR) frequency wavenumber (f-k) power spectral estimates (Capon

et al, 1969) were made for a 2.56 second window on all three components of motion at

selected frequencies. The 2.56 second window encloses nearly all the significant signal beginnig

with the P arrival. The impulse response of the array is seen in Figure 9. While the main lobe

of the array measures about I cycle/km wide, the aliasing wavenumber is ibout 6 cycles/km

The sidelobe pattern for this sparse array is particularly troublesome. The missing element of

the array degrades resolution in the source direction and produces fou. protrusions on the main

lobe. HR f-k estimates have the advantage over conventional f-k estimates of suppressing

some of these features of the impulse response.

HR f-k power spectra for 2.56 seconds of the vertical, radial, and transverse acceleration

are shown in Figures 10, 11, and 12 at 3.2, 4.0 and 56 Hz respectively. All plots are the same

wavenumber scale and vary in slowness resolution directly proportional to the frequency. The I

sec/km slowness circle is labeled at each frequency. Because the records have all teen shifted

to align the P-wave arrival, the center of each plot corresponds to the slowness of the P wave.

The P wave had a slowness less than 0.05 sec/km, therefore the mislocation of the origin of

each plot is at most 0.05 sec/km. The convention used is for signal energy contours to plot at

the azimuth from which the waves came. The azimuth of the shot is
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indicated by the arrow on each plot.

The vertical component f-k spectral estimate for 3.2 Hz show an elongation toward the

source azimuth, out to 1.5 uclkm. Such large slownesses would be aliased at 5.6 Hz and

indeed begin to show a wrap around effect at 5.6 Hz. The vertical acceleration records evi-

dently contain a very slow contingent of on-azimuth arrivals as well as faster waves plotting

near the origin. The loss of contrast of the vertical spectral peak above the background from

14db at 3.2 Hz to 8 db at 5.6 Hz continues at higher frequencies. The radial f-k spectra is com-

pact at 3.2 Hz and mimics the impulse response with a contrast of 28 db above the background.

At 4.0 and 5.6 Hz, the radial spectra are elongated along the source azimuth but are dominated

by the high apparent velocity energy that plots near the origin. The radial component may con-

tain waves as slow as 0.5 sec/km with spectral power 12 db down from the much faster compli-

ment of signal. The transverse spectra are elongated in the direction of the source at 3.2 Hz

but compact and near the origin at 4.0 to 5.6 Hz and at other intermediate frequencies not

shown. The spreads of the f-k spectra perpendicular to the source azimuth are clearly limited

by the width of the central lobe of the impulse response shown in Figure 9. If we interpret the

f-k power spectra as the Fourier transorm of the spatial covariance function then this means

that the spatial correlation function is much broader than the array dimension at these frequen-

cies The vertical component f-k spectral maximum falls from 14 db above the backcground at

3.2 Hz to only 9 db above the background at 5.6 Hz. This trend continues with increasing fre-

quency implying that the vertical acceleration field has declining coherency with increasing fre-

quency.

INTER-STATION BROADBAND CORRELATIONS

It is necessary to explore the coherency of the seismic traces without Applying phase shifts

corresponding to specific slownesses and azimuths required to align the records, because the

record windows used enclose more than a single arrival with well determined slowness. To

accomplish this broadband mceleration crosscorrelations were computed for the same 2.5

second window used in the f-k analysis. Examples of the cross correlation functions can be
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seen in Figures 13a,b,c. The maxima of the cross-correlations are plotted in Figures 14a,b,c

and l5a,b,c. The variance of the squared modulus (VSM) is also listed in table 2 as a measure

of the width of each correlation function. A discussion of the VSM is given in Appendix C.

Best lapse rates (distance at which the correlation falls to I/e) for the transverse and radial

directions were fit to the data and the correlation contours are plotted for comparison with the

data in Figures 15a,b,c. The lapse rates across the wave front were 2600 m, 6300 m, and 5200

m for the vertical, radial, and transverse components respectively. In the radial direction, the

lapse rates were 672 m, 4000 m, and 1600 m for the vertical, radial and transverse components.

In contrast to the Colwick experiment, the Liptauer array data are very coherent over the 400

meter array. The minimum correlations for the three components are 0.64, 0.34, and 0.78 for

the vertical, radial, and transverse components, respectively. The decay of correlation with sta-

tion separation is much less pronounced than was observed for the Colwick array where a simi-

lar time window might exhibit correlations of 0.5 for stations separated only 400 meters. The

two-dimensional character of the correlation is strongly developed, showing much different

decay rates for the two onhogonal directions.

The inter-station correlations for different components can be seen in the scattergrams of

RR maxima versus RT maxima and RT maxima versus the Rz maxima (Figure 16). For any

given inter-station pair , radial components are better correlated than the transverse com-

ponents, and transverse components are better correlated than the vertical components. R is

more coherent than T, and T is more coherent than Z, while the total R signal strength is

greater than T, and similarly the total T signal strength is larger than Z. Ratios of the total sig-

nl smngths, as measured by the spectral paks at 1.5 Hz, are RJT -1.3 and TIZ -2.2. This

consistency between components suggests that lack of coherency is due to a common noise sig-

ml on all three components. The noise signal would become les correlated with increaing

separation between station pair and give predictable ratio@ of relative ignalto-noise between

the three components. We can define algnol-to-oe power ratios from the correlation func-

tions,
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R 1 +(N/S)2 l+(NT/Sr) 2 RzI- +(Nz//z)2

where Sj/Nj, ST/NT, and Sz/fNz are the radial, transverse, and vertical average signal-to-noise

ratios. The 'noise" is by definition the signal component not common to the two signals being

correlated. In Figure 17 the inferred values of these signal-to-noise ratios are plotted for radial

versus transverse and transverse versus vertical for each station pair. If we assume the the

errors in the inferred signal-to-noise ratios are distributed evenly for radial, transverse, and

vertical signals, then ratios of (NR$1St) 2/(N/ST)', and (Nr/Sr)2/(Nz/Sz)1 are (0.81)2 and

(0.64)2 respectively. This is consistent with the spectral ratios of R/T and T/Z of 1.3 and 2.2

near 1.5 Hz. The R and T components have nearly equal noise component, and the vertical

component has roughly 1/2 as much noise power as the horizontal components.

FREQUENCY DEPENDENCE OF SPATIAL CORRELATION

Bandpass filtering of the vertical acceleration cross-correlation functions was performed

for frequency bands of 1.25-2.5, 2.5-5.0, 5.0-10.0, and 10.0-20.0 Hz. The maxima of these

cross-correlation functions are listed in Table 3. Examples of the bandpass filtered auto- and

cross-correlation functions are shown in Figure 19A,B for stations S and 9 and I and 7. The

cross-correlation functions of stations 8 and 9 are more symmetric than the correlation func-

tions of stations I and 7. Specificly, the 5.0-10.0 Hz cross-correlation function for stations 1

and 7 (Figure 19B) is biased toward positive time delays. Stations I and 7 have the largest

range separation of any station pair for the array. This asymmetry presumably corresponds to

the propagation of the vertical waveforms. This asymmetry is not as prominent at the lower

frequencies. Attempts to quantify such an observation with statistics such as the centroid of

the modulus or square modulus of the correlation function, or the location of the maximum

peak were not fruitful. One reason for this is the uncertainty of the correlation peak, or peaks,

expremed by the variance of the squared modulus is discussed in the Appendix.

The maxima of these bandpass filtered corfelaion functions ae plotted in Figure 19.

Maximum correlations are all above 0.75 for bandwidths below 2.5 lz and above 0.5 for
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bandwidths below 5.0 Hz. The data favor a gradual decline of correlation with frequency rather

than an abrupt decline as seen at the Colwick array. All correlations have fallen to 0.67 or less

above 10 Hz. This would correspond to a signal-to-noise ratio below 2-to-I at this bandwidth of

10 to 20 Hz.

DISCUSSION

The lack of simple 'layer-cake" structure in Yucca Valley surely has profound implications

for use of acceleration records such as those at the Liptauer array. Of rerticular interest is the

origin of the horizontal accelerations observed at 1.89 km from an mb 4.7 explosion. It is not

clear from the data available, that the coherent transverse signals require a deviatoric source.

The transverse component is very coherent across the array, less than 1/4 of the 2.5 second

seismogram can be interpreted as noise. The predominant transverse signal begins with

apparent SH motion followed by particle motion in phase with the radial component. The

transverse slowness spectra below 6 Hz is consistent with on-azimuth arrivals at high apparent

velocities. Only the initial transverse motion can be explained as P-SV motion at 10 to 20

degrees off-azimuth with the source.

The simplest explanation for the transverse pulse is SH wave generation near the source

arriving at the array with a high apparent velocity. The low frequency amplitude spectra of the

transverse signal differ from the radial and vertical spectra (Figures 6 and 7). The transverse

component has a disproportionate lack of low frequencies below 1.5 Hz compared to the radial

and vertical components. With uncertainties in the local propagation it is not possible to

address the possibility that the SH wave generation has a different frequency dependence than

the P-SV wave generation. If the SH-SV delay of 0.25 seconds were taken for face value, it

might be argued that the source of the SH waves is delayed with respect to the P-SV source.

However, it seems likely that the initial radial signal is a P.to-SV conversion near the source.

The remaining rectilinear S-wave motion polarized 450 to the R and T directions and delayed

0.25 sec to the SH arrval complicates the picture. The avalible data can not establish whether

this arrival represents S-wave motion with a separate ray path, anisotropic motion, or
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conversion in th@ igh velocity basement. F-k analysis shows that slow arrivals are on azimuth,

but does not have sufficient resolution to rule out steeply incident off-azimuth S waves. The

high apparent velocities of the radial and transverse components (Figures 10, 11, and 12) as well

as the small vertical amplitudes (Figure 4) indicate that steeply incident S waves from the base-

ment are important. The structural inhomogeneity of the Paleozoic/Tertiary contact beneath

Yucca Valley (Figure 2) makes any of these interpretations uncertain. The deployment of an

accelerometer array in Yucca Valley has shown that the near-source seismogram can possess a

wealth of complexity.

Broadband signals at the Liptauer array were very coherent and consistent with the model

for a common noise signal of equal size on the radial and transverse components while 1/2 as

large on the vertical component. This noise signal must have a correlation length exceeding the

array dimension of 400 meters up to 6 Hz, otherwise the spatial cross-correlations would reach

an asymptotic level within the array. Spatial correlation declines steadily with increasing fre-

quency. The spatial and frequency dependence of the vertical cross-correlations have been

combined in Figure 20A. Some suggested contours are plotted. For contrast, a similar plot of

the Colwick data is shown in Figure 20B. The primary difference between the two cases can be

seen at the lower frequencies. The decline of coherency at the Colwick array had a sudden

onset near 5 Hz, while the Liptauer data favors a more gradual decline in coherency with

increasing frequency.

I l "'"" " ..... II III l .. ... ...... . . . .. .j
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TABLE i: LIPTAUER POA*s (S)

STA Z i T
1 0.092 0.067 0.093
2 0.060 0.067 0.100
3 0.080 0.093 0.07
4 0.065 0.073 0.067
6 .0.062 -0.080 0.073
7 0.049 .0.100 0.073
8 0.065 0.0 0.067
9 0.060 0.080 0.080
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TABLE 2: BROADBAND COSS-CORUELATION MAXMA AND VSM

per Z R T Z (VSM) R (VSM) T (VSM) nparation
1,2 .81 .97 .93 .23 '.34 .20 100
1,3 .91 .97 .97 .36 .26 .21 100
1,5 .31 .93 .91 .32 .26 .19 200
1,6 .69 .95 .87 .46 .26 .22 200
1,7 .70 .88 .78 .34 .24 .20 346
1,A .83 .96 .3 .27 .26 .20 200
1,9 .84 .95 .87 .27 .26 .17 173
2,3 .90 .92 .96 .26 .27 .20 100
2,5 .92 .95 .92 .13 .27 .18 173
2,6 .75 .98 .92 .37 .28 .20 100
2,7 .74 .90 .34 .26 .26 .18 265
2,8 .86 .97 .96 .16 .27 .19 173
2,9 .88 .98 .93 .16 .27 .15 100
3,5 .81 .92 .89 .34 .28 .19 265
3,6 .64 .95 .86 .55 .29 .22 173
3,7 .65 .44 .10 .41 .29 .20 265
3,8 .90 .98 .97 .28 .27 .20 100
3,9 .A5 .97 .88 .30 .28 .28 100
5,6 .78 .96 .91 .38 .29 .29 200
5,7 .73 .90 .82 .30 .28 .16 400
5,8 .74 .92 .91 .21 .28 .18 346
5,9 .82 .94 .89 .20 .29 13 265
6,7 .95 .92 .93 .27 .2 .18 200
6,8 .67 .95 .93 .32 .29 .19 200
6,9 .85 .98 .97 .29 .30 .16 100
7,8 .65 84 .8 .24 .28 .17 200
7,9 .81 .88 .93 .22 .29 .14 173
8,9 .91 .98 .94 .17 .28 .15 100
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TABLE 3: ANDPASS CIOSS.COBRELATION MAXIMA AND VSM (JWe2)

ation 1.25- 2.5- 5.0. 10.0- brod- d
pair 2.5 5.0 10.0 20.0 band (m)

1,3 .93 .90 .76 .33 .91 100
.39 .34 .56 .36

1,5 .85 . 578 .9 .43 .82 200
.34 .32 .56 -- .32

1,6 .97 .55 .55 .42 .69 200
.45 .55 .32 .43 .46

1,7 .85 .54 .52 .52 .43 346
.35 .40 .29 .34 .34

37 .76 .53 .53 .34 .65 264
.42 .43 -- .44 .41

5,6 1.00 .68 .74 .66 .78 200
.37 .55 -- .46 .38

8,9 .96 .80 .79 .67 .91 100
.16 .27 .38 .51 .17

IL., .. ... .. 

d
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FIGURE CAPTIONS

Figure 1. Location of Liptauer and the accelerometer array. The Carpetbeg Fault trace is indi-

cated.

Figure 2. Diagrammatic cross-section of the local geology through the array and shot point of

Figure 1.

Figure 3. Array geometry, definition of radial (R) and transverse (T) motions, and direction of

the shot are indicated. Relative P times and vertical peak accelerations in S's are

annotated in parentheses and brackets respectively.

Figure 4AB,C. Vertical (A), radial (B), and transverse (C) acceleration traces recorded at the

array.

Figure 5A,B,C,D. Acceleration particle motions for (A,B) Z versus R, and (C,D) R versus T

for the 8 stations of the array. The Z versus R plots have an exageration of 50% in

the R direction relative to the Z direction. The s' marks the beginning of the

record. Each 0.5 seconds of record is portrayed separately. Records do not start at

the origin due to small D.C. offsets in each recording.

Figure 6A-1. Log-log acceleration spectral amplitude plots for the 2.56 seconds of data on each

component of motion.

Figure 7. A composite plot for the 8 transverse acceleration spectra. A 2.0 and 3.0 slope are

shown for comparison.

Figure 8. Spectral ratios of vertical acceleration spectra for stations 3,5, and 6.

Figure 9. Wavenumber impulse response ror the 8 station array. The mai, lobe is about 1

cycle/kin wide and the aliasing wavenumber in most directions is about 6 cycle/km.

Figure 10. High resolution (HR) frequency',wavenumber (f-k) power spectral estimate for the

Z,R,T components at 3.2 Hz. Contours are 1,2, or '3 db with respect to the max-

imum. The I sec/km slowness circle is indicated and the shot azimuth is indicated

by the arrow. The convention used is for the arriving energy to plot at the azimuth

from whence it cane. The Z, R, and T 'maxima are 14, 21, and 12 db above the
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background respectively.

Figure II. HR f-k power spectra for the ZR,T components at 4.0 Hz. The Z, R, and T max-

ima are 14, 16, and 18 db above the background respectively.

Figure 12. HR f-k power spectra for the Z,R,T components at 5.6 Hz. The Z, R, and T max-

ima are 9, 16, and 18 db above the maxims respectively.

Figure 13A,B,C. Broadband acceleration cross-correlation functions for stations 3,5, and 8 for

(A) the Z component, (B) the R component, and (C) the (T) components. The

maxima of the normalized correlation functions are indicated.

Figure 14AB,C. Cross-correlation maxima plotted versus inter-station separation. Best fit

radial and transverse exponential decay curves are plotted for comparison.

Figure 1SA,B,C. Cross-correlation maxima plotted versus transverse and radial inter-station

separation. Best fit exponential surfaces are contoured for comparison.

Figure 16A,B. A.) Radial versus transverse correlation maxima and B.) Transverse versus

Vertical correlation maxima. Each point represents a station pair.

Figure 17A,B. Inferred signal-to-noise ratios for the A.) radial versus transverse and B.)

transverse versus vertical components. Each point represents a station pair from

Figure 16. The best fit slope is indicated. The "noise" is defined as the uncommon

signal between the two stations.

Figure 18. Maxima of the bandpess filtered cross-correlation functions for vertical acceleration

2.16 second window from Table 3. Station separations are indicated next to the plot-

ted points in meters.

Figure 19A,B. Bandpa auto- and crou-correlation functions for stations A.) I and 7, and B.)

I and 9. The normalized maxima of the crow-correlation am annotated and the

inferred width estimated from the variance of the squared modulus (VSM) is shown

as a horizontal bar and labeled in units of seconds.

Figure 20AB. A.) Maxima of the Liptauer array vertical acceleration crou-correlation functions

contoured on a plot of inter-station waamon and frequency bandwidth. B.) A
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comparison plot of the croms-correlation maima for dhe Cohwick array data.
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APPENDIX

VARIANCE OF THE SQUARED MODULUS OF THE

CROSS-CORRELATION FUNCTION AS A MEASURE OF

THE CROSS-CORRELATION FUNCTION

The width of a cross-correlation peak is dominated by the cross-spectral bandwidth and

may not represent the true uncertainty of the location of that peak. The half width at half max-

imum (HWHM) is often cited as the uncertainty of the optimum cross-correlation. Because the

HWHM represents the bandwidth of the cross-spectrum and not the net width of the correla-

tion function, another measure is desired. For example, two adjacent peaks of nearly equal

height may be separated by a deep negative minimum, and the widths of the peaks do not

speak for the uncertainty implied by their mutual adjacency. Bracewell (1978) suggests that the

mean square departure from the centroid as a measure of the spread of a correlation function

with zero mean. The variance of the squared modulus (VSM) is defined as

o,; -f A~ R Wt 12dt-f t 1A Wt 12dt

f lR ()1 2dt

where R(t) is the correlation function and f t1R(W) 2 dt is the centroid of the squared modulus.

The VSM is tabulated with the correlation maxima in Tables 2, and 3. The correlation of the

VSM with the correlation maxima for the vertical component acceleration is shown in the scat-

tergram of Figure Al and with the station separation in Figure A2. No separate measure of the

quality of the correlations is available, but if the VSM was to be a useful statistic we would

expect it to show the same systematics as the correlation maxima. The VSM are nearly con-



67

.,tant for a given component and independent of the bandwidth as demonstrated in Figures

qand B These equivalent widths of the correlation functions are 0--' as

bars over the maxima of the auto- and cross-corrclation functions in Figures 19A and B

.The use of this measure of the equivalent width seems doubtful as a measure of

the uncertainty of the maxima locations. Windowing of the cross-correlation functions about

-"~r centroid with a window of the specified width would however capture the significant pesi-

Sand negative correlations and may be useful if such an estimate of the correlation spread is

REFFRENCES

Bracewell, R.N. (1978) The Fourier Transform and Its Applications, Mcgraw-Hill, 4

pages.

FICURE CAPTIONS

Figure Cl. Variance of the squared modulus (VSM) versus maxima of the vertical

acceleration cross-correlation functions listed in Table 2. Each point represents a station

pair.

Figure C2. VSM versus distance of separation for station pairs shown in
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III

ANALYSIS OF HIGH-RESOLUTION FREQUENCY-

WAVENUMIER SPECTRAL ESTIMATOR WITH NON-
.1

STATIONARY SEISMIC DATA

Abstract

Previous methods for analysis of frequency-wavenumber spectral estimation have relied

on stationary and multidimensional noise estimators. Often, seismologists wish to estimate

slowness spectra of pulse-like waveforms or other types of non-stationary signals. The method

of high resolution (HR) frequency-wavenumber (f-k) spectral estimation is explored using

singular value decomposition of the cross-spectrum estimate. Analysis shows that the

difference between the conventional beamforming method and the HR estimator is the weight-

ing given the eigenvalue-eigenvector contributions to the cross-spectrum. It is shown that the

conventional method weights the largest eiaenvalus while the HR method utilizes the smallest

eigenvalues. The near-singular contributions to the cros-spectral matrix give an approximate

view of the null space of the matrix. The HR estimator gives an inverted view of the null space

of the cross-spectral matrix.

An example from an experiment exhibiting multipethig behavior is used to demonstrate

the rank deficiency of real seismic phase delay data. The decomposition points out the disad-

vantages and advantages to the HR method for detection of resolvable multiple arrivals.
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intrdmctiem

The high resolution (HR) frequency-wavenumber (f-k) spectral estimator introduced by

Capon, Greenfield, and Kolker (1967) was presented as a minimum variance, unbiased,

maximum-likelihood filter. The filter passes undistorted waveforms at the steering slowness

while optimally rejecting noise power from other slownesses. Woods and Lintz (1973) showed

that the increased resolution of the HR method arises from the assumption of correlated plane

waves. They synthesized 2 plane waves of varying correlation and explored time window sam-

pling, and the effects of additive white noise. They demonstrate that the HR method can

resolve two closely spaced plane waves when conventional slowness spectral estimate may not.

Cox (1973) investigated the effects of noise and interfering arrivals on optimal array processors,

and showed the resolving power and effective gain of the HR filter to be intimately related to

the noise cross-spectrum and the mismatch of the steering vectors measured in a metric defined

by the cross-spectral matrices ( noise and signal). The purpose of this paper is to propose a

physical interpretation of the HR estimator without the need for a noise model. By the analyti-

cal technique of singular value decomposition of the estimated cross-spectral matrix, the HR

method can be seen to be a best fit of the phase delay data to a superposition of plane waves

provided the interference of the incoming plane waves can be reduced by averaging. The use of

eigenvector (or principal component) decomposition of the cross spectral matrix was used by

Der and Flinn (1975) where they showed that two signals could be independently resolved by

an array if I.) the signals are not of comparable amplitude or 2.) that each signal's slowness

did not coincide with the side lobes of the beam directed at the other signal. By examination of

the perturbation theory of matrix decomposition we see that some of these peculiarities of the

high resolution method are related to the perturbations of the cross-spectral matrix in actual

practice.

The time dependent, two-dimensional wave field, u(x,y.t), may be represented by a triple

Fourier transform (Burg, 1 4)

IV(X.,I )- f d&J dk, u(kjk,,&)expJ-i(kxx+ky--t)] (1)
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Where k, and k, are horizontal wavenumbers in the x and y directions. The corresponding

inverse relationship,

u(k., k,,)"J dxf du(x,y,w) exti(k,+k,)] (2)

is asumed to hold for some region of (x,y). We observe the seismic field u(x,y,t) at discrete

points r-(xjyj), and the freque'cy-wavenumber spectrum that duplicates the ild is repetitive

in (k,, k,) with an aliasing wavenumber that varies with azimuth. The conventional method for

estimation of the signal enrgy spectra, P(kw) - Iu(kw)12, is to replace the spatial integrals

with a weighted sum over the sampled wave field after performing a Fourier transform upon

the sampled time domain window.

NP¢(k'W)- 1:. U (r ,,&) eAVp I AS rJJ 1 (3)

i~-I

- 3 S J(W) ULJ() U,(k)
j.I,,I

-U(k)S(w) U(k)

where the station coordinates of the array are r,, SU() is the cross-spectrul matrix estimate,

U,(k)-cw(Ikr) is the station phase delay or steering vector, UN is the Hermitian transpose

of U, and u* is the complex conjugate of u. The conventional, or beamforming estimate,

pc(k,.), is the -onvolution of the beam pattern, 1(k), with the true wavenumber spectrum,

Y(k.)

PCl )-If dk'ilk~lk-kll.j (4)

1(k)-icipdikrr (5)

3(k) is the Fourier transform of the spatial samplinq function, fS(r-r), the response to a

veti* Wident, k-0. plan wave, u(k)-S(k). A besmtorm, or stack of the seismlnwgram

from an array is formed by the sum over do suitably tim shfte and ehtd uumolun rm.

The Fourier sPa ene g spectrum ofhe bam for uowasm a is Idea" to tM omvenstlo
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frequency-wavenumber spectrum estimate for k-ws, with W,-I,

NpC(O.u - w uh (w)eqxp!Irk rj12  (7)
J-1

Consequently, the conventional spectral estimator produces a superposition of shifted beam pat-

terns canesponding to plane waves required to represent the field observed at discrete points,

the station distribution. The presence of beam sidelobes and multiple arrivals can produce

cormplicated interference patterns. A small array with significant sidelobes can be dificult to

interpret in the presence of interfering arrivals. To investigate the nature of the estimated sig-

nal energy spectia requires calculation of PC(k) on a grid of (k,,k,), contouring, and genera-

tion of graphical output. Even in the case of a single arrival these calculations can be consider-

able. A simple search for the global maximum is complicated by the many local maxima of the

beam response. A primary advantage of the HR estimator is the suppression of sidelobes for

lone or non-interfering multiple arrivals.

The estimation of the cross-spectral density matrix, S(a.) MU(..) uj'(..), for stationary

noise data is often performed by averaging over several temporal windows. This is unsatisfac-

tory for non-stationary seismic data. An estimate for non-stationary signals is either made by

smoothing the cross-spectrum with a convolution operator, or Fourier transforming the win-

dowed cross-correlation functions as estimates of the spatial covariance function. The two

methods are equivalent while there may be computational advantages for a narrow bend,

I IT -f., frequency domain smoothing operator over the time domain windowing of the spatial

covariance estimate. Advantages include the reuse of the cros-spectra for coherency estimates

and rewindowing. In either case the cross-spectral matrix may be written as

SUo,,)" . " l,,(W1 ) ";(%W ) (1)

where the weighted sum over frequencies k, 10 W* producM a mootW ros-sPc esti-

mate with center frequency

Wwi

kU - ,

Jmw'.
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The use of such smoothing operators is straight forward and the statistics and pitfalls are

described in works such as Jenkins and Watts (1968). A narrow averaging kernel, [wil, does

not stabilize the estimate and contains positive bias for the purpose of estimating coherency

between stations. If the spectral smoothing is done over too wide a bandwidth, the operation

will destructively average the slow deterministic signals. An averaging kernel should be narrow

enough to admit any time delay within interest across the array. For a frequency smoothing

operator of width I Hz, a signal with slowness of 2 sec/km would be seriously degraded for sta-

tions I km apart. The phase delay -2rfw s across the frequency band Jf should remain

much less than w. Further discussion of the wavenumber power spectra assumes a cross-

spectral matrix, S, has been made.

The HR f-k estimator

The high resolution (HR) estimate of the signal energy spectrum may be written

p~M (k',w).[Ux(k,) S-t (w) U(1k,)-' (9)

where S- 1 is the inverse of the cross-spectral matrix. Capon et. al. (1967) introduced the esti-

mator as a distortionless filter for k-k', while optimally rejecting signal power at k k'. For a

multidimensional Guassian noise distribution the filter is a maximum likelihood, minimum

variance estimate. The HR estimate requires only the additional calculation of the inverse

cross-spectral matrix. The similarity of equation 9 to equation 3 is clear.

Cox (1973) decomposes Sv into the noise cross-spectral matrix, Q., and the signal cross-

spectral matrix, X.,, S-Q+IL The matrices, S,S-',LR-',Q,Q- , define metrics where any two

vectors a, and b may be represented by their expansion as eigenvectors. The eigenvectors of

one the matrices may not span the entire space and a portion of a. or b, may not project to the

eigenvector expansion. The angle between a, and b. is defined by a generalized inner product

of the eigenvector expansions in these metrics. Consequently, the ability to resolve any two

vectors is described by the respective null spaces of the cross-spectrl matrices. Examining the

form of the beam and HR estimates in equations 3 and 9, note that components of the station

phase delay vectors, U(k), belonging to the null spaces of S and S- 1 make no contributions to
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the the respective beam and HR estimates. Cox used this approach to investigate the perfor-

mance of the HR method for varying signal to uncorrelated noise, and to discern the resolving

power between two signals with different slowness vectors. The HR method was found to exhi-

bit higher resolution than the conventional beamforming method in the precence of uncorre-

lated noise. Interference was found to be severe when steering vectors for two separate signals

are perpendicular to each other in the metrics defined by the cross-spectral matrix.

Singular value decomposition

Using the property of Hermitian symmetry for S, the singular value decomposition of S

and S- 1 can be written as

Ms..Y D v v, IVI110)

S-t i'VN IV 1

where (J ] and (Vi are the sets of eigenvalues and eigenvectors of S. Substitution of 10 and

S1I into 3 and 9 yield expressions for pC, and pHR

PC...Xj1U"VIVf'U (12)
1-1

p.{(f-UH1V ,uIj -1 (13)
I-I

The two methods represent different weighting schemes for the eigenvector contributions to the

matrix S or S- 1. The formulas in equations 12 and 13 are analogous to the formulas for total

resistance of a network of resistors in series or parallel. The conventional method weights the

largest eisenvalues of S, while the HR method weights the smallest eigenvalues of S.

In the case of a single plane wave of amplitude, id/z propagating across the array with

slowness vector, s'-k'/.i, the cross-spectral matrix is

Sj,4 01W) UJ0(4)

where rVU(x,-xjJyfy). The matrix is singular since each row or column is a linear combina-

tion of any other, S V-SS, Often in practice, S is singular or nearly to. The matrix is
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prewhitened with magnitude 4, and inverted with standard methods. Prewhitening as suggested

by Capon et al (1967) can be accomplished by multiplication of off-diagonal elements by 1-6.

This is equivalent to adding uncorrelated noise to each station and makes the matrix diagonally

dominant. This is equivalent to reducing the interstation coherence by adding uncorrelated

noise to each station. The prewhitening serves to perturb the zero eigenvalues to a finite value,

so X==a. Symmetric perturbation of the Hermitian symmetric matrix,S, produces unpredictable

rotations of the degenerate eigenvectors, while they still span the same space as before the per-

turbation (Wilkinson, 1965; Davis and Kahan, 1970).

If the matrix S is perturbed to the matrix S' then the perturbations of the eigenvalues

may be described by an expansion in the basis provided by the old eigenvectors,

u, - u' - u,-

Obviously, the expansion is invalid for degenerate eigenvalues but serves to explain the insta-

bility of the eigenvectors for pairs of eigenvalues that are closely spaced. If two non-interferir4

waves of comparable amplitude are combined the two plane waves will have corresponding

eigenvalues of comparable size and render the two eigenvectors unstable. This confirms the

results of Der and Flinn (1975) that signals of comparable amplitude may be difficult to

separate.

In the case of a sum of plane waves with amplitudes, /z./, and slownesses, a,, the cross-

spectral matrix is

$V- 1 e.q[o. s~orul+ [ . le41[.. s-k. s.*rsl (15)

If we examine the decomposition of S as seen in equation 10, the decomposition is in the same

form except for the cross-term that produces the interference between pairs of waves. This

observation may explain the difficulty of the HR estimate to resol, wo closely interfering sig-

nals. If a pair of signals coincide with each other's array sidelobes, the estimate may be

unstable at that frequency do to the interference. Smoothing of the cross-spectrum, S(40), is

optimal when the interference terms, (nidm), fluctuate more rapidly thin the simple sums of
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plane waves.

An Example

As an interesting example of cross-spectral decomposition, an array experiment conducted

along the San Andreas fault will be briefly discussed. Complete details of the experiment are to

be found in Chapter 4. The array was designed to measure slowness, azimuth of arrival, and

polarization of S waves from earthquakes within the fault zone 3 km away.

Figure 17 of Chapter 4 shows a high resolution and a conventional beam estimates of f-k

spectra at 6.6 and 7.8 Hz for the east component of motion .5 sec of S waves. North is to the

top, and east is to the right. Contours are in decibels with respect to the maximum. The two

contour plots exhibit some of the common traits for HR and beamforming f-k spectra. The

beamforming, conventional method, shows two broad maxima coming from the east and

southwest quadrants. The HR estimate shows much higher contrast over the background,

sharper peaks, and a more complicated background 20 db down from the maximum. Superim-

posed on each plot are four slowness vectors at (.80 s/kin, 1100), (.55 s/km, 1200), (.40 s/kin,

2050), and (.40 s/km, 2500). The four vectors correspond to four beams shown in Figure 17

(Chapter 4) for horizontal components resolved as transverse (T), and radial (R) along the four

slowness vectors. The four beams were selected from a set of beams at 0.05 s/km intervals in

the general areas of the broad maxima of the f-k diagrams of Figure 16 (Chapter 4). The

beams represent a broader bandwidth and therefor are better estimates of the location of impul-

sive arrivals. The beamforming suggests that the broad conventional f-k maxima are multiple

peaks on the HR spectral estimate. An interesting phenomenon pointed out by Cox (1973)

appears to occur on the east component HR f-k spectra; when two signals of different strength

arrive with closely spaced slowness vectors, it is possible that the weaker arrival will show up as

stronger on the HR spectral estimate. This is clearly a disadvantage of the HR method for esti-

mation of the relative strengths of interfering waves, The time domain stacks show the slower

arrival, .80 s/km, 1100, to be stronger on the transverse component, closer to the north com-

ponent of motion for an arrival from the east. Conversely, th faste arrival. .55 u/km, 2100, is
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the stronger on the radial component and should show nearly equally partitioned between east

and north components of motion. The HR f-k spectra show the two arrivals reversed in rela-

tive amplitude. The data indicate multipathing is important in this geologic environment and

anisotropic S wa% zs may be responsible for a significant partitioning of the two arrivals from the

direction of the epicenter to the east. The arrivals from the southwest may be birefringent as

well.

The data serve as an excellent example of multipathing and interference effects. The four

arrivals all propagate across the array within .5 second, forming a complex locus of travel time

planes over the two-dimensional array. A portion of the multipathing may be anisotropic S-

wave propagation. At station 9 the .80 s/km arrival is first, while at station 1, the .55 s/km

arrival is first.

In Figure 1, the eigenvalue spectrum is shown for the normalized and prewhitened (a fac-

tor of .001) cross-spectral matrix at 5.8 Hz. The cross-spectral matrix was averaged over .8 Hz

bandwidth. The eigenvalues span a range of 4 decades and without normalization and prewhi-

tening would span 15 decades. The cross-spectral matrix is sorely rank deficient with a condi-

tion number of 10,000. In Figure 2, the HR f-k estimates for the contributions made by the

smallest, the 2 smallest, the 3 smallest, and all the eigenvalues are shown. There is virtually no

difference between the estimate of the f-k spectra made with only the 3 smallest eigenvalues

and all the eigenvalues. The contribution of the smallest eigenvalue is clearly the most impor-

tant and corresponds to the arrival of two of the four identified arrivals. Another arrival is

given by the next largest eigenvalue. Interference between arrivals produces sidelobes in the

slow northwest quadrant and to the south. Comparison with the conventional f-k estimate of

Figure 3 shows the diffuse maxima characteristic of the beam method with no suggestion of

multiple arrivals from the east or southwest.

Conclusions

The high resolution method of Capon (1967) differs from the conventional method of

frequency-wavenumber estimation by utilizing the near singular components of the cross-
__ __ __ __ _J
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spectral matrix estimate. Often, the cross-spectrum contains only a limited amount of informa-

tion and is dominated by a single or small set of important eigenvalue, eigenvector pairs. Pre-

vious analysis of the HR method relied on either a multidimensional noise model (Capon 1970)

or was concerned with the resolution of the array to detect and seprate multiple signals of lim-

ited slowness separation (Cox 1973). The present analysis shows that even in the presence of

multipathing, the information may be contained in a limited number of eigenvalues and each

contributes an alternative interpretation of the phase delay data. The HR method weights the

inverse contribution of the near singular portion of the cross-spectrum. The method therefore

gives an inverse picture of the null space of the data. Consequently, the fictitiously excited

sidelobes, and sharp peaks of the HR estimate are suggestive of real signals, but must be

vetified by additional estimates at another frequency or in the time domain.

A method that would yield direct estimates of the maxima for f-k spectra without detailed

calculation and contouring would be useful. Such a method would require finding the maxima

of the inner products of eigenvectors, V., with the station phase delay vectors, U(k). Unfor-

tunately, it is evident from the example shown that a single eigenvector may contain informa-

tion from more that one arrival. A best fit to plane waves may not be the only interpretation

for each eigenvector, Vj. Furthermore, interpretation of the eigenvector as a phase delay vec-

tor would require unwinding phase of the frequency spectrum in two-dimensions. A sparsely

occupied two-dimensional array would pose a formidable computation effort for uniquely

unwinding phase in two dimensions ,unless a good first estimate of slowness is provided.

A posability suggested by the analysis, for cross-spectral matrices that exhibit singular

behavior, is to solve for the singular eigenvectors rather than to prewhiten the matrix. An esti-

trate of the null space would be made without perturbing the matrix and its eigenvectors. The

s;-,Arp nature of the inverted null space is not yet explained, nor the fictitious sidelob's. Some

of the results of Cox (1973) suggest that the HR method may show only gseater , ' a'

lution. The location of the sharp peaks are not more precisely located than the size of t' - r..-.t

lobe of the beam response. The HR method does give indications of closely p. ,-, , -
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arrivals not apparent by conventional means. The idelobes are manifestations of the interfer-

ence between multiple signals that can not be unambiguously removed from the phase delay

data.
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FIGURE CAPTIONS

Figure 1. Eigenvalue spectra of the cross-spectral matrix for the east component of motion at

5.8 Hz with a 0.8 Hz bandwidth for the short S-wave window indicated in Figure 3

(Chapter 4). The eigenvalues span 4 decades.

Figure 2. Eigenvalue decomposition of the HR f-k spectral estimate of the east component of

motion for 0.5 sec of S waves at 5.8 Hz. Ail eigenvalues were used to estimate the

spectra in the lower right. The three smallest eigenvalues were used to construct the

HR f-k estimate in the lower left. The smallest and two smallest eisenvalues were

used to construct the two upper estimates. Contours are shaded to -12 db in the

upper two estimates, and shaded to -6 db in the lower two estimates.

Figure 3. Conventional, beamforming, f-k estimate at 5.8 Hi for the same window used in Fig-

ure S. Contours are shaded to -6 db w.r.t. maximum.

4
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Iv

THE STOCHASTIC GREEN'S FUNCTION AND IT'S

APPLICATION TO SEISMIC SOURCE INVERSION

ABSTRACT

Treatment of signal-generated noise (coda) as a noise source for deterministic inversion

of seismic data can be formalized by the use of a stochastic Green's function. When lateral

variations are suitably chaotic the random fluctuations of elastic waves may be described by a

stochastic variation upon an average or coherent wave field. The coherent field is separated

from the random part which is treated as signal-generated noise. Variance estimates for the

stochastic part of the Green's function can then be used to estimate source parameter variances.

Signal-generated noise is introduced into the Green's function deconvolution for seismic source

time functions. The variance estimate of the moment tensor is given by a direct application of

error propagation. An example is given for an explosion source at NTS using estimated seismic

field variances.

Introduction

The simple stratified, layered, approximation to earth structure allows very precise

Green's functions to be calculated. These approximations often contain the essential wave pro-

pagation characteristics of the earth structure and allow inversion for the seismic source. The

lateral variability of the real earth makes any such approximation inaccurate. In a situation

where the earth structure is dominated by the vertical variation and lateral variations are suit-

ably chaotic, a laterally averaged structure may be represented by a traditional horizontally
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homogeneous structure with a superposed horizontally randcm pvrr'. ',. ' f'e # I

of this paper is to demonstrate that the problem of random structure is separabie fro,,, .

agec structure wave propagation problem. Green function evlimates fi'enr by one-damr .

structures coupled with estimates of scattering from laterally vary4r4g svr icture permit the treat-

ment of the scattered signal as a signal-generated noise process fo, . of source inver-

sion.

The functional formalism for the solution to lilferonti equations * : i %cnim

coerficients is reviewed by Adomain (1964) while the stv' .i,!a' ,eatment of wave propaation

in random continuous media is reviewed by Hoffman t t,4) -vaves scattered by ciscrete

scatterers is treated by Twersky (1964). Keller (1964) reviews some of the approximations

used in continuous and discrete scattering theory and demonstrates that under suitable condi-

tions transport theory (radiative transfer) is an equivalent treatment for strong multiple scatter-

ing. Karal and Keller (1964), Knopoff and Hudson (1964), and Knopoff and Hudson (1967)

all treat the vector elastodynamic equations for elastic wave propagation in a continuous random

medium with special attention to the amplitude and phase fluctuations in the forward direction.

Frisch (1968) demonstrates the utility of diagram methods and functional integration methods

for the renormalization of wave propagation in a random media. Dence and Sencz .110,11

generalize the development to the dyadic stochastic Green's function and anisotropic random

media. For a discussion of ensemble averages and the general r'';Pt ,n. of q:oc mtic -.,-Aom

.itdia the reader is referred to the review by Hudson (1982).

The effects of scattering by random heterogeneities irclid: m'npltwle asrc PhMt Nclus-

ti;ns, attenuation of the average or *coherent" field, and Lonvergiot af eier' Setwe-,- r.odle

of .*ropagation. Formulation of a dyadic stochastic Green's function hAs the advantage of

r .'n, all of these affects on a sceismogram. To evaluate ftt inve 'se problems rr ismic

v •ces and homogeneous structures, we require estinmates of the tatistis of the seism., fEid

d o the :andom variation from the homogeneous strucvire.
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THEORY

The wave propagation problem for elastic media begins with the linearized equation of

motion (Hudson, 1980),

Ltu s - pil - (Cu,,)j - fA. (I)

where L4 is the elastodynamic operator, u1(r, t) is the particle displacement at the position, r,

and time, t, p(r) is the density, Cw(r) is the linear elastic tensor field, and fj(r, t) is the deter-

ministic source field. The functional dependence of the elastic moduli and density on position

define a structure, or model for wave propagation. Perturbations to the density, p-pO+p , and

elastic tensor field, C-C 0 +C', are introduced such that the elastodynamic operator may be

decomposed into,

Lo - LO + LI (2)
LR - P08M - (C,°.A)54.i) j (3)
LN, - p,M - (cP!*A@,,.j ~ (4)

The perturbations, pi. and CI are considered small random fluctuations, < (p,)2 > << <P>

< (C),,,.)'> << < C,01.> , and < ((CA.)j) 2> << < (C,.),>', and assumed to have zero

mean, <pl>-O, <Cjb,>-, <(C)jW.)>-O. The operator < > is intended to symbolize

the ensemble average. Equation (1) defines a set of coupled stochastic differential equations.

Equation (2) defines a decomposition of the stochastic differential operator into the background

operator (equation 3), and the random pan of the operator (equation 4). Generally, the prob-

lem of interest to seismology would be the case where the average density and elastic constants

are functions of depth only, and the random perturbations are functions of depth, (z), and

lateral coordinates, (x,y),

p(x,.y,z) - pO(z) + pt(x,yz) and C(x,y,z) - C(z) + C'(xy,z).

The background operator, L °?, is assumed to have a Green's function satisfying the equation,

L (r',rt- t) - SS(r-r', t-:) (S)
with the appropriate boundary conditions, such that an inverse operator, GO exists;

LA4L,0 (6)
implies that
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The solution to the general problem,

L.5' uj - f - L uj

may then be written as

U,- G~of1 - G(OLJkUk

Expansion of equation (9) into a Neumann series (or Bcmn xra& r oduces,

U,- GO,- G OL IG~f, + GO~ kjL1.Gj -.

- UP + U" + U11 ...

Taking the expectation of equation (10) yields,

u,> -Gjof, + GO< LJ4GALI > Gj . + .... 01)

-Uj + < U,2 > +...

Conditional on their convergence, equations (10) and (11) serve to define a stochastic Green's

function for the stochastic differential operator L1, in equation M1. Where in operator notation,

G - Go- GOLjlIGo + G0LAG0L.GP.G! ..... (12)
Go + G<LGL>Go+ (13)

From equations (10), (11), (12), and (13) we decompose the displacement field two ways,

U! '0u, + uw G + G 4,f, ~14~
U- <uj> + U,0- <G 1p>fp + Go',fi

where the superscripts *sc" and 'st" are intended to infei 'scaitered, A*i ichst:. .

from equations (14) and (15) that <an> ;d so, and <G> W.G Note :hat ihr expera-.e*-

tWly determined, or averaged field, <u>, does not represent bi k&g'ound structuvr,- i

and <C>. In the case of elastic plane waves in a randomizen while space, Karal and Keller

U 964) showed that the presence of scattering both attenuates and disperses the expetee f-

rtlatove to the background solution, uo0 The measure.' ),-ie~ e not precisely the .W-

6ioLa-i stricture's averaged velocities for the same rt&-vwi h.- thri ex,*te& gleM i! t '~

solution to the background solution. Therefore, if a structure is experrf "tally found that

&;ves. t Green's function, G*2z< G>, from the coefficitnts p, and C'% then it does not f,-,!)n
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that <p>"p*, and <C>-C* However, this is just what is usually done in practice. The

laterally homogeneous structure represented by, pO(z), and C*(z) is determined that matches

the observed attenuation, and dispersive effects of the averaged response, <G>.

We will decompose the Green's function into

G - < GU> + Gix (16)

Gil' is the stochastic part of the Green's function (Adomain; 1964; Frisch, 1%8; Dence and

Spence, 1973). Only the statistics of G, may be calculated or measured, such as its variance,

<1Gu12>. Under this decomposition

u< O>G f + Gjflfj - < u,> + uP (17)

and the stochastic part of the seismic field, uS , is considered signal-generated noise. The vari-

ance of the stochastic portion of the seismic field is

var(u') - var(G'f)

The proportion of noise in the seismic field may he measured from multiple station coherency

estimates, repeated measurement with variable source receiver paths approximating an ensem-

ble, or calculated from scattering models.

APPLICATION TO AN INVERSION PROCEDURE

Stump and Johnson (1976) proposed a method to invert for the moment tensor com-

ponent time functions of in equivalent point source when the seismic Green's function is

known. For layered earth models precise Green's function estimates may be calculated. The

presence of scattering affects an inversion in three ways 1.) scattering introduces a source of

unmodeled attenuation of the expected or coherent waves, 2.) the signal-generated noise is a

fluctuation of amplitude and phase of the expected or average waves, and 3.) converted waves

may appear as unmodeled waves producing non-causal model source terms.

Attenuation of the coherent wave field by the generation of scattered waves has recently

been approached by Ai (1980, 1981), S4to (1981), Kikuchi (1981ab), Dainty (1981), Wu

(1982a,b), and Sato (1982). Scattering ad the random coda noise serve to introduce uncer-

tainty into the amplitude and phase of the observed waves. When the noisy sismogram is
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deconvolved with the appropriate homogeneous Green's functi,,qr~ ci

source time function estimate. Amplitude and phase fluctuatos of the expected wavesv .-V".

introduced through forward elastic wave scattering theorics s-iok .s iKnopoff and Huds..

1967), or scalar parabolic theories such as Chernov (it-,), .'c i *97'?,I980), or McCoy

(1980). The signal-generated noise due to coda oen rt ~~ .oduced with rnbicls

such as Wesley (1965), Dunkin (1969), Aki and Choutt -9 ,.. ~' '9") T *.43 ;o

(1978, 1980). All of these approaches have proposed n, -- !,, .c calcuilan. (if t't:i

of the stochastic Green's function.

Under the assumption that the elastic modulii -jc are random functio~i,.) T i

horizontal coordinates, (x,y),

<p(x,y,Z) > - PO(Z)

the background problem is modeied as a stratified medium, where material properties vary only

in the vertical, (z), direction. The horizontal heterogeneity is m~odeled as random perturbations

to the stratified medium and the decompositions of the seismogram and Green's function into

deterministic plus stochastic parts is used (equations 16, and I )

Following Stump and Johns.. 1976), we write the linearized retatior ' or Llir .'~c:

rnent seismogram, in the frequency domain as,

The inverse solution for the source becomes

M(f) - G-'(f V( 11~9.)

var(M*(f)) -G~,~~,) ~
where G is the Green's function matrix, G-I is the inverse of the Gican&s function matrix, and

i- T is the Hermitian transpose of the inverse of the lrree&'% Amction matrix. Ntl8 i.,

ambient noise in the data vector. U(f) is a vector compos±a at complex spectra oi tv win.

1,wed seismograms at the frequency, f. And, M(f) is i'it. rnatri of iaowcidvrn

tte moment tensor, with PA (f) the estimate at frequency, t.



92

If G-<G>+Gm in the presence of only signal-generated noise (N(f)-0).

U(f) - <G(f)>M(f) + G-(f)M(f) - <U(f)> + U(f) (20)

If we approximate <G> by G* then we may produce an estimate for the moment tensor ele-

ments as

M'(f) - G-'-(f)U(f) (21a)

-M(f)+G-1(f)Gu(f) M(f)

var M> - G 'l" ar(U)G0 - T (21b)

.G- 1 ar(Gs1MDG - r

The seismic source estimate, M" is contaminated by the signal-generated noise term,

G'-'G"M Since the variance of the stochastic part of the Green's function is zero, the esti-

mate of the source is unbiased in the frequency domain, and it's variance is related to the vari-

ance of G, or of the data, U.

AN EXAMPLE

Data from an array of strong motion accelerometers 6 km from the explosion COLWICK

at the Nevada Test Site will be used to illustrate the estimation of the seismic moment tensor

and accompanying variances. The signal-to-noise ratio is estimated directly from the data and

used in the inversion for the seismic source spectra. See Chapter two for a description of the

experiment and analysis of the data.

In Figure 1 the frequency-depei.ient spectral variance var(U(f))-< U(f)-U(f) I>

and the inferred signal-to-noise power ratio for the P wave and P coda window are estimated

from three stations an equal distance from the explosion. The three stations are spaced at 200

meter intervals across the direction of propagation of the P wave. The acceleration spectral

amplitudes, U(f)L for the three components are shown in Figure 2. The signal-to-noise power

ratio (SNPR) was estimated from the inverse of the normalized

variance, SNPR "1 - ver(U(f)) 1 U/(f) - . Of particular note is that the variance of the verti-

cal component is nearly constant from 1 to 10 Hz, while the total spectral amplitude declines.

The net effect is for the SNPR to decline from 5 to 10 Hz. A sinilar trend is observed for the
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radial component spectra. The transverse component SNPR estimate fluctuates around 1. It

was previously argued (Chapter one) that a significant portion of the transverse component in

this time window prior to the S-wave arrival was scattered from the P wave. We can conclude

that the decrease in SNPR is a result of the proportional increase in the incoherent signal

energy and not simply do to a decline in signal strength.

In Figures 3A,B,C, records of stations I and 4 are compared in the time domain as broad-

band, and bandpassed signals between 5 and 10 Hz and between 10 and 20 Hz. The two sta-

tions are only 200 meters apart. The circled number is the normalized maximum positive

correlation between the two traces, R,. The different response of the two stations to the S

wave is particularly pronounced (1.3 to 2.5 sec after the P wave). The mismatch between the

two stations is both in amplitude and phase. The correlation values estimate the signal-to-noise

ratios for the 5-10 and 10-20 Hz bands as 1.2, .83 for the vertical, 0.70, 0.40 for the radial, and

0.65, 0.50 for the transverse, SNR - 2 - Rx-1-. This is in contrast to the broadband SNR of

2.5, 2.2 and 1.0 for Z,R, and T. These signal-to-noise ratios reflect the average over a 5.0

second window. The initial vertical P.wave motion remains coherent in the 10 to 20 Hz band

although it has become emergent at the higher frequencies.

The goal of this section is to illustrate the use of the inferred signal-to-noise ratios from

the COLWICK array data to quantify the uncertainty in the inverted source spectra. Results for

the vertical component P and P coda spectra are shown in Figure 4AB. The acceleration spec-

tra, the twice integrated Green's function spectra for the explosion source, and the inferred

explosion source are plotted. The short data window, 1.28 seconds, is inadequate to control the

low frequency behavior of the source and a longer window enclosing S waves is inevitable. A

longer window also incorporates larger quantities of 'noise.

The use of three components, and a longer time window are used to incorporate the

observed S waves. A 5.12 second time window was chosen (Figure 3). The averape sismo-

gram and its variance are estimated for a stack of seismograms at a slowness of 0.2 sec/km

slower than the P wave. This aligns the principle S waves on the three components. The vari-

. . .. . ._ _.. . .. _ _... . .. . .. _
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ance for each component is estimated from comparison of the complex spectra for stations at

the same distance from the event. The average complex spectra are then estimated as a linear

combination of the spectra of the individual stations. The Green's functions for the different

distances are similarly stacked at the same slowness. Therefore, the calculated Green's func-

tions have been given the same spatial filtering as the data.

Three separate estimates for the isotropic, or explosive, source were made using 1.) the

radial and vertical displacement spectra estimates, (UZ and UR), 2.) the radial displacement

data only (URt), and 3.) the vertical displacement data only (Uz). Figure 5 shows the ampli-

tude spectra of the Green's functions used. An overdetermined explosive source estimate

using both the vertical and radial component data is shown in Figure 6. The square root of the

variance (a) is plotted as a dotted line in Figure 6. The normalized spectral residuals for the

radial and vertical components used in the inversion are plotted against frequency in Figure 7.

Since only 5 seconds of data was deconvolved by 5 seconds of Green's functions, only the first

5 seconds of the resulting source estimate may be considered causal. The time-domain far-field

source estimate, in Figure 8, shows non-causal activity between 5 and 10 seconds. The addi-

tional 5 seconds of source time function is due to the extension of the data and Green's func-

tions with zeros prior to the calculation of the first discrete Fourier transform. The isotropic

source estimate using only the radial component data is presented in Figures 9 and 10. The

estimate using only the vertical component data is presented in Figures 11 and 12. The result

based on the radial component alone is the least non-causal (Figure 10).

Since the deviatoric part of the source contributes S waves to the vertical and radial com-

ponents, more efficiently than an explosive source, the estimates of the source spectra in Fig-

ures 6, 9, and 11I are conservative upper limits for the explosive source.

SUMMARY

We have shown that the problem of elastic wave propagation in a random structure is

separable from the propagation problem in the averaged structure. This stochastic propagation

is independent of the source, so a stochastic Omeen's function my be dellned (equations 12
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and 13). Under the decomposition of the Oreen's function into it's deterministic and stochastic

parts, the linear inversion of seismograms for seismic source properties remains linear and the

stochastic response of the medium can be interpreted as signal-senerated noise. This noise due

to scattering may be empirically estimated or derived from a scattering model. An example of

source estimation with empirically estimated seismic variances was presented using the

COLWICK array data.
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FIGURE CAPTIONS

Figure I. Smoothed spectral variantsesimates rind hInm signao-.lse ratios (SNR)

for The vertical WZ, radial MK, end transverse (T) component spectra of

COLWICK a&my stations 1,2, and 4. 1.28 seond window encompassing the P

and P coda. The 0.79 Hit bay Indicates the smoothing window eind. The logs-

rithmic scales refer to the SNR estimates. The variances have been multiplied by

to arbitrary scale to bring them onto the same graph as the SNR estimates.

Figure 2. Acceleration amplitude spectra for the 1.26 seond window used In Figure 1.

Figure 3A,3,C. 5.12 second broadband and bamdposs acceleration records for the COL WICK

stations I and 4. Broadband recrds are on the left. 5.10 Ht bandpass records

are In the center. 10.20 Hz bandpass records are on the right. The value In a cir-

cle Is the maximum normalized cross-correlation between two records. Other

numbers above and below are peak values In counts. All trames for a given com-

ponent (Z,R, or T) are the same scale.

Figure 4. A.) (Above) average vertical acceleration amplitude spectra for the 1.2 secod

window from COLWICK stations 1,2 and 4 (solid line). The square roo of the

modulus of the variance estimate Is plotted as a dashed line. (Below) Green's

function (ramp sorc) amplitude spectra for the same window B.) Isotropic

source (displacement) amplitude spectra estimate (solid line) and square root of

the modulus of the variance estimate (dashed line).

Figure 5. Amplitude spectra of the vertical (so1liine) and radial (dashed line) Green's

functions for the stropic (exipesive) sorce appropriate for the COL WICK amry.

Green's functions have been stacked on the S wave arrival for four distances 6.00,

6.087, 6.173, ad 6.346 km heom the source.

Figure 8. Estimate of the faer-bild Isotropic soerc spectra modulus (solid line) and the

soartalaty estimate (dashed line) derived from the staked radial aod vertical

spectra sod stacked Groe's fetes.
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Figure 7. Normalized residuals of the vertical end radial spectral sompoets used to esti-

onte the Isotropic Loom of Figure 6.

Figure B. Tim domain plot of the Isotropic source estimate of the source estimate of Figure

6. Considerable wm-cauntl energy arrives between 5 and 10 seconds. Units are

iO14',w-CM/xec.

Figure 9. Estimate of the far-Siled Isotropic worce spectra modulus (solid line) and the

uncertainty estimate (dashed line) derived from the radial data only.

Figure 10. Time domain plot of the far-kild source function of Figure 9. Units are

Figure 11. Estimate of the far-Beid Isotropic source spectra modulus (sold line) and the

uncertainty estimate (dashed line) derived from the vertical data only.

Figure 12. Time domain plot of the far-Goeld source function of Figure 11. Units are

1O2"4'ne- cm/Nc.
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V

SCATTERING OF ELASTIC WAVES FROM BOUNDED

INHOMOGENEITIES AS A MOMENT EXPANSION

ABSTRACT

The scattering of elastic waves by an inhomogeneity in a uniform matrix is addressed with

special attention to incident plane waves. The solution is formulated as a moment expansion of

the equivalent force and stress distribution of the scatterer due to the incident wave. Although

the expansion remains exact, rapid convergence is only assured for the long wavelength regime,

ka< 1, where it is the incident wavenumber and a is the scatterer scale size. The method is

shown to be equivalent to the form function or Fourier transform approaches. Conditions for

forward conversion of P-to-S waves are addressed. Solutions are given for the general anisotro-

pic, Gaussian, exponential or ellipsoidal scatterers. It is shown that trade-offs exist between

models for the shape, heterogeneity, and anisotropy of scatterers, but that a general scatterer

may not be modeled by a homogeneous isotropic elastic scatterer. The case of the randomly

heterogeneous scatterer Is treated with special attention to the random Gaussian scatterer.

Under the conditions of ka< <1, application to the attenuation and dispersion of the effective

wave from multiple scattering is discussed.

Formulatlea of the Problem- the Moment Empemaeo

Methods are required to describe the scattering of elastic waves by small scatterers (small

with respect to a wavelength). Important quantities such as total scattered and converted elastic

energy, as well radiation patterns are needed. A moment expansion of the scatterer has prom-
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ise for the calculation and analysis of scattered wave fields from small bounded heterogeneities.

Several methods for computation of scattering cross-section, and radiation pattern of scattered

energy for compact scatterers in elastic whole spaces have been suggested and implemented for

incident plane waves (Ying and Truell, 1956; Knopoff, 1959; Johnson and Truell, 1965; Kraft

and Franzblau, 1971; Mcbride and Kraft, 1972; Pao and Mow, 1973; Waterman, 1976; Vasun-

dara and Pao, 1976; Gubernatis et al, 1977a,b, Visscher, 1981; Varadan and Varadan, 1982; and

Herman, 1982, to name a few). The methods employ either special function expansions

(spherical harmonic, or elliptical) of the incident and scattered fields or a solution of boundary

integral equations of the Fredholm type. Common draw-backs of these methods are the inabil-

ity to treat nonuniform volumes, irregular shapes, or anisotropicaly heterogeneous bodies. An

equivalent force moment, Green function derivative expansion or moment expansion may have

some advantages as a description for general compact scatterers if the object lacks symmetries

necessary for special function expansions and if the multipole expansion converses rapidly

enough in the frequency bandwidth of interest. The use of equivalerlt force moments to

describe an indigenous elastic source is common in seismology since Gilbert (1970) introduced

the equivalent stress moment. Backus and Mulcahy (1976a,b) explored higher order moment

tensor expansions for indigenous seismic sources. Higher order moments for propagating faults

have recently been used by Stump and Johnson (1982) to compute synthetic seismograms.

Backus and Mulcahy (1976a) point out that the moment expansion for the elastodynaminc source

converges at the rate of -L( O , where a and 1 are the characteristic source size and

wavelength. The same applies for a moment expansion of the scattered field from a compact

scatterer of size a.

The general equation of motion f w the elastic body can be written as

By either introduction of Fourier transorms or factorization by e"' ' we can write the steady-

state harmonic equation as

-,,,-(c ) A- (2)
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Let the inhomogeneity be represented as a perturbation to a problem for which a Green's func-

tion is known. The density and elastic variations are written as

P-p'+Sp, Ce,,.,C'6We+8CW. (3)
The background solution, u° , is the solution to

-p',W2U°-(C', VU°),j -/, (4)
and the perturbation or scattered part, us, is the solution to

-p, 2uH(C'uJU.1),j - 8p,, 2u, + (8C uk,).j (5)
where u, is the complete solution, u, - u° + ul! If the Green's function exists for our back-

ground equation (4) then,

u(r)-f 0 / fi j v (r,r') d3r (6)

where R° is the region bounding the equivalent body forces, fj. We then have that the scat-

tered field is given by

U10- f 18 p u,(r') + (8 C .u1  (,g r') d' (7)
where R' is the region bounding the inhomogeneity. Using the divergence theorem and

integration by parts,

U,, r) - fj,8PI.2U,(r,)g,(re) - 8Cp.,(r')u,.ga,(r~i')J,'r' (8)
The latter expression contains no derivatives of the inhomogeneous elastic constants and only

first derivatives of the total displacement field. Less must be known about the inhomogeneities

to specify the scattered field than in equation (5). An equivalent view can be derived if we

define the equivalent scattering force distribution, fr),

filr) - 8p(r)W,2u,(r) + (8C(W(r)u,.,(r)).j (9)
and the equivalent stress distributions am those fields, wry(r), such that fjf- -ra' The

nonuniqueness of such equivalent stress distributions is well known ( Backus and Mulcahy;

1976ab). The formalism remains valid for inhomogeneities incorporating discontinuities of

displacement or stress such as cracks, voids, or fluid inclusions. ay(r) is replaced by the

equivalent stress field that would produce a stress-strain field upon a surface surrounding the

inhomogeneity. An example of such a procedure is Esbelby's (1957) static solution for ellip-
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soidal inclusions by an equivalent stress tensor. Gubernatis and Domany (1979) use Eshelby's

results as a quasistatic approximation for the equivalent stresses produced by long wavelength P

and S waves incident upon ellipsoidal flaws. The equivalence relations follow from the

representation theorem of Burridge and Knopoff (1964).

f,u[*,r~o+x') ,, - ,',,ubuJ.d~z' -f, r( z. x')kl [; dz '

g is the Green's function in the absence of the inhomogeneity, g' is the Green's function in the

pretence of the inhomogeneity, f and a j are the scattering equivalent force and stress distri-

butions on the scatterer surface, OR', and o', is the equivalent stress distribution on the sur-

face, OR, surrounding the scatterer.

It has become customary in recent years to expand solutions in terms of force moments

and Green's function derivatives in the form of a Taylor expansion of equation (7).

4-0

where the force moments are defined

f.,f( )(r'ki-C,,) ..... (r. _- )d r," (11)

for a point, f, the centroid of the equivalent scattering force distribution, fj(r'). In the case of
(0)- (3) (3) Hw

indigenous sources with no net torque and no net momentum, yj()-O, and y , (-. How-

ever, the 'pseudo' forces that represent the scattering are only part of the total solution and do

not necessarily comply with these conditions. The zero'th order moment may not be zero and

the first order moment may not be symmetric. Now, it should be easier to deal with the

equivalent stress than with equivalent stress derivatives so by use of Green's theorem once

again we may write the momenta so as to eliminate the derivatives of (SC &u,),

v mf S,.pwud'r+f t,(SCOik~a.J,)d (12)

- f,, 8pe.2u~d3r + f &C,.,,d3r
where ns is the normal vector to the surface R'. If the volume R' is chosen large enough

such that the integrands go to zero on the boundary, then the zeroth order monent simplifies
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I
to

1o) , (13)

We have chosen a coordinate system such that I - 0. Similarly, for x;O 1,

YA .- r$ .p u,,rt, .... ,,.ed (1,

- f 8Ca*11.u,,rk2 .... rd 3 r

The moments depend only upon the inhomogeneity fields, 8p, 8C(, the displacement field, u,

and the strain field, ujj, within the scattering volume, R'. The moment expansion is exact as

stated, but approximations will surely be required for application.

The Fourier IYransform Approach

We may compare the solution given by equations (10) and (11) with another formalism

used in the fields of electromagnetic and quantum scattering. This formalism will be referred

to as the Fourier transform approach, and requires the use of the far-field approximation. We

will let our Green's function be that for an isotropic homogeneous elastic whole space for

Ir>> Ir'il so that we may write

#,j(r,r') = Z (r,r') + 85(r,r') (15)
i rr')-" rrj4,aZ

Ir, r'I - r I . 2)I * ar-ka( r') )

(rr0 Ir-r'4ppo p(k)r- (*)

where i is the unit vector in the direction of r, and k., k are the P and S wavenumber vectors.

The far field scattered wave is

uI'r) - fS,,.6 pu.,,'- c.,u,. u. P dY' (16)
+ f ,t,,2sp I,j - c ,.., , '.

Ignoring all terms of order (1)2, or higher, in gu,* equation (16) becomes~r

,u,,r) - jI,(k.U)S(,) + f,(k,,)S,(r) (17)

where k. - k. , kI - ko , and

)j(kt,.) - f,. .2Spuj - W8CAjuJ.. V(-,,( r'))d'r' (18)

We recognize j.?(k) u the 3-D spatial Fourier transform of the equivalent scattering force
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distribution. The results of equations (17) and (18) are equivalent to the results of Oubernatis

et al (1977), generalized from a homogeneous scattering body to a general body.

In order to see the connection of equation (17) to the moment expansion of equation

(10) we expand e'q(jk'r) in a Laurent expansion within the integral of equation (18), k - ki,

exp()r') - i (19)

.(J) - j (-k) r , ,(rr'. r'k dr' (20)

We recognize the integral in equation (20) as the moment, yj)...k., and note that in the far

field

I1J-, ...k', (r,r') w (-1k) " • k Xr,r') (21)

where ,k' represents differentiation at the source point, P'. The far field Green's function is

symmetric; gj, k , - I., Consequently we can write

Alp) = + (k) (22)
T.I R) - ".. ..k 0 + 9 ( r)]' ..V

ur) - .(1/n') - ( ).. .•Jkl * *, ...r k,( )

The first two expressions are approximate; they contain only far field terms while the third

expression could contain all terms if desired. Furthermore it follows that the first moment

terms (n-0,1) are equivalent to the tong wavelength approximation (ka< <I, a the scatterer

scale length) where

k) -- u.f ap dr' + 0&,tu.u . (23)

exp(-ikor')l , and um and uj., are nearly constant over the integration volume for

kor'<< 1. The Rayleigh (long wavelength) and far field approximations then yield

uf u,2f8pd2P's#u(r, (23)

- IaU,48Cjaad'r'(#t'k. +

- -I5UpOfsp ra d'(s~k. + #:5kO).

This form for the scattered field has been used by Knopofl (1939), Miles (OW), and Ouber-

natis st al (1977b,c), usually in conjunction with the Dom approximation. u a The ho
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term of equation (25) has often been ignored since it contains an additional power of frequency

over the first term involving 8p.

The first degree moments are long wavelength limits of scattering strength. The higher

moments contain information about the orientation of the scatterer and its shape and sym-

metries. Care should be exercised, noting that the nth term of the expansion is proportional to

(ka)'n- whre a is the characteristic size of the scatterer. The expansion may converse slowly,

or not at all for high frequencies. In the long wavelength limit the moments (n 1) become

W.. 2 f Bpr' r , dar '  
(26)

- U1,,f8CA,1 ,.r', 2 ." r'k3dr'.

The Forward Scattering Theorem

Gubernatis et al (1977a) showed that the optical forward scattering theorem may be

extended to an elastic body in a whole space if the interference between converted waves is

accounted for. The scalar forward scattering theorem states that the total cross-section of the

scatterer (integrated over all scattering directions) is proportional to the phase delay of the total

field observed in the forward direction. This theorem is of great importance because the for-

ward direction phase delay is often easier to measure or compute than the total cross-section

integrated over all directions. The case of elastic waves in an isotropic whole space requires an

additional term from the interference of scattered P waves from incident S waves. The far-field

scattered P and S waves are given by equations (22) and (21) as

US- A,()erp(Ik.r) + B,()exp(ikpr) (27a)r r

In terms of moment expansions A() and B() are given by;

Aj( - 1 Z(lln)(k) , ... ?,t.j...() (27b)
A,(p) - a A,..k

B,() - ,, '1/ (&)9ak ... N(SU-IPJ)7(4a (27)

The incident P and S plane waves are of the form

ul,- aSi,e (kx) + b,vW(*pxj) bi-O.



123

We define Ai,(G)

A'(9) - d -.fo 'd A,(0.0),

where 0 is the polar angle with the x, axis and # is the azimuthal angle in the xa, x3 plane.

The theorem as stated by Gubernatis et aL (1971a) is that the total normalized scattered

power, o,(j) is

Orn ° - f dnr24,CWuj'u; (21a)

where P is the incident power, f dfl is the integral over the total solid angle and a, is the

total cross section,

a' ()a*+ a~jt(9) b; + h(Ob;
o,,(w) - 4v]mai[O) - 4w lmaaj2 (O)a " atat ( + 01 b (  (28b)

cos(9) - kdk, The 20 cone describes the surface where interference between the scattered P

wave and the incident S wave is constant. A similar cone for scattered S waves interfering with

incident P waves does not exist so long as a>P. Anisotropic media with psuedo P and split S

waves would have additional terms corresponding to similar interference cones.

If we examine equation (28a) for an isotropic elastic whole space then upon substitution

of equations (27a,b,c) we find the total scattered power may be given as an expansion of

moment moduli and integrals over the radiation patterns.

/- fdna aplAIl + fdfl 0.-PpII (2k)

If we examine the expansion of the integrals with equations (27bc) then we will encounter

terms like

T. J'k ..... k 2

.f.J O ...... W

For some decompositions of V1) and , ") the integrals are given in Appendix A.

Fowa, e versweo of IP-to-S mader the aeam Oplnelmtonm

Under what conditions can we obtain P-to-S conversion in the forward direction? If the

incident plane P wave is given by,
Ul

o0
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Vi° - anjeV(*k.xj)

then we must Set a non-zero radiation pattern for some term of the expression for the scattered

S wave;

+,(, Vi,?r°(8U-rj,)s(-L)S+ () j( ,,S

+.

The first term requires for j-2, or 3 that .VjVyl. The requirement for the second term to be

non-zero is that the principle axes of yu") do not coincide with the xn axis. Examination of the

form of 0,

y 0 ) .2-cf8p u, d3r

makes it clear that without strons scatterinS 72 - V3 - 0. If the scatterer is nonsymmetric,

even under the Born approximation, the first order moment may be of the form,

Y (t).*2f8PUjx'd~r - fscW4,jdir
- (a.bj + ajb,)+cu

where a or b (aob-0) have a component in the x direction. Consequently, under the Born

approximation, the zeroth order density perturbation does not produce P-to-S conversion while

the first order elastic perturbations may. If the elastic constants are isotropic, then

- uPk)f aC1 ,1 ,,.

-ua(ik.)f(8,k 8,+2 8,)Jdr

The first order moment contributes forward P-to-S converted waves only if the scatterer is

nonsymmetric about the x axis. Certainly if the elastic constants are anisotropic, then even a

symmetrically shaped scatterer may convert P-to-S waves in the forward direction.

The Gausslan and Exponentiul Scattas

Let the density and elstk constant perturbations be proportional to an exponential distri-

bution,

Spex(-rle), SC4WeW(-r/).
Then the first few moments under the Ion wavelenah and Born approximations are



VI(°'-Swa3*)Ilp (9)

0YU )--lwa3uI,.8Cw,,

y )-32 aS 2 ,up.8p

Or if the scatterer is assumed to have a Gaussian distribution

apexp(-r 2/a2) SCtw exp(-r 2/ a).

Again, given the long wavelength and Born approximations, the the first few moments are of

the form...

Yv0)-aw I 12,,U8p (30)

(2),53 3 /2 2- --
(3 e. .1 1/Ir w o ,8u~

41r.
if k- I- m-n,

- if (k-lodr-n, or ,k-mw1I-n, or k-nid m-I,
1 uotherwise, zero,

M ) 8C U . L5 0 , t15 2  t , as (4)1

The Ellipsoidal Scatterer

Ellipsoids have often been used as models for elongated inhomogeneities. The long

seismic wavelength compared to such geologic lenslike bodies makes the Rayleigh approxima-

tion particularly appropriate. The moments for a homogeneous ellipsoidal scatterer with axes

(a,ao3) in the x y z directions has moments of the forms

V(0)m '4 IA02W (31)
V ,r m j , ta2ay ,,u ()

yi 13.a- 1,eaya2 a3U.8,,, CAM

7jy . -'S ta ea 3lS ,..n,-S1.. l, a*,) u,.8 C.m

Since the higher order terms decay so rapidly for ka<<, density Contrasts hive little

affect on am directional properties of the scatterer for long wavelengths, The equivalent sum
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due to elastic moduli contrasts are the dominant source for any anlsotropic scattering. For

example, consider a homogeneous sphere with a difference in shear moduli between the host

medium for shear in the x3 direction; Curj-yCz /28C33,mre. If no density contrast

exists then the first moment of significance for an incident P wave with wavenumber vector k

is,

If. k)- -*1 V4 (8J3 + & 10

P waves traveling in the x1 or x2 directions are unaffected by the scatterer. Without an aniso-

tropic set of moduli, a homogeneous inclusion can not be responsible for Rayleigh scattering.

Trade-Offs Between Shape, Inbomoenelty, and Anieetropy

Although the ellipsoids and Gaussian scatterers are convenient models of voids, cracks,

and defects a strongly inhomogeneous scatterer such as a partially filled void has some interest-

ing properties. Consider the case of a sphere with two hemispheres of different properties,

8p I aC) ,z<0, and

&p2 aC ,., ,:>0.
8P-(8P I+P?)12, Ap-(8pl-pP?), 8C -(80+e )12, A C-(0C-8C2 )

The differential motion of the top and bottom of the sphere even under the long wavelength

and Born approximations will yield equivalent stresses that produce scattered S waves in the

forward direction from incident P waves.

J(°)- -,,3 J2UA (32)
vYjk a'u.2(Aap)ajfuj - 1. 03

+

+1 -8,,S,I]Aap + -r~u,~l4

33

_ S ,

+ I 8,34(p. as)+. ASCpq
+ 4 ,,,ana .t a,,,a r,,-2a 31.a

241
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Clearly a trade-of exists between shape of a scatterer, an inhomogeneous scatterer, and

an anisotropic scatterer. For example, the parially filled sphere has moments resembling those

of a homogeneous anisotropic ellipsoid. Similarly, a homogeneous sphere filled with anisotropic

material may resemble a homogeneous arisotropic ellipsoid. However, an anisotropic or inho-

mogeneous scatterer can not be generally modeled by a homogeneous scatterer of arbitrary

shape. For example, a penny shaped crack, void, or fluid inclusion exhibits anisotropic

behavior and can not be modeled by a homogeneous scatterer of any shape.

The Randomly Inbomageneous Scatterer

Suppose the density and elastic perturbations within the scattering volume can be con-

sidered random. The random fields are defined by the statistical moments where <bp > ,O,

<8C>-O, and R,, -<8p(r)gp(r')>, Rcj-<8CSC>, R,,-<8pgC> are their spa-

tial auto- and cross-correlations of the perturbed density and elastic fields. The expected

moments are given by,

<vyfO)>.m 2f <8pu,> d'r (33)

( - = f <8apu,r, >d r- f$< 8CI n ,, , mrk •• r,.> d3r

The expected scattered field, < u,'>, is given by an expansion of equation (10) with the

moments replaced with their expectations. The moments for a centered random field will be

zero in the Born approximation. The variance of the scattered field for < as> -0 is given by

< U' !/(.>,M9)< -Y> gt
ph, .. PfA . in . . -lA

If we ignore the cross component terms (ij) then we have

< I u,12>-1i/()< lyk,,..1.2> Crosu moent am (34)

The cross moment terms may be significant, but we will presently examine only the main cone-

lation terms.

< ;v;I21>-Ws< f spuis'r, f SPU'I*r 2> MCI(3:

.£ osj
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< I 2)l2>--'.cf p.,,,iui f'sp;,,.",'r .ot

+ <f$C&,u,..r, fac,,u;.,r 2 >

+ 2Re(< fapu r, idr, f cig.uZ.,I'r2 >)

If the displacement and strain fields are uncorrelated with the random inhomogeneity fields,

<IY) 12>= 04fdSr'uIjI2fRp(r)idr (36)

< IvI722>=4.'fd.,IruIfR,,(r)r2dr

+ f d~,'uim ;J fRCC.-&A(r) d'r

+ 2Re(fd*r'UUJRAC.,rkd4r)

In the long wavelength approximation

< IyJ0)12> =C41 u1I2f d'rf Rp,(r,r)dr (37)

+ U..u;Jdr'fcc. (r,,r,r

+ 2Re(uuJd3r'fRc¢u(r, r)rk dr)

The relationship between the moments of a distribution and its derivatives of its Fourier

transform can be used to facilitate the computations. Following Bracewell (1978) we write

VA, ... t. - f ,,t, • • • ,,],(,),+ d.(3)
4!") ... -'. (0)

(-2v )"

where .f ;)t. , (0) is the nth order partial derivative of the 3-D Fourier transform evaluated at

k-0. Since the auto- and cross-correlation are Fourier transforms of the auto- and cross-

spectra, the nth order moments may be quickly interpreted.

f R,,(r)d'r - Is (0)Il2
f R,,(r)r d3r _ l. 08(0)

f R,.(r) r/dr- I *,8O)

(2p,)2 Oki

In the can of a Guusin random field for density and elastic moduli with characteristic

lengths ai,j2, 3,

h (r)- ,mI-w(,P,,P+,i/ei+,rI/l)
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R..r) < > ~r) Rc'"<a~l ~),R,,C- <Sp8C>k(r)

V.-4 a a2aJ3f

And the first order terms for scattering volumes, V> > V. , are

<<V1j> W4011Mwlu1211:
it I 1> wlV<8pz>a:,

+ M).U;VV<8Ca> M (39)

+ 2Re(u,ul .uV<8pSC>i,. .j

If the inhomogeneity field is statistically isotropic with Gaussian correlation length, a, statisti-

cally isotropic real elastic moduli leads to

<1-."iz>& ,,'lujI2a,2V<8p 2> + lu1.,i1v<a8, 2>8j, (40)
+ I U,.j+Uj. k12 V<&,&> + 41u,,1j1V<8k8A,>8

Unless <apaC> is imaginary the cross-correlation between density and elastic moduli does not

contribute to the first two terms. We can write down the expected energy radiated from the

random Gaussian scatterer as,

< e> - lmag(r2f dIn ,cu ,u),, /ii (41)
w 21

< P> - -Qp(- --- )11F
2 4wpa-

+ -ap 2kh(1 2E+13D+1 4G)

+ .*) L.. 4I (1f+ID+ISG)

J
t(1) 2> Ell U+ |c2 G

where Di1leg is the equivalent dislocation and G"3dv is the remaining deviatoric part of the

scatterer.

For a P wave incident with amplitude, ft., and wave number vector, k#, the total scattered

power may be computed from equations (41) and

F - V<&P, 10 (42)
E - Ihl (<SA>+2< 2 5>+4<?l J> >2< 2 >) 2



130

D-0

For a plane S wave incident with amplitude vector, ;,. and wavenumber vector k, the total

scattered power may be computed from equation (41) and

F - w4 V< p2> V2

E-0
Dc - JkjY+kt, 1 2V<As2>

Gd - u' ?a,2V<ap 2>

To obtain the cross section and hence the attenuation of the incident wave we require the

normalization of P by the input power, P,

2
1° - [ !aplul2+ Iplvll. (45)

For an incident P wave <o. e>-<P>(u 2ap), and for an incident S wave

<C',s>-<S>(& 2pp). From Twersky's (1964) multiple scattering scalar wave theory for

point scatterers, the attenuation of the effective wave that propagates through a random distri-

bution of the point scatterers with density p, is given by, K.f - k0(+;). ;-2w0/kj, and

lmq(;)-paJ2. From equations (41), (42). and (43) we can calculate the attenuation of the

effective P and S wave, lImq(K, 1 ), for a random distribution of random scatterers. The

effective P and S wave turbidity coefficients r P+F PS, and r ss+F V are given by

rPPU2- p,(4- 2 )2[1 1F+(1 2E+ID+IhG)k.2]
4wpa 2

r"u 2 - pA )[IF+(E+ID+IG)kji

and

F5'v 2 . PSI-( I )IF+( 2E+ID+ 4G)k.2I
0 4wpa2

rsvl - p,(--) 2IsF+(I6E+I7 D+IsG)kj]

with F.ED, and 0 given by equations (42) and (43) respectively. Care must be exercized in

evaluation of Re(K./ I ) since the forward scattering intensity 0 contains a term due to the

interference of P and S waves not evaluated In the forward direction. The scalar theory of

Twersily (1964), and Keller (1964) for the effective wave retarded by interaction with point
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scatterers does not contain such a term.

SUMMARY

A formal method for characterization of scatterers by a moment expansion of their

equivalent pseudo forces is defined in equations (10) and (11). The method is shown to be

equivalent to the form factor, or Fourier transform approach in the far field as described in

equations (17) or (27a,b,c). The total scattered energy may be obtained by integration of the

radiated strain energy (equation 28c), or from the forward scattering theorem (equation 28b).

Forward conversion of P-to-S wave energy under the Born approximation is possible if the

scatterer is nonsymmetric or anisotropic. The first few terms of for the Gaussian, exponential,

and ellipsoidal scatterers are given in equations (29), (30), and (31) respectively. Trade-offs

between shape, inhomogeneity, and anisotropy exist, but a general scatterer may not be

modeled by a homogeneous scatterer of arbitrary shape. The randomly inhomogeneous

scatterer is treated with attention to the attenuaton experienced by plane P and S waves pro-

pagating through a distribution of such scatterers.
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CCS PROGRESS REPORT

one of the by-products of DARPA supported research at Berkeley

over the past few years has been the accumulation of a substantial

library of digital seismograms from explosions and earthquakes. These

data are primarily broadband and primarily recorded at near and

regional distances. Considerable effort has gone into archiving these

data so that they might be readily accessible for general discrimination

research.

A major problem with this seismic data library has been that of

providing efficient computer access to the data. A related problem is

that of providing the computational power necessary to analyze the data

once they have been accessed. Problems such as these have led us in the

last year to establish a Computational Center for Seismology (CCS) at

Berkeley.

The concept of CCS began to take shape in late 1981 and developed to

the stage of a joint proposal in June of 1982. The principal investigators

were T. V. McEvilly, S. Coen, L. R. Johnson, and E. L. Majer, who had the

combined affiliations of the Department of Geology and Geophysics, the

Department of Materials Science and Mineral Engineering, the Seismographic

Station, and the Earth Sciences Division of Lawrence Berkeley Laboratory

(LBL). Start-up funds were provided by developmental funds of LBL and
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