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0. Introduction

The main thesis of the present paper is to view the martingale central limit
thecrem as bhasically concerning summands which tend uniformly to zero, and with
squared variation (sum of squares) converging uniformly, and then to reduce
the most general situation to this case by (random) change of timescale and by
truncatinn. We think that this both appeals to the intuition and leads to quite
efficient proofs. The purpose of the paper thus is to give a selfcontained expo-
sition of the basic martingale central limit theory, using this point of view,
providing as simple and efficient proofs as possible. A second assertion we
would like to make is the usefulness of stochastic processes point of view:
that it is the functional limit results which are important, and not only their
one-dimensional versions. There is, of course, a cost associated with this: one
has to learn at least some elements on convergence of distributions on function
spaces, but the reward then is both better understanding and easier and shorter
proofs. One further feature of our development below is an emphasis on the
squared variation process and a systematic use of Burkholder's square function
inequality. 1In particular this makes possible a very easy proof of tightness,
which in other approaches often requires the main effort.

The central limit theorem for discrete parameter martingales represents one
important stage in the development of central limit theory and has in the last
few years reached what seems to be essentially its final form and has also proved
its value in many applications to statistics and applied probability. The theory
has also been recast into the language of '"the general theory of processes' of
the Strasbourg school and been extended to the continuous parameter case by the
work of Rebolledo [15,16], Lipster and Shirayev [13,14] and others. This has led

to ¢ very satisfying formulation of the results and a rather complete extension

-
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of the theory. Nevertheless it may perhaps also be said that the essential dif-
ficulties are present already in the discrete case and that the basic continuous
parameter results are rather easy to obtain from the corresponding results for
discrete time, as shown by Helland [9].

nxcept for the multidimensional result, Theorem 4.3, which is only a small
step away from the one-dimensional results (although it seems quite useful for
applications), none of the theorems of this paper is new. However, almost all
the proofs are new (the main idea was mentioned briefly by the present author in
[19] and was developed in some detail in mimeographed lecture notes from the
Department of Mathematical Statistics, Copenhagen University). In particular
we would like to point out Lemma 2.5, which is a versatile tool and which is new
formulated in the present generality, although various special cases have becn
used by many authors.

A related exposition, which starts, however, by assuming known a basic cen-
tral 1imit theorem for bounded martingale differences is given by Helland [9].
A further rather different exposition which uses the Skorokhod embedding is
contained in the recent book by Hall and Heyde [8]. Both expositions contain
extensive lists of references and accounts of the development of the subject, to
which we refer the reader. Later papers of interest include work by Klopotowski
and colleagues [2,12], the articles by Lipster and Shiryaev mentioned above, and
a series of papers by Jeganathan [10,11]. The approach in [11], which in turn
was partly inspired by Rosén [20], is somewhat related to this paper and was
made independently of it.

The plan of the paper is as follows. Section 1 contains some notation, and

in Section 2 the results we need from other areas (functional 1limit theory and

martingales) are collected, and the basic truncation lemmas (Lemmas 2.5-2.7) are
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obtained. The functional central limit theorem for martingales is then proved in
Section 3, starting from scratch, and finally Section 4 contains a somewhat brief-
er discussion of one direction of extension of the results, to several dimensions

and to convergence to mixtures of normal distributions.

1. Notation

Throughout, we will consider doubly indexed arrays {X B

., .3 21, n21)
n,J n,J

where the Xn j's are random variables or, in Section 4, random vectors, and for
b
o0

each n, {B .}

nili=l is an increasing sequence of sigma-algebras, i.e., B
,ili=

.<B . ..
n i~ n,j+l

We will never assume that the Xn .'s are obtained by linearly renormalizing a

)

single sequence of random variables since that is not the case in many of the ap-

plications but will sometimes assume that the sigma-algebras are nested, i.e. that

n, j < Bn+1,j , for n,jz1 ,

which seems to hold in most cases of interest. Possibly by going over to a pro-

duct space, we will assume that all Xn .'s and Bn 1'5 are defined on the same

» L,

probability space (2,3,P). The array is said to be adapted if Xn ; € Bn ; for

jz1, n21, and it is a martingale difference array (m.d.a.) if in addition
{Xn i’ Bn J.; j=1,2,...} is a sequence of martingale differences, i.e., if

E|Xn jl < o and E(X | B .) = 0 for j=1.

n,j+l n,j

A stochastic process {t(t)}, defined for t in some interval I is a time-scale

if it is nondecreasing, has left limits and is right continuous. A sequence {Tn}

of time scales is adapted (to {Bn j}) if for each n and tel, Tn(t) is a stopping

»

time with respect to Bn,l’ Bn,Z""

Let Sn(t) = E§Z} Xn j be the [t]th partial sum in the nth row, and let L
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{B(t); tel} be a standard Brownian motion. The problem we are concerned with is
convergence in distribution of time-scaled row-sums Sn0'rn to a Brownian motion,

or more generally a time-scaled Brownian motion. Here of course Snorn is defined
by SnOTn(t) = Sn(Tn(t)). For brevity of notation we will usually write SOTn for

Snorn, and Ei(-) for E(~||Bn i) (with EO=E) when taking expectation of variables

. t
in the n h TOW.

A partition of an interval [0,T] is a finite set of points, 0=t0<t1<...<tk=T.

For a given partition, we will write

A= max A(L)

(1.1) A = ty - t
1<f<k

-1

ASoTn(l) SOTn(tZ) - Sorn(tZ-l) s

k
sup ! y ) G

. n,j' '
Tn(t£_1)<kSTn(t£) J—Tn(t£_1)+1 \

vSOTn(Z)

Further, indicator functions will be written as 1, or 1{ }, i.e. lB(w) is one

B

if weB and zero if weBc, and similarly 1{ } is one if the event in curly brackets

occurs and zero otherwise, Finally, sums with u;per limits which are not integers
. X [x] . . . . .

are defined by Xj=1 = Xj=l’ i.e. summation is up to the greatest integer which

does not exceed the upper limit.

2. Prerequisites: Functional Limit Theorems, Martingales, Approximation

For easy reference and because one purpose of this paper is to make a completc
exposition of the martingale central limit theorem, we will in this section list
the results on convergence in distribution and on martingales which arc needed

for the proofs. The section furthermore contains three lemmas which arc esscntial -

for the truncation and approximation procedures wc will use.
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L.et X, {Xn} be random variables with values in a complete separable metric
space (S,p). With standard terminology and notation, Xn converges in distribu-
tion to X, Xn 2 X in (S,p), if h(Xn) Q h(X) in R, for all functions h: S - R
which are bounded and continuous almost surely with respect to the distribution
of X, and Xn converges in probability to X, Xn E X if p(Xn,X) Q 0. If X has a
standard normal distribution in lfi we also write convergence in distribution as
Xn ﬂ Nd(O,I) and for d = 1, as Xn g N(0,1). Besides R, Rd, we will be inter-
csted in the metric spaces D[0,T] and D[0,~) of functions on [0,T] and on [0,®)
which have left limits and are right continuous, with metrics described in [3,21]
and in the subset DO[O,l] of nondecreasing functions in D[0,1]. Convergence in
distribution of vectors will throughout be with respect to the relevant product
metric.

The first result is a criterion for comvergence in D[0,»). It can be obtaincd

as an easy special case of the results of [21, Theorem 2.8] and [3, Theorem 15.5

amended with the argument of Theorem 8.3].

Proposition 2.1. With the notation of (1.1), suppose the following two conditions

hold:
(i) (tightness) for each positive T and €, there exists a function f such that

for any partition of [0,T],

k
limsup ) P(vSot_(&)2e) s f£(4) ,
nre  f=1 n

where f(A) -~ 0, as A - 0, and

. [e o
(ii) (finite dimensional convergence) if {kn}n_ is a sequence of integers and

=1

X a continuous stochastic process with SOT Q X in D[0,») as k > o, it follows

k
n
that X has the samc finite-dimensional distributions as B.
Then sot 4 B in D[0,®), as n > « |, 1

The next results, on "random change of time" and approximation are phrased




in terms of general processes Xn’Yn and Y in D[0,*) or D[0,1]) and timescales {1n}.

Proposition 2.2. (i) Suppose Y ¢ Y in D[0,©) and that {Tn(t); te[0,1]} are

timescales such that

(2.1) T (1) Py , asnow,

for each te[0,1], where T is a non-random continuous function. Then Y'nO'rn Q YOor.
(ii) Suppose Yh d Y in D[0,1] and that {Xn} are random variables in D[0,1], such
that

sup IX (t)-Yy (t)| 13 0 , asn > o,
ost<1 M n

Then X d Y in D[0,1].

Proof: (i) Since pointwise convergence of increasing functions to a continuous
limit implies uniform convergence, (2.1) implies that T Q T in DO[0,1]. and the
result then follows from [21, Theorem 3.1].

(i1) See {3, Theorem 4.1]. r

From martingale theory we will use some simple consequences of the optional
sampling theorem (Proposition 2.3 below), the extension of Kolmogorov's inequality
to martingales (Proposition 2.4(i)) and one half of Burkholder's square function
inequality (Proposition 2.4(ii)). All of this b=longs to the standard fare from
a first encounter with martingale theory, except perhaps the square function in-
equality. An elementary (albeit pedestrian) proof of this latter result is
sketched in the appendix for the special case we shall need--an elegant proof

for the general case is given in [4].

Proposition 2.3. Let {xj’Bj; j21} bz a sequence of martingale differences, let

T<T' be stopping times, and write BT for the pre-T-sigma-algebra. Suppose that

T 2
E). X7 < =, Then
2J=1 j

T'
E{) Xx.J/B}=0
. T
j=T+1




and

]

T' "’ ) _ T' 2
E{(} X |V B.} = E{] x:1 8.}
jerer T j=t+l J

Proposition 2.4. Let {Xj,Bj} be a martingale difference sequence and let v<t!

be stopping times. Then

(i) for any integer n and real numbers p21, >0,

k
P max | ) X.]) < LE|T x.|P
T<k<T'AN j=T+1 P j

(ii) for p>1 and C a constant which only depends on p,

1! Tt 2 2
El Y x,|P<cE(Y xi)p/ ,
=T+l - i=T+]
and
T' T'
(iii) P(max | ] X, 20) « S (Y xHPp/2
T<ksT' j=T+1 ] eP  jErer !

Proof: (i) is the extension of Kolmogorov's inequality applied to the martingale
{ T'Ak

Diara and (ii) is one of Burkholder's square function inequalities.

n
k=1
Further, combining (i) and (ii) we have that

k C T!
( > < E
P( max [ x.|2e) < T (‘Z

T<k#T'AD  j=T4l )

X.}
j

An

’
s

x3yr/?
T+, ]

J

and (iii) follows by letting n»o, n

As will be seen, it is convenient to have an easy means of comparing the =ize
ot a sum of positive variables with the sum of their conditional expectation. In
the present context, special cases of the following result kes been used by

several authors, but the result itself--and its easy proof--is believed to be new.

Lemma 2.5. Suppose {Zn i Bn i} is an adapted array of positive random variables

and that T, is a stopping time with respect to Bn , B for each n. Then

1 n, 20

:
n

(v e @ o) >0= § oz

i=

1 J-1""n,)




and
(ii) if {max Z_ .}°__ is uniformly integrable then

1<j<T n,j n=l
n

T T
n P _
izl Zn,J > 0= Z Ej.1(2 f)

Proof: (i) For any stopping time vy letting N tend to infinity in the identity

v_AN
n

N
EY oz .=V Ellisv iz .
. n,i - nn,j
i=1 =1 :
N .
= 1< 7
.Z SUEENLCA ) R
i=1
V_AN
N
= E N L(an’1,l8n’3~1\
i=1
shows that
».)n \)n
E Y 2 . =E ) E. (Z )
i=1 n,j i1 -1""'n,j
Let
k
f = 3 .
vio=inflial; ] FENCRNEY
j=1 N
= L. K
vn (vn I)NTn ,

and note that\gtl, and hence vn, is a stopping time, and clearly P(vn#Tn)+O

. n p .
since Ej:l Ej—l(zn,j) + 0. Further, since vnSTn R
v
n P
E E. ,(Z_..)~>0, asn->o
j=p b

v
and 0 < X,n E. ,(Z_ .)<1, since v_ < Vv'-1, so the sum is uniformly integrable
i=1 73-1""n,j n n 4 )

and hence




\Y) \Y)
n n
) Znj “F '[ B (2, ) »0 , asn~«
i=1 j=1
Thus, for any >0,
T Vv
n n
- # . >E 0 ®,
P(izl zn’j>g) € P(T #v ) + P(jZI Zn,) £) » , asn >

using Chebycheff's inequality for the last term.

(i1} Define in this case

1]

Y

k
inflkz1; ) z_ .>1},
'}'—‘l n,l

n
Vo= VAT
n n n
v
so that v_ again is a stopping time, and note that 0 < J.". Z_ . <1 + max{Z_ .;
n j=l "n,j n,j

. is uniformly integrable,

i<t }. By the assumption this shows that }.7 z
n 3=l m,)]

and the proof can then be completed in the same way as part (i). n
The proof of the following frequently used result is left to the reader.
Lemma 2.6. Let {Xn} be real random variables. Then

(1) Xn 14 0 if and only if there exists constants €y 0, such that P(Xn >?n)»0'
as n -+ o, and

(ii) {Xn}:=l is tight if and only if Xn/an B0 for any sequence {an} of constants
such that a, > ®asn+ >

Combining Lemma 2.6(ii) and Lemma 2.5, and noting that {max{Zn i lsj<1n1}:_1

»

i< uniformly integrable implies that {max{Zn AN lsjsrn}}:_l is uniformly inte-
, =

grable if an »> o  leads to the next lemma.

Lemma 2.7. Let {z .,B
bt nji'n

’ ’

i} and {Tn} be as in Lemma 2.5. Then

T T
. n . , o n @
(1) if {2j=l Ej_l(hn’j)}n:] is tight then {Xj=l Zn,j}n=1 is tight, and
(ii) if {max{Zn,j; ISJSTn}}n=1 is uniformly integrable, and {2j=1 zn,j}n=1 is




T
tight, then‘{Zi‘__‘1 Ei ) Zy iipep 1S tight.

3. Functional Central Limit Theorems for Martircales

Perhaps the most intuitively appealing explanation of the martingale central
limit theorem is the Lévy-Doob-Dubins-Schwarz characterization of the Brownian
motion--a martingale which has continuous sample paths and squared variation
equal to the identity is necessarily a Brownian motion (see [6]). (However,
this of course goes both wavs: The martingale central limit theorem on the
other hand throws light on the characterization, and it can be used to provide
a simple proof of it). We start by proving an approximation version of the
characterization, informally that if the jumps are uniformly small and the
squared variation is uniformly close to the identity, then a martineale is ap-
proximately a Brownian motion. In the proof of finite dimensional convergence,
we use ideas borrowed from Kunita and Watanabe's proof of the characterization of
Brownian motion but could as well have used the customary proof of finite dimen-
sional convergence, as e.g. in [8], which simplifies considerably in the present
situation. However, the present proof seems to tie in better with our point of
view. Once this result has been proved, the most general central 1limit theorems

for martingales follow simply by random change of time and truncation.

Lemma 3.1. Suppose {X j21, n>1} is a m.d.a. and {Tn(t); t20} adapted

.,B .
n,i n,Jj
timescales, with Tn(0)=0 such that there exist constants an+0 satisfying
T (1)

2
(3.1)  |x xn,j -t| < €

| <e , |

n,j .
) J

1 e~13

1

for all j,nzl and t20. Then

Sot 4 B , as n > o, in D[0,»).

n

" e - .- .
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|‘r_'m_l': Using the notation of (1.1) and of Proposition 2.3 we will verifv the
hypothesis of Proposition 2.1,
(i) Tightness: By applving in turn Proposition 2.4(iii) for p = 4 and (3.1)

we obtain that

k k c Tn(tl) )

5 P(vsot (£)2€) < ) = E( ) Xy )
£=1 £=1 ¢ J=Tn(t£_l)+l ’

j
< b (t,-t +2¢_)
64 221 £ 72-1
Since
§ 2 § 2

1imsup (t,-t +2e ) (t,-t, .)

e fo1 £ 72-1 " n £=1 2 °g-1

< AT ,

this proves tightness.

(ii) Finite dimensional convergence: We have to prove that if Sort

K g X as n-»«x,
n

where X is continuous, then X has the same finite dimensional distributions as
B. For simplicity of notation, we will assume that kn=n, so that SOTn g X. The
general case is then obtained simply by changing n to kn in the computations bhe-

low. By the continuity of X, SOTn(t) Q X(t), for t=20, so that

luSOTn(t)

Fe N Ee1uX(t)

= ¢t(u) , say,

for each u and each t>0 and we only have to show that ¢t(u) is the characteris-
tic function of B(t) and the corresponding fact for the k-dimensional charac-
teristic functions,

Again with the notation of (1.1},

iusot (T) k iuSotr (t_ .) iuASot (&)
(3.2) e [ T nte-lg N )
£=1
k  iuSot (t, .) 2
- Z e M &l tiwasor (&) - % asot (&) Yo

£

1

RN RIR Iy N S

“5?57‘1Li!!!.3'"' = -




where, by Taylor's formula

u3 3
Irnl < 37 IASOTn(£)| .

1

(o
iHe--1x

Thus, using first Proposition 2.4 (ii) with p = 3 and then (3.1)
Tn(tz)

E( ) X, 5

1 J=Tn(tlf—1)+1

Cu’
3!

Elrn| <

1 17

£
k

3/2

< = Z (tp-tp ,*2€) /

and hence, for K = C u3/3!,

1/2

(3.3) limsup Elrn| < KA T

N>
Now, with the obvious identifications, the hypothesis of Proposition 2.3 is

satisfied, and hence

k  iuSot _(t, .) k iuSot (t, .)
(3.4) E ) e N1 s o &) = y Ele n'£-1 E(ASot_(£) ]| B )3
£=1 n £=1 n nT (T )
=0
and i
k iuSot_(t, ,) k iusot_(t, ,) |
(3.5 E } e - Vsor (2 = 7 Ele n Ve asor (0)2]] B e ) I
£=1 n 2=1 " Tintten |
4
. (t,)
k iusotr (t, .) Thtte
= )] Ble ™ BV Ty X8, e )
L=1 j=Tn(t£-l)+l ’ *‘nt -1
k iuSot (t )
= Ee ) R
2=1 n
where
Tn(tz) ,
(3.6) IR | = ¥ E| Y Xy - AL) |




by (3.1).

Taking expectations of both sides of (3.2), inserting (3.3)-(3.6), and letting

n » ® now proves that

u2 k 1/2
loo(w) -1+ 5 ] ¢ (w]=ska'°T
2=1 "£-1
Since the partition 0=t <t <...<t, =T is arbitrary, this shows that ¢, (u) is
Rieman integrable in t and that
u2 T
dp(w) - 1= - = [/ ¢ (wdt .

Since ¢O(u) = 1, the only solution to this equation is
2
u

-5 t

¢t(u) - e - EeiUB(t).

To conclude the proof it only remains to prove the corresponding result for the
multidimensional characteristic functions. However, if uSOTn(T) is replaced by
Ig u(t)dSOTn(t). where the function u is assumed to be piecewise constant, with

only finitely many jumps, then the same calculations show that

E exp(iff u(t)dx(t) = exp(-1/2[7 u(t)’an)

E exp(if] u(t)dB(D) . n

The first step in weakening the hypothesis of Lemma 3.1 is concerned with the

second part of (3.1).

Lemma 3.2. Suppose {Xn j,Bn

b4 s

j} is a m.d.a. and {Tn(t); te{0,1]} are timescales
such that

B .l < €, 0 , asn o, and
(3.7)

|
[
i
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for all n,j21 and te[0,1], where T is non-random 21d continuous, then
d .
(3.8) SOTn >B , asn->e | in D[0,),

Proof: Define, for t20

i o~1ct
<
[\

nn(t) =

j 1 n,J

ngl(t) = inf{s>0; nn(s)>t} ,

{where we, without loss of generality, assume that n (t) 435 , as t » «) <o
n

that {nn} and {n;l} are timescales and n;l in addition is adapted. Clearly

-1
n (1)
n 2 2
t< J X LSstee
J'=1 ’J
1 d .. . .
B in D[0,©), by Lemma %.1. Since furthermore {nnOTn} are

and hence S on_
n n

timescales, and

t , asn- oo

o~ —~
>
N
o

nnOTn(t) =
for te[0,1}, by assumption,Proposition 2.2 (i) implies that

S on—lon or. $ Bor in D[0,1]

nmnm n n g A

It is easily seen that moreover

-1 -1
sup |SOTn(t) - Snonn OnnOTn(t)l < sup lSn(k)-Snonn onn(k)|

0<t<l1 k=1
€€ =+® . asn->o
n
and, by Proposition 2.2(ii), this proves (3.8). n

In a serse, Lemma 3.2 says all there is to say about the central limit theorem

for martingales, since if SO‘rn converges to Brownian motion, then the maximum of the




Xn i's has to tend to zero, which (morc or less) leads to the first part of
(3.7), and then the second part, with T(t) = t is minimal. However, we will
derive further conditions, which may be easier to check. The first result

applies not only to m.d.a.'s, but to arrays which are asymptotically close to

m.d.a.'s in an appropriate way.

Theorem 3.3. Suppose that {Xn .,B

i nj’ j21, n21} is an adapted array and {Tn(t);

te[0,1]} are adapted timescales such that, for some a>O0,

T (t)

n p
polE. cox o a{]x  lsaly| >0
j=p o tbmd )

(3.9)

T (t)

n
z Xi 3 E (t) , asn—» ™,
i=1 ’

for te[0,1], where 1 is non-random and continuous. Then

(3.10) SOTn $ Botr , as n -« , in D[0,1].

Further, if (3.9) holds for one a>0, then it holds for all a>0.
Proof: It is easily seen that the second part of (3.9) implies that

j|; lsjsTn(l)} E 0, and thus, by Lemma 2.6(i), there exist constants

En + 0 such that

max{|Xn

(3.11) P( max |Xn | > e) >0 , asnae.
1<jst (1) ™I
n
Hence
T, (1) o
Y oIx j1{az]x_ .|>e}>0 , asn->e,
. n,j n,j'"n
j=1
since all the summands are zero on the set { max IX J.|sz»:n}, and then, according

1sj<t (1) s
to Lemma 2,.5(ii),

T

=
—

1)
P
(3.12) jzl Ej_l(lxn,jIl{azlxn,j|>sn}) > 0, asn-+o,




Thus, using the first part of (3.9),

() T,
\
(3.13) izl [Ej_l(xn’jl{lxn’jlscn};| < jzl |E _I(Xn’jl{|Xn,j|Sa})|
(D
' jzl Ej-l(lxn,jll{az'xn,j|>En})
E 0 , asn~»>w
Now, put
X' oo= X cif{x Llsel} o, X L= XL - XL,
n’J n:.] n’J n n:J n:J n’J
T (B
= X! - ' ' =
Yn,j Xn,j Ej-l(xn,j) > S OTn(t) jzl Yn,1
Then by (3.11) and (3.13)
| e |
sup |SoT_(t) - Stor (t)| < x| o+ lE, (X' )
ost<l T n =1 ) j=1 0 7L
g 0 , asn-> x|

and thus, according to Proposition 2.2(ii), the conclusion (3.10) will follow if
we prove thatS?OTn satisfies the conditions of Lemma 3.2. Clearly {Yn ,Bn }is

am.d.a., and |Yn jI < 2£n, so it only remains to be shown that

b4

T

t)

Y2 . R (t) , as n-=+®

(3.14) Va3

(€
!

for all te[0,1]. Here

j
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WO (o T (1) (1)
Ivse jzl (xg 2 - 2 JZI X Eia (X ) ¢ jzl B, 0%,
| where
Tn(t) ) T (t) Tn(t) ,
jZl %y T J):l x“j ) 321 a5

o

(t) -0=1(t) , asn+ o,

since the X" .'s are zero on { mg B

n3 15 X (1) 3' se }. Further, by (3.13),

T\

T (t) Tn(l)
| Z Xy B (g Ol s e jZI lE5_ (% D
E 0 , asn-»> o

and similarly

"gt) ? T“;) 1 |
E. ,(X' D" < ¢ E. , (X' .)
j=1 J’l n,j n j=1 J'I » 3
E 0 , asn-»>ow |

by (3.13) and thus (3.14) holds.

Finally for the last assertion of the theorem, if a<a', say, using that

P
Ly 1<t (
max{an nE 1<J<Tn_l)} > 0, we have

Tn(l) Tn(l)
E X L1{|x <a}l - E. ( <a!'
UL R ED)
. T (1) |
< jzl Ej-l((xn,jll{a<lxn,j'Sa'})
13 0 , asn~+owo
} by the same argument as for (3.12). n

——— X
M e . e oa e




As an easy corollary, we will now obtain conditions which insure that normine

with sums of squares and with conditional variances is asymptotically equivalent.

Corollary 3.4. Let {Xn j’Bn j} be an adapted array, and {Tn(t); te[0,1]} adapted

’ 3

timescales,

(i) If
T (1)
n 2 . P
(3.15) YOE. (XS 1{X_ .|>el) >0 , asnaoe , Ves0 ,
j=1 J'l n)J an
Tn(l) 2 }°° { ( ) 2 °° . . . .
and if either {z Ej-l(xn,j) ael OF 2 n j n , 1s tight (which in par-

ticular holds if either sum converges in probablllty) then

T (1) (
sup | nz Xz - 2 E (Xz ) %o as n ~
ost<1 =1 MJ 2y 3-107n,J ’

(ii) The hypothesis (3.15) is equivalent to the assumption that (3.15) holds for

one fixed £>0, and that max{lxn jl; lstTn(l)} Bo.

3

T (1)
. . ~ n ~2 p
. = + 0
Proof: (i) Write X, 5 xn’jl{lxn,j|>1}. Then by (3.15), )j=1 Ej_](Xn’j) > 0,
(1) ~2 P
and it follows from Lemma 2.5(i) that 2 Xn ; + 0, so we may in the proof

’

assume that |Xn jl < 1, for n,j21.

T,
Bje1n, )

n( ) 2
ey 2nd {2 .}° _ are tight, by the assump-
tion combined with Lemma 2.7. Further, (3.15) implies that

Then both' {7 “ L

(3.16) M_= max E.. x> 1%0 , asnow,

" oggjer (1) ITL™)
n
and by Lemma 2.5(i), that
Tn(l)

y Xi J.l{IXn j|>e} L) , asmn->o _ Ve>0 ,

b

which in the same way gives that




9
(3.17) Mn = max X; .
l§j<1n(l) >

o

2 2
Clearly, {Y . =X . - E. X7 .} is amd.a. with {y_ .| < 2, and since
- n,i n, j j-1"n,j n,j
Tn(t) ] Tngl) . Tn(l) ,
boyoos20 §ox0 oe ]OE (X007
j:I )J j=l 3 j__.l J ’J
T
T (1D ) N NeY) )
s F X-oeM o ]OE. (X))
j=1 ’J J=1 J ’J
E 0 , asn->x

by tightness and (3.16), (3.173, and the Corollary then follows from the theorem
(with 1(t) = 0).
{ii) TFrom (3.17) follows that (3.15) implies that max{IXn 1.|; lsjsrnfl)} o,

The other implication follows in the same way as the last assertion of thc thco-

rem. 1

We can now prove the general functional central limit theorem for martingales.
Of course, the most important special case of it is when T(t) = t, and the limiting

process is an ordinary Brownian motion.

Theorem 3.5. Suppose {Xn .,B_ .} is a m.d.a., {Tn(t); te[0,1]1} are adapted time-

’J n!J

scales and 1(t); te[0,1] is a continuous, non-random function and suppose that

one of the following three sets of conditions holds:

E  max IXn | >0 ,asna>wo
1j<T (1) »J
(3.18)
T (1)
"2 p
7 X > T1(t) , asn->o , for tef0,1] ,
i=] n’J

or
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T (D)
n 2 p .
Y OE. (X2 1{]x_ .|>e} >0 , asn->e , Ve>0
j"l J'l n,) n,) .
(3.19) !
T {t) j
n , p
2 E, ,(X_ .,) »1(t) , asn-»o , for te[0,1] ,
& j-1""n,j
1=1
or
(3.20) (3.19) holds for one £>0, and max ’X . 13 0, asn > o,
1<jst (1) M)
n
Then
SOTn g Bot as n-»>« | in D[0,1]
Proof: Assume first (3.18) is satisfied. Then { max B .]}w is uniformly
1<ist (1) n, i’ n=l
integrable and n
(D i
YooIxo c|i{]x Lf>1} 30 , asn» e,
s o n,) n,)
3=1
Since {Xn 1.} is a m.d.a., it follows, using Lemma 2.5(ii) that
7, 7,1 |
.Z |Ej_1(x ’jl{lxn,j|s1})| = .z lEj_l(Xn’jl{lxn,jl>l})l
j=1 j=1
T, (D
< _z Ej_l([xn’j‘l{lxn’i|>1}) H
j=1 :
E 0 , asn-»> o

and thus the conditions of Theorem 3.3 are satisfied, and SOTn + Bot , as required.

Next, assume (3.19) holds. By Corollary 3.4, it follows that




T (t)
nﬂ P
Y X7 . > 1(t) asn s , for te[0,1] ,

2
. n,
i=1 !

and, again using that {Xn i} is am.d.a.,

s )

Tn(l) Tn(])
jzl B, xSl s izl [, 0 10X 151D
SNeY ,
< jzl E5 01X L1>1)
L

by assumption, so again the conditions of Theorem 3.3 are satisfied, and
Sot Q BoT.
n
Finally, by Corollary 3.4(ii), the conditions (3.19) and (3.20) are equivalent,

so the result holds also under (3.20). n

Corollary 3.6. Suppose {Xn i’B

s . s

j} is amd.a. and for each n, T is a stopping

time with respect to Bn 1 Bn IR and suppose one of the following threc sets
’ ’

of conditions holds:

E max [X_ .|[~>0, as n > ®©
1<j<T ]
n
(3.21)
Tn
2
Yy xZ 4 1, as n > o
=1 "J
or
.
o 2 p
iil Ej_l(xn’j1{|xn’j|>e}) >0 , asn-+>© , Ve>0 , ﬁ
(3.22) .
n 2 . P
) E. (X2) >, as n o,
j=1 J-Lmd




or
(3.23) (3.22) holds for one £>0, and
max }X .( E 0.
1<jsr_ M)
n
Then
T
. n d
(3.2%) E Xn . > N(0,1) , asn >
i=1 s

Proof: To prove the result assuming (3.21), define adapted timescales

{’n(t1; tf[O,l]}:=l (similar to n;l(t) in the proof of Lemma 3.2) by

inf{k;

X
1

W ~17

>tiat ,  for O<t<l |

( 2
T (t
n ) n,j n

i

"
=

Tn(13

It is casily seen that {Tn(t)} satisfies the condition (3.18) of the theorem (cf.
the proot of rLemma 3.2), soinparticular SOTn(l) ﬂ B(1), which is just another
way of writing (3.24).
The proof unde» (3.22), or the equivalent condition (3.23) is similar; onc
just has to replace Xi,j by Ej-l(xi,j) in the definition of 1n(t). n
We conclude this section with several comments on the results.
(i) In reasonable circumstances the conditions are also necessary for the func-
tional martingale central limit theorem. In fact, if {max{}Xn’il; 1<j:1n(1)}}
is uniformly integrable, and if "Tn takes all relevant values" (see [19] for &
definition--this holds in particular if Tn(t) only has jumps of size one, as
e¢.g. when Tn(t) = [nt}), then SOTn g BoT implies (3.18), sece [19]. Easy cxamplces

show that neither uniform integrability nor ”Tn takes all relcvant values," can he

entirely dispensed with in this statement.




[ 2

rn(l\

5

Similarly, if limsup E §i=l X; i < v , then SOTn implies (3.19) and the cqui-
N - >
valent condition (3.20), see (7], [19]. Furthermore, {max{]Xn i!; lsjéTn(I)}?ﬁ_l

then is uniformly integrable, and (3.18) follows from (3.19) and (3.20) by Corol-
lary 5.4,
(i1}  One important special case of the theorem is the degenerate one. when

[+ 4
{t) 7 0. From the theorem, if {max{lxn il; lijTn}n_ is uniformly integrable,

). 1
t
n al p =
and f X; P 0, for some sequence {Tn}n—l of stopping times, then
= -
h
PN sup N e 0, asn->+

v n,!
l<kst 3=1 :
n -

oo
. e . <i< 1 1 formil i ra-
wnd conversely, if (3.25) holds, and {max{IXn.jl, l—J'Tn}n=’ is uniformly inteora

o,
ble, then Zln X; ; Eo.

N

Simitarly, it " B0 ) L0, then (3.25) holds, and conversely, (3.25)
. _l: = s

2 |4
. >
n,lJ

(X )

T .
and limsup E Ejzl X < © implies that 5121 E X" 0.

n->oe

i-1

{111) If the Xn i's in each row are independent, and the Tn(t)'s are non-random,

y !

then for Bn j = o(xn l,...,Xn j) the second part of (3.19) just says that the
Tn(t) 2 .

that the normalization is such that V(E X 1.) > 1(t), and the first part is
=1 ™

Lindeberg's condition,

(1v) There is another important special case in which the conditions of the theorem

arce particularly easy to check: if the Xn j's are obtained by normalizing a single

»

stationary ergodic sequence "'X-l’ XO’ Xl,...,

X. - E(X.|| B.
LN 118,

n —_ s
»J ov/n

. _ _ 2 _ i 2
with )3.i = Bn,j Olann, Xj-l’ xj) and o = E(Xj E(lelBj_l)) assumed to be

. . e ————— < . e e v
Ll v . ol
D% Dkl < - A J
4 VAl s, - i
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strictly positive and finite, then, for Tn(t) = [nt], it follows at once from
the crgodic theorem that (3.19) holds and hence
(nt]

Tox. - BB )/ YR Y o
j=1 il

In nonstationary cuases, the conditions of the thcorem often have to be checked

by computing higher moments, e.g. the first parts of (3.18), (3.19) follow if

>

(
.
E ? X >0 , asn-+« _ for some -2

and the second pa~*s of (3.18), (3.19) may be obtained by computing mecans and
variances of the sums on the left hand sides.

(v} Throughout, we have (implicitly) assumed that Tn(l), and hence Tn(t] for t-1, '

is finite a.s. However, a small further argument, using (ii) above shows that

this can be dispensed with, and that the theorem (and the corollary) holds also

if rn(l) (or Tn) are extended stopping times which may be infinite with positive

T (1)

probabilities provided XjTI Xn ; converges with a probability which tends to
one (this is automatic under (3.19), (3.20)).
(vii) 1t is obvious from the proof of Proposition 2.2(i) that the second nart

T (%) 2 4

X + 1(+) in D,[0,1], with

of (3.18) can be weakened to requiring that zigl n.i

T(*)} non-random, but possibly discontinuous, and similar remarks apply to (3.19)

and (3.20).

4. Mixing and Multidimensional Processes

In this section, the convergence in the previous results will be strengthened
to Rényi-mixing--which in turn will make it possible to rcmove the condition that

T(t) is non-random--and multivariate versions of the results will he obtained,

R v . ‘ .
— - T e W ———— . e el - s - e b - o . | o
i 3 AR g < AN P - Ce e . -

"itﬁhif - ST ey I‘




While the purpose of the previous sections is to provide complete proofs,
starting from scratch, of the basic results of martingale central limit theory,
the intention of the present soction is only to indicate one possible direction
for developing the results further--examples of other directions being provided
by limit theory for continuous parameter martingales and diffusion approximations--
and we will accordingly give a more sketchy development, sometimes leaving details
of arguments to the reader, and referring to results from cother areas as they are
needed, rather than explicitly collecting them at the beginning.

Some tfurther notions are needed for the results, As in Section 2, let X,

t

{xnbn:l he random variables in a complete separable metric space (S,p), and in

addition assume that all the Xn's are defined on the same probability space

{ ,B."). Then {Xn‘ is Pénpi-mixing (or just mixing) with limit X, X 4 X (mixing)

it \n 4 X in (S,7), with respect to the conditional probability P(¢|B), for any

B.B with P(B)>D. Further, {Xn} is Rényi-stable (or just stable) if Xn converges

in distribution tosome 1imit, with respect to P(-

B), for any BeB with P(B)>0.

Thus a mixing sequence is stable, and conversely if a stable sequence has the

same limit with respect to P(+|B), for all B, then it is mixing. Loosely
speaking, a sequence is mixing if it converges in distribution and is "asymp-
totically independent" of any fixed events. Prominent examples of sequences
which are stable but not mixing is given by sequences which converge in proba-

hility, or almost surcly, to a non-degenerate limit. Some indication of the use

and interest of mixing is given by the following result.

Proposition 4.1. The following three assertions are equivalent:

(N Xn + X (mixing),
(i) Xn 4 X , as n->o , with respect to P(*|B) for all BeB0 with P(B)>0

for some algebra B0 which generates o(xl, X2,...), and

(- ¢ o
T e W - R R oy - - Faadit " . - a . - - s Y B
B R Vil At oo

o
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(iii) if vy, {Yn}:=l are random variables in another complete separable metric

space, with Yn ﬂ Y, as n » o, then (Xn,Yn) Q (x,yy.

Sketch of proof. Clearly (i) is equivalent to

4.1 Eh(Xn)lB + Eh(X)P(B) , as n > o ,

for any bounded continuous function h: S - R and event BeB, and similarly for
(ii), with B replaced by BO' Clearly (i) implies (ii). Further, to any ¢>0 and
BeB there exists a BEEBO with P(BAB®) < €, cf. [5], p. 606, and hence if |h| < C,

then

|Eh(Xn)IB - Eh(X )1 s ce

B
This is easily seen to imply (4.1), if Eh(Xn)lBE - Eh(X)P(BE), for all >0, and
hence (ii) implies that (4.1) holds for B ¢ O(Xl,XZ,...). The case of general
BelL then follows by a further small argument, as in [1].

It is straightforward to see that (iii} holds if and only if (Xn.Y) 4 (X.7)

or any fixed random variable Y in (S',p'), and this in turn is equivalent to
(4.2) Eh(xn)l{YeE} $enP® , asnow

for any continuous bounded h; S - R and any Y-continuity set E, cf. [3], p. 20.
Obviously (i) implies (4.2), and conversely, for an arbitrary event BeB, taking
Y = IB and B = (1/2,3/2), say, (4.1) follows from (4.2). Hence (i) and (iii) arc

equivalent. L

Additional interesting properties of Rényi-mixing is that it is prescrved
under absolutely continuous change of weasure, and that it implies that the sample
paths fluctuate strongly, see [1,17,19]. Furthermore it should be noted that,
with obvious changes only, Lemma 4.1 holds also if mixing convergence is replaced
by stability. Using Pronosition 4.1(ii) it is easy to see that the limits of the

previous scction are mixing.

LA S e 2 diar i B S = Y -




Theorem 4.2, It the o-algebras {Bn .} are nested , i.c. if B < B for

) J n,j n+l, i’

all n,j, then the conclucions of Theorems 3.3 and 3.5 can be strengthened to
mixing convergence, i.e., under the same hypotheses, SOTn 9 Bot (mixing), and

similarly for Corollary 3.6.

E{ggg: the proofs under the different hypotheses are all similar, so we will
only give one as an example, say the first part of Theorem 3.5.
Thus, we will assume (3.18) holds. According *2 Proposition 4.1 it is suf-
ficient to show that if B is a fixed event in the algebra u ..y B . with
nzl,j21 "n,i
P{B)>0, then

(4.3) SO'rn d Botr , asn-+>o | in D[0,1] ,

with respect to P(*{B). Since B ¢ Unzl,jZI Bn,j , there are ny»Jy with
BeBn i and since the Bn j's are nested and increasing, it follows that
0’0 ’
> -2 P
B ¢ Bn,j , forn n, s 32
Tn(t)
! = . R i 4 = X'.. T
Let Xn,j Xn’JI{J iy} and write S ot (t) PR hen
| P |
sup |Sot_(t) -~ S'ot (t)| < X .| €3, max X .
0<t<1 n n j=1 ™) 0 1j<t (1) RER
—bO’

in P-prcbability, and thus, as is immediately seen, in P(+|B)-probability. Hence

by Proposition 2.2(ii), (4.3) follows if

(4.4) S'OTn é Bor , asn+~ _ in D[O,1] ,

. ' s n> > i . -
under P(*|B). Clearly, {xn,j’ Bn,j’ nzn, j21} is a P(+|B)-m.d.a. ,
E( max IXA 1By < Pgﬁ) E max |Xn .
1sjst (1) »J 1sjst (1) »J

- (. I
. . e




——
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and

> () -0 =1(t) ,

in P--and hence in P(*|B)-probability, and thus (4.4) follows from the first part

. 1) R
of Theorem (3.5), applied to {Xn,j’Bn,j}'

For the extension to several dimensions it will be useful to have a slipghtly
ditferent description of the limit process BOT, and to emphasizc this we will
change notation and will in the sequel write BT instead of Bot. Clearly, Br can
be characterized as the normal process which has mean zero, variance function
7{t) and independent increments. Further, of course, BT = BOT makes sense also
if 7 is a stochastic process, and, in particular, if 1 is independent pf B, which
we will assume throughout, then BT can be described by saying that conditional on
T, BT is normal, with zero mean, variance function tT(t), and with independent in-
crements. Similarly, given a nonnegative definite, nondecreasing matrix valued,
possibly random, function tT(t) = (Tj’k(t); 1<j,k<d), we definc a d-dimensional
process BT = (Bgl),...,BEd)) by requiring that conditional on T(t) it is a normal
process with mean zero, variance matrix V(BT(tHIT) = 7(t), and with independent
increments. We then have the following extension of Theorem 3.5. (Theorem 3.3
has the analogous extension--this is, however, left to the reader).

Theorem 4.3, Suppose'{xn .,B .} is a d-dimensional m.d.a., i.e., that X, 5=

»37 N, 5 1
(d2)T are d-dimensional random vectors, such that {Xﬁk},Bn

(D X
nir o,

.} is a

y

m.d.2., for k = 1,2,...,d, that {Tn(t); te[0,1]} are adapted timescales, and

that t(t) = (Tj k(t); 1<j,k<d) is a continuous, possibly random, matrix function.

(i) If one of the following three sets of conditions holds,

E max ]xﬁk1] >0 , asn-+~ , for k=1,...,d,
15jst_(1) »J
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(4.5)
T (1)
e T P
J X X .>1(t) , asn->w® , for te[0,1]
te n,j n,j
j=1
or
T, (D
Y E, ((X(kq)zl{lx(k1|>e})£ 0 , asn->oo, Ve>0, and for k=1,...,d,
j=1 J'l n,) n,j
(4.6)
T (1)
n T P
jzl Ej—l( n,jxn,j) > 1(t) , asn-> , for tef[0,1] ,
or
(k), P
(4.7 (4.6} holds for one €>0, and max ]Xn j >0 , as mx for k=1,...,d,

ISJSTn(l)
and if in addition the o-algebras {Bn j} are nested, then
SOTn Q BT , asn-=>9o _ in D[O,l]d s ]

and the convergence is stable: If Yn E Y in (S',p'), then (SOTn,Yn) Q (BT,Y)
in D[O,l]d x S', where the distribution of (BT,Y) is determined by the require-

ment that B and Y are independent, and that the distribution of (T1,Y) is the
- . . . . Tn(') T Tn T
limit of the distributions of (zj=1 Xn,jxn,j’ Yn) or of (Zj=1 Ej-l(xn,jxn,j)’Yn)’

respectively,

(ii) TIf in (i) the limit T1(t) is non-random, then the hypothesis that the Bn j's
arec nested can be deleted, and it still follows that Sorn ﬂ BT in D[O,l]k, but

the convergence is not necessarily stable,

Proof: Suppose first that d=1 and that (4.5) holds. Without loss of generality

we may as in Lemma 3.2 assume that the m.d.a. {X B j} satisfies E max|X_ .|+0

n,j’n, 1<5
37" o, as k » © for each n. We will now proceed as

n,j

2 a.s.
n,j

as n » o, and that 22:1 X

in Lemma 3.2, defining




n;l(t) = inf{s20; n_(s)>t} .

It follows at once from Theorem 4.2 that Son;1 d B (mixing) in D[0,1}. Clearly
Theorem 4.2 can be immediately translated to D[0,T], for any T>0, and it follows

that Son;1 Q B (mixing) in D[0,T], for any T>0, which in turn implies that

Son;‘1 g B (mixing) in D[0,®), cf. [21]. By assumption,

(
not = Z 2 B () |,

and if in addition Yn R Y , then by Proposition 4.1,
(SOn_l not , Y) d (B,T,Y)
n’ n n” n > i

where B is independent of (7,Y). By a minor extension of Proposition 2.2(i), it
follows that
sonlonor , Y3 $ B,V
n n n’ n T° ’
and then since

-1
sup [Sot_(t) - Son_'on ot (t)|
osts1 " n nmn 1< ™!

P
=%

A
3
®

.
>

0 , asn-»
the desired result follows, that

(SOTn, Yn) ﬂ (BT, Y) , asn->w

this time by a small extension of the second part of Proposition 2.2 .
Still assuming (4.5), {SOTn} is tight also for d»1, since by what just has
been proved its components converge in distribution, and hence are tight. Thus,

similarly for convergence in D[O,l]d as in D[0,1], it only has to be shown thuat
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the finite dimensional distributions converge. Equivalently, as is easily seen
by considering multidimensional characteristic functions, it is sufficient to
prove that

(4.9) [ u(vydsor_(1) ¢ [ u(tyaB_(v) ,

as n ., if u(t) is non-random, piecewise constant and with only finitely many
jumps (this is just the Cramér-Wold theorem, [3], p. 49). However, clearly the
left hand side of (4.9) is a sum of martingale differences and the convergence
follows easily--though with some notational qualms--from what has been proven
for the case d=1.

The proof of part (i) under the hypotheses (4.6) or (4.7) differs from the
above in only one place--instead of defining N n;l by (4.8) it is convenient to

usce

(el

5
(x-.)

nn(t) = E nJ

j=1 J-1

Finally, the one-dimensional version of part (ii) is just Theorem 3.5, and

the multidimensional version is then obtained in precisely the same way as above. [l

Corullary 4.4, Suppose {Xn J.,B

R j} is a d-dimensional m‘d.a.,'{Tn} is a sequence
»

of stopping times, and T = (Tj © 1<j,k<d) a, possibly random, matrix.
(1) If one of the conditions (4.5)-(4.7) holds, with Tn(l), Tn(t) replaced by

Ty and 1(t) replaced by 1, and if the o-algebras {Bn j} are nested, then

3

B, , asn>o |

4

where conditional on T, BT is normal with mean zero and variance matrix 1. If
furthermore T is strictly positive definite a.s. and the modified version of

(4.5) holds, then

T T
T ,-1/2 " d
. n,jxn,j) ; xn,j > Nd(O,I) , as n-+ ™

j=1




and if the modified version of (4.6) or (4.7) holds, then

T

n n
. T -1/2 d
(izl E51C, 5%, 57 jzl I N

(ii) If T is non-random, then the hypothesis that the c-algebras are nested can

be deleted.

Proof: The first part of (i) follows from the theorem in a similar way as Corol-

lary 3.6 follows from Theorem 3.5, after reducing the problem to the case d=1 hy
d Th (1)

considering linear functionals, 2 W X. X*". {the Cramér-Wold theorem). The
k=1 J=1 n,J

second part is then immediate after noting that stability implies that, ec.g. under

the modified version of (4.5), there is joint convergence,

"n "n
T d
(1 X X o ] X )3 (1,B) ,
j=l ’J ,J j___l ’J
and hence
“n “n
(3 x o )TVEy x . St%
j=1 sJ :J j=l 1J
d
=Ny (0,1).
The proof of part (ii) is similar. n

Clearly the remarks (iii)-(vii) after Corollary 3.6 apply,
also to the present situation. Further, as a final remark, considering e.g. d=1 %
and Condition 4.5, the requirement that the sums of squares converge in probabil-

ity, and not only in distribution is only used to insure asymptotic independencec,

T ()
so that the marginal convergences ijl Xi j + T and SOnr_]1 + B imply joint con-
vergence
,(*)
2 -1, d
(4.10) ( § x¢ ., )% (1,B) , asn->w,
j=1 MJ n

where T and B are independent, and hence convergence in probability can be rc-
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placed by any weaker condition which still insures (4.10), One set of such con-

ditions is given in Theorem 3.4 of Hall and Heyde (8]. ;

APPENDIX

Here we will prove the simple special case p=4 of the Burkholder inequality
stated in Proposition 2.4(ii), which is the only case needed for this paper. In

fact the proof of finite dimensionil convergence, p. 12, £ 4 also uses p=3, but

that might as well have been reduced to p=4 by first using theLiapunov inequality.

ElASorn(£)|3 < {EASOTn(£)4}3/4 .

Thus let {X.,Bj} be a martingale difference sequence. We will start by as-

suming that Doob's inequality

K4 I 4
(A.1) Emax | ) Xx.|T < CECY X))
1<k<n j=1 7 j=1 J

is known, and prove that then
n n

(A.2) EBCY x0% < ce( ) xH?
j:l ] j:l J

where (' and C are universal constants.

Let s(m) = 7 X, and M(n) = max{|2§=l X|5 1sken}. By the martingale dif-

ference property, ES(j)BXj+1 = E{S(j)SE(Xi+1||Bj)} = 0, so that, expanding S(j+l)4=

(S(.i)+,\'j+1)4 we have

pe o4 N4 4 o3 capin 292
ES(i+D” - ES(i)T = EX;,; + 4ES(H)X;,; + 6ES(H) Xia o

nd thus, summing over j,

n n n
‘ 3 2.2
.3 esm?= ) EX? ¢4 ] ES(G-DX] + 6 ] ESG-DX]

j=1 j=1 j=1

Inserting the obvious inequalities |S(j-1)] < M(n) and Ile < 2M(n) into (A.3)

we obtain

4 . 2% 2
(A.4) ES(m)" < (4+8+6)EM(N) * ) X{) -
J=1




Now, by the Cauchy-Sch

)

2
EM(n) ~

and inserting this into (A.4) and dividing through by {ES(n)4}

with C = 182C' (which

The general assert

2
X.
J

warz inequality and by (A.1)

IA

n
M) 1 2 e ) xf)z}l/2
i=1 -

n
cesm® /2 )
J=

A

17

,
1/2 we obtain (A.D)

is not the best possible value of C, cf. [4]).

ion of Proposition 2.4(ii), for p=4, now follows casily by

replacing Xj by le{T<XiST'} in (A.2) and letting n tend to infinity, using

Fatou's lemma on the 1

but for any even integ

random sums ©
61, 43-57,

[3} Billingsley, P,
York.

[4] Burkholder, D.L.

limit theorem

[8] Hall, P. and Heyde, C.C. (1980): Martingale Limit Theory. Academic Press,

New York.

[9] Helland, I. (1982): Central limit theorems for martingales with discrete
time. Scand. J. Statist. 9, 79-94.

or continuous

[7] Ganssler, P. and Hdusler, E. (1980): Remarks on the functional central

eft hand side. (In fact the proof works not only for p=1,
er p.)
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