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RESEARCH ON TOPICS IN TRANSONIC FLOW THEORY
AND ADAPTIVE GRID GENERATION

RESEARCH OBJECTIVES

The research objectives for the reporting period were to

investigate adaptive mesh generation techniques so that accurate

finite difference solutions to a set of nonlinear partial

differential equations can be obtained with the minimum number

of mesh points. Some preliminary work on adaptive mesh proce-

dures based on nonlinear truncation error analysis indicated

four basic problems that need to be resolved: (1) clustering

makes the numerical solution of the transformed equations more

difficult due to the extra stiffness introduced in the partial

differential equations; (2) proper clustering functions are

necessary to minimize the truncation errors; (3) the truncation

errors must be filtered and smoothed before they are suitable

for use as clustering criteria; and (4) artificial dissipation

* (probably depending on the local mesh size) must be introduced

to guarantee smooth and monotonic solutions at shock waves and

other flow discontinuities. The resolution of these four

problemis are the research objectives for the present reporting

period.

In the realmr of transonic flow theory the work is concerned

with an investigation into the occurrence of multiple solutions

for a cla~s of flow parameters. Specifically the occurrence of

lifting solutions for symmetric airfoils at zero angle of

attack.

STATUS OF RESEARCH EFFORT

The first research objective for this reporting period

w.as to investigate means of overcoming the stiffness introduced

T by the adaptive meshing.. The stiffness is a measure of the range

.oil
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of the eigenvalues of the flux Jacobian. The greater the range,

the stiffer the problem becomes and more difficult to solve

j numerically. The adaptive mesh increases the stiffness in two

ways; by a reduction in the smallest mesh spacing and by the

mesh velocity. For explicit schemes nothing can be done about

the reduced mesh spacing. However, the increased stiffness due

to the mesh velocity is more critical for explicit schemes and

can be alleviated by matrix splitting. The splitting refers to

the splitting of the flux Jacobian so that the effects of the

convective velocities are decoupled from the effects of the mesh

velocity. Since the two effects can be decoupled, each can be

treated separately without loss of accuracy and hence arbitrary

mesh velocities (and arbitrary mesh clustering) can be allowed

isolution procedures with explicit schemes. This decoupling

allows the mesh velocities to be sufficiently high so that the

clustering function can keep up with the flow field features
without violating the stability criteria of explicit schemes.

The most important accomplishment has been the discovery

that the procedure introduced by Viviand, Reference 1, for deriv-

ing the governing differential equation in the strongly conservative

form of the arbitrary curvilinear coordinate system is not valid.

It is commonly thought that Viviand's form of the transformed

equations are the proper conservation equations which yield the
correct shock strengths and speeds for arbitrary mesh-clustering

or mesh velocities. However, it has been shown in the present

study that the shock strength and speed are modified by the mesh

clustering function and mesh velocity through the shock transi-

tion region. To obtain the proper shock jumps and speed either

the mesh clustering function or speed must be uniform through the

shock transition region or the transition region must be of zero

T thickness. If the former condition is met then there is no need

V.- for the strongly conservative form of the transformed

differential equation and the much simpler chain rule conser-

L vation law form is adequate. If the latter condition is to be
met, then a shock fitting procedure is required and again

the strong conservation law form is not needed.



Some numerical computations have been carried out to test
the effect of mesh clustering and mesh velocity on the shock

J strength and speeds and the above conclusions have been verified.

These results are directly applicable to the resolution of the

above mentioned research objectives (2) and (3).

Due to the invalidity of Viviand's transformation for

thick shock waves, the clustering function is no longer simply

a function of the truncation errors. It must also satisfy

certain restrictions so that the proper weak solution is

recovered by the numerical scheme. The restriction is that

the mesh should be nearly uniform throughout the shock (or

contact surface) transition region. Since this is also the

region where the truncation errors vary most rapidly there is

no possibility of adapting the mesh so that the truncation

error is uniform over the entire computational domain. The

mesh induced truncation errors can be greatly reduced (actually
completely eliminated) if the fine but uniform mesh occurs

only in regions where the solution truncation errors are large

and the coarse mesh is only in regions where the truncation errors

are small. The transition between the fine and coarse mesh

need not be smooth provided that they occur only in the regions

where the solution is locally uniform and the mesh transforma-

tion metrics are computed according to Reference 2.

The third research objective was to obtain the proper

filtering and smoothing functions for the truncation errors.

7 The truncation errors can be considered to be wave packets moving

along with the features of the flow field. The purpose of

filtering and smoothing truncation error is to find the

envelope of the packet. The details within the wave packets

are not important. The nonlinear truncation error analysis

provide not only the envelope but also the details within the

wave packet. The envelope can be determined in many cases by

the curvature of the numerical solution. Thus, it is more efficient

in most cases simply to look at the curvature of the numerical
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I solution as an approximation of the lowest order harmonics of

the truncation errors. The exact nonlinear truncation errors are

not required. This is fortunate since it is quite expensive to

compute the nonlinear truncation errors.

j The final research objective was to investigate the mesh

dependent dissipation required to obtain monotonic and smooth

I shock waves. It is known (Ref. 3) that to obtain monotonic

solutions at shock waves that the mesh spacing must not exceed

a critical value set by the local amount of dissipation (either

artificial or numerical) . If, however, the mesh spacing is

very much less than the critical value then the shock becomes

excessively diffused or smeared resulting in a loss of the

effective use of the available number of mesh points. To utilize

I this trick in an adaptive mesh strategy it is necessary to know

the numerical dissipation rate, which is difficult to

determine since it is a nonlinear function of both the solution

and the metrics. So far the mesh dependent artificial dissipa-

tion has not successfully produced monotonic and smooth shock

waves.

The above results are for the explicit scheme and were done

by Nielsen Engineering & Research, Inc. (NEAR) . The work for

I implicit schemes is presently underway and is to be done by
Professor D. S. McRae.

TRANSONIC MULTIPLE SOLUTIONS

In recent years multiple solutions to the numerical approxi-I mation to the full potential equations have appeared in the

literature (Refs. 4 and 5). Initially the phenomena appeared in

j computations of the flow over a symmetric airfoil at zero angle

of attack when two lifting solutions were present in addition to

the expected nonlifting solution. In Reference 5 some results
for a nonsymmetric airfoil, a RAE 2822 section, are also[ presented. Steinhoff ahd Jameson (Ref. 5) suggested that the
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change from one of the solutions to another is discontinuous

and noted a hysteresis effect indicating that the lift coefficient

(C L) depended on whether the angle of attack (a) was increasing

or decreasing. More recent work is by Salas (Ref. 6) who has

extended the computations of the flows considered by Steinhoff

and Jameson (Refs. 4 and 5) to show that it is possible to

construct a smooth C L - a curve connecting the three solutions

for a symmetric airfoil.

The investigations noted above are meticulously performed

and are essentially numerical experiments. There is a limited

amount of understanding that can be gained from such experiments

and consequently a more analytic technique may yield more informa-

tion. Furthermore, although the numerical results are invaluable

they do not exciuse the possibility that the multiple solutions

are due to the numerical approximation to the differential

equation. The present investigation is based on the integral

equation formulation (Ref. 7) which allows some degree of insight

into the problem.

The transonic integral equation method of Reference 4 is

only applicable to the transonic small disturbance (TSD)

equation rather than the full potential equation (EPE) that is

used in the earlier work. Consequently, the first step is to

reproduce multiple solutions using the TSD equation. Once these

solutions are obtained they can be analyzed using the ideas of

the transonic integral equation theory. In this investigation these

* suggestions have been implemented and the conclusions are as

* follows. The study indicates that the formulation of the TSD

equation (and by implication the FPE) is not unique even with

the Kutta condition enforced. The formulation indicates that

eigensolutions can exist which can be combined with the correct

* solution to give erroneous results. These eigensolutions intro-

duce arbitrary constants into the solution and a preliminary

examination indicates that there is no obvious means of deter-

mining these constants.

.0-.
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