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- motion near explosions and earthquakes; 3) study of the relative isotropic
J“)and non-isotropic components of explosive sources through the application of
moment tensor inversion techniques; 4) analysis of regional surface wave data
in order to obtain models for the velocity and attenuation in the crust; 5)

archival of near and regional data sets which are of value to the general
discrimination problem.

Research on elements)l, 3, and 4 above is described in the technical
report for the first yeay/ of this grant. Some of these results have already
been submitted for cation and should appear soon.

Resear €lement 2, the analysis of coherence of ground motion, is
desc;ibed’iﬁh;ections II, III, 1V, and V of this report. This work is
prifiarily the work of Keith McLaughlin and forms part of his PhD dissertation.

Section II describes the analysis of array data recorded 1.9 km from the
explosion Liptauer in Yucca Valley of the Nevada Teii~f:::;>bCoherency declines

gradually with both inter-station spacing and frequency. Byoadband correlation
across the 400 m array is greater than 78% for the hori al components and
greater than 64% for the vertical components. ™ =

>Section III presents a new way of looking at frequency-wavenumber spectral
estimation with arrai‘:i:zé;*The differences between the conventional

beamforming method of estimgtion and high-resolution method of estimation
is quite clear when ex ed in terms of the eigenvalues of the cross
i spectrum. The eonvéntional method uses primarily the maximum eigenvalues
wh%fe the high-resolution method uses primarily the minimum eigenvalues.
“>Section IV examines the problem that exists when the velocity structure
is complicated to the extent that it can be considered to have a random
component.\ This gives rise to a random component on the seismogram which is
usually refbrred to as signal-generated noise or coda. This random component
can be sepgtated from the deterministic part of the seismogram and treated
volution of the source with a stochastic Green's function. Estimates
stochastic Green's function and its variance are useful in inferring
bias and uncertainty in estimated source functions.

“>Section V treats the problem of scattering of elastic waves by small
inhomogeneities. The solution is expressed in terms of a moment tensor
expansion of the properties of the scatterer. his approach is convenient
for examining the trade-offs between shape, heterogeneity, and anisotropy of
scatterers. It reveals that a general scattg¢ren can not be modeled by a
homogeneous scatterer.

Progress on element 5 of the research program is described in section VI.
In order to provide better access to archived seismic data and facilitate
computations with these data, a Computational Center for Seismology (CCS)
has been established. The organization and initial efforts of this center
are outlined.
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SUMMARY ]

The research supported by this grant is directed toward tn~
general problems of detection and identification of underground
explosions through the study of radiated seismic waves. Particular
emphasis is on the collection and analysis of broadband seismic data
alL rear and regional distances. Specific elements of the research
program are: 1) recording of broadband data from events at the Nevada
Test Site; 2) analysis of the coherence of ground motion near explosions
and earthquakes; 3) study of the relative isotropic and non-isotropic
components of explosive sources through the application of moment tensor
inversion techniques; 4) analysis of regional surface wave data in order
to obtain models for the velocity and attenuation in the crust; 5)
archival of near and regional data sets which are of value to the general
discrimination problem.

Research on elements 1, 3, and 4 above is described in the technical

report for the first year of this grant. Some of these results have already
been submitted for publication and should appear soon. *
Research on element 2, the analysis of coherence of ground motion,

is described in sections II, III, IV, and V of this report. This work

is primarily the work of Keith McLaughlin and forms part of his PhD

dissertation.




Section 1I describes the analysis of array data recorded 1.9 km
from the explosion Liptauer in Yucca Valley of the Nevada Test Site.
Coherency declines gradually with both inter-station spacing and frequency.
Broadband correlation across the 400 m array is greater than 78% for the
horizontal components and greater that 64% for the vertical components.

Section III presents a new way of looking at frequency-wavenumber
spectral estimation with array data. The differences between the
conventional beamforming method of estimation and the high-resolution
method of estimation is quite clear when expressed in terms of the
eigenvalues of the cross spectrum. The conventional method uses primarily
the maximum eigenvalues while the high-resolution method uses primarily
the minimum eigenvalues,

Section IV examines the problem that exists when the velocity
structure is complicated to the extent that it can be considered to have
a random component. This gives rise to a random component on the
seismogram which is usually referred to as signal-generated noise or
coda. This random component can be separated from the deterministic
part of the seismogram and treated as the convolution of the source with
a stochagtic Green's function. Estimates of this stochastic Green's
function and its variance are useful in inferring bias and uncertainty
in estimated source functions.

Section V treats the problem of scattering of elastic waves by
small inhomogeneities. The solution is expressed in terms of a moment
tensor expansion of the properties of the scatterer. This approach is
convenient for examining the trade-offs between shape, heterogeneity,

and anisotropy of scatterers. It reveals that a general scatterer




can not be modeled by a homogeneous scatterer.

Progress on element 5 of the research program is described in section

VI. 1In order to provide better access to archived seismic data and

facilitate computations with these data, a Computational Center for

Seismology (CCS) has been established.

efforts of this center are outlined.

The organization and initial




ANALYSIS OF ARRAY DATA FOR EXPLOSION

LIPTAUER IN YUCCA VALLEY

ABSTRACT

The explosion Liptauer (M; 4.7, BRK) in Yucca Valley, was investigated with a small
array of accelerometers at an epicentral distance of S source depths (1.89 km). The Yucca Val-
ley site has pronounced high velocity basement relief. A possible significant basement offset
lay between the array and source. Wavenumber spectra, broadband cross-correlation, bandpass
cross-correlation, and particle motion plots were used to explore the nature of the wave propa-

gation.

The apparent velocity of the initial P-wave at the array was very high (exceeding 20
km/sec) for a distance of 1.9 km. Later arrivals on the vertical component show a lower velo-
city of 1.2 km/sec. The S waves at this site and distance exhibit complicated behavior. Three
separate apparent S wave arrivals with horizontal particie motions of distinct SV, distinct SH,
and mixed SH-SV rectilinear are observed. The slowest arrivals however, show no evidence of
lateral refraction. Resolution of the arrival azimuth yor the faster waves is insufficient to rule
out lateral refractions as an explanation of the transverse motions. A deviatoric source as weil
as conversions near the source or at dipping interfaces are likelﬁ causes of the strong transverse

horizontal signals.

The three components of motion can be ranked as radial, transverse, and vertical increas-

ingly incoherent. The decay of inter-station coherency with increasing station separa:ion 1s




most proaouwd upon the vertical component. Broadband correiation of the radial and
transverse components was at a minimum of 78% across the 400 meter array. The vertical
component of motion could be found to reach a minimum correlation of 64%. Bandpass
filtered cross-correlations of the vertical acceleration components show a steady decline in the
interstation coherency with increasing frequency. No pronounced frequency cutoff is evident
with the frequency-dependence of the interstation cross-correlation. The vertical acceleration
signal-t0-noise ratios for the 2.5 second seismogram are less than than 2-to-1 st frequencies

above 10 Hz.

Use of the time variance of the squared modulus (VSM) was explored as a measure of
the spread of the seismic cross-correlation functions. This measure of the cross-correlation
functions was found to be nearly independent of the bandwidth up to 20 Hz and only weakly

dependent on the cross-correlation maxima.

THE LOCALITY

Liptauer was an M; 47 (BRK), (SC m, 4.8) explosion in Yucca Valley
(37.147°,116.082°, April 3,1980,14:00:00.1 UT, surface elevation 1335 m, depth 417 m).
The array of 9 stations was located roughly 5 source depths from the event (1.89 km from sta-
tion 1, see Figure 1). The local geology is depicted in Figure 2 based on reports by Barnes
er al. (1963), and Colton and McKay (1966). The local stratigraphy consists of a layer of allu-
vium over Tertiary tuffs filling a fault-controlied valley of Paleozoic sedimentary besement
rocks. The depth 1o Paleozoic basement is varisble and probably only 150 meters beneath the
array. The tuffs may not be represented directly beneath the array. The Carpetbag Fault scarp
is projected midway between the array and the source. The probable location of the carpetbag
fault can be located by a gravity gradient in the area where the loca! Paleozoic basement
deepens sharply (o the east. P-wave velocities of typical tufl in the area are strongly dependent
upon water content and porosity but expected 10 be between 2 and 3 km/sec near shot depth
(Keller, 1960). The Paleczoic limestones are expected to have P-wave velocities sxceeding 4.5
km/sec.




.~

THE EXPERIMENT

The array of nine three-component force-balance-servo-accelerometers was arranged in a
two-dimensional pattern of nested triangles (Figure 3). One station failed to record and is not
shown in Figure 3. Horizontal components were aligned radial and transverse to the shot
azimuth as in Figure 3. Each station recorded accelerations at 200 samples/scc/channe}. Five
pole anti-alias filters were operated with corner frequencies at either 25 or 5( +»  75¢ indivi-
dual event recorders were triggered by a common signal and common relative 'min? . avail-
able. In Figure 3, the relative arrival times (with respect to station 1) of the P wave are
denoted in parentheses for each station. Average P-wave travel time to the arrey vas 0.73
seconds. The slowness of the initial P wave break was less than 0.05 sec/km. Since such a
small slowness exceeds the theoretical resolution of the array for frequencies less than 20 Hz,
the traces were aligned on the P wave break to remove relative loca! station delays for subse-

quent analysis.

The peak ground accelerations (PGA) for each station are tabulated in Table 1 and the
vertical PGA's are denoted by each station in brackets in Figure 3. The scatter of the PGA's
reflect the variation that may occur in acceleration records over very short distances. In gen-
eral, the transverse PGA's are indistinguishable from the radial PGA values. The transverse
peaks all come from the same coherent transverse pulse. The radial PGA's occur at different

peaks in the records.

Figure 4a,b,c shows the acceleration records for the array. Vertical records are relatively
simple compared to the horizontal records. The transverse and radial components show motion
coincident with the vertical first motion and each station is consistenily positive radial and rega-
tive transverse. The transverse first motion appears to have about 1/2 of the nredorr naat

period of the radial first motion and about the same amplitude.
The largest veriical amplitude ariscs from an artivai 0.4 second foliowing the P wave wih
s period of 1/2 second. This arrval ¢ well developec on the radial (radiil away ' Conpont al

and less prominen: on the uansverse (negative transverse). Z versus R and R versus T
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acceleration particle motions are plotied in Figures SA,B,C, and D. Examination of the ZR
perticle motion reveals that the P-wave accelerstion is retrograde while the horizontal (R,T) P-

wave particle motion has a slight counterclockwise sense.

e A significant signal arrives upon the radial component 1.0 second after the P wave fol-

l;wed By—?’iirge-msmm‘pglf arriving 1.25 second after the P wave. These motions are
clearly seen in Figure S. Be.innin; 1.5 seconds afier the P wave, the radial and transverse
accelerations are well correlated, with correlation of the +R and -T directions. The third
arriva) possesses rectilinear polarization oriented nearly 45° o the R and T components.

These three separate intervals of horizonta! particle accelerations are evident in the 0.5 seco

intervals labeled 1.5 and 2.0 seconds in Figure 5.

If these three separate arrivals are interpreted as S waves then it is necessary to expl
the 0.25 second delay between the apparent SV and SH waves as well as the delay between t...
SH and rectilinear SH and SV motion of 0.25 second. If SH-SV velocity anisotropy is responsi-
ble for either delay, then the velocities must differ by 15% over 2 km. P-10-SV conversion near
the source could be responsibie for the SV-SH delay as well as a source function with delay
between deviatoric and explosive parts. The horizontal P-wave motions are at most 15 degrees
off-azimuth as inferred from the first 0.5 second of R and T motion in Figures SC, and D. If P
and S ray paths are similar, it seems unlikely that the transverse component is an off-azimuth

S-wave arrival with nearly perfect transverse motion. Furthermore, the source and receiver lie

across the strike of the predominani structure and lateral refractions should be nil if the

geometry is truly 2-dimensional.

Representative scceleration spectral amplitudes for a 5.12 second window of all three com-
ponents are shown in Figures 6s through 6i. Vertical and radial acceleration spectra are peaked
between 1.5 and 2.0 Hz, with roughly & slopes below 1.5 Hz. The transverse scceleration
spectra have roughly s o siope below 1.5 Hz. Consequently, the transverse displscement spec-
trs have a 1 slope and do not have & well determined low frequency asymptote. This is in con-
trast to the vertical and radia] displacement spectrs which are nearly flat below 1.5 Hz. A com-




posite plot of transverse acceleration spectral amplitudes is shown in Figure 7. Siopes of 2.0

and 3.0 are shown on the plot for comparison.

The ratios of the acceleration amplitude spectral peaks for this window are R/T=1.3+/-
0.2 and T/Z=2.24/-0.1. The transverse signal is nearly as large as the radial signal while the
total vertical scceleration signal is roughly 1/2 of the horizontal signals. Spectral amplitude
variations between stations are not pronounced below 10 Hz and the spectra of one station
easily overlay the spectra of another. For illustration, the vertical spectral amo.. Lo *aiio's of
three stations are shown in Figure 8a,b,c. The amplitude ratios are nearly flat from 1 to 10 Hz

and become gradually more erratic with increasing frequency.

F-K ANALYSIS

High resolution (HR) frequency wevenumber (f-k) power spectral estimates (Capon
er al, 1969) were made for 8 2.56 second window on all three components of motion at
selected frequencies. The 2.56 second window encloses nearly all the significant signal beginnig
with the P arrival. The impulse response of the array is seen in Figure 9. While the main lobe
of the array measures about 1 cycle/km wide, the aliasing wavenumber is 1bout 6 cycles/km
The sidelobe patiern for this sparse array is particularly troublesome. The missing element of
the array degrades resolution in the source direction and produces fou: protrusions on the main
Jjobe. HR f-k estimates have the advantage over conventional f-k estimates of suppressing

some of these features of the impulse response.

HR f-k power spectra for 2.56 seconds of the vertical, radial, and transverse acceleration
are shown in Figures 10,11, and 12 at 3.2, 4.0 and 5.6 Hz respectively. All plots are the same
wavenumber scale and vary in slowness resolution directly proportional to the frequency. The ]
sec/km slowness circle is labeled at each frequency. Because the records have all teen shifted
to align the P-wave arrival, the center of each plot corresponds to the slowness of the P wave.
The P wave had a slowness less than 0.05 sec/km, therefore the migflocation of the origin of
each plot is at most 0.05 sec/km. The convention used is for signal energy contours to plot at

the azimuth from which the waves came. The azimuth of the shot is




indicated by the arrow on each plot.

The vertical component f-k spectral estimate for 3.2 Hz show an elongation toward the
source azimuth, out to 1.5 sec/km. Such large slownesses would be aliased at 5.6 Hz and
indeed begin to show a wrap around effect at 5.6 Hz. The vertical acceleration records evi-
dently contain a very slow contingent of on-azimuth arrivals as well as faster waves plotting
near the origin. The loss of contrast of the vertical spectral peak above the background from
14db at 3.2 Hz to 8 db at 5.6 Hz continues at higher frequencies. The radial f-k spectra is com-
pact at 3.2 Hz and mimics the impulse response with a contrast of 28 db above the background.
At 4.0 and 5.6 Hz, the radia! spectra are elongated along the source azimuth but are dominated
by the high apparent velocity energy that plots near the origin. The radial component may con-
tain waves as slow as 0.5 sec/km with spectral power 12 db down from the much faster compli-
ment of signal. The transverse spectra are elongated in the direction of the source at 3.2 Hz
but compact and near the origin at 4.0 10 5.6 Hz and at other intermediate frequencies not
shown. The spreads of the {-k spectra perpendicular to the source azimuth are clearly limited
by the width of the central lobe of the impulse response shown in Figure 9. If we interpret the
f-k power spectra as the Fourier transform of the spatia) covariance function then this means
that the spatial correlation function is much broader than the array dimension at these frequen-
cies. The vertical component f-k spectral maximum falls from 14 db above the background at
3.2 Hz 10 only 9 db above the background at 5.6 Hz. This trend continues with increasing fre-
quency implying that the vertical acceleration field has declining coherency with increasing fre-

quency.

INTER.STATION BROADBAND CORRELATIONS

1t is necessary 1o explore the coherency of the seismic traces without applying phase shifts
corresponding 10 specific siownesses and azimuths required to align the records, becasuse the
record windows used enciose more than s single arrival with well determined slowness. To
sccomplish this broadband sccelerstion cross-correlations were computed for the same 2.5
second window used in the f-k analysis. Exampies of the cross correlation functions can be
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seen in Figures 13a,b,c. The maxima of the cross-correlations are plotted in Figures 14a.b.c
and 15a,b.c. The variance of the squared modulus (VSM) is also listed in table 2 as a measure
of the width of each correlation function. A discussion of the VSM is given in Appendix C.
Best lapse rates (distance at which the correlation falls to 1/¢) for the transverse and radial
directions were fit 10 the data and the correlation contours are plotted for comparison with the

data in Figures 15a,b,c. The lapse rates across the wave front were 2600 m, 6800 m, and 5200

m for the vertical, radial, and transverse components respectively. In the radial direction, the
lapse rates were 672 m, 4000 m, and 1600 m for the vertical, radial and transverse components. ]

In contrast to the Colwick experiment, the Liptauer array data are very coherent over the 400

meter array. The minimum correlations for the three components are 0.64, 0.84, and 0.78 for
the vertical, radial, and transverse components, respectively. The decay of correlation with sta-

tion separation is much less pronounced than was observed for the Colwick array where a simi-

lar time window might exhibit correlations of 0.5 for stations separated only 400 meters. The
two-dimensional character of the correlation is strongly developed, showing much different

decay rates for the two orthogonal directions.

The inter-station correlations for different components can be seen in the scattergrams of
Ry maxima versus Ry maxima and Ry maxima versus the R; maxima (Figure 16). For any
given inter-station pair , radial components are better correlated than the transverse com-
ponents, and transverse components are better correlated than the vertical components. R is

more coherent than T, and T is more coherent than Z, while the total R signal strength is

greater than T, and similarly the total T signal strength is larger than Z. Ratios of the total sig-
nal strengths, as measured by the spectral peaks at 1.5 Hz, are R/T =13 and T/Z =2.2. This
consistency between components suggests that lack of coherency is due t0 a common noise sig-
nal on all three components. The noise signal would become less correlated with increasing
separation between station pairs and give predictable ratios of relative signal-to-noise between
the three components. We can define signal-to-noise power ratios from the correlation func-
tions,
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1 Rm—] R 1
1+ (Np/Sp)? 1+(Ny/SP? "% 14(Nz/S9)?

where Sp/Np, St/ N7, and Sz/ Nz are the radial, transverse, and vertical average signal-to-noise

Rp=

ratios. The "noise” is by definition the signal component not common to the two signals being
correlated. In Figure 17 the inferred values of these signal-to-poise ratios are plotted for radial
versus transverse and transverse versus vertical for each station pair. If we assume the the
errors in the inferred signal-to-noise ratios are distributed evenly for radial, transverse, and
vertical signals, then ratios of (Np/Sp)%/(Ny/Sy)% and (Ny/Sp)¥/(Nz/Sz)? are (0.81)? and
(0.64)2 respectively. This is consistent with the spectra! ratios of R/T and T/Z of 1.3 and 2.2
near 1.5 Hz. The R and T components have nearly equal noise component, and the vertical

component has roughly 1/2 as much noise power as the horizonta! components.

FREQUENCY DEPENDENCE OF SPATIAL CORRELATION

Bandpass filiering of the vertical acceleration cross-correlation functions was performed
for frequency bands of 1.25-2.5, 2.5-5.0, 5.0-10.0, and 10.0-20.0 Hz. The maxima of these
cross-correlation functions are listed in Table 3. Examples of the bandpass filtered auto- and
cross-correlation functions are shown in Figure 19A,B for stations 8 and 9 and 1 and 7. The
cross-correlation functions of stations 8 and 9 are more symmetric than the correlation func-
tions of stations 1 and 7. Specificly, the 5.0-10.0 Hz cross-correlation function for stations 1
and 7 (Figure 19B) is biased toward positive time delays. Stations 1 and 7 have the largest
range separation of any station pair for the array. This asymmetry presumably corresponds to
the propagation of the vertical waveforms. This asymmetry is not as prominent at the lower
frequencies. Atiempts to quantify such an observation with statistics such as the centroid of
the modulus or square modulus of the correlation function, or the location of the maximum
peak were not fruitful. One reason for this is the uncertainty of the correlation peak, or peaks,
expressed by the variance of the squared modulus is discussed in the Appendix.

The maxima of these bandpass filtered correlation functions are plotied in Figure 19.
Maximum correlstions are all above 0.75 for bandwidths below 2.5 Hz and above 0.5 for




bandwidths below 5.0 Hz. The data fsvor a gradual decline of correlation with frequency rather

than an abrupt decline as seen at the Colwick array. Al correlations have fallen to 0.67 or less
above 10 Hz. This would correspond to a signal-to-noise ratio below 2-to-1 at this bandwidth of

10 10 20 Hz.

DISCUSSION

The lack of simple “layer-cake" structure in Yucca Valley surely has profound implications
for use of acceleration records such as those at the Liptauer array. Of rarticular interest is the
origin of the horizontal accelerations observed at 1.89 km from an m, 4.7 explosion. 1t is not
clear from the data available, that the coherent transverse signals require a deviatoric source.
The transverse component is very coherent across the array, less than 1/4 of the 2.5 second
seismogram can be interpreted as noise. The predominant transverse signal begins with
apparent SH motion followed by particle motion in phase with the radial component. The
transverse slowness spectra below 6 Hz is consistent with on-azimuth arrivals at high apparent
velocities. Only the initial transverse motion can be explained as P-SV motion at 10 to 20

degrees off-azimuth with the source.

The simplest explanation for the transverse pulse is SH wave generation near the source

arriving at the array with a high apparent velocity. The low frequency amplitude spectra of the

transverse signal differ from the radial and vertical spectra (Figures 6 and 7). The transverse

component has s disproportionate lack of low frequencies below 1.5 Hz compared to the radial
and vertical components. With uncertainties in the local propagation it is not possible to
address the possibility that the SH wave generation has a different frequency dependence than
the P-SV wave generation. If the SH-SV delay of 0.25 seconds were taken for face value, it
might be argued that the source of the SH waves is delayed with respect to the P-SV source.
However, it seems likely that the initial radial signal is a P-to-SV conversion near the source.
The remaining rectilinear S-wave motion polarized 45° (o the R and T directions and delayed

0.25 sec to the SH arrval complicates the picture. The avalible data can not establish whether

this arrival represents S-wave motion with a separate ray path, anisotropic motion, or

R
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conversion in the high velocity basement. F-k analysis shows that slow arrivals are on azimuth,
but does not have sufficient resolution to rule out steeply incident off-azimuth S waves. The
high apparent velocities of the radial and transverse components (Figures 10,11, and 12) as well
as the small vertical amplitudes (Figure 4) indicate that sieeply incident S waves from the base-
ment are important. The structural inhomogeneity of the Paleozoic/Tertiary contact beneath
Yucca Valley (Figure 2) makes any of these interpretations uncertain. The deployment of an
accelerometer array in Yucca Valley has shown that the near-source seismogram can possess a

wealth of complexity.

Broadband signals at the Liptauer array were very coherent and consistent with the model
for a common noise signal of equal size on the radial and transverse components while 1/2 as
large on the vertical component. This noise signal must have a correlation length exceeding the
array dimension of 400 meters up to 6 Hz, otherwise the spatial cross-correlations would reach
an asymptotic level within the array. Spatial correlation declines steadily with increasing fre-
quency. The spatial and frequency dependence of the vertical cross-correlations have been
combined in Figure 20A. Some suggested contours are plotted. For contrast, a similar plot of
the Colwick data is shown in Figure 20B. The primary difference between the two cases can be
seen at the lower frequencies. The decline of coherency st the Colwick array had a sudden
onset near S Hz, while the Liptaver data favors a more gradual decline in coherency with

increasing frequency.
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TABLE 2: BROADBAND CROSS-CORRELATION MAXIMA AND VSM

ppir Z R T Z(VSM) R(VSM) T (VSM) separation

1,2 88 97 93 23 % T 20 100

1,3 91 97 9 A6 .26 21 100

1,5 81 93 91 32 .26 .19 . 200

1.6 69 95 .87 46 .26 .22 200

1,7 10 88 .78 34 24 .20 346

18 83 9% 9 27 .26 .20 200

1.9 84 95 87 27 .26 17 173

23 99 92 9% .26 27 .20 100 j
25 92 95 9 .18 27 18 173 j
26 15 98 92 37 28 .20 100 ;
27 74 9 .84 .26 .26 18 265 ‘
28 .86 97 96 16 27 19 173

29 88 98 93 .16 27 15 100

3 81 9 8 34 28 A9 265

J6 64 95 .86 .55 29 22 173

3 65 .34 80 Al 29 20 265

38 9 98 97 28 2 20 100

39 8 97 483 1)) 28 28 100

56 .78 9% 9N 38 29 29 200

557 M S 3 .30 28 16 400

5.8 74 92 91 21 28 18 346

5.9 82 94 89 .20 29 13 265

6,7 95 92 93 27 pi | 18 200

6,8 67 95 93 3N 29 19 200

69 B8S 98 97 .29 30 16 100

78 65 .84 88 .24 23 17 200

79 81 3838 93 22 29 14 173

89 95 98 M A7 28 15 100




TABLE ): BANDPASS CROSS-CORRELATION MAXIMA AND VSM (secd
station

pair
1.3

1,5
1.6
1,7
37
5.6
8.9

1.25- 2.5-
25 S0
9 9
39 M
35 .8
34 32
9 55
45 .55
85 .54
35 40
J6 .53
42 4
1.00 .68
371 5
96 .80
16 .27

5.0
10.0
.76
.59
.56
.55
32
52
29
53

4
19
38

17

10.0- broad-
200 band
33 91
.56 36
43 82
- 32
42 69
43 46
52 43
34 34
34 .65
M 41
.66 18
46 38
67 91
51 A7

d
(m)
100
200
200
346
264
200

100




FIGURE CAPTIONS

Figure 1. Location of Liptauer and the accelerometer array. The Carpetbag Fault trace is indi-
cated.

Figure 2. Diagrammatic cross-section of the local geology through the array and shot point of
Figure 1.

Figure 3. Array geometry, definition of radial (R) and transverse (T) motions, and direction of
the shot are indicated. Relative P times and vertical peak accelerations in g's are
annotated in parentheses and brackets respectively.

Figure 4A,B.C. Vertical (A), radial (B), and transverse (C) acceleration traces recorded at the
array.

Figure 5A,B,C,D. Acceleration particle motions for (A,B) Z versus R, and (C,D) R versus T
for the 8 stations of the array. The Z versus R plots have an exaggeration of 50% in
the R direction relative to the Z direction. The "s* marks the beginning of the
record. Each 0.5 seconds of record is portrayed separately. Records do not start at
the origin due to small D.C. offsets ini cach recording.

Figure 6A-1. Log-log acceleration spectral amplitude plots for the 2.56 seconds of data on each
component of motion.

Figure 7. A composite plot for the 8 transverse acceleration spectra. A 2.0 and 3.0 slope are
shown for comparison.

Figure 8. Spectra! ratios of vertical acceleration spectra for stations 3,5, and 6.

Figure 9. Wavenumber impulse response for the 8 ststion array. The main lobe is about 1
cycle/km wide and the aliasing wavenumber in most directions is sbout 6 cycle/km.

Figure 10. High resolution (HR) frequency-wavenumber (f-k) power spectral estimate for the
Z.R,T components at 3.2 Hz. Contours are 1,2, or '3 db with respect to the max-
imum. The 1 sec/km slowness circle is indicated and the shot azimuth is indicated
by the arrow. The convention used is for the arriving energy to plot at the azimuth

from whence it came. The Z, R, snd T maxima are 14, 28, and 12 db above the
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background respectively.

Figure 11. HR f-k power spectra for the Z,R,T components st 4.0 Hz. The Z, R, and T max-
ima are 14, 16, and 18 db above the background respectively.

Figure 12. HR f-k power spectra for the Z,R,T components at 5.6 Hz. The Z, R, and T max-
ima are 9, 16, and 18 db above the maxima respectively.

Figure 13A,B,C. Broadband acceleration cross-correlation functions for stations 3,5, and 8 for
(A) the Z component, (B) the R component, and (C) the (T) components. The
maxima of the normalized correlation functions are indicated.

Figure 14A,B,C. Cross-correlation maxima piotted versus inter-station separation. Best fit
radial and transverse exponential decay curves are plotted for comparison.

Figure 15A,B,C. Cross-correlation maxima plotted versus transverse and radial inter-station
separation. Best fit exponential surfaces are contoured for comparison.

Figure 16A.B. A.) Radial versus transverse correlation maxima and B.) Transverse versus
Vertical correlation maxima. Each point represents a station pair.

Figure 17A,B. Inferred signal-to-noise ratios for the A.) radial versus transverse and B.)
transverse versus vertical components. Each point represents a station pair from
Figure 16. The best fit siope is indicated. The "noise” is defined as the uncommon
signal between the two stations.

Figure 18. Maxima of the bandpass filtered cross-correlation functions for vertical acceleration
2.56 second window from Table 3. Station separations are indicated next to the plot-
ted points in meters.

Figure 19A,B. Bandpass auto- and cross-correlation functions for stations A.) 1 and 7, snd B.)
8 and 9. The normalized maxima of the cross-correlation are annotated and the
inferred width estimated from the variance of the squared modulus (VSM) is shown
as & horizontal bar and labeled in units of seconds.

Figure 20A,B. A.) Maxima of the Liptauer arrsy vertical acceleration cross-correlation functions
contoured on & plot of inter-station separation and frequency bendwidth. B.) A




" comparison plot of the cross-correlation maxima for the Colwick array data.
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APPENDIX

VARIANCE OF THE SQUARED MODULUS OF THE
CROSS-CORRELATION FUNCTION AS A MEASURE OF

THE CROSS-CORRELATION FUNCTION

The width of a cross-correlation peak is dominated by the cross-spectral bandwidth and
may not represent the true uncertainty of the location of that peak. The half width at half max-
imum (HWHM) is often cited as the uncertainty of the optimum cross-correlation. Because the
HWHM represents the bandwidth of the cross-spectrum and not the net width of the correla-
tion function, another measure is desired. For example, two adjacent peaks of nearly equal
height may be separated by‘ 2 deep negative minimum, and the widths of the peaks do not
speak for the uncertainty implied by their mutual adjacency. Bracewell (1978) suggests that the
mean square departure from the centroid as a measure of the spread of a correlation function

with zero mean. The variance of the squared modulus (VSM) is defined as

1, 2
,LEIR(')' di—| t|IR(0)|%ade

ﬁn(:)l’m

where R(t) is the correlation function and frlR(c)I’dt is the centroid of the squared modulus.

The VSM is tabulated with the correlation maxima in Tables 2, and 3. The correlation of the
VSM with the correlation maxima for the vertical component acceleration is shown in the scat-
tergram of Figure Al and with the station separation in Figure A2. No separate measure of the

quality of the correlations is available, but if the VSM was to be a useful statistic we would

expect it to show the same systematics as the correlation maxima. The VSM are nearly con-
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stant for a given component and independent of the bandwidth as demonstrated in Figures
9%, and B . These equivalent widths of the correlation functions are sh-- a3
bars over the maxima of the auto- and cross-correlation functions in Figures 19A and B

. The use of this measure of the equivalent width seems doubiful as a measure of
the uncertainty of the maxima locations. Windowing of the cross-correlation functions about
(+=ir centroid with a window of the specified width would however capture the significant posi-
1ve and negative correlations and may be useful if such an estimate of the correlation spread is

Jeared

REFERENCES
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FIGURE CAPTIONS

Figure C1. Variance of the squared modulus (VSM) versus maxima of the vertical
acceleration cross-correlation functions listed in Table 2. Each point represents a station
pair.

Figure C2. VSM versus distance of separation for station pairs shown in
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I11
ANALYSIS OF HIGH-RESOLUTION FREQUENCY-

WAVENUMBER SPECTRAL ESTIMATOR WITH NON-

STATIONARY SEISMIC DATA

Abstract

Previous methods for analysis of frequency-wavenumber spectral estimation have relied
on stationary and multidimensional noise estimators. Often, seismologists wish to estimate
slowness spectra of pulse-like waveforms or other types of non-stationary signals. The method
of high resolution (HR) frequency-wavenumber (f-k) spectral estimation is expiored using
singular value decomposition of the cross-spectrum estimate. Analysis shows that the
difference between the conventional beamforming method and the HR estimator is the weight-
ing given the eigenvalue-eigenvector contributions to the cross-spectrum. It is shown that the
conventional method weights the largest eigenvalucs while the HR method utilizes the smallest
eigenvalues. The near-singular contributions to the cross-spectral matrix give an approximate
view of the null space of the matrix. The HR estimator gives an inverted view of the null space

of the cross-spectral matrix.

An example from an experiment exhibiting multipathing behavior is used to demonstrate

the rank deficiency of real seismic phase delay data. The decomposition points out the disad-

vantages and advantages to the HR method (or detection of resolvable multiple arrivals.




Introduction

The high resolution (HR) frequency-wavenumber (f-k) spectral estimator introduced by

Capon, Greenfield, and Kolker (1967) was presented as s minimum variance, unbiased,

maximum-likelihood filter. The filter passes undistorted waveforms at the steering slowness
while optimally rejecting noise power from other siownesses. Woods and Lintz (1973) showed
that the increased resolution of the HR method arises from the assumption of correlated plane
waves. They synthesized 2 plane waves of varying correlation and explored time window sam-
pling, and the effects of additive white noise. They demonstrate that the HR method can
resolve two closely spaced plane waves when conventional slowness spectral estimate may not.
Cox (1973) investigated the effects of noise and interfering arrivals on optimal array processors,
and showed the resolving power and effective gain of the HR filter to be intimately related to

the noise cross-spectrum and the mismatch of the steering vectors measured in a metric defined

by the cross-spectral matrices { noise and signal). The purpose of this paper is to propose a
physical interpretation of the HR estimator without the need for a noise model. By the analyti-
cal technique of singular value decomposition of the estimated cross-spectral matrix, the HR
method can be seen to be a best fit of the phase delay data to a superposition of plane waves
provided the interference of the incoming plane waves can be reduced by averaging. The use of
eigenvector (or principal component) decomposition of the cross spectral matrix was used by
Der and Rinn (1975) where they showed that two signals could be independently resolved by
an array if 1.) the signals are not of comparable amplitude or 2.) that each signal’s slowness

did not coincide with the side lobes of the beam directed at the other signal. By examination of

the perturbation theory of matrix decomposition we see that some of these peculiarities of the
high resolution method are related to the perturbations of the cross-spectral matrix in actual
practice.

The time dependent, two-dimensional wave field, u(x,y.t), may be represented by a triple

Fourier transform (Burg, 1964)

u(xy, 0= f dw f &J dk,ulk, ko) expl-i(k,x+k,y—w1)] (1)

&--—_'-——-'--------—--..--._.__‘A__~ .



Where k, and k, are horizontal wavenumbers in the x and y directions. The corresponding
inverse relationship,

ulky k)= dix [ dyu(x,y,0) expliCh, +k)) @
is assumed to hold for some region of (x,y). We observe the seismic fleld u(x,y,t) at discrete
points 7=(x,,y,), and the frequecy-wavenumber spectrum that duplicates the fieid is repetitive
in (k, k,) with an aliasing wavenumber that varies with azimuth. The conventional method for
estimation of the signal enrgy spectra, P(kw) = |u(k,w)|? is to replace the spatial integrals
with a weighted sum over the sampled wave field after performing a Fourier transform upon

the sampled time domain window.

PC(kw)=I 3 ulr o) explikon 12 @
=]
- f uy(w) u(w) explike (z/~1))
J=l

=3 5,0 VW VW

- Jiwl

= U#(k)S(w) U(k)

where the station coordinates of the array are r, Sy(w) is the cross-spectral matrix estimate,
U,(W=exp(ikes,) is the siation phase delay or steering vector, U¥ is the Hermitian transpose
of U and «" is the complex conjugate of u. The conventional, or beamforming estimate,
PS(k.), is the -onvolution of the beam pattern, /(k), with the true wavenumber spectrum,

u(ke)

PC(kw)=\f dk'T(K)u(k=K)|? @
IW=F eplier,] ®
~

1(%) is the Fourier transform of the spatial sampling function, £l(r-r,). the response t0 &
=]

vertically incident, k=0, plane wave, ¥()=8(k). A dbeamform, or stack of the seismograms,
from an array is formed by the sum over the suitably time shifted and weighted ssismograms.

W(r0=F Wul-m1) ®
=
The Fourier signal energy spectrum of the beam for siowness, s, is identical to the conventional
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frequency-wavenumber spectrum estimate for k=ws, with W;=1,

pC(m)-% W u(w) expliker )12 ™
Consequently, the conventional spectral estimator produces a superposition of shifted beam pat-
terns corresponding to plane waves required to represent the fleld observed at discrete points,
the swuation distribution. The presence of beam sidelobes and multiple arrivals can produce
coraplicated interference patierns. A small array with significant sidelobes can be difficult to
interpret in the presence of interfering arrivals. To investigate the nature of the estimated sig-
nal energy spectia requires calculation of P€(k) on a grid of (k,,k,), contouring, and genera-
tion of graphical output. Even in the case of a single arrival these calculations can be consider- i
able. A simple search for the global maximum is complicated by the many local maxima of the

beam tesponse. A primary advantage of the HR estimator is the suppression of sideiobes for

lone or non-interfering multiple arrivals.

The estimation of the cross-spectral density matrix, Sy(w) = u,(w)u(w), for stationary
noise data is often performed by averaging over several temporal windows. This is unsatisfac-
tory for non-stationary seismic data. An estimate for non-stationary signals is either made by
smoothing the cross-spectrum with a convolution operator, or Fourier transforming the win-
dowed cross-correlation functions as estimates of the spatial covariance function. The two

methods are equivalent while there may be computational advantages for a narrow band,

1/T=7,. frequency domain smoothing operator over the time domain windowing of the spatial
covariance estimate. Advantages include the reuse of the cross-spectra for coherency estimates
and rewindowing. In either case the cross-spectral matrix may be written a9

[ ¢
S,w)= 3 wulwule) ®

-k
where the weighted sum over frequencies w,, 10 w,, produces s smoothed cross-spectral esti-

mate with center frequency

A
t L/ ]
=k
. .
L]
ok,

o'

M
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The use of such smoothing operators is straight forward and the statistics and pitfalls are
described in works such as Jenkins and Watts (1968). A narrow averaging kernel, [wl, does
not stabilize the estimate and contains positive bias for the purpose of estimating coherency
between stations. If the spectral smoothing is done over t00 wide a bandwidth, the operation
will destructively average the slow deterministic signals. An averaging kernel should be narrow
enough to admit any time delay within interest across the array. For a frequenq smoothing
operator of width 1 Hz, a signal with slowness of 2 sec/km would be seriously degraded for sta-
tions | km apart. The phase delay ¢=2w f, 1®s across the frequency band , f,, should remain
much less than #. Further discussion of the wavenumber power spectra assumes a Cross-

spectral matrix, S;;, has been made.

The HR f-k estimator

The high resolution (HR) estimate of the signal energy spectrum may be written
PHR(K' @) =[U¥(K)S ! (w) U(Kk)]? )
where S~! is the inverse of the cross-spectral matrix. Capon et. al. (1967) introduced the esti-
mator as a distortionless filter for k=k’, while optimally rejecting signal power at k= k'. For a
multidimensional Guassian noise distribution the filter is a8 maximum likelihood, minimum
variance estimate. The HR estimate requires only the additional calculation of the inverse

cross-spectral matrix. The similarity of equation 9 to equation 3 is clear.

Cox (1973) decomposes S, into the noise cross-spectral matrix, Q, and the signal cross-
spectral matrix, R, S=Q+R The matrices, S5\, R,R™',Q,Q"}, define metrics where any two
vectors a, and b may be represented by their expansion as eigenvectors. The eigenvectors of
one the matrices may not span the entire space and a portion of a, or b, may not project to the
eigenvector expansion. The angle between a, and b, is defined by a generalized inner product
of the eigenvector expansions in these metrics. Consequently, the ability to resolve any two
vectors is described by the respective null spaces of the cross-spectral matrices. Examining the
form of the beam and HR estimates in equations 3 and 9, note that components of the station

phase delay vectors, U(k), belonging to the null spaces of S and S~' make no contributions to

i
i
!
?
i
!
17
H
H




the the respective beam and HR estimates. Cox used this approach to investigate the perfor-
mance of the HR method for varying signal to uncorrelated noise, and to discérn the resolving
power between two signals with different slowness vectors. The HR method was found to exhi-
bit higher resolution than the conventional beamforming method in the precence of uncorre-
lated noise. Interference was found to be severe when steering vectors for two separate signals

are perpendicular to each other in the metrics defined by the cross-spectral matrix.

Singular value decomposition

Using the property of Hermitian symmetry for S, the singular value decomposition of S

and S~ can be written as

M
S=IAVVH (10)

b=}

M
SV YV an

=1

where (A ;] and (V] are the sets of eigenvalues and eigenvectors of S. Substitution of 10 and

il into 3 and 9 yield expressions for PC, and P¥®

Pc-f,).,U”V,V,”U (12)
g |
M

PR (I UMV VIO 13

(2]
The two methods represent different weighting schemes for the eigenvector contributions to the

matrix S or S~ The formulas in equations 12 and 13 are analogous to the formulas for total
resistance of a network of resistors in series or parallel. The conventional method weights the

largest eigenvalues of S, while the HR method weights the smallest eigenvalues of S

In the case of a single plane wave of amplitude, u'/3, propagating across the array with
slowness vector, s'=k'/w, the cross-spectral matrix is

=uexp(ik'or,)
where r,=(x~—x,,y~y,). The matrix is singular since each row or column is a linear combina-
v 7] )

tion of any other, S;=S,S,, Often in practice, S, is singular or nearly %0. The matrix is




prewhitened with magnitude ¢, and inverted with standard methods. Prewhitening as suggested
by Capon er al (1967) can be accomplished by multiplication of off-diagonal elements by 1-e.
This is equivalent to adding uncorrelated noise to each station and makes the matrix diagonally
dominant. This is equivalent to reducing the interstation coherence by adding uncorrelated
noise to each station. The prewhitening serves to perturb the zero eigenvalues to a finite value,
so A=¢. Symmetric perturbation of the Hermitian symmetric matrix,S, produces unpredictable
rotations of the degenerate eigenvectors, while they still span the same space as before the per-

turbation (Wilkinson, 1965; Davis and Kahan, 1970).

If the matrix S is perturbed to the matrix S’ then the perturbations of the eigenvalues
may be described by an expansion in the basis provided by the old eigenvectors,
eu

ay’.- u'l-— T 2;4_

i) ~Ay
Obviously, the expansion is invalid for degenerate eigenvalues but serves to explain the insta-
bility of the eigenvectors for pairs of eigenvalues that are closely spaced. If two non-interfering
waves of comparable amplitude are combined the two plane waves will have corresponding
cigenvalues of comparable size and render the two eigenvectors unstable. This confirms the

results of Der and Flinn (1975) that signals of comparable amplitude may be difficult to

separate.

In the case of a sum of plane waves with amplitudes, u )2 and slownesses, s,, the cross-

spectral matrix is

S5~% na,epliv sor i+ ; {ptt m Joplio 3,~iw s,01)) 5]
P nelm
If we examine the decomposition of S as seen in equation 10, the decomposition is in the same
form except for the cross-term that produces the interference between pairs of waves. This
observation may explain the difficulty of the HR estimate to resolv. 'wo closely interfering sig-
nals. If a pair of signals coincide with each other's array sidelobes, the estimate may be
unstable at that frequency do to the interference. Smoothing of the cross-spectrum, S(w), is

optimal when the interference terms, (a»€ m), fluctuate more rapidly than the simple sums of
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plane waves.

An Example

As an interesting example of cross-spectral decomposition, an array experiment conducted

along the San Andreas fault will be briefly discussed. Complete details of the experiment are to
be found in Chapter 4. The array was designed to measure slowness, azimuth of arrival, and

polarization of S waves from earthquakes within the fault zone 3 km away.

Figure 17 of Chapter 4 shows a high resolution and a conventional beam estimates of f-k
spectra at 6.6 and 7.8 Hz for the east component of motion .5 sec of S waves. North is to the
top, and east is to the right. Contours are in decibels with respect to the maximum. The two

contour plots exhibit some of the common traits for HR and beamforming f-k spectra. The

beamforming, conventional method, shows two broad maxima coming from the east and
southwest quadrants. The HR estimate shows much higher contrast over the background, ‘ .

sharper peaks, and a more complicated background 20 db down from the maximum. Superim-

posed on each plot are four slowness vectors at (.80 s/km, 110%), (.55 s/km, 120%), (.40 s/km,
205°), and (.40 s/km, 250%). The four vectors correspond to four beams shown in Figure 17
(Chapter 4) for horizontal components resolved as transverse (T), and radial (R) along the four
siowness vectors. The four beams were selected from a set of beams at 0.05 s/km imervals in
the general areas of the broad maxima of the f-k diagrams of Figure 16 (Chapter 4). The
beams represent a broader bandwidth and therefor are better estimates of the location of impul-

sive arrivals. The beamforming suggests that the broad conventional f-k maxima are multiple

peaks on the HR spectral estimate. An interesting phenomenon pointed out by Cox (1973)

appears to occur on the east component HR -k spectra; when two signals of different strength
arrive with closely spaced slowness vectors, it is possible that the weaker arrival will show up as
. stronger on the HR spectral estimate. This is clearly s disadvantage of the HR method for esu-
mation of the relative strengths of interfering waves. The time domain stacks show the slower
arrival, .80 s/km, 110°, to be stronger on the transverse component, closer to the north com-

ponent of motion for an arrival from the east. Conversely, the faster arrival, .55 8/km, 210°, is
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the stronger on the radial component and should show nearly equally partitioned between east
and north components of motion. The HR f-k spectra show the two arrivals reversed in rela-
tive amplitude. The dala indicate multipathing is important in this geologic environment and
anisotropic S wascs may be responsible for a significant partitioning of the two arrivals from the

direction of the epicenter to the east. The arrivals from the southwest may be birefringent as

well.

The data serve as an excellent example of multipathing and interference effects. The four
arrivals all propagate across the array within .5 second, forming a complex focus of travel time
planes over the two-dimensional array. A portion of the multipathing may be anisotropic S-
wave propagation. At station 9 the .80 s/km arrival is first, while at station 1, the .55 s/km

arrival is first.

In Figure 1, the eigenvalue spectrum is shown for the normalized and prewhitened (a fac-
tor of .001) cross-spectral matrix at 5.8 Hz. The cross-spectral matrix was averaged over .8 Hz
bandwidth. The eigenvalues span a range of 4 decades and without normalization and prewhi-
tening would span 15 decades. The cross-spectral matrix is sorely rank deficient with a condi-
tion number of 10,000. In Figure 2, the HR f-k estimates for the contributions made by the

smallest, the 2 smallest, the 3 smallest, and all the eigenvalues are shown. There is virtually no

difference between the estimate of the f-k spectra made with only the 3 smallest eigenvalues

and all the eigenvalues. The contribution of the smallest eigenvalue is clearly the most impor-

tant and corresponds to the arrival of two of the four identified arrivals. Another arrival is
given by the next largest eigenvalue. Interference between arrivals produces sidelobes in the

slow northwest quadrant and to the south. Comparison with the conventional f-k estimate of

Figure 3 shows the diffuse maxima characteristic 5{ the beam method with no suggestion of

multiple arrivals from the east or southwest.

Conclusions

The high resolution method of Capon (1967) differs from the conventional method of i

frequency-wavenumber estimstion by utilizing the near singular components of the cross-
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spectral matrix estimate. Often, the cross-spectrum contains only a limited amount of informa-
tion and is dominated by a single or small set of important eigenvalue, eigenvector pairs. Pre-
vious analysis of the HR method relied on either a multidimensional noise mode! (Capon 1970)
or was concerned with the resolution of the array to detect and separate multiple signals of lim- ;
ited slowness separation (Cox 1973). The present analysis shows that even in the presence of
multipathing, the information may be contained in a limited nurﬁber of cigenvalues and each
contributes an alternative interpretation of the phase delay data. The HR method weights the
inverse contribution of the near singular portion of the cross-spectrum. The method therefore

gives an inverse picture of the null space of the data. Consequently, the fictitiously excited

sidelobes, and sharp peaks of the HR estimate are suggestive of real signals, but must be

verified by additional estimates at another frequency or in the time domain.

A method that would yield direct estimates of the maxima for f-k spectra without detailed
calculation and contouring would be useful. Such a method would require finding the maxima
of the inner products of eigenvectors, V,, with the station phase delay vectors, U(k). Unfor-
tunately, it is evident from the example shown that a single eigenvector may contain informa-
tion from more thar one arrival. A best fit 1o plane waves may not be the only interpretation
for each eigenvector, V. Furthermore, interpretation of the eigenvector as a phase delay vec-
tor would require unwinding phase of the frequency spectrum in two-dimensions. A sparsely
occupied two-dimensional array would pose a formidable computation effort for uniquely

unwinding phase in two dimensions ,unless a good first estimate of slowness is provided.

A posability suggesied by the analysis, for cross-spectral matrices that exhibit singular )
behavior, is to solve for the singular eigenvectors rather than to prewhiten the matrix. An esti-
mate of the null space would be made without perturbing the matrix and its eigenvectors. The
sharp nature of the inverted null space is not yet explained, nor the fictitious sidelodbcs. Some
cf the results of Cox (1973) suggest that the HR method may show only g: tater =rpure..* re. >
lution. The locstion of the sharp peaks are not more precisely located than the size of ti &

lobe of the beam response. The HR method does give indications of closely spe -} « ..; - =

g__________________*




arrivals not apparent by conventional means. The sidelobes are manifestations of the interfer-
ence between multiple signals that can not be unambiguously removed from the phase delay

data.
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FIGURE CAPTIONS

Figure 1. Eiienvalue spectra of the cross-spectral matrix for the east component of motion at
5.8 Hz with 2 0.8 Hz bandwidth for the short S-wave window indicated in Figure 3
(Chapter 4). The ei;énvalues span 4 decades.

Figure 2. Eigenvalue decomposition of the HR f-k spectral estimate of the east component of
motion for 0.5 sec of S waves at 5.8 Hz. Aul eigenvalues were used to estimate the
spectra in the lower right. The three smaliest eigenvalues were used to construct the
HR f-k estimate in the lower left. The smaliest and two smallest eigenvalues were
‘used to construct the two upper estimates. Contours are shaded to -12 db in the
upper two estimates, and shaded to -6 db in the lower two estimates.

Figure 3. Conventional, beamforming, f-k ;stimate at 5.8 H'zAfor the same window used in Fig-

ure 8. Cohtoﬁrs are shaded to -6 db w.r.t. maximum.
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v

THE STOCHASTIC GREEN'’S FUNCTION AND IT'S

APPLICATION TO SEISMIC SOURCE INVERSION

ABSTRACT

Treatment of signal-generated noise (coda) as a noise source for deterministic inversion
of seismic data can be formalized by the use of a stochastic Green’s function. When lateral
variations are suitably chaotic the random fluctuations of elastic waves may be described by a
stochastic variation upon an average or coherent wave field. The coherent field is separated
from the random part which is treated as signal-generated noise. Variance estimates for the
stochastic part of the Green's function can then be used to estimate source parameter variances.
Signal-generated noise is introduced into the Green's function deconvolution for seismic source
time functions. The variance estimate of the moment tensor is given by a direct application of
error propagation. An example is given for an explosion source at NTS using estimated seismic

field variances.

Introduction

The simple stratified, layered, approximation to earth structure aliows very precise
Green’s functions to be calculated. These approximations often contain the essential wave pro-
pagation characteristics of the earth structure and allow inversion fos the seismic source. The
lateral variability of the real earth makes any such approximation inaccurate. In a situation

where the earth structure is dominated by the vertical variation and lateral variations are suit-

ably chaotic, a laterally averaged structure may be represented by a traditional horizontally

i o e o o e
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homogeneous structure with a superposed horizontally randcm perinr™, vion Beld Ta-r - 2

of this paper is to demonstrate that the problem of random structure is separabie fror the e
agec structure wave propagation problem. Green function estimates given by one-dime-.

structures coupled with estimates of scattering from laterally varving s:ructure permit the treat-
ment o the scattered signal as a signal-generated noise process fo- ¢ gurs- ¢ of source inver-

sion.

Tre functional formalism for the solution to differsntin: equations »un viniom

coerficients is reviewed by Adomain (1964) while the sta‘isti~al 'rearment of wave propagation
in random continuous media is reviewed by Hoflman (1%64) 514 waves scattered by ciscrete
scatterers is treated by Twersky (1964). Keller (1964) reviews some of the approxiraations
used in continuous and discrete scattering theory and demonstraiss that under suitable condi-
tions transport theory (radiative transfer) is an equivalent treatment for strong multiple scatter-
ing. Karal and Keller (1964), Knopoff and Hudson (1964), and Knopoff and Hudson (1967)
all treat the vector elastodynamic equations for elastic wave propagation in a continuous random
medium with special attention to the amplitude and phase fluctuations in the forward direction.

Frisch (1968} demonstrates the utility of diagram methods and functiona! integration methods

for the renormalization of wave propagation in a random media. Dence and Spence (1971}
generalize the development 10 the dyadic stochastic Green's functlion and anisotropic random
media. For a discussion of ensembie averages and the general anrlicstinn of <tociastic rardom

a=dia the reader is referred to the review by Hudson (1982).

The effects of scattering by random heterogeneities irclud: 1mpiitude and phase Tfuciua-

tions, attenuation of the average or "coherent” field, and conversion of energy Yetweer riodes
ot aropagation. Formulation of a dyadic stochastic Green's function hes the advantage of
i1-ud'ng all of these affects on & seismogram. To evaluste the invesse problems for ccisrnic
v..ces anc¢ homogeneous structures, we require estimates of the statistics of the seism.< Seig

¢ -« 'n the :andom variation from the homogeneous structure.




THEORY

The wave propagation problem for elastic media begins with the linearized equation of
motion (Hudson, 1980),
Lyu; = piiy — (Cyyug ), = £ (1)
where L, is the elastodynamic operator, «;(r,¢) is the particle displacement at the position, r,
and time, ¢, p(1) is the density, C () is the linear elastic tensor field, and f,(r, 1) is the deter-
ministic source field. The functional dependence of the elastic moduli and density on position
define a structure, or model for wave propagation. Perturbations to the density, p=p%+p', and
elastic tensor field, C=C%+C!, are introduced such that the elastodynamic operator may be

decomposed into,

Ly=Lj+ L} @
Lz - p°8, - (C&kﬁ“_‘)J Q)
Ly=p'8p = (Cubp.0) ., “@

The perturbations, p', and C' are considered small random fluctuations, < (p")?> << <p>?,
<(Chim) > << < Ciym>?2, and <((Chi) 3> << <(Cpy) ;>3 and assumed to have zero
mean, <p'>=0, <Clm>=0, <(CL,) ,>=0. The operator < > is intended to symbolize
the ensemble average. Equation (1) defines a set of coupled stochastic differential equations.
Equation (2) defines a decomposition of the stochastic differential operator into the background
operator (equation 3), and the random part of the operator (equation 4). Generally, the prob-
lem of interest to seismology wouild be the case where the average density and elastic constants
are functions of depth only, and the random perturbations are functions of depth, (z), and
lateral coordinates, (x,y),

plx.y,2) = p%2) + pYUx,y.2) and Cl(x,9,2) = C(3) + Clx,y,2).
The background operator, L,°,. is assumed to have s Green's function satisfying the equation,

LA (nr t=1) = 8, (r—1,1~1) 5)
with the appropriate boundary conditions, such that an inverse operator, GJ, exists;

Liud=f, ©
implies that
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ul(r, l)-Ggf' )
- f dr f &t ga(nr 1) fo(r,0).
The solution to the general problem,

Ljuj= f,~ L}y,
may then be written as

u = G3f, — GILuy )
Expansion of equation (9) into a Neumann series (or Bern cxpansin- ! produces,

u =G, — GI\GY + GILAGILLGY S~ . . o)
-+ ou) + o+

Taking the expectation of equation (10) yields,

<u> = Gif; + GIKLLGILL> GAWSfy + ... an
~ud + <ul> + ...
Conditional on their convergence, equations (10) and (11) serve to define a stochastic Green's

function for the stochastic differential operator L, in equation (1). Where in operator notation,

G, = G — GILLGS + GILAGOLLGY, — ... 12
<G,> = Gy + GA<LLGJLL>GY, + 13)
From equations (10}, (11), (12), and (13) we decompose the displacement field iwo ways,

u = ud + uf = GYf, + G, (14
U = <u> + u = <G,>f, + Gjf, 18

whure the superscripts "sc” and "st” ate intended to infei “scaitered”, ang “siacnastic”. Lo < <
from equations (14) and (15) that <u> # w’ and <G> a G° Noie that ihe experime
tally determined, or averaged field, <u>, does not represen: 1.2 hackground structure, ~ o

and <C>. In the case of elastic plane waves in a randomizea whole space, Karal and Keller
(1964) showed that the presence of scattering both attenuates and disperses the expected =3
relauve to the background solution, «®. The measured veioc-ries »7e not precisely the rach-
giou.:d structure's averaged velocities for the same ressc hse the axoected Reld i oot 1he
solution to the background solution. Therefore, if a siruciure is experimantally found that

gives ¢ Green's function, G®=< G>, from the coeflicients p® end C*, then it does not {:ow
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that <p>=p”® and <C>=C* However, this is just what is usually done in practice. The
laterally homogeneous structure represented by, p*(z), and C*(2) is determined that matches

the observed attenuation, and dispersive effects of the averaged response, <G>.

We will decompose the Green’s function into
Gy= <G> + Gf (16)
G is the stochastic part of the Green’s function {Adomain;, 1964; Frisch, 1968, Dence and
Spence, 1973). Only the statistics of G may be calculated or measured, such as its variance,
<|G¥|?>. Under this decomposition
and the stochastic part of the seismic field, u*, is considered signal-generated noise. The vari-
ance of the stochastic portion of the seismic field is
var(u¥) = var(G*D
The proportion of noise in the seismic field may be measured from multiple station coherency
estimates, repeated measurement with variable source receiver paths apptoximating an ensem-

ble, or calculated from scattering models.

APPLICATION TO AN INVERSION PROCEDURE

Stump and Johnson (1976) proposed a method to invert for the moment tensor com-
ponent time functions of an equivalent point source when the seismic Green's function is
known. For layered earth models precise Green’s function estimates may be calculated. The
presence of scattering affects an inversion in three ways 1.) scattering introduces a source of
unmodeled attenuation of the expected or coherent waves, 2.) the signal-generated noise is a
fluctuation of amplitude and phase of the expected or average waves, and 3.) converted waves

may appear as unmodeled waves producing non-causal model source terms.

Attenuation of the coherent wave field by the generation of scattered waves has recently
been approsched by Aki (1980, 1981), Seto (1981), Kikuchi (1981a,b), Dainty (1981), Wu
(19824,b), and Sato (1982). Scattering and the random coda noise serve to introduce uncer-

tainty into the amplitude and phase of the observed waves. When the noisy seismogram is

el e A aa
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e

deconvolved with the appropriate homogeneous Green's functicn er-or .o iRiFeTL 42 Y
source time function estimate. Amplitude and phase fluctuaiin»s of the expected waves -2, o
introduced through forward elastic wave scattering theories s:ch 35 Xnopoff and Hudsus: 1+ .0
1967), or scalar parabolic theories such as Chernov (194¢), L.wiri £i977,i980), or McCoy
(1980). The gignal-generated noise due to coda generzion ey o roduced with modeis
such as Wesley (1965), Dunkin (1969), Aki and Choue: 975, .. (1877 0290 - “Ma'n
(1978, 1980). All of these approaches have proposed r.: !20 irr e calcalation of th: . -ter

4 of the stochastic Green's function.

Under the assumption that the elastic modulii s:.c a¢- . are random function; 91 e

horizontal coordinates, (x,y),

<plx,y,2)> = p%.) ‘
< Cu’u(x.)’.l)> - C,gt_l(Z),
the background problem is modeied as a stratified medium, where material properties vary only

in the vertical, (z), direction. The horizontal heterogeneity is modeled as random perturbations
to the stratified medium and the decompositions of the seismogram and Green's function into

deterministic plus stochastic parts is used (equations 16, and 17}

Following Stump and Johnsc «1976), we write the linearized relatior for i Jeonlace-

ment seismogram, in the frequency domain as,

U()=G(HM(f) X7, i
The inverse solution for the source becomes

M'(N) = G I 190)
var(M'(f)) = G lwar{M 1) G 7 (S
where G is the Green's function matrix, G~' is the inverse of the Giean’s function mstrix, and

-7 is the Hermitian transpose of the inverse of the Green's function matrix. N(7} 12 i

ambient noise in the data vector. U(f) is a vector composed 3f complex spectrs of twe win.

{nwed seismograms at the frequency, f. And, M() s 1t matrix of inotpendent €.atmnti

tke moment tensor, with M’(/) the estimate at frequency, {.

L_'_'_"_—-—-----—----—-__.
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If G=<G>+G* in the presence of only signal-generated noise (N(f)=0).

U(f) = <G(A)I>M(S) + G*(SIM(S) = <U(N)> + UX(Y) (20)
If we approximate <G> by G* then we may produce an estimate for the moment tensor ele-
ments as
M'(f) = G*H{(NU) (21a)
=M()+G*'(NG*(NIM())
var<M’'> = G*'var(U)G*T (21b)
=G* var(GYMG* T

The seismic source estimate, M’ is contaminated by the signal-generated noise term,
G* !G*M. Since the variance of the stochastic part of the Green's function is zero, the esti-
mate of the source is unbiased in the frequency domain, and it’s variance is related to the vari-

ance of G, or of the data, U.

AN EXAMPLE

Data from an array of strong motion accelerometers 6 km from the explosion COLWICK
at the Nevada Test Site will be used to illustrate the estimation of the seismic moment tensor
and accompanying variances. The signal-to-noise ratio is estimated directly from the data and
used in the inversion for the seismic source spectra. See Chapter two for a description of the

experiment and analysis of the data.

In Figure 1 the frequency-depe..Jdent spectral variance var(U(/))=<|U(N)-T()|*>
and the inferred signal-to-noise power ratio for the P wave and P coda window are estimated
from three stations an equal distance from the explosion. The three stations are spaced at 200
meter intervals across the direction of propagation of the P wave. The acceleration spectral
amplitudes, U(f)} for the three components are shown in Figure 2. The signal-to-noise power
ratio (SNPR) was estimated from the inverse of the normalized
variance, SNPR~! = var(U(f)) *| U/(£)1-% Of particular note is that the variance of the verti-
cal component is nearly constant from 1 to 10 Hz, while the total spectral amplitude declines.

The net effect is for the SNPR to decline from § to 10 Hz. A similar trend is observed for the
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radial component spectra. The transverse component SNPR estimate fluctuates around 1. It
3 was previously argued (Chapter one) that a significant portion of the transverse component in
this time window prior to the S-wave arrival was scattered {rom the P wave. We can conclude
that the decrease in SNPR is a result of the proportional increase in the incoherent signal

energy and not simply do to a decline in signal strength.

In Figures 3A,B,C, records of stations 1 and 4 are compared in the time domain as broad-

band, and bandpassed signals between 5 and 10 Hz and between 10 and 20 Hz. The iwo sta-

tions are only 200 meters apart. The circied number is the normalized maximum positive
correlation between the two traces, Ry, The different response of the two stations to the S
wave is particularly pronounced (1.3 to 2.5 sec after the P wave). The mismatch between the <
two stations is both in amplitude and phase. The correlation values estimate the signal-10-noise
ratios for the 5-10 and 10-20 Hz bands as 1.2, .83 for the vertical, 0.70, 0.40 for the radial, and
0.65, 0.50 for the transverse, SNR™? = Rl —1. This is in contrast to the broadband SNR of

2.5, 2.2 and 1.0 for Z,R, and T. These signal-to-noise ratios reflect the average over a 5.0

second window. The initial vertical P-wave motion remains coherent in the 10 to 20 Hz band

although it has become emergent at the higher frequencies.

The goal of this section is to illustrate the use of the inferred signal-to-noise ratios from
the COLWICK array data to quantify the uncertainty in the inverted source spectra. Results for
the vertical component P and P coda spectra are shown in Figure 4A,B. The acceleration spec-
tra, the twice integrated Green's function spectra for the explosion source, and the inferred
explosion source are plotied. The short data window, 1.28 seconds, is inadequate to control the
low frequency behavior of the source and a longer window enclosing S waves is inevitable. A

longer window also incorporates larger quantities of "noise”.
The use of three components, and a longer time window are used to incorporate the

observed S waves. A $5.12 second time window was chosen (Figure 3). The average seismo-

gram and its variance are estimated for a stack of seismograms at a slowness of 0.2 sec/km

siower than the P wave. This aligns the principle S waves on the three components. The vari-
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ance for each component is estimated from comparison of the complex spectra for stations at
the same distance from the event. The average complex spectra are then estimated as a linear
combination of the spectra of the individual stations. The Green’s functions for the different
distances are similarly stacked at the same slowness. Therefore, the calculated Green’s func-

tions have been given the same spatial filtering as the data.

Three separate estimates for the isotropic, or explosive, source were made using 1.) the
radial and vertical displacement spectra estimates, (Uz and Uy), 2.) the radial displacement
data only (Uy), and 3.) the vertical displacement data only (Uz). Figure S shows the ampli-

tude spectra of the Green's functions used. An overdetermined explosive source estimate

using both the vertical and radial component data is shown in Figure 6. The square root of the'

variance (o) is plotted as a dotted line in Figure 6. The normalized spectral residuals for the
radial and vertical components used in the inversion are plotted against frequency in Figure 7.
Since only 5 seconds of data was deconvolved by 5 seconds of Green's functions, only the first
5 seconds of the resulting source estimate may be considered causal. The time-domain far-field
source estimate, in Figure 8, shows non-causal activity between S and 10 seconds. The addi-
tional 5 seconds of source time function is due to the extension of the data and Green's func-
tions with zeros prior to the calculation of the first discrete Fourier transform. The isotropic
source estimate using only the radial component data is presented in Figures 9 and 10. The
estimate using only the vertical component data is presented in Figures 11 and 12. The result
based on the radial component alone is the least non-causal (Figure 10).

Since the deviatoric part of the source contributes S waves to the vertical and radial com-
ponents more efficiently than an explosive source, the estimates of the source spectra in Fig-

ures 6, 9, and 11 are conservative upper limits for the explosive source.

SUMMARY

We have shown that the problem of elastic wave propagation in a random structure is
separable from the propagation problem in the averaged structure. This stochastic propagation
is independent of the source, 30 & stochastic Green's function may be defined (equations 12
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and 13). Under the decomposition of the Green’s function into it’s deterministic and stochastic
parts, the linear inversion of seismograms for seismic source properties remains linear and the
stochastic response of the medium can be interpreted as signal-generated noise. This noise due
to scattering may be empirically estimated or derived from a scattering model. An example of

source estimation with empirically estimated seismic variances was presented using the

COLWICK array data.

anbhchendithdans,
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Figure 1.

FIGURE CAPTIONS

Smoothed spectral variance estimates and inferred signal-te-noise ratios (SNR)
for the vertical (Z), radial (R), snd transverse (T) componment spectra of
COLWICK array stations 1,2, and 4. 1.28 second window encompassing the P
and P coda. The 0.79 Hz bar indicates the smoothing window used. The loga-
rithmic scales refer to the SNR estimates. The variances have been multiplied by

an arbitrary scale to bring them onto the same graph as the SNR estimates.

Figure 2. Acceleration amplitude spectra for the 1.28 second window used in Figure 1.

Figure 3A,B,C. 5.12 second broadband and bandpass acceleration records for the COLWICK

Figure 4.

Figure §.

Figure 6.

stations 1 and 4. Broadband records are on the left. 5-10 Hz bandpass records
are in the center. 10-20 Hz bandpass records are on the right. The value in a cir-
cle is the maximum ovormalized cross-correlation between two records. Other
numbers above and below are pesk values in counts. All traces for a given com-
ponent (Z,R, or T) are the same scale.

A.) (Above) average vertical acceleration amplitude spectra for the 1.28 second
window from COLWICK stations 1,2 and 4 (solid line). The square root of the
modulus of the variance estimate is plotted as a dashed line. (Below) Green’s
function (ramp source) amplitude spectra for the same window B.) Isotropic
source (displacement) amplitude spectra estimate (solid line) and square root of
the modulus of the varisnce estimate (dashed line).

Amplitude spectra of the vertical (solid line) and radial (dashed line) Green's
functions for the isotrepic (exipesive) source appropriate for the COLWICK array.
Green's functions have been stacked on the S wave arrival for four distances 6.00,
6.087, 6.173, and 6.346 km frem the seurce.

Estimate of the for-fleld isotrepic ssurce spectra meduiuns (solid line) and the
uncertainty estimate (dashed line) derived from the stacked radisl and vertical
spectra and stacked Green's functions.




Figure 7. Normalized residuals of the vertical and radial spectral compenents used to esti-
mate the isotrepic cource of Figure 6.

Figure 8. Time domain plot of the isotropic source estimate of the source estimate of Figure
6. Considerable non-causal energy arrives between 5 and 10 seconds. Units are
10¥dyne—cm/ sec.

Figure 9. Estimate of the far-filed isotrepic source spectra meodulus (solid line) and the
uncertainty estimate (dashed line) derived from the radial data only.

Figure 10. Time domain plot of the far-Seld seurce function of Figure 9. Units are
100dyne—~cm/ sec.

Figure 11. Estimate of the far-feld isotropic source spectra modulus (solid line) and the
uncertainty estimate (dashed line) derived from the vertical data only.

Figure 12. Time domain plet of the far-field source function of Figure 11. Units are

100¢yne—cm/ sec.
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SCATTERING OF ELASTIC WAVES FROM BOUNDED

INHOMOGENEITIES AS A MOMENT EXPANSION

ABSTRACT

The scattering of elastic waves by an inhomogeneity in a uniform matrix is addressed with
special attention to incident plane waves. The solution is formulated as a moment expansion of
the equivalein force and stress distribution of the scatterer due to the incident wave. Although
the expansion remains exact, rapid convergence is only assured for the long wavelength regime,
ka<l, where k is the incident wavenumber and a is the scatterer scale size. The method is
shown to be equivalent to the form function or Fourier transform approaches. Conditions for
forward conversion of P-10-S waves are addressed. Solutions are given for the general anisotro-
pic, Gaussian, exponential or ellipsoidal scatterers. It is shown that trade-offs exist between
models for the shape, heterogeneity, and anisotropy of scatterers, but that a general scstterer
may not be modeled by a homogeneous isotropic elastic scatterer. The case of the randomly
heterogeneous scatterer is treated with special attention to the random Gaussian scatterer.
Under the conditions of ka< <1, application to the attenuation and dispersion of the effective

wave from multiple scattering is discussed.

Formulation of the Probiem- the Moment Expansion

Methods are required to describe the scattering of elastic waves by small scatterers (small
with respect to a wavelength). Important quantities such as total scattered and converted elastic

energy, as well radiation patterns are needed. A moment expansion of the scatierer has prom-
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ise for the calculation and analysis of scattered wave fields from small bounded heterogencities.
Several methods for computation of scattering cross-section, and radiation pattern of scattered
energy for compact scatterers in elastic whole spaces have been suggested and implemented for
incident plane waves (Ying and Truell, 1956, Knopoff, 1959; Johnson and Truell, 196S; Kraft
and Franzblau, 1971; Mcbride and Kraft, 1972; Pac and Mow, 1973; Waterman, 1976; Vasun-
dara and Pao, 1976, Gubernatis et al, 1977a,b, Visscher, 1981, Varadan and Varadan, 1982; and
Herman, 1982, to name a few). The methods employ ecither special function expansions
{spherical harmonic, or elliptical) of the incident and scattered fields or a solution of boundary

integral equations of the Fredholm type. Common draw-backs of these methods are the inabil-

1ty to treat nonuniform volumes, irregular shapes, or anisotropicaly heterogeneous bodies. An
equivalent force moment, Green function derivative expansion or moment expansion may have

some advantages as a description for general compact scatterers if the object lacks symmetries

necessary for special function expansions and if the multipole expansion converges rapidly
enough in the frequency bandwidth of interest. The use of equivalent force moments to
describe an indigenous elastic source is common in seismology since Gilbert (1970) introduced
the equivalent stress moment. Backus and Mulcahy (1976a,b) explored higher order moment
tensor expansions for indigenous seismic sources. Higher order moments for propagating faults
have recently been used by Stump and Johnson (1982) to compute synthetic seismograms.

Backus and Mulcahy (1976a) point out that the moment expansion for the elastodynamic source
converges at the rate of -'-:-'-(2—:-5) ®, where a and A are the characteristic source size and

wavelength. The same applies for 8 moment expansion of the scatiered field from a compact

scatterer of size a.

! The general equation of motioa {or the elastic body can be written as

pﬁ,—‘(CwU.J)'f I‘ 1)
By either introduction of Fourier transforms or factorization by '’ we can write the steady-

state harmonic equation as

~pu~(Cuyty.) /~ 1, )




Let the inhomogeneity be represented as a perturbation to a problem for which a Green's func-
tion is known. The density and elastic variations are written as

p-p""'ap, CMC'W"’G CW (3)
The background solution, u?, is the solution to

-p'ﬁlzl‘lo—(c'uuuko_l)'j - f, 4)

and the perturbation or scattered part, u?, is the solution to
—pwlut-(C' yyul,) , ~ 8pwu, + BCyyuy ), (5)
where u, is the complete solution, u, = u®+ u? If the Green‘s function exists for our back-
ground equation (4) then,
u,°(r)-f J,8,(n0) v 6)
R° VAUAL
where R is the region bounding the equivaient body forces, f;. We then have that the scat-

tered field is given by

uXD)= [ [8p07u,0) + (BCum(F 4y (1) (igy(r.0) 'Y %)
where R’ is the region bounding the inhomogeneity. Using the divergence theorem and

integration by parts,

uln) = Iﬂl&po’u,(l’):u(r.r') = 3C (1) 8 (1, 1) 1 &Y ®

The 1atter expression contains no derivatives of the inhomogeneous elastic constants and only
first derivatives of the total displacement field. Less must be known about the inhomogeneities
to specify the scattered field than in equation (5). An equivalent view can be derived if we
define the equivalent scattering force distribution, fXr),

S0 = Bp(Dalu(n) + BC (D u, (D), ®
and the equivalent stress distributions are those flelds, o j(r), such that fl= g}, The
nonuniqueness of such equivalent stress distributions is well known ( Backus and Mulcahy;
1976a,b). The formalism remasins valid for inhomogeneities incorporating discontinuities of
displacement or stress such as cracks, voids, or fluid inclusions. o }(r) is replaced by the
equivalent siress field that would produce a stress-strain fleld upon a surface surrounding the

inhomogeneity. An exampie of such a procedure is Esheldy’s (1957) static solution for ellip-
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soidal inclusions by an equivalent stress tensor. Gubernatis and Domany (1979) use Eshelby's
results as a quasistatic approximation for the equivalent stresses produced by long wavelength P
and S wm;es incident upon ellipsoidal flaws. The equivalence relations follow from the
representation theorem of Burridge and Knopoff (1964).
S g ean) i)y -
f",[x'*(r.x’)ct,(x') A = &x,Cumtiiin)d’y =

Mg,,,(x.x')aﬁh,d’x'

g is the Green's function in the absence of the inhomogeneity, g’ is the Green's function in the
precence of the inhomogeneity, f{ and o [ are the scattering equivalent force and stress distri-
butions on the scatterer surface, R’, and o £ is the equivalent stress distribution on the sur-

face, 3R, surrounding the scatterer.

It has become customary in recent years to expand solutions in terms of force moments

and Green's function derivatives in the form of a Taylor expansion of equation (7).

uXr) = g /Dy 4 (O848, 4 (&0 10

where the force mohems are defined
8 40 = [ SO =€) (7 €L ) & (an
for a point, §. the centroid of the equivalent scattering force distribution, fXr). In the case of
indigenous sources with no net torque and no net momentum, y (¥=0, and y J’=y ). How-
ever, the “pseudo” forces that represent the scattering are only part of the total solution and do
not necessarily comply with these conditions. The zero'th order moment may not be zero and
the first order moment may not be symmetric. Now, it should be easier to deal with the
equivalent stress than with equivalent stress derivatives so by use of Green's theorem once

agsin we may write the moments so as to eliminate the derivatives of (8C v, /),

‘y,‘o’ -I" apﬂzll,d’f +IR' (GCWII.J)JJ’I 12)

- f.. Spwiud’r + !“. 8C ity 10y d*r
where n, is the normsl vector to the surface 3R'. If the volume R’ is chosen large enough

such that the integrands go to zero on the boundary, then the zeroth order moment simplifies
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to

vy - fk'apwzu,d’r. (13)
We have chosen a coordinate system such that § = 0. Similarly, for n31,

7.(.';). - ! R’bpu,-r,,l....r,,.d’r (14)

- J‘R' BC‘.,'..u,',,,r,,z....rk.d’r.
The moments depend only upon the inhomogeneity fields, 8p, 8Cy, the displacement field, v,

and the strain field, u, ;, within the scattering volume, R’. The moment expansion is exact as

stated, but approximations will surely be required for application.

The Fourier Transform Approach

We may compare the solution given by equations (10) and (11) with another formalism
used in the fields of electromagnetic and quantum scattering. This formalism will be referred
to as the Fourier transform approach, and requires the use of the far-field approximation. We
will let our Green's function be that for an isotropic homogeneous elastic whole space for

lel>> Ir'] so that we may write

8,(r.r) = gXr,e") + g3(r,r) s
;I;J(‘ka)z . - (-. r))
lr=r'| (4rpw? explikar=ik,(rer
8,77 (iky)?
lr=r'|(4mpw?d
where t is the unit vector in the direction of r, and k, k, are the P and S wavenumber vectors.

eNr,r) =

83(r.r) = exp(ikgr~ lk,(i‘r'))

The far field scattered wave is

uXr) = jmluszu,:‘f =~ 8C umli Bl A &’ ‘ ” (16)
+ f mlu’&pu,:j = 8C ity n8i ).

Ignoring all terms of order (17) 2 or higher, in g, equation (16) becomes

uXr) = [,k Wgln) + f(kpwgfr) an
where k, = k7, kg = ky7, and

7kt = I.'lu’apu, = U BC ), ol XP(— ik (70 1)) Br' as)
We recognize f,(K) as the 3-D spatial Fourier transform of the equivalent scattering force




distribution. The results of equations (17) and (18) are equivalent to the results of Gubernatis

et al (1977), generalized from a homogeneous scattering body to a general body.

In order to see the connection of equation (17) to the moment expansion of equation

(10) we expand exp(iker) in a Laurent expansion within the integral of equation (18), k = kb,

exp(ik,r') = 2 lk). LR 19

F0 = E R f 00 (20)
We recognize the integral in equation (20) as the moment, y 4 "" .- &, and note that in the far

field
8o,k (rr) = (=ik)"Fy - - by gllr,r) Qn
8wy (1 0) = (=ik)"Fy - - Py gf(r,r)
where k' represents differentiation at the source point, r’. The far fleld Green’s function is
symmetric; g, = —&,» Consequently we can write
uXr) = (k)N + 7,k g¥r) 22)
=T/ y 2 L8l w (D + &k, k(D)
uXr) = 3 (1/n") 'y;gl__.x_lu..'. o ()

The first two expressions are approximate, they contain only far fleld terms while the third
gxpression could contain all terms if desired. Furthermore it follows that the first moment
terms (n=0,1) are equivalent to the iong wavelength approximation (ka< <1, a the scatterer
scale length) where

70 = ulf 8o &' + tiyu;nf 8Cum & (23)
. exp(—iker)=1 , and u, and u,, are nearly constant over the integration volume for

ker'<<]. The Rayleigh (long wavelength) and far Oeld approximations then yield

v'= ue f Spd’rgy(r.r) (29)
= Gyi [ 8Cumdr (a0, + gikp
- —ﬁ.up’flpr,'d’r'((‘fk + g3k
This form for the scattered fleld has been used by Knopoff (1959), Miles (1960), and Guber-

natis et sl (1977b,c), usually in conjunction with the Born approximation, ¥ = »°. The last




122

term of equation (25) has often been ignored since it contains an additionsl power of frequency

over the first term involving 3p.

The first degree moments are long wavelength limits of scattering strength. The higher
moments contain information about the orientation of the scatterer and its shape and sym-

metries. Care should be exercised, noting that the nth term of the expansion is proportional to

(ka)"
n!

, where a is the characteristic size of the scatterer. The expansion may converge slowly,

or not at all for high frequencies. In the long wavelength limit the moments (n1) become

V0= whufor's a9

- u,.,,,fbc,-,,l,,,.r',,z e "k'dJ"'

The Forward Scattering Theorem

Gubernatis et al (1977a) showed that the optical forward scattering theorem may be
extended to an elastic body in a whole space if the interference between converted waves is
accounted for. The scalar forward scattering theorem states that the total cross-section of the
scatterer (integrated over all scattering directions) is proportional to the phase delay of the total
field observed in the forward direction. This theorem is of great importance because the for-
ward direction phase delay is often easier to measure or compute than the total cross-section
integrated over all directions. The case of elastic waves in an isotropic whole space requires an
additional term from the interference of scattered P waves from incident S waves. The far-field

scattered P and S waves are given by equations (22) and (21) as

_ ADepliker)  BDepliky)

ul ’ ; (2%)
In terms of moment expansions A(#) and B(}) are given dy;
l .l -~ - a '
Al(’) - ;;;T z.(l/n!)(lk) 'k| L '.."'/7(‘.)_"'. (21b)
l - e - ‘- M) . X
Bt = 4—';’—,- 2.(1/ n!) kg "7y, - r..(au—r,?,)y}.l’m.. (27¢)

The incident P and S plane waves are of the form

ul = a8, exp(ik x)) + bexplikgx)) by=0.
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We define 4,(0),

AW = [ a6 4,0.0),
where 8 is the polar angle with the x, axis and ¢ is the azimuthal angle in the x; x; plane.
The theorem as stated by Gubernatis er al. (1971a) is that the total normalized scattered
power, o ,(w) is

o d® = [ a0t Cpul i (280)
where /° is the incident power, fdn is the integral over the total solid angle and o, is the

total cross section,

al4,(0)a" + af i, (0)b; + 5'B,(0) ;]
o ,(w) = 47 Imag|O} wlrm‘l el + B1o1 l (28b)
cos(8) = k,/ ks The 20 cone describes the surface where interference between the scattered P

wave and the incident S wave is constant. A similar cone for scattered S waves interfering with
incident P waves does not exist so long as a> 8. Anisotropic media with psuedo P and split S

waves would have additional terms corresponding 1o similar interference cones.

If we examine equation (28a) for an isotropic elastic whole space then upon substitution
of equations (27a,b,c) we find the total scattered power may be given as an expansion of

moment moduli and integrals over the radiation patterns.

w? 1 w? 2
o f* = [dn%aplAl’ + fan%-polBl (280)
If we examine the expansion of the integrals with equations (27b,c) then we will encounter
terms like
;[ml;,;,;,, ..... ALY
S a1 =375 Sy 00
]

For some decompositions of y/® and y (" the integrals are given in Appendix A.

Forward conversion of P-t0-S under the Bern appreximation

Under what conditions can we obtain P-t0-S conversion in the forward direction? If the

incident plane P wave is given by,




u) =8, ep(tk x)
then we must get a non-zero radiation pattern for some term of the expression for the scattered

S wave;

uXr) = y OB ~77)S(r) + v P78 77 ) (—ik) S(r)
+y D8~ ) (~ kg S(r)

The first term requires for j=2, or 3 that y ;#y,. The requirement for the second term to be

non-zero is that the principle axes of y ("’ do not coincide with the x, axis. Examination of the

form of y ©,

7‘(0) - mszpu,d’r
., makes it clear that without strong scattering y; = y3; = 0. If the scatterer is nonsymmetric,
even under the Born approximation, the first order moment may be of the form,
7{,"~m’f8pu,x,d’r - Ibcwuk‘,d’r

- (aibj + ajb,)"’CU
where s or b (aeb=0) have a component in the x direction. Consequently, under the Born

approximation, the zeroth order density perturbation does not produce P-to-S conversion while
the first order elastic perturbations may. If the elastic constants are isotropic, then
) - yP(ik) ] 8C) &
Yv u - 1yd 7’
~uiCik,) f (81 8,42 8) &'
The first order moment contributes forward P-10-S converted waves only if the scatterer is
nonsymmetric about the x axis. Certainly if the elastic constants are anisotropic, then even a

symmetrically shaped scatterer may convert P-to-S waves in the forward direction.

The Gaussian and Expenential Scatterers
Let the density and elastic constant perturbations be proportional to an exponential distri-

bution,

Spexp(—r/a), BCyexp(—r/a).
Then the first few moments under the long wavelength and Born approximations are

T




L‘“““——-—————-—-___r

y V=gnwa’nisp 29)
yP=82a y; W8C s
yQ=32wa’0 L udp
Y $h=32ma’d 1, B Cupy
Or if the scatterer is assumed to have a Gaussian distribution

Spexp(—=r¥/a®)  BC exp(~rad.
Again, given the long wavelength and Born approximations, the the first few moments are of

the form...

y Omadn ¥y sp (30)
Y &”‘ a’",n“l.ma Cuim

(2)

y P a’-;-ﬂmmzb

«tBp

3
72},-05?w3’28,,,u,,,8Cm

551 if kowloememn,

AT it (ki men, or ,kmms lmn, or k=nw me=l,
® 1S 2 vz of 3

otherwise, zero,

15
¥ S = 8Cum u,_,ﬁc’w'“l same as y“’]

The Ellipsoidal Scatterer

Ellipsoids have often been used as models for elongated inhomogeneities. The long
seismic wavelength compared to such geologic lenslike bodies makes the Rayleijh approxima-
tion particularly appropriate. The moments for a homogeneous ellipsoidal scatterer with axes

(a;.a3ay in the x y z directions has moments of the forms

7 Vm %-tam;c,m’u/ap Q1)

7})’--;-Ma¢:¢sm,.8Cm
y = T‘;-ta.agap’(a ©08,0,~8 8 4a,a) uBp.
y - %wa.a;a,(a..a,a,—a,.a 4858, Uy, B C gy
Since the higher order terms decay so rapidly for ka< <1, density contrasts have little
affect on any directional properties of the scatterer for long wavelengths. The equivalent stress
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due to elastic moduli contrasts are the dominant source for any anisotropic scattering. For
example, consider a homogeneous sphere with s difference in shear moduli between the host
medium for shear in the x; direction; 8C,y y=8Cy3y=1/28Cy5se=e. If no density contrast
exists then the first moment of significance for an incident P wave with wavenumber vector k
is,

yP = —kiVe(d,y+ 8,
P waves traveling in the x; or x; directions are unaffected by the scatterer. Without an aniso-

tropic set of moduli, a homogeneous inclusion can not be responsible for Rayleigh scattering.

Trade-Offs Between Shape, Inhomogenelty, and Anisotropy

Although the ellipsoids and Gaussian scatterers are convenient models of voids, cracks,
and defects a strongly inhomogeneous scatterer such as a partially filled void has some interest-

ing properties. Consider the case of a sphere with two hemispheres of different properties,

8! 8Clum .2<0, and
8! 8Ch .2>0.
85=(8p'+8p)/2, Ap=(8p'-8p?), 8C=(8C'+8CD/2, AC=(8C'-3C?
The differential motion of the top and bottom of the sphere even under the long wavelength

and Born approximations will yield equivalent stresses that produce scattered S waves in the

forward direction from incident P waves.
11(0)__,,‘ - u,&p (32)

y P=wa'a?(880)8;,u, - ‘;"" ;w3 C pim

7,.)--—-1r¢ w8 yu8p

+ -slra u’aha.(—(ﬂnan‘“ﬂ‘ﬂ)

+la,,o A% + —#0%3,4, (A8 Cppy

y,‘ﬂ.--l—'s-ra’G.u, 3Cm

ln’a.a.,(-—s.a,,ﬂ,,a,,n 15,8014, (A8C e

+350%0,,808 1818 01 +8.3 w1288 sl /80
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Clearly a trade-off exists between shape of a scatterer, an inhomogeneous scatterer, and
an anisotropic scatterer. For example, the partially filled sphere has moments resembling those
of a homogeneous anisotropic ellipsoid. Similarly, a homogeneous sphere filled with anisotropic
material may resembie a homogeneous anisotropic ellipsoid. However, an anisotropic or inho-
mogeneous scatterer can not be generally modeled by a homogeneous scatterer of arbitrary
shape. For example, a penny shaped crack, void, or fluid inclusion exhibits snisotropic

behavior and can not be modeled by a homogeneous scatterer of any shape.

The Randomly Inbomogeneous Scatterer
Suppose the density and elastic perturbations within the scattering volume can be con-
sidered random. The random fields are defined by the statistical moments where <38p> =0,
<3C>=0, and R,=<80(r)8p(r)>, Re=<3C3C>, R,c=<8p8C> are their spa-
tial auto- and cross-correlations of the perturbed density and elastic fields. The expected
moments are given by,
<y o> -mzf <8pu,>d*r (33)
<y,(,,‘;’_”..>-w’!<8pu,r,,,...r,,.> d’r
- f<8C*,,,,u,_,.r., ceern > d*r
The expected scattered field, <u”>, is given by an expansion of equation (10) with the
moments replaced with their expectations. The moments for a centered random fleld will be

zero in the Born approximation. The variance of the scattered field for < u*>=0 is given by

< ufu,">-.2”l/ (ntm) <y a8 h0> Oty 4 804,10

If we ignore the cross component terms (/# ) then we have

<luf?> =T/ (n) <y 42> 8ps,.a )+ cross moment serms 34
[ ]
The cross moment terms may be significant, but we will presently examine only the main corre-

lation terms.

<ly@>=ut< fopud'r foousr>  mE 09
!

e
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<ly®i2> -¢‘<f6pu,r,,d’n Icp undrn m3,
&
+ <!8C”ll[‘.d’f| IBC;,,u,'_,d’rg >
+ 2Re(< f&pu,r.d’rl f&CL,,u[,,d’r; >)
If the displacement and strain fields are uncorrelated with the random inhomogeneity fields,
<ly }°)|z>=w‘f d’r'lu,l’f R, (1) &r (36)
<|72)|’>=m‘fd’r'|u,lsz,,(r)r,’d’r
+ f &r'ug g, J Rcc'”_(’)d”
+ 2Re(fd’r'u,u[,,,f Ryc,, red’n)
In the long wavelength approximation
<ly@>=ulul2f £r[ R, (. b an
<ly P> =w"lul2f &7 R, (r, ) ridr
+ u,..u,'.Jd’r'fRCC-*m(r.r')d’r
+ 2R¢(u,u[,.,fd’r'fk,c._(r. ) red’r)
The relationship between the moments of a distribution and its derivatives of its Fourier

transform can be used to facilitate the computations. Following Bracewell (1978) we write

71(*1)"'*.-f"|.”’.’.,/(’)d,’ (38)
/A0 4, (0
(=2%0)"

where f ,‘,2:.“.. (0) is the nth order partia} derivative of the 3-D Fourier transform evaluated at

k=0. Since the auto- and cross-correlation are Fourier transforms of the suto- and cross-

spectra, the nth order moments may be quickly interpreted.

SR, (Nd'r = 185012

1 880
fk,,(r)r,d’r - m—&—

10, o 1 __3%5(0
IR,,(I) ridr am vy,

In the case of s Guassisn random fleld for density and elastic moduli with characteristic

lengths a),a),a),

Ar) = expl-w(ri/af+ri/at+ri/af)]




h(k) = expl-w(atki+adk}+afk}))
R, (r) = <85?> A(r), Reoe= <8C8E> H(r), R,c= <8p8C>h(r)
Ve=4wa,a,ay/3
And the first order terms for scattering volumes, V>> ¥V, , are

<ly%>= oYul?v<sp®>
<lyPN>= oYy lV<sp?>a}
+ Uimity, gV <BCEC> imgy 39)

L] a
+ 2Re(u,u,',,V<8p8C>,u,,:2-L’—‘,)
If the inhomogeneity field is statistically isotropic with Gaussian correlation length, a, Statisti-
cally isotropic real elastic moduli leads to
<lyQi>= o'lul2alV<sp?> + lu |1V<8r?>8, (40)

+ lupbu Pr<su’> + 4lu 12V<rdu>8y,
Unless <8p8C> is imaginary the cross-correlation between density and elastic moduli does not

contribute to the first two terms. We can write down the expected energy radiated from the

random Gaussian scatterer as,

<P> = Imag(f d0},Coul i) 0
Wz 1 2
<P> 3 ap(“maz) hF
w? 1pal
+ TGP(‘ ) k*(1,E+1,D+1,G)
2
+ Pi-pp( p,w,r

——pp( )’k’(l‘£+l1D+l.G)
T <lyP>aF
J

<!y {"13>=E8 +Dej+Gd}
where D'c, is the equivalent dislocation and G''*d, is the remaining deviatoric part of the

scatterer.
For a P wave incident with amplitude, i, and wave number vector, &, the total scattered

power may be computed from equations (41) and

Fea'V<ip?>u? (42)
E = |k V(<BAI> +2<8u?> +4 <O > +2< 8> ) ?




D=0
Gd} - u‘a‘a}a} V<8p?>.
For a plane S wave incident with amplitude vector, ¥, and wavenumber vector k, the total

scattered power may be computed from equation (41) and

F=a'V<tpi>v
E=0
Dci= lk, etk V<du?>
Gd} = w'}) 232V <8p>
To obtain the cross section and hence the attenuation of the incident wave we require the

normalization of P by the input power, /°,

1° = L laplul+gplvia. )
For an incident P wave <o/>=<P>/(wlap), and for an incident S wave
<o >=<S5>/(w’Bp). From Twersky's (1964) multiple scattering scalar wave theory for
point scatterers, the attenuation of the effective wave that propagates through a random distri-
bution of the point scatterers with density p, is given by, K, = ko(1+¥), v=278/ k¢, and
Imag(v)=p 0 /2. From equations (41), (42), and (43) we can calculate the attenuation of the
effective P and S wave, Imag(K,, ), for & random distribution of random scatterers. The

effective P and S wave turbidity coeficients T ”*+T' ™5, and I'SS+T' 5 are given by

D ALFH(LE+1,D+1,G) k)

w2 1
r”y p,(4

™ - p,ﬁ( )AL F+(LE+ 1D+ 1,G) k})

pl

and

re (———) A1 F+(LE+1,D+1,G) k3]

pl ’
v = ,,.(W)’II,F+(I.E+I1D+I.G)k}l
with F.E,D, and G given by equations (42) and (43) respectively. Care must be exercized in
evalustion of Re(KX,,,) since the forward scattering intensity @ contains a term due to the
interference of P and S waves not evaluated in the forward direction. The scalar theory of

Twersky (1964), and Keller (1964) for the effective wave retarded by interaction with point
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scatterers does not contain such a term.

SUMMARY

A formal method for characterization of scatterers by a moment expansion of their
equivalent pseudo forces is defined in equations {10) and (11). The method is shown to be
equivalent to the form factor, or Fourier transform approach in the far field as described in
equations (17) or (27a,b,c). The total scatered energy may be obtained by integration of the
radiated strain energy (equation 28¢), or from the forward scattering theorem (equation 28b).
Forward conversion of P-to-S wave energy under the Born approximation is possible if the
scatterer is nonsymmetric or anisotropic. The first few terms of for the Gaussian, exponential,
and ellipsoidal scatterers are given in equations (29), (30), and (31) respectively. Trade-offs
between shape, inhomogeneity, and anisotropy exist, but a general scatterer may not be
modeled by a homogeneous scatterer of arbitrary shape. The randomly inhomogeneous
scatterer is treated with attention to the attenuaton experienced by plane P and S waves pro-

pagating through a distribution of such scatterers.
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CCS PROGRESS REPORT

One of the by-products of DARPA supported research at Berkeley
over the past few years has been the accumulation of a substantial
library of digital seismograms from explosions and earthquakes. These
data are primarily broadband and primarily recorded at near and
regional distances. Considerable effort has gone into archiving these
data so that they might be readily accessible for general discrimination
research.

A major problem with this seismic data library has been that of
providing efficient computer access to the data. A related problem is
that of providing the computational power necessary to analyze the data
once they have been accessed. Problems such as these have led us in the
last year to establish aComputational Center for Seismology (CCS) at
Berkeley. ,

The concept of CCS began to take shape in late 1981 and developed to
the stage of a joint proposal in June of 1982. The principal investigators
were T. V. McEvilly, S. Coen, L. R. Johnson, and E. L. Majer, who had the
combined affiliations of the Department of Geology and Geophysics, the
Department of Materials Science and Mineral Engineering, the Seismographic

Station, and the Earth Sciences Division of Lawrence Berkeley Laboratory

(LBL). Start-up funds were provided by developmental funds of LBL and
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the Department of Energy, Office of Basic Energy Science (DOE-OBES),
and the center was operating by August, 1982.

CCS has been established as an organizational group within the
Earth Sciences Division of LBL and is physically located in the computing
center at LBL. It works closely with the Computer Science and Mathematics
(CSAM) group at LBL. CCS has been set up so that it has access to all
of the facilities of a large modern computer center but does not have to
deal with any of the operational details of running such a computer center.
Figure 1 is a somewhat schematic d%agram showing the relationship between
CCS and the major computational facilities at LBL. Some of the equipment
specifically dedicated to the seismological computational needs of CCS is
attached to a particular VAX 11/780 computer, but CCS personnel have
access to the entire set of LBL computers shown in Figure 1. In additionm,
there is the multitude of data storage devices and input/output devices
which are accessible.

At present about a dozen faculty, students, and LBL scientists are
actively using CCS facilities. The DISCO package for processing seismic
reflection data has been installed as part of the CCS software. A variety
of other seismological software is in various stages of being transported
to CCS or developed within CCS. Considerable emphasis is being placed
on the development of efficient software for interactive processing of
seismological data. Through interaction with CSAM and direct contact
wicth the Center of Seismological Studies (CSS) in Arlington, Virginia,

there is a concerted effort to maintain a general compatability with

other DARPA efforts in the area of seismological computing.
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