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Applications of a Unified Theory of

Monotonicity in Selection Problems

by

Roger L. Berger and Frank Proschan

Abstract

In this paper, the general monotonicity results concerning selection

problems derived by Berger and Proschan (1982) are reviewed. They are then

applied to several different formulations of the selection problem. These

include comparison with a control and restricted subset selection problems.

Several classes of selection rules previously proposed in the literature

are shown to possess the monotonicity properties. In addition, a new class

of rules for the restricted subset selection formulation is proposed and

shown to possess the monotonicity properties.
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1. Introduction.

In this paper we study some monotonicity properties of ranking and

selection rules.

Recall that in a selection problem the general goal is to determine

which of several populations possesses the largest value of some parameter.

Based on random observations from the populations, a selection rule selects

a subset of the populations and leads to an assertion such as, "The popula-

tion with the largest parameter is in the selected subset." (Different

formulations of the selection problem entail different assertions resulting

from the selection rule.) A reasonable selection rule should be more

likely to choose populations with larger parameters rather than populations

with smaller parameters. This property of selection rules is called

monotonicity.

In this paper we study some general monotonicity properties of a broad

class of selection rules in a unified manner. We also discuss applications

of these general results to several different formulations of the selection

problem.

In symbols, let = (XI,..., X n) be a random observation with distri-

bution F( .; A), where the unknown parameter vector I = (Al,..., an) A c Rn.

The general goal of a selection problem is to decide which of the coordinates

of a are the largest or which are larger than a value A0 (possibly unknown).

A (nonrandomized) selection rule S(Z) is any measurable mapping from the

sample space Xof I into the set of subsets of {l,...,n). Having observed

A N, the selection rule S asserts that the largest parameters are in

(A :icS(x) 1. The subset S(A) may be of fixed or random size depending on

the formulation of the selection problem under consideration. See, for

example, Bechhofer (1954) (fired size), Gupta and Sobel (195R) (random size).

- - - ,'- e h.. - '.pool~



and Gupta (1965) (random size).

Gupta (1965) calls a selection rule monotone if

(1.1) xi  A implies PX(icS(2)): Px(jeS(D).

Monotonicity is a desirable property of a selection rule since the
selected subset is supposed to consist of the large values of i . On a case

1i
by case basis, various authors have shown that their proposed selection

rules are monotone. Monotonicity has not been investigated for some formu-

lations of the selection problem even though it is a desirable property in

all formulations.

In this paper we review the results in Berger and Proschan (1982)

(BP(1982)). These results concern some general notions of monotonicity

which include the previously discussed notion of Gupta (1965). BP(1982)

show in a simple unified way that a broad class of selection rules (which

includes rules proposed for various formulations of the selection problem)

possess these monotonicity properties. BP(1982) also discuss the application

of these results to selection rules proposed by Bechhofer (1954), Gupta

and Sobel (1958), and Gupta (1965). In the present paper, we discuss

the application of these results to other formulations of the selection

problem and other classes of selection rules considered in the literature.

Also, a new class of selection rules for the restricted subset selection

problem is proposed and shown to possess these general monotonicity

properties.

The monotonicity properties we consider are the following. Let

A - (al, ..., ak) and B - (bl, ..., bk) denote two subsets of (1, ... , n)

with IAI - IBI - k, where 1'j denotes subset size. Subset A is better

than B if, for some arrangements ai(l),.... ai(k) and bj(l), ... ,bJk) of

the elements of A and B, A a ,r 0  for every r 1, ... , k. if

A is better than B, then each of the following inequalities would be
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desirable for a selection rule:

P A(IA n S(A)I a m) z P (IB n S( )I a m) for every m e RI; (1.2)

[In words, P X(at least m of the elements of A are selected) a PA(at least

m of the elements of B are selected).]

PX(A - S(Q)) PA(B = S(Q)); and (1.3)

PA(JA c n SQ) 1 < m) > P e(C S(X) 1 m) for every m e R (1.4)

where Ac and Bc are the complements of A and B, respectively.

Some special cases are of particular interest. By setting m = k in

(1.1) we obtain Pa(A c S(X)) ! P A(B c S(X)); i.e., the better subset is

more likely than the worse subset to be included in the selected subset.

From the special case m = k = I in (1.2), we obtain the classical monoton-

icity property (1.1). By setting m = 0 in (1.3), we obtain

PX (A n S(Q)) a PA(B D S(Q)); i.e., the selected subset is more likely to

be in the better subset than in the worse subset.

In Section 2 the class of selection rules is discussed. The assump-

tions regarding the distribution F(A; A) are discussed in Section 3. The

monotonicity results from BP(1982) are presented and applied to three

formulations of the selection problem in Section 4. In Section S, an

extension of these results to include additional parameters and statistics

is presented and applied to another formulation of the selection problem.

2. A Class of Selection Rules.

In this section, a broad class of selection rules is described. All

of the rules in this class will have the general monotonicity properties

(1.2), (1.3), and (1.4).
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Let I (wl,... , wn) denote a permutation of (,..., n). For any x Rn,

let x o w denote (x ,..., x ). Let I (-) denote the indicator function
1n

of the set C.

A nonrandomized selection rule S(Q) can be defined by specifying its

individual selection probabilities, l(n)...,4 (i). These are defined by

i ( ) m IS(,)(i). We will be interested in selection rules which satisfy

the following for every Z f Rn and every i e {l,..., n):

(2.1) if y(x) I and x a x,, then )(x) = 1,

and

(2.2) 4' (Z) " i ) for every permutation w. Rules satisfying

(2.1) have been called natural in some selection literature (for example,

Eaton, 1967).

Nagel (1970) and Gupta and Nagel (1971) defined and investigated a

class of selection rules called just rules. A selection rule is just if,

for every i e (1,... n), .i(Z) is a nondecreasing function of xi and a

nonincreasing function of xj, jii. If a selection rule is just and satisfies

(2.2), then the rule satisfies (2.1). To see this, let w be the permuation

defined by w j = i; and wr r, r 1,..., n, r 0 i or j. Then

if xj x i ,

jx) (-#jx ° W ) a Wix

The inequality follows from the justness, and the first equality follows

from (2.2).

Almost all the selection rules which have been proposed in the liter-

ature for the models described in Section 3 are just rules satisfying (2.2).

Thus almost all of the selection rules which have been proposed over the

last thirty ycazs 3ati-afy the ganermi monotonidity properties (1.2), (1.3),

low- 2
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and (1.4); the results in Section 4 will give a simple unified proof of

this fact, as well as other consequences.

3. The Model and Key Mathematical Ideas.

In this section, the concept of a decreasing in transposition (DT)

function is introduced. The effect of assuming that the density of X is

DT is discussed.

Let i and Vw be two permutations and i and j two elements of {n,.... n}

such that i < j; wi < 
it; t. a wi.; and wir = ir, r = 1,..., n,

j 1j r - r

r A i or j. We say that i' is a simple transposition of w; in symbols,

w >t , .

The concept of a decreasing in transposition function plays a central

role in our derivation of the general monotonicity properties. A real

valued function g( ; A) on R2n is decreasing in transposition (DT) if

(3.1) ( ; -g(Za Z; o 1) for every Z Rn , X Rn

and every permutation it,

and

(3.2) xl A X,) . , and w >t imply

g(Z ; A o!) Zg(*;; oA )

Hollander, Proschan, and Sethuraman (1977) (HPS(1977)) present a detailed

investigation of DT functions. The [r property is called arrangeoent

increasing by Marshall and Olkin (1979).

We assume that the observation vector 8 (XI, ... , X n ) has a

density g( ; A) with respect to a spasure o(.), where a satisfies

- " " - - " " -'l
" ' ' ' -

' "- " r ~ m . . .'t ., ,. e .......
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f do(!) uf 4o(x w w) for each permutation i and Borel set A c Rn . We
A A
assume that g is DT. HPS(1977) list several discrete and continuous
densities which are Dr. For example, if g(6; J) w. h(x ; Ai) and

jul j

h is TP20 then g is DT.

By Theorem 4.1 of HPS(1977), if X has a DT density, then the coor-

dinates of X are more likely to be in the same order as the coordinates

of A than in any other order. Furthermore, the probability of a rank

order for X decreases as the rank order becomes more transposed from the

order of A. This behavior is typical in selection problems. Usually Xi

is an estimate of A i and so the Xi's are expected to be in approximately

the same order as the Ai's. This leads to the use of selection rules

satisfying (2.1). Most of the models considered in the selection liter-

ature are models with DT densities.

A class of selection problems considered in the literature which do

not have DT densities are problems involving unequal sample sizes. See

Berger and Gupta (1980) for several references. For example, in the

problem of selecting the normal population with the largest normal mean,

the density of the sample means will not be OF if the population variances

are equal but the sample sizes are unequal. The density does not satisfy

(3.1). Thus in their present form the results of BP(1982) do not apply

to these selection problems.

4. Monotonicity Properties.

In this section we state the monotonicity results of BP(1982). Then

we apply these results to three different formulations of the selection

problem.

• . - . ....
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Theorem 4.1. Suppose (a) the density g(x ; Z) of X is DT, (b) the

individual selection probabilities of the selection rule S satisfy (2.1)

and (2.2). (c) Ac( c ... , n),Bc(1,..., n), and A is better than B. Then

(4.1) P (JA n S(Q)I 2 m) k P (IB I S(A)I Z m) for every m e R

(4.2) PA(A = scx)) Z P(B -scx)),

and

(4.3) PA (IAn sx)j : m) k P (IBc . S(X) Z m) for every m F RI .

The proof of Theorem 4.1 is given in BP(1982). It is based on the

fact that the indicator functions of the desired events are DT functions of

X and a vector of l's and O's indicating which elements of {,..., n) are

in A (or B) and which are not. By the Composition Theorem of HPS(1977),

the probabilities are DT functions of A and the vector of l's and O's. The

inequalities then follow, since the vector of I's and 0's for B is a

transposition of the corresponding vector for A.

We now present some oxamples of selection rules satisfying the

conditions of Theorem 4.1.

Example 4.1. (Restricted subset selection). Santner (197S) intro-

duced the restricted subset formulation of the selection problem. In

this formulation, a subset of random size is selected. The size of the

selected subset must not exceed m, a fixed constant satisfying 1 5 m ! n.

Santner (1975) proposed and studid a class of restricted subset selection

rules. We will propose a class of rules which satisfy the conditions of

Theorem 4.1. and thus possess the monotonicity properties (4.1), (4.2),

and (4.3).

X I W.
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Santner (1975) proposed this class of restricted subset selection rules.

Let X[1 ] 2 ... , Xn ] denote the ordered values of X .... , Xn . Let h- (z)

be a nondecreasing real valued function of the real variable z satisfying

h I(z) < z. Then a rule in Santner's class is defined by:

Include i in the selected subset if and only if

(4.4) X I max(X fn-ml] h - I(Xn])

Actually Santner places more restrictions on the function h-1 than we

have stated but these conditions are all that are important for our dis-

cussion.

We propose the following class of restricted subset selection rules
•ii

For any S . Rn , let xI  (X,..., xni ) be the vector obtained by deleting

xi and arranging the remaining n-i components of Z in increasing order.

n-l n-i
Let p be a real valued function defined on R, = {y c R1: y " Y.n-.

which is nondecreasing in each coordinate. Assume that p(X) ! Yn-l for

every X e R "1 . Finally we assume, as Santner (1975) did, that g(Z , -) is

a density with respect to Lebesgue measure .n Rn: thus no coordinates of

are tied with probability one. A class of restricted subset selection

rules is defined by:

Include i in the selected subset if and only if

(4.5) X a max(X n-.l], p(Xi)).

The class of restricted subset selection rules defined by (4.5) con-

tains the class of rules defined by (4.4). Every rule in the class (4.5)

also satisfies (2.1) and (2.2) and has the general monotonicity propcrties

(4.1), (4.2), and (4.3) if the density of X is DT.

-n t
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Let S be a rule in the class (4.5). To see that S satisfies (2.2),

note that for any permutation w, x e Rn, and i e n1,... , x (x i).
II i

and X T (x o w). To see that S satisfies (2.1), note that if x. 2 xi

(sayx aX andx whe r <s) thenx , tal ... r-l,

a: X3, t - r,..., s-i, and x x t s,..., n-l. Thus, by the
t t't t

monotonicity of p, p(x i ) a p(zj). So if 1i(x) - 1, then

x. 3 x 2 max(xtn.,, p(xi)) 7! max(xr_1, p(J)) and 4'(x) 1.

To see that Santner's (1975) class of restricted subset selection

rules is a subset of the class (4.5), let h " be a ftnction which defines

a rule in (4.4). For): X c -1 define p(y) = h 1 (yn-l). By use of the

properties of h "1 , our restrictions on p are easily verified. If xi = x[n ]

both the rule defined with p and the rule defined with h- I include i in

the selected subset. Ifx 1 X~n, then xi X and p(xi) = h-(x[n

Thus Santner's rule from (4.4) with h is equivalent to the rule from

(4.5) defined with p.

Santner (1975) showed that every rule in the class he considered had

the classical monotonicity property (1.1). Santner assumed that the coor-
dinates of X are independent, the density of xi is g(xi ;Xi), and the family

g(x ; A) is stochastically increasing. Under these same conditions, using

a proof very similar to Santner's, we can show that every rule in the class

(4.5) has the monotonicity property (1.1). In add tion, we can conclude,

using Theorem 4.1, that any rule in the class (4.5) satisfies the mono-

tonicity properties (4.1), (4.2), and (4.3) if the density of A is DT.

Inequality (4.1) includes property (1.1) as a special case.

Example 4.2. (Comparison with a control). Lehmann (1961) formulated

the comparison with a control problem in this way. A population is called

positive if Ai z x + A and negative if Ai 5 x0, where A > 0 and A. are
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fixed constants. The general goal is to select a subset containing positive

population s.

Lehmann (1961) derived minimax rules which minimize suPA RQ( , S)

subject to infA, T(Q , S) *a y. Here y is a fixed constant, A' is the sub-

set of A for which at least one population is positive, R is either of

two criteria concerning the number of negative populations selected, and

T is any of four criteria concerning the number of positive populations

selected.

One application of Lehmann's (1961) results is the following. Assume

XI ... , Xn are independent. Assume Xi is a sufficient statistic computed
th

from a sample from the i population. Assume the density g(xi ; X.)

of Xi possesses the monotone likelihood ratio property. Then the rule

defined by 1i() = 1, a, 0 according as Xi > , = , C is minimax, where

a and C are determined by E A + i(X.) Y.

The above assumptions imply that the density of X is DT. Ji(x) will

satisfy (2.1) and (2.2) if a = 0 or a a 1. This will be the case if

g(x ; X) is a denrsity with respect to Lebesgue measure. It will also be

the case for cet.-i'-, values of X0 and A if g(x ; X) is a Poisson or

bv' .ial din- . -ie x t -, ese cases, Theorem 4.1 implies that the

r.ina;ix rule will satisfy tsia .2*aotonicity properties (4.1), (4.2), and

(4.3).

E.av.,,le 4.3. (Just subset selection rules). In Section 2, it was

shown t".t -77" 4,it rii..e w-ich satisfy (2.2) also sati4Fv (2.1). Thuts,

if the dc: - ..-. . .. , "-a ' , ule satisfying (?.2) hz: t'i-, mnotonicity

r r -i p e r t i z ', i , , . , 3

flisto.ically, tie c .- "1  t;",-ness has been ired Only w.ith the

unrestric-' s!-'s"t Fvlcction fc.-mil-V:'on of Gupta (::.). F.'i eapnrle,

Bjorlet.d (171) e.rty inves :;t~ a large class of just r-'cs. But
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the concept of justness is equally appeF'ing for other formulations of

the selection problem. Indeed, the rules considered in Examples 4.1 and

4.2 are just.

S. Additional Parameters and Statistics.

BP(1982) prove this more general monotonicity result applying to models

which include other parameters besides A and other statistics in addition

to X. Let I be a statistic, possibly a vector, with sample space V. Let

2 be a parameter, possibly a vector, with a set of possible values denoted

by N.

Theorem 5.1, Assume that (Z, X) has a density g(Z,X; k,v) with

respect to a measure o(Z)x u (Z), where a satisfies fAda(x) f Ad(x Z)

for each permutation w and Borel set A c Rn. Assume that for each ) E V

and v c N, (x,X; 4v) is a DT function of x and X.

Let go Z) .(, X) denote the individual selection probabil-

ities of a nonrandomized selection rule S(X, Y). Assume (a) for every

V £ Y, if *i(x, ) = I and x3  xi, then * (Z, X)= 1; (b) X c V, x £ Rn,

i £ (1, ... , n1, and w a permutation imply ) a * (z - .)

Let A c (1, ... , n) and B c (1, ... , n1. If A is better than B, then

(5.1) PA ,(IA n S(XY)Im) a P A,(IB n S(ZX)2i: m) for every m f R

(S.2) P ,(IAcn S(Q,Y)1m) a PA, (iBCn S(Q,Y)1< m) for every m e R

and

(S.3) P A V(A a S(;, X)) k PX, (B - S(Q, W9).

- -i.4v .-

"' "-.'-t t - _
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The proof of Theorem 5.1 may be found in BP(1982).

Example 5.1. (Comparison with an unknown control). Tong (1969)

formulated the problem of comparison with a control in this way. X0 , X1, ... ,

X .re independent normal random variables with means X0 , XI , ... , Xn and

common known variance a 2/N The parameter A0 is the unknown control value.

For i a 1. ... , n, A i is bad ifI i s A0 + 8, and Ai is good if A. 0 X 62'

where 5 1 < 62 are known constants. The sample size N0 is chosen so that the

probability that all of the good populations are selected but none of the

bad populations is selected is at least a preassigned value.

In our notation, X = (X1, ... Xc), A - (A1, .... A), Y = X and
- V... d' 'l n - 0

V a A Let d a (S 1 62)/2. Tong (1969) showed that the selection rule

which includes i in S(A, X0) if and only if Xi  Xo > d is Bayes, minimax,

and admissible among all translation invariant rules.

The conditions of Theorem 5.1 are easily verified for this selection

rule and model. Thus S(X, XO) possesses the general monotonicity properties

(5.1), (5.2),and (5.3). For example, if A is the set of good parameters

and B is any other set of equal size, then, by (5.3), A is more likely to

be th* selected set than is B.

In other applications, ) might include nuisance parameters, which

have no bearing on which AiIs are preferred, as well as control parameters,

like A.. Similarly, X might include estimates of nuisance parameters.

6. Conclusion.

In this paper, we have reviewed the general monotonicity results for

selection rules of BP(1982). By examples, we have indicated that almost

, - - - ", ,is a II-l i - I II I I I I |
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all nonrandomized selection rules which have been proposed for models

with DT densities possess the general monotonicity properties. Thus,

results which have previously been derived on a case by case basis may

now be obtained using this uified theory; in addition, other results

may be obtained.

;Opp--."
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