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Applications of a Unified Theory of
Monotonicity in Selection Problems

by

Roger L. Berger and Frank Proschan

Abstract

-~ In this paper, the general monotonicity results concerning selection
problems derived by Berger and Proschan (1982) are rvreviewed. They are then

applied to several different formulations of the selection problem. These

include comparison with a control and restricted subset selection problems.
Several classes of selection rules previously proposed in the literature
are shown to possess the monotonicity properties. In addition, a new class
of rules for the restricted subset selection formulation is proposed and

shown to possess the monotonicity properties. . /
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1, Introduction.

In this paper we study some monotonicity properties of ranking and
selection rules.

Recall that in a selection problem the general goal is to determine
Yhich of several populations possesses the largest value of some parameter.
Based on random observations from the populations, a selection rule selects
a subset of the populations and leads to an assertion such as, "The papula-
tion with the largest parameter is in the selected subset." (Different
formulations of the selection problem entail different assertions resulting
from the selection rule.) A reasonable selection rule should be more
likely to choose populations with larger parameters rather than populations
with smaller parameters. This property of selection rules is called
monotonicity.

In this paper we study some general monotonicity properties of a broad
class of selection rules in a unified manner. We also discuss applications
of these general results to several different formulations of the selection
problem.

In symbols, let X = (Xl,..., Xh) be a random observation with distri-

bution F(£, 3 A), where the unknown parameter vector ) = (Xl..... An) € AcRr'.

The general goal of a selection problem is to decide which of the coordinates
of A are the largest or which are larger than a value xo (possibly unknown).
A (nonrandomized) selection rule S(x) is any measurable mapping from the
sample space X of X into the set of subsets of {1,...,n}. Having observed

X = X, the selection rule S asserts that the largest parameters are in
{Ai:i¢8(5)}. The subset S(X) may be of fixed or random size depending on
the formulation of the selection problem under consideration. See, for

example, Bechhofer (1954) (fixed size), Gupta and Sobel (1958) (random size),
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and Gupta (1965) (random size).

Gupta (1965) calls a selection rule monotone if

(1.1) A2 xj implies PA(ies(g)) 2 PA(jeS(gg).

Monotonicity is a desirable property of a selection rule since the

selected subset is supposed to consist of the large values of xi. On a case
by case basis, various authors have shown that their proposed selection
rules are monotone. Monotonicity has not been investigated for some formu-
lations of the selection problem even though it is a desirable property in
all formulations.

In this paper we review the results in Berger and Proschan (1982)
(BP(1982)). These results concern some general notions of monotonicity
which include the previously discussed notion of Gupta (1965). BP(1982)
show in a simple unified way that a broad class of selection rules (which
includes rules proposed for various formulations of the selection problem)
possess these monotonicity properties. BP(1982) also discuss the application
of these results to selection rules proposed by Bechhofer (1954), Gupta
and Sobel (1958), and Gupta (1965). In the present paper, we discuss
the application of these results to other formulations of the selection
problem and other classes of selection rules considered in the literature.
Also, a new class of selection rules for the restricted subset selection
problem is proposed and shown to possess these general monotonicity
properties.

The monotonicity properties we consider are the following. Let
A= {al, vees ak} and B = {bl, cees bk} denote two subsets of {1, ..., n}
with |A| = |B| = k, where |+| denotes subset size. Subset A is better
than B if, for some arrangements 'i(l)""' °i(k) anq bj(l)""’bj(k) of
the elements of A and B, A 2 Abj for every r=s1, ..., k. If

a
i(r) (r)
A is better than B, then each of the following inequalities would be




desirable for a selection rule:

Px(lA nS| 2m 2 PA(IB n S(X)| 2 m) for every m € Rx; (1.2) i

[In words, Px(at least m of the elements of A are selected) 2 Pl(at least

- m of the elements of B are selected).]

PL(A = 5(X)) 2 PA(B = S(X)); and (1.3)

P,UAS n S| <o) 2P, (B 0 SN < m) for every m ¢ Rl (1.4

where A and B® are the complements of A and B, respectively.

Some special cases are of particular interest. By setting m = k in

(1.1) we obtain PA(A < S(X)) 2 PA(B c S(X)); i.e., the better subset is
more likely than the worse subse: to be included in the selected subset.
From the special case m = k = 1 in (1.2), we obtain the classical monoton-
icity property (1.1). By setting m = 0 in (1.3), we obtain

PA(A > S5(X)) 2 PA(B > 8(X)); i.e., the selected subset is more likely to
be in the bette;s\bset than in the worse subset.

In Section 2 the class of selection rules is discussed. The assump-
tions regarding the distribution F(x; A) are discussed in Section 3. The
monotonicity results from BP(1982) are presented and applied to three
formulations of the selection problem in Section 4. In Section 5, an

extension of these results to include additional parameters and statistics

is presented and applied to another formulation of the selection problem.

2. A Class of Selection Rules.

In this section, a broad class of selection rules is described. All
of the rules in this class will have the general monotonicity properties

(1.2), (1.3), and (1.4).
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Let ¢ = ('1""' wn) denote a permutation of (1,..., n). For any x . R",

let x = ¢ denote (xﬂl,..., x'n). Let Ic(') denote the indicator function
of the set C,

A nonrandomized selection rule S(x) can be defined by specifying its
individual selection probabilities, wl(g)...., wn(g). These are defined by
¥i (x) = Is(z)(i). WNe will be interested in selection rules which satisfy

the following for every x € R” and every i € {1,..., n}:

(2.1) If $(0 =1 and X, 2 x

50 then wj(g) =1,

and

(2.2) w,in) = ¥,(x » m) for every permutation n. Rules satisfying
(2.1) have been called natural in some selection literature (for example,
Eaton, 1967).

Nagel (1970) and Gupta and Nagel (1971) defined and investigated a
class of selection rules called just rules. A selection rule is just if,
for every 1 ¢ {1,..., n}, wi(zo is a nondecreasing function of xi and a
nonincreasing function of xj, j#i. 1If a selection rule is just and satisfies
(2.2), then the rule satisfies (2.1). To see this, let ¥ be the permutation

defined by LI P i; and =T, T= l,..., n, v #ior j. Then

j
if x, 2 X

b

wj(,s) 2 wj(z °o®) = v,j(,zs oo )= wi(z).

The inequality follows from the justness, and the first equality follows
from (2.2).

Almost all the selection rules which have been proposed in the liter-
ature for the models described in Section 3 are just rules satisfying (2.2).

Thus almost all of the selection rules which have been proposed over the

last thirty ycais satiafy the goncru) monotonicity properties (1.2), (1.3),

B S ol
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and (1.4); the results in Section 4 will give a simple unified proof of

this fact, as well as other consequences.

3. The Model and Key Mathematical Ideas.

In this section, the concept of a decreasing in transposition (DT)
function is introduced. The effect of assuming that the density of X is
DT is discussed.

Let 1 and x' be two permutations and i and j two elements of (1,..., n}

such that i < j; "i< wj; w'i a wj; #j = and l’r =%, T 1,..., n,
T #1ior j. We say that n' is a simple transposition of w; in symbols,
LS A

The concept of a decreasing in transposition function plays a central
role in our derivation of the general monotonicity properties. A real

valued function g(x ; A) on RZn is decreasing in transposition (DT) if

(3.1)  g(x: M =glxem dox) forevery xc R, e R,
and every permutation w,

and

(3.2) X, £ ... $x,A,€£...51) and1>t1r_'imply

1 n’ 1 n’

gtE s Ao x) 2g(x;20°12").
Hollander, Proschan, and Sethuraman (1977) (HPS(1977)) present a detailed
investigation of DT functions. The DT property is called arrangenpent

increasing by Marshall and Olkin (1979).

We assume that the observation vector X = (X;, ..., Xn) has a

donsity g(x : A) with respect to a measure o(x), where o satisfies
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J do(x) = [ do(x o x) for each permutation 1 and Borel set A c R, we
:ssume thatAg is DT. HPS(1977) list several discrete and continuous
densities which are DT. For example, if g{x; A) = w:_lh(xi; Ai) and
h is TPZ' then g is DT.

By Theorem 4.1 of HPS(1977), if X has a DT density, then the coor-
dinates of X are more likely to be in the same order as the coordinates
of A than in any other order. Furthermore, the probability of a rank
order for X decreases as the rank order becomes more transposcd from the
order of A. This behavior is typical in selection problems. Usually x1
is an estimate of Ai and so the xi's are expected to be in approximately
the same order as the xi's. This leads to the use of selection rules
satisfying (2.1). Most of the models considered in the selection liter-
ature are models with DT densities.

A class of selection problems considered in the literature which do
not have DT densities are problems involving unequal sample sizes. See
Berger and Gupta (1980) for several references. For example, in the
problem of selecting the normal population with the largest normal mean,
the density of the sample means will not be DT if the population variances
are equal but the sample sizes are unequal. The density does not satisfy

(3.1). Thus in their present form the results of BP(1982) do not apply

to these selection problems.

4. Monotonicity Properties.

In this section we state the monotonicity results of BP(1982). Then
we apply these results to three difforont formulations of the selection

problem.
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Theorem 4.1. Suppose (a) the density g(x ; 1) of X is DT, (b) the
individual selection probabilities of the selection rule S satisfy (2.1)

and (2.2), (¢) A<{1,..., n},Bc(1,..., n}, and A is better than B. Then

@) RUAnSQ] 2m 2P (8" S| 2 m for every n e R,

(4.2) Py(A =5(X)) 2P (B=S(X),
and

(4.3) Px(lAcn S(X)| sm) 2 PA(IBc n S(X)| 2 m) for every m ¢ g}

The proof of Theorem 4.1 is given in BP(1982). It is based on the
fact that the indicator functions of the desired events are DT functions of
X and a vector of 1's and 0's indicating which elements of {1,..., n} are
in A (or B) and which are not. By the Composition Theorem of HPS(1977),
the probabilities are DT functions of ) and the vector of 1's and O's. The
inequalities then follow, since the vector of 1's and 0's for B is a
transposition of the corresponding vector for A.

We now present some oxamples of sclection rules satisfying the

conditions of Theorem 4.1.

Example 4.1. (Restricted subset selection). Santner (1975) intro-
duced the restricted subset formulation of the selection problem. In
this formulation, a subset of random size is selected. The size of the
selected subset must not exceed m, a fixed constant satisfying 1 < m < n.
Santner (1975) proposed and studiad a class of restricted subset selection
rules. We will propose a class of rules which satisfy the conditions of
Theoren 4.1. and- thus possess the monotonicity properties (4.1), (4.2),

and (4.3).

< v E o I

- b M P A




-8 -

Santner (1975) proposed this class of restricted subset selection rules.
-1
Let xtl] ... 8 X(n] denote the ordered values of Xl,..., Xn. Let h "(2)
be a nondecreasing real valued function of the real variable z satisfying
h'l(z) < z, Then a rule in Santner's class is defined by:

Include i in the selected subset if and only if

(4.4) X > max(X nlex -

[n-me1})’ (n

Actually Santner places more restrictions on the function h'1 than we
have stated but these conditions are all that are important for our dis-
cussion.

We propose the following class of restricted subset selection rules
For any X ¢ Rn, let gi s (xi,..., x:_l) be the vector obtained by deleting

and arranging the remaining n-1 components of x in increasing order.
-1,

i
Let p be a real valued function defined on Rf‘ls iy e ®® Yy ... % Yn-l}
which is nondecreasing in each coordinate. Assume that p(y) <y, , for
every Yy € Rf'l. Finally we assume, as Santner (1975) did, that g(x ; }) is
a density with respect to Lebesgue measure on Rp: thus no coordinates of

X are tied with probability one. A class of restricted subset selection
rules is defined by:

Include i in the selected subset if and only if

(4.5) X, 2 max(X rxh).

i [n-mel]’

The class of restricted subset selection rules defined by (4.5) con-
tains the class of rules defined by (4.4). Every rule in the class (4.5)
also satisfies (2.1) and (2.2) and has the general monotonicity properties

(4.1), (4.2), and (4.3) if the density of X is DT.
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Let S be a rule in the class (4.5). To see that S satisfies (2.2),

note that for any permutation g, X € Rn, and i € {1,..., n}, x = (x o g)i
. i
and ;'1 = (x e !)1. To see that S satisfies (2.1), note that if xj 2 x;
= i3 -
(say X x[r] and xj = x[s] where r < s) then Xp = Xe» t=1,..., r-1,
t'
monotonicity of p, p(;l) 2 p(§J). So if wi(g) = 1, then

x: 2 x%, t=sr,..., s-1, and x: = xj t=s,..., n-1. Thus, by the

xj 2 Xy 2 max(x(n_n’ll, P(El)) zAmax(x[n_m+ll, P(EJ)) and wj(z) = 1.

To see that Santner's (1975) class of restricted subset selection

rules is a subset of the class (4.5), let h™! be a function which defines

a rule in (4.4). For Y ¢ R™ ! define p(x) = h™' (y_ ;). By use of the

properties of h'l, our restrictions on p are easily verified. If x, = x[
1

n}

both the rule defined with p and the rule defined with h™" include i in

the selected subset. If x; # x; 1, then xb | = xp o and p(x') = h™ (xpy).
Thus Santner's rule from (4.4) with h™! is equivalent to the rule from
(4.5) defined with p.

Santner (1975) showed that every rule in the class he considered had
the classical monotonicity property (1.1). Santner assumed that the coor-
dinates of X are independent, the density of X, is g(xi ;xi), and the family
g(x ; 1) is stochastically increasing. Under these same conditions, using
a proof very similar to Santner's, we can show that every rule in the class
(4.5) has the monotonicity property (1.1). In addition, we can conclude,
using Theorem 4.1, that any rule in the class (4.5) satisfies the mono-

tonicity properties (4.1), (4.2), and (4.3) if the density of X is DT.

Inequality (4.1) includes property (1.1) as a special case.

Example 4.2. (Comparison with a control). Lehmann (1961) formulated
the comparison with a control problem in this way. A population is called

positive if Ai 2 xo + A and negative if xi < xo, vwhere A > 0 and xo are
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fixed constants. The general goal is to select a subset containing positive
population s,

Lehmann (1961) derived minimax rules which minimize sup, R(A , S)
subject to inf,, T(1 , S) 2 y. Here y is a fixed constant, A' is the sub-
set of A for which at least one population is positive, R is either of
two criteria concerning the number of negative populations selected, and
T is any of four criteria concerning the number of positive populations
selected.

One application of Lehmann's (1961) results is the following. Assume
Xl,..., Xn are independent. Assume xi is a sufficient statistic computed
from a sample from the ith population, Assume the density g(xi ;X))

1

of Xi possesses the monotone likelihood ratio property. Then the rule

defined by ¢.(%) = 1, a, 0 according as X, > , = , < C is minimax, where !
i i |

a and C are determined by EAO*A wi(xi) s y.

The above assumptions imply that the density of X is DT. wi(g) will

satisfy (2.1) and (2.2) if a = 0 or a = 1. This will be the case if

g(x ; A) is a density with respect to Lebesgue measure. It will also be

the case for ceri=in valves of A, and A if g(x ; A) is a Poisson or

0
binamial don:ttr,  In 2a:h of these cases, Theorem 4.1 implies that the
rminimax rule will satisfy tac .ciotonicity properties (4.1), (4.2), and

(4.3).

Evamnle 4.3. (Just subset selection rules). In Section 2, it was
shown th-% 211 Fust mles which satisfy (2.2) also satisfv (2.1). Thus,
if the dem-i ¢7 ¥ 15 T am font rule satisfying (2.2) has the monotonicity
propertizs (.17, (4.7, avd (1.7,

His*oriczlly, fthe ¢onuent o7 inztness has been used only with the

unrestricted sibset salection formalation of Gupta (i), For examrle,

Rjornstad (1°7°1) verrntly dnves+t - tzd a large class of just ralcs, But
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the concept of justness is equally apper'ing for other formulations of
the selection problem. Indeed, the rules considered in Examples 4.1 and

4.2 are just.

S. Additional Parameters and Statistics.

BP(1982) prove this more general monotonicity result applying to models
which include other parameters besides )A and other statistics in addition
to X. Let ¥ be a statistic, possibly a vector, with sample space ¥. Let
Y be a parameter, possibly a vector, with a set of possible values denoted

by N,

Theorem 5.1. Assume that (X, Y) has a demsity g(x,x; A,V) with

Tespect to a measure o(x)x u (y), where g satisfies fAda(g) = IAQo(g o m)
for each permutation 1 and Borel set A c R". Assume that for each yeV
and v ¢ N, g(x,y; A'¥) is a DT function of x and ),

Let v, (x, y), ..., ¥,(x, y) denote the individual selection probadbil-
ities of a nonrandomized selection rule S(X, Y). Assume (a) for every

YeV, if wi(g, y) = 1 and xj 2 x,, then wj(g, Y)=1; ®) yeV, xe R“,

"
ie¢fl, ..., n}, and 1 a permutation imply Ve (2, ¥) = ¥wi(x om0
Let Ac {1, ..., n} and Bc {1, ..., n}.1 If A is better than B, then
(5.1) Py,u(lA 0 SCLDEm 2 Py (18 0 SQLY) |2 m) for every m ¢ r!,
(5.2) Py (A% XD |sm) 2 Py oI5 SQLY s ) for every m « R,
and
(5.3) PA’!(A = S(X, Y)) 2 P?.‘.-.!(B = S(X, X)).
T B e ) : J
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The proof of Theorem 5.1 may be found in 3P(1982).

Example 5.1. (Comparison with an unknown control). Tong (1969)

formulated the problem of comparison with a control in this way. X,, Xpr woeo
x“ ere independent normal random varisbles with means A, ll' vy kn and
common known variance oz/No. The parameter A, is the unknown control value.
Fori=l1l, ..., n, xi is bad if 11 s xo + &8, and xi is good if Ai.z xo + 62,

where 61 < §, are known constants. The sample size N, is chosen so that the

2
probability that all of the good populations are selected but none of the
bad populations is selected is at least a preassigned value.

In our notation, X = (Xl, coes Xn), A= (Al. cees Xn), Y= Xo and
v = Xo. Let d = (6l + 52)/2. Tong (1969) showed that the selection rule
which includes i in S(X, xcp if and only if Xi - Xg > d is Bayes, minimax,
and admissible among all translation invariant rules.

The conditions of Theorem 5.1 are easily verified for this selection
rule and model. Thus S(X, X, possesses the general monotonicity properties
(5.1), (5.2),and (5.3). For example, if A is the set of good parameters
and B is any other set of equal size, then, by (5.3), A is more likely to
be the sclected set than is B.

In other applications, y might include nuisance parameters, which

have no bearing on which Ai's are preferred, as well as control parameters,

like Ay Similarly, Y might include estimates of nuisance parameters.

6. Conclusion.

In this paper, we have reviewed thc general monotonicity results for

selection rules of BP(1982). By examples, we have indicated that almost

- v o~ - - e
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all nonrandomized selection rules which have been proposed for models
with DT densities possess the general monotonicity properties. Thus,
results which have previously been derived on a case by case basis may
now be obtained using this unified theory; in addition, other results

way be obtained.
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